
Release 7.2

Server Administration Guide





Notice

PingDirectory™ Product Documentation

© Copyright 2004-2018 Ping Identity® Corporation. All rights reserved.

Trademarks

Ping Identity, the Ping Identity logo, PingFederate, PingAccess, and PingOne
are registered trademarks of Ping Identity Corporation ("Ping Identity"). All
other trademarks or registered trademarks are the property of their respective
owners.

Disclaimer

The information provided in these documents is provided "as is" without
warranty of any kind. Ping Identity disclaims all warranties, either express
or implied, including the warranties of merchantability and fitness for a
particular purpose. In no event shall Ping Identity or its suppliers be liable for
any damages whatsoever including direct, indirect, incidental, consequential,
loss of business profits or special damages, even if Ping Identity or its
suppliers have been advised of the possibility of such damages. Some states
do not allow the exclusion or limitation of liability for consequential or
incidental damages so the foregoing limitation may not apply.

Support

https://support.pingidentity.com/



PingDirectory | Contents | 5

Contents

Chapter 1: Introduction.........................................................................................13
Overview of the PingDirectoryProxy Server Features.......................................................................................14
Overview of the Directory Proxy Server Components and Terminology..........................................................14

About Locations......................................................................................................................................15
About LDAP External Servers...............................................................................................................15
About LDAP Health Checks.................................................................................................................. 15
About Load-Balancing Algorithms........................................................................................................ 16
About Proxy Transformations................................................................................................................ 17
About Request Processors...................................................................................................................... 17
About Server Affinity Providers............................................................................................................ 18
About Subtree Views..............................................................................................................................18
About the Connection Pools...................................................................................................................18
About Client Connection Policies.......................................................................................................... 18
About Entry Balancing........................................................................................................................... 19

Server Component Architecture......................................................................................................................... 19
Architecture of a Simple Directory Proxy Server Deployment............................................................. 19
Architecture of an Entry-Balancing Directory Proxy Server Deployment............................................ 20

Directory Proxy Server Configuration Overview.............................................................................................. 20

Chapter 2: Installing the Directory Proxy Server...............................................23
Before You Begin............................................................................................................................................... 24

Supported Platforms................................................................................................................................24
Defining a Naming Strategy for Server Locations................................................................................ 24
Software Requirements: Java................................................................................................................. 24

Preparing the Operating System.........................................................................................................................25
Configuring the File Descriptor Limits..................................................................................................25
Enabling the Server to Listen on Privileged Ports (Linux)....................................................................26
To Set the Filesystem Flushes................................................................................................................26
Disable Filesystem Swapping.................................................................................................................26
About Editing OS-Level Environment Variables...................................................................................27
Install sysstat and pstack (Red Hat).......................................................................................................27
Install dstat (SUSE Linux)..................................................................................................................... 27
Omit vm.overcommit_memory...............................................................................................................27
Managing System Entropy..................................................................................................................... 27
Set Filesystem Event Monitoring (inotify)............................................................................................ 28
Tune IO Scheduler..................................................................................................................................28

Getting the Installation Packages....................................................................................................................... 28
To Unpack the Build Distribution..........................................................................................................28

PingDirectoryProxy Server License Keys..........................................................................................................28
About the RPM Package.................................................................................................................................... 29

To Install the RPM Package...................................................................................................................29
Installing the Directory Proxy Server................................................................................................................ 29

About the setup Tool.............................................................................................................................. 29
Installing the First Directory Proxy Server in Interactive Mode........................................................... 30
Installing the First Directory Proxy Server in Non-Interactive Mode................................................... 32
To Install Additional Directory Proxy Server in Non-Interactive Mode............................................... 33
Installing the Directory Proxy Server with a Truststore in Non-Interactive Mode................................ 33

About the Layout of the Directory Proxy Server Folders................................................................................. 34



PingDirectory | Contents | 6

Running the Server............................................................................................................................................. 35
To Start the Directory Proxy Server...................................................................................................... 35
To Run the Server as a Foreground Process..........................................................................................35
To Start the Server at Boot Time...........................................................................................................35
Logging into the Administrative Console.............................................................................................. 36

Stopping the Directory Proxy Server................................................................................................................. 36
To Stop the Server..................................................................................................................................36
To Schedule a Server Shutdown............................................................................................................ 36
To Restart the Server..............................................................................................................................36

Run the Server as a Microsoft Windows Service.............................................................................................. 37
To Register the Server as a Windows Service.......................................................................................37
To Run Multiple Service Instances........................................................................................................ 37
To Deregister and Uninstall Services.....................................................................................................37
Log Files for Services............................................................................................................................ 37

Uninstalling the Server....................................................................................................................................... 37
To Uninstall the Server in Interactive Mode..........................................................................................38
To Uninstall the Server in Non-Interactive Mode..................................................................................38
To Uninstall Selected Components in Non-Interactive Mode............................................................... 39
To Uninstall the RPM Build Package.................................................................................................... 39

Updating the Directory Proxy Server.................................................................................................................39
Updating Servers in a Topology.............................................................................................................39
To Update the Directory Proxy Server.................................................................................................. 40
To Upgrade the RPM Package...............................................................................................................41
Reverting an Update............................................................................................................................... 41

Chapter 3: Configuring the Directory Proxy Server.......................................... 45
About the Configuration Tools...........................................................................................................................47
Using the create-initial-proxy-config Tool.........................................................................................................47
Configuring a Standard Directory Proxy Server Deployment........................................................................... 47

To Configure a Standard Directory Proxy Server Deployment............................................................. 47
About dsconfig Configuration Tool................................................................................................................... 50

Using dsconfig in Interactive Command-Line Mode.............................................................................50
Using dsconfig Interactive Mode: Viewing Object Menus....................................................................50
Using dsconfig in Non-Interactive Mode...............................................................................................51
Using dsconfig Batch Mode...................................................................................................................52

Topology Configuration......................................................................................................................................53
Topology Master Requirements and Selection.......................................................................................53
Topology Components............................................................................................................................ 53
Monitor Data for the Topology.............................................................................................................. 54
Updating the Server Instance Listener Certificate................................................................................. 55
Remove the Self-signed Certificate........................................................................................................55
Remove a server from the topology.......................................................................................................57
To Update the Server Configuration to Use the New Certificate.......................................................... 57
To Update the ads-truststore File to Use the New Key-pair..................................................................58
To Retire the Old Certificate..................................................................................................................58

Using the Configuration API............................................................................................................................. 58
Authentication and Authorization with the Configuration API............................................................. 58
Relationship Between the Configuration API and the dsconfig Tool.................................................... 59
GET Example..........................................................................................................................................60
GET List Example..................................................................................................................................61
PATCH Example..................................................................................................................................... 62
Configuration API Paths.........................................................................................................................66
Sorting and Filtering Objects................................................................................................................. 67
Updating Properties................................................................................................................................ 67
Administrative Actions........................................................................................................................... 69



PingDirectory | Contents | 7

Updating Servers and Server Groups.....................................................................................................69
Configuration API Responses................................................................................................................ 69

Working with the Directory REST API.............................................................................................................70
Generating a Summary of Configuration Components......................................................................................72

To Generate a Summary of Configuration Components........................................................................72
Configuring Server Groups................................................................................................................................ 72

About the Server Group Example..........................................................................................................72
To Create a Server Group...................................................................................................................... 73

Domain Name Service (DNS) Caching............................................................................................................. 74
IP Address Reverse Name Lookups.................................................................................................................. 74
Configuring Traffic Through a Load Balancer.................................................................................................. 74
Managing Root Users Accounts.........................................................................................................................75

Default Root Privileges.......................................................................................................................... 75
Configuring Locations........................................................................................................................................ 77

To Configure Locations Using dsconfig................................................................................................ 77
To Modify Locations Using dsconfig.................................................................................................... 79

Configuring Batched Transactions..................................................................................................................... 80
To Configure Batched Transactions....................................................................................................... 81

Configuring Server Health Checks.................................................................................................................... 81
About the Default Health Checks.......................................................................................................... 81
About Creating a Custom Health Check................................................................................................81

Configuring LDAP External Servers................................................................................................................. 84
About the prepare-external-server Tool..................................................................................................84
To Configure an External Server Using dsconfig..................................................................................85
To Configure Authentication with a SASL External Certificate........................................................... 87

Configuring Load Balancing.............................................................................................................................. 88
Configure Failover Load-balancing for Load Spreading....................................................................... 89
To Configure Load Balancing Using dsconfig...................................................................................... 90
Configuring Criteria-Based Load-Balancing Algorithms...................................................................... 91
Understanding Failover and Recovery................................................................................................... 95

Configuring HTTP Connection Handlers...........................................................................................................96
To Configure an HTTP Connection Handler......................................................................................... 97
HTTP Correlation IDs............................................................................................................................ 98

Configuring Proxy Transformations.................................................................................................................101
To Configure Proxy Transformations Using dsconfig......................................................................... 101

Configuring Request Processors.......................................................................................................................102
To Configure Request Processors Using dsconfig............................................................................... 102
To Pass LDAP Controls with the Proxying Request Processor...........................................................103

Configuring Server Affinity............................................................................................................................. 103
To Configure Server Affinity............................................................................................................... 104

Configuring Subtree Views.............................................................................................................................. 104
To Configure Subtree View..................................................................................................................105

Configuring Client Connection Policies...........................................................................................................105
Understanding the Client Connection Policy....................................................................................... 106
When a Client Connection Policy is Assigned.................................................................................... 106
Restricting the Type of Search Filter Used by Clients........................................................................ 106
Defining Request Criteria.....................................................................................................................107
Setting Resource Limits........................................................................................................................107
Defining the Operation Rate................................................................................................................ 107
Client Connection Policy Deployment Example..................................................................................108

Configuring Globally Unique Attributes..........................................................................................................110
About the Globally Unique Attribute Plug-in......................................................................................110
To Configure the Globally Unique Attribute Plug-in.......................................................................... 111

Configuring the Global Referential Integrity Plug-in...................................................................................... 111
Sample Global Referential Integrity Plug-in........................................................................................112

Configuring an Active Directory Server Back-end..........................................................................................112



PingDirectory | Contents | 8

Chapter 4: Managing Access Control................................................................ 115
Overview of Access Control............................................................................................................................ 116

Key Access Control Features............................................................................................................... 116
General Format of the Access Control Rules...................................................................................... 117
Summary of Access Control Keywords...............................................................................................118

Working with Targets....................................................................................................................................... 123
target......................................................................................................................................................124
targetattr.................................................................................................................................................124
targetfilter.............................................................................................................................................. 126
targattrfilters.......................................................................................................................................... 126
targetscope.............................................................................................................................................127
targetcontrol...........................................................................................................................................127
extOp..................................................................................................................................................... 128

Examples of Common Access Control Rules..................................................................................................128
Administrator Access............................................................................................................................128
Anonymous and Authenticated Access................................................................................................ 128
Delegated Access to a Manager...........................................................................................................129
Proxy Authorization..............................................................................................................................129

Validating ACIs Before Migrating Data.......................................................................................................... 129
To Validate ACIs from a File...............................................................................................................129
To Validate ACIs in Another Directory Proxy Server......................................................................... 131

Migrating ACIs from Sun/Oracle to PingDirectory Server............................................................................. 131
Support for Macro ACIs.......................................................................................................................131
Support for the roleDN Bind Rule.......................................................................................................131
Targeting Operational Attributes.......................................................................................................... 131
Specification of Global ACIs............................................................................................................... 132
Defining ACIs for Non-User Content..................................................................................................132
Limiting Access to Controls and Extended Operations....................................................................... 132
Tolerance for Malformed ACI Values..................................................................................................132
About the Privilege Subsystem............................................................................................................ 132
Identifying Unsupported ACIs............................................................................................................. 133

Working with Privileges................................................................................................................................... 133
Available Privileges.............................................................................................................................. 133
Privileges Automatically Granted to Root Users.................................................................................135
Assigning Additional Privileges for Administrators............................................................................ 136
Assigning Privileges to Normal Users and Individual Root Users......................................................136
Disabling Privileges.............................................................................................................................. 137

Chapter 5: Deploying a Standard Directory Proxy Server.............................. 139
Creating a Standard Multi-Location Deployment............................................................................................140

Overview of the Deployment Steps..................................................................................................... 140
Installing the First Directory Proxy Server..........................................................................................140
Configuring the First Directory Proxy Server......................................................................................141
Defining Locations................................................................................................................................142
Configuring the External Servers in the East Location....................................................................... 142
Apply the Configuration to the Directory Proxy Server......................................................................143
Configuring Additional Directory Proxy Server Instances.................................................................. 143
Testing External Server Communications After Initial Setup..............................................................144
Testing a Simulated External Server Failure........................................................................................145

Expanding the Deployment.............................................................................................................................. 146
Overview of Deployment Steps........................................................................................................... 146
Preparing Two New External Servers Using the prepare-external-server Tool................................... 146
Adding the New PingDirectory Servers to the Directory Proxy Server.............................................. 147



PingDirectory | Contents | 9

Adding New Locations.........................................................................................................................147
Editing the Existing Locations............................................................................................................. 148
Adding New Health Checks for the Central Servers........................................................................... 148
Adding New External Servers..............................................................................................................148
Modifying the Load Balancing Algorithm...........................................................................................149
Testing External Server Communication..............................................................................................150
Testing a Simulated External Server Failure........................................................................................150

Merging Two Data Sets Using Proxy Transformations................................................................................... 150
Overview of the Attribute and DN Mapping.......................................................................................151
About Mapping Multiple Source DNs to the Same Target DN...........................................................151
An Example of a Migrated Sample Customer Entry........................................................................... 152
Overview of Deployment Steps........................................................................................................... 152
About the Schema.................................................................................................................................153
Creating Proxy Transformations...........................................................................................................153
Creating the Attribute Mapping Proxy Transformations......................................................................154
Creating the DN Mapping Proxy Transformations.............................................................................. 154
Creating a Request Processor to Manage the Proxy Transformations................................................. 155
Creating Subtree Views........................................................................................................................ 156
Editing the Client Connection Policy...................................................................................................156
Testing Proxy Transformations.............................................................................................................156

Chapter 6: Deploying an Entry-Balancing Directory Proxy Server................ 159
Deploying an Entry-Balancing Proxy Configuration.......................................................................................160

Determining How to Balance Your Data............................................................................................. 160
Entry Balancing and ACIs....................................................................................................................161
Overview of Deployment Steps........................................................................................................... 161
Installing the Directory Proxy Server.................................................................................................. 161
Configuring the Entry-Balancing Directory Proxy Server...................................................................162
Configuring the Placement Algorithm Using a Batch File..................................................................169

Rebalancing Your Entries................................................................................................................................. 170
About Dynamic Rebalancing................................................................................................................171
About the move-subtree Tool............................................................................................................... 172
About the subtree-accessibility Tool.................................................................................................... 173

Managing the Global Indexes in Entry-Balancing Configurations..................................................................173
When to Create a Global Attribute Index............................................................................................173
Reloading the Global Indexes.............................................................................................................. 174
Monitoring the Size of the Global Indexes..........................................................................................174
Sizing the Global Indexes.................................................................................................................... 175
Priming the Global Indexes on Start Up..............................................................................................175
Priming or Reloading the Global Indexes from Sun Directory Servers...............................................177

Working with Alternate Authorization Identities.............................................................................................177
About Alternate Authorization Identities............................................................................................. 178
Configuring Alternate Authorization Identities....................................................................................179

Chapter 7: Managing Entry-Balancing Replication......................................... 181
Overview of Replication in an Entry-Balancing Environment........................................................................ 182
Replication Prerequisites in an Entry-Balancing Deployment.........................................................................182
About the --restricted Argument of the dsreplication Command-Line Tool....................................................183

To Use the --restricted Argument of the dsreplication Command-Line Tool.......................................183
Checking the Status of Replication in an Entry-Balancing Deployment.........................................................183

To Check the Status of Replication in an Entry-Balancing Deployment.............................................183
Example of Configuring Entry-Balancing Replication.................................................................................... 184

Assumptions.......................................................................................................................................... 184
Configuration Summary........................................................................................................................184



PingDirectory | Contents | 10

Chapter 8: Managing the Directory Proxy Server............................................189
Managing Logs................................................................................................................................................. 190

About the Default Logs........................................................................................................................190
Error Log...............................................................................................................................................190
server.out Log....................................................................................................................................... 191
Debug Log............................................................................................................................................ 191
Audit log............................................................................................................................................... 192
Config Audit Log and the Configuration Archive...............................................................................192
Access and Audit Log.......................................................................................................................... 192
Setup Log..............................................................................................................................................193
Tool Log................................................................................................................................................194
LDAP SDK Debug Log....................................................................................................................... 194

Types of Log Publishers...................................................................................................................................194
Creating New Log Publishers.......................................................................................................................... 194

To Create a New Log Publisher...........................................................................................................194
To Create a Log Publisher Using dsconfig Interactive Command-Line Mode.................................... 195

About Log Compression...................................................................................................................................195
About Log Signing........................................................................................................................................... 196
About Encrypting Log Files.............................................................................................................................196

To Configure Log Signing....................................................................................................................196
To Validate a Signed File..................................................................................................................... 197
To Configure Log File Encryption.......................................................................................................197

Configuring Log Rotation................................................................................................................................ 198
To Configure the Log Rotation Policy.................................................................................................198

Configuring Log Rotation Listeners.................................................................................................................198
Configuring Log Retention...............................................................................................................................199

To Configure the Log Retention Policy............................................................................................... 199
Setting Resource Limits....................................................................................................................................199

Setting Global Resource Limits........................................................................................................... 199
Setting Client Connection Policy Resource Limits..............................................................................200

Monitoring the Directory Proxy Server........................................................................................................... 201
Monitoring System Data Using the PingDataMetrics Server.............................................................. 201
To Monitor Server Using the Status Tool............................................................................................ 201
About the Monitor Entries....................................................................................................................203

Using the Monitoring Interfaces...................................................................................................................... 203
Monitoring with the Administrative Console.......................................................................................203
Accessing the Processing Time Histogram.......................................................................................... 204

Monitoring with JMX.......................................................................................................................................204
Running JConsole................................................................................................................................. 204
Monitoring the Directory Proxy Server Using JConsole..................................................................... 205

Monitoring over LDAP.................................................................................................................................... 207
Monitoring Using the LDAP SDK.................................................................................................................. 207
Monitoring Using SNMP................................................................................................................................. 208

SNMP Implementation......................................................................................................................... 208
Configuring SNMP............................................................................................................................... 208
MIBS..................................................................................................................................................... 210

Profiling Server Performance Using the Stats Logger.....................................................................................210
To Enable the Stats Logger.................................................................................................................. 211
To Configure Multiple Periodic Stats Loggers.................................................................................... 212
Adding Custom Logged Statistics to a Periodic Stats Logger.............................................................212

Working with Alarms, Alerts, and Gauges...................................................................................................... 214
To Test Alarms and Alerts................................................................................................................... 215
Indeterminate Alarms............................................................................................................................217

Working with Administrative Alert Handlers.................................................................................................. 218



PingDirectory | Contents | 11

Configuring the JMX Connection Handler and Alert Handler............................................................ 218
Configuring the SMTP Alert Handler..................................................................................................219
Configuring the SNMP Subagent Alert Handler................................................................................. 219

Working with Virtual Attributes.......................................................................................................................220
About the Server SDK..................................................................................................................................... 220

Chapter 9: Managing Monitoring.......................................................................221
The Monitor Backend.......................................................................................................................................222
Monitoring Disk Space Usage..........................................................................................................................223
Monitoring with the PingDataMetrics Server.................................................................................................. 224

Monitoring Key Performance Indicators by Application.....................................................................224
Configuring the External Servers......................................................................................................... 225
Proxy Considerations for Tracked Applications.................................................................................. 226

Monitoring Using SNMP................................................................................................................................. 227
SNMP Implementation......................................................................................................................... 227
Configuring SNMP............................................................................................................................... 227
MIBS..................................................................................................................................................... 229

Monitoring with the Administrative Console.................................................................................................. 229
To View the Monitor Dashboard..........................................................................................................230

Accessing the Processing Time Histogram......................................................................................................230
To Access the Processing Time Histogram..........................................................................................230

Monitoring with JMX.......................................................................................................................................230
Running JConsole................................................................................................................................. 230
Monitoring the Directory Proxy Server Using JConsole..................................................................... 231

Monitoring Using the LDAP SDK.................................................................................................................. 233
Monitoring over LDAP.................................................................................................................................... 233
Profiling Server Performance Using the Stats Logger.....................................................................................234

To Enable the Stats Logger.................................................................................................................. 234
To Configure Multiple Periodic Stats Loggers.................................................................................... 235
Adding Custom Logged Statistics to a Periodic Stats Logger.............................................................236

Chapter 10: Troubleshooting the Directory Proxy Server................................239
Garbage Collection Diagnostic Information.................................................................................................... 240
Working with the Troubleshooting Tools.........................................................................................................240

Working with the Collect Support Data Tool...................................................................................... 240
Directory Proxy Server Troubleshooting Tools............................................................................................... 241

Server Version Information.................................................................................................................. 241
LDIF Connection Handler.................................................................................................................... 242
Embedded Profiler................................................................................................................................ 242

Troubleshooting Resources for Java Applications........................................................................................... 242
Java Troubleshooting Tools.................................................................................................................. 243
Java Diagnostic Information.................................................................................................................244
Troubleshooting Resources in the Operating System.......................................................................... 245
Common Problems and Potential Solutions.........................................................................................248

Chapter 11: Managing the SCIM Servlet Extension.........................................259
Overview of SCIM Fundamentals....................................................................................................................260

Summary of SCIM Protocol Support...................................................................................................260
About the Identity Access API............................................................................................................ 261

Creating Your Own SCIM Application............................................................................................................261
Configuring SCIM............................................................................................................................................ 261

Before You Begin................................................................................................................................. 261
Configuring the SCIM Servlet Extension............................................................................................ 262



PingDirectory | Contents | 12

Configuring LDAP Control Support on All Request Processors (Proxy Only)...................................263
SCIM Servlet Extension Authentication.............................................................................................. 263
Verifying the SCIM Servlet Extension Configuration......................................................................... 264

Configuring Advanced SCIM Extension Features...........................................................................................265
Managing the SCIM Schema............................................................................................................... 265
Mapping SCIM Resource IDs.............................................................................................................. 269
Using Pre-defined Transformations......................................................................................................270
Mapping LDAP Entries to SCIM Using the SCIM-LDAP API.......................................................... 270
SCIM Authentication............................................................................................................................ 270
SCIM Logging...................................................................................................................................... 270
SCIM Monitoring..................................................................................................................................271

Configuring the Identity Access API............................................................................................................... 271
To Configure the Identity Access API.................................................................................................271
To Disable Core SCIM Resources....................................................................................................... 271
To Verify the Identity Access API Configuration................................................................................272

Monitoring the SCIM Servlet Extension......................................................................................................... 272
Testing SCIM Query Performance....................................................................................................... 272
Monitoring Resources Using the SCIM Extension..............................................................................273
About the HTTP Log Publishers..........................................................................................................275

Chapter 12: Managing Server SDK Extensions................................................ 277
About the Server SDK..................................................................................................................................... 278
Available Types of Extensions......................................................................................................................... 278

Chapter 13: Command-Line Tools..................................................................... 281
Using the Help Option..................................................................................................................................... 282
Available Command-Line Utilities...................................................................................................................282
Managing the tools.properties File...................................................................................................................284

Creating a Tools Properties File...........................................................................................................284
Tool-Specific Properties........................................................................................................................285
Specifying Default Properties Files......................................................................................................285
Evaluation Order Summary.................................................................................................................. 285
Evaluation Order Example................................................................................................................... 286

Running Task-based Utilities............................................................................................................................286



Chapter

1
Introduction

Topics:

• Overview of the
PingDirectoryProxy Server
Features

• Overview of the Directory
Proxy Server Components and
Terminology

• Server Component Architecture
• Directory Proxy Server

Configuration Overview

PingDirectoryProxy™ Server is a fast and scalable LDAPv3 gateway for
the PingDirectory® Server. The Directory Proxy Server architecture can be
configured to control how client requests are routed to backend servers.

This chapter provides an overview of the Directory Proxy Server features and
components. It contains the following sections:



PingDirectory | Introduction | 14

Overview of the PingDirectoryProxy Server Features
The PingDirectoryProxy Server is a fast, scalable, and easy-to-use LDAP proxy server that provides high availability
and additional security for the PingDirectory Server, while remaining largely invisible to client applications. From a
client perspective, request processing is the same, whether communicating with the Directory Server directly or going
through the Directory Proxy Server.

The PingDirectoryProxy Server provides the following set of features:

• High availability. The Directory Proxy Server allows you to transparently fail over between servers if a problem
occurs, as well as ensuring that the workload is balanced across the topology. If a client does not support following
referrals, the Directory Proxy Server can follow them on the client’s behalf.

• Data mapping and transformation. The Directory Proxy Server can do DN mapping and attribute mapping
to allow clients to interact with the server using older names for directory content. It allows clients to continue
working when they would not be able to work directly with the Directory Server, either because of changes that
have occurred at the data layer or to inherent design limitations in the clients.

• Horizontal scalability and performance. Reads can be horizontally scaled using load balancing. In large data
centers, if the data set is too large to be cached or to provide horizontal scalability for writes, the Directory Proxy
Server can automatically split the data across multiple systems. This feature allows the Directory Proxy Server to
improve scalability and performance of the Directory Server environment.

• Load balancing and failover. You can spread the workload across multiple proxies in a large data center using
load-balancing algorithms. Load balancing is also useful when a server becomes degraded or non-responsive,
because client process requesting is directed to a different server.

• Security and access control. The Directory Proxy Server can add additional firewall capabilities, as well as
constraints and filtering to help protect the Directory Server from attacks. You can use a Directory Proxy Server
in a DMZ as opposed to allowing clients to directly access the Directory Proxy Server in the internal network
or providing the data in the DMZ. It can help provide secure access to the data and you can define what actions
clients are allowed to do. For example, you can prevent clients from making modifications to data when connected
via a VPN no matter what their identity or permissions.

• Tracking of operations across the environment. In the past, administrators have commonly complained that
when they see a request in the access log, they have no idea where it came from and cannot track it back to a
particular client. The Directory Proxy Server contains controls that allow administrators to track requests back to
the client that issued them. Whenever the Directory Proxy Server forwards a request to the Directory Server, it
includes a control in the request so that the Directory Server's access log has the IP address of the client, address
and connection ID of the Directory Server. In the response back to the client, it similarly includes information
about the Directory Server that processed the request, such as the connection ID and operation ID. This feature
makes it easier for administrators to keep track of what is going on in their environment.

• Monitoring and management tools. Because the Directory Proxy Server uses many of the components of
the PingDirectory Server, it can leverage them to provide protocol support, logging, management tools for
configuration and monitoring, schema, and so on. You can use the Data Metrics Server, the dsconfig tool and
the Administrative Console to manage the Directory Proxy Server.

Overview of the Directory Proxy Server Components and Terminology
The Directory Proxy Server consists of the following components and functionality that provide the proxy
capabilities:

Locations
LDAP External Servers
LDAP Health Checks
Load-Balancing Algorithms
Data Transformations
Request Processors
Server Affinity Providers



PingDirectory | Introduction | 15

Subtree Views
Connection Pools
Client Connection Policies
Entry Balancing

This section describes each component in more detail.

About Locations

Locations define a group of servers with similar response time characteristics. Each location consists of a name and
an ordered list of preferred failover locations. The Directory Proxy Server and each of the backend LDAP external
servers can be assigned locations. These locations can be taken into account when deciding how to route requests, so
that the server prefers to forward requests to Directory Server in the same data center over those in remote locations.
As a rule of thumb, if you have multiple data centers then you should have a separate location for each one. In most
environments, all Directory Proxy Server instances should have the same configuration except for the attribute that
specifies the location of the Directory Proxy Server itself.

For example, a deployment consists of three data centers, one in New York, another in Chicago, and another in
Los Angeles. In the New York data center, applications which reside in this data center prefer communicating with
directories in this data center. If none of the servers are available, it prefers to failover to the data center in Chicago
rather than the data center in Los Angeles. So the New York location contains an ordered list in which the Chicago
location is preferred over the Los Angeles data center for failover.

For information about configuring locations, see Configuring Locations.

About LDAP External Servers

You can configure information about the directory server instances accessed by the PingDirectoryProxy Server. This
configuration information includes the following:

Server connection information, such as IP address, port, and security layer
Location
Authentication information
Methods for authenticating and authorizing clients
Server-specific health checks
Types of operations allowed. For example, some LDAP external servers may allow only reads and others allow
reads and writes, so the Directory Proxy Server can recognize this and accommodate it.

The PingDirectoryProxy Server allows you to configure different types of LDAP external servers. The default
configuration for each type is tuned to be the best possible configuration for each.

For information about configuring LDAP external servers, see Configuring LDAP External Servers.

About LDAP Health Checks

The LDAP health check component provides information about the availability of LDAP external servers. The health
check result includes a server state, which can be one of the following:

• Available. Completely accessible for use.
• Degraded. The server may be used if necessary, but has a condition which may make it less desirable than other

servers (for example, it is slow to respond or has fallen behind in replication).
• Unavailable. Completely unsuitable for use (for example, the server is offline or is missing critical data).

Health check results also include a numeric score, which has a value between 1 and 10, that can help rank servers
with the same state. For example, if two servers are available and one has a score of 8 and the other a score of 7, the
Directory Proxy Server can be configured to prefer the server with the higher score.

The Directory Proxy Server periodically invokes health checks to monitor each LDAP external server, and may also
initiate health checks in response to failed operations. It checks the health of the LDAP external servers at intervals
configured in the LDAP server’s health-check-frequency property. However, the Directory Proxy Server has



PingDirectory | Introduction | 16

safeguards in place to ensure that only one health check is in progress at any time against a backend server to avoid
affecting its ability to process other requests.

The results of health checks performed by the Directory Proxy Server are made available to the load-balancing
algorithms so that they may be taken into account when determining where to send requests. The Directory Proxy
Server will attempt to use servers with a state of available before trying servers with a state of degraded. It will never
attempt to use servers with a state of unavailable. Some load-balancing algorithms may also take the health check
score into account, such as the health-weighted load-balancing algorithm, which prefers servers with higher scores
over those with lower scores. You configure the algorithms that work best for you environment.

In some cases, an LDAP health check may define different sets of criteria for promoting and demoting the state of
a server. So, a degraded server may need to meet more stringent require- ments to be reclassified as available than
it originally took to be considered degraded. For example, if response time is used in the process of determining the
health of a server, then the Directory Proxy Server may have a faster response time threshold for transitioning a server
from degraded back to available than the threshold used to consider it degraded in the first place. This threshold
difference can help avoid cases in which a server repeatedly transitions between the two states because it is operating
near the threshold.

For example, the health check used to measure search response time is configured to mark any server to be marked
degraded when the search response time is greater than 1 second. You can then configure that the response time must
be less than 500 ms before the server is made available again, so that the Directory Proxy Server does not flip back
and forth between available and degraded.

PingDirectoryProxy Server provides the following health checks:

• Measure the response time for searches and examine the entry contents. For example, the health check might
retrieve a monitoring entry from a server and base the health check result on whether the entry was returned, how
long it took to be returned, and whether the value of the returned entry matches what was expected.

• Monitor the replication backlog. If a server falls too far behind in replication, then the Directory Proxy Server
can stop sending requests to it. A server is classified as degraded or unavailable if the threshold is reached for the
number of missing changes, the age of the oldest missing change, or both.

• Consume Directory Server administrative alerts. If the Directory Server indicates there is a problem, for
example an index that must be rebuilt, then it will flag itself as degraded or unavailable. When the Directory Proxy
Server detects this, it will stop sending requests to the server. The Directory Proxy Server detects administrative
alerts as soon as they are issued by maintaining an LDAP persistent search for changes within the cn=alerts
branch of the Directory Server. When the Directory Proxy Server is notified by the Directory Server of a new
alert, it immediately retrieves the base cn=monitor entry of the Directory Server. If this entry has a value for
the unavailable-alert-type attribute, then the Directory Proxy Server will consider it unavailable. If this
entry has a value for the degraded-alert-type attribute, then the Directory Proxy Server will consider it
degraded. Clients of the Directory Proxy Server can use a similar mechanism to detect and react when a Directory
Proxy Server flags itself as degraded or unavailable.

• Monitor the busyness of the server. If a server becomes too busy, then it may be marked degraded or unavailable
so that less heavily-loaded servers may be preferred.

For information about configuring health checks, see Configuring Server Health Checks. To associate a health check
with an LDAP external server and set the health check frequency, you must configure the health-check and
health-check-frequency properties of the LDAP external server. See “To Configure an External Server Using
dsconfig” for information about configuring the properties of the external server.

About Load-Balancing Algorithms

Load-balancing algorithms are used to determine which server in a set of similar servers should be used to process a
client request. The algorithm can take the following criteria into account:

• Consider the location of the server. Servers in the same location as the Directory Proxy Server can be preferred
over those in alternate locations.

• Consider the health of the server. Servers that are available are preferred over those that are degraded. In some
cases, the health check score may also be used to further differentiate between servers with the same health check
state.



PingDirectory | Introduction | 17

• Route requests consistently. Requests from a single client may be consistently routed to the same directory
server instance to avoid problems such as propagation delay from replication.

• Retry the operation in an alternate server if the request fails or the operation times out. You can control if
the retry is allowed and, if so, how many times to retry and the time out interval.

The PingDirectoryProxy Server provides the following load-balancing algorithms:

• Fewest operations. Requests are forwarded to the backend server with the fewest operations currently in progress.
• Single server. Requests are always sent to the same server and will not attempt to fail over to another server if the

target server is unavailable.
• Weighted. Administrators explicitly assign numeric weights to individual servers or sets of servers to control how

likely they are to be selected for processing requests relative to other servers.
• Health-based weighting. Uses the health check score to assign weights to each of the servers, so that a server

with a higher score gets a higher percentage of the traffic than a server with a lower score. The proportion of
traffic received is the difference between their health check scores.

• Failover. Requests are always sent to a given server first. If that server fails, then the request is sent to another
specified server, and so on through an ordered failover server list.

For information about configuring load balancing, see Configuring Load Balancing.

About Proxy Transformations

Proxy transformations are used to rewrite requests and responses as they pass through the Directory Proxy Server.
Proxy data transformations are helpful for clients that use an old schema or that contain a hard-coded schema.

Proxy transformations can provide DN and attribute mapping altering both requests to the server as well as responses
from the server. For example, a client sends a request to o=example.com even though the directory server handling
the request uses dc=example,dc=com. The Directory Proxy Server can transparently remap the request so that the
server can process it, and map it back to the original DN of the client request when the value is returned. Or if a client
tries to use the attribute userID, the Directory Proxy Server can map it to uid before sending the request on to the
backend LDAP server. The Directory Proxy Server then remaps the response to userID when the value is returned.

The Directory Proxy Server also includes a proxy transformation that can be used to suppress a specified attribute,
so that it will never be returned to clients. It can also cause the server to reject requests which target that particular
attribute. Another proxy transformation can be used to prevent entries that match a given search filter from being
returned to clients.

For information about configuring proxy transformations, see Configuring Proxy Transformations on page 70.

About Request Processors

A request processor encapsulates the logic for handling an operation, ensuring that a given operation is handled
appropriately. The request processor can either process the operation directly, forward the request to another server, or
hand off the request to another request processor.

PingDirectoryProxy Server provides the following types of request processor:

• Proxying request processors, which forward operations received by the Directory Proxy Server to other LDAP
external servers.

• Entry-balancing request processors, which split data across multiple servers. They determine which set of
servers are used to process a given operation. They then hand off operations to proxying request processors so that
requests can be forwarded to one of the servers in the set.

• Failover request processors, which perform ordered failover between other types of request processors,
sometimes with different behavior for different types of operations.

Directory Proxy Server request processors can be used to forward certain controls, including the batch transaction
control and the LDAP join control. The batch transaction control must target a single Berkley DB backend. For more
information about the controls, refer to the LDAP SDK for Java documentation.

For information about configuring request processors, see Configuring Request Processors on page 72.



PingDirectory | Introduction | 18

About Server Affinity Providers

The server affinity provider can be used to establish an affinity to a particular backend server for certain operations.
You can configure one of three types of provider:

• Client connection Server Affinity, so that requests from the same client connection may consistently be routed to
the same backend server.

• Client IP address Server Affinity, so that all requests coming from the same client system will be consistently
routed to the same backend server.

• Bind DN Server Affinity, so that all requests from the same user will be consistently routed to the same backend
server.

For information about configuring server affinity, see Configuring Server Affinity.

About Subtree Views

A subtree view can be used to make a portion of the DIT available to a client by associating a request processor with
a base DN. Subtree views allow you to route operations concerning one set of data to a particular set of data sources,
and operations concerning another set of data to another set of data sources. Multiple subtree views may be involved
in processing a request, such as for searches that have a scope that is larger than the subtree view.

The subtree view includes a single base DN used to identify the portion of the DIT. They may have hierarchical
relationships, for example one subtree view could be configured for dc=example,dc=com and another for
ou=People,dc=example,dc=com.

For information about configuring a subtree view, see Configuring Subtree Views.

About the Connection Pools

Based on the type of backend server that you are using, the PingDirectoryProxy Server maintains either one or two
connection pools to the backend server. It maintains either one pool for all types of operations or two separate pools
for processing bind and non-bind operations from clients. When the Directory Proxy Server establishes connections,
it authenticates them using whatever authentication mechanism is defined in the configuration of the external server.
These connections will be re-used for all types of operations to be forwarded to the backend server. The bind DN and
password are configured in the Directory Proxy Server.

Whenever a client sends a bind request to the Directory Proxy Server, the server looks at the type of bind request that
was sent. If it is a SASL bind request, then the authentication is processed by the Directory Proxy Server itself and it
will not be forwarded to the backend server. However, the Directory Proxy Server may use information contained in
the backend server as needed. If the bind request is a simple bind request and the bind DN is within the scope of data
supplied by the backend server, then the Directory Proxy Server will forward the client request to the backend server
so that it will use the credentials provided by the client.

Regardless of the authentication method that the client uses, the Directory Proxy Server will remember the identity
of the client after the authentication is complete and for any subsequent requests sent by that client, it will use the
configured authorization method to identify the client to the backend server. Even though the operation is forwarded
over a connection that is authenticated as a user defined in the Directory Proxy Server configuration, the request is
processed by the backend server under the authority of the end client.

About Client Connection Policies

Client connection policies define the general behavior the server exhibits when communicating with a set of clients.
Each policy consists of the following:

• A set of connection criteria that define which client is associated with the policy based on information the server
has about the client, including client address, protocol used, secure communication mechanism, location of the
client's entry in the Directory Server and the contents of the client's entry. These criteria are the same as those used
for filtered logging. For example, different client connection policies could be established for different classes of
users, such as root and non-root users.



PingDirectory | Introduction | 19

• A set of constraints on the type of operations a client may request. You can specify whether a particular type
of operation is allowed for clients. For some operation types, such as extended operations, you can allow only a
particular subset of an operation type, such as a particular extended operation.

• A set of subtree views that define information about the parts of the DIT the client may access.

When a client connection is established, only one client connection policy is applied. If the criteria for several policies
match the same client connection, the evaluation order index is used as a tiebreaker. If no policy matches, the client
connection is terminated. If the client binds, changing its identity, or uses StartTLS to convert from an insecure
connection to a secure connection, then the connection may be evaluated again to determine if it matches the same or
a different client connection policy. The connection can also be terminated if it no longer matches any policy.

For information about configuring a client connection policy, see Configuring Client Connection Policies on page 77.

About Entry Balancing

Entry balancing allows you to automatically spread entries below a common parent among multiple sets of directory
servers for improved scalability and performance. Entry balancing can take advantage of a global index, an in-
memory cache used to quickly determine which set or sets of servers should be used to process a request based on the
entry DNs and/or the attribute values used in the request.

For information about configuring entry balancing, see Deploying an Entry-Balancing Proxy Configuration on page
160.

Server Component Architecture
This section provides an overview of the process flow between the Directory Proxy Server components, for both a
simple proxy deployment and an entry-balancing deployment.

Architecture of a Simple Directory Proxy Server Deployment

In a simple Directory Proxy Server deployment, a client request is first processed by a client connection policy as
illustrated in Figure 1, “Process Flow for Directory Proxy Server”.

Figure 1: Process Flow for Directory Proxy Server

The client connection policy contains a subtree view, which defines the portion of the DIT available to clients.
Once the Directory Proxy Server determines that the DIT is available, it passes the request to the request processor,
which defines the logic for processing the request. The request processor then passes the request to a load-balancing
algorithm, which determines the server in a set of servers responsible for handling the request. Finally, the request is
passed to the LDAP external server. The LDAP external server contains properties that define the server’s location in
a topology and the health checks used to determine if the server is functioning properly. This information may be used
by the load-balancing algorithm in the course of determining how to route requests.



PingDirectory | Introduction | 20

Architecture of an Entry-Balancing Directory Proxy Server Deployment

Figure 2, “Process Flow for Entry-Balancing Directory Proxy Server” describes how a client request is treated in an
entry-balancing deployment.

Figure 2: Process Flow for Entry-Balancing Directory Proxy Server

Entry balancing is typically used when the data set it too large to fully cache on a single server or when the write
performance requirements of an environment are higher than can be achieved with a single replicated set of servers. In
such cases, the data may be split across multiple sets of servers, increasing the memory available for caching and the
overall write performance in proportion to the number of server sets.

As with a simple proxy deployment, the client request is first processed by the client connection policy, which
determines how the Directory Proxy Server communicates with a set of clients. It contains a subtree view that
represents the base DN for the entire deployment. The data set splits beneath this base DN.

The request is then passed to the entry-balancing request processor. The entry-balancing request processor contains a
global attribute index property, which helps the request processor determine which server set contains the entry and
how to properly route the request. It also contains a placement algorithm, which helps it select the server set in which
to place new entries created by add requests.

Beneath the entry-balancing request processor are multiple proxying request processors that handle multiple unique
sets of data. These request processors pass the request to a load-balancing algorithm, which determines which LDAP
external server should handle the request. As with a simple proxy deployment, this LDAP external server contains
properties that define the server’s location and the health checks used to determine if the server is functioning
properly.

For configuration information, see Configuring an Entry-Balancing Directory Proxy Server Deployment. For
information about entry-balancing replication, see Overview of Replication in an Entry-Balancing Environment on
page 182.

Directory Proxy Server Configuration Overview
The configuration of the Directory Proxy Server involves the following steps:

• Configuring the locations for your deployment. A location is a collection of servers that share access and
latency characteristics. For example, your deployment might include two data centers, one in the east and one in
the west. These data centers would be configured as two locations in the Directory Proxy Server. Each location is



PingDirectory | Introduction | 21

associated with a name and an ordered list of failover locations, which could be used if none of the servers in the
preferred location are available.

• Configuring the Directory Proxy Server location. You need to update the configuration to specify the location
of the Directory Proxy Server instance.

• Configuring health checks for the LDAP external servers. You can configure at what point the Directory Proxy
Server considers an LDAP external server to be available, of degraded availability, or unavailable. Each health
check can be configured to be used automatically for all LDAP external servers or for a specified set of servers.

• Configuring the LDAP external servers. During this step, you define each of the external directory servers,
including the server type. You can configure Ping Identity Directory Servers, Sun Java System Directory Servers,
or generic LDAP servers. You also assign the server-specific health checks configured in the previous step.

• Configuring the load-balancing algorithm. You configure the load-balancing algorithm used by the Directory
Proxy Server to determine which server in a set of similar servers should be used to process a client request. The
Directory Proxy Server provides default algorithms. It also steps you through the creation of new algorithms by
using an existing algorithm as a template or by creating one from scratch.

• Configuring the proxying request processor. In this step, you configure proxying request processors that
forward operations received by the Directory Proxy Server to other LDAP external servers.

• Configuring subtree views. A subtree view defines the portion of the DIT available to a client. Each subtree view
can be associated with a load-balancing algorithm to help distribute the work load.

• Configuring the client connection policy. You configure policies to classify how different client connections
are managed by the Directory Proxy Server. The client connection policy can be used to control the types of
operations that a client may perform and the portion of the DIT that the client can access. Restrictions configured
in a client connection policy will take precedence over any capabilities granted by access control or privileges.



Chapter

2
Installing the Directory Proxy Server

Topics:

• Before You Begin
• Preparing the Operating System
• Getting the Installation

Packages
• PingDirectoryProxy Server

License Keys
• About the RPM Package
• Installing the Directory Proxy

Server
• About the Layout of the

Directory Proxy Server Folders
• Running the Server
• Stopping the Directory Proxy

Server
• Run the Server as a Microsoft

Windows Service
• Uninstalling the Server
• Updating the Directory Proxy

Server

This section describes how to install PingDirectoryProxy Server. It includes
pre-installation requirements and considerations.

It includes the following sections:



PingDirectory | Installing the Directory Proxy Server | 24

Before You Begin
The following sections describe requirements and considerations you should make before installing the software and
configuring the PingDirectoryProxy Server objects.

Important:

Each Server Deployment Requires an Execution of Setup - Duplicating a Server-root is not Supported.
The installation of the server does not write or require any data outside of the server-root directory. After
executing setup, copying the server-root to another location or system, in order to duplicate the installation,
is not a supported method of deployment. The server-root can be moved to another host or disk location if a
host or file system change is needed.

It is also highly recommended that a Network Time Protocol (NTP) system be in place so that multi-server
environments are synchronized and timestamps are accurate.

Supported Platforms

The following platforms and versions are supported for this release.

Operating systems Virtualization platforms Java versions

• RedHat 6.6
• RedHat 6.8
• RedHat 6.9
• RedHat 7.4
• RedHat 7.5
• CentOS 6.8
• CentOS 6.9
• CentOS 7.4
• CentOS 7.5
• SUSE Enterprise 11 SP4
• SUSE Enterprise 12 SP3
• Ubuntu 16.04 LTS
• Ubuntu 18.04 LTS
• Amazon Linux
• Windows Server 2012 R2
• Windows Server 2016

• VMWare vSphere & ESX 6.0
• KVM
• Amazon EC2
• Microsoft Azure (Supported by

Professional Services)

• OpenJDK 8.x 64-bit
• OpenJDK 11.x 64-bit
• Oracle JDK 8.x 64-bit
• Oracle JDK 11.x 64-bit

Defining a Naming Strategy for Server Locations

The various objects defined in the PingDirectoryProxy Server will be specific to a particular location. Location names
are used to define a grouping of PingDirectoryProxy Server products based on physical proximity. For example,
a location is most often associated with a single datacenter location. During the installation, assign a location to
each server for optimal inter-server behavior. The location assigned to a server within Global Configuration can
be referenced by components within the server as well as processes external to the server to satisfy "local" versus
"remote" decisions used in replication, load balancing, and failover.

Software Requirements: Java

For optimized performance, the PingDirectoryProxy Server requires Java for 64-bit architectures. You can view the
minimum required Java version on your Customer Support Center portal or contact your authorized support provider
for the latest software versions supported.



PingDirectory | Installing the Directory Proxy Server | 25

Even if your system already has Java installed, you may want to create a separate Java installation for use by the
PingDirectoryProxy Server to ensure that updates to the system-wide Java installation do not inadvertently impact the
Directory Proxy Server. This setup requires that the JDK, rather than the JRE, for the 64-bit version, be downloaded.

To Install Java (Oracle/Sun)

1. Open a browser and navigate to the Oracle download site.
2. Download the latest version Java JDK. Click the JDK Download button corresponding to the latest Java update.
3. On the Java JDK page, click the Accept Licence Agreement button, then download the version based on your

operating system.

Preparing the Operating System
You should make the following changes to your operating system depending on the production environments on
which the PingDirectoryProxy Server will run.

Configuring the File Descriptor Limits

The PingDirectoryProxy Server allows for an unlimited number of connections by default, but is restricted by the file
descriptor limit on the operating system. If needed, increase the file descriptor limit on the operating system.

If the operating system relies on systemd, refer to the Linux operating system documentation for instructions on
setting the file descriptor limit.

To Set the File Descriptor Limit (Linux)

The Directory Proxy Server allows for an unlimited number of connections by default but is restricted by the file
descriptor limit on the operating system. Many Linux distributions have a default file descriptor limit of 1024 per
process, which may be too low for the server if it needs to handle a large number of concurrent connections.

Once the operating system limit is set, the number of file descriptors that the server will use can be configured
by either using a NUM_FILE_DESCRIPTORS environment variable, or by creating a config/num-file-
descriptors file with a single line such as, NUM_FILE_DESCRIPTORS=12345. If these are not set, the default
of 65535 is used. This is strictly optional if wanting to ensure that the server shuts down safely prior to reaching the
file descriptor limit.

1. Display the current hard limit of your system. The hard limit is the maximum server limit that can be set without
tuning the kernel parameters in the proc filesystem.

ulimit -aH

2. Edit the /etc/sysctl.conf file. If there is a line that sets the value of the fs.file-max property, make
sure its value is set to at least 65535. If there is no line that sets a value for this property, add the following to the
end of the file:

fs.file-max = 65535

3. Edit the /etc/security/limits.conf file. If the file has lines that sets the soft and hard limits for the
number of file descriptors, make sure the values are set to 65535. If the lines are not present, add the following
lines to the end of the file (before “#End of file”). Also note that you should insert a tab, rather than spaces,
between the columns.

* soft nofile 65535
* hard nofile 65535

4. Reboot your system, and then use the ulimit command to verify that the file descriptor limit is set to 65535.

# ulimit -n

Note:  For RedHat 7 or later, modify the 20-nproc.conf file to set both the open files and max user
processes limits:



PingDirectory | Installing the Directory Proxy Server | 26

/etc/security/limits.d/20-nproc.conf

 Add or edit the following lines if they do not already exist:

 *          soft    nproc     65536
 *          soft    nofile    65536
 *          hard    nproc     65536
 *          hard    nofile    65536
 root       soft    nproc     unlimited

Enabling the Server to Listen on Privileged Ports (Linux)

Linux systems have a mechanism called capabilities that is used to grant specific commands the ability to do things
that are normally only allowed for a root account. It may be convenient to enable the server to listen on privileged
ports while running as a non-root user.

The setcap command is used to assign capabilities to an application. The cap_net_bind_service capability
enables a service to bind a socket to privileged ports (port numbers less than 1024). If Java is installed in /ds/
java (and the Java command to run the server is /ds/java/bin/java), the Java binary can be granted the
cap_net_bind_service capability with the following command:

$ sudo setcap cap_net_bind_service=+eip /ds/java/bin/java

The java binary needs an additional shared library (libjli.so) as part of the Java installation. More strict
limitations are imposed on where the operating system will look for shared libraries to load for commands that have
capabilities assigned. So it is also necessary to tell the operating system where to look for this library. This can be
done by creating the file /etc/ld.so.conf.d/libjli.conf with the path to the directory that contains the
libjli.so file. For example, if the Java installation is in /ds/java, the contents of that file should be:

/ds/java/lib/amd64/jli

Run the following command for the change to take effect:

$ sudo ldconfig -v

To Set the Filesystem Flushes

With the out-of-the-box settings on Linux systems running the ext3 filesystem, the data is only flushed to disk every
five seconds. If the Directory Proxy Server is running on a Linux system using the ext3 filesystem, consider editing
the mount options for that filesystem to include the following:

commit=1

This variable changes the flush frequency from five seconds to one second.

You should also set the flush frequency to the /etc/fstab file. Doing the change via the mount command alone
will not survive across reboots.

Disable Filesystem Swapping

It is recommended that any performance tuning services like tuned be disabled. As root, change the current value
in the operating system and by adding a line vm.swappiness = 0 to /etc/sysctl.conf to ensure that the
correct setting is applied when the system restarts.

If performance tuning is required, vm.swappiness can be set by cloning the existing performance profile then
adding vm.swappiness = 0 to the new profile's tuned.conf file. This file is located at /usr/lib/tuned/
profile-name/tuned.conf. The updated profile is then selected by running tuned-adm profile
customized_profile.



PingDirectory | Installing the Directory Proxy Server | 27

About Editing OS-Level Environment Variables

Certain environment variables can impact the Directory Proxy Server in unexpected ways. This is particularly true for
environment variables that are used by the underlying operating system to control how it uses non-default libraries.

For this reason, the Directory Proxy Server explicitly overrides the values of key environment variables like PATH,
LD_LIBRARY_PATH, and LD_PRELOAD to ensure that something set in the environments that are used to start the
server does not inadvertently impact its behavior.

If there is a legitimate need to edit any of these environment variables, the values of those variables should be set by
manually editing the set_environment_vars function of the lib/_script-util.sh script. You will need
to stop (bin/stop-server) and re-start (bin/start-server) the server for the change to take effect.

Install sysstat and pstack (Red Hat)

For Red Hat® Linux systems, you should install a couple of packages, sysstat and pstack, that are disabled
by default, but are useful for troubleshooting purposes in the event that a problem occurs. The troubleshooting tool
collect-support-data uses the iostat, mpstat, and pstack utilities to collect monitoring, performance
statistics, and stack trace information on the server’s processes. For Red Hat systems, make sure that these packages
are installed, for example:

$ sudo yum install sysstat gdb dstat -y

Install dstat (SUSE Linux)

The dstat utility is used by the collect-support-data tool and can be obtained from the OpenSuSE project
website. The following example shows how to install the dstat utility on SuSE Enterprise Linux 11 SP2:

1. Login as Root.
2. Add the appropriate repository using the zypper tool.
3. Install the dstat utility.

$ zypper install dstat

Omit vm.overcommit_memory

Administrators should be aware that an improperly configured value for the vm.overcommit_memory property in
the /etc/sysctl.conf file can cause the setup or start-server tool to fail.

For Linux systems, the vm.overcommit_memory property sets the kernel policy for memory allocations. The
default value of 0 indicates that the kernel determines the amount of free memory to grant a malloc call from an
application. If the property is set to a value other than zero, it could lead the operating system to grab too much
memory, depriving memory for the setup or start-server tool.

We recommend omitting the property in the /etc/sysctl.conf file to ensure that enough memory is available
for these tools.

Managing System Entropy

Entropy is used to calculate random data that is used by the system in cryptographic operations. Some environments
with low entropy may have intermittent performance issues with SSL-based communication. This is more typical on
virtual machines, but can occur in physical instances as well. Monitor the kernel.random.entropy_avail in
sysctl value for best results.

If necessary, update $JAVA_HOME/jre/lib/security/java.security to use file:/dev/./urandom
for the securerandom.source property.



PingDirectory | Installing the Directory Proxy Server | 28

Set Filesystem Event Monitoring (inotify)

An event monitoring tool such as inotify can be configured for notifying processes about filesystem events (including
file creation, deletion, and updates). The Linux system puts a limit on the number of inotify watches a user can
receive. To increase the limit, edit etc/sysctl.conf to add a line:

fs.inotify.max_user_watches = 524288

Run the command:

$ sudo sysctl -w fs.inotify.max_user_watches=524288

Tune IO Scheduler

Using the correct IO scheduler can increase performance and reduce the possibility of database timeouts when the
system is under extreme write load. For file systems running on an SSD, or in a virtualized environment, the noop
scheduler is recommended. For all other systems, the deadline scheduler is recommended. To determine which
scheduler is configured on your system, run this command:

$ cat /sys/block/<block-device>/queue/scheduler

For example:

$ cat /sys/block/sda/queue/scheduler

Changing the scheduler on a running system can be done with the following command:

$ echo 'deadline' > /sys/block/sda/queue/scheduler

The change will take effect after the system is restarted. The procedure for configuring a scheduler to use at startup
depends on the version of Linux. See the Linux documentation for your specific version for the correct way to
configure this setting.

Getting the Installation Packages
To begin the installation process, obtain the latest ZIP release bundle from Ping Identity and unpack it in a folder of
your choice. The release bundle contains the Directory Proxy Server code, tools, and package documentation.

To Unpack the Build Distribution

1. Download the latest zip distribution of the Directory Proxy Server software.
2. Unzip the compressed zip archive file in a directory of your choice.

$ unzip PingDirectoryProxy-<version>.zip

You can now set up the Directory Proxy Server.

PingDirectoryProxy Server License Keys
License keys are required to install all PingDirectoryProxy Server products. Obtain licenses through Salesforce or
from https://www.pingidentity.com/en/account/request-license-key.html.

• A license is always required for setting up a new single server instance and can be used site-wide for all servers in
an environment. When cloning a server instance with a valid license, no new license is needed.



PingDirectory | Installing the Directory Proxy Server | 29

• A new license must be obtained when updating a server to a new major version, for example from 6.2 to 7.0.
Licenses with no expiration date are valid until the server is upgraded to the next major version. A prompt for a
new license is displayed during the update process.

• A license may expire on particular date. If a license does expire, obtain a new license and install it using
dsconfig or the Administrative Console. The server will provide a notification as the expiration date
approaches. License details are available using the server's status tool.

When installing the server, specify the license key file in one of the following ways:

• Copy the license key file to the server root directory before running setup. The interactive setup tool will
discover the file and not require input. If the file is not in the server root, the setup tool will prompt for its
location.

• If the license key is not in the server root directory, specify the --licenseKeyFile option for non-interactive
setup, and the path to the file.

About the RPM Package
PingDirectoryProxy Server supports the PingDirectoryProxy Server release bundle in an RPM Package Manager
(RPM) package for customers who require it. By default, the RPM unpacks the code at /opt/ping-identity/proxy/
PingDirectoryProxy, after which you can run the setup command to install the server at that location.

If the RPM install fails for any reason, you can perform an RPM erase if the RPM database entry was created and
manually remove the target RPM install directory (e.g., “/opt/ping-identity/proxy/PingDirectoryProxy” by default).
You can install the package again once the system is ready.

To Install the RPM Package

1. Download the latest RPM distribution of the Directory Proxy Server software.
2. Unpack the build using the rpm command with the --install option. By default, the build is unpacked to /opt/

ping-identity/proxy/PingDirectoryProxy. If you want to place the build at another location, use
the --prefix option and specify the file path of your choice.

$ rpm --install pingdirectoryproxy-<version>.rpm

3. From /opt/ping-identity/proxy/PingDirectoryProxy/PingDirectoryProxy, run the setup command to install the
server on the machine.

Installing the Directory Proxy Server
When you deploy PingDirectoryProxy Server in a topology, you generally deploy them in pairs. These pairs are
configured identically except for their host name, port name, and possibly their location.

To help administrators easily install identical proxies, the Directory Proxy Server allows you to clone a proxy
configuration. First, you install a Directory Proxy Server using the setup tool. Then, you configure it using the
create-initial-proxy-config tool described in Using the create-initial-proxy-config Tool. Finally, you run
the setup tool on subsequent servers, indicating that you want to clone the configuration on a peer server.

The following sections describe the setup tool in more detail, and tell you how to install first and subsequent proxies
in your topology.

About the setup Tool

One of the strengths of the PingDirectoryProxy Server is the ease with which you can install a server instance using
the setup tool. The setup tool allows you to quickly install and configure a stand-alone Directory Proxy Server
instance.

To install a server instance, run the setup tool in one of the following modes: interactive command-line, or non-
interactive command-line mode.



PingDirectory | Installing the Directory Proxy Server | 30

• Interactive Command-Line Mode. Interactive command-line mode prompts for information during the
installation process. To run the installation in this mode, use the setup --cli command.

• Non-Interactive Command-Line Mode. Non-interactive command-line mode is designed for setup scripts to
automate installations or for command-line usage. To run the installation in this mode, setup must be run with
the --no-prompt option as well as the other arguments required to define the appropriate initial configuration.

All installation and configuration steps should be performed while logged on to the system as the user or role under
which the Directory Proxy Server will run.

Installing the First Directory Proxy Server in Interactive Mode

The setup tool provides an interactive text-based interface to install a Directory Proxy Server instance.

To Install the First Directory Proxy Server in Interactive Mode

1. Change to the server root directory.

cd Directory Proxy Server

2. Use the setup command.

$ ./setup

3. Read the Ping Identity End-User License Agreement, and type yes to continue.
4. Press Enter to accept the default of no in response to adding this new server to an existing topology.

Would you like to add this server to an existing Directory Proxy Server
 topology? (yes / no) [no]:

5. Enter the fully qualified hostname for this server, or press Enter to accept the default.
6. Create the initial root user DN for this server, or press Enter to accept the default.
7. Enter and confirm a password for this account.
8. To enable the Directory Proxy Server services (Configuration, Documentation, and Directory REST API) and

Administrative Console over HTTPS, press Enter to accept the default. After setup, individual services can be
enabled or disabled by configuring the HTTPS Connection Handler.

9. Enter the port on which the Directory Proxy Server should accept connections from HTTPS clients, press Enter to
accept the default.

10. Enter the port on which the Directory Proxy Server should accept connections from LDAP clients, press Enter to
accept the default.

11. The next two options enable LDAPS and StartTLS. Press Enter to accept the default (yes), or type no. If either
are enabled, certificate options are required. To use the Java Keystore or the PKCS#12 keystore, the keystore path
and the key PIN are required. To use the PKCS#11 token, only the key PIN is required.

12. Choose a certificate server option:

Certificate server options:
  1) Generate self-signed certificate (recommended for testing purposes
 only)
  2) Use an existing certificate located on a Java Keystore (JKS)
  3) Use an existing certificate located on a PKCS#12 keystore
  4) Use an existing certificate on a PKCS#11 token

13. Choose the desired encryption for backups and log files from the choices provided:

• Encrypt data with a key generated from an interactively provided passphrase. Using a passphrase (obtained
interactively or read from a file) is the recommended approach for new deployments, and you should use the
same encryption passphrase when setting up each server in the topology.

• Encrypt data with a key generated from a passphrase read from a file.
• Encrypt data with a randomly generated key. This option is primarily intended for testing purposes, especially

when only testing with a single instance, or if you intend to import the resulting encryption settings definition
into other instances in the topology.



PingDirectory | Installing the Directory Proxy Server | 31

• Encrypt data with an imported encryption settings definition. This option is recommended if you are adding a
new instance to an existing topology that has older server instances with data encryption enabled.

• Do not encrypt server data.
14. To configure your Directory Proxy Server to use entry balancing, type yes, or accept the default no. In an entry

balancing environment, entries immediately beneath the balancing base DN are divided into disjoint subsets. Each
subset of data is handled by a separate set of one or more directory server instances, which replicate this subset of
data between themselves. Choosing yes will enable more memory be allocated to the server and tools.

15. Choose the option for the amount of memory to assign to this server.
16. Enter an option to setup the server with the current configurtion, provide new parameters, or cancel.
17. Once setup is complete, choose the next configuration option.

This server is now ready for configuration What would you like to do?

   1) Start 'create-initial-proxy-config' to create a basic 
      initial configuration (recommended for new users) 
   2) Start 'dsconfig' to create a configuration from scratch 
   3) Quit           

Enter choice [1]:

To Install Additional Directory Proxy Server Instances in Interactive Mode

The setup tool provides an interactive text-based interface to install a Directory Proxy Server instance that clones a
previously installed Directory Proxy Server instance.

1. Change to the server root directory.

cd Directory Proxy Server

2. Use the setup command.

$ ./setup

3. Read the Ping Identity End-User License Agreement, and type yes to continue.
4. Enter yes in response to add this new server to an existing topology.

Would you like to add this server to an existing Directory Proxy Server
 topology? (yes / no) [no]: yes

5. Enter the host name of the Directory Proxy Server from which configuration settings are copied during setup.

Enter the hostname of the peer Directory Proxy Server from which you would
 like 
to copy configuration settings. [proxy.example.com]:   

6. Type the port number of the peer Directory Proxy Server from which configuration settings are copied during
setup. You can press Enter to accept the default port, which is 389.

Enter the port of the peer Directory Proxy Server [389]:

7. Enter the option corresponding to the type of connection you want to use to connect to the peer Directory Proxy
Server.

How would you like to connect to the peer Directory Proxy Server? 
  1) None       
  2) SSL
  3) StartTLS
   
Enter choice [1]:

8. Type the root user DN of the peer Directory Proxy Server, or press Enter to accept the default (cn=Directory
Manager), and then type and confirm the root user password.



PingDirectory | Installing the Directory Proxy Server | 32

Enter the manager account DN for the peer Directory Proxy Server
 [cn=Directory Manager]:
Enter the password for cn=Directory Manager:

9. Enter the host name of the new local Directory Proxy Server.

Enter the fully qualified host name or IP address of the local host
 [proxy.example.com]:

10. Choose the location of your new Directory Proxy Server instance or enter a new one.
11. Enter an option to setup the server with the current configurtion, provide new parameters, or cancel.
12. Once setup is complete, choose the next configuration option.

Installing the First Directory Proxy Server in Non-Interactive Mode

You can run the setup command in non-interactive mode to automate the installation process using a script or to run
the command directly from the command line. If there is a missing or incorrect argument, the setup tool fails and
aborts the process.

The setup tool automatically chooses the maximum heap size. You can manually tune the maximum amount of
memory devoted to the server’s process heap using the --maxHeapSize option. The --maxHeapSize argument is only
valid if the --entryBalancing or --aggressiveJVMTuning options are also present.

For example, use the --aggressiveJVMTuning option to set the maximum amount of memory used by the Directory
Proxy Server and tools as follows:

--aggressiveJVMTuning --maxHeapSize 256m

If you are using entry balancing, tune the amount of memory devoted to the Directory Proxy Server using the --
entryBalancing option as follows:

--entryBalancing --maxHeapSize 1g

The amount of memory allowed when using the --entryBalancing option is calculated and depends on the amount of
system memory available. If you are using entry balancing and also want the tools to get more memory, include both
the --entryBalancing and the --aggressiveJVMTuning options.

--entryBalancing --aggressiveJVMTuning --maxHeapSize 1g

If you have already configured a truststore, you can also use the setup tool to enable security. The following example
enables security, both SSL and StartTLS. It also specifies a JKS Keystore and Truststore that define the server
certificate and trusted CA. The passwords for the keystore files are defined in the corresponding .pin files, where the
password is written on the first line of the file. The values in the .pin files will be copied to the server-root/
config directory in the keystore.pin file.

Note that the password to the private key within the keystore is expected to be the same as the password to the
keystore. If this is not the case, the private key password can be defined within the Administrative Console or
dsconfig by editing the Trust Manager Provider standard configuration object.

$ env JAVA_HOME=/ds/java ./setup --cli \
   --no-prompt --rootUserDN "cn=Directory Manager" \
   --rootUserPassword "password" --ldapPort 389 \
   --enableStartTLS --ldapsPort 636 \
   --useJavaKeystore /path/to/devkeystore.jks \
   --keyStorePasswordFile /path/to/devkeystore.pin \
   --certNickName server-cert \
   --useJavaTrustStore /path/to/devtruststore.jks \
   --trustStorePasswordFile /path/to/devtruststore.pin \
   --acceptLicense



PingDirectory | Installing the Directory Proxy Server | 33

To Install the First Directory Proxy Server in Non-Interactive Mode

• Use setup with the --no-prompt option. The command uses the default root user DN (cn=Director
Manager) with the specified --rootUserPassword option. You must include the --acceptLicense option or the
setup tool will generate an error message.

$ env JAVA_HOME=/ds/java ./setup --no-prompt \ 
--rootUserDN "cn=Directory Manager" \
--rootUserPassword "password" --ldapPort 389 \ 
--acceptLicense

To Install Additional Directory Proxy Server in Non-Interactive Mode

You can run the setup command in non-interactive mode to automate the installation process using a script or to run
the command directly from the command line. If there is a missing or incorrect argument, the setup tool fails and
aborts the process.

To Install Additional Directory Proxy Server in Non-Interactive Mode

• Use setup with the --no-prompt option.

$ env JAVA_HOME=/ds/java ./setup --cli --no-prompt \ 
--rootUserDN "cn=Directory Manager" \
--rootUserPassword "password" --ldapPort 1389 \ 
--localHostName proxy2.example.com \
--peerHostName proxy1.example.com --peerPort 389 \ 
--peerUseNoSecurity --acceptLicense --location austin1

Installing the Directory Proxy Server with a Truststore in Non-Interactive Mode

If you have already configured a trust store, you can also use the setup tool to enable security. The following
example enables SSL security. It also specifies a JKS Keystore and truststore that define the server certificate and
trusted CA. The passwords for the keystore files are defined in the corresponding .pin files, where the password
is written on the first line of the file. The values in the .pin files will be copied to the server-root/config
directory in the keystore.pin and truststore.pin files.

Note:  The password to the private key within the keystore is expected to be the same as the password to the
keystore. If this is not the case, the private key password can be defined within the Administrative Console or
dsconfig by editing the Key Manager Provider standard configuration object.

To Install the Directory Proxy Server with a Truststore in Non-Interactive Mode

• Run the setup tool to install a Directory Proxy Server with a truststore.

$ env JAVA_HOME=/ds/java ./setup --cli \ 
  --no-prompt --rootUserDN "cn=Directory Manager" \
  --rootUserPassword "password" \
  --ldapPort 389 --ldapsPort 636 \
  --useJavaKeystore /path/to/devkeystore.jks \ 
  --keyStorePasswordFile /path/to/devkeystore.pin \ 
  --certNickName server-cert \ 
  --useJavaTrustStore /path/to/devtruststore.jks \
  --acceptLicense
  
In order to update the trust store, the password must be provided

See 'prepare-external-server --help' for general overview

Testing connection to ds-east-01.example.com:1636 ..... Done
Testing 'cn=Proxy User,cn=Root DNs,cn=config' access .....
Created 'cn=Proxy User,cn=Root DNs,cn=config'



PingDirectory | Installing the Directory Proxy Server | 34

Testing 'cn=Proxy User,cn=Root DNs,cn=config' access ..... Done
Testing 'cn=Proxy User,cn=Root DNs,cn=config' privileges ..... Done
Verifying backend 'dc=example,dc=com' ..... Done 

About the Layout of the Directory Proxy Server Folders
Once you have unzipped the Directory Proxy Server distribution file, the following folders and command-line utilities
are available.

Table 1: Layout of the Directory Proxy Server Folders

Directories/Files/Tools Description

License.txt Licensing agreement for the Directory Proxy Server.

README README file that describes the steps to set up and start the Directory Proxy Server.

bak Stores the physical backup files used with the backup command-line tool.

bat Stores Windows-based command-line tools for the Directory Proxy Server.

bin Stores UNIX/Linux-based command-line tools for the Directory Proxy Server.

classes Stores any external classes for server extensions.

collector Used by the server to make monitored statistics available to the Data Metrics Server.

config Stores the configuration files for the backends (admin, config) as well as the
directories for messages, schema, tools, and updates.

docs Provides the product documentation.

import-tmp Stores temporary imported items.

ldif Stores any LDIF files that you may have created or imported.

legal-notices Stores any legal notices for dependent software used with the Directory Proxy Server.

lib Stores any scripts, jar, and library files needed for the server and its extensions.

locks Stores any lock files in the backends.

logs Stores log files for the Directory Proxy Server.

metrics Stores the metrics that can be gathered for this server and surfaced in the Data Metrics
Server.

resource Stores the MIB files for SNMP and can include ldif files, make-ldif templates, schema
files, dsconfig batch files, and other items for configuring or managing the server.

revert-update The revert-update tool for UNIX/Linux systems.

revert-update.bat The revert-update tool for Windows systems.

setup The setup tool for UNIX/Linux systems.

setup.bat The setup tool for Windows systems.

scim-data-tmp Used to create temporary files containing SCIM request data.

uninstall The uninstall tool for UNIX/Linux systems.

uninstall.bat The uninstall tool for Windows systems.

update The update tool for UNIX/Linux systems.

update.bat The update tool for Windows systems.



PingDirectory | Installing the Directory Proxy Server | 35

Directories/Files/Tools Description

Velocity Stores any customized Velocity templates and other artifacts (CSS, Javascript,
images), or Velocity applications hosted by the server.

Running the Server
To start the Directory Proxy Server, run the bin/start-server command on UNIX or Linux systems (an analogous
command is in the bat folder on Microsoft Windows systems). The bin/start-server command starts the Directory
Proxy Server as a background process when no options are specified. To run the Directory Proxy Server as a
foreground process, use the bin/start-server command with the --nodetach option.

To Start the Directory Proxy Server

Use bin/start-server to start the server.

$ bin/start-server

To Run the Server as a Foreground Process

1. Enter bin/start-server with the --nodetach option to launch the Directory Proxy Server as a foreground process.

$ bin/start-server --nodetach

2. You can stop the Directory Proxy Server by pressing CNTRL+C in the terminal window where the server is
running or by running the bin/stop-server command from another window.

To Start the Server at Boot Time
By default, the PingDirectoryProxy Server does not start automatically when the system is booted. Instead, you must
manually start it with the bin/start-server command. To configure the Directory Proxy Server to start automatically
when the system boots, use the create-systemd-script utility to create a script, or create the script manually.

1. Create the service unit configuration file in a temporary location where "ds" is the user the PingDirectoryProxy
will run as.

$ bin/create-systemd-script \
     --outputFile /tmp/ping-directory.service \
     --userName ds

2. As a root user, copy the ping-directory.service configuration file into the /etc/systemd/system
directory.

3. Reload systemd to read the new configuration file.

$ systemctl daemon-reload

4. To start the PingDirectoryProxy, use the start command.

$ systemctl start ping-directory.service

5. To configure the PingDirectoryProxy to start automatically when the system boots, use the enable command.

$ systemctl enable ping-directory.service

6. Log out as root.
If on an RC system, this task is done by creating the startup script with bin/create-rc-script and moving
it to the /etc/init.d directory. Create symlinks to it from the /etc/rc3.d directory (staring with an “S”
to ensure that the server is started) and /etc/rc0.d directory (starting with a “K” to ensure that the server is
stopped).



PingDirectory | Installing the Directory Proxy Server | 36

Logging into the Administrative Console

After the server is installed, access the Administrative Console, https://hostname:HTTPport/console/
login, to verify the configuration and manage the server. To log into the Administrative Console, use the initial root
user DN specified during setup (by default cn=Directory Manager).

The dsconfig command or the Administrative Console can be used to create additional root DN users in
cn=Root DNs,cn=config. These new users require the fully qualified DN as the login name, such as cn=new-
admin,cn=Root DNs,cn=config. To use a simple user name (with out the cn= prefix) for logging into the
Administrative Console, the root DN user must have the alternate-bind-dn attribute configured with an
alternate name, such as "admin."

By default the link to the Administrative Console is https://hostname:HTTPport/console/login.

If the Administrative Console needs to run in an external container, such as Tomcat, a separate package (/server-
root/resource/admin-console.zip) can be installed according to that container's documentation.

Stopping the Directory Proxy Server
The Directory Proxy Server provides a simple shutdown script, bin/stop-server, to stop the server. You can run it
manually from the command line or within a script.

If the Directory Proxy Server has been configured to use a large amount of memory, then it can take several seconds
for the operating system to fully release the memory and make it available again. If you try to start the server too
quickly after shutting it down, then the server can fail because the system does not yet have enough free memory. On
UNIX systems, run the vmstat command and watch the values in the "free" column increase until all memory held
by the Directory Proxy Server is released back to the system.

You can also set a configuration option that specifies the maximum shutdown time a process may take.

To Stop the Server

• Use the bin/stop-server tool to shut down the server.

$ bin/stop-server

To Schedule a Server Shutdown

• Use the bin/stop-server tool with the --stopTime YYYYMMDDhhmmss option to schedule a server
shutdown.
The Directory Proxy Server schedules the shutdown and sends a notification to the server.out log file.
The following example sets up a shutdown task that is scheduled to be processed on June 6, 2012 at 8:45 A.M.
CDT. The server uses the UTC time format if the provided timestamp includes a trailing “Z”, for example,
20120606134500Z. The command also uses the --stopReason option that writes the reason for the shut down to
the logs.

$ bin/stop-server --stopTime 20120606134500Z --port 1389 \
  --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret \ 
  --stopReason "Scheduled offline maintenance"

To Restart the Server

Re-start the Directory Proxy Server using the bin/stop-server command with the --restart or -R option. Running
the command is equivalent to shutting down the server, exiting the JVM session, and then starting up again.

• Go to the server root directory, and run the bin/stop-server command with the -R or --restart options.

$ bin/stop-server --restart



PingDirectory | Installing the Directory Proxy Server | 37

Run the Server as a Microsoft Windows Service
The server can run as a Windows service on Windows Server 2012 R2 and Windows Server 2016. This enables log
out of a machine without the server being stopped.

To Register the Server as a Windows Service

Perform the following steps to register the server as a service:

1. Stop the server with bin/stop-server. A server cannot be registered while it is running.
2. Register the server as a service. From a Windows command prompt, run bat/register-windows-

service.bat.
3. After a server is registered, start the server from the Windows Services Control Panel or with the bat/start-

server.bat command.
Command-line arguments for the start-server.bat and stop-server.bat scripts are not supported
while the server is registered to run as a Windows service. Using a task to stop the server is also not supported.

To Run Multiple Service Instances

Only one instance of a particular service can run at one time. Services are distinguished by the wrapper.name
property in the <server-root>/config/wrapper-product.conf file. To run additional service instances,
change the wrapper.name property on each additional instance. Descriptions of the services can also be added or
changed in the wrapper-product.conf file.

To Deregister and Uninstall Services

While a server is registered as a service, it cannot run as a non-service process or be uninstalled. Use the bat/
deregister-windows-service.bat file to remove the service from the Windows registry. The server can
then be uninstalled with the uninstall.bat script.

Log Files for Services

The log files are stored in <server-root>/logs, and filenames start with windows-service-wrapper.
They are configured to rotate each time the wrapper starts or due to file size. Only the last three log files are retained.
These configurations can be changed in the <server-root>/config/wrapper.conf file.

Uninstalling the Server
The Directory Proxy Server provides an uninstall command-line utility for quick and easy removal of the code
base.

To uninstall a server instance, run the setup tool in one of the following modes: interactive command-line, or non-
interactive command-line mode.

• Interactive Command-Line Mode. Interactive command-line mode is a text-based interface that prompts the
user for input. You can start the command using the bin/uninstall command with the --cli option. The utility
prompts you for input if more data is required.

• Non-Interactive Command-Line Mode. Non-interactive mode suppresses progress information from being
written to standard output during processing, except for fatal errors. This mode is convenient for scripting and is
invoked using the bin/uninstall command with the --no-prompt option.

Note:  For stand-alone installations with a single Directory Proxy Server instance, you can also manually
remove the Directory Proxy Server by stopping the server and recursively deleting the directory and
subdirectories. For example:

$ rm -rf /ds/PingDirectoryProxy



PingDirectory | Installing the Directory Proxy Server | 38

To Uninstall the Server in Interactive Mode

Interactive mode uses a text-based, command-line interface to help you remove your instance. If uninstall cannot
remove all of the Directory Proxy Server files, the uninstall tool generates a message with a list of the files and
directories that must be manually deleted. The uninstall command must be run as either the root user or the same
user (or role) that installed the Directory Proxy Server.

1. From the server root directory, run the uninstall command.

$ ./uninstall --cli

2. Select the components to be removed. If you want to remove all components, press Enter to accept the default
(remove all). Enter the option to specify the specific components that you want to remove.

Do you want to remove all components or select the components to remove?

1) Remove all components 
2) Select the components to be removed

q) quit 
Enter choice [1]:

3. For each type of server component, press Enter to remove them or type no to keep it.

Remove Server Libraries and Administrative Tools? (yes / no) [yes]: 
Remove Database Contents? (yes / no) [yes]: 
Remove Log Files? (yes / no) [yes]: 
Remove Configuration and Schema Files? (yes / no) [yes]: 
Remove Backup Files Contained in bak Directory? (yes / no) [yes]: 
Remove LDIF Export Files Contained in ldif Directory? (yes / no) [yes]:

4. If the Directory Proxy Server is part of a replication topology, type yes to provide your authentication credentials
(Global Administrator ID and password). If you are uninstalling a stand-alone server, continue to step 7.

5. Type the Global Administrator ID and password to remove the references to this server in other replicated servers.
Then, type or verify the host name or IP address for the server that you are uninstalling.

6. Next, select how you want to trust the server certificate if you have set up SSL or StartTLS. For this example,
press Enter to accept the default.

How do you want to trust the server certificate for the Directory Proxy
 Server 
on server.example.com:389? 

1) Automatically trust 
2) Use a trust store 
3) Manually validate 

Enter choice [3]:

7. If your Directory Proxy Server is running, the server is shutdown before continuing the uninstall process. The
uninstall processes the removal requests and completes. View the logs for any remaining files. Manually remove
any remaining files or directories, if listed.

To Uninstall the Server in Non-Interactive Mode
The uninstall utility provides a non-interactive method to enter the command with the --no-prompt option.
Another useful argument is the --forceOnError option that continues the uninstall process when an error is
encountered. If an option is incorrectly entered or if a required option is omitted and the --forceOnError option is not
used, the command will fail and abort.

1. From the server root directory, run uninstall tool with the --remove-all option to remove all of the Directory
Proxy Server’s libraries. The --quiet option suppresses output information and is optional. The following
command assumes that the Directory Proxy Server is stand-alone and not part of a replication topology.



PingDirectory | Installing the Directory Proxy Server | 39

$ ./uninstall --cli --remove-all --no-prompt --quiet --forceOnError

2. If any files or directories remain, manually remove them.

To Uninstall Selected Components in Non-Interactive Mode

From the server root directory, run uninstall with the --backup-files option to remove the Directory
Proxy Server’s backup files. Use the --help or -H option to view the other options available to remove specific
components.

$ ./uninstall --cli --backup-files --no-prompt --quiet --forceOnError

To Uninstall the RPM Build Package

1. From the server root directory, remove the RPM package use the --erase option with the <rpm-id>. The <rpm-id>
is pingdirectoryproxy and removes the files at /opt/ping-identity/proxy/PingDirectoryProxy/PingDirectoryProxy.

$ rpm --erase pingdirectoryproxy

2. The rpm command specifies if any files or directories require manual deletion. Manually remove any remaining
directories or files using rm -rf <directory>.

Updating the Directory Proxy Server
Ping Identity issues new software builds periodically and distributes the software package in zip format.
Administrators can use the Directory Proxy Server’s update utility to update the current server code with the latest
features and bug fixes. To update the Directory Proxy Server to a newer version, download the build package, and
then unzip the new server package on the same host as the server that you wish to update. Before upgrading a server,
you should ensure that it is capable of starting without severe or fatal errors.

During an update process, the updater checks a manifest file that contains a MD5 checksum of each file in its original
state when installed from zip. Next, it compares the checksum of the new server files to that of the old server. Any
files that have different checksums will be updated. For files that predates the manifest file generation, the file is
backed up and replaced. The updater also logs all file changes in the history directory to tell what files have been
changed.

For schema updates, the update tool preserves any custom schema definitions (99-user.ldif). For any default
schema element changes, if any, the updater will warn the user about this condition and then create a patch schema
file and copy it into the server’s schema directory. For configuration files, the update tool preserves the configuration
file, config.ldif, unless new configuration options must be added to the Directory Proxy Server.

Once the updater finishes its processing, it checks if the newly updated server starts without any fatal errors. If an
error occurs during the update process, the update tool reverts the server root instance to the server state prior to the
update.

Updating Servers in a Topology

An update to the current release includes significant changes, and the introduction of a topology registry, which will
store information previously stored in the admin backend (server instances, instance and secret keys, server groups,
and administrator user accounts). For the admin backend to be migrated, the update tool must be provided LDAP
authentication options to the peer servers of the server being updated.

The LDAP connection security option requested (either plain, TLS, StartTLS, or SASL) must be configured on
every server in the topology. The LDAP credentials must be present on every server in the topology, and must have
permissions to read from the admin backend and the config backend of every server in the topology. For example, a
root DN user with the inherit-default-privileges set to true (such as the cn=Directory Manager
user) that exists on every server can be used.



PingDirectory | Installing the Directory Proxy Server | 40

After enabling or fixing the configuration of the LDAP connection handler(s) to support the desired connection
security mechanism on each server, run the following dsframework command on the server being updated so that
its admin backend has the most up-to-date information:

$ bin/dsframework set-server-properties \
  --serverID serverID \
  --set ldapport:port \
  --set ldapsport:port \
  --set startTLSEnabled:true

The update tool will verify that the following conditions are satisfied on every server in the topology before
allowing the update:

• When the first server is being updated, all other servers in the topology must be online. When updating additional
servers, all topology information will be obtained from one of the servers that has already been updated. The
update tool will connect to the peer servers of the server being updated to obtain the necessary information
to populate the topology registry. The provided LDAP credentials must have read permissions to the config and
admin backends of the peer servers.

• The instance name is set on every server, and is unique across all servers in the topology. The instance name
is a server’s identifier in the topology. After all servers in the topology have been updated, each server will
be uniquely identified by its instance name. Once set, the name cannot be changed. If needed, the following
command can be used to set the instance name of a server prior to the update:

$ bin/dsconfig set-global-configuration-prop \
  --set instance-name:uniqueName

• The cluster-wide configuration is synchronized on all servers in the topology. Older versions have some topology
configuration under cn=cluster,cn=config (JSON attribute and field constraints). These items did not
support mirrored cluster-wide configuration data. An update should avoid custom configuration changes on
a server being overwritten with the configuration on the mirrored subtree master. To synchronize the cluster-
wide configuration data across all servers in the topology, run the config-diff tool on each pair of servers
to determine the differences, and use dsconfig to update each instance using the config-diff output. For
example:

$ bin/config-diff --sourceHost hostName \
  --sourcePort port \
  --sourceBindDN bindDN \
  --sourceBindPassword password \
  --targetHost hostName \
  --targetPort port \
  --targetBindDN bindDN \
  --targetBindPassword password

If any of these conditions are not satisfied, the update tool will list all of the errors encountered for each server, and
provide instructions on how to fix them.

To Update the Directory Proxy Server

Assume that an existing version of the Directory Proxy Server is stored at PingDirectoryProxy-old, which you want to
update.

1. Make sure you have complete, readable backup of the existing system before upgrading the Directory Proxy
Server build. Also, make sure you have a clear backout plan and schedule.

2. Download the latest version of the PingDirectoryProxy Server software and unzip the file. For this example, let’s
assume the new server is located in the PingDirectoryProxy-new directory.

3. Check the version number of the newly downloaded Directory Proxy Server instance using the --version option on
any command-line utility. For example, you should see the latest revision number.

$ PingDirectoryProxy-new/setup --version PingDirectoryProxy Server 7.2.0.0 
Build 2011043200609Z Revision 9235



PingDirectory | Installing the Directory Proxy Server | 41

4. Use the update tool of the newly unzipped build to update the Directory Proxy Server code. Make sure to
specify the Directory Proxy Server instance that you are upgrading with the --serverRoot option. The Directory
Proxy Server must be stopped for this update to be applied.

$ PingDirectoryProxy-new/update --serverRoot PingDirectoryProxy-old

Note:  The PingDirectoryProxy Server provides a web console called the Administrative Console, to
configure and monitor the server. If you update the Directory Proxy Server version, you should also
update the Administrative Console.

5. View the log file to see which files were changed. The log file is located in the <server-root>/history
directory. For example, the file will be labelled with the Directory Proxy Server version number and revision.

$ view <server-root>/history/1272307020420-7.2.0.0.9235/update.log

To Upgrade the RPM Package

If the Linux RPM package was used to install the Directory Server, the following should be performed to upgrade the
server.

• Assume that the new RPM package, pingdirectoryproxy-<new-version>.rpm, is placed in the server root directory.
From the server root directory, run the rpm command with the --upgrade option.

$ rpm --upgrade pingdirectoryproxy-<new-version>.rpm

The RPM package does not support a revert option once the build is upgraded.
The upgrade history is written to /opt/ping-identity/proxy/PingDirectoryProxy/PingDirectoryProxy/history/
<timestamp>/update.log.

Reverting an Update

Once the PingDirectoryProxy Server has been updated, you can revert to the last version (one level back) using the
revert-update tool. The revert-update tool accesses a log of file actions taken by the updater to put the
filesystem back to its prior state. If you have run multiple updates, you can run the revert-update tool multiple
times to revert to each prior update sequentially. You can only revert back one level. For example, if you have run the
update twice since first installing the PingDirectoryProxy Server, you can run the revert-update command to
revert to its previous state, then run the revert-update command again to return to its original state.

Reverting from Version 7.x to a Version Prior to 7.0

Reverting from version 7.0 or later to a pre-7.0 version can be done using the revert-update command with
some extra steps. This is also the case when updating or reverting from a pre-6.2.0.2 version to 6.2.0.2 or later. These
steps are listed when the update and revert-update tool are run as well. You may need to perform one or more
of the following tasks, depending on your installation and configuration:

• When updating or reverting from 6.2.0.2 or later to a pre-6.2.0.2 version, indexes may need to be rebuilt. Older
versions of the server use an incompatible format for Local DB Composite Indexes. To update a server with
composite indexes in the previous format, delete these indexes and re-run the update. After the update is complete,
recreate the indexes and use the rebuild-index tool to rebuild the indexes. The command for recreating an
index will be in the "Undo" portion of the logs/config-audit.log file. If you wish to later revert to an
older version, delete and recreate those composite indexes again after the revert has completed.

• When updating to 7.x for the first time, instance names will need to be set for each server in the topology if they
were not previously set. This is done with the following dsconfig command:

$ bin/dsconfig --bindDN "cn=Directory Manager" \
  --bindPassword secret \
  --no-prompt set-global-configuration-prop \
  --set instance-name:<name>



PingDirectory | Installing the Directory Proxy Server | 42

• Topology information such as server instances, instance and secret keys, server groups, and administrator users
have moved to the topology portion of the configuration from the admin backend. As long as new servers are
not added to the topology after this update, the revert-update command can be used to return to the previous
version. However, if new servers are added, then the restored admin backend of this server will not contain
information about the new servers, and the local server will not be able to communicate with any other servers in
the topology. New servers should not be added to the topology if reverting this update is a possibility.

• If new servers were added to the topology after the update, the new servers must be temporarily removed from the
topology until all servers have been reverted to the previous version.

• When a server is reverted to a pre-7.x version, any servers in the topology using the topology portion of the
configuration (rather than the admin backend) will need to know that the reverted server was downgraded to the
admin backend. This is done by running the following dsconfig command on one of the servers that has not
been reverted:

$ bin/dsconfig set-server-instance-prop \
  --instance-name <Reverted server instance name> \
  --set server-version:<Version to which server is reverted>

• If the topology does not have a master server when this command is run, it will not succeed. In this case, one of
the remaining updated servers in the topology must be made master with the following command. This will enable
the chosen instance to run the first command successfully.

$ bin/dsconfig set-global-configuration-prop \
  --set force-as-master-for-mirrored-data:true

• The 7.x server version includes database changes that are not compatible with previous server versions (6.x or
older). If you wish to later revert to an older version, the data must be exported to LDIF before performing the
reversion. Re-import the data after the revert process has completed. In addition, the changelogDb/ and db/
changelog/ directories in the reverted server root must be deleted after the revert has completed.

When starting up the server for the first time after a revert has been run, and the necessary extra steps have been
completed, the server will display warnings about "offline configuration changes," but they are not critical and will
not appear on subsequent start ups.

To Revert to the Most Recent Server Version

Use revert-update in the server root directory revert back to the most recent version of the server.

$ PingDirectoryProxy-old/revert-update

Configure SCIM After Upgrade

Modifications in SCIM PATCH are mapped directly to LDAP modifications to use the matching rules configured in
the Directory Proxy Server, when matching deleted values. Since the SCIM PATCH is now applied by the Directory
Server, the Permissive Modify Request Control (1.2.840.113556.1.4.1413) is now required by the SCIM component.
This ensures that adding an existing value or deleting a non-existent value in the PATCH request will not generate an
error. This affects upgrades from server versions prior to 5.0.0.

To continue using the SCIM component after an upgrade, access controls and configuration must be updated to allow
access to the Permissive Modify Request Control. Run the dsconfig commands to update these components:

$ dsconfig set-access-control-handler-prop \
  --remove 'global-aci:(targetcontrol="1.3.6.1.1.13.2 ||
 1.2.840.113556.1.4.473 || 1.2.840.113556.1.4.319 || 2.16.840.1.113730.3.4.9
 || 1.3.6.1.1.12")(version 3.0;acl "Authenticated access to controls used by
 the SCIM servlet extension"; allow (all) userdn="ldap:///all";)'

$ dsconfig set-access-control-handler-prop \
  --add 'global-aci:(targetcontrol="1.3.6.1.1.13.2 || 1.2.840.113556.1.4.473
 || 1.2.840.113556.1.4.319 || 2.16.840.1.113730.3.4.9 || 1.3.6.1.1.12 ||
 1.2.840.113556.1.4.1413")(version 3.0;acl "Authenticated access to controls
 used by the SCIM servlet extension"; allow (all) userdn="ldap:///all";)'



PingDirectory | Installing the Directory Proxy Server | 43

        

dsconfig set-request-processor-prop \
  --processor-name dc_example_dc_com-req-processor \
  --add supported-control-oid:1.2.840.113556.1.4.1413

In the last command, dc_example_dc_com-req-processor is the default processor name. Replace it with the
correct name for your system.



Chapter

3
Configuring the Directory Proxy Server

Topics:

• About the Configuration Tools
• Using the create-initial-proxy-

config Tool
• Configuring a Standard

Directory Proxy Server
Deployment

• About dsconfig Configuration
Tool

• Topology Configuration
• Using the Configuration API
• Working with the Directory

REST API
• Generating a Summary of

Configuration Components
• Configuring Server Groups
• Domain Name Service (DNS)

Caching
• IP Address Reverse Name

Lookups
• Configuring Traffic Through a

Load Balancer
• Managing Root Users Accounts
• Configuring Locations
• Configuring Batched

Transactions
• Configuring Server Health

Checks
• Configuring LDAP External

Servers
• Configuring Load Balancing
• Configuring HTTP Connection

Handlers
• Configuring Proxy

Transformations
• Configuring Request

Processors
• Configuring Server Affinity
• Configuring Subtree Views

Once you have initially configured the PingDirectoryProxy Server, you can
manage your deployment using the configuration framework and management
tools. This chapter briefly describes these tools and provides procedures to
help you maintain and update your deployment.

It includes the following sections:



PingDirectory | Configuring the Directory Proxy Server | 46

• Configuring Client Connection
Policies

• Configuring Globally Unique
Attributes

• Configuring the Global
Referential Integrity Plug-in

• Configuring an Active Directory
Server Back-end



PingDirectory | Configuring the Directory Proxy Server | 47

About the Configuration Tools
The PingDirectoryProxy Server configuration can be accessed and modified in the following ways:

• Using the Administrative Console. The PingDirectoryProxy Server provides an Administrative Console for
graphical server management and monitoring. The console provides equivalent functionality as the dsconfig
command for viewing or editing configurations. All configuration changes using this tool are recorded in logs/
config-audit.log, which also has the equivalent reversion commands should you need to back out of a
configuration.

• Using the dsconfig Command-Line Tool. The dsconfig tool is a text-based menu-driven interface to the
underlying configuration. The tool runs the configuration using three operational modes: interactive command-line
mode, non-interactive command-line mode, and batch mode. All configuration changes made using this tool are
recorded in logs/config-audit.log.

Using the create-initial-proxy-config Tool
The create-initial-proxy-config tool can be used to initially configure the Directory Proxy Server. We
strongly recommend that you use the create-initial-proxy-config tool for your initial Directory Proxy
Server configuration. This tool prompts you for basic information about your topology, including external servers,
their locations, and credentials for communicating with them. Once the configuration is complete, the tool writes
the configuration to a dsconfig batch file and allows you to apply the configuration to the local Directory Proxy
Server. The tool assumes the following about your topology:

• All servers are accessible through a single user account. This user account must be a root user that is not
generally accessible to clients to avoid inadvertent changes, deletions, or backend server availability issues due to
reimporting data.

• All servers support the same type of communication security.
• All external servers are any combination of Ping Identity Directory Server, Sun Directory Server, or Red Hat

(including Fedora and 389) instances.

If your topology does have these characteristics, you can use the tool to define a basic configuration that is saved to
a dsconfig batch file. You can then run the dsconfig tool to fine-tune the configuration. You can also use this
tool to configure an entry balancing configuration, which allows you to automatically spread entries below a common
parent among multiple sets of directory servers for improved scalability and performance.

The create-initial-proxy-config tool produces a log file called create-initial-proxy-
config.log that is stored in the local Directory Proxy Server’s logs directory.

You can only run the create-initial-proxy-config tool once for the initial configuration of each Directory
Proxy Server instance. To tune your configuration, use the dsconfig tool. When installing a second Directory
Proxy Server, it will not be necessary to run the create-initial-proxy-config tool again, as the Directory
Proxy Server setup has the ability to clone the settings from an existing Directory Proxy Server.

This section describes how to use this tool to configure a standard Directory Proxy Server deployment as well as an
entry balancing configuration.

Configuring a Standard Directory Proxy Server Deployment
This section describes how to install a standard Directory Proxy Server deployment using the create-initial-
proxy-config tool. Remember that you deploy the Directory Proxy Server in pairs. Each pair should be
configured identically except for their host name, port, and possibly their location.

To Configure a Standard Directory Proxy Server Deployment

1. After initial installation, select the number to start the create-initial-proxy-config tool automatically.
Otherwise, run it manually at the command line from the server root directory, <server-root>/PingDirectoryProxy.



PingDirectory | Configuring the Directory Proxy Server | 48

$ ./bin/create-initial-proxy-config

2. The initial proxy configuration presents the assumptions about the underlying Directory Server backend servers. If
the servers do not meet the requirements, then you can enter "no" to quit the process.

Some assumptions are made about the topology in order to keep this tool
 simple:

 1) all servers will be accessible via a single user account
 2) all servers support the same communication security type
 3) all servers are PingDirectoryProxy Server, Directory Server,
    Java System 5.x, 6.x, or 7.x, or Red Hat (including Fedora and 389) 
    directory servers

If your topology does not have these characteristics you can use this tool
 to define a basic configuration and then use the 'dsconfig' tool or the
 Administrative Console to
fine tune the configuration.

Continue? (yes / no) [yes]: 

3. Enter the DN for the Directory Proxy Server user account, then enter and confirm the password for this account.
Note that you should not use cn=Directory Manager account for communication between the Directory
Proxy Server and the Directory Server. For security reasons, the account used to communicate between the
Directory Proxy Server and the Directory Server should not be directly accessible by clients accessing the
Directory Proxy Server. For more information about this account, see Configuring LDAP External Servers.

Enter the DN of the proxy user account [cn=Proxy User,cn=Root
 DNs,cn=config]:
Enter the password for 'cn=Proxy User,cn=Root DNs,cn=config':
Confirm the password for 'cn=Proxy User,cn=Root DNs,cn=config':

4. Specify whether you will be using secure communication with the Directory Server instances.

>>>> External Server Communication Security

Specify the type of security that the Directory Proxy Server will use when
 communicating with directory server instances:

   1)  None
   2)  SSL
   3)  StartTLS

   b)  back
   q)  quit

Enter choice [1]:

5. Specify the base DNs of the Directory Server instances that will be accessed through the Directory Proxy Server.
The Directory Proxy Server will create subtree views using each base DN to define portions of the external
servers' DIT available for client access. You can specify more than one base DN. Press Enter when you have
finished specifying the DN(s).

Enter a base DN of the directory server instances that will be accessed
 through the Identity Proxy:

    b)  back
    q)  quit

Enter a DN or choose a menu item [dc=example,dc=com]: 

6. Next, specify if the entries under your defined subtree view will be split across multiple servers in an entry
balanced deployment. For this example, press Enter to accept the default ("no").



PingDirectory | Configuring the Directory Proxy Server | 49

7. Define a location for your server, such as the name of your data center or the city where the server is located. This
example illustrates defining a location named east.

Enter a location name or choose a menu item: east

8. If you defined more than one location, specify the location that contains the Directory Proxy Server itself.

Choose the location for this Directory Proxy Server

    1)  east
    2)  west

    b)  back
    q)  quit

Enter choice [1]: 1

9. Define the hostname:port used by the LDAP external servers. If you have specified more than one location, you
will go through this process for each location.

Enter a host:port or choose a menu item [localhost:389]: ldap-
east-01.example.com:389

10. After each step, the server will attempt to prepare each external server by testing the communication between the
Directory Proxy Server and the Directory Server. Select the option "Yes, and all subsequent servers" to indicate
that you want the tool to create a proxy user account on all of your LDAP external servers within that location.

Would you like to prepare ldap-east-01.example.com:389 for access by the
 Directory Proxy Server?

    1) Yes
    2) No
    3) Yes, and all subsequent servers
    4) No, and all subsequent servers

Enter choice [1]: 3

11. If the proxy user account did not previously exist on your LDAP external server, create the account by connecting
as cn=Directory Manager.

Would you like to create or modify root user 'cn=Proxy User' so that it is
 available for this Directory Proxy Server? (yes / no) [yes]:
Enter the DN of an account on ldap-east-01.example.com:389 with which to
 create or manage the 'cn=Proxy
User' account [cn=Directory Manager]:    

Enter the password for 'cn=Directory Manager':    

Created 'cn=Proxy User,cn=Root DNs,cn=config' 
Testing 'cn=Proxy User' privileges ..... Done
Verifying backend 'dc=example,dc=com' ..... Done    

12. Repeat steps 9-12 for the servers in the other location. Then, press Enter to finish configuring the location.
13. Review the configuration summary. Once you have confirmed that the changes are correct, press Enter to write

the configuration.

>>>> Configuration Summary

  External Server Security:  SSL
  Proxy User DN:             cn=Proxy User,cn=Root DNs,cn=config

  Location east
    Failover Order: west
    Servers: localhost:1636



PingDirectory | Configuring the Directory Proxy Server | 50

  Location west
    Failover Order: east
    Servers: localhost:2636

  Base DN: dc=example,dc=com
    Servers: localhost:1636, localhost:2636

    b)  back
    q)  quit
    w)  write configuration file

Enter choice [w]:

14. Next, apply the configuration changes locally to the Directory Proxy Server. If you have any Server SDK
extensions, make sure to run the manage-extension tool, then press Enter to apply the changes to the
Directory Proxy Server. Alternatively, you can quit and instead run the dsconfig batch file at a later time. Once
the changes have been applied, you cannot use the create-initial-proxy-config tool to configure this
Directory Proxy Server again. Instead, use the dsconfig tool.

This tool can apply the configuration changes to the local Identity Proxy.
 This requires any configured Server SDK extensions to be in place. Do you
 want to do
this? (yes / no) [yes]:

If you open the generated proxy-cfg.txt file or the logs/config-audit.log file, you will see that
a configuration element hierarchy has been created: locations, health checks, external servers, load-balancing
algorithms, request processors, and subtree views.

About dsconfig Configuration Tool
The dsconfig tool is the text-based management tool used to configure the underlying Directory Server
configuration. The tool has three operational modes: interactive mode, non-interactive mode, and batch mode.

The dsconfig tool also offers an offline mode using the --offline option, in which the server does not have to be
running to interact with the configuration. In most cases, the configuration should be accessed with the server running
in order for the server to give the user feedback about the validity of the configuration.

Using dsconfig in Interactive Command-Line Mode

In interactive mode, the dsconfig tool offers a filtering mechanism that only displays the most common
configuration elements. The user can specify that more expert level objects and configuration properties be shown
using the menu system.

Running dsconfig in interactive command-line mode provides a user-friendly, menu-driven interface for accessing
and configuring the PingDirectoryProxy Server. To start dsconfig in interactive command-line mode, simply
invoke the dsconfig script without any arguments. You will be prompted for connection and authentication
information to the Directory Proxy Server, and then a menu will be displayed of the available operation types.

In some cases, a default value will be provided in square brackets. For example, [389] indicates that the default
value for that field is port 389. You can press Enter to accept the default. To skip the connection and authentication
prompts, provide this information using the command-line options of dsconfig.

Using dsconfig Interactive Mode: Viewing Object Menus

Because some configuration objects are more likely to be modified than others, the PingDirectoryProxy Server
provides four different object menus that hide or expose configuration objects to the user. The purpose of object
levels is to simply present only those properties that an administrator will likely use. The Object type is a convenience
feature designed to unclutter menu readability.



PingDirectory | Configuring the Directory Proxy Server | 51

The following object menus are available:

• Basic. Only includes the components that are expected to be configured most frequently.
• Standard. Includes all components in the Basic menu plus other components that might occasionally need to be

altered in many environments.
• Advanced. Includes all components in the Basic and Standard menus plus other components that might require

configuration under special circumstances or that might be potentially harmful if configured incorrectly.
• Expert. Includes all components in the Basic, Standard, and Advanced menus plus other components that should

almost never require configuration or that could seriously impact the functionality of the server if not properly
configured.

To Change the dsconfig Object Menu

1. Repeat steps 1–6 in the section using dsconfig in To Install the Directory Proxy Server in Interactive Mode.
2. On the PingDirectoryProxy Server configuration main menu, type o (letter “o”) to change the object level. By

default, Basic objects are displayed.
3. Enter a number corresponding to a object level of your choice: 1 for Basic, 2 for Standard, 3 for Advanced, 4 for

Expert.
4. View the menu at the new object level. Additional configuration options for the Directory Proxy Server

components are displayed.

Using dsconfig in Non-Interactive Mode

The dsconfig non-interactive command-line mode provides a simple way to make arbitrary changes to the
Directory Proxy Server by invoking it from the command line. To use administrative scripts to automate configuration
changes, run the dsconfig command in non-interactive mode, which is convenient scripting applications. Note,
however, that if you plan to make changes to multiple configuration objects at the same time, then the batch mode
might be more appropriate.

You can use the dsconfig tool to update a single configuration object using command-line arguments to provide all
of the necessary information. The general format for the non-interactive command line is:

$ bin/dsconfig --no-prompt {globalArgs} {subcommand} {subcommandArgs}

The --no-prompt argument indicates that you want to use non-interactive mode. The {sub-command} is used to
indicate which general action to perform. The {globalArgs} argument provides a set of arguments that specify how
to connect and authenticate to the Directory Proxy Server. Global arguments can be standard LDAP connection
parameters or SASL connection parameters depending on your setup. For example, using standard LDAP
connections, you can invoke the dsconfig tool as follows:

$ bin/dsconfig --no-prompt list-backends \
  --hostname server.example.com \
  --port 389 \
  --bindDN uid=admin,dc=example,dc=com \
  --bindPassword password

If your system uses SASL GSSAPI (Kerberos), you can invoke dsconfig as follows:

$ bin/dsconfig --no-prompt list-backends \
  --saslOption mech=GSSAPI \
  --saslOption authid=admin@example.com \
  --saslOption ticketcache=/tmp/krb5cc_1313 \
  --saslOption useticketcache=true

The {subcommandArgs} argument contains a set of arguments specific to the particular subcommand that you wish to
invoke. To always display the advanced properties, use the --advanced command-line option.

Note:  Global arguments can appear anywhere on the command line (including before the subcommand, and
after or intermingled with subcommand-specific arguments). The subcommand-specific arguments can appear
anywhere after the subcommand.



PingDirectory | Configuring the Directory Proxy Server | 52

To Get the Equivalent dsconfig Non-Interactive Mode Command

1. Using dsconfig in interactive mode, make changes to a configuration but do not apply the changes (that is, do
not enter "f").

2. Enter d to view the equivalent non-interactive command.
3. View the equivalent command (seen below), and then press Enter to continue. For example, based on an example

in the previous section, changes made to the db-cache-percent returns the following:

Command line to apply pending changes to this Local DB Backend: 
dsconfig set-backend-prop --backend-name userRoot --set db-cache-percent:40

The command does not contain the LDAP connection parameters required for the tool to connect to the host since
it is presumed that the command would be used to connect to a different remote host.

Using dsconfig Batch Mode

The PingDirectoryProxy Server provides a dsconfig batching mechanism that reads multiple dsconfig
invocations from a file and executes them sequentially. The batch file provides advantages over standard scripting by
minimizing LDAP connections and JVM invocations that normally occur with each dsconfig call. Batch mode is
the best method to use with setup scripts when moving from a development environment to test environment, or from
a test environment to a production environment. The --no-prompt option is required with dsconfig in batch mode.

If a dsconfig command has a missing or incorrect argument, the command will fail and abort the batch process
without applying any changes to the Directory Proxy Server. The dsconfig command supports a --batch-
continue-on-error option which instructs dsconfig to apply all changes and skip any errors.

You can view the logs/config-audit.log file to review the configuration changes made to the Directory
Proxy Server and use them in the batch file. The batch file can have blank lines for spacing and lines starting with a
pound sign (#) for comments. The batch file also supports a "\" line continuation character for long commands that
require multiple lines.

The Directory Proxy Server also provides a docs/sun-ds-compatibility.dsconfig file for migrations
from Sun/Oracle to PingDirectoryProxy Server machines.

To Configure the Directory Proxy Server in dsconfig Batch Mode

1. Create a text file that lists each dsconfig command with the complete set of properties that you want to
apply to the Directory Proxy Server. The items in this file should be in the same format as those accepted by the
dsconfig command. The batch file can have blank lines for spacing and lines starting with a pound sign (#) for
comments. The batch file also supports a "\" line continuation character for long commands that require multiple
lines.

# This dsconfig operation creates the exAccountNumber global attribute
 index.
dsconfig create-global-attribute-index
--processor-name ou_people_dc_example_dc_com-eb-req-processor
--index-name exAccountNumber --set prime-index:true

# Here we create the entry-count placement algorithm with the
# default behavior of adding entries to the smallest backend
# dataset first.

dsconfig create-placement-algorithm
--processor-name ou_people_dc_example_dc_com-eb-req-processor
--algorithm-name example_com_entry_count
--type entry-counter
--set enabled:true
--set "poll-interval:1 m"

# Note that once the entry-count placement algorithm is created
# and enabled, we can delete the round-robin algorithm.



PingDirectory | Configuring the Directory Proxy Server | 53

# Since an entry-balancing proxy must always have a placement
# algorithm, we add a second algorithm and then delete the
# original round-robin algorithm created during the setup
# procedure.

dsconfig delete-placement-algorithm
--processor-name ou_people_dc_example_dc_com-eb-req-processor
--algorithm-name round-robin

2. Use dsconfig with the --batch-file option to read and execute the commands.

Topology Configuration
Topology configuration enables grouping servers and mirroring configuration changes automatically. It uses a master/
slave architecture for mirroring shared data across the topology. All writes and updates are forwarded to the master,
which forwards them to all other servers. Reads can be served by any server in the group. Servers can be added to an
existing topology at installation.

Note:  To remove a server from the topology, it must be uninstalled with the uninstall tool.

Topology Master Requirements and Selection

A topology master server receives any configuration change from other servers in the topology, verifies the change,
then makes the change available to all connected servers. The master always sends a digest of its subtree contents on
each update. If the node has a different digest than the master, it knows it's not synchronized. The servers will pull the
entire subtree from the master if they detect that they are not synchronized. A server may detect it is not synchronized
with the master under the following conditions:

• At the end of its periodic polling interval, if a server's subtree digest differs from that of its master, then it knows
it's not synchronized.

• If one or more servers have been added to or removed from the topology, the servers will not be synchronized.

The master of the topology is selected by prioritizing servers by minimum supported product version, most available,
newest server version, earliest start time, and startup UUID (a smaller UUID is preferred).

After determining a master, the topology data is reviewed from all available servers (every five seconds by default) to
determine if any new information makes a server better suited to being the master. If a new server can be the master, it
will communicate that to the other servers, if no other server has advertised that it should be the master. This ensures
that all servers accept the same master at approximately the same time (within a few milliseconds of each other). If
there is no better master, the initial master maintains the role.

After the best master has been selected for the given interval, the following conditions are confirmed:

• A majority of servers is reachable from that master. (The master server itself is considered while determining this
majority.)

• There is only a single master in the entire topology.

If either of these conditions is not met, the topology is without a master and the peer polling frequency is reduced
to 100 milliseconds to find a new master as quickly as possible. If there is no master in the topology for more than
one minute, a mirrored-subtree-manager-no-master- found alarm is raised. If one of the servers
in the topology is forced as master with the force-as-master-for-mirrored-data option in the Global
Configuration object, a mirrored-subtree-manager-forced-as-master-warning warning alarm is
raised. If multiple servers have been forced as masters, then a mirrored-subtree-manager-forced-as-
master-error critical alarm will be raised.

Topology Components

When a server is installed, it can be added to an existing topology, which will clone the server's configuration.
Topology settings are designed to operate without additional configuration. If required, some settings can be adjusted
to fit the needs of the environment.



PingDirectory | Configuring the Directory Proxy Server | 54

Server configuration settings

Configuration settings for the topology are configured in the Global Configuration and in the Config File Handler
Backend. Though they are topology settings, they are unique to each server and are not mirrored. Settings must be
kept the same on all servers.

The Global Configuration object contains a single topology setting, force-as-master-formirrored- data. This should be
set to true on only one of the servers in the topology, and is used only if a situation occurs where the topology cannot
determine a master because a majority of servers is not available. A server with this setting enabled will be assigned
the role of master, if no suitable master can be determined.

The Config File Handler Backend defines three topology (mirrored-subtree) settings:

• mirrored-subtree-peer-polling-interval – Specifies the frequency at which the server polls its
topology peers to determine if there are any changes that may warrant a new master selection. A lower value will
ensure a faster failover, but it will also cause more traffic among the peers. The default value is five seconds. If no
suitable master is found, the polling frequency is adjusted to 100 milliseconds until a new master is selected.

• mirrored-subtree-entry-update-timeout – Specifies the maximum length of time to wait for an
update operation (add, delete, modify or modify-dn) on an entry to be applied by the master on all of the servers in
the topology. The default is 10 seconds. In reality, updates can take up to twice as much time as this timeout value
if master selection is in progress at the time the update operation was received.

• mirrored-subtree-search-timeout – Specifies the maximum length of time in milliseconds to wait for
search operations to complete. The default is 10 seconds.

Topology settings

Topology meta-data is stored under the cn=topology,cn=config subtree and cluster data is stored under the
cn=cluster,cn=config subtree. The only setting that can be changed is the cluster name.

Monitor Data for the Topology

Each server has a monitor that exposes that server's view of the topology in its monitor backend, so that peer servers
can periodically read this information to determine if there are changes in the topology. Topology data includes the
following:

• The server ID of the current master, if the master is not known.
• The instance name of the current master, or if a master is not set, a description stating why a master is not set.
• A flag indicating if this server thinks that it should be the master.
• A flag indicating if this server is the current master.
• A flag indicating if this server was forced as master.
• The total number of configured peers in the topology group.
• The peers connected to this server.
• The current availability of this server.
• A flag indicating whether or not this server is not synchronized with its master, or another node in the topology if

the master is unknown.
• The amount of time in milliseconds where multiple masters were detected by this server.
• The amount of time in milliseconds where no suitable server is found to act as master.
• A SHA-256 digest encoded as a base-64 string for the current subtree contents.

The following metrics are included if this server has processed any operations as master:

• The number of operations processed by this server as master.
• The number of operations processed by this server as master that were successful.
• The number of operations processed by this server as master that failed to validate.
• The number of operations processed by this server as master that failed to apply.
• The average amount of time taken (in milliseconds) by this server to process operations as the master.
• The maximum amount of time taken (in milliseconds) by this server to process an operation as the master.



PingDirectory | Configuring the Directory Proxy Server | 55

Updating the Server Instance Listener Certificate

To change the SSL certificate for the server, update the keystore and truststore files with the new certificate. The
certificate file must have the new certificate in PEM-encoded format, such as:

-----BEGIN CERTIFICATE-----
           
 MIIDKTCCAhGgAwIBAgIEacgGrDANBgkqhkiG9w0BAQsFADBFMR4wHAYDVQQKExVVbmJvdW5kSUQgQ2VydGlmaWNhd
           
 GUxIzAhBgNVBAMTGnZtLW1lZGl1bS03My51bmJvdW5kaWQubGFiMB4XDTE1MTAxMjE1MzU0OFoXDTM1MTAwNzE1Mz
           
 U0OFowRTEeMBwGA1UEChMVVW5ib3VuZElEIENlcnRpZmljYXRlMSMwIQYDVQQDExp2bS1tZWRpdW0tNzMudW5ib3V
           
 uZGlkLmxhYjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAKN4tAN3o9Yw6Cr9hivwVDxJqF6+aEi9Ir3W
            GFYLSrggRNXsiAOfWkSMWdIC5vyF5OJ9DlIgvHL4OuqP/
YNEGzKDkgr6MwtUeVSK14+dCixygJGC0nY7k+f0WSCjt
            IHzrmc4WWdrZXmgb
+qv9LupS30JG0FXtcbGkYpjaKXIEqMg4ekz3B5cAvE0SQUFyXEdN4rWOn96nVFkb2CstbiPzA
           
 gne2tu7paJ6SGFOW0UF7v018XY1m2WHBIoD0WC8nOVLTG9zFUavaOxtlt1TlhClkI4HRMNg8n2EtSTdQRizKuw9Dd
            TXJBb6Kfvnp/
nI73VHRyt47wUVueehEDfLtDP8pMCAwEAAaMhMB8wHQYDVR0OBBYEFMrwjWxl2K+yd9+Y65oKn0g5
            jITgMA0GCSqGSIb3DQEBCwUAA4IBAQBpsBYodblUGew+HewqtO2i8Wt+vAbt31zM5/
kRvo6/+iPEASTvZdCzIBcgl
           
 etxKGKeCQ0GPeHr42+erakiwmGDlUTYrU3LU5pTGTDLuR2IllTT5xlEhCWJGWipW4q3Pl3cX/9m2ffY/
JLYDfTJao
           
 JvnXrh7Sg719skkHjWZQgOHXlkPLx5TxFGhAovE1D4qLVRWGohdpWDrIgFh0DVfoyAn1Ws9ICCXdRayajFI4Lc6K1
            m6SA5+25Y9nno8BhVPf4q5OW6+UDc8MsLbBsxpwvR6RJ5cv3ypfOriTehJsG
+9ZDo7YeqVsTVGwAlW3PiSd9bYP/8
            yu9Cy+0MfcWcSeAE
            -----END CERTIFICATE-----

If clients that already have a secure connection established with this server need to be maintained, information about
both certificates can reside in the same file (each with their own begin and end headers and footers).

After the keystore and truststore files are updated, run the following dsconfig command to update the server's
certificate in the topology registry:

$ bin/dsconfig set-server-instance-listener-prop \
  --instance-name server-instance-name \
  --listener-name ldap-listener-mirrored-config \
  --set listener-certificate<path-to-new-certificate-file

The listener-certificate in the topology registry is like a trust store. The public certificates that it has are
automatically trusted by the local server. When the local server attempts a secure LDAP connection to a peer, and
the peer presents it with its certificate, the local server will check the listener-certificate property for that
server in the topology registry. If the property contains the peer server's certificate, the local server will trust the peer.

Remove the Self-signed Certificate

The server is installed with a self-signed certificate and key (ads-certificate), which are used for internal
purposes such as replication authentication, inter-server authentication in the topology registry, reversible password
encryption, and encrypted backup or LDIF export. The ads-certificate lives in the keystore file called ads-
truststore under the server’s /config directory. If your deployment requires removing the self-signed
certificate, it can be replaced.

The certificate is stored in the topology registry, which enables replacing it on one server and having it mirrored to
all other servers in the topology. Any change is automatically mirrored on other servers in the topology. It is stored in
human-readable PEM-encoded format and can be updated with dsconfig. The following general steps are required to
replace the self-signed certificate:



PingDirectory | Configuring the Directory Proxy Server | 56

1. Prepare a new keystore with the replacement key-pair.
2. Update the server configuration to use the new certificate by adding it to the server’s list of certificates in the

topology registry so that it is trusted by other servers.
3. Update the server’s ads-truststore file to use the new key-pair.
4. Retire the old certificate by removing it from the topology registry.

Note:  Replacing the entire key-pair instead of just the certificate associated with the original private key can
make existing backups and LDIF exports invalid. This should be performed immediately after setup or before
the key-pair is used. After the first time, only the certificate associated with the private key should have to be
changed, for example, to extend its validity period or replace it with a certificate signed by a different CA.

Prepare a New Keystore with the Replacement Key-pair

The self-signed certificate can be replaced with an existing key-pair, or the certificate associated with the original key-
pair can be used.

To Use an Existing Key-pair

If a private key and certificate(s) in PEM-encoded format already exist, both the original private key and self-signed
certificate can be replaced in ads-truststore with the manage-certificates tool.

• The following command imports the keystore file, ads-truststore.new.

$ bin/manage-certificates import-certificate \
  --keystore ads-truststore.new \
  --keystore-type JKS \
  --keystore-password-file ads-truststore.pin \
  --alias ads-certificate \
  --private-key-file existing.key \
  --certificate-file existing.crt \
  --certificate-file intermediate.crt \
  --certificate-file root-ca.crt

The certificates listed using the --certificate-file options must be ordered so that each subsequent certificate
is the issuer for the previous one. So the server certificate comes first, the intermediate certificates next (if any), and
the root CA certificate last.

To Use the Certificate Associated with the Original Key-pair

The certificate associated with the original server-generated private key can be replaced with the following
commands:

1. Create a CSR for the ads-certificate:

$ bin/manage-certificates generate-certificate-signing-request \
  --keystore ads-truststore \
  --keystore-type JKS \
  --keystore-password-file ads-truststore.pin \
  --alias ads-certificate \
  --use-existing-key-pair \
  --subject-dn "CN=ldap.example.com,O=Example Corporation,C=US" \
  --output-file ads.csr

2. Submit ads.csr to a CA for signing.
3. Export the server’s private key into ads.key:

$ bin/manage-certificates export-private-key \
  --keystore ads-truststore \
  --keystore-password-file ads-truststore.pin \
  --alias ads-certificate \
  --output-file ads.key



PingDirectory | Configuring the Directory Proxy Server | 57

4. Import the certificates obtained from the CA (the CA-signed server certificate, any intermediate certificates, and
root CA certificate) into ads-truststore.new:

$ bin/manage-certificates import-certificate \
  --keystore ads-truststore.new \
  --keystore-type JKS \
  --keystore-password-file ads-truststore.pin \
  --alias ads-certificate \
  --private-key-file ads.key \
  --certificate-file new-ads.crt \
  --certificate-file intermediate.crt \
  --certificate-file root-ca.crt

Remove a server from the topology

When removing a server from the topology, the remaining servers need to be made aware of the change. If the server
to be removed is defunct, then run the remove-defunct-server command from another server in the topology.
Similar to the enable command, more that 50% of servers not being removed from the topology need to be online
during the process.

If there are additional servers that are offline and can not be online while the offline server is being
removed, then it's important to make a distinction between offline servers that are permanently offline,
and those that are temporarily offline. If servers are permanently defunct, they should also be removed
with remove-defunct-server. If servers are temporarily offline, once they are online, they will
automatically update. The remove-defunct-server tool can be used after setting the JVM property
"com.unboundid.connectionutils.LdapResponseTimeoutMillis" to change the default ten minute
time out for each server to be taken out of rotation. If there are multiple servers to be removed, this can speed up the
process.

$ bin/remove-defunct-server \
  --serverInstanceName austin01 \
  --bindDN "cn=Directory Manager" \
  --bindPassword password

Run the remove-defunct-server tool on each server removed from the topology to remove any topology
references.

$ bin/remove-defunct-server --no-prompt

To Update the Server Configuration to Use the New Certificate

To update the server to use the desired key-pair, the inter-server-certificate property for the server
instance must first be updated in the topology registry. The old and the new certificates may appear within their
own begin and end headers in the inter-server-certificate property to support transitioning from the old
certificate to the new one.

1. Export the server’s old ads-certificate into old-ads.crt::

$ bin/manage-certificates export-certificate \
  --keystore ads-truststore \
  --keystore-password-file ads-truststore.pin \
  --alias ads-certificate \
  --export-certificate-chain \
  --output-file old-ads.crt

2. Concatenate the old, new certificate, and issuer certificates into one file. On Windows, an editor like notepad can
be used. On Unix platforms, use the following command:

$ cat old-ads.crt new-ads.crt intermediate.crt root-ca.crt > chain.crt

3. Update the inter-server-certificate property for the server instance in the topology registry using
dsconfig:



PingDirectory | Configuring the Directory Proxy Server | 58

$ bin/dsconfig -n set-server-instance-prop \
  --instance-name instance-name \
  --set “inter-server-certificate<chain.crt”

To Update the ads-truststore File to Use the New Key-pair

The server will still use the old ads-certificate. When the new ads-certificate needs to go into effect,
the old ads-truststore file must be replaced with ads-truststore.new in the server’s config directory.

• Move the file.

$ mv ads-truststore.new ads-truststore

To Retire the Old Certificate

The old certificate is retired by removing it from the topology registry when it has expired. All existing encrypted
backups and LDIF exports are not affected because the public key in the old and new server certificates are the same,
and the private key will be able to decrypt them.

• Perform the following commands:

$ cat new-ads.crt intermediate.crt root-ca.crt<chain.crt

$ bin/dsconfig -n set-server-instance-prop \
  --instance-name instance-name \
  --set “inter-server-certificate<chain.crt”

Using the Configuration API
PingDirectoryProxy Server provides a Configuration API, which may be useful in situations where using LDAP
to update the server configuration is not possible. The API is consistent with the System for Cross-domain Identity
Management (SCIM) 2.0 protocol and uses JSON as a text exchange format, so all request headers should allow the
application/json content type.

The server includes a servlet extension that provides read and write access to the server’s configuration over HTTP.
The extension is enabled by default for new installations, and can be enabled for existing deployments by simply
adding the extension to one of the server’s HTTP Connection Handlers, as follows:

$ bin/dsconfig set-connection-handler-prop \  
  --handler-name "HTTPS Connection Handler" \  
  --add http-servlet-extension:Configuration

The API is made available on the HTTPS Connection handler’s host:port in the /config context. Due to the
potentially sensitive nature of the server’s configuration, the HTTPS Connection Handler should be used for hosting
the Configuration extension.

Authentication and Authorization with the Configuration API

Clients must use HTTP Basic authentication to authenticate to the Configuration API. If the username value is not a
DN, then it will be resolved to a DN value using the identity mapper associated with the Configuration servlet. By
default, the Configuration API uses an identity mapper that allows an entry’s UID value to be used as a username. To
customize this behavior, either customize the default identity mapper, or specify a different identity mapper using the
Configuration servlet’s identity-mapper property. For example:

$ bin/dsconfig set-http-servlet-extension-prop \  
  --extension-name Configuration \  
  --set "identity-mapper:Alternative Identity Mapper”

To access configuration information, users must have the appropriate privileges:



PingDirectory | Configuring the Directory Proxy Server | 59

• To access the cn=config backend, users must have the bypass-acl privilege or be allowed access to the
configuration using an ACI.

• To read configuration information, users must have the config-read privilege.
• To update the configuration, users must have the config-write privilege.

Relationship Between the Configuration API and the dsconfig Tool

The Configuration API is designed to mirror the dsconfig tool, using the same names for properties and object
types. Property names are presented as hyphen case in dsconfig and as camel-case attributes in the API. In API
requests that specify property names, case is not important. Therefore, baseDN is the same as baseDn. Object
types are represented in hyphen case. API paths mirror what is in dsconfig. For example, the dsconfig list-
connection-handlers command is analogous to the API's /config/connection-handlers path. Object
types that appear in the schema URNs adhere to a type:subtype syntax. For example, a Local DB Backend's
schema URN is urn:unboundid:schemas:configuration:2.0:backend:local-db. Like the
dsconfig tool, all configuration updates made through the API are recorded in logs/config-audit.log.

The API includes the filter, sort, and pagination query parameters described by the SCIM specification. Specific
attributes may be requested using the attributes query parameter, whose value must be a comma-delimited list of
properties to be returned, for example attributes=baseDN,description. Likewise, attributes may be
excluded from responses by specifying the excludedAttributes parameter.

Operations supported by the API are those typically found in REST APIs:

HTTP Method Description Related dsconfig Example

GET Lists the properties of an object when used
with a path representing an object, such as /
config/global-configuration or /
config/backends/userRoot. Can also
list objects when used with a path representing a
parent relation, such as /config/backends.

get-backend-prop, list-backends,
get-global-configuration-prop

POST Creates a new instance of an object when used
with a relation parent path, such as /config/
backends.

create-backend

PUT Replaces the existing properties of an object. A
PUT operation is similar to a PATCH operation,
except that the PATCH identifies the difference
between an existing target object and a supplied
source object. Only those properties in the
source object are modified in the target object.
The target object is specified using a path, such
as /config/backends/userRoot.

set-backend-prop, set-global-
configuration-prop

PATCH Updates the properties of an existing object
when used with a path representing an object,
such as /config/backends/userRoot.

set-backend-prop, set-global-
configuration-prop

DELETE Deletes an existing object when used with a
path representing an object, such as /config/
backends/userRoot.

delete-backend

The OPTIONS method can also be used to determine the operations permitted for a particular path.

Object names, such as userRoot in the Description column, must be URL-encoded for use in the path segment of a
URL. For example, %20 must be used in place of spaces, and %25 is used in place of the percent (%) character. The
URL for accessing the HTTP Connection Handler object is:

/config/connection-handlers/http%20connection%20handler



PingDirectory | Configuring the Directory Proxy Server | 60

GET Example

The following is a sample GET request for information about the userRoot backend:

GET /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json

The response:

{  
  "schemas": [
    "urn:unboundid:schemas:configuration:2.0:backend:local-db"    
  ],
   "id": "userRoot",  
   "meta": {    
     "resourceType": "Local DB Backend",    
     "location": "http://localhost:5033/config/backends/userRoot"  
   },  
   "backendID": "userRoot2",  
   "backgroundPrime": "false",  
   "backupFilePermissions": "700",  
   "baseDN": [    
     "dc=example2,dc=com"  
   ],  
   "checkpointOnCloseCount": "2",  
   "cleanerThreadWaitTime": "120000",  
   "compressEntries": "false",  
   "continuePrimeAfterCacheFull": "false",  
   "dbBackgroundSyncInterval": "1 s",  
   "dbCachePercent": "10",  
   "dbCacheSize": "0 b",  
   "dbCheckpointerBytesInterval": "20 mb",  
   "dbCheckpointerHighPriority": "false",  
   "dbCheckpointerWakeupInterval": "1 m",  
   "dbCleanOnExplicitGC": "false",  
   "dbCleanerMinUtilization": "75",  
   "dbCompactKeyPrefixes": "true",  
   "dbDirectory": "db",  
   "dbDirectoryPermissions": "700",  
   "dbEvictorCriticalPercentage": "0",  
   "dbEvictorLruOnly": "false",  
   "dbEvictorNodesPerScan": "10",  
   "dbFileCacheSize": "1000",  
   "dbImportCachePercent": "60",  
   "dbLogFileMax": "50 mb",  
   "dbLoggingFileHandlerOn": "true",  
   "dbLoggingLevel": "CONFIG",  
   "dbNumCleanerThreads": "0",  
   "dbNumLockTables": "0",  
   "dbRunCleaner": "true",  
   "dbTxnNoSync": "false",  
   "dbTxnWriteNoSync": "true",  
   "dbUseThreadLocalHandles": "true",  
   "deadlockRetryLimit": "10",  
   "defaultCacheMode": "cache-keys-and-values",  
   "defaultTxnMaxLockTimeout": "10 s",  
   "defaultTxnMinLockTimeout": "10 s",  
   "enabled": "false",  
   "explodedIndexEntryThreshold": "4000",  
   "exportThreadCount": "0",  
   "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",  
   "externalTxnDefaultMaxLockTimeout": "100 ms",  



PingDirectory | Configuring the Directory Proxy Server | 61

   "externalTxnDefaultMinLockTimeout": "100 ms",  
   "externalTxnDefaultRetryAttempts": "2",  
   "hashEntries": "false",  
   "id2childrenIndexEntryLimit": "66",  
   "importTempDirectory": "import-tmp",  
   "importThreadCount": "16",  
   "indexEntryLimit": "4000",  
   "isPrivateBackend": "false",  
   "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",  
   "jeProperty": [    
     "je.cleaner.adjustUtilization=false",    
     "je.nodeMaxEntries=32"  
   ],  
   "numRecentChanges": "50000",  
   "offlineProcessDatabaseOpenTimeout": "1 h",  
   "primeAllIndexes": "true",  
   "primeMethod": [    
     "none"  
   ],  
   "primeThreadCount": "2",  
   "primeTimeLimit": "0 ms",  
   "processFiltersWithUndefinedAttributeTypes": "false",  
   "returnUnavailableForUntrustedIndex": "true",  
   "returnUnavailableWhenDisabled": "true",  
   "setDegradedAlertForUntrustedIndex": "true",  
   "setDegradedAlertWhenDisabled": "true",  
   "subtreeDeleteBatchSize": "5000",  
   "subtreeDeleteSizeLimit": "5000",  
   "uncachedId2entryCacheMode": "cache-keys-only",  
   "writabilityMode": "enabled"  
}

GET List Example

The following is a sample GET request for all local backends:

GET /config/backends/
Host: example.com:5033
Accept: application/scim+json

The response (which has been shortened):

{  
  "schemas": [
    "urn:ietf:params:scim:api:messages:2.0:ListResponse"  
  ],  
  "totalResults": 24,  
  "Resources": [    
    {      
      "schemas": [        
        "urn:unboundid:schemas:configuration:2.0:backend:ldif"      
      ],     
      "id": "adminRoot",      
      "meta": {        
        "resourceType": "LDIF Backend",        
        "location": "http://localhost:5033/config/backends/adminRoot"      
      },     
      "backendID": "adminRoot",      
      "backupFilePermissions": "700",      
      "baseDN": [        
        "cn=topology,cn=config"      
      ],      
      "enabled": "true",      



PingDirectory | Configuring the Directory Proxy Server | 62

      "isPrivateBackend": "true",      
      "javaClass":
 "com.unboundid.directory.server.backends.LDIFBackend",      
      "ldifFile": "config/admin-backend.ldif",      
      "returnUnavailableWhenDisabled": "true",      
      "setDegradedAlertWhenDisabled": "false",      
      "writabilityMode": "enabled"    
    },    
    {      
      "schemas": [        
        "urn:unboundid:schemas:configuration:2.0:backend:trust-store"      
      ],     
      "id": "ads-truststore",      
      "meta": {        
        "resourceType": "Trust Store Backend",        
        "location": "http://localhost:5033/config/backends/ads-
truststore"      
      },      
      "backendID": "ads-truststore",      
      "backupFilePermissions": "700",      
      "baseDN": [        
        "cn=ads-truststore"      
      ],     
      "enabled": "true",      
      "javaClass":
 "com.unboundid.directory.server.backends.TrustStoreBackend",      
      "returnUnavailableWhenDisabled": "true",      
      "setDegradedAlertWhenDisabled": "true",      
      "trustStoreFile": "config/server.keystore",      
      "trustStorePin": "********",      
      "trustStoreType": "JKS",      
      "writabilityMode": "enabled"    
    },    
    {      
      "schemas": [        
        "urn:unboundid:schemas:configuration:2.0:backend:alarm"      
      ],      
      "id": "alarms",      
      "meta": {        
        "resourceType": "Alarm Backend",        
        "location": "http://localhost:5033/config/backends/alarms"      
      }, 
  ... 

PATCH Example

Configuration can be modified using the HTTP PATCH method. The PATCH request body is a JSON object formatted
according to the SCIM patch request. The Configuration API, supports a subset of possible values for the path
attribute, used to indicate the configuration attribute to modify.

The configuration object's attributes can be modified in the following ways. These operations are analogous to the
dsconfig modify-[object] options.

• An operation to set the single-valued description attribute to a new value:

{  
  "op" : "replace",  
  "path" : "description",  
  "value" : "A new backend."
}

is analogous to:



PingDirectory | Configuring the Directory Proxy Server | 63

$ dsconfig set-backend-prop
  --backend-name userRoot \  
  --set "description:A new backend"

• An operation to add a new value to the multi-valued jeProperty attribute:

{
  "op" : "add",  
  "path" : "jeProperty",  
  "value" : "je.env.backgroundReadLimit=0"
}

is analogous to:

$ dsconfig  set-backend-prop --backend-name userRoot \  
  --add je-property:je.env.backgroundReadLimit=0

• An operation to remove a value from a multi-valued property. In this case, path specifies a SCIM filter identifying
the value to remove:

{
  "op" : "remove",  
  "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \  
  --remove je-property:je.cleaner.adjustUtilization=false

• A second operation to remove a value from a multi-valued property, where the path specifies both an attribute to
modify, and a SCIM filter whose attribute is value:

{
  "op" : "remove",  
  "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \  
  --remove je-property:je.nodeMaxEntries=32

• An option to remove one or more values of a multi-valued attribute. This has the effect of restoring the attribute's
value to its default value:

{
  "op" : "remove",  
  "path" : "id2childrenIndexEntryLimit"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \  
  --reset id2childrenIndexEntryLimit

The following is the full example request. The API responds with the entire modified configuration object, which
may include a SCIM extension attribute urn:unboundid:schemas:configuration:messages containing
additional instructions:

PATCH /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json



PingDirectory | Configuring the Directory Proxy Server | 64

{  
  "schemas" : [ "urn:ietf:params:scim:api:messages:2.0:PatchOp" ],  
  "Operations" : [ {    
    "op" : "replace",    
    "path" : "description",    
    "value" : "A new backend."  
  }, {    
    "op" : "add",    
    "path" : "jeProperty",    
    "value" : "je.env.backgroundReadLimit=0"  
  }, {    
    "op" : "remove",    
    "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"  
  }, {    
    "op" : "remove",    
    "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"  
  }, {    
    "op" : "remove",    
    "path" : "id2childrenIndexEntryLimit"  
  } ]
}

Example response:

{  
 "schemas": [    
   "urn:unboundid:schemas:configuration:2.0:backend:local-db"  
 ],  
 "id": "userRoot2",  
 "meta": {    
   "resourceType": "Local DB Backend",    
   "location": "http://example.com:5033/config/backends/userRoot2"  
 },  
 "backendID": "userRoot2",  
 "backgroundPrime": "false",  
 "backupFilePermissions": "700",  
 "baseDN": [    
   "dc=example2,dc=com"  
 ],  
 "checkpointOnCloseCount": "2",  
 "cleanerThreadWaitTime": "120000",  
 "compressEntries": "false",  
 "continuePrimeAfterCacheFull": "false",  
 "dbBackgroundSyncInterval": "1 s",  
 "dbCachePercent": "10",  
 "dbCacheSize": "0 b",  
 "dbCheckpointerBytesInterval": "20 mb",  
 "dbCheckpointerHighPriority": "false",  
 "dbCheckpointerWakeupInterval": "1 m",  
 "dbCleanOnExplicitGC": "false",  
 "dbCleanerMinUtilization": "75",  
 "dbCompactKeyPrefixes": "true",  
 "dbDirectory": "db",  
 "dbDirectoryPermissions": "700",  
 "dbEvictorCriticalPercentage": "0",  
 "dbEvictorLruOnly": "false",  
 "dbEvictorNodesPerScan": "10",  
 "dbFileCacheSize": "1000",  
 "dbImportCachePercent": "60",  
 "dbLogFileMax": "50 mb",  
 "dbLoggingFileHandlerOn": "true",  
 "dbLoggingLevel": "CONFIG",  
 "dbNumCleanerThreads": "0",  
 "dbNumLockTables": "0",  



PingDirectory | Configuring the Directory Proxy Server | 65

 "dbRunCleaner": "true",  
 "dbTxnNoSync": "false",  
 "dbTxnWriteNoSync": "true",  
 "dbUseThreadLocalHandles": "true",  
 "deadlockRetryLimit": "10",  
 "defaultCacheMode": "cache-keys-and-values",  
 "defaultTxnMaxLockTimeout": "10 s",  
 "defaultTxnMinLockTimeout": "10 s",  
 "description": "123",  "enabled": "false",  
 "explodedIndexEntryThreshold": "4000",  
 "exportThreadCount": "0",  
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",  
 "externalTxnDefaultMaxLockTimeout": "100 ms",  
 "externalTxnDefaultMinLockTimeout": "100 ms",  
 "externalTxnDefaultRetryAttempts": "2",  
 "hashEntries": "false",  
 "importTempDirectory": "import-tmp",  
 "importThreadCount": "16",  
 "indexEntryLimit": "4000",  
 "isPrivateBackend": "false",  
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",  
 "jeProperty": [  "\"je.env.backgroundReadLimit=0\""  
 ],  
 "numRecentChanges": "50000",  
 "offlineProcessDatabaseOpenTimeout": "1 h",  
 "primeAllIndexes": "true",  
 "primeMethod": [    
   "none"  
 ],  
 "primeThreadCount": "2", 
 "primeTimeLimit": "0 ms",  
 "processFiltersWithUndefinedAttributeTypes": "false",  
 "returnUnavailableForUntrustedIndex": "true",  
 "returnUnavailableWhenDisabled": "true",  
 "setDegradedAlertForUntrustedIndex": "true",  
 "setDegradedAlertWhenDisabled": "true",  
 "subtreeDeleteBatchSize": "5000",  
 "subtreeDeleteSizeLimit": "5000",  
 "uncachedId2entryCacheMode": "cache-keys-only",  
 "writabilityMode": "enabled",  
 "urn:unboundid:schemas:configuration:messages:2.0": {    
   "requiredActions": [      
     {        
       "property": "jeProperty",        
       "type": "componentRestart",        
       "synopsis": "In order for this modification to take effect,
          the component must be restarted, either by disabling and
          re-enabling it, or by restarting the server"      
     },      
     {        
       "property": "id2childrenIndexEntryLimit",        
       "type": "other",        
       "synopsis": "If this limit is increased, then the contents
          of the backend must be exported to LDIF and re-imported to
          allow the new limit to be used for any id2children keys
          that had already hit the previous limit."      
     }    
   ]  
 }
}



PingDirectory | Configuring the Directory Proxy Server | 66

Configuration API Paths

The Configuration API is available under the /config path. A full listing of supported sub-paths is available by
accessing the base /config/ResourceTypes endpoint:

GET /config/ResourceTypes
Host: example.com:5033
Accept: application/scim+json

Sample response (abbreviated):

{  
  "schemas": [    
    "urn:ietf:params:scim:api:messages:2.0:ListResponse"  
  ],  
  "totalResults": 520,  
  "Resources": [    
    {      
      "schemas": [        
        "urn:ietf:params:scim:schemas:core:2.0:ResourceType"      
      ],      
      "id": "dsee-compat-access-control-handler",      
      "name": "DSEE Compat Access Control Handler",      
      "description": "The DSEE Compat Access Control
              Handler provides an implementation that uses syntax
              compatible with the Sun Java System Directory Server
              Enterprise Edition access control handler.",      
      "endpoint": "/access-control-handler",      
      "meta": {        
        "resourceType": "ResourceType",        
        "location": "http://example.com:5033/config/ResourceTypes/dsee-compat-
access-control-handler"      
      }    
    },    
    {      
      "schemas": [        
        "urn:ietf:params:scim:schemas:core:2.0:ResourceType"      
      ],      
      "id": "access-control-handler",      
      "name": "Access Control Handler",      
      "description": "Access Control Handlers manage the
              application-wide access control. The server's access
              control handler is defined through an extensible
              interface, so that alternate implementations can be created.
              Only one access control handler may be active in the server
                        at any given time.",      
      "endpoint": "/access-control-handler",      
      "meta": {        
        "resourceType": "ResourceType",        
        "location": "http://example.com:5033/config/ResourceTypes/access-
control-handler"      
      }    
    },    
    {
 ...

The response's endpoint elements enumerate all available sub-paths. The path /config/access-control-
handler in the example can be used to get a list of existing access control handlers, and create new ones. A
path containing an object name such as /config/backends/{backendName}, where {backendName}
corresponds to an existing backend (such as userRoot) can be used to obtain an object’s properties, update the
properties, or delete the object.



PingDirectory | Configuring the Directory Proxy Server | 67

Some paths reflect hierarchical relationships between objects. For example, properties of a local DB VLV index
for the userRoot backend are available using a path like /config/backends/userRoot/local-db-
indexes/uid. Some paths represent singleton objects, which have properties but cannot be deleted nor created.
These paths can be differentiated from others by their singular, rather than plural, relation name (for example
global-configuration).

Sorting and Filtering Objects

The Configuration API supports SCIM parameters for filter, sorting, and pagination. Search operations can specify a
SCIM filter used to narrow the number of elements returned. See the SCIM specification for the full set of operations
for SCIM filters. Clients can also specify sort parameters, or paging parameters. Include or exclude attributes can be
specified in both get and list operations.

GET Parameter Description

filter Values can be simple SCIM filters such as id eq "userRoot" or compound
filters like meta.resourceType eq "Local DB Backend" and baseDn
co "dc=exmple,dc=com".

sortBy Specifies a property value by which to sort.

sortOrder Specifies either ascending or descending alphabetical order.

startIndex 1-based index of the first result to return.

count Indicates the number of results per page.

Updating Properties

The Configuration API supports the HTTP PUT method as an alternative to modifying objects with HTTP PATCH.
With PUT, the server computes the differences between the object in the request with the current version in the server,
and performs modifications where necessary. The server will never remove attributes that are not specified in the
request. The API responds with the entire modified object.

Request:

PUT /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json
{  
  "description" : "A new description."
}

Response:

{  
  "schemas": [    
    "urn:unboundid:schemas:configuration:2.0:backend:local-db"  
  ],  
  "id": "userRoot",  
  "meta": {    
    "resourceType": "Local DB Backend",    
    "location": "http://example.com:5033/config/backends/userRoot"  
  },  
  "backendID": "userRoot",  
  "backgroundPrime": "false",  
  "backupFilePermissions": "700",  
  "baseDN": [    
    "dc=example,dc=com"  
  ],  
  "checkpointOnCloseCount": "2",  
  "cleanerThreadWaitTime": "120000",  
  "compressEntries": "false",  



PingDirectory | Configuring the Directory Proxy Server | 68

  "continuePrimeAfterCacheFull": "false",  
  "dbBackgroundSyncInterval": "1 s",  
  "dbCachePercent": "25",  
  "dbCacheSize": "0 b",  
  "dbCheckpointerBytesInterval": "20 mb",  
  "dbCheckpointerHighPriority": "false",  
  "dbCheckpointerWakeupInterval": "30 s",  
  "dbCleanOnExplicitGC": "false",  
  "dbCleanerMinUtilization": "75",  
  "dbCompactKeyPrefixes": "true",  
  "dbDirectory": "db",  
  "dbDirectoryPermissions": "700",  
  "dbEvictorCriticalPercentage": "5",  
  "dbEvictorLruOnly": "false",  
  "dbEvictorNodesPerScan": "10",  
  "dbFileCacheSize": "1000",  
  "dbImportCachePercent": "60",  
  "dbLogFileMax": "50 mb",  
  "dbLoggingFileHandlerOn": "true",  
  "dbLoggingLevel": "CONFIG",  
  "dbNumCleanerThreads": "1",  
  "dbNumLockTables": "0",  
  "dbRunCleaner": "true",  
  "dbTxnNoSync": "false",  
  "dbTxnWriteNoSync": "true",  
  "dbUseThreadLocalHandles": "true",  
  "deadlockRetryLimit": "10",  
  "defaultCacheMode":
  "cache-keys-and-values",  
  "defaultTxnMaxLockTimeout": "10 s",  
  "defaultTxnMinLockTimeout": "10 s",  
  "description": "abc",  
  "enabled": "true",  
  "explodedIndexEntryThreshold": "4000",  
  "exportThreadCount": "0",  
  "externalTxnDefaultBackendLockBehavior":
  "acquire-before-retries",  
  "externalTxnDefaultMaxLockTimeout": "100 ms",  
  "externalTxnDefaultMinLockTimeout": "100 ms",  
  "externalTxnDefaultRetryAttempts": "2",  
  "hashEntries": "true",  
  "importTempDirectory": "import-tmp",  
  "importThreadCount": "16",  
  "indexEntryLimit": "4000",  
  "isPrivateBackend": "false",  
  "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",  
  "numRecentChanges": "50000",  "offlineProcessDatabaseOpenTimeout": "1 h",  
  "primeAllIndexes": "true",  
  "primeMethod": [    
    "none"  
  ],  
  "primeThreadCount": "2",  
  "primeTimeLimit": "0 ms",  
  "processFiltersWithUndefinedAttributeTypes": "false",  
  "returnUnavailableForUntrustedIndex": "true",  
  "returnUnavailableWhenDisabled": "true",  
  "setDegradedAlertForUntrustedIndex": "true",  
  "setDegradedAlertWhenDisabled": "true",  
  "subtreeDeleteBatchSize": "5000",  
  "subtreeDeleteSizeLimit": "100000",  
  "uncachedId2entryCacheMode": "cache-keys-only",  
  "writabilityMode": "enabled"
}



PingDirectory | Configuring the Directory Proxy Server | 69

Administrative Actions

Updating a property may require an administrative action before the change can take
effect. If so, the server will return 200 Success, and any actions are returned in the
urn:unboundid:schemas:configuration:messages:2.0 section of the JSON response that represents
the entire object that was created or modified.

For example, changing the jeProperty of a backend will result in the following:

"urn:unboundid:schemas:configuration:messages:2.0": {       
    "required-actions": [          
      {            
       "property": "baseContextPath",            
       "type": ""componentRestart",            
       "synopsis": "In order for this modification to take effect, the
 component
                  must be restarted, either by disabling and re-enabling it,
 or
                  by restarting the server"           
      },         
      {     
        "property": {
        "type": "other",
        "synopsis": "If this limit is increased, then the
                 contents of the backend must be exported to LDIF
                 and re-imported to allow the new limit to be used
                 for any id2children keys that had already hit the
                 previous limit."
      }
    ]
  }

Updating Servers and Server Groups

Servers can be configured as part of a server group, so that configuration changes that are applied to a single server,
are then applied to all servers in a group. When managing a server that is a member of a server group, creating
or updating objects using the Configuration API requires the applyChangeTo query attribute. The behavior
and acceptable values for this parameter are identical to the dsconfig parameter of the same name. A value of
single-server or server-group can be specified. For example:

http://localhost:8082/config/backends/userRoot?applyChangeTo=single-server

Configuration API Responses

Clients of the API should examine the HTTP response code in order to determine the success or failure of a request.
The following are response codes and their meanings:

Response
Code

Description Response Body

200 Success The requested operation succeeded, with
the response body being the configuration
object that was created or modified. If further
actions are required, they are included in the
urn:unboundid:schemas:configuration:messages:2.0
object.

List of objects, or object properties,
administrative actions.

204 No Content The requested operation succeeded and no
further information has been provided, such as
in the case of a DELETE operation.

None.



PingDirectory | Configuring the Directory Proxy Server | 70

Response
Code

Description Response Body

400 Bad
Request

The request contents are incorrectly formatted or
a request is made for an invalid API version.

Error summary and optional message.

401
Unauthorized

User authentication is required. Some user
agents such as browsers may respond by
prompting for credentials. If the request had
specified credentials in an Authorization header,
they are invalid.

None.

403 Forbidden The requested operation is forbidden either
because the user does not have sufficient
privileges or some other constraint such as an
object is edit-only and cannot be deleted.

None.

404 Not Found The requested path does not refer to an existing
object or object relation.

Error summary and optional message.

409 Conflict The requested operation could not be performed
due to the current state of the configuration.
For example, an attempt was made to create
an object that already exists, or an attempt was
made to delete an object that is referred to by
another object.

Error summary and optional message.

415
Unsupported
Media Type

The request is such that the Accept header does
not indicate that JSON is an acceptable format
for a response.

None.

500 Server
Error

The server encountered an unexpected error.
Please report server errors to customer support.

Error summary and optional message.

An application that uses the Configuration API should limit dependencies on particular text appearing in error
message content. These messages may change, and their presence may depend on server configuration. Use the HTTP
return code and the context of the request to create a client error message. The following is an example encoded error
message:

{
 "schemas": [    
   "urn:ietf:params:scim:api:messages:2.0:Error"  
 ],  
 "status": 404,  
 "scimType": null,  
 "detail": "The Local DB Index does not exist."
}

Working with the Directory REST API
The Directory REST API is the native interface for client access to the PingDirectoryProxy Server. The Directory
REST API gives developers, who are more comfortable with REST than LDAP, access to arbitrary directory data
in a way that ensures directory data remains consistent regardless of whether it is accessed from LDAP or REST.
The Directory API is enabled during server setup. After setup, individual services and applications can be enabled or
disabled by configuring the HTTPS Connection Handler.

While both the Directory REST API and SCIM provide REST access to directory data, the goals of the two protocols
are different. SCIM is useful to generic, external clients that require simple, narrow access to identity data. But
because it is a less common standard for identity stores, it may not offer as much functionality or be as easy to use as
the Directory REST API.



PingDirectory | Configuring the Directory Proxy Server | 71

Rather than trying to manage directory hierarchy or require attribute mapping, the Directory REST API provides
direct access to directory data in a way that is dynamic, discoverable, and efficient.

The Directory REST API can be used for the following operations:

HTTP operation Resource endpoint Description Allowed query
parameters

DELETE /directory/v1/{dn} Delete an entry.

GET /directory/v1 Get metadata about the API
and server.

GET /directory/v1/{dn} Retrieve a single entry. • expand
• includeAttributes
• excludeAttributes

GET /directory/v1/
{dn}/subtree

Search an entry's
descendants.

• filter
• searchScope
• cursor
• limit
• includeAttributes
• excludeAttributes

GET /directory/v1/
schemas

Retrieve the schemas of all
available object classes.

GET /directory/
v1/schemas/
{objectclass}

Retrieve schema for object
class.

GET /directory/
v1/schemas/
_operationalAttributes

Retrieve schema for
operational attributes.

GET /directory/v1/me Alias for retrieving the
current user.

PATCH /directory/v1/{dn} Modify an entry (add or
delete values).

expand

POST /directory/v1 Create a new entry. expand

PUT /directory/v1/{dn} Modify or rename an entry. expand

The Directory REST API has the following properties, and can be configured with dsconfig:

• basic-auth-enabled: Specifies whether users can connect to the service with HTTP Basic authentication.
If disabled, users will need a Bearer token. If changed, the server must be restarted, or any HTTP Connection
Handlers referencing this service disabled and re-enabled. Basic auth is enabled by default.

• identity-mapper: If HTTP Basic authentication is enabled, the identity mapper referenced by this DN must
be used to map the usernames provided to user entries. By default, an identity mapper is provided, which maps a
fully-qualified DN to an entry. The server must be restarted, or any HTTP Connection Handlers referencing this
service disabled and re-enabled for changes to take effect.

• access-token-validator: Specifies the subset of this server’s Access Token Validators (by DN), which
may be used to validate Bearer authentication tokens. By default, if no validators are specified, then any of the
validators on the server may be used. The server must be restarted, or any HTTP Connection Handlers referencing
this service disabled and re-enabled for changes to take effect.



PingDirectory | Configuring the Directory Proxy Server | 72

• access-token-scope: The scope which must be present in Bearer tokens in order to be accepted by this
service. If no value is provided, Bearer token authentication is disabled, and only Basic authentication can be used.
By default, no value is provided. Changes to this value take effect immediately.

• audience: A string or URI audience that must be present in Bearer tokens in order to be accepted by this
service. If no value is provided, any audience is acceptable. By default, no value is provided. Changes to this value
take effect immediately.

• max-page-size: The maximum number of entries to be returned in one page from the search endpoint (actual
results returned may be lower due to the limit query parameter on the request and the actual number of available
results). The value must be an integer between 1 and 1000. The default value is 100. Changes to this value take
effect immediately.

• schemas-endpoint-objectclass: The list of object classes that will be returned by the /schemas/
endpoint in the REST API. By default, no schemas are returned. Changes to this value take effect immediately.

Generating a Summary of Configuration Components
The Directory Proxy Server provides a config-diff tool that generates a summary of the configuration in a
local or remote directory server instance. The tool is useful when comparing configuration settings on the directory
server instance when troubleshooting issues or when verifying configuration settings on newly-added servers to your
network. The tool can interact with the local configuration regardless of whether the server is running or not.

Run the config-diff --help option to view other available tool options.

To Generate a Summary of Configuration Components

• Run the config-diff tool to generate a summary of the configuration components on the directory server
instance. The following command runs a summary on a local online server.

$ bin/config-diff
• The following example compares the current configuration of the local server to the baseline, pre-installation

configuration, ignoring any changes that could be made by the installer, and writes the output to the
configuration-steps.dsconfig file. This provides a script that can be used to configure a newly
installed server identically to the local server:

$ bin/config-diff --sourceLocal \
  --sourceBaseline \
  --targetLocal \
  --exclude differs-after-install \
  --outputFile configuration-steps.dsconfig

Configuring Server Groups
The PingDirectoryProxy Server provides a mechanism for setting up administrative domains that synchronize
configuration changes among servers in a server group. After you have set up a server group, you can make an
update on one server using dsconfig, then you can apply the change to the other servers in the group using the --
applyChangeTo server-group option of the dsconfig non-interactive command. If you want to apply the change
to one server in the group, use the --applyChangeTo single-server option. When using dsconfig in interactive
command-line mode, you will be asked if you want to apply the change to a single server or to all servers in the server
group.

About the Server Group Example

You can create an administrative server group using the dsconfig tool. The general process is to create a group,
add servers to the group, and then set a global configuration property to use the server group. If you are configuring
a replication topology, then you must configure the replicas to be in a server group as outlined in Replication
Configuration.



PingDirectory | Configuring the Directory Proxy Server | 73

The following example procedure adds three Directory Proxy Server instances into the server group labelled "group-
one".

To Create a Server Group

1. Create a group called “group-one” using dsconfig.

$ bin/dsconfig create-server-group --group-name group-one

2. Add any directory server to the server group. If you have set up replication between a set of servers, these server
entries will have already been created by the dsreplication enable command.

$ bin/dsconfig set-server-group-prop \
  --group-name group-one --add member:server1

$ bin/dsconfig set-server-group-prop \
  --group-name group-one --add member:server2

$ bin/dsconfig set-server-group-prop \
  --group-name group-one --add member:server3

3. Set a global configuration property for each of the servers that should share changes in this group.

$ bin/dsconfig set-global-configuration-prop \ 
  --set configuration-server-group:group-one

4. Test the server group. In this example, enable the log publisher for each directory server in the group, server-
group, by using the --applyChangeTo server-group option.

$ bin/dsconfig set-log-publisher-prop \ 
  --publisher-name "File-Based Audit Logger" \ 
  --set enabled:true \
  --applyChangeTo server-group

5. View the property on the first directory server instance.

$ bin/dsconfig get-log-publisher-prop \ 
  --publisher-name "File-Based Audit Logger" \
  --property enabled

Property : Value(s) 
---------:--------- 
enabled : true

6. Repeat step 5 on the second and third directory server instance.
7. Test the server group by disabling the log publisher on the first directory server instance by using the --

applyChangeTo single-server.

$ bin/dsconfig set-log-publisher-prop \ 
  --publisher-name "File-Based Audit Logger" \ 
  --set enabled:disabled \ 
  --applyChangeTo single-server

8. View the property on the first directory server instance. The first directory server instance should be disabled.

$ bin/dsconfig get-log-publisher-prop \ 
  --publisher-name "File-Based Audit Logger" \ 
  --property enabled

Property : Value(s) 
---------:--------- 
enabled : false

9. View the property on the second directory server instance. Repeat this step on the third directory server instance to
verify that the property is still enabled on that server.



PingDirectory | Configuring the Directory Proxy Server | 74

$ bin/dsconfig get-log-publisher-prop \ 
  --publisher-name "File-Based Audit Logger" \ 
  --property enabled

Property : Value(s) 
---------:--------- 
enabled : true

Domain Name Service (DNS) Caching
If needed, two global configuration properties can be used to control the caching of hostname-to-numeric IP address
(DNS lookup) results returned from the name resolution services of the underlying operating system. Use the
dsconfig tool to configure these properties.

• network-address-cache-ttl – Sets the Java system property networkaddress.cache.ttl, and controls the
length of time in seconds that a hostname-to-IP address mapping can be cached. The default behavior is to keep
resolution results for one hour (3600 seconds). This setting applies to the server and all extensions loaded by the
server.

• network-address-outage-cache-enabled – Caches hostname-to-IP address results in the event of a DNS outage.
This is set to true by default, meaning name resolution results are cached. Unexpected service interruptions may
occur during planned or unplanned maintenance, network outages or an infrastructure attack. This cache may
allow the server to function during a DNS outage with minimal impact. This cache is not available to server
extensions.

IP Address Reverse Name Lookups
PingDirectoryProxy Server does not explicitly perform numeric IP address-to-hostname lookups. However, address
masks configured in Access Control Lists (ACIs), Connection Handlers, Connection Criteria, and Certificate
handshake processing may trigger implicit reverse name lookups. For more information about how address masks are
configured in the server, review the following information for each server:

• ACI dns: bind rules under Managing Access Control (Directory Server and Directory Proxy Server)
• ds-auth-allowed-address: Adding Operational Attributes that Restrict Authentication (Directory Server)
• Connection Criteria: Restricting Server Access Based on Client IP Address (Directory Server and Directory Proxy

Server)
• Connection Handlers: restrict server access using Connection Handlers (Configuration Reference Guide for all

servers)

Configuring Traffic Through a Load Balancer
If a PingDirectoryProxy Server is sitting behind an intermediate HTTP server, such as a load balancer, a reverse
proxy, or a cache, then it will log incoming requests as originating with the intermediate HTTP server instead
of the client that actually sent the request. If the actual client's IP address must be recorded to the trace log,
enable X-Forwarded-* handling in both the intermediate HTTP server and PingDirectoryProxy Server. For
PingDirectoryProxy Servers:

• Edit the appropriate Connection Handler object (HTTPS or HTTP), and set use-forwarded-headers to
true.

• When use-forwarded-headers is set to true, the server will use the client IP address and port information
in the X-Forwarded-* headers instead of the address and port of the entity that's actually sending the request,
the load balancer. This client address information will show up in logs where one would normally expect it to
show up, such as in the from field of the HTTP REQUEST and HTTP RESPONSE messages.



PingDirectory | Configuring the Directory Proxy Server | 75

On the load balancer, configure settings to provide the X-Forwarded-* information, such as X-Forwarded-
Host:. See the product documentation for the device type.

Managing Root Users Accounts
The PingDirectoryProxy Server provides a default root user, cn=Directory Manager, that is stored in the
server's configuration file (for example, under cn=Root DNs,cn=config). The root user is the LDAP-equivalent
of a UNIX super-user account and inherits its read-write privileges from the default root privilege set. Root users
can be created and updated with the dsconfig tool. Root user entries are stored in the server’s configuration.The
following is a sample command to create a new root user:

bin/dsconfig create-root-dn-user --user-name "Joanne Smith" \
  --set last-name:Smith \
  --set first-name:Joanne \
  --set user-id:jsmith \
  --set 'email-address:jsmith@example.com' \
  --set mobile-telephone-number:8889997777 \
  --set home-telephone-number:5556667777 \
  --set work-telephone-number:4445556666
    

To limit full access to all of the Directory Proxy Server, create separate administrator accounts with limited privileges
so that you can identify the administrator responsible for a particular change. Having separate user accounts for each
administrator also makes it possible to enable password policy functionality (such as password expiration, password
history, and requiring secure authentication) for each administrator.

Default Root Privileges

The PingDirectoryProxy Server contains a privilege subsystem that allows for a more fine-grained control of privilege
assignments.

Note:  Creating restricted root user accounts requires assigning privileges and necessary access controls for
actions on specific data or backends. Access controls are determined by how the directory is configured and
the structure of your data. See Chapter 16: Managing Access Controls for more information.

The following set of root privileges are available to each root user DN:

Table 2: Default Root Privileges

Privilege Description

audit-data-security Allows the associated user to execute data security auditing tasks.

backend-backup Allows the user to perform backend backup operations.

backend-restore Allows the user to perform backend restore operations.

bypass-acl Allows the user to bypass access control evaluation.

config-read Allows the user to read the server configuration.

config-write Allows the user to update the server configuration.

disconnect-client Allows the user to terminate arbitrary client connections.

ldif-export Allows the user to perform LDIF export operations.

ldif-import Allows the user to perform LDIF import operations.

lockdown-mode Allows the user to request a server lockdown.

manage-topology Allows the user to modify topology setting.



PingDirectory | Configuring the Directory Proxy Server | 76

Privilege Description

metrics-read Allows the user to read server metrics.

modify-acl Allows the user to modify access control rules.

password-reset Allows the user to reset user passwords but not their own. The user must also
have privileges granted by access control to write the user password to the
target entry.

permit-get-password-policy-state-
issues

Allows the user to access password policy state issues.

privilege-change Allows the user to change the set of privileges for a specific user, or to
change the set of privileges automatically assigned to a root user.

server-restart Allows the user to request a server restart.

server-shutdown Allows the user to request a server shutdown.

soft-delete-read Allows the user access to soft-deleted entries.

stream-values Allows the user to perform a stream values extended operation that obtains
all entry DNs and/or all values for one or more attributes for a specified
portion of the DIT.

third-party-task Allows the associated user to invoke tasks created by third-party developers.

unindexed-search Allows the user to perform an unindexed search in the Oracle Berkeley DB
Java Edition backend.

update-schema Allows the user to update the server schema.

use-admin-session Allows the associated user to use an administrative session to request that
operations be processed using a dedicated pool of worker threads.

The Directory Proxy Server provides other privileges that are not assigned to the root user DN by default but can be
added using the ldapmodify tool (see Modifying Individual Root User Privileges) for more information.

Table 3: Other Available Privileges

Privilege Description

bypass-pw-policy Allows the associated user bypass password policy rules and restrictions.

bypass-read-aci Allows the associated user to bypass access control checks performed by the
server for bind, compare, and search operations. Access control evaluation
may still be enforced for other types of operations.

jmx-notify Allows the associated user to subscribe to receive JMX notifications.

jmx-read Allows the associated user to perform JMX read operations.

jmx-write Allows the associated user to perform JMX write operations.

permit-externally-processed-
authentication

Allows the associated user accept externally processed authentication.

permit-proxied-mschapv2-details Allows the associated user to permit MS-CHAP V2 handshake protocol.

proxied-auth Allows the associated user to accept proxied authorization.



PingDirectory | Configuring the Directory Proxy Server | 77

Configuring Locations
PingDirectoryProxy Server defines locations, both for the LDAP external servers and the proxy server instances
themselves. A location defines a collection of servers that share access and latency characteristics. For example,
your deployment might include two data centers, one in the east and one in the west. These data centers would be
configured as two locations in the Directory Proxy Server. Each location is associated with a name and an ordered list
of failover locations, which could be used if none of the servers in the preferred location are available. You can define
these locations using the Administrative Console or the command line.

The Directory Proxy Server itself is also associated with a location. This location is specified in the global
configuration properties of the Directory Proxy Server. If the load balancing algorithm’s use-location property
is set to true, then the load balancing component of the Directory Proxy Server refers to the Directory Proxy Server’s
location to determine the external servers it prefers to communicate with.

To Configure Locations Using dsconfig

1. Use the dsconfig tool to configure the LDAP external server locations.

$ bin/dsconfig

2. Type the hostname or IP address for your Directory Proxy Server, or press Enter to accept the default, localhost.

Directory Proxy Server hostname or IP address [localhost]:

3. Type the number corresponding how you want to connect to the Directory Proxy Server, or press Enter to accept
the default, LDAP.

How do you want to connect?
  1) LDAP
  2) LDAP with SSL
  3) LDAP with StartTLS

4. Type the port number for your Directory Proxy Server, or press Enter to accept the default, 389.

Directory Proxy Server port number [389]:

5. Type the administrator's bind DN or press Enter to accept the default (cn=Directory Manager), and then type the
password.

Administrator user bind DN [cn=Directory Manager]:
Password for user 'cn=Directory Manager':

6. In the Directory Proxy Server main menu, enter the number corresponding to location configuration. Then, enter
the number to create a new location.

7. Enter the name of the new location. This example demonstrates configuring a location called East. Enter f to finish
configuring the location. Repeat this procedure to create a location called West.

>>>>  Enter a name for the location that you want to create: east  

>>>>  Configure the properties of the location

      Property                   Value(s)
      -----------------------------------
   1) description                  -
   2) preferred-failover-location  -

   ?) help
   f) finish – create the new location
   d) display the equivalent dsconfig arguments to
      create this object
   b) back
   q) quit



PingDirectory | Configuring the Directory Proxy Server | 78

Enter choice [b]: f

8. Next, edit the configuration of an existing location, in this example a location named East.

>>>> Location menu
What would you like to do?

  1) List existing locations
  2) Create a new location
  3) View and edit an existing location
  4) Delete an existing location

  b) back
  q) quit
 
Enter choice [b]: 3
   
>>>> Select the location from the following list:
   1) East
   2) West

   b) back
   q) quit

Enter choice [b]: 1

9. Define the preferred failover location property for East. This property provides alternate locations that can be used
if servers in this location are not available. If more than one location is provided, the Directory Proxy Server tries
the locations in the order listed.

 >>>> Configure the properties of the Location
     
     Property                   Value(s)
     -----------------------------------
  1) description                  -
  2) preferred-failover-location  -

  ?) help
  f) finish – create the new location
  d) display the equivalent dsconfig arguments to create this object
  b) back
  q) quit

Enter choice [b]: 2

...

Do you want to modify the 'preferred-failover-location' property?

   1) Add one or more values

   ?) help
   q) quit

Enter choice [1]: 2

Select the locations you wish to add:

  1) East
  2) West
  3) Create a new location
  4) Add all locations



PingDirectory | Configuring the Directory Proxy Server | 79

...

Enter one or more choices separated by commas[b]: 2

10. Verify and apply your change to the property.

Do you want to modify the 'preferred-failover-location' property?        

  1) Use the value: West
  2) Add one or more values
  3) Remove one or more values
  4) Leave undefined
  5) Revert changes

  ?) help
  q) quit

Enter choice [1]:
   
>>>> Configure the properties of the location

     Property                   Value(s)
     -----------------------------------
  1) description                  -
  2) preferred-failover-location  West

  ?) help
  f) finish – apply any changes to the Location
  d) display the equivalent dsconfig command lines to either
     re-create this object or only to apply pending changes
  b) back
  q) quit

Enter choice [b]: f

11. Repeat steps 8 and 9 for the West location, assigning it a failover location of East.

To Modify Locations Using dsconfig

1. Use the dsconfig tool to configure the LDAP external server locations.

$ bin/dsconfig

2. Type the hostname or IP address for your Directory Proxy Server, or press Enter to accept the default, localhost.

Directory Proxy Server hostname or IP address [localhost]:

3. Type the number corresponding how you want to connect to the Directory Proxy Server, or press Enter to accept
the default, LDAP.

How do you want to connect?
  1) LDAP
  2) LDAP with SSL
  3) LDAP with StartTLS

4. Type the port number for your Directory Proxy Server, or press Enter to accept the default, 389.

Directory Proxy Server port number [389]:

5. Type the administrator's bind DN or press Enter to accept the default (cn=Directory Manager), and then type the
password.

Administrator user bind DN [cn=Directory Manager]:
Password for user 'cn=Directory Manager':



PingDirectory | Configuring the Directory Proxy Server | 80

6. In the Directory Proxy Server main menu, enter the number corresponding to Global Configuration. Then enter
the number to view and edit the Global Configuration.

7. Enter the number associated with the location configuration property.

Enter choice [b]: 2

8. Specify a new location for this Directory Proxy Server instance, in this example the East location. Operations
involving communications with other servers may prefer servers in the same location to ensure low-latency
responses.

>>>> Configuring the 'location' property

...

Do you want to modify the 'location' property?

  1) Leave undefined
  2) Change it to the location: East
  3) Change it to the location: West
  4) Create a new location

  b) back
  q) quit

Enter choice [b]: 2

9. Enter f to finish the operation.

Enter choice [b]: f     

Configuring Batched Transactions
You can configure the Directory Proxy Server to use batched transactions in both simple and entry-balanced
configurations. The batched transactions feature supports two implementations: the standard LDAP transactions
per RFC 5805 and the PingDirectoryProxy Server proprietary implementation, known as the multi-update extended
operation. Batched transactions can be used through the Directory Proxy Server in both simple and entry-balanced
configurations although only in cases in which all operations within the transaction request may be processed within
the same backend server and within the same Berkeley DB JE backend. Batched transactions cannot be processed
across multiple servers or multiple Directory Server backends.

The multi-update extended operation makes it possible to submit multiple updates in a single request. These updates
may be processed either as individual operations or as a single atomic unit. When the Directory Proxy Server
receives a Start Batched Transaction request, it will queue all associated operations in memory until the End Batched
Transaction request is received with the intention to commit, at which point the set of operations is sent as a single
multi-update extended request to the Directory Server.

Add, delete, modify, modify DN, and password modify extended operations may be included in the set of operations
processed during a batch transaction. The operations are processed sequentially in the order in which they were
included in the extended request. If an error occurs while processing an operation in the set, then the server can be
instructed to continue the processing or to cancel any remaining operations. If the operations are not cancelled, you
can configure the server to process all operations as a single atomic unit.

Because of this use of multi-update, the external Directory Server must be configured to allow multi-update extended
requests made by the Directory Proxy Server on behalf of the DN submitting the batched transaction. For example,
the following Directory Server dsconfig command grants anonymous access to the multi-update extended request.
The submitter of the request still needs access rights for the individual operations within the multiple-update.

$ bin/dsconfig set-access-control-handler-prop \



PingDirectory | Configuring the Directory Proxy Server | 81

  --add 'global-aci:(extop="1.3.6.1.4.1.30221.2.6.17")(version 3.0;
 acl "Anonymous access to multi-update extended request"; allow (read)
 userdn="ldap:///anyone";)'

To Configure Batched Transactions

Batched transactions are managed by the Batched Transactions Extended Operation Handler. You can use it to
configure the start transaction and end transaction operations used to indicate the set of add, delete, modify, modify
DN, and/or password modify operations as a single atomic unit.

1. You can configure batched transactions using the dsconfig command as follows:

$ bin/dsconfig set-extended-operation-handler-prop \
  --handler-name "Batched Transactions" \
  --set enabled:true 

2. Configure the external servers to allow the multi-update extended operation by granting access rights to the
feature. See example in the previous section.

Configuring Server Health Checks
You can use the PingDirectoryProxy Server to configure different types of health checks for your deployment. The
health checks define external server availability as either being available, unavailable, or degraded. The external
server health is given a value from 0 to 10, which is used to determine if the server is available and how that server
compares to other servers with the same state. Load-balancing algorithms can be used to check the score and prefer
servers with higher scores over those with lower scores.

An individual health check can be defined for use against all external servers or assigned to individual external
servers, as determined by the use-for-all-servers parameter within the health check configuration object. If
use-for-all-servers is set to true, the Directory Proxy Server applies the health check to all external servers
in all locations. If use-for-all-servers is set to false, then the health check is only employed against an
external server if the configuration object for that external server lists the health check.

For more information about health checks and the type of health checks supported by PingDirectoryProxy Server, see
About LDAP Health Checks.

About the Default Health Checks

By default, the Directory Proxy Server has two health check instances enabled for use on all servers:

• Consume Admin Alerts. This health check detects administrative alerts from the Directory Server, as soon
as they are issued, by maintaining an LDAP persistent search for changes within the cn=alerts branch of
the Directory Server. When the Directory Proxy Server is notified by the Directory Server of a new alert, it
immediately retrieves the base cn=monitor entry of the Directory Server. If this entry has a value for the
unavailable-alert-type attribute, then the Directory Proxy Server will consider it unavailable. If this
entry has a value for the degraded-alert-type attribute, then the Directory Proxy Server will consider it
degraded.

• Get Root DSE. This health check detects if the root DSE entry exists on the LDAP external server. As this entry
always exists on a PingDirectory Server, the absence of the entry suggests that the LDAP external server may be
degraded or unavailable.

About Creating a Custom Health Check

You can create a new health check from scratch or use an existing health check as a template for the configuration of a
new health check. If you choose to create a custom health check, you can create one of the following types:

• Admin Alert Health Check. This health check watches for administrative alerts generated by the LDAP external
server to determine whether the server has entered a degraded or unavailable state.



PingDirectory | Configuring the Directory Proxy Server | 82

• Groovy Scripted LDAP Health Check. This health check allows you to create custom LDAP health checks in a
dynamically-loaded Groovy script, which implements the ScriptedLDAPHealthCheck class defined in the
Server SDK.

• Replication Backlog Health Check. While the Admin Alert Health Check consumes replication backlog alerts
emitted from external servers, a finer definition of external server health based on replication backlog can be
defined with this health check. If a server falls too far behind in replication, then the Directory Proxy Server can
stop sending requests to it. A server is classified as degraded or unavailable if the threshold is reached for the
number of backlogged changes, the age of the oldest backlogged change, or both.

• Search LDAP Health Check. This health check performs searches on an LDAP external server and gauges
the health of the server depending if the expected results were returned within an acceptable response time.
For example, if an error occurs while attempting to communicate with the server, then the server is considered
unavailable. You can also apply filters to the results to use values within the monitor entry as indicators of server
health.

• Third Party LDAP Health Check. This health check allows you to define LDAP health check implementations
in third-party code using the Server SDK.

• Work Queue Busyness Health Check. This health check may be used to monitor the percentage of time that
worker threads in backend servers spend processing requests.

To Configure a Health Check Using dsconfig

1. Use the dsconfig tool to configure the LDAP external server locations.

$ bin/dsconfig

2. Type the hostname or IP address for your Directory Proxy Server, or press Enter to accept the default, localhost.

Directory Proxy Server hostname or IP address [localhost]:

3. Type the number corresponding how you want to connect to the Directory Proxy Server, or press Enter to accept
the default, LDAP.

How do you want to connect?
  1) LDAP
  2) LDAP with SSL
  3) LDAP with StartTLS

4. Type the port number for your Directory Proxy Server, or press Enter to accept the default, 389.

Directory Proxy Server port number [389]:

5. Type the administrator's bind DN or press Enter to accept the default (cn=Directory Manager), and then type the
password.

Administrator user bind DN [cn=Directory Manager]:
Password for user 'cn=Directory Manager':

6. In the Directory Proxy Server main menu, enter the number corresponding to LDAP health checks. Enter the
number to create a new LDAP Health Check, then press n to create a new health check from scratch.

7. Select the type of health check you want to create. This example demonstrates the creation of a new search LDAP
health check.

>>> Select the type of LDAP Health Check that you want to create:

      1)  Admin Alert LDAP Health Check
      2)  Custom LDAP Health Check
      3)  Groovy Scripted LDAP Health Check
      4)  Replication Backlog LDAP Health Check
      5)  Search LDAP Health Check
      6)  Third Party LDAP Health Check
      7)  Work Queue Busyness LDAP Health Check

      ?) help



PingDirectory | Configuring the Directory Proxy Server | 83

      c) cancel
      q) quit

Enter choice [c]: 5

8. Specify a name for the new health check. In this example, the health check is named Get example.com.

>>>> Enter a name for the search LDAP Health Check that you want to create:
 Get example.com   

9. Enable the new health check.

>>>> Configuring the 'enabled' property 

Indicates whether this LDAP health check is enabled for use in the server. 

Select a value for the 'enabled' property:   

   1) true
   2) false

   ?) help
   c) cancel
   q) quit

Enter choice [c]: 1

10. Next, configure the properties of the health check. You may need to modify the base-dn property, as well as one
or more response time thresholds for non-local external servers, accommodating WAN latency. Below is a Search
LDAP Health Check for the single entry dc=example,dc=com, which allows non-local responses of up to 2
seconds to still be considered healthy.

>>>> Configure the properties of the Search LDAP Health Check

           Property                                   Value(s) 
           -----------------------------------------------------------
      1)   description                                -
      2)   enabled                                    true
      3)   use-for-all-servers                        false
      4)   base-dn                                    "dc=example,dc=com"
      5)   scope                                      base-object
      6)   filter                                     (objectClass=*)
      7)   maximum-local-available-response-time      1 s     
      8)   maximum-nonlocal-available-response-time   2 s     
      9)   minimum-local-degraded-response-time       500 ms      
      10)  minimum-nonlocal-degraded-response-time    1 s 
      11)  maximum-local-degraded-response-time       10 s
      12)  maximum-nonlocal-degraded-response-time    10 s 
      13)  minimum-local-unavailable-response-time    5 s 
      14)  minimum-nonlocal-unavailable-response-time 5 s   
      15)  allow-no-entries-returned                  true
      16)  allow-multiple-entries-returned            true
      17)  available-filter                           -
      18)  degraded-filter                            -
      19)  unavailable-filter                         -
   
      ?) help 
      f) finish - create the new Search LDAP Health Check 
      d) display the equivalent dsconfig arguments to create this object 
      b) back 
      q) quit      



PingDirectory | Configuring the Directory Proxy Server | 84

Configuring LDAP External Servers
The LDAP external server configuration element defines the connection, location, and health check information
necessary for the Directory Proxy Server to communicate with the server properly.

PingDirectoryProxy Server includes a tool, prepare-external-server, for configuring communication
between the Directory Proxy Server and the LDAP backend server. After you add a new LDAP external server to an
existing installation, we strongly recommend that you run this tool to automatically create the user account necessary
for communications. The prepare-external-server tool does not make configuration changes to the local
Directory Proxy Server, only the external server is modified. When you run this tool, you must supply the user
account and password that you specified for the Directory Proxy Server during configuration, cn=Proxy User by
default.

Important:  You should not use cn=Directory Manager as the account to use for communication
between the Directory Proxy Server and the Directory Server. For security reasons, the account used to
communicate between the Directory Proxy Server and the Directory Server should not be directly accessible
by clients accessing the Directory Proxy Server. The account that you choose should meet the following
criteria:

• For all server types, it should not exist in the Directory Proxy Server but only in the backend directory
server instances.

• For Ping Identity Directory Server, this user should be a root user.
• For Ping Identity Directory Server, this user should not automatically inherit the default set of root

privileges, but instead should have exactly the following set of privileges: bypass-read-acl,
config-read, lockdown-mode, proxied-auth, and stream-values.

• For Sun Directory Servers, the account should be created below the cn=Root DNs,cn=config entry
and the nsSizeLimit, nsTimeLimit, nsLookThroughLimit, and nsIdleTimeout values
for the account should be set to -1. You also need to create access control rules to grant the user account
appropriate permissions within the server. The prepare-external-server tool handles all of this
work automatically.

About the prepare-external-server Tool

Use the prepare-external-server tool if you have added LDAP external servers using dsconfig. The
create-initial-proxy-config tool automatically runs the prepare-external-server tool to
configure server communications so that you do not need to invoke it separately. The create-initial-proxy-
config tool verifies that the proxy user account exists and has the correct password and required privileges. If it
detects any problems, it prompts for manager credentials to rectify them.

If you want the prepare-external-server tool to add the LDAP external server’s certificates to the
Directory Proxy Server’s trust store, you must include the --proxyTrustStorePath option, and either the --
proxyTrustStorePassword or the --proxyTrustStorePasswordFile option. The default location of the Directory Proxy
Server trust store is config/truststore. The pin is encoded in the config/truststore.pin file.

For example, run the tool as follows to prepare a PingDirectory Server on the remote host, ds-east-01.example.com,
listening on port 1389 for access by the Directory Proxy Server using the default user account cn=Proxy User:

prepare-external-server --hostname ds-east-01.example.com \ 
--port 1389 --baseDN dc=example,dc=com --proxyBindPassword secret  

When the prepare-external-server command above is executed, it creates the cn=Proxy User Root DN
entry as well as an access control rule in the Directory Server to grant the proxy user the proxy access right.

Note:  For non-Ping Identity servers, the --baseDN argument is required for the prepare-external-
server tool. The base DN is used to create the global ACI entries for these servers.



PingDirectory | Configuring the Directory Proxy Server | 85

To Configure Server Communication Using the prepare-external-server Tool

The following example illustrates how to run the prepare-external-server tool to prepare a Directory Server
on the remote host, ds-east-01.example.com, listening on port 1636. The Directory Server is being accessed by a
Directory Proxy Server that uses the default user account cn=Proxy User,cn=Root DNs,cn=config. Since
a password to the truststore is not provided, the truststore defined in the --proxyTrustStorePath is referenced
in a read-only manner.

• Use the prepare-external-server tool to prepare the Directory Server. Follow the prompts to set up the
external server.

$ ./PingDirectoryProxy/bin/prepare-external-server \
  --baseDN dc=example,dc=com
  --proxyBindPassword password \
  --hostname ds-east-01.example.com \
  --useSSL \
  --port 1636
  --proxyTrustStorePath /full/path/to/trust/store \
  --proxyTrustStorePassword secret   

Testing connection to ds-east-01.example.com:1636 .....

Do you wish to trust the following certificate?

Certificate Subject: CN=ds-east-01.example.com, O=Example Self-Signed
 Certificate 
Issuer Subject:      CN=ds-east-01.example.com, O=Example Self-Signed
 Certificate 
Validity:            Thu May 21 08:02:30 CDT 2009 to Wed May 16 08:02:30 CDT
 2029   

Enter 'y' to trust the certificate or 'n' to reject it.

y

The certificate was added to the local trust store
  
Done
Testing 'cn=Proxy User' access to ds-east-01.example.com:1636 ..... Failed
 to bind as
'cn=Proxy User'

Would you like to create or modify root user 'cn=Proxy User' so that it is
 available
for this Directory Proxy Server? (yes / no) [yes]:

Enter the DN of an account on ds-east-01.example.com:1636 with which to
 create or 
manage the 'cn=Proxy User' account [cn=Directory Manager]:

Enter the password for 'cn=Directory Manager':

Created 'cn=Proxy User,cn=Root DNs,cn=config'

Testing 'cn=Proxy User' privileges ..... Done

To Configure an External Server Using dsconfig

1. Use the dsconfig tool to create and configure external servers. Then, specify the hostname, connection method,
port number, and bind DN as described in previous procedures.

$ bin/dsconfig



PingDirectory | Configuring the Directory Proxy Server | 86

2. In the Directory Proxy Server main menu, enter the number corresponding to external servers. Then, enter the
number to create a new external server.

3. Select the type of server you want to create. This example creates a new Ping Identity Directory Server.

   
>>>> Select the type of external server that you want to create:

  1) Ping Identity DS external server 
  2) JDBC external server 
  3) LDAP external server 
  4) Sun DS external server        
 
  ?) help
  c) cancel
  q) quit

Enter choice [c]: 1

4. Specify a name for the new external server. In this example, the external server is named east1.

>>>> Enter a name for the Ping Identity DS external server that you want
to create: east1   

5. Configure the host name or IP address of the target LDAP external server.

Enter a value for the 'server-host-name' property:east1.example.com

6. Next, configure the location property of the new external server.

Do you want to modify the 'location' property?

   1) Leave undefined
   2) Change it to the location: East
   3) Change it to the location: West
   4) Create a new location

   ?) help
   q) quit

Enter choice [1]: 2

7. Next, define the bind DN and bind password.

Do you want to modify the 'bind-dn' property?

   1) Leave undefined
   2) Change the value

   ?) help
   q) quit

Enter choice [1]: 2

Enter a value for the 'bind-dn' property [continue]: cn=Proxy User,cn=Root
 DNs,cn=config      

Enter choice [b]: 6

...
   
Do you want to modify the 'password' property?

   1) Leave undefined
   2) Change the value
   ?) help



PingDirectory | Configuring the Directory Proxy Server | 87

   q) quit

Enter choice [1]: 2

Enter a value for the 'password' property [continue]:
Confirm the value for the 'password' property:

8. Enter f to finish the operation.

Enter choice [b]: f 

The Ping Identity DS external server was created successfully.

Once you have completed adding the server, run the prepare-external-server tool to configure
communications between the Directory Proxy Server and the Ping Identity Directory Server(s).

To Configure Authentication with a SASL External Certificate

By default, the Directory Proxy Server authenticates to the Directory Server using LDAP simple authentication (with
a bind DN and a password). However, the Directory Proxy Server can be configured to use SASL EXTERNAL to
authenticate to the Directory Server with a client certificate.

Have Directory Proxy Server instances installed and configured to communicate with the backend Directory Server
instances using either SSL or StartTLS. After the servers are configured, perform the following steps to configure
SASL EXTERNAL authentication.

1. Create a JKS keystore that includes a public and private key pair for a certificate that the Directory Proxy Server
instance(s) will use to authenticate to the Directory Server instance(s). Run the following command in the instance
root of one of the Directory Proxy Server instances. When prompted for a keystore password, enter a strong
password to protect the certificate. When prompted for the key password, press ENTER to use the keystore
password to protect the private key:

$ keytool -genkeypair \
  -keystore config/proxy-user-keystore \
  -storetype JKS \
  -keyalg RSA \
  -keysize 2048 \
  -alias proxy-user-cert \
  -dname "cn=Proxy User,cn=Root DNs,cn=config" \
  -validity 7300 

2. Create a config/proxy-user-keystore.pin file that contains a single line that is the keystore password
provided in the previous step.

3. If there are other Directory Proxy Server instances in the topology, copy the proxy-user-keystore and
proxy-user-keystore.pin files into the config directory for all instances.

4. Use the following command to export the public component of the proxy user certificate to a text file:

$ keytool -export \
  -keystore config/proxy-user-keystore \
  -alias proxy-user-cert \
  -file config/proxy-user-cert.txt

5. Copy the proxy-user-cert.txt file into the config directory of all Directory Server instances. Import
that certificate into each server's primary trust store by running the following command from the server root.
When prompted for the keystore password, enter the password contained in the config/truststore.pin
file. When prompted to trust the certificate, enter yes.

$ keytool -import \
  -keystore config/truststore \
  -alias proxy-user-cert \
  -file config/proxy-user-cert.txt



PingDirectory | Configuring the Directory Proxy Server | 88

6. Update the configuration for each Directory Proxy Server instance to create a new key manager provider that
will obtain its certificate from the config/proxy-user-keystore file. Run the following dsconfig
command:

$ dsconfig create-key-manager-provider \
  --provider-name "Proxy User Certificate" \
  --type file-based \
  --set enabled:true \
  --set key-store-file:config/proxy-user-keystore \
  --set key-store-type:JKS \
  --set key-store-pin-file:config/proxy-user-keystore.pin

7. Update the configuration for each LDAP external server in each Directory Proxy Server instance to use the
newly-created key manager provider, and also to use SASL EXTERNAL authentication instead of LDAP simple
authentication. Run the following dsconfig command:

$ dsconfig set-external-server-prop \
  --server-name ds1.example.com:636 \
  --set authentication-method:external \
  --set "key-manager-provider:Proxy User Certificate"

After these changes, the Directory Proxy Server should re-establish connections to the LDAP external server
and authenticate with SASL EXTERNAL. Verify that the Directory Proxy Server is still able to communicate
with all backend servers by running the bin/status command. All of the servers listed in the "--- LDAP
External Servers ---" section should be available. Review the Directory Server access log can to make sure that
the BIND RESULT log messages used to authenticate the connections from the Directory Proxy Server include
authType="SASL", saslMechanism="EXTERNAL", resultCode=0, and authDN="cn=Proxy
User,cn=Root DNs,cn=config".

Configuring Load Balancing
You can distribute the load on your Directory Proxy Server using one of the load-balancing algorithms provided with
PingDirectoryProxy Server. By default, the Directory Proxy Server prefers local servers over non-local servers, unless
you set the use-location property of the load-balancing algorithm to false. Within a given location, the Directory
Proxy Server prefers available servers over degraded servers. This means that if at all possible, the Directory Proxy
Server sends requests to servers that are local and available before considering selecting any server that is non-local or
degraded.

Note:  If the use-location property is set to true, then the load is balanced only among available
external servers in the same location. If no external servers are available in the same location, the Directory
Proxy Server will attempt to use available servers in the first preferred failover location, and so on. The
failover based on no external servers with AVAILABLE health state can be customized to allow the
Directory Proxy Server to prefer local DEGRADED health servers to servers in a failover location. See the
PingDirectoryProxy Server Reference Guide for more information on the prefer-degraded-servers-
over-failover property.

The Directory Proxy Server provides the following load-balancing algorithms:

• Failover load balancing. This algorithm forwards requests to servers in a given order, optionally taking the
location into account. If the preferred server is not available, then it will fail over to the alternate server in a
predefined order. This balancing method can be useful if certain operations, such as LDAP writes, need to be
forwarded to a primary external server, with secondary external servers defined for failover if necessary.

This algorithm also offers load spreading to multiple failover servers. If the failover load-balancing algorithm is
configured with one or more load-spreading base DNs, then requests that target entries below a load-spreading
base DN can be balanced across any of the servers with the same health check state and location. Requests
targeting a specific portion of the data will consistently be routed to the same server, but requests targeting a
different portion of the data may be sent to a different server.



PingDirectory | Configuring the Directory Proxy Server | 89

• Fewest operations load balancing. This algorithm forwards requests to the backend server with the fewest
operations currently in progress and tends to exhibit the best performance.

• Health weighted load balancing. This algorithm assigns weights to servers based on their health scores and,
optionally, their locations. For example, servers with a higher health check score will receive a higher proportion
of the requests than servers with lower health check scores.

• Single server load balancing. This algorithm forwards all operations to a single external server that you specify.
• Weighted load balancing. This algorithm uses statically defined weights for sets of servers to divide load among

external servers. External servers are grouped into weighted sets, the values of which, when added to all of the
weighted sets for the load balancing algorithm, represent a percentage of the load the external servers should
receive.

• Criteria based load balancing. This algorithm allows you to balance your load across a server topology
depending on the types of operations received or the client issuing the request.

For example, ds1 and ds2 are assigned to a weighted set named Set-80 and assigned the weight 80. The external
servers ds3 and ds4 are assigned to the weighted set Set-20 and assigned the weight 20. When both sets, Set-80
and Set-20, are assigned to the load balancing algorithm, 80 percent of the load will be forwarded to ds1 and ds2,
while the remaining 20 percent will be forwarded to ds3 and ds4.

Configure Failover Load-balancing for Load Spreading

If the failover load-balancing algorithm is configured with one or more load-spreading base DNs, then requests that
target entries below a load-spreading base DN may be balanced across any of the servers with the same health check
state and location. Requests targeting a specific portion of the data will consistently be routed to the same server, but
requests targeting a different portion of the data may be sent to a different server.

Load spreading is useful for deployments in which the DIT contains a large number of branches below a common
parent, and in which most operations (including search operations, as indicated by the search base DN) only target
entries at least one level below that common parent. For example, this may be useful for a multi-tenant deployment
in which all of the entries for a given tenant are within their own branch, and all of the tenant branches reside below a
common parent.

Load spreading is configured with the load-spreading-base-dn property. The value(s) of this property are the
base DN(s) below which the tenant entries reside. For example, in a deployment with a DIT like the following, the
load-spreading-base-dn value would be set to ou=customers,dc=example,dc=com:

• dc=example,dc=com

• ou=customers,dc=example,dc=com

• ou=Customer 1,ou=customers,dc=example,dc=com
• ou=Customer 2,ou=customers,dc=example,dc=com
• ou=Customer 3,ou=customers,dc=example,dc=com
• ...

If the load-spreading-base-dn property is not configured, the failover load-balancing algorithm will uses
the default behavior. If the property is configured with one or more values, but a client requests an operation that
targets an entry that is not below any of the configured base DNs, then that operation will be handled using the default
behavior. When the load-spreading-base-dn property is configured with one or more values, the load-
balancing algorithm will continue to generate the same list of lists, but the order of the servers within each list will be
determined using the following algorithm:

1. If the list is empty or contains only a single item, then leave it unchanged and skip the remaining steps.
2. Identify the RDN component from the target entry DN that is exactly one level below one of the load-

spreading-base-dn values. If the targeted entry is not below any of the configured load-spreading-
base-dn values, then the order of servers in each of those lists will be based only on the order in which they
appear in the load-balancing algorithm’s backend-server property. The remaining steps are skipped.

3. Compute a SHA-1 digest from the normalized string representation of the identified RDN component. SHA-1 is
notably faster than more secure digest algorithms, and it does a very good job at distributing bits across the entire
range of the 160 bits that it generates.



PingDirectory | Configuring the Directory Proxy Server | 90

4. Create a non-negative integer from the last 31 bits of the computed SHA-1 digest.
5. Compute a modulus using the integer value as the dividend, and the number of servers in the current list as the

divisor. This will yield an integer value that is between 0 and (list.size() - 1), inclusive.
6. If the modulus computed is equal to zero, no further action is necessary. If not, move a number of servers equal

to the computed modulus from the beginning of the list to the end of the list. The order of the elements that are
moved should be preserved.

For example, consider a load-spreading-base-dn value of “ou=customers,dc=example,dc=com”,
a list that contains three servers (ds1, ds2, and ds3, in that order), and a modify request that targets the entry with
DN “uid=jdoe,ou=People,ou=Acme,ou=customers,dc=example,dc=com”. The RDN component
immediately below the load-spreading-base-dn is “ou=Acme”. The normalized string representation
of that RDN component is “ou=acme”, and the hexadecimal representation of the SHA-1 digest of that is
“f0c69713535daf8816038f1bceab70380c92b83e”. The last 31 bits of that SHA-1 digest are 0c92b83e
hex, which is 210942014. With 210942014 modulo 3 is 2, which means that the first two servers are moved from the
beginning of the list to the end of the list, resulting in and order of ds3, ds1, ds2.

While this algorithm will spread the load across multiple backend servers, it does not mean that there will be an even
distribution of the load across all of those servers. The load-balancing algorithm will still prioritize based on location
and health check state, so the load will generally be spread only across the available servers in the same location as
the Directory Proxy Server. Second, assuming that the entries that are immediate children of a load-spreading-
base-dn are the tops of the branches that define tenants, some tenants will still be targeted more heavily than others
(because they have more entries, or because their entries are accessed more frequently). The modulo operation may
therefore not result in an even distribution across those servers.

To Configure Load Balancing Using dsconfig

1. Use the dsconfig tool to create and configure a load-balancing algorithm.

$ bin/dsconfig

Specify the hostname, connection method, port number, and bind DN as described in previous procedures.
2. In the Directory Proxy Server main menu, enter the number associated with load-balancing algorithms.
3. Select an existing load-balancing algorithm to use as a template or select n to create a new load-balancing

algorithm from scratch.

>>>>Choose how to create the new Load Balancing Algorithm:    

n) new Load Balancing Algorithm created from scratch 
t) use an existing Load Balancing Algorithm as a template 
b) back 
q) quit                    

Enter a choice [n]: n

4. Select the type of load-balancing algorithm that you want to create. Depending on type of algorithm you select,
you will be guided through a series of configuration properties, such as providing a name and selecting an LDAP
external server.

>>>> Select the type of Load Balancing Algorithm that you want to 
create:
           
    1)  Failover Load Balancing Algorithm
    2)  Fewest Operations Load Balancing Algorithm 
    3)  Health Weighted Load Balancing Algorithm
    4)  Single Server Load Balancing Algorithm
    5)  Weighted Load Balancing Algorithm

    ?)  help
    c)  cancel
    q)  quit



PingDirectory | Configuring the Directory Proxy Server | 91

Enter choice [c]: 3

5. Review the configuration properties for your new load-balancing algorithm. If you are satisfied, enter f to finish.

Configuring Criteria-Based Load-Balancing Algorithms

You can configure alternate load-balancing algorithms that determine how they function according to request or
connection criteria. These algorithms allow you to balance your load across a server topology depending on the types
of operations received or the client issuing the request. They are called criteria-based load-balancing algorithms and
are configured using at least one connection criteria or request criteria. For example, you can configure criteria-based
load-balancing algorithms to accomplish the following:

• Route write operations to a single server from a set of replicated servers, to prevent replication conflicts, while
load balancing all other operations across the full set of servers.

• Route all operations from a specific client to a single server in a set of replicated servers, eliminating errors that
arise from replication latency, while load balancing operations from other clients across the full set of servers. This
configuration is useful for certain provisioning applications that need to write and then immediately read the same
data.

When a request is received, the proxying request processor first iterates through all of the criteria-based load-
balancing algorithms in the order in which they are listed, to determine whether the request matches the associated
criteria. If there is a match, then the criteria-based load-balancing algorithm is selected. If there is not a match, then
the default load-balancing algorithm is used.

Preferring Failover LBA for Write Operations

An administrator can configure the Directory Proxy Server to use Criteria-Based Load-Balancing Algorithms to
strike a balance between providing a consistent view of directory server data for applications that require it and
taking advantage of all servers in a topology for handling read-only operations, such as search and bind. The flexible
configuration model supports a wide range of criteria for choosing which Load-Balancing Algorithm to use for each
operation. In most Directory Proxy Server deployments, using a Failover Load-Balancing Algorithm for at least
ADD, DELETE, and MODIFY-DN operations if not for all types of write operations is recommended.

Each Proxying Request Processor configured in the Directory Proxy Server uses a Load-Balancing Algorithm to
choose which Directory Server to use for a particular operation. The Load-Balancing Algorithm takes several factors
into account when choosing a server:

The availability of the directory servers.
The location of the directory servers. By default Load-Balancing Algorithms prefer directory servers in the same
location as the Directory Proxy Server.
Whether the Directory Server is degraded for any reason, such as having a Local DB Index being rebuilt.
The result of configured Health Checks. For instance, a server with a small replication backlog can be preferred
over one with a larger backlog.
Recent operation routing history.

How these factors are used depends on the specific Load-Balancing Algorithm. The two most commonly used
Load-Balancing Algorithms are the Failover Load-Balancing Algorithm and the Fewest Operations Load-Balancing
Algorithm. These two algorithms are similar when determining which Directory Servers are the possible candidates
for a specific operation. The algorithms use the same criteria to determine server availability and health, and by
default they will prefer Directory Servers in the same location as the Directory Proxy Server. However, they differ in
the criteria they use to choose between available servers.

The Failover Load-Balancing Algorithm will send all operations to a single server until it is unavailable, and then it
will send all operations to the next preferred server, and so on. This algorithm provides the most consistent view of
the topology to clients because all clients (at least those in the same location as the Directory Proxy Server) will see
the same, up-to-date view of the data, but it leaves unused capacity in the failover instances since most topologies
include multiple Directory Server replicas within each data center.

On the other hand, the Fewest Operations Load-Balancing Algorithm does the best job of efficiently distributing
traffic among multiple servers since it chooses to send each operation to the server that has the fewest number of



PingDirectory | Configuring the Directory Proxy Server | 92

outstanding operations--that is, the server from the Directory Proxy Server's point of view that is the least busy. (Note:
the Fewest Operations Load-Balancing Algorithm routes traffic to the least loaded server, which in a lightly-loaded
environment can result in an imbalance since the first server in the list of configured servers is more likely to receive
a request.) This algorithm naturally routes to servers that are more responsive as well as limiting the impact of servers
that have become unreachable. However, this implies that consecutive operations that depend on each other can be
routed to different Directory Servers, which can cause issues for some types of clients:

If two entries are added in quick succession where the first entry is the parent of the second in the LDAP
hierarchy, then the addition of the child entry could fail if that operation is routed to a different Directory Server
instance than the first ADD operation, and this happens within the replication latency.
Some clients add or modify an entry and then immediately read the entry back from the server, expecting to see
the updates reflected in the entry.

In these situations, it is desirable to configure the <keyword keyref="PROXY_SERVER_BASE_NAME"/> to route
dependent requests to the same server.

The server affinity feature (see Configuring Server Affinity) achieves this in some environments but not in all because
the affinity is tracked independently by each Directory Proxy Server instance, and some clients send requests to
multiple proxies. It is common for a client to not connect to the Directory Proxy Servers directly but instead to
connect through a network load balancer, which in turn opens connections to the Directory Proxy Servers. Each
individual client connection will be established to a single Directory Proxy Server so that operations on that
connection will be routed to the same Directory Proxy Server, and server affinity configured within the Directory
Proxy Server will ensure those operations will be routed to the same Directory Server. However, many clients
establish a pool of connections that are reused across operations, and within this pool, connections will be established
through the load balancer to different Directory Proxy Servers. Dependent operations sent on different connections
could then be routed to different Directory Proxy Servers, and then on to different Directory Servers.

A Failover Load-Balancing Algorithm addresses this issue by routing all requests to a single server, but that leaves
unused search capacity on the other instances. A Criteria Based Load-Balancing Algorithm enables the proxy to
route certain types of requests (or requests from certain clients) using a different Load-Balancing Algorithm than
the default. For instance, all write operations (i.e., ADD, DELETE, MODIFY, and MODIFY-DN) could be routed
using a Failover Load-Balancing Algorithm, while all other operations (bind, search, and compare) use a Fewest
Operations Load-Balancing Algorithm. And in addition, if there are clients that are particularly sensitive to reading
entries immediately after modifying them, additional Connection Criteria can be specified to all operations from
those clients using the Failover Load-Balancing Algorithm. Note that, routing all write requests to a single server
in a location instead of evenly across servers does not limit the overall throughput of the system since all servers
ultimately have to process all write operations either from the client directly or via replication.

Another benefit of using the Failover Load-Balancing Algorithm for write operations is reducing replication
conflicts. The Ping Identity Directory Server follows the traditional LDAP replication model of eventual
consistency. This provides very high availability for handling write traffic even in the presence of network partitions,
but it can lead to replication conflicts. Replication conflicts involving modify operations can be automatically
resolved, leaving the servers in a consistent state where each attribute on each entry reflects the most recent update to
that attribute. However, conflicts involving ADD, DELETE, and MODIFY-DN operations cannot always be resolved
automatically and can require manual involvement from an administrator. By routing all write operations (or at least
ADD, DELETE, and MODIFY-DN operations) to a single server, replication conflicts can be avoided.

There are a few points to consider when using a Failover Load-Balancing Algorithm:

• When using the Failover Load-Balancing Algorithm in a configuration with multiple locations, the Load-
Balancing Algorithm will fail over between local instances before failing over to servers in a remote location. The
list of servers in the backend-server configuration property of the Load-Balancing Algorithm should be
ordered such that preferred local servers should appear before failover local servers, but the relative order of
servers in different locations is unimportant as the preferred-failover-location of the Directory Proxy
Server's configuration is used to decide which remote location to fail over to. It is also advisable that the order of
local servers match the gateway-priority configuration settings of the "Replication Server" configuration
object on the Directory Server instances. This can reduce the WAN replication delay because the Directory Proxy
Server will then prefer to send writes to the Directory Server with the WAN Gateway role, avoiding an extra hop
to the remote locations.



PingDirectory | Configuring the Directory Proxy Server | 93

• For Directory Proxy Server configurations that include multiple Proxying Request Processors, including Entry-
Balancing environments, each Proxying Request Processor should be updated to include its own Criteria-Based
Load-Balancing Algorithm.

To Route Operations to a Single Server

The following example shows how to extend a Directory Proxy Server's configuration to use a Criteria Based Load
Balancing Algorithm to route all write requests to a single server using a Failover Load Balancing Algorithm. The
approach outlined here can easily be extended to support alternate criteria as well as more complex topologies using
multiple locations or Entry Balancing.

This example uses a simple deployment of a Directory Proxy Server fronting three Directory Servers:
ds1.example.com, ds2.example.com, and ds3.example.com.

Once these configurations changes are applied, the Directory Proxy Server will route all write operations to
ds1.example.com as long as it is available and then to ds2.example.com if it is not, while routing other types of
operations, such as searches and binds, to all three servers using the Fewest Operations Load Balancing Algorithm.

1. First, create a location.

dsconfig create-location --location-name Austin

2. Update the failover location for your server.

dsconfig set-location-prop --location-name Austin

3. Set the location as a global configuration property.

dsconfig set-global-configuration-prop --set location:Austin

4. Set up the health checks for each external server.

dsconfig create-ldap-health-check \
--check-name ds1.example.com:389_dc_example_dc_com-search-health-check \
--type search --set enabled:true --set base-dn:dc=example,dc=com  

dsconfig create-ldap-health-check \
--check-name ds2.example.com:389_dc_example_dc_com-search-health-check \
--type search --set enabled:true --set base-dn:dc=example,dc=com  

dsconfig create-ldap-health-check \
--check-name ds3.example.com:389_dc_example_dc_com-search-health-check \
--type search --set enabled:true --set base-dn:dc=example,dc=com  

5. Create the external servers.

dsconfig create-external-server --server-name ds1.example.com:389 \
--type ping identity-ds \
--set server-host-name:ds1.example.com --set server-port:389 \
--set location:Austin --set "bind-dn:cn=Proxy User,cn=Root DNs,cn=config" \
--set password:AADoPkhx22qpiBQJ7T0X4wH7 \
--set health-check:ds1.example.com:389_dc_example_dc_com-search-health-check
    

dsconfig create-external-server --server-name ds2.example.com:389 \
--type ping identity-ds \
--set server-host-name:ds2.example.com --set server-port:389 \
--set location:Austin --set "bind-dn:cn=Proxy User,cn=Root DNs,cn=config" \
--set password:AAAoVqVYsEavey80T0QfR60I \
--set health-check:ds2.example.com:389_dc_example_dc_com-search-health-check
    

dsconfig create-external-server --server-name ds3.example.com:389 \
--type ping identity-ds \
--set server-host-name:ds3.example.com --set server-port:389 \



PingDirectory | Configuring the Directory Proxy Server | 94

--set location:Austin --set "bind-dn:cn=Proxy User,cn=Root DNs,cn=config" \
--set password:AADOkveb0TtYR9xpkVrNgMtF \
--set health-check:ds3.example.com:389_dc_example_dc_com-search-health-check
  

6. Create a Load Balancing Algorithm for dc=example,dc=com.

dsconfig create-load-balancing-algorithm \
--algorithm-name dc_example_dc_com-fewest-operations \
--type fewest-operations --set  enabled:true \
--set backend-server:ds1.example.com:389 \
--set backend-server:ds2.example.com:389 \
--set backend-server:ds3.example.com:389  

7. Create a Request Processor for dc=example,dc=com.

dsconfig create-request-processor \
--processor-name dc_example_dc_com-req-processor \
--type proxying \
--set load-balancing-algorithm:dc_example_dc_com-fewest-operations  

8. Create a Subtree View for dc=example,dc=com.

dsconfig create-subtree-view \
--view-name dc_example_dc_com-view \
--set base-dn:dc=example,dc=com \
--set request-processor:dc_example_dc_com-req-processor  

9. Update the client connection policy for dc=example,dc=com.

dsconfig set-client-connection-policy-prop \
--policy-name default \
--add subtree-view:dc_example_dc_com-view  

10. Create a new Request Criteria object to match all write operations.

dsconfig create-request-criteria \
--criteria-name any-write \
--type simple --set "description:All Write Operations" \
--set operation-type:add --set operation-type:delete \
--set operation-type:modify --set operation-type:modify-dn  

11. Create a new Failover Load Balancing Algorithm listing the servers that should be included.  Note the order that
the servers are listed here is the failover order between servers.

dsconfig create-load-balancing-algorithm \
--algorithm-name dc_example_dc_com-failover \
--type failover --set enabled:true \
--set backend-server:ds1.example.com:389 \
--set backend-server:ds2.example.com:389 \
--set backend-server:ds3.example.com:389  

12. Tie the Request Criteria and the Failover Load Balancing Algorithm together into a Criteria Based Load Balancing
Algorithm.

dsconfig create-criteria-based-load-balancing-algorithm \
--algorithm-name dc_example_dc_com-write-traffic-lba \
--set "description:Failover LBA For All Write Traffic" \
--set request-criteria:any-write \
--set load-balancing-algorithm:dc_example_dc_com-failover  

13. Update the Proxying Request Processor to use the Criteria Based Load Balancing Algorithm.

dsconfig set-request-processor-prop \
--processor-name dc_example_dc_com-req-processor \
--set criteria-based-load-balancing-algorithm:dc_example_dc_com-write-
traffic-lba  



PingDirectory | Configuring the Directory Proxy Server | 95

To Route Operations from a Single Client to a Specific Set of Servers

To create a type of server affinity, where all operations from a single client are routed to a specific set of servers,
follow a similar process as in the previous use case. Instead of request criteria, configure connection criteria. These
connection criteria identify clients that could be adversely affected by replication latency. These clients will use the
Failover Load Balancing Algorithm rather than the default Fewest Operations Load Balancing Algorithm.

For example, an administrative tool includes a "delete user" function. If the application immediately re-queries the
directory for an updated list of users, the just-deleted entry must not be included. To configure a criteria-based load
balancing algorithm to support this use case, perform the following:

• Create a failover load balancing algorithm that lists the same set of servers as the existing fewest operation load
balancing algorithm.

• Create connection criteria that match the clients for which failover load balancing should be applied, rather than
fewest operations load balancing.

• Create a criteria-based load balancing algorithm that references the two configuration objects created in the
previous steps.

• Assign the new load balancing algorithm to the proxying request processor.

The following procedure provides examples of each of these steps.

1. Create the new failover load balancing algorithm using dsconfig as follows:

dsconfig create-load-balancing-algorithm \
  --algorithm-name client_one_routing_algorithm \
  --type failover --set enabled:true \
  --set backend-server:east1.example.com:389 \
  --set backend-server:east2.example.com:389

2. To route operations from a single client to a single server in a set of replicated servers, create connection criteria
using dsconfig as follows:

dsconfig create-connection-criteria \
  --criteria-name "Client One"  --type simple \
  --set included-user-base-dn:cn=Client One,ou=Apps,dc=example,dc=com

3. Configure a criteria-based load balancing algorithm and assign it to the proxying request processor. Use the load
balancing algorithm and connection criteria created in the previous steps:

dsconfig create-criteria-based-load-balancing-algorithm \
  --algorithm-name dc_example_dc_com-client-operations \
  --set load-balancing-algorithm:dc_example_dc_com-failover \
  --set "request-criteria:Client One Requests"

4. Assign the new criteria-based load balancing algorithm to the proxying request processor using dsconfig as
follows:

dsconfig set-request-processor-prop \
  --processor-name dc_example_dc_com-req-processor \
  --add criteria-based-load-balancing-agorithm:dc_example_dc_com-client-
operations

Understanding Failover and Recovery

Once a previously degraded or unavailable server has recovered, it should be eligible to start receiving traffic within
the time configured for the health-check-frequency property, 30 seconds by default. However, failover and recovery
also depend on the load-balancing algorithm in use.

The load-balancing algorithm provides an ordered list of servers to check, with the number of servers in the list based
on the maximum number of retry attempts. The server checks to see if affinity should be used and, if so, whether an
affinity is set for that load-balancing algorithm. If there is an affinity to a particular server and that server is classified
as available, then that server will always be the first in the list.



PingDirectory | Configuring the Directory Proxy Server | 96

Next, the Directory Proxy Server creates a two-dimensional matrix of servers based on the health check state (with
available preferred over degraded and unavailable not considered at all) and location (with backend servers in the
same location as the Directory Proxy Server most preferred, then servers in the first failover location, then the second,
and so on). Within each of these sets, and ideally at least one server in the local data center is classified as available,
the load-balancing algorithm selects the servers in the order of most preferred to least preferred based on whatever
logic the load-balancing algorithm uses. The load-balancing algorithm keeps selecting servers until enough of them
have been selected to satisfy the maximum number of possible retries.

The load-balancing algorithm includes a configuration option that allows you to decide whether to prefer location
over availability and vice-versa. For example, is a local degraded server more or less preferred than a remote available
server? By default, the algorithm will prefer available servers over degraded ones, even if it has to go to another data
center to access them. You can change the load-balancing algorithm to try to stay in the same data center if at least
one server is not unavailable.

The Directory Proxy Server does both proactive and reactive health checking. With proactive health checking, the
Directory Proxy Server will periodically (by default, every 30 seconds), run a full set of tests against each backend
server. The result of these tests will be usd to determine the overall health check state (available, degraded, or
unavailable) and score (and integer value from 10 to 0). With reactive health checking, the Directory Proxy Server
may kick off a lesser set of health checks against a server if an operation forwarded to that server did not complete
successfully.

Proactive health checking can be used to promote and demote the health of a server, but reactive health checking
can only be used to demote the health of a server. As a result, if a server is determined to be unavailable, then it will
remain that way until a subsequence proactive health check determines that it has recovered. If a server is determined
to be degraded, it may not become available until the next proactive health check, but it could be downgraded to
unavailable by a reactive check if other failures are encountered against that server.

Both proactive and reactive health check assignments take effect immediately and will be considered for all
subsequent requests routed to the load-balancing algorithm. If a a server is considered degraded, then it will
immediately be considered less desirable than available servers in the same data center, and possibly less desirable
than available servers in more remote data centers. If a server is considered unavailable, then it will not be eligible to
be selected until it is reclassified as available or degraded.

Configuring HTTP Connection Handlers
HTTP connection handlers are responsible for managing the communication with HTTP clients and invoking servlets
to process requests from those clients. They can also be used to host web applications on the server. Each HTTP
connection handler must be configured with one or more HTTP servlet extensions and zero or more HTTP operation
log publishers.

If the HTTP Connection Handler cannot be started (for example, if its associated HTTP Servlet Extension fails to
initialize), then this will not prevent the entire Directory Proxy Server from starting. The Directory Proxy Server's
start-server tool will output any errors to the error log. This allows the Directory Proxy Server to continue
serving LDAP requests even with a bad servlet extension.

The configuration properties available for use with an HTTP connection handler include:

• listen-address. Specifies the address on which the connection handler will listen for requests from clients. If not
specified, then requests will be accepted on all addresses bound to the system.

• listen-port. Specifies the port on which the connection handler will listen for requests from clients. Required.
• use-ssl. Indicates whether the connection handler will use SSL/TLS to secure communications with clients

(whether it uses HTTPS rather than HTTP). If SSL is enabled, then key-manager-provider and trust-
manager-provider values must also be specified.

• http-servlet-extension. Specifies the set of servlet extensions that will be enabled for use with the connection
handler. You can have multiple HTTP connection handlers (listening on different address/port combinations) with
identical or different sets of servlet extensions. At least one servlet extension must be configured.

• http-operation-log-publisher. Specifies the set of HTTP operation log publishers that should be used with the
connection handler. By default, no HTTP operation log publishers will be used.



PingDirectory | Configuring the Directory Proxy Server | 97

• key-manager-provider. Specifies the key manager provider that will be used to obtain the certificate presented to
clients if SSL is enabled.

• trust-manager-provider. Specifies the trust manager provider that will be used to determine whether to accept
any client certificates presented to the server.

• num-request-handlers. Specifies the number of threads that should be used to process requests from HTTP
clients. These threads are separate from the worker threads used to process other kinds of requests. The default
value of zero means the number of threads will be automatically selected based on the number of CPUs available
to the JVM.

• web-application-extension. Specifies the Web applications to be hosted by the server.

To Configure an HTTP Connection Handler

An HTTP connection handler has two dependent configuration objects: one or more HTTP servlet extensions and
optionally, an HTTP log publisher. The HTTP servlet extension and log publisher must be configured prior to
configuring the HTTP connection handler. The log publisher is optional but in most cases, you want to configure one
or more logs to troubleshoot any issues with your HTTP connection.

1. The first step is to configure your HTTP servlet extensions. The following example uses the
ExampleHTTPServletExtension in the Server SDK.

$ bin/dsconfig create-http-servlet-extension \
  --extension-name "Hello World Servlet" \
  --type third-party \
  --set "extension-
class:com.unboundid.directory.sdk.examples.ExampleHTTPServletExtension" \
  --set "extension-argument:path=/" \
  --set "extension-argument:name=example-servlet"

2. Next, configure one or more HTTP log publishers. The following example configures two log publishers: one
for common access; the other, detailed access. Both log publishers use the default configuration settings for log
rotation and retention.

$ bin/dsconfig create-log-publisher \
  --publisher-name "HTTP Common Access Logger" \
  --type common-log-file-http-operation \
  --set enabled:true \
  --set log-file:logs/http-common-access \
  --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
  --set "rotation-policy:Size Limit Rotation Policy" \
  --set "retention-policy:File Count Retention Policy" \
  --set "retention-policy:Free Disk Space Retention Policy"

$ bin/dsconfig create-log-publisher \
  --publisher-name "HTTP Detailed Access Logger" \
  --type detailed-http-operation \
  --set enabled:true \
  --set log-file:logs/http-detailed-access \
  --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
  --set "rotation-policy:Size Limit Rotation Policy" \
  --set "retention-policy:File Count Retention Policy" \
  --set "retention-policy:Free Disk Space Retention Policy"

3. Configure the HTTP connection handler by specifying the HTTP servlet extension and log publishers. Note that
some configuration properties can be later updated on the fly while others, like listen-port, require that the
HTTP Connection Handler be disabled, then re-enabled for the change to take effect.

$ bin/dsconfig create-connection-handler \
  --handler-name "Hello World HTTP Connection Handler" \
  --type http \
  --set enabled:true \
  --set listen-port:8443 \
  --set use-ssl:true \



PingDirectory | Configuring the Directory Proxy Server | 98

  --set "http-servlet-extension:Hello World Servlet" \
  --set "http-operation-log-publisher:HTTP Common Access Logger" \
  --set "http-operation-log-publisher:HTTP Detailed Access Logger" \
  --set "key-manager-provider:JKS" \
  --set "trust-manager-provider:JKS"

4. By default, the HTTP connection handler has an advanced monitor entry property, keep-stats, that is set to
TRUE by default. You can monitor the connection handler using the ldapsearch tool.

$ bin/ldapsearch --baseDN "cn=monitor" \
  "(objectClass=ds-http-connection-handler-statistics-monitor-entry)"

HTTP Correlation IDs

A typical request to a software system is handled by multiple subsystems, many of which may be distinct servers
residing on distinct hosts and locations. Tracing the request flow on distributed systems can be challenging, as log
messages are scattered across various systems and intermingled with messages for other requests. To make this easier,
a correlation ID can be assigned to a request, which is then added to every associated operation as the request flows
through the larger system. The correlation ID allows related log messages to be easily located and grouped. The
server supports correlation IDs for all HTTP requests received through its HTTP(S) Connection Handler.

When an HTTP request is received, it is automatically assigned a correlation ID. This ID can be used to correlate
HTTP responses with messages recorded to the HTTP Detailed Operation log and the trace log. For specific
web APIs, the correlation ID may also be passed to the LDAP subsystem. For the SCIM 1, Delegated Admin,
Consent, and Directory REST APIs, the correlation ID will also appear with associated requests in LDAP logs in the
correlationID key. The correlation ID is also used as the default client request ID value in Intermediate Client
Request Controls used by the SCIM 2, Consent, and Directory REST APIs. Values related to the Intermediate Client
Request Control appear in the LDAP logs in the via key, and are forwarded to downstream LDAP servers when
received by the PingDirectoryProxy Server. The correlation ID header is also added to requests forwarded by the
PingDataGovernance gateway.

For Server SDK extensions that have access to the current HttpServletRequest, the current correlation ID can be
retrieved as a string through the HttpServletRequest's com.pingidentity.pingdata.correlation_id
attribute. For example:

(String) request.getAttribute("com.pingidentity.pingdata.correlation_id");

Configure HTTP Correlation ID Support

Correlation ID support is enabled by default for each HTTP Connection Handler.

• To enable correlation ID support for the HTTPS Connection Handler:

$ dsconfig set-connection-handler-prop \
  --handler-name "HTTPS Connection Handler" \
  --set use-correlation-id-header:true

• To disable correlation ID support for the HTTPS Connection Handler:

$ dsconfig set-connection-handler-prop \
  --handler-name "HTTPS Connection Handler" \
  --set use-correlation-id-header:false

Configuring the correlation ID response header
• The server will generate a correlation ID for every HTTP request and send it in the response through the

Correlation-Id response header. This response header name can be customized. The following example
changes the correlation-id-response-header property to "X-Request-Id."

$ dsconfig set-connection-handler-prop \
   --handler-name "HTTPS Connection Handler" \
   --set correlation-id-response-header:X-Request-Id

Accepting an incoming correlation ID from the request



PingDirectory | Configuring the Directory Proxy Server | 99

• By default, the server generates a new, unique correlation ID for each HTTP request, and ignores any correlation
ID that may be set on the request. This can be changed by designating the names of one or more HTTP request
headers that contain an existing correlation ID value. This enables the server to integrate with a larger system
consisting of every servers using correlation IDs.

$ dsconfig set-connection-handler-prop --handler-name "HTTPS Connection
 Handler" \
  --set correlation-id-request-header:X-Request-Id \
  --set correlation-id-request-header:X-Correlation-Id \
  --set correlation-id-request-header:Correlation-Id \
  --set correlation-id-request-header:X-Amzn-Trace-Id

HTTP Correlation ID Example Use

In this example, a request to the Directory REST API is made and the correlation ID enables finding HTTP-specific
log messages with LDAP-specific log messages. The response to the API call includes a Correlation-Id header with
the value a54aee33-c6c6-4467-be25-efd1db7a8b76.

GET /directory/v1/me?includeAttributes=mail HTTP/1.1
 Accept: */*
 Accept-Encoding: gzip, deflate
 Authorization: Bearer ...
 Connection: keep-alive
 Host: localhost:1443
 User-Agent: HTTPie/0.9.9
    
 HTTP/1.1 200 OK
 Content-Length: 266
 Content-Type: application/hal+json
 Correlation-Id: ee919049-6710-4594-9c66-28b4ada4b127
 Date: Fri, 02 Nov 2018 15:16:50 GMT
 Request-Id: 369
   
 {
      "_dn": "uid=user.86,ou=People,dc=example,dc=com",
      "_links": {
         "schemas": [
            {
              "href": "https://localhost:1443/directory/v1/schemas/
inetOrgPerson"
            }
         ],
         "self": {
              "href": "https://localhost:1443/directory/v1/
uid=user.86,ou=People,dc=example,dc=com"
         }
     },
     "mail": [
         "user.86@example.com"
     ]
 }

This correlation ID can be used to search the HTTP trace log for matching log records, as follows:

$  grep 'correlationID="ee919049-6710-4594-9c66-28b4ada4b127"'
 PingDirectory/logs/debug-trace
 [02/Nov/2018:10:16:50.294 -0500] HTTP REQUEST requestID=369
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127" product="Ping Identity
 Directory Server" instanceName="ds1" startupID="W9ikqA==" threadID=52358
 from=[0:0:0:0:0:0:0:1]:58918 method=GET url="https://0:0:0:0:0:0:0:1:1443/
directory/v1/me?includeAttributes=mail"



PingDirectory | Configuring the Directory Proxy Server | 100

 [02/Nov/2018:10:16:50.526 -0500] DEBUG ACCESS-TOKEN-VALIDATOR-PROCESSING
 requestID=369 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 msg="Identity Mapper with DN 'cn=User ID Identity Mapper,cn=Identity
 Mappers,cn=config' mapped ID 'user.86' to entry DN
 'uid=user.86,ou=people,dc=example,dc=com'"
 [02/Nov/2018:10:16:50.526 -0500] DEBUG ACCESS-TOKEN-VALIDATOR-PROCESSING
 requestID=369 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 accessTokenId="201811020831" msg="Token Validator 'Mock Access Token
 Validator' validated access token with active = 'true', sub = 'user.86',
 owner = 'uid=user.86,ou=people,dc=example,dc=com', clientId = 'client1',
 scopes = 'ds', expiration = 'none', not-used-before = 'none', current time
 = 'Nov 2, 2018 10:16:50 AM CDT' "
 [02/Nov/2018:10:16:50.531 -0500] HTTP RESPONSE requestID=369
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 accessTokenId="201811020831" product="Ping Identity Directory Server"
 instanceName="ds1" startupID="W9ikqA==" threadID=52358 statusCode=200
 etime=236.932 responseContentLength=266
 [02/Nov/2018:10:16:50.531 -0500] DEBUG HTTP-FULL-REQUEST-AND-RESPONSE
 requestID=369 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 accessTokenId="201811020831" product="Ping Identity Directory
 Server" instanceName="ds1" startupID="W9ikqA==" threadID=52358
 from=[0:0:0:0:0:0:0:1]:58918 method=GET url="https://0:0:0:0:0:0:0:1:1443/
directory/v1/me?includeAttributes=mail" statusCode=200 etime=236.932
 responseContentLength=266 msg="

The LDAP log messages associated with this request can also be located:

$  grep 'correlationID="ee919049-6710-4594-9c66-28b4ada4b127"'
 PingDirectory/logs/access
 [02/Nov/2018:10:16:50.529 -0500] SEARCH RESULT instanceName="ds1"
 threadID=52358 conn=-371045 op=1657393 msgID=1657394
 origin="Directory REST API" httpRequestID="369"
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 authDN="uid=user.86,ou=people,dc=example,dc=com" requesterIP="internal"
 requesterDN="uid=user.86,ou=People,dc=example,dc=com"
 requestControls="1.3.6.1.4.1.30221.2.5.2" via="app='PingDirectory-
ds1' clientIP='0:0:0:0:0:0:0:1' sessionID='201811020831'
 requestID='ee919049-6710-4594-9c66-28b4ada4b127'"
 base="uid=user.86,ou=people,dc=example,dc=com" scope=0 filter="(&)"
 attrs="mail,objectClass" resultCode=0 resultCodeName="Success" etime=0.684
 entriesReturned=1
 [02/Nov/2018:10:16:50.530 -0500] EXTENDED RESULT
 instanceName="ds1" threadID=52358 conn=-371046 op=1657394
 msgID=1657395 origin="Directory REST API" httpRequestID="369"
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 authDN="cn=Internal Client,cn=Internal,cn=Root DNs,cn=config"
 requesterIP="internal" requesterDN="cn=Internal Client,cn=Internal,cn=Root
 DNs,cn=config" requestControls="1.3.6.1.4.1.30221.2.5.2"
 via="app='PingDirectory-ds1' clientIP='0:0:0:0:0:0:0:1'
 sessionID='201811020831' requestID='ee919049-6710-4594-9c66-28b4ada4b127'"
 requestOID="1.3.6.1.4.1.30221.1.6.1" requestType="Password
 Policy State" resultCode=0 resultCodeName="Success"
 etime=0.542 usedPrivileges="bypass-acl,password-reset"
 responseOID="1.3.6.1.4.1.30221.1.6.1" responseType="Password Policy State"
 dn="uid=user.86,ou=People,dc=example,dc=com"
 [02/Nov/2018:10:16:50.530 -0500] SEARCH RESULT instanceName="ds1"
 threadID=52358 conn=-371048 op=1657397 msgID=1657398
 origin="Directory REST API" httpRequestID="369"
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127" authDN="cn=Internal
 Client,cn=Internal,cn=Root DNs,cn=config" requesterIP="internal"
 requesterDN="cn=Internal Client,cn=Internal,cn=Root DNs,cn=config"
 requestControls="1.3.6.1.4.1.30221.2.5.2" via="app='PingDirectory-
ds1' clientIP='0:0:0:0:0:0:0:1' sessionID='201811020831'



PingDirectory | Configuring the Directory Proxy Server | 101

 requestID='ee919049-6710-4594-9c66-28b4ada4b127'" base="cn=Default Password
 Policy,cn=Password Policies,cn=config" scope=0 filter="(&)" attrs="ds-
cfg-password-attribute" resultCode=0 resultCodeName="Success" etime=0.065
 preAuthZUsedPrivileges="bypass-acl,config-read" entriesReturned=1

Configuring Proxy Transformations
The PingDirectoryProxy Server provides proxy transformations to alter the contents of client requests as they are sent
from the client to the LDAP external server. Proxy transformations can also be used to alter the responses sent back
from the server to the client, including altering or omitting search result entries. The Directory Proxy Server provides
the following types of data transformations:

• Attribute mapping. This transformation rewrites client requests so that references to one attribute type may
be replaced with an alternate attribute type. The Directory Proxy Server can perform extensive replacements,
including attribute names used in DNs and attribute names encoded in the values of a number of different controls
and extended operations. For example, a client requests a userid attribute, which is replaced with uid before
being forwarded on to the backend server. This mapping applies in reverse for the response returned to the client.

• Default value. This transformation instructs the Directory Proxy Server to include a static attribute value in search
results being sent back to the client, in ADD requests being forwarded to an external server, or both. For example,
a value of "marketing" for businessCategory could be returned for all search results under the base DN
ou=marketing,dc=example,dc=com.

• DN mapping. This transformation rewrites client requests so that references to entries below a specified DN will
be mapped to appear below another DN. For example, references to entries below o=example.com could be
rewritten so that they are below dc=example,dc=com instead. The mapping applies in reverse for the response
returned to the client.

• Groovy scripted. This custom transformation is written in Groovy and does not need to be compiled, though they
use the Server SDK. These scripts make it possible to alter requests and responses in ways not available using the
transformations provided with the Directory Proxy Server.

• Suppress attribute. This proxy transformation allows you to exclude a specified attribute from search result
entries. It also provides the ability to reject add, compare, modify, modify DN, or search requests if they attempt to
reference the target attribute.

• Suppress entry. This proxy transformation allows you to exclude any entries that match a specified filter from a
set of search results. Search requests are transformed so that the original filter will be ANDed with a NOT filter
containing the exclude filter. For example, if the suppression filter is "(objectClass=secretEntry)",
then a search request with a filter of "(uid=john.doe)" will be transformed so that it has a filter of
"(&(uid=john.doe)(!(objectClass=secretEntry)))".

• Simple to external bind. This proxy transformation may be used to intercept a simple bind request and instead
process the bind as a SASL EXTERNAL bind. If the SASL EXTERNAL bind fails, then the original simple bind
request may or may not be processed, depending on how you configure the server.

• Third-party scripted. This custom transformation is created using the Server SDK, making it possible to alter
requests and responses in ways not available using the transformations provided with the Directory Proxy Server.

To Configure Proxy Transformations Using dsconfig

1. Use the dsconfig tool to create and configure a proxy transformation.

$ bin/dsconfig

2. Enter the connection parameters (for example, hostname, port, bind DN and bind DN password).
3. In the Directory Proxy Server main menu, enter the number associated with proxy transformations. On the Proxy

Transformation menu, enter the number to create a new proxy transformation.
4. Select the type of proxy transformation you want to create. In this example, we create an attribute mapping

transformation. Then, enter a name for the new transformation.

 >>>> Enter a name for the Attribute Mapping Proxy Transformation that you
want to create: userid-to-uid



PingDirectory | Configuring the Directory Proxy Server | 102

5. Indicate whether you want the transformation to be enabled by default.

Select a value for the 'enabled' property:

  1) true
  2) false

  ?) help
  c) cancel
  q) quit

Enter choice [c]: 1

6. Specify the name of the client attribute that you want to remap to a target attribute. Note that this attribute must
not be equal to the target attribute.

Enter a value for the 'source-attribute' property: userid

7. Specify the name of the target attribute to which the client attribute should be mapped.

Enter a value for the 'target-attribute' property: uid

8. The properties of your new proxy transformation are displayed. If you want to make any further modifications,
enter the number corresponding to the property. Enter f to finish the creation of the proxy transformation.

Enter choice [b]: f

The transformation now needs to be assigned to a request processor. To create an initial request processor, see the
next section.

Configuring Request Processors
A request processor is responsible for handling client requests by passing the request through a load-balancing
algorithm or one or more subordinate request processors. The request processor is also the Directory Proxy Server
component that performs proxy transformations. You can create one of the following types of request processors:

• Proxying request processor. This request processor is responsible for passing allowed operations through a load
balancing algorithm. Proxy transformations can be applied to requests and responses that are processed. Multiple
servers may be configured to provide high availability and load balancing, and various transformations may be
applied to the requests and responses that are processed.

• Entry-balancing request processor. This request processor is used to distribute entries under a common parent
entry among multiple backend sets. A backend set is a collection of replicated directory servers that contain
identical portions of the data. This request processor uses multiple, subordinate proxying request processors
to process operations and maintains in-memory indexes to speed the processing of specific search and modify
operations.

• Failover request processor. This request processor performs ordered failover between subordinate proxying
processors, sometimes with different behavior for different types of operations.

To Configure Request Processors Using dsconfig

1. Use the dsconfig tool to create and configure a request processor.

$ bin/dsconfig

2. Specify the hostname, connection method, port number, and bind DN as described in previous procedures.
3. In the Directory Proxy Server main menu, enter the number associated with Request Processor configuration and

select the option to create a new Request Processor.
4. Select an existing request processor to use as a template for creating a new one or enter n to create one from

scratch. In this example, we create a new proxying request processor from scratch. You will be required to choose



PingDirectory | Configuring the Directory Proxy Server | 103

an existing load balancing algorithm or create a new one to complete the create of the request processor. Below is
the configuration of the proxying request processor after selection of the load balancing algorithm.

Property                     Value(s)
--------------------------------------------------------------
1)  description              -
2)  enabled                  true
3)  allowed-operation        abandon, add, bind, compare, delete,
                             extended, modify, modify-dn, search
4)  load-balancing-algorithm dc_example_dc_com-fewest-operations
5)  transformation           -
6)  referral-behavior        pass-through
7)  supported-control        account-usable, assertion,
                             authorization-identity,
                             get-authorization-entry,
                             get-effective-rights, get-server-id,
                             ignore-no-user-modification,
                             intermediate-client, manage-dsa-it,
                             matched-values, no-op, password-policy,
                             permissive-modify, post-read, pre-read,
                             proxied-authorization-v1,
                             proxied-authorization-v2,
                             real-attributes-only, retain-identity,
                             subentries, subtree-delete,
                             virtual-attributes-only
8)  supported-control-oid    -

?)  help
f)  finish - create the new Proxying Request Processor
d)  display the equivalent dsconfig arguments to create this object
b)  back
q)  quit

5. Review the configuration properties of the new request processor. If you are satisfied, enter f to finish. For the
request processor to be used, it must be associated with a subtree view.

To Pass LDAP Controls with the Proxying Request Processor

If your deployment does not use entry balancing and requires the use of LDAP controls not defined in the request
processor's supported-control property, configure the Directory Proxy Server to forward these controls correctly. This
is done by configuring the supported-control-oid property to define the request OID of the LDAP control.
The Directory Proxy Server updates the root DSE supportedControl attribute with the values entered for the
supported-control-oid property.

Configuring Server Affinity
The Directory Proxy Server supports the ability to forward a sequence of requests to the same external server if
specific conditions are met. This feature, called server affinity, is applied by the load balancing algorithms. The
following server affinity methods are available in the Directory Proxy Server:

• Client Connection. Requests from the same Directory Proxy Server client connection are consistently routed to
the same external server.

• Client IP. Directory Proxy Server client requests coming from the same client IP address are routed to the same
external server.

• Bind DN. Requests from all client connections authenticated as the same bind DN are routed to the same external
server.

For each algorithm, you can specify the set of operations for which an affinity will be established, as well as the set
of operations for which affinity will be used. Affinity assignments have a time-out value so that they are in effect for
some period of time after the last operation that may cause the affinity to be set or updated.



PingDirectory | Configuring the Directory Proxy Server | 104

To Configure Server Affinity

In this example, we create a bind DN server affinity provider for any client requesting write operations to have
subsequent requests, whether read or write, forwarded to the same external server. The affinity period will last for 30
seconds after the last write request.

1. Use the dsconfig tool to configure server affinity. Specify the hostname, connection method, port number, and
bind DN as described in previous procedures.

$ bin/dsconfig

2. In the Directory Proxy Server main menu, enter the number associated with server affinity provider configuration
3. On the Server Affinity menu, enter the number corresponding to creating a new server affinity provider.
4. Enter a name for your new server affinity provider.

>>>> Enter a name for the Bind DN Server Affinity Provider 
that you want to create: Affinity for Writing Applications   

5. Indicate whether you want the server affinity provider to be enabled for use by the Directory Proxy Server. In this
example, enter 1 to enable to the server affinity provider.

6. Next, configure the properties of the server affinity provider. For example, you can customize the types of
operations for which affinity may be set and the types of operations for which affinity may be used, as well as the
length of time for which the affinity should persist. This example illustrates the properties of the bind DN server
affinity provider.

>>>> >>>> Configure the properties of the Bind DN Server Affinity Provider

        Property                  Value(s)
        ----------------------------------------------------------
    1)  description               -
    2)  enable                    true
    3)  affinity-duration         30 s     
    4)  set-affinity-operation    add, delete, modify, modify-dn
    5)  use-affinity-operation    add, bind, compare, delete, modify,
                                  modify-dn, search

    ?)  help
    f)  finish - create the new Bind DN Server Affinity Provider
    d)  display the equivalent dsconfig arguments to create this object
    b)  back
    q)  quit

Enter choice [b]:

7. Review the properties of the server affinity provider. If you are satisfied, enter f to finish. Once defined, the
affinity provider can now be assigned to a load balancing algorithm.

Configuring Subtree Views
You provide clients access to a specific portion of the DIT creating a subtree view and assigning it to a client
connection policy. You can configure subtree views from the command line or using the Administrative Console.

When you create a subtree view, you provide the following information to configure its properties:

• Subtree view name
• Base DN managed by the subtree view
• Request processor used by the subtree view to route requests. If one does not exist already, you will create a new

one.



PingDirectory | Configuring the Directory Proxy Server | 105

To Configure Subtree View

1. Use dsconfig to configure a subtree view.
2. In the Directory Proxy Server main menu, enter the number associated with subtree view configuration
3. In the Subtree View menu, enter the number corresponding to creating a new subtree view.
4. Enter a name for the subtree view.
5. Enter the base DN of the subtree managed by this subtree view.

Enter a value for the ‘base-dn’ property:dc=example,dc=com

6. Select a request processor for this subtree view to route requests or make the appropriate selection to create a new
one.

Select a Request Processor for the ‘request-processor’ property:

1) dc_example_dc_com-req-processor
2) Create a new Request Processor

?) help
c) cancel
q) quit

Enter choice [c]: 1  

7. Review the properties of the subtree view. If you are satisfied, enter f to finish.

>>>> Configure the properties of the Subtree View
 >>>> via creating 'example.com' Subtree View

        Property           Value(s)
        --------------------------------------------------
    1)  description        -
    2)  base-dn            "dc=example,dc=com"
    3)  request-processor  dc_example_dc_com-req-processor

    ?)  help
    f)  finish - create the new Subtree View
    d)  display the equivalent dsconfig arguments to create 
        this object
    b)  back
    q)  quit

Once configured, you can assign one or more subtree views to any client connection policies.

Configuring Client Connection Policies
Client connection policies help distinguish what portions of the DIT the client can access. They also enforce
restrictions on what clients can do in the server. A client connection policy specifies criteria for membership
based on information about the client connection, including client address, protocol, communication security, and
authentication state and identity. The client connection policy, however, does not control membership based on the
type of request being made.

Every client connection is associated with exactly one client connection policy at any given time, which is assigned to
the client when the connection is established. The choice of which client connection policy to use will be reevaluated
when the client attempts a bind to change its authentication state or uses the StartTLS extended operation to convert
an insecure connection to a secure one. Any changes you make to the client connection policy do not apply to existing
connections. The changes only apply to new connections.



PingDirectory | Configuring the Directory Proxy Server | 106

Client connections are always unauthenticated when they are first established. If you plan to configure a policy based
on authentication, you must define at least one client connection policy with criteria that match unauthenticated
connections.

Once a client has been assigned to a policy, you can determine what operations they can perform. For example,
your policy might allow only SASL bind operations. Client connection policies are also associated with one or
more subtree views, which determine the portions of the DIT a particular client can access. For example, you might
configure a policy that prevents users connecting over the extranet from accessing configuration information. The
client connection policy is evaluated in addition to access control, so even a root user connecting over the extranet
would not have access to the configuration information.

Understanding the Client Connection Policy

Client connection policies are based on two things:

• Connection criteria. The connection criteria are used in many areas within the server. They are used by the
client connection policies, but they can also be used in other instances when the server needs to perform matching
based on connection-level properties, such as filtered logging. A single connection can match multiple connection
criteria definitions.

• Evaluation order index. If multiple client connection policies are defined in the server, then each of them must
have a unique value for the evaluation-order-index property. The client connection policies are evaluated in
order of ascending evaluation order index. If a client connection does not match the criteria for any defined client
connection policy, then that connection will be terminated.

If the connection policy matches a connection, then the connection is assigned to that policy and no further evaluation
occurs. If, after evaluating all of the defined client connection policies, no match is found, the connection is
terminated.

When a Client Connection Policy is Assigned

A client connection policy can be associated with a client connection at the following times:

• When the connection is initially established. This association occurs exactly once for each client connection.
• After completing processing for a StartTLS operation. This association occurs at most once for a client

connection, because StartTLS cannot be used more than once on a particular connection. You also may not stop
using StartTLS while keeping the connection active.

• After completing processing for a bind operation. This association occurs zero or more times for a client
connection, because the bind request can be processed many times on a given connection.

StartTLS and bind requests will be subject to whatever constraints are defined for the client connection policy that
is associated with the client connection at the time that the request is received. Once they have completed, then
subsequent operations will be subject to the constraints of the new client connection policy assigned to that client
connection. This policy may or may not be the same client connection policy that was associated with the connection
before the operation was processed. That is, any policy changes do not apply to existing connections and will be
applicable when the client reconnects.

All other types of operations will be subject to whatever constraints are defined for the client connection policy used
by the client connection at the time that the request is received. The client connection policy assigned to a connection
never changes as a result of processing any operation other than a bind or StartTLS. So, the server will not re-evaluate
the client connection policy for the connection in the course of processing an operation. For example, the client
connection policy will never be re-evaluated for a search operation.

Restricting the Type of Search Filter Used by Clients

You can restrict the types of search filters that a given client may be allowed to use to prevent the use of potentially
expensive filters, like range or substring searches. You can use the allowed-filter-type property to provide
a list of filter types that may be included in the search requests from clients associated with the client connection
policy. This setting will only be used if search is included in the set of allowed operation types. This restriction will
only be applied to searches with a scope other than baseObject, such as searches with a scope of singleLevel,
wholeSubtree, or subordinateSubtree.



PingDirectory | Configuring the Directory Proxy Server | 107

The minimum-substring-length property can be used to specify the minimum number of non-wildcard
characters in a substring filter. Any attempt to use a substring search with an element containing fewer than this
number of bytes will be rejected. For example, the server can be configured to reject filters like "(cn=a*)" and
"(cn=ab*)", but to allow "(cn=abcde*)". This property setting will only be used if search is included in the
set of allowed operation types and at least one of sub-initial, sub-any, or sub-final is included in the set
of allowed filter types.

There are two primary benefits to enforcing a minimum substring length:

• Allowing very short substrings can require the server to perform more expensive processing. The search requires a
lot more server effort to assemble a candidate entry list for short substrings because the server has to examine a lot
more index keys.

• Allowing very short substrings makes it easier for a client to put together a series of requests to retrieve all the
data from the server (a process known as "trawling"). If a malicious user wants to obtain all the data from the
server, then it is easier to issue 26 requests like "(cn=a*)", "(cn=b*)", "(cn=c*)", ..., "(cn=z*)"
than if the user is required to do something like "(cn=aaaaa*)", "(cn=aaaab*)", "(cn=aaaac*)", ...,
"(cn=zzzzz*)".

Defining Request Criteria

The client connection policy provides several properties that allow you to define the kinds of requests that it can issue.
The required-operation-request-criteria property causes the server to reject any requests that do not
match the referenced request criteria. The prohibited-operation-request-criteria property causes the
server to reject any request that matches the referenced request criteria.

Setting Resource Limits

A client connection policy can specify resource limits, helping to ensure that no single client monopolizes server
resources. The resource limits are applied in addition to any global configuration resource limits. In other words, a
client connection policy cannot grant additional resources beyond what is set in the global configuration. If a client
connection exceeds either a globally-defined limit or a policy limit, then it is terminated.

Note:  The Directory Proxy Server’s global configuration can enforce limits on the number of concurrent
connections that can be established in the following ways:

• Limit the total number of concurrent connections to the server.
• Limit the total number of concurrent connections from the same IP address.
• Limit the total number of concurrent connections authenticated as the same bind DN.

Defining the Operation Rate

You can configure the maximum operation rate for individual client connections as well as collectively for all
connections associated with a client connection policy. If the operation rate limit is exceeded, the Directory Proxy
Server may either reject the operation or terminate the connection. You can define multiple rate limit values, making
it possible to fine tune limits for both a long term average operation rate and short term operation bursts. For example,
you can define a limit of one thousand operations per second and one million operations per day, which works out to
an average of less than twelve operations per second, but with bursts of up to one thousand operations per second.

Rate limit strings should be specified as a maximum count followed by a slash and a duration. The count portion
must contain an integer, and may be followed by a multiplier of k (to indicate that the integer should be interpreted as
thousands), m (to indicate that the integer should be interpreted as millions), or g (to indicate that the integer should
be interpreted as billions). The duration portion must contain a time unit of milliseconds (ms), seconds (s), minutes
(m), hours (h), days (d), or weeks (w), and may be preceded by an integer to specify a quantity for that unit.

For example, the following are valid rate limit strings:

1/s (no more than one operation over a one-second interval)
10K/5h (no more than ten thousand operations over a five-hour interval)
5m/2d (no more than five million operations over a two-day interval)



PingDirectory | Configuring the Directory Proxy Server | 108

You can provide time units in many different formats. For example, a unit of seconds can be signified using s, sec,
sect, second, and seconds.

Client Connection Policy Deployment Example

In this example scenario, we assume the following:

Two external LDAP clients are allowed to bind to the Directory Proxy Server.
Client 1 should be allowed to open only 1 connection to the server.
Client 2 should be allowed to open up to 5 connections to the server.

Defining the Connection Policies

We need to set a per-client connection policy limit on the number of connections that may be associated with a
particular client connection policy. We have to define at least two client connection policies, one for each of the
two clients. Each policy must have different connection criteria for selecting the policy with which a given client
connection should be associated.

Because the criteria is based on authentication, we must create a third client connection policy that applies to
unauthenticated clients, because client connections are always unauthenticated as soon as they are established and
before they have sent a bind request. Plus, clients are not required to send a bind request as their first operation.

Therefore, we define the following three client connection policies:

Client 1 Connection Policy, which only allows client 1, with an evaluation order index of 1.
Client 2 Connection Policy, which only allows client 2, with an evaluation order index of 2.
Unauthenticated Connection Policy, which allows unauthenticated clients, with an evaluation order index of 3.

We define simple connection criteria for the Client 1 Connection Policy and the Client 2 Connection Policy with the
following properties:

The user-auth-type must not include none, so that it will only apply to authenticated client connections.
The included-user-base-dn should match the bind DN for the target user. This DN may be full DN for the
target user, or it may be the base DN for a branch that contains a number of users that you want treated in the same
way.

To create more generic criteria that match more than one user, you could list the DNs of each of the users explicitly
in the included-user-base-dn property. If there is a group that contains all of the pertinent users, then you
could instead use the [all|any|not-all|not-any]-included-user-group-dn property to apply to all
members of that group. If the entries for all of the users match a particular filter, then you could use the [all|any|
not-all|not-any]-included-user-filter property to match them.

How the Policy is Evaluated

Whenever a connection is established, the server associates the connection with exactly one client connection
policy. The server does this by iterating over all of the defined client connection policies in ascending order of the
evaluation order index. Policies with a lower evaluation order index value will be examined before those with a higher
evaluation order index value. The first policy that the server finds whose criteria match the client connection will be
associated with that connection. If no client connection policy is found with criteria matching the connection, then the
connection will be terminated.

So, in our example, when a new connection is established, the server first checks the connection criteria associated
with the Client 1 Connection Policy because it has the lowest evaluation order index value. If it finds that the
criteria do not match the new connection, the server then checks the connection criteria associated with the Client 2
Connection Policy because it has the second lowest evaluation order index. If these criteria do not match, the server
finally checks the connection criteria associated with the Unauthenticated Connection Policy, because it has the
third lowest evaluation order index. It finds a match, so the client connection is associated with the Unauthenticated
Connection Policy.

After the client performs a bind operation to authenticate to the server, then the client connection policies will
be re-evaluated. If client 2 performs the bind, then the Client 1 Connection Policy will not match but the Client
2 Connection Policy will, so the connection will be re-associated with that client connection policy. Whenever a



PingDirectory | Configuring the Directory Proxy Server | 109

connection is associated with a client connection policy, the server will check to see if the maximum number of
client connections have already been associated with that policy. If so, then the newly-associated connection will be
terminated.

For example, Client 1 opens a new connection. Because it is a new connection not yet associated with connection
criteria, it is assigned to the Unauthenticated Connection Policy. Client 1 then sends a bind request. The determination
of whether the bind operation is allowed is made based on the constraints defined in the Unauthenticated Connection
Policy, because it is the client connection policy already assigned to the client connection. Once the bind has
completed, then the server will reevaluate the client connection policy against the connection criteria associated
with Client 1 Connection Policy, because it has the lowest evaluation order index. The associated connection criteria
match, so processing stops and the client connection is assigned to the Client 1 Connection Policy.

Next, Client 2 opens a new connection. Because it is a new connection not yet associated with connection criteria, it
is assigned to the Unauthenticated Connection Policy. When Client 2 sends a bind request, the operation is allowed
based on the constraints defined in the Unauthenticated Connection Policy. Once the bind is complete, the client
connection is evaluated against the connection criteria associated with Client 1 Connection Policy, because it has the
lowest evaluation order index. The associated connection criteria do not match, so the client 2 connection is evaluated
against the connection criteria associated with Client 2 Connection Policy, because it has the next lowest evaluation
order index. The associated connection criteria match, so processing stops and the client connection is assigned to
Client 2 Connection Policy.

Client 1 sends a search request. The Client 1 Connection Policy is used to determine whether the search operation
should be allowed, because this is the client connection policy assigned to the client connection for client 1. The
connection is not reevaluated, before or after processing the search operation.

To Configure a Client Connection Policy Using dsconfig

1. Use the dsconfig tool to create and configure a client connection policy.

$ bin/dsconfig

2. Enter the connection parameters to the server (for example, hostname, connection method, port, bind DN and bind
DN password).

3. In the Directory Proxy Server main menu, enter the number associated with client connection policy
configuration. Then enter the number to create a new client connection policy.

>>>> Client connection policy menu

What would you like to do?

  1) List existing client connection policies
  2) Create a new client connection policy
  3) View and edit an existing client connection policy
  4) Delete an existing client connection policy

  b) back
  q) quit

Enter choice [b]: 2
   

4. Enter n to create a new client connection policy from scratch.

>>>> Select an existing Client Connection Policy to use as a 
template for the new Client Connection Policy configuration or 
‘n’ to create one from scratch:

  1) default

  n) new Client Connection Policy created from scratch 
  c) cancel 
  q) quit       



PingDirectory | Configuring the Directory Proxy Server | 110

5. Enter a name for the new client connection policy.

Enter the 'policy-id' for the Client Connection Policy that you             
       
want to create: new_policy

6. Indicate whether you want the policy to be enabled by default.

Select a value for the 'enabled' property: 

  1) true
  2) false

  ?) help
  c) cancel
  q) quit

Enter choice [c]: 1

7. Provide a value for the evaluation-order-index property. Client connection policies with a lower index
will be evaluated before those with a higher index.

Enter a value for the 'evaluation-order-index' property: 2     

8. The properties of your new client connection policy are displayed. If you want to make any further modifications,
enter the number corresponding to the property. Enter f to finish the creation of the client connection policy.

Any changes that you make to the client connection policy do not apply to existing connections. They will only
apply to new connections.

Configuring Globally Unique Attributes
The PingDirectoryProxy Server supports a Globally Unique Attributes feature that ensures uniqueness for any
value defined for a set of attributes within a subtree view. You can also configure when the server checks for
attribute conflicts, either prior to any add, modify, or modify DN change request (pre-commit) or after the successful
completion of a change request (post-commit).

About the Globally Unique Attribute Plug-in

The Directory Proxy Server supports a Globally Unique Attribute Plug-in that prevents any value within a defined set
of attributes to appear more than once in any entry for one or more subtree views. Administrators can also configure
whether conflict validation should be checked before an add, modify, or modify DN request to one or more backend
servers or after the change has successfully completed.

For example, if the pre-commit-validation property is enabled, the Globally Unique Attribute Plugin
performs one or more searches to determine whether any entries conflict with the change (i.e., add, modify, or
modify DN). If a conflict is detected, then the change request will be rejected. If the post-commit-validation
property is enabled, after the change has been processed, the server performs one or more searches to determine
if a conflict was created in multiple servers at the same time. If a conflict is detected in this manner, then an
administrative alert will be generated to notify administrators of the problem so that they can take any manual
corrective action.

Note:  The Globally Unique Attribute plug-in will attempt to detect and/or prevent unique attribute conflicts
for changes processed through this Directory Proxy Server, but it cannot detect conflicts introduced by
changes applied by clients communicating directly with backend servers.

We recommend that the Unique Attribute plug-in be enabled for all backend servers with the same
configuration, so that conflicts can be detected within individual backend server instances. However, the
Unique Attribute plug-in alone may not be sufficient for cases in which the content is split across multiple
sets of servers (e.g., in an entry-balanced environment or in proxy configurations with different branches on
different servers).



PingDirectory | Configuring the Directory Proxy Server | 111

The LDAP SDK uniqueness request control can be used for enforcing
uniqueness on a per-request basis. See the LDAP SDK documentation and the
com.unboundid.ldap.sdk.unboundidds.controls.UniquenessResponseControl class
for using the control. See the ASN.1 specification to implement support for it in other APIs.

In general, note the following points about pre-commit validation versus post-commit validation:

• Pre-commit validation is the only mechanism that can try to prevent conflicts. It will increase the processing time
for add, modify, and modify DN operations because the necessary searches to look for conflicts happen before the
update request is forwarded to any backend servers.

• Post-commit validation will only let you know (via administrative alert) about conflicts that already exist in the
data. It can't prevent conflicts, but can allow you to deal with them in a timely manner. It also operates during the
post-response phase, so it won't affect the processing time for the associated write operation.

• In most cases, pre-commit validation should be sufficient to prevent conflicts, although we recommend that you
periodically run the identify-unique-attribute-conflicts tool to find any conflicts that may have
arisen. If you want to mitigate any risks due to conflicts being generated by concurrent operations in different
servers, then using both pre-commit-validation and post-commit-validation properties provides
the best combination of preventing most conflicts in advance, and detecting and alerting about conflicts that arise
from concurrent writes.

For more detailed information about the plug-in, see the Directory Proxy Server Reference (HTML)

To Configure the Globally Unique Attribute Plug-in

The following example shows how to configure the Globally Unique Attribute plug-in. The example defines an
attribute set consisting of the telephoneNumber and mobile attributes within the "test-view" subtree view.
The multiple-attribute-behavior property determines the scope of how attributes may differ among
entries and is the same property for the Directory Server plug-in. The property is set to unique-across-all-
attributes-including-in-same-entry, which indicates that the telephone and mobile attributes
must be unique throughout the subtree view, even within an entry. The pre-commit-validation property
ensures that the Globally Unique Attribute Plugin performs one or more searches to determine whether any entries
conflict with the change (i.e., add, modify, or modify DN). If a conflict is detected, then the change request will be
rejected.

Note that all configured attributes should be indexed for equality in all backend servers.

• Run dsconfig to create the Globally Unique Attribute plug-in. The server will check that any add, modify,
or modify DN request does not conflict with any attribute values in the entries. If there is a conflict, the change
request will be rejected.

$ bin/dsconfig create-plugin \
  --plugin-name "Globally-Unique telephone and mobile" \
  --type globally-unique-attribute \
  --set enabled:true \
  --set type:telephoneNumber \
  --set type:mobile \
  --set subtree-view:test-view \
  --set multiple-attribute-behavior:unique-across-all-attributes-including-
in-same-entry \
  --set pre-commit-validation:all-available-backend-servers

Configuring the Global Referential Integrity Plug-in
The PingDirectoryProxy Server supports a global referential integrity plug-in mechanism that maintains DN
references from a specified set of attributes to entries that exist in the server (e.g., between the members values of a
static group and the corresponding user entries). The plug-in intercepts delete and modify DN operations and updates
any references to the target entry. For a delete operation, any references to the target entry are removed. For modify
DN operations, any references to the target entry are updated to reflect the new DN of the entry.



PingDirectory | Configuring the Directory Proxy Server | 112

The plug-in is similar to the Directory Server Referential Integrity Plug-in but does not have an asynchronous
mode. When enabled on the Directory Proxy Server, the client response will be delayed until the referential integrity
processing is complete. For Directory Proxy Server deployments not using entry balancing and using Directory Server
external servers, it is best to instead use the Referential Integrity Plug-in on the Directory Server.

An equality index must be defined on all attributes referenced within the Global Referential Integrity Plug-in across
all external servers.

Sample Global Referential Integrity Plug-in

• Use dsconfig to configure the Global Referential Integrity plug-in. The plug-in ensures that the member,
uniqueMember, and manager attributes maintain their DN references in the defined subtree views. Note that
any attributes for which referential integrity should be maintained should have values which are DNs and should
be indexed for equality in all backend servers.

$ bin/dsconfig create-plugin \
  --plugin-name "Global Referential Integrity" \
  --type global-referential-integrity \
  --set "enabled:true" \
  --set "attribute-type:member" \
  --set "attribute-type:uniqueMember" \
  --set "attribute-type:manager" \
  --set "subtree-view:employee-view" \
  --set "subtree-view:groups-view"

Configuring an Active Directory Server Back-end
Configuring an Active Directory server back-end requires a dsconfig script. The following settings are required for
an Active Directory server:

• verify-credentials-method:bind-on-existing-connections, and authorization-
method:rebind

Active Directory does not support proxy-as. Existing connections must be reused.
• set max-connection-age:5m, and health-check-pooled-connections:true

Active Directory drops idle connections after 15 minutes. The proxy needs to refresh the connection pool in a
shorter interval.

The following example dsconfig script configures two Active Directory servers (AD-SRV1 and AD-SRV2).

dsconfig set-ldap-health-check-prop --check-name "Consume Admin Alerts" \
  --reset use-for-all-servers

dsconfig set-trust-manager-provider-prop \
  --provider-name "Blind Trust" \
  --set enabled:true

dsconfig create-external-server --server-name AD-SRV1 --type active-directory
 \
  --set server-host-name:example.server \
  --set server-port:636 \
  --set bind-dn:cn=ProxyUser,dc=dom-ad2,dc=local \
  --set password:password --set connection-security:ssl \
  --set key-manager-provider:Null --set trust-manager-provider:"Blind Trust" \
  --set authorization-method:rebind \
  --set verify-credentials-method:bind-on-existing-connections \
  --set max-connection-age:5m \
  --set health-check-pooled-connections:true



PingDirectory | Configuring the Directory Proxy Server | 113

dsconfig create-external-server --server-name AD-SRV2 --type active-directory
 \
  --set server-host-name:example.server \
  --set server-port:636 \
  --set bind-dn:cn=ProxyUser,dc=dom-ad2,dc=local \
  --set password:password \
  --set connection-security:ssl \
  --set key-manager-provider:Null \
  --set trust-manager-provider:"Blind Trust" \
  --set authorization-method:rebind \
  --set verify-credentials-method:bind-on-existing-connections \
  --set max-connection-age:5m \
  --set health-check-pooled-connections:true

dsconfig create-load-balancing-algorithm --algorithm-name AD-LBA \
  --type fewest-operations \
  --set enabled:true \
  --set backend-server:AD-SRV1 \
  --set backend-server:AD-SRV2 \
  --set use-location:false

dsconfig create-request-processor --processor-name AD-Proxy --type proxying \
  --set load-balancing-algorithm:AD-LBA

dsconfig create-subtree-view --view-name AD-View \
  --set base-dn:dc=dom-ad2,dc=local \
  --set request-processor:AD-Proxy

dsconfig set-client-connection-policy-prop --policy-name default \
  --set subtree-view:AD-View



Chapter

4
Managing Access Control

Topics:

• Overview of Access Control
• Working with Targets
• Examples of Common Access

Control Rules
• Validating ACIs Before

Migrating Data
• Migrating ACIs from Sun/Oracle

to PingDirectory Server
• Working with Privileges

The PingDirectoryProxy Server provides a fine-grained access control model
to ensure that users are able to access the information they need, but are
prevented from accessing information that they should not be allowed to see.
It also includes a privilege subsystem that provides even greater flexibility
and protection in many key areas.

This chapter presents the access control model and how it applies to the
Directory Proxy Server.



PingDirectory | Managing Access Control | 116

Overview of Access Control
The access control model uses access control instructions (ACIs), which are stored in the aci operational attribute,
to determine what a user or a group of users can do with a set of entries, down to the attribute level. The operational
attribute can appear on any entry and affects the entry or any subentries within that branch of the directory
information tree (DIT).

Access control instructions specifies four items:

• Resources. Resources are the targeted items or objects that specifies the set of entries and/or operations to which
the access control instruction applies. For example, you can specify access to certain attributes, such as the cn or
userPassword password.

• Name. Name is the descriptive label for each access control instruction. Typically, you will have multiple access
control instructions for a given branch of your DIT. The access control name helps describe its purpose. For
example, you can configure an access control instructions labelled "ACI to grant full access to administrators."

• Clients. Clients are the users or entities to which you grant or deny access. You can specify individual users or
groups of users using an LDAP URL. For example, you can specify a group of administrators using the LDAP
URL: groupdn="ldap:///cn=admins,ou=groups,dc=example,dc=com."

• Rights. Rights are permissions granted to users or client applications. You can grant or deny access to certain
branches or operations. For example, you can grant read or write permission to a telephoneNumber
attribute.

Key Access Control Features

The PingDirectoryProxy Server provides important access control features that provide added security for the
Directory Proxy Server's entries.

Improved Validation and Security

The Directory Proxy Server provides an access control model with strong validation to help ensure that invalid ACIs
are not allowed into the server. For example, the Directory Proxy Server ensures that all access control rules added
over LDAP are valid and can be fully parsed. Any operation that attempts to store one or more invalid ACIs are
rejected. The same validation is applied to ACIs contained in data imported from an LDIF file. Any entry containing a
malformed aci value will be rejected.

As an additional level of security, the Directory Proxy Server examines and validates all ACIs stored in the data
whenever a backend is brought online. If any malformed ACIs are found in the backend, then the server generates an
administrative alert to notify administrators of the problem and places itself in lockdown mode. While in lockdown
mode, the server only allows requests from users who have the lockdown-mode privilege. This action allows
administrators to correct the malformed ACI while ensuring that no sensitive data is inadvertently exposed due to an
access control instruction not being enforced. When the problem has been corrected, the administrator can use the
leave-lockdown-mode tool or restart the server to allow it to resume normal operation.

Global ACIs

Global ACIs are a set of ACIs that can apply to entries anywhere in the server (although they can also be scoped so
that they only apply to a specific set of entries). They work in conjunction with access control rules stored in user data
and provide a convenient way to define ACIs that span disparate portions of the DIT.

In the PingDirectoryProxy Server, global ACIs are defined within the server configuration, in the global-aci
property of configuration object for the access control handler. They can be viewed and managed using configuration
tools like dsconfig and the Administrative Console.

The global ACIs available by default in the PingDirectoryProxy Server include:

• Allow anyone (including unauthenticated users) to access key attributes of the root DSE, including:
namingContexts, subschemaSubentry, supportedAuthPasswordSchemes,
supportedControl, supportedExtension, supportedFeatures, supportedLDAPVersion,
supportedSASLMechanisms, vendorName, and vendorVersion.



PingDirectory | Managing Access Control | 117

• Allow anyone (including unauthenticated users) to access key attributes of the subschema subentry, including:
attributeTypes, dITContentRules, dITStructureRules, ldapSyntaxes, matchingRules,
matchingRuleUse, nameForms, and objectClasses.

• Allow anyone (including unauthenticated users) to include the following controls in requests made to the server:
authorization identity request, manage DSA IT, password policy, real attributes only, and virtual attributes only.

• Allow anyone (including unauthenticated users) to request the following extended operations: get symmetric key,
password modify request, password policy state, StartTLS, and Who Am I?

Access Controls for Public or Private Backends

The PingDirectoryProxy Server classifies backends as either public or private, depending on their intended purpose.
A private backend is one whose content is generated by the Directory Proxy Server itself (for example, the root DSE,
monitor, and backup backends), is used in the operation of the server (for example, the configuration, schema, task,
and trust store backends), or whose content is maintained by the server (for example, the LDAP changelog backend).
A public backend is intended to hold user-defined content, such as user accounts, groups, application data, and device
data.

The PingDirectoryProxy Server access control model also supports the distinction between public backends and
private backends. Many private backends do not allow writes of any kind from clients, and some of the private
backends that do allow writes only allow changes to a specific set of attributes. As a result, any access control
instruction intended to permit or restrict access to information in private backends should be defined as global ACIs,
rather than attempting to add those instructions to the data for that private backend.

General Format of the Access Control Rules

Access control instructions (ACIs) are represented as strings that are applied to one or more entries within the
Directory Information Tree (DIT). Typically, an ACI is placed on a subtree, such as dc=example,dc=com, and
applies to that base entry and all entries below it in the tree. The Directory Proxy Server iterates through the DIT
to compile the access control rules into an internally-used list of denied and allowed targets and their permissable
operations. When a client application, such as ldapsearch, enters a request, the Directory Proxy Server checks
that the user who binds with the server has the necessary access rights to the requested search targets. ACIs are
cumulatively applied, so that a user who may have an ACI at an entry, may also have other access rights available if
ACIs are defined higher in the DIT and are applicable to the user. In most environments, ACIs are defined at the root
of a main branch or a subtree, and not on individual entries unless absolutely required.

Figure 3: ACI

An access control rule has a basic syntax as follows:

 aci : (targets) (version 3.0; acl "name"; permissions bind rules;)



PingDirectory | Managing Access Control | 118

Table 4: Access Control Components

Access Control Component Description

targets Specifies the set of entries and/or attributes to which an access control rule
applies. Syntax: (target keyword = || != expression)

name Specifies the name of the ACI.

permissions Specifies the type of operations to which an access control rule might apply.
Syntax: allow||deny (permission)

bind rules Specifies the criteria that indicate whether an access control rule should apply
to a given requestor. Syntax: bind rule keyword = ||!= expression;. The bind
rule syntax requires that it be terminated with a ";".

Summary of Access Control Keywords

This section provides an overview of the keywords supported for use in the PingDirectoryProxy Server access control
implementation.

Targets

A target expression specifies the set of entries and/or attributes to which an access control rule applies. The
keyword specifies the type of target element. The expression specifies the items that is targeted by the access control
rule. The operator is either the equal ("=") or not-equal ("!="). Note that the "!=" operator cannot be used with
targattrfilters and targetscope keywords. For specific examples on each target keyword, see the section
Working with Targets.

(keyword [=||!=]expression)

The following keywords are supported for use in the target portion of ACIs:

Table 5: Summary of Access Control Target Keywords

Target Keyword Description Wildcards

extop Specifies the OIDs for any extended operations to which the access control
rule should apply.

No

target Specifies the set of entries, identified using LDAP URLs, to which the access
control rule applies.

Yes

targattrfilters Identifies specific attribute values based on filters that may be added to or
removed from entries to which the access control rule applies.

Yes

targetattr Specifies the set of attributes to which the access control rule should apply. Yes

targetcontrol Specifies the OIDs for any request controls to which the access control rule
should apply.

No

targetfilter Specifies one or more search filters that may be used to indicate the set of
entries to which the access control should apply.

Yes

targetscope Specifies the scope of entries, relative to the defined target entries or the
entry containing the ACI fi there is no target, to which the access control rule
should apply.

No

Permissions

Permissions indicate the types of operations to which an access control rule might apply. You can specify if the user
or group of users are allowed or not allowed to carry out a specific operation. For example, you would grant read
access to a targeted entry or entries using "allow (read)" permission. Or you can specifically deny access to the target



PingDirectory | Managing Access Control | 119

entries and/or attributes using the "deny (read)" permission. You can list out multiple permissions as required in the
ACI.

allow (permission1 ...,permission2,...permissionN)

deny (permission1 ...,permission2,...permissionN)

The following keywords are supported for use in the permissions portion of ACIs:

Table 6: Summary of Access Control Permissions

Permission Description

add Indicates that the access control should apply to add operations.

compare Indicates that the access control should apply to compare operations, as well as to search
operations with a base-level scope that targets a single entry.

delete Indicates that the access control should apply to delete operations.

export Indicates that the access control should only apply to modify DN operations in which an entry is
moved below a different parent by specifying a new superior DN in the modify DN request. The
requestor must have the export permission for operations against the entry's original DN. The
requestor must have the import permission for operations against the entry's new superior DN.
For modify DN operations that merely alter the RDN of an entry but keeps it below the same
parent (i.e., renames the entry), only the write permission is required. This is true regardless of
whether the entry being renamed is a leaf entry or has subordinate entries.

import See the description for the export permission.

proxy Indicates that the access control rule should apply to operations that attempt to use an alternate
authorization identity (for example, operations that include a proxied authorization request
control, an intermediate client request control with an alternate authorization identity, or a client
that has authenticated with a SASL mechanism that allows an alternate authorization identify to
be specified).

read Indicates that the access control rule should apply to search result entries returned by the server.

search Indicates that the access control rule should apply to search operations with a non-base scope.

selfwrite Indicates that the access control rule should apply to operations in which a user attempts to add
or remove his or her own DN to the values for an attribute (for example, whether users may add
or remove themselves from groups).

write Indicates that the access control rule should apply to modify and modify DN operations.

all An aggregate permission that includes all other permissions except “proxy.” This is equivalent
to providing a permission of “add, compare, delete, read, search, selfwrite, write, export, and
import.”

Bind Rules

The Bind Rules indicate whether an access control rule should apply to a given requester. The syntax for the target
keyword is shown below. The keyword specifies the type of target element. The expression specifies the items that is
targeted by the access control rule. The operator is either equals ("=") or not-equals ("!="). The semi-colon delimiter
symbol (";") is required after the end of the final bind rule.

keyword [=||!= ] expression;

Multiple bind rules can be combined using boolean operations (AND, OR, NOT) for more access control precision.
The standard Boolean rules for evaluation apply: innermost to outer parentheses first, left to right expressions,
NOT before AND or OR. For example, an ACI that includes the following bind rule targets all users who are not
uid=admin,dc=example,dc=com and use simple authentication.



PingDirectory | Managing Access Control | 120

(userdn!="ldap:///uid=admin,dc=example,dc=com" and authmethod="simple");

The following bind rule targets the uid=admin,dc=example,dc=com and authenticates using SASL
EXTERNAL or accesses the server from a loopback interface.

(userdn="ldap:///uid=admin,dc=example,dc=com and (authmethod="SSL" or
 ip="127.0.0.1"));

The following keywords are supported for use in the bind rule portion of ACIs:

Table 7: Summary of Bind Rule Keywords

Bind Rule
Keyword

Description

authmethod Indicates that the requester’s authentication method should be taken into account when
determining whether the access control rule should apply to an operation. Wildcards are not
allowed in this expression. The keyword’s syntax is as follows:

authmethod  =  method

where method is one of the following representations:

none
simple. Indicates that the client is authenticated to the server using a bind DN and
password.
ssl. Indicates that the client is authenticated with an SSL/TLS certificate (e.g., via SASL
EXTERNAL), and not just over a secure connection to the server.
sasl {sasl_mechanism}. Indicates that the client is authenticated to the server using a
specified SASL Mechanism.

The following example allows users who authenticate with an SSL/TLS certificate (e.g., via
SASL EXTERNAL) to update their own entries:

aci: (targetattr="*")
  (version 3.0; acl "Allow users to update their own entries"; 
   allow (write) (userdn="ldap:///self" and authmethod="ssl");)

dayofweek Indicates that the day of the week should be taken into account when determining whether the
access control rule should apply to an operation. Wildcards are not allowed in this expression.
Multiple day of week values may be separated by commas. The keyword’s syntax is as follows:

dayofweek = day1, day2, ...

where day is one of the following representations:

sun
mon
tues
wed
thu
fri
sat

The following example allows users who authenticate with an SSL/TLS certificate (e.g., via
SASL EXTERNAL) on weekdays to update their own entries:

aci: (targetattr="*")
  (version 3.0; acl "Allow users to update their own entries"; 



PingDirectory | Managing Access Control | 121

Bind Rule
Keyword

Description

   allow (write) (dayofweek!="sun,sat" and userdn="ldap:///
self" 
   and authmethod="ssl");)

dns Indicates that the requester’s DNS-resolvable host name should be taken into account
when determining whether the access control rule should apply to an operation. Wildcards
are allowed in this expression. Multiple DNS patterns may be separated by commas. The
keyword’s syntax is as follows:

dns = dns-host-name

The following example allows users on hostname server.example.com to update their
own entries:

aci: (targetattr="*")
  (version 3.0; acl "Allow users to update their own entries"; 
   allow (write) (dns="server.example.com" and userdn="ldap:///
self");)

groupdn Indicates that the requester’s group membership should be taken into account when
determining whether the access control rule should apply to any operation. Wildcards are not
allowed in this expression.

groupdn [ = || != ] "ldap:///groupdn [ || ldap:///
groupdn ] ..."

The following example allows users in the managers group to update their own entries:

aci: (targetattr="*")
  (version 3.0; acl "Allow users to update their own entries"; 
   allow (write)
   (groupdn="ldap:///
cn=managers,ou=groups,dc=example,dc=com");)

ip Indicates that the requester’s IP address should be taken into account when determining
whether the access control rule should apply to an operation. Wildcards are allowed in this
expression. Multiple IP address patterns may be separated by commas. The keyword’s syntax is
as follows:

ip [ = || != ] ipAddressList

where ipAddressList is one of the following representations:

A specific IPv4 address: 127.0.0.1
An IPv4 address with wildcards to specify a subnetwork: 127.0.0.*
An IPv4 address or subnetwork with subnetwork mask: 123.4.5.0+255.255.255.0
An IPv4 address range using CIDR notation: 123.4.5.0/24
An IPv6 address as defined by RFC 2373.

The following example allows users on 10.130.10.2 and localhost to update their own entries:

aci: (targetattr="*")
  (version 3.0; acl "Allow users to update their own entries"; 
   allow (write) (ip="10.130.10.2,127.0.0.1" and
 userdn="ldap:///self");)



PingDirectory | Managing Access Control | 122

Bind Rule
Keyword

Description

timeofday Indicates that the time of day should be taken into account when determining whether the
access control rule should apply to an operation. Wildcards are not allowed in this expression.
The keyword’s syntax is as follows:

timeofday [ = || != || >= || > || <= || < ] time

where time is one of the following representations:

4-digit 24-hour time format (0000 to 2359, where the first two digits represent the hour of
the day and the last two represent the minute of the hour)
Wildcards are not allowed in this expression

The following example allows users to update their own entries if the request is received before
12 noon.

aci: (targetattr="*")
  (version 3.0; acl "Allow users who authenticate before noon 
    to update their own entries"; 
    allow (write) (timeofday<1200 and userdn="ldap:///self" 
    and authmethod="simple");)

userattr Indicates that the requester’s relation to the value of the specified attribute should be taken
into account when determining whether the access control rule should apply to an operation.
A bindType value of USERDN indicates that the target attribute should have a value which
matches the DN of the authenticated user. A bindType value of GROUPDN indicates that
the target attribute should have a value which matches the DN of a group in which the
authenticated user is a member. A bindType value of LDAPURL indicates that the target
attribute should have a value that is an LDAP URL whose criteria matches the entry for the
authenticated user. Any value other than USERDN, GROUPDN, or LDAPURL is expected to
be present in the target attribute of the authenticated user’s entry. The keyword’s syntax is as
follows:

userattr = attrName# [ bindType || attrValue ]

where:

attrName = name of the attribute for matching
bindType = USERDN, GROUPDN, LDAPURL
attrValue = an attribute value. Note that the attrVALUE of the attribute must match on both
the bind entry and the target of the ACI.

The following example allows a manager to change employee's entries. If the bind DN is
specified in the manager attribute of the targeted entry, the bind rule is evaluated to TRUE.

aci: (targetattr="*")
  (version 3.0; acl "Allow a manager to change employee
 entries"; 
   allow (write) userattr="manager#USERDN";)

The following example allows any member of a group to change employee's entries. If the bind
DN is a member of the group specified in the allowEditors attribute of the targeted entry, the
bind rule is evaluated to TRUE.

aci: (targetattr="*")
  (version 3.0; acl "Allow allowEditors to change employee
 entries"; 
   allow (write) userattr="allowEditors#GROUPDN";)



PingDirectory | Managing Access Control | 123

Bind Rule
Keyword

Description

The following example allows allows a user's manager to edit that user's entry and any entries
below the user's entry up to two levels deep. You can specify up to five levels (0, 1, 2, 3, 4)
below the targeted entry, with zero (0) indicating the targeted entry.

aci: (targetattr="*")
  (version 3.0; acl "Allow managers to change employees entries
 two levels below"; 
    allow (write) userattr="parent[0,1,2].manager#USERDN";)

The following example allows any member of the engineering department to update any other
member of the engineering department at or below the specified ACI.

aci: (targetattr="*")
  (version 3.0; acl "Allow any member of Eng Dept to update any
 other member of the 
   enginering department at or below the ACI"; 
   allow (write) userattr="department#ENGINEERING";)

The following example allows an entry to be updated by any user whose entry matches the
criteria defined in the LDAP URL contained in the allowedEditorCriteria attribute of
the target entry.

aci: (targetattr="*")
  (version 3.0; acl "Allow a user that matches the filter to
 change entries"; 
   allow (write) userattr="allowedEditorCriteria#LDAPURL";)

userdn Indicates that the user’s DN should be taken into account when determining whether the access
control rule should apply to an operation. The keyword’s syntax is as follows:

userdn [ = || != ] "ldap:///value [ || "ldap:///value ..."]

where value is one of the following representations:

The DN of the target user
A value of anyone to match any client, including unauthenticated clients.
A value of all to match any authenticated client.
A value of parent to match the client authenticated as the user defined in the immediate
parent of the target entry.
A value of self to match the client authenticated as the user defined in the target entry.

If the value provided is a DN, then that DN may include wildcard characters to define patterns.
A single asterisk will match any content within the associated DN component, and two
consecutive asterisks may be used to match zero or more DN components.

The following example allows users to update their own entries:

aci: (targetattr="*")
  (version 3.0; acl "Allow users to update their own entries"; 
    allow (write) userdn="ldap:///self";)

Working with Targets
The following section presents a detailed look and examples of the target ACI keywords: target, targetattr,
targetfilter, targattrfilters, targetscope, targetcontrol, and extop.



PingDirectory | Managing Access Control | 124

target

The target keyword indicates that the ACI should apply to one or more entries at or below the specified
distinguished name (DN). The target DN must be equal or subordinate to the DN of the entry in which the ACI is
placed. For example, if you place the ACI at the root of ou=People,dc=example,dc=com, you can target the
DN, uid=user.1,ou=People,dc=example,dc=com within your ACI rule. The DN must meet the string
representation specification of distinguished names, outlined in RFC 4514, and requires that special characters be
properly escaped.

The target clause has the following format, where DN is the distinguished name of the entry or branch:

(target = ldap:///DN)

For example, to target a specific entry, you would use a clause such as the following:

(target = ldap:///uid=john.doe,ou=People,dc=example,dc=com)

Note that, in general, specifying a target DN is not recommended. It is better to have the ACI defined in that
entry and omit the target element altogether. For example, although you can have (target="ldap:///
uid=john.doe,ou=People,dc=example,dc=com) in any of the dc=example,dc=com or ou=People
entries, it is better for it to be defined in the uid=john.doe entry and not explicitly include the target element.

The expression allows for the "not equal" (!=) operator to indicate that all entries within the scope of the given branch
that do NOT match the expression be targeted for the ACI. Thus, the following expression targets all entries within
the subtree that do not match uid=john.doe.

(target != ldap:///uid=john.doe,ou=People,dc=example,dc=com)

The target keyword also supports the use of asterisk (*) characters as wildcards to match elements
within the distinguished name. The following target expression matches all entries that contains and
begins with "john.d, " so that entries like "john.doe,ou=People,dc=example,dc=com," and
"john.davies,ou=People,dc=example,dc=com" would match.

(target = ldap:///uid=john.d*,ou=People,dc=example,dc=com)

The following target expression matches all entries whose DN begins with "john.d," and matches the ou attribute.
Entries like "john.doe,ou=People,dc=example,dc=com," and "john.davies,ou=asia-
branch,dc=example,dc=com" would match.

(target = ldap:///uid=john.d*,ou=*,dc=example,dc=com)

Another example of a complete ACI targets the entries in the ou=People,dc=example,dc=com branch and the
entries below it, and grants the users the privilege to modify all of their user attributes within their own entries.

aci:(target="ldap:///ou=People,dc=example,dc=com")
  (targetattr="*")
  (version 3.0; acl "Allow all the ou=People branch to modify their own
 entries"; 
  allow (write) userdn="ldap:///self";)

targetattr

The targetattr keyword targets the attributes for which the access control instruction should apply. There are
four general forms that it can take in the PingDirectoryProxy Server:

• (targetattr="*"). Indicates that the access control rule applies to all user attributes. Operational attributes will not
automatically be included in this set.

• (targetattr="+"). Indicates that the access control rule applies to all operational attributes. User attributes will not
automatically be included in this set.

• (targetattr="attr1||attr2||attr3||...||attrN"). Indicates that the access control rule applies only to the named set of
attributes.



PingDirectory | Managing Access Control | 125

• (targetattr!="attr1||attr2||attr3||...||attrN"). Indicates that the access control rule applies to all user attributes
except the named set of attributes. It will not apply to any operational attributes.

The targeted attributes can be classified as user attributes and operational attributes. User attributes define the actual
data for that entry, while operational attributes provide additional metadata about the entry that can be used for
informational purposes, such as when the entry was created, last modified and by whom. Metadata can also include
attributes specifying which password policy applies to the user, or overrided default constraints like size limit, time
limit, or look-through limit for that user.

The PingDirectoryProxy Server distinguishes between these two types of attributes in its access control
implementation. The Directory Proxy Server does not automatically grant any access at all to operational attributes.
For example, the following clause applies only to user attributes and not to operational attributes:

(targetattr="*")

You can also target multiple attributes in the entry. The following clause targets the common name (cn), surname (sn)
and state (st) attribute:

(targetattr="cn||sn||st")

You can use the "+" symbol to indicate that the rule should apply to all operational attributes, as follows:

(targetattr="+")

To include all user and all operational attributes, you use both symbols, as follows:

(targetattr="*||+")

If there is a need to target a specific operational attribute rather than all operational attributes, then it can be
specifically included in the values of the targetattr clause, as follows:

(targetattr="ds-rlim-size-limit")

Or if you want to target all user attributes and a specific operational attribute, then you can use them in the
targetattr clause, as follows:

(targetattr="*||ds-rlim-size-limit")

The following ACIs are placed on the dc=example,dc=com tree and allows any user anonymous read access to all
entries except the userPassword attribute. The second ACI allows users to update their own contact information.
The third ACI allows the uid=admin user full access privileges to all user attributes in the dc=example,dc=com
subtree.

aci: (targetattr!="userPassword")(version 3.0; acl "Allow anonymous 
   read access for anyone"; allow (read,search,compare) userdn="ldap:///
anyone";)
aci: (targetattr="telephonenumber||street||homePhone||l||st")
  (version 3.0; acl "Allow users to update their own contact info"; 
   allow (write) userdn="ldap:///self";) 
aci: (targetattr="*")(version 3.0; acl "Grant full access for the admin
 user"; 
  allow (all) userdn="ldap:///uid=admin,dc=example,dc=com";)

An important note must be made when assigning access to user and operational attributes, which can be outlined in
an example to show the implications of the Directory Proxy Server not distinguishing between these attributes. It can
be easy to inadvertently create an access control instruction that grants far more capabilities to a user than originally
intended. Consider the following example:

aci: (targetattr!="uid||employeeNumber")
  (version 3.0; acl "Allow users to update their own entries"; 
    allow (write) userdn="ldap:///self";)



PingDirectory | Managing Access Control | 126

This instruction is intended to allow a user to update any attribute in his or her own entry with the exception of uid
and employeeNumber. This ACI is a very common type of rule and seems relatively harmless on the surface, but
it has very serious consequences for a Directory Proxy Server that does not distinguish between user attributes and
operational attributes. It allows users to update operational attributes in their own entries, and could be used for a
number of malicious purposes, including:

• A user could alter password policy state attributes to become exempt from password policy restrictions.
• A user could alter resource limit attributes and bypass size limit, time limit, and look-through-limit constraints.
• A user could add access control rules to his or her own entry, which could allow them to make their entry

completely invisible to all other users including administrators granted full rights by access control rules, but
excluding users with the bypass-acl privilege, allow them to edit any other attributes in their own entry
including those excluded by rules like uid and employeeNumber in the example above, or add, modify, or
delete any entries below his or her own entry.

Because the PingDirectoryProxy Server does not automatically include operational attributes in the target attribute
list, these kinds of ACIs do not present a security risk for it. Also note that users cannot add ACIs to any entries
unless they have the modify-acl privilege.

Another danger in using the (targetattr!="x") pattern is that two ACIs within the same scope could have two
different targetattr policies that cancel each other out. For example, if one ACI has (targetattr!="cn||
sn") and a second ACI has (targetattr!="userPassword"), then the net effect is (targetattr="*"),
because the first ACI inherently allows userPassword, and the second allows cn and sn.

targetfilter

The targetfilter keyword targets all attributes that match results returned from a filter. The targetfilter
clause has the following syntax:

(targetfilter = ldap_filter)

For example, the following clause targets all entries that contain "ou=engineering" attribue:

(targetfilter = "(ou=engineering)")

You can only specify a single filter, but that filter can contain multiple elements combined with the OR operator. The
following clause targets all entries that contain "ou=engineering," "ou=accounting," and "ou=marketing."

(targetfilter = "(|(ou=engineering)(ou=accounting)(ou=marketing)")

The following example allows the user, uid=eng-mgr, to modify the departmentNumber, cn, and sn
attributes for all entries that match the filter ou=engineering.

aci:(targetfilter="(ou=engineering)")
  (targetattr="departmentNumber||cn||sn")
  (version 3.0; acl "example"; allow (write) 
   userdn="ldap:///uid=eng-mgr,dc=example,dc=com";)

targattrfilters

The targattrfilters keyword targets specific attribute values that match a filtered search criteria. This keyword
allows you to set up an ACI that grants or denies permissions on an attribute value if that value meets the filter
criteria. The targattrfilters keyword applies to individual values of an attribute, not to the whole attribute.
The keyword also allows the use of wildcards in the filters.

The keyword clause has the following formats:

(target = "add=attr1:Filter1 && attr2:Filter2... && attrn:FilterN,
del=attr1:Filter1 && attr2:Filter2 ... && attrN:FilterN" )

where



PingDirectory | Managing Access Control | 127

add represents the operation of adding an attribute value to the entry
del represents the operation of removing an attribute value from the entry
attr1, attr2... attrN represents the targeted attributes
filter1, filter2 ... filterN represents filters that identify matching attribute values

The following conditions determine when the attribute must satisfy the filter:

• When adding or deleting an entry containing an attribute targeted a targattrfilters element, each value of
that attribute must satisfy the corresponding filter.

• When modifying an entry, if the operation adds one or more values for an attribute targeted by a
targattrfilters element, each value must satisfy the corresponding filter. If the operation deletes one or
more values for a targeted attribute, each value must satisfy the corresponding filter.

• When replacing the set of values for an attribute targeted by a targattrfilters element, each value removed
must satisfy the delete filters, and each value added must satisfy the add filters.

The following example allows any user who is part of the cn=directory server admins group to add the
soft-delete-read privilege.

aci:(targattrfilter="add=ds-privilege-name:(ds-privilege-name=soft-delete-
read)")
  (version 3.0; acl "Allow members of the directory server admins group to
 grant the
   soft-delete-read privilege"; allow (write) 
   groupdn="ldap:///cn=directory server admins,ou=group,dc=example,dc=com";)

targetscope

The targetscope keyword is used to restrict the scope of an access control rule. By default, ACIs use a subtree
scope, which means that they are applied to the target entry (either as defined by the target clause of the ACI, or
the entry in which the ACI is define if it does not include a target), and all entries below it. However, adding the
targetscope element into an access control rule can restrict the set of entries to which it applies.

The following targetscope keyword values are allowed:

• base. Indicates that the access control rule should apply only to the target entry and not to any of its subordinates.
• onelevel. Indicates that the access control rule should apply only to entries that are the immediate children of the

target entry and not to the target entry itself, nor to any subordinates of the immediate children of the target entry.
• subtree. Indicates that the access control rule should apply to the target entry and all of its subordinates. This is

the default behavior if no targetscope is specified.
• subordinate. Indicates that the access control rule should apply to all entries below the target entry but not the

target entry itself.

The following ACI targets all users to view the operational attributes (supportedControl,
supportedExtension, supportedFeatures, supportedSASLMechanisms, vendorName, and
vendorVersion) present in the root DSE entry. The targetscope is base to limit users to view only those
attributes in the root DSE.

aci: (target="ldap:///")(targetscope="base")
    (targetattr="supportedControl||supportedExtension||
     supportedFeatures||supportedSASLMechanisms||vendorName||vendorVersion")
    (version 3.0; acl "Allow users to view Root DSE Operational Attributes";
     allow (read,search,compare) userdn="ldap:///anyone")

targetcontrol

The targetcontrol keyword is used to indicate whether a given request control can be used by those users
targeted in the ACI. Multiple OIDs can be provided by separating them with the two pipe characters (optionally
surrounded by spaces). Wildcards are not allowed when specifying control OIDs.



PingDirectory | Managing Access Control | 128

The following ACI example shows the controls required to allow an administrator to use and manage the Soft-Delete
feature. The Soft Delete Request Control allows the user to soft-delete an entry, so that it could be undeleted at a later
time. The Hard Delete Request Control allows the user to permanently remove an entry or soft-deleted entry. The
Undelete Request Control allows the user to undelete a currently soft-deleted entry. The Soft-Deleted Entry Access
Request Control allows the user to search for any soft-deleted entries in the server.

aci: (targetcontrol="1.3.6.1.4.1.30221.2.5.20||1.3.6.1.4.1.30221.2.5.22||
   1.3.6.1.4.1.30221.2.5.23||1.3.6.1.4.1.30221.2.5.24")
  (version 3.0; acl "Allow admins to use the Soft Delete Request Control, 
   Hard Delete Request Control,Undelete Request Control, and 
   Soft-deleted entry access request control"; 
   allow (read) userdn="ldap:///uid=admin,dc=example,dc=com";)

extOp

The extop keyword can be used to indicate whether a given extended request operation can be used. Multiple OIDs
can be provided by separating them with the two pipe characters (optionally surrounded by spaces). Wildcards are not
allowed when specifying extended request OIDs.

The following ACI allows the uid=user-mgr to use the Password Modify Request (i.e.,
OID=1.3.6.1.4.1.4203.1.11.1) and the StartTLS (i.e., OID=1.3.6.1.4.1.1466.20037) extended request OIDs.

aci:(extop="1.3.6.1.4.1.4203.1.11.1 || 1.3.6.1.4.1.1466.20037")
  (version 3.0; acl "Allows the mgr to use the Password Modify Request and
 StartTLS;
   allow(read) userdn="ldap:///uid=user-mgr,ou=people,dc=example,dc=com";)

Examples of Common Access Control Rules
This section provides a set of examples that demonstrate access controls that are commonly used in your environment.
Note that to be able to alter access control definitions in the server, a user must have the modify-acl privilege as
discussed later in this chapter.

Administrator Access

The following ACI can be used to grant any member of the "cn=admins,ou=groups,dc=example,dc=com"
group to add, modify and delete entries, reset passwords and read operational attributes such as isMemberOf and
password policy state:

aci: (targetattr="+")(version 3.0; acl "Administrators can read, search or
 compare operational attributes";
allow (read,search,compare) groupdn="ldap:///
cn=admins,ou=groups,dc=example,dc=com";)
aci: (targetattr="*")(version 3.0; acl "Administrators can add, modify and
 delete entries";
allow (all) groupdn="ldap:///cn=admins,ou=groups,dc=example,dc=com";)

Anonymous and Authenticated Access

The following ACI allow anonymous read, search and compare on select attributes of inetOrgPerson entries
while authenticated users can access several more. The authenticated user will inherit the privileges of the anonymous
ACI. In addition, the authenticated user can change userPassword:

aci: (targetattr="objectclass || uid || cn || mail || sn || givenName")
(targetfilter="(objectClass=inetorgperson)")
(version 3.0; acl "Anyone can access names and email addresses of entries
 representing people";
allow (read,search,compare) userdn="ldap:///anyone";)



PingDirectory | Managing Access Control | 129

aci: (targetattr="departmentNumber || manager || isMemberOf")
(targetfilter="(objectClass=inetorgperson)")
(version 3.0; acl "Authenticated users can access these fields for entries
 representing people";
allow (read,search,compare) userdn="ldap:///all";)
aci: (targetattr="userPassword")(version 3.0; acl "Authenticated users can
 change password";
allow (write) userdn="ldap:///all";)
      

If no unauthenticated access should be allowed to the Directory Server, the preferred method for preventing
unauthenticated, or anonymous access is to set the Global Configuration property reject-unauthenticated-
requests to true.

Delegated Access to a Manager

The following ACI can be used to allow an employee's manager to edit the value of the employee's
telephoneNumber attribute. This ACI uses the userattr keyword with a bind type of USERDN, which
indicates that the target entry’s manager attribute must have a value equal to the DN of the authenticated user:

aci: (targetattr="telephoneNumber")
(version 3.0; acl "A manager can update telephone numbers of her direct
 reports";
allow (read,search,compare,write) userattr="manager#USERDN";)
      

Proxy Authorization

The following ACIs can be used to allow the application
"cn=OnBehalf,ou=applications,dc=example,dc=com" to use the proxied authorization v2 control to
request that operations be performed using an alternate authorization identity. The application user is also required to
have the proxied-auth privilege as discussed later in this chapter:

aci: (version 3.0;acl "Application OnBehalf can proxy as another entry";
allow (proxy) userdn="ldap:///cn=OnBehalf,ou=applications,dc=example,dc=com";)

Validating ACIs Before Migrating Data
Many directory servers allow for less restrictive application of their access control instructions, so that they accept
invalid ACIs. For example, if Sun/Oracle encounters an access control rule that it cannot parse, then it will simply
ignore it without any warning, and the server may not offer the intended access protection. Rather than unexpectedly
exposing sensitive data, the PingDirectoryProxy Server rejects any ACIs that it cannot interpret, which ensures data
access is properly limited as intended, but it can cause problems when migrating data with existing access control
rules to a PingDirectoryProxy Server.

To validate an access control instruction, the PingDirectoryProxy Server provides a validate-acis tool in
the bin directory (UNIX or Linux systems) or bat directory (Windows systems) that identifies any ACI syntax
problems before migrating data. The tool can examine access control rules contained in either an LDIF file or an
LDAP directory and write its result in LDIF with comments providing information about any problems that were
identified. Each entry in the output will contain only a single ACI, so if an entry in the input contains multiple ACIs,
then it may be present multiple times in the output, each time with a different ACI value. The entries contained in the
output contains only ACI values, and all other attributes will be ignored.

To Validate ACIs from a File

The validate-acis tool can process data contained in an LDIF file. It will ignore all attributes except aci, and
will ignore all entries that do not contain the aci attribute, so any existing LDIF file that contains access control rules
may be used.



PingDirectory | Managing Access Control | 130

1. Run the bin/validate-acis tool (UNIX or Linux systems) or bat\validate-acis (Win dows systems)
by specifying the input file and output file. If the output file already exists, the existing contents will be re-written.
If no output file is specified, then the results will be written to standard output.

$ bin/validate-acis --ldifFile test-acis.ldif --outputFile validated-
acis.ldif

# Processing complete # Total entries examined: 1 
# Entries found with ACIs: 1 
# Total ACI values found: 3 
# Malformed ACI values found: 0 
# Other processing errors encountered: 0

2. Review the results by opening the output file. For example, the validated-acis.ldif file that was
generated in the previous step reads as follows:

# The following access control rule is valid 
dn: dc=example,dc=com 
aci: (targetattr!="userPassword")
  (version 3.0; acl "Allow anonymous read access for anyone"; 
    allow (read,search,compare) userdn="ldap:///anyone";)

# The following access control rule is valid 
dn: dc=example,dc=com 
aci: (targetattr="*")
  (version 3.0; acl "Allow users to update their own entries"; 
    allow (write) userdn="ldap:///self";)

# The following access control rule is valid
dn: dc=example,dc=com
aci: (targetattr="*")
  (version 3.0; acl "Grant full access for the admin user"; 
    allow (all) userdn="ldap:///uid=admin,dc=example,dc=com";)

3. If the input file has any malformed ACIs, then the generated output file will show what was incorrectly entered.
For example, remove the quotation marks around userPassword in the original test-acis.ldif file,
and re-run the command. The following command uses the --onlyReportErrors option to write any error
messages to the output file only if a malformed ACI syntax is encountered.

$ bin/validate-acis --ldifFIle test-acis.ldif --outputFile validated-
acis.ldif \
  --onlyReportErrors

# Processing complete 
# Total entries examined: 1 
# Entries found with ACIs: 1 
# Total ACI values found: 3 
# Malformed ACI values found: 0 
# Other processing errors encountered: 0

The output file shows the following message:

# The following access control rule is malformed or contains an unsupported 
# syntax: The provided string '(targetattr!=userPassword)(version 3.0; acl 
# "Allow anonymous read access for anyone"; allow (read,search,compare) 
# userdn="ldap:///anyone";)' could not be parsed as a valid Access Control 
# Instruction (ACI) because it failed general ACI syntax evaluation
dn: dc=example,dc=com 
aci: (targetattr!=userPassword)
  (version 3.0; acl "Allow anonymous read access for anyone"; 
    allow (read,search,compare) userdn="ldap:///anyone";)

# The following access control rule is valid 



PingDirectory | Managing Access Control | 131

dn: dc=example,dc=com 
aci: (targetattr="*")
  (version 3.0; acl "Allow users to update their own entries"; 
    allow (write) userdn="ldap:///self";)

# The following access control rule is valid 
dn: dc=example,dc=com 
aci: (targetattr="*")
  (version 3.0; acl "Grant full access for the admin user"; 
    allow (all) userdn="ldap:///uid=admin,dc=example,dc=com";)

To Validate ACIs in Another Directory Proxy Server

The validate-acis tool also provides the ability to examine ACIs in data that exists in another Directory Proxy
Server that you are planning to migrate to the PingDirectoryProxy Server. The tool helps to determine whether the
Ping Identity Server accepts those ACIs.

• To use it in this manner, provide arguments that specify the address and port of the target Directory Proxy Server,
credentials to use to bind, and the base DN of the subtree containing the ACIs to validate.

$ bin/validate-acis

# Processing complete # Total entries examined: 1 
# Entries found with ACIs: 1 
# Total ACI values found: 3 
# Malformed ACI values found: 0 
# Other processing errors encountered: 0

Migrating ACIs from Sun/Oracle to PingDirectory Server
This section describes the most important differences in access control evaluation between Sun/Oracle and the
PingDirectory Server.

Support for Macro ACIs

Sun/Oracle provides support for macros ACIs, making it possible to define a single ACI that can be used to apply
the same access restrictions to multiple branches in the same basic structure. Macros ACIs are infrequently used and
can cause severe performance degradation, so support for macros ACIs is not included in the PingDirectory Server.
However, you can achieve the same result by simply creating the same ACIs in each branch.

Support for the roleDN Bind Rule

Sun/Oracle roles are a proprietary, non-standard grouping mechanism that provide little value over standard grouping
mechanisms. The PingDirectory Server does not support DSEE roles and does not support the use of the roleDN
ACI bind rule. However, the same behavior can be achieved by converting the DSEE roles to standard groups and
using the groupDN ACI bind rule.

Targeting Operational Attributes

The Sun/Oracle access control model does not differentiate between user attributes and operational attributes.
With Sun/Oracle, using targetattr="*" will automatically target both user and operational attributes. Using
an exclusion list like targetattr!="userPassword" will automatically target all operational attributes in
addition to all user attributes except userPassword. This behavior is responsible for several significant security
holes in which users are unintentionally given access to operational attributes. In some cases, it allows users to do
things like exempt themselves from password policy restrictions.

In the PingDirectory Server, operational attributes are treated differently from user attributes and operational
attributes are never automatically included. As such, targetattr="*" will target all user attributes but
no operational attributes, and targetattr!="userPassword" will target all users attributes except



PingDirectory | Managing Access Control | 132

userPassword, but no operational attributes. Specific operational attributes can be targeted by including the
names in the list, like targetattr="creatorsName||modifiersName". All operational attributes can be
targeted using the "+" character. So, targetattr="+" targets all operational attributes but no user attributes and
targetattr="*||+" targets all user and operational attributes.

Specification of Global ACIs

Both DSEE and PingDirectory Server support global ACIs, which can be used to define ACIs that apply throughout
the server. In servers with multiple naming contexts, this feature allows you to define a rule once as a global ACI,
rather than needing to maintain an identical rule in each naming context.

In DSEE, global ACIs are created by modifying the root DSE entry to add values of the aci attribute. In the
PingDirectory Server, global ACIs are managed with dsconfig referenced in the global-aci property of the
Access Control Handler.

Defining ACIs for Non-User Content

In DSEE, you can write to the configuration, monitor, changelog, and tasks backends to define ACIs. In the
PingDirectory Server, access control for private backends, like configuration, monitor, schema, changelog, tasks,
encryption settings, backups, and alerts, should be defined as global ACIs.

Limiting Access to Controls and Extended Operations

DSEE offers limited support for restricting access to controls and extended operations. To the
extent that it is possible to control such access with ACIs, DSEE defines entries with a DN such as
"oid={oid},cn=features,cn=config" where {oid} is the OID of the associated control or
extended operation. For example, the following DSEE entry defines ACIs for the persistent search control:
"oid=2.16.840.1.113730.3.4.3,cn=features,cn=config".

In the PingDirectory Server, the "targetcontrol" keyword can be used to define ACIs that grant or deny access
to controls. The "extop" keyword can be used to define ACIs that grant or deny access to extended operation
requests.

Tolerance for Malformed ACI Values

In DSEE, if the server encounters a malformed access control rule, it simply ignores that rule without any warning. If
this occurs, then the server will be running with less than the intended set of ACIs, which may prevent access to data
that should have been allowed or, worse yet, may grant access to data that should have been restricted.

The PingDirectory Server is much more strict about the access control rules that it will accept. When performing an
LDIF import, any entry containing a malformed or unsupported access control rule will be rejected. Similarly, any add
or modify request that attempts to create an invalid ACI will be rejected. In the unlikely event that a malformed ACI
does make it into the data, then the server immediately places itself in lockdown mode, in which the server terminates
connections and rejects requests from users without the lockdown-mode privilege. Lockdown mode allows an
administrator to correct the problem without risking exposure to user data.

Note:  Consider running the import-ldif tool with the --rejectFile option so that you can review any
rejected ACIs.

About the Privilege Subsystem

In DSEE, only the root user is exempt from access control evaluation. While administrators can create ACIs that
give "normal" users full access to any content, they can also create ACIs that would make some portion of the data
inaccessible even to those users. In addition, some tasks can only be accomplished by the root user and you cannot
restrict the capabilities assigned to that root user.

The PingDirectory Server offers a privilege subsystem that makes it possible to control the capabilities available to
various users. Non-root users can be granted limited access to certain administrative capabilities, and restrictions can
be enforced on root users. In addition, certain particularly risky actions (such as the ability to interact with the server



PingDirectory | Managing Access Control | 133

configuration, change another user’s password, impersonate another user, or shutdown and restart the server) require
that the requester have certain privileges in addition to sufficient access control rights to process the operation.

Identifying Unsupported ACIs

The PingDirectory Server provides a validate-acis tool that can be used to examine content in an LDIF file or
data in another directory server (such as a DSEE instance) to determine whether the access control rules contained
in that data are suitable for use in the PingDirectory Server instance. When migrating data from a DSEE deployment
into a PingDirectory Server instance, the validate-acis tool should first be used to determine whether ACIs
contained in the data are acceptable. If any problems are identified, then the data should be updated to correct or
redefine the ACIs so that they are suitable for use in the PingDirectory Server.

For more information about using this tool, see Validating ACIs Before Migrating Data.

Working with Privileges
In addition to the access control implementation, the PingDirectoryProxy Server includes a privilege subsystem that
can also be used to control what users are allowed to do. The privilege subsystem works in conjunction with the
access control subsystem so that privileged operations are only allowed if they are allowed by the access control
configuration and the user has all of the necessary privileges.

Privileges can be used to grant normal users the ability to perform certain tasks that, in most other directories, would
only be allowed for the root user. In fact, the capabilities extended to root users in the PingDirectoryProxy Server are
all granted through privileges, so you can create a normal user account with the ability to perform some or all of the
same actions as root users.

Administrators can also remove privileges from root users so that they are unable to perform certain types of
operations. Multiple root users can be defined in the server with different sets of privileges so that the capabilities that
they have are restricted to only the tasks that they need to be able to perform.

Available Privileges

The following privileges are defined in the PingDirectoryProxy Server.

Table 8: Summary of Privileges

Privilege Description

audit-data-security This privilege is required to initiate a data security audit on the server, which is
invoked by the audit-data-security tool.

backend-backup This privilege is required to initiate an online backup through the tasks interface. The
server's access control configuration must also allow the user to add the corresponding
entry in the tasks backend.

backend-restore This privilege is required to initiate an online restore through the tasks interface. The
server's access control configuration must also allow the user to add the corresponding
entry in the tasks backend.

bypass-acl This privilege allows a user to bypass access control evaluation. For a user with this
privilege, any access control determination made by the server immediately returns
that the operation is allowed. Note, however, that this does not bypass privilege
evaluation, so the user must have the appropriate set of additional privileges to be
able to perform any privileged operation (for example, a user with the bypass-acl
privilege but without the config-read privilege is not allowed to access the server
configuration).

bypass-pw-policy This privilege allows a user entry to bypass password policy evaluation. This privilege
is intended for cases where external synchronization might require passwords
that violate the password validation rules. The privilege is not evaluated for bind



PingDirectory | Managing Access Control | 134

Privilege Description
operations so that password policy evaluation will still occur when binding as a user
with this privilege.

bypass-read-acl This privilege allows the associated user to bypass access control checks performed
by the server for bind, search, and compare operations. Access control evaluation may
still be enforced for other types of operations.

config-read This privilege is required for a user to access the server configuration. Access control
evaluation is still performed and can be used to restrict the set of configuration objects
that the user is allowed to see.

config-write This privilege is required for a user to alter the server configuration. The user is also
required to have the config-read privilege. Access control evaluation is still
performed and can be used to restrict the set of configuration objects that the user is
allowed to alter.

disconnect-client This privilege is required for a user to request that an existing client connection be
terminated. The connection is terminated through the disconnect client task. The
server's access control configuration must also allow the user to add the corresponding
entry to the tasks backend.

jmx-notify This privilege is required for a user to subscribe to JMX notifications generated by the
Directory Proxy Server. The user is also required to have the jmx-read privilege.

jmx-read This privilege is required for a user to access any information provided by the
Directory Proxy Server via the Java Management Extensions (JMX).

jmx-write This privilege is required for a user to update any information exposed by the
Directory Proxy Server via the Java Management Extensions (JMX). The user is also
required to have the jmx-read privilege. Note that currently all of the information
exposed by the server over JMX is read-only.

ldif-export This privilege is required to initiate an online LDIF export through the tasks interface.
The server's access control configuration must also allow the user to add the
corresponding entry in the Tasks backend. To allow access to the Tasks backend, you
can set up a global ACI that allows access to members of an Administrators group.

ldif-import This privilege is required to initiate an online LDIF import through the tasks
interface. The server's access control configuration must also allow the user to add
the corresponding entry in the Tasks backend. To allow access to the Tasks backend,
configure the global ACI as shown in the previous description of the ldif-export
privilege.

lockdown-mode This privilege allows the associated user to request that the server enter or leave
lockdown mode, or to perform operations while the server is in lockdown mode.

modify-acl This privilege is required for a user to add, modify, or remove access control rules
defined in the server. The server's access control configuration must also allow the user
to make the corresponding change to the aci operational attribute.

password-reset This privilege is required for one user to be allowed to change another user’s
password. This privilege is not required for a user to be allowed to change his or her
own password. The user must also have the access control instruction privilege to
write the userPassword attribute to the target entry.

privilege-change This privilege is required for a user to change the set of privileges assigned to a
user, including the set of privileges, which are automatically granted to root users.
The server's access control configuration must also allow the user to make the
corresponding change to the ds-privilege-name operational attribute.



PingDirectory | Managing Access Control | 135

Privilege Description

proxied-auth This privilege is required for a user to request that an operation be performed with an
alternate authorization identity. This privilege applies to operations that include the
proxied authorization v1 or v2 control operations that include the intermediate client
request control with a value set for the client identity field, or for SASL bind requests
that can include an authorization identity different from the authentication identity.

server-restart This privilege is required to initiate a server restart through the tasks interface. The
server's access control configuration must also allow the user to add the corresponding
entry in the tasks backend.

server-shutdown This privilege is required to initiate a server shutdown through the tasks interface. The
server's access control configuration must also allow the user to add the corresponding
entry in the tasks backend.

soft-delete-read This privilege is required for a user to access a soft-deleted-entry.

stream-values This privilege is required for a user to perform a stream values extended operation,
which obtains all entry DNs and/or all values for one or more attributes for a specified
portion of the DIT.

unindexed-search This privilege is required for a user to be able to perform a search operation in which
a reasonable set of candidate entries cannot be determined using the defined index and
instead, a significant portion of the database needs to be traversed to identify matching
entries. The server's access control configuration must also allow the user to request
the search.

update-schema This privilege is required for a user to modify the server schema. The server's access
control configuration must allow the user to update the operational attributes that
contain the schema elements.

Privileges Automatically Granted to Root Users

The special abilities that root users have are granted through privileges. Privileges can be assigned to root users in two
ways:

• By default, root users may be granted a specified set of privileges. Note that it is possible to create root users
which are not automatically granted these privileges by including the ds-cfg-inherit-default-root-
privileges attribute with a value of FALSE in the entries for those root users.

• Individual root users can have additional privileges granted to them, and/or some automatically-granted privileges
may be removed from that user.

The set of privileges that are automatically granted to root users is controlled by the default-root-
privilege-name property of the Root DN configuration object. By default, this set of privileges includes:

audit-data-security
backend-backup
backend-restore
bypass-acl
config-read
config-write
disconnect-client
ldif-export
lockdown-mode
manage-topology
metrics-read
modify-acl
password-reset



PingDirectory | Managing Access Control | 136

permit-get-password-policy-state-issues
privilege-change
server-restart
server-shutdown
soft-delete-read
stream-values
unindexed-search
update-schema

The privileges not granted to root users by default includes:

bypass-pw-policy
bypass-read-acl
jmx-read
jmx-write
jmx-notify
permit-externally-processed-authentication
permit-proxied-mschapv2-details
proxied-auth

The set of default root privileges can be altered to add or remove values as necessary. Doing so will require the
config-read, config-write, and privilege-change privileges, as well as either the bypass-acl
privilege or sufficient permission granted by the access control configuration to make the change to the server's
configuration.

Assigning Additional Privileges for Administrators

To allow access to the Tasks backend, set up a global ACI that allows access to members of an Administrators group
as follows:

$ dsconfig set-access-control-handler-prop \
  --add 'global-aci:(target="ldap:///cn=tasks")(targetattr="*||+")
        (version 5.0; acl "Access to the tasks backend for administrators";
         allow (all) groupdn="ldap:///
         cn=admins,ou=groups,dc=example,dc=com";)'

Assigning Privileges to Normal Users and Individual Root Users

Privileges can be granted to normal users on an individual basis. This can be accomplished by adding the ds-
privilege-name operational attribute to that user's entry with the names of the desired privileges. For example,
the following change will grant the proxied-auth privilege to the uid=proxy,dc=example,dc=com
account:

dn: uid=proxy,dc=example,dc=com 
changetype: modify 
add: ds-privilege-name 
ds-privilege-name: proxied-auth

The user making this change will be required to have the privilege-change privilege, and the server's access
control configuration must also allow the requester to write to the ds-privilege-name attribute in the target
user's entry.

This same method can be used to grant privileges to root users that they would not otherwise have through the set
of default root privileges. You can also remove default root privileges from root users by prefixing the name of the
privilege to remove with a minus sign. For example, the following change grants a root user the jmx-read privilege
in addition to the set of default root privileges, and removes the server-restart and server-shutdown
privileges:



PingDirectory | Managing Access Control | 137

dn: cn=Sync Root User,cn=Root DNs,cn=config 
changetype: modify 
add: ds-privilege-name 
ds-privilege-name: jmx-read 
ds-privilege-name: -server-restart 
ds-privilege-name: -server-shutdown

Note that because root user entries exist in the configuration, this update requires the config-read and config-
write privileges in addition to the privilege-change privilege.

Disabling Privileges

Although the privilege subsystem in the PingDirectoryProxy Server is a very powerful feature, it might break some
applications if they expect to perform some operation that requires a privilege that they do not have. In the vast
majority of these cases, you can work around the problem by simply assigning the necessary privilege manually to the
account used by that application. However, if this workaround is not sufficient, or if you need to remove a particular
privilege (for example, to allow anyone to access information via JMX without requiring the jmx-read privilege),
then privileges can be disabled on an individual basis.

The set of disabled privileges is controlled by the disabled-privilege property in the global configuration
object. By default, no privileges are disabled. If a privilege is disabled, then the server behaves as if all users have that
privilege.



Chapter

5
Deploying a Standard Directory Proxy Server

Topics:

• Creating a Standard Multi-
Location Deployment

• Expanding the Deployment
• Merging Two Data Sets Using

Proxy Transformations

You can deploy PingDirectoryProxy Server in a variety of ways, depending
upon the needs of your enterprise. This chapter describes and illustrates a
standard deployment scenario.



PingDirectory | Deploying a Standard Directory Proxy Server | 140

Creating a Standard Multi-Location Deployment
In this example deployment, PingDirectoryProxy Server will be deployed in the data centers of two geographic
locations: east and west. All LDAP external servers in this deployment are PingDirectory Servers. The directory
servers in the eastern city are assigned to the location named east, and the directory servers in the western city are
assigned to the location named west.

Note:  Password policies should be kept synchronized across all PingDirectory Server and Directory Proxy
Server instances. See the PingDirectory Server Administration Guide for details about configuring password
policies.

This example refers to four PingDirectory Server instances in two locations with replication of the
dc=example,dc=com base DN enabled:

ds-east-01.example.com
ds-east-02.example.com
ds-west-01.example.com
ds-west-01.example.com

We will configure four Directory Proxy Server instances:

proxy-east-01.example.com
proxy-east-02.example.com
proxy-west-01.example.com
proxy-west-02.example.com

Overview of the Deployment Steps

In this deployment scenario, we will take the following steps:

• Install the first Directory Proxy Server in east location using the setup or setup.bat file included in the zip
installation file.

• Use the create-initial-proxy-config tool to provide a proxy user bind DN and password, define
locations for each of our data centers, and configure the LDAP external servers in these data centers.

• Test external server communications after initial setup is complete and test a simulated external server failure.
• Install the second proxy server in the east location using the setup or setup.bat file included in the zip

installation file and copy the configuration of the first Directory Proxy Server using the configuration cloning
feature.

• Install two Directory Proxy Server instances in the west location, which includes using the setup file and manually
setting the location to west using the dsconfig command, as well as copying the configuration of the Directory
Proxy Server using the configuration cloning feature.

After the proxy server has been configured and tested, we then provide a tour of the configuration of each of the
proxy server components. These properties can be modified later as needed using the dsconfig tool.

Installing the First Directory Proxy Server

To begin with, we have the PingDirectoryProxy Server installation zip file. In this example, we plan to use SSL
security, so we also have a keystore certificate database and a pin file that contains the private key password for the
keystore. The keystore files are only necessary when using SSL or StartTLS.

In this deployment scenario, the keystore database is assumed to be a Java Keystore (JKS), which can be created by
the keytool program. For more information about using the keytool, see the "Security Chapter" in the PingDirectory
Server Administration Guide.

The PingDirectoryProxy directory contains the following:

root@proxy-east-01: ls
ExampleKeystore.jks   ExampleTruststore.jks ExampleKeystore.pin 



PingDirectory | Deploying a Standard Directory Proxy Server | 141

PingDirectoryProxy-7.2.0.0-with-je.zip

The ExampleKeystore.jks keystore file contains the private key entry for the proxy-
east-01.example.com server certificate with the alias server-cert. The server certificate, CA, and
intermediate signing certificates are all contained in the ExampleTruststore.jks file. The password for
ExampleKeystore.jks is defined in clear text in the corresponding pin file, though the name of the file need not
match as it does in our example. The private key password in our example is the same as the password defined for the
ExampleKeystore.jks keystore.

To Install the First Directory Proxy Server

1. Unzip the compressed archive file into the PingDirectoryProxy directory and move to this directory.

root@proxy-east-01: unzip -q PingDirectoryProxy-<version>-with-je.zip
root@proxy-east-01: cd PingDirectoryProxy

2. Because we are configuring SSL security, copy the keystore and pin files into the config directory.

root@proxy-east01: cp ../*Keystore* config/ 
root@proxy-east01: cp ../*Truststore* config/

3. Next, we install the first proxy server by running the setup tool on proxy-east-01.example.com as
follows:

root@proxy-east01: ./setup --no-prompt --acceptLicense \ 
--ldapPort 389 --rootUserPassword pass \ 
--aggressiveJVMTuning --maxHeapSize 1g \ 
--enableStartTLS --ldapsPort 636 \    
--useJavaKeystore config/ExampleKeystore.jks \ 
--keyStorePasswordFile config/ExampleKeystore.pin \ 
--certNickname server-cert \ 
--useJavaTrustStore config/ExampleTruststore.jks

New keystore password files are created in config/keystore.pin. The original file, config/
ExampleKeystore.pin, is no longer needed.

4. If you are not using SSL or StartTLS, then the SSL arguments are not necessary as follows:

root@proxy-east01: ./setup --no-prompt --acceptLicense \ 
--ldapPort 389 --rootUserPassword pass \ 
--aggressiveJVMTuning --maxHeapSize 1g

Once you have installed the Directory Proxy Server, you can configure it using the create-initial-proxy-
config tool as presented in the next section.

Configuring the First Directory Proxy Server

Once the Directory Proxy Server has been installed, it can be automatically configured using the create-
initial-proxy-config tool. This tool can only be used once for this initial configuration, after which we will
have to use dsconfig to make any changes to our proxy server configuration.

Configuring the Directory Proxy Server with the create-initial-proxy-config tool involves the following
steps:

Providing a Directory Proxy Server base DN and password.
Defining locations for each of our data centers, east and west.
Configuring the LDAP external server in the east location.
Configuring the LDAP external servers in the west location.
Applying the changes to the Directory Proxy Server.

To Configure the First Directory Proxy Server

1. Once we have completed setup, we run the create-initial-proxy-config tool as follows:



PingDirectory | Deploying a Standard Directory Proxy Server | 142

root@proxy-east01: bin/create-initial-proxy-config

2. Provide the bind DN and password that the Directory Proxy Server will use to authenticate to the backend
PingDirectory Server instances. The create-initial-proxy-config tool requires that the same bind
DN and password be used to authenticate to all of the backend servers. All Directory Proxy Server instances
have identical proxy user accounts and passwords. If necessary, the proxy user account password can be defined
differently for each external server using dsconfig after the create-initial-proxy-config tool has
been executed.

3. Specify the type of external server communication security that will be used to communicate with the
PingDirectory Server instances. For this example, enter the option for 'None'.

4. Specify the base DNs of the PingDirectory Server instances that the Directory Proxy Server will access. For this
example, use dc=example,dc=com.

5. Enter any other base DNs of the PingDirectory Server instances that will be accessed through the proxy server.
Because we are only using one proxy base DN, press Enter to finished.

Defining Locations

Next, we define our first location, east, to accommodate the servers in our deployment located on the East Coast of
the United States.

To Define Proxy Locations

1. Continuing from the same create-initial-proxy-config session, enter a location name for the
Directory Proxy Server. In this example, enter east, and then press Enter.

2. Define a location named west for the servers in our deployment located on the West Coast. Press Enter when
finished.

3. Select the location that contains the Directory Proxy Server itself. The Directory Proxy Server is located in the
east.

Configuring the External Servers in the East Location

Once the locations have been defined, we need to identify the directory servers. First, we define one of the servers in
the east location.

To Configure the External Servers in the East Location

1. Define one of the servers in the east location by entering the host name and port of the server. For this example,
enter ds-east-01.example.com:389.

>>>> External Servers

External Servers identify directory server instances including 
host, port, and authentication information.    

Enter the host and port (host:port) of the first directory server 
in 'east'     

    b)  back
    q)  quit

Enter a host:port or choose a menu item [localhost:389]: ds-
east-01.example.com:389     

2. Enter the option to prepare the server and all subsequent servers. Preparing the servers involves testing the
connections to these servers and sets up the cn=Proxy User account on the Directory Proxy Server.

3. Enter the DN of the account with which to manage the cn=Proxy User,cn=Root DNs,cn=config
account. For this example, use the default, cn=Directory Manager.

4. Repeat the previous steps to prepare the other server in the east location, ds-east-02.example.com.



PingDirectory | Deploying a Standard Directory Proxy Server | 143

5. Press Enter to complete preparing the servers.

To Configure the External Servers in the West Location

The same process used for the east location is used to define the LDAP external servers for the west location.

1. Define the first external server, ds-west-01.example.com.
2. Define the second server in the west location, ds-west-02.example.com.
3. Press Enter when finished.

Apply the Configuration to the Directory Proxy Server

Next, we review the configuration summary. Once we have confirmed that the changes are correct, we press Enter to
write the configuration.

To Apply the Changes to the Directory Proxy Server

1. During the configuration process, the create-initial-proxy-config tool writes the configuration
settings to a dsconfig batch file, which will then be applied to the Directory Proxy Server. The batch file can
be reused to configure other servers. On the final step, the create-initial-proxy-config tool presents a
configuration summary. Review the configuration and then apply the changes to the Directory Proxy Server. Press
Enter to write the configuration to the server.

2. On the final confirmation prompt, press Enter to apply the changes to the proxy server, and then enter the LDAP
connection parameters to the server. Once the changes have been applied, the create-initial-proxy-
config tool cannot be used to configure this proxy server again.

Configuring Additional Directory Proxy Server Instances

We install and configure the second Directory Proxy Server by running the setup tool on proxy-
east-02.example.com.

To Configure Additional Directory Proxy Server Instances

1. Copy the keystore and pin files into the config directory for the proxy-east-02.example.com server.

root@proxy-east-02: cp ../*Keystore* config/ 
root@proxy-east-02: cp ../*Truststore* config/

2. Install the second Directory Proxy Server by running the setup tool on proxy-east-02.example.com as follows:

root@proxy-east-02: ./setup --no-prompt \
--listenAddress proxy-east-02.example.com \
--ldapPort 389 --enableStartTLS --ldapsPort 636 \
--useJavaKeystore config/ExampleKeystore.jks \
--keyStorePasswordFile config/ExampleKeystore.pin \   
--certNickName server-cert \ 
--useJavaTrustStore config/ExampleTruststore.jks \ 
--rootUserPassword pass --acceptLicense \ 
--aggressiveJVMTuning --maxHeapSize 1g \ 
--localHostName proxy-east-02.example.com \ 
--peerHostName proxy-east-01.example.com \ 
--peerPort 389 --location east

3. Configure the third Directory Proxy Server, proxy-west-01.example.com in the same way as shown in the
previous step. First, copy the keystore and pin files into the config directory.

root@proxy-west-01: cp ../*Keystore* config/ 
root@proxy-west-01: cp ../*Truststore* config/

4. Run the setup tool on proxy-west-01.example.com as follows:

root@proxy-west-01: ./setup --no-prompt \
--listenAddress proxy-west-01.example.com \



PingDirectory | Deploying a Standard Directory Proxy Server | 144

--ldapPort 389 --enableStartTLS --ldapsPort 636 \
--useJavaKeystore config/ExampleKeystore.jks \
--keyStorePasswordFile config/ExampleKeystore.pin \   
--certNickName server-cert \ 
--useJavaTrustStore config/ExampleTruststore.jks \
--rootUserPassword pass --acceptLicense \ 
--aggressiveJVMTuning --maxHeapSize 1g \ 
--localHostName proxy-west-01.example.com \ 
--peerHostName proxy-east-01.example.com \ 
--peerPort 389 --location west

5. Finally, repeat steps 3 and 4 to install the last Directory Proxy Server by first copying the keystore and pin files to
the config directory and then running the setup command.

At this point, all proxies have the same Admin Data backend and have the all-servers group defined as their
configuration-server-group in the Directory Proxy Server Global Configuration object. When making a change to
a Directory Proxy Server using the dsconfig command-line tool or the Administrative Console, you will have
the choice to apply the changes locally only or to all proxies in the all-servers group.

Testing External Server Communications After Initial Setup

After setting up the basic deployment scenario, the communication between the proxies and the LDAP external
servers can be tested using a feature in the proxy server in combination with an LDAP search.

To Test the External Communications After Initial Setup

After initial setup, the Directory Proxy Server exposes a special search base DN for testing external server
connectivity, called the backend server pass-through subtree view. While disabled by default, you
can enable this feature using dsconfig in the Client Connection Policy menu. Set the value of the backend-
server-passthrough-subtree-views property to TRUE.

1. Run dsconfig to set the include-backend-server-passthrough-subtree-views property to
TRUE.

root@proxy-east-01: dsconfig set-client-connection-policy-prop \
--policy-name default \
--set include-backend-server-passthrough-subtree-views:true

Once set to true, an LDAP search against the Directory Proxy Server with the base DN
dc=example,dc=com,ds-backend-server=ds-east-02.example.com:389 instructs the
Directory Proxy Server to perform the search against the ds-east-02.example.com:389 external server
with the base DN set to dc=example,dc=com. The value of ds-backend-server should be the name of
the configuration object representing the external server. Depending on your naming scheme, this name may not
be a host:port combination.

2. Run ldapsearch to fetch the dc=example,dc=com entry from the ds-east-01.example.com server.
Perform this search on each external server to determine if external server communication has been configured
correctly on the Directory Proxy Server.

root@proxy-east-01: bin/ldapsearch \
--bindDN "cn=Directory Manager" \
--bindPassword password \
--baseDN "dc=example,dc=com,ds-backend-server=ds-east-01.example.com:389" \
--searchScope base --useStartTLS "(objectclass=*)"

3. You can also use this special subtree view to track the operations performed on each external server to help
determine load balancing requirements. This LDAP search can be run with the base DN values for the ds-
east-01 and ds-east-02 servers to track the distribution of search and bind requests over time. These
statistics are reset to zero when the server restarts. The following example searches an external server's monitor
entry to display operation statistics:

root@proxy-east-01: bin/ldapsearch \
--bindDN "cn=directory manager" \



PingDirectory | Deploying a Standard Directory Proxy Server | 145

--bindPassword password \
--baseDN "cn=monitor,ds-backend-server=ds-east-02.example.com:389" \
--searchScope sub --useStartTLS "(cn=ldap*statistics)"

dn: cn=LDAP Connection Handler 192.168.1.203 port 389 
Statistics,cn=monitor,ds-backend-server=ds-east-02.example.com:389

objectClass: top
objectClass: ds-monitor-entry
objectClass: ds-ldap-statistics-monitor-entry
objectClass: extensibleObject
cn: LDAP Connection Handler 192.168.1.203 port 389
Statistics
connectionsEstablished: 3004
connectionsClosed: 2990
bytesRead: 658483
bytesWritten: 2061549
ldapMessagesRead: 17278
ldapMessagesWritten: 22611
operationsAbandoned: 0
operationsInitiated: 17278
operationsCompleted: 14241
abandonRequests: 22
addRequests: 1
addResponses: 1
bindRequests: 3006
bindResponses: 3006
compareRequests: 0
compareResponses: 0
deleteRequests: 0
deleteResponses: 0
extendedRequests: 2987
extendedResponses: 2987
modifyRequests: 1
modifyResponses: 1
modifyDNRequests: 0
modifyDNResponses: 0
searchRequests: 8271
searchResultEntries: 8370
searchResultReferences: 0
searchResultsDone: 8246
unbindRequests: 2990

Testing a Simulated External Server Failure

Once you have tested connectivity, run a simulated failure of a load-balanced external server to verify
that the Directory Proxy Server redirects LDAP requests appropriately. In this procedure, we stop the ds-
east-01.example.com:389 server instance and test searches through proxy-east-01.example.com.

To Test a Simulated External Server Failure

1. First, perform several searches against the Directory Proxy Server. Verify activity in each of the servers in the
east location, ds-east-01 and ds-east-02, by looking at the access logs. Because we used the default load balancing
algorithm of fewest operations, it is likely that all of the searches will go to only one of the proxies. The following
simple search can be repeated as needed:

root@proxy-east-01: bin/ldapsearch \ 
--bindDN "cn=Directory Manager" \
--bindPassword password --baseDN "dc=example,dc=com" \ 
--searchScope base --useStartTLS "(objectclass=*)"

2. Next, stop the Directory Server instance on ds-east-01.example.com using the stop-server command and
immediately retry the above searches. There should be no errors or noticeable delay in processing the search.



PingDirectory | Deploying a Standard Directory Proxy Server | 146

root@ds-east-01: bin/stop-server

root@proxy-east-01: bin/ldapsearch \ 
--bindDN "cn=Directory Manager" \
--bindPassword password --baseDN "dc=example,dc=com" \ 
--searchScope base --useStartTLS "(objectclass=*)"

3. Restart the Directory Proxy Server instance on ds-east-01.example.com. Check the access log to confirm that the
Directory Proxy Server started to include the ds-east-01 server in load-balancing within 30 seconds. The default
time is 30 seconds, though you can change this default if desired.

Expanding the Deployment
In the following example deployment, the PingDirectory Server is deployed in a third, centrally-located data center.
The directory servers in the central city is assigned to a new location named central. The proxies will use StartTLS to
communicate with the directory servers in the central region.

Note:  Other than the ability to add to the Directory Proxy Server’s truststore, the prepare-external-
server tool does not alter the Directory Proxy Server configuration in any way.

The Directory Proxy Server itself, installed on proxy-east-01.example.com, remains in the East location. This
example will reconfigure load balancing between the six directory servers in three locations:

ds-east-01.example.com
ds-east-02.example.com
ds-west-01.example.com
ds-west-02.example.com
ds-central-01.example.com
ds-central-02.example.com

Overview of Deployment Steps

In this deployment scenario, we will take the following steps:

• Prepare the new external servers using the prepare-external-server tool.
• Use the dsconfig tool to configure the new LDAP external servers in the central data center and reconfigure the

load-balancing algorithm to take these servers into account.
• Test external server communications after the servers have been configured and test a simulated external server

failure.

Preparing Two New External Servers Using the prepare-external-server Tool

First, we prepare the external directory servers, ds-central-01 and ds-central-02, by creating the proxy user account
and the supporting access rules. In this example, we will connect to the ds-central-01 PingDirectory Server using
StartTLS. Because we are using StartTLS, we need to capture the ds-central-01 server’s certificate and put it in the
trust store on our Directory Proxy Server instance.

The prepare-external-server tool is located in the bin or bat directory of the server root directory,
PingDirectoryProxy. In this example, we run the tool on the ds-east-01 instance of the Directory Proxy Server.

To Prepare Two New External Servers Using the prepare-external-server Tool

1. Run the prepare-external-server tool to prepare the two new servers. On the first attempted bind to the
server, the tool will report a "failed to bind" message as it cannot bind to the cn=Proxy User entry due to its
not being created yet. The tool sets up the cn=Proxy User entry so that the Directory Proxy Server can access
it and tests the communication settings to the server.

root@proxy-east-01: ./prepare-external-server \
--hostname ds-central-01.example.com --port 389 \



PingDirectory | Deploying a Standard Directory Proxy Server | 147

--baseDN dc=example,dc=com \
--proxyBindPassword password  \
--useStartTLS \
--proxyTrustStorePath ../config/ExampleTruststore.jks   

Failed to bind as ‘cn=Proxy User’

Would you like to create or modify root user ‘cn=Proxy User” so that it is
available for this Directory Proxy Server? (yes / no)[yes]:

Enter the DN of an account on ds-central-01:389 with which to create or
 manage the ‘cn=Proxy User’
account [cn=Directory Manager]:   

Enter the password for ‘cn=Directory Manager’:

Created ‘cn=Proxy User,cn=Root DNs,cn=config’
Testing ‘cn=Proxy User’ privileges ....Done

2. Repeat the process on the other new server in the central location, ds-central-02.

Note:  For entry-balancing deployments, the global base DN is required when using prepare-
external-server.

Adding the New PingDirectory Servers to the Directory Proxy Server

After preparing the external PingDirectory Servers to communicate with the Directory Proxy Server, we can now add
the two servers in the central location to the proxy server instance. Because we have run the prepare-external-
server tool, the two servers have the cn=Proxy User entry configured.

To Add the New PingDirectory Servers to the Directory Proxy Server

• Run the dsconfig tool, which is located in the bin or bat directory of the server root directory,
PingDirectoryProxy.

root@proxy-east-01:./dsconfig

>>>> Specify LDAP connection parameters
  
Directory Proxy Server hostname or IP address [localhost]:      

How do you want to connect to the Directory Proxy Server at
localhost?

    1)  LDAP
    2)  LDAP with SSL
    3)  LDAP with StartTLS

Enter choice [1]: 1

Directory Proxy Server at localhost port number [389]: 
Administrator user bind DN [cn=Directory Manager]: 
Password for user 'cn=Directory Manager':

Adding New Locations

First, we add a new central location, to which our new PingDirectory Servers will be added.

To Add a New Location

The following steps show how to add the new servers to a new location using dsconfig interactive.

1. Run dsconfig and enter the LDAP connection parameters when prompted.



PingDirectory | Deploying a Standard Directory Proxy Server | 148

$ bin/dsconfig

2. On the main menu, enter the number corresponding to Location.
3. On the Location menu, enter the number corresponding to creating a new location.
4. Enter the option to create a new location from scratch.
5. Configure the preferred-failover-location property of the new location so that this location fails

over first to the east location and then to the west location, should all of the servers in the central location become
unavailable.

6. Add the east and west locations as values of the property, specifying them in the order that they will be used for
failover.

7. Confirm that these are the correct values and finish configuring the location.

Editing the Existing Locations

Next, we edit the existing east and west locations to include the new central location in their failover logic. The new
failover logic will be based on geographic distance, so that the east location will first fail over to central and then the
west location.

To Edit Existing Locations

The following example procedure uses dsconfig interactive mode to edit the east location.

1. Run dsconfig and enter the LDAP connection parameters when prompted.
2. On the Directory Proxy Server console configuration menu, enter the number corresponding to Location.
3. On the Location menu, enter the number corresponding to viewing and editing an existing location. Then, enter

the number corresponding to the Location to be changed.
4. Remove the west location from the preferred-failover-location property. It will be added later.
5. Add a new value to the preferred-failover-location property.
6. Select the values of the new failover locations for the east.
7. Confirm the new configuration information and save the changes.
8. Repeat steps 2-7 to reconfigure the failover logic for the west location to include the new central location.
9. List the locations to confirm that the new location was added correctly.

Adding New Health Checks for the Central Servers

Next, we must add new health checks for the two new servers.

To Add New Health Checks for the Central Servers

1. Run dsconfig and enter the LDAP connection parameters when prompted.
2. Select the number corresponding to creating a new health check.
3. Enter the option to use an existing health check as a template.
4. Enter the number corresponding to the ds-east-01 health check to use it as a template for the new health check.
5. Name the new health check using the same naming strategy established for the other servers in the deployment. As

this health check is for the ds-central-01 server, the name takes the following format:

>>>> Enter a name for the Search LDAP Health Check that you want to create:
ds-central-01.example.com:389_dc_example_dc_com-search-health-check   

6. Review the configuration properties and then enter f to finish configuring the new health check and save changes.
7. Repeat steps 2-6 to create another new health check for the ds-central-02 server.

Adding New External Servers

Add new external servers by selecting “External Server” from the main menu.



PingDirectory | Deploying a Standard Directory Proxy Server | 149

To Add New External Servers

1. Run dsconfig and enter the LDAP connection parameters when prompted.
2. On the External Server menu, enter the number corresponding to "Create a new External Server".
3. Base the configuration of the new external server on the existing configuration of the ds-east-01 server. Enter t to

use an existing External Server as a template.
4. Enter the number to base the configuration of the new server on the configuration of the ds-east-01 server.
5. Enter a name for the new ds-central-01 server that complies with the naming strategy.

>>>> Enter a name for the Ping Identity DS External Server that you    
want to create: ds-central-01.example.com:389    

6. Enter the value of the server-host-name property.
7. Review and modify the configuration properties of the external server.
8. On the External Server menu, change the server-host-name property to reflect the name of the ds-

central-01 server.
9. On the External Server menu, change the location property to reflect the central location.
10. Change the health-check property to reflect the new health check created for the ds-central-01 server in the

previous section.
11. On the 'health-check' Property menu, enter the number to remove one or more values.
12. Add the health-check created in the previous section.
13. Select the health check associated with the ds-central-01 server.
14. Press Enter to use the value associated with ds-central-01 health check.
15. Review the configuration of the new external server and enter f to create the server.
16. Repeat these steps to add the new ds-central-02 external server.

Modifying the Load Balancing Algorithm

To modify the existing load-balancing algorithm to include the newly created servers, select “Load-Balancing
Algorithm” from the main menu.

To Modify the Load-Balancing Algorithm

1. Run dsconfig and enter the LDAP connection parameters when prompted.
2. Choose the option for Load-Balancing Algorithm.
3. On the Load-Balancing Algorithm menu, enter the number corresponding to "View and edit an existing Load-

Balancing Algorithm".
4. Add the ds-central-01 and ds-central-02 servers to the backend-server configuration property.
5. On the backend-server property menu, enter the number corresponding to adding one or more values.
6. Select the external servers to add. In this example, select ds-central-01.example.com and ds-

central-02.example.com.
7. Review the changes made to the load-balancing algorithm’s configuration properties, and enter f to save changes.

The change has been saved and applied to the Directory Proxy Server. The load-balancing algorithm is referenced
in the load-balancing-algorithm property of the request processor used by this Directory Proxy Server.

8. To view this property, go to the main menu and select the Request Processor option.
9. On the Request Processor menu, enter the number corresponding to view and edit an existing request processor.
10. Select the request process used by the Directory Proxy Server, and review the configuration properties.

This request processor is used by the subtree view serviced by the Directory Proxy Server, which is in turn
referenced by the client connection policy.

Note:  The changes made in this procedure are already in effect. The Directory Proxy Server does not
have to be restarted.



PingDirectory | Deploying a Standard Directory Proxy Server | 150

Testing External Server Communication

After adding and configuring the new external servers, test the communication between the Directory Proxy Server
and the LDAP external servers using the include-backend-server-passthrough-subtree-views
property of the Directory Proxy Server in combination with an LDAP search. For more information about this option,
see Testing External Server Communications on page 190.

To Test External Server Communication

• Run the ldapseasrch command to test communications on the ds-central-01 serverTask.

root@proxy-east-01: bin/ldapsearch --port 389 --bindDN "cn=directory
 manager" \
--bindPassword password \ 
--baseDN "dc=example,dc=com,ds-backend-server=ds-central-01.example.com:389"
 \ 
--searchScope base "(objectclass=*)"    

You can repeat this search on the ds-central-02 server, to confirm that the server returns the entry as expected.

Testing a Simulated External Server Failure

Once you have tested connectivity, run a simulated failure of a load-balanced external server to verify that the
Directory Proxy Server redirects LDAP requests appropriately. We stop the ds-east-01.example.com:389 and ds-
east-02.example.com:389 server instances and test searches through proxy-east-01.example.com.

To Test a Simulated External Server Failure

1. We stop the ds-east-01.example.com:389 and ds-east-02.example.com:389 server instances and test searches
through proxy-east-01.example.com.

2. Perform several searches against the Directory Proxy Server. Verify activity in each of the servers in the east
location, ds-east-01 and ds-east-02, by looking at the access logs. The following simple search can be repeated as
needed:

root@proxy-east-01: bin/ldapsearch --bindDN "cn=Directory Manager" \
--bindPassword password --baseDN "dc=example,dc=com" \
--searchScope base --useStartTLS "(objectclass=*)"

3. Next, stop the Directory Server instance on ds-east-01.example.com and ds-east-02.example.com using the stop-
server command and immediately retry the above searches. There should be no errors or noticeable delay in
processing the search.

root@proxy-east-01: bin/stop-server

root@proxy-east-01: bin/ldapsearch \ 
--bindDN "cn=Directory Manager" --bindPassword password \ 
--baseDN "dc=example,dc=com" --searchScope base --useStartTLS \ 
"(objectclass=*)" 

4. Check the access log to confirm that requests made to these servers are routed to the central servers, as these
servers are the first failover location in the failover list for the ds-east-01 and ds-east-02 servers.

5. Restart the Directory Server instance on ds-east-01.example.com and ds-east-02.example.com. Check their access
logs to ensure that traffic is redirected back from the failover servers.

Merging Two Data Sets Using Proxy Transformations
In the following example, the Example.com company acquires Sample Corporation. During the merger, Example.com
migrates data from Sample’s o=sample rooted directory, converting Sample’s sampleAccount auxiliary object class
usage to Example.com’s exampleAccount object class for entries rooted under dc=example,dc=com. Knowing
that it can take considerable time for Sample’s directory clients to become aware of the new DIT and schema, proxy



PingDirectory | Deploying a Standard Directory Proxy Server | 151

data transformations are created to give the Sample clients as consistent a view of the data as possible during the
migratory period. These transformations allow the clients to search and modify entries under o=sample using the
Sample Corp. schema.

Overview of the Attribute and DN Mapping

To achieve the merger of the two data sets, we create proxy transformations that map the Sample source attributes
to Example.com target attributes as described in Table 9-1, “Attribute Mapping”. The Example.com schema already
defines an attribute to contain the RDN of user entries, called uid. However, Example.com chooses to create two
new attributes within its exampleAccount object class to accommodate two attributes in the Sample schema for
representing the region and the DN of linked accounts.

During the merger, Example.com decides to re-parent Sample’s customer entries, which are defined under
two different subtrees, ou=east,o=sample and ou=west,o=sample, placing them under Example.com’s
ou=people,dc=example,dc=com subtree. Associated proxy transformations are described in Table 9-2, "DN
Mappings". In this process, Example.com collapses the Sample tree, moving entries from the east and west region
under a single DN, dc=example,dc=com. The DN proxy transformations assume that all Sample users have been
co-located under this single Example.com subtree.

Table 9: Attribute Mapping

Sample Attribute Example.com Attribute Description

sampleID uid RDN of user entries

sampleRegion exSampleRegion String value representing the region

sampleLinkedAccounts exSampleLinkedAccounts DN value

Legacy Sample LDAP applications searching for entries in either the Sample base DN ou=east,o=sample
or ou=west,o=sample will be successfully serviced, though there will be one or more differences in
the user entries seen by the Sample legacy applications. Since the Example.com Directory Server has no
knowledge of the Sample user’s former ou=east or ou=west association, search results for client searching
under o=sample will return a DN that may differ from the original search base. For instance, a search for
sampleID=abc123 under ou=west,o=sample may return the user entry for abc123 with the DN of
sampleID=abc123,ou=east,o=sample. The following table illustrates the mapping DNs.

Table 10: DN Mapping

Sample DN Example.com DN

ou=east,o=sample dc=example,dc=com

ou=west,o=sample dc=example,dc=com

o=sample dc=example,dc=com

About Mapping Multiple Source DNs to the Same Target DN

Some complications exist when defining multiple DN mappings that are used for the same request processor and the
same source or target DN (or that have source or target DNs that are hierarchically related). The client request may
not include enough information to disambiguate and determine the proper rule to follow.

Several solutions exist to avoid problems of disambiguation. If the client does not need to be able to see all mappings
at the same time, then a new client connection policy can be created to use connection criteria that select the set
of mappings applied to the client based on information such as the IP address or bind DN. Each client connection
policy would have separated subtree views with separate proxying request processors that reference the appropriate
transformation for that client.

Alternatively, if it is unnecessary to search under the o=sample base DN, then separate subtree views can be created
in the same client connection policy. For example, one subtree view would be created for ou=east,o=sample and



PingDirectory | Deploying a Standard Directory Proxy Server | 152

one for ou=west,o=sample. Each subtree view is then associated with its own proxying request processor, one for
ou=east requests and one for ou=west requests.

An Example of a Migrated Sample Customer Entry

The following example is an example of a Sample customer entry that has been migrated to the Example.com
database. The user entry is defined in the Example.com Directory Server’s database as follows. The attributes that
have undergone a proxy transformation are marked in bold. Note that this view is how the entry appears to search
requests under the dc=example,dc=com base DN.

dn: uid=scase,ou=People,dc=example,dc=com 
objectClass: person 
objectClass: inetOrgPerson 
objectClass: organizationalPerson 
objectClass: exampleAccount    
objectClass: top
description: A customer account migrated from Sample merger 
uid: scase
exAccountNumber: 234098  
exSampleRegion: east 
exSampleLinkedAccounts: uid=jcase,ou=people,dc=example,dc=com  
userPassword: password
givenName: Sterling 
cn: Sterling Case 
sn: Case 
telephoneNumber: +1 804 094 3356 
street: 00468 Second Street 
l: Arlington 
mail: sterlingcase@maildomain.com st: VA    

The following examples shows what the Directory Proxy Server returns to LDAP clients who have requested the
entry when searching under the o=sample base DN. Note that the DN returned includes ou=east, even though this
branch does not exist in the Example.com DIT. It also returns the attribute names as they are defined in the Sample
schema.

dn:  sampleID=scase,ou=east,o=sample 
objectClass: person 
objectClass: inetOrgPerson 
objectClass: organizationalPerson 
objectClass: exampleAccount    
objectClass: top
description: A customer account migrated from Sample merger 
uid: scase
exAccountNumber: 234098  
exSampleRegion: east 
exSampleLinkedAccounts: sampleID=jcase,ou=people,dc=example,dc=com  
userPassword: password
givenName: Sterling 
cn: Sterling Case 
sn: Case 
telephoneNumber: +1 804 094 3356 
street: 00468 Second Street 
l: Arlington 
mail: sterlingcase@maildomain.com st: VA    

Overview of Deployment Steps

In this deployment scenario, we will take the following steps:

• Install any necessary schema on the Directory Proxy Server.
• Create three attribute mapping proxy transformations and three DN mapping proxy transformations



PingDirectory | Deploying a Standard Directory Proxy Server | 153

• Create a new proxying request processor, using the existing dc_example_dc_com request processor as a
template.

• Assign the six proxy transformations to the new proxying request processor.
• Create a new subtree view for o=sample that references the new proxying request processor.
• Add the new subtree view to the existing client connection policy.
• Test our configuration by performing some searches on the Sample DIT.

About the Schema

The Directory Proxy Server inherits user-defined schema from all external servers by comparing cn=schema on
these servers at Directory Proxy Server startup and at five minute intervals. As a result, example.com schema does not
need to be added manually to the Directory Proxy Server’s config/schema directory. We assume that the schema
for Sample entries has been defined on the external servers with the example.com DIT, requiring no direct schema
management on the Directory Proxy Server. The following schema definitions are assumed to exist on the external
Directory Server:

dn: cn=schema 
objectClass: top 
objectClass: ldapSubentry 
objectClass: subschema 
cn: schema 
attributeTypes: ( 1.3.6.1.4.1.32473.2.1.1        
  NAME 'exAccountNumber'
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
  SINGLE-VALUE )
attributeTypes: ( 1.3.6.1.4.1.32473.1.1.3 
  NAME 'sampleLinkedAccounts' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 )    
attributeTypes: ( 1.3.6.1.4.1.32473.1.1.2 
  NAME 'sampleRegion' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 
  SINGLE-VALUE )    
attributeTypes: ( 1.3.6.1.4.1.32473.1.1.1 
  NAME 'sampleID' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 
  SINGLE-VALUE )    
attributeTypes: ( 1.3.6.1.4.1.32473.2.1.3 
  NAME 'exSampleLinkedAccounts' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 )    
attributeTypes: ( 1.3.6.1.4.1.32473.2.1.2 
  NAME 'exSampleRegion' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 
  SINGLE-VALUE )    
objectClasses: ( 1.3.6.1.4.1.32473.2.2.1 
  NAME 'exampleAccount' 
  SUP top
  AUXILIARY        
  MAY ( exAccountNumber $
        exSampleRegion $
        exSampleLinkedAccounts $
        sampleID $
        sampleRegion $
        sampleLinkedAccounts ) )

The schema file defines some Example.com schema, such as exAccountNumber and exSampleRegion, and
some Sample schema, such as sampleRegion and sampleID.

Creating Proxy Transformations

We create three attribute mapping proxy transformations and three DN mapping proxy transformations. We run the
dsconfig tool, which is located in the bin or bat directory of the server root directory, PingDirectoryProxy.



PingDirectory | Deploying a Standard Directory Proxy Server | 154

To Create Proxy Transformations

1. In the main server root directory, PingDirectoryProxy, run the start-server command.

$ bin/start-server

2. Run dsconfig in interactive mode and enter the LDAP connection parameters.
3. On the Configuration main menu, enter the number corresponding to Proxy Transformation.

Creating the Attribute Mapping Proxy Transformations

Next, we create the attribute mapping proxy transformations using dsconfig interactive. We assume for this
example that we are continuing from the previous dsconfig session. In the following example, this transformation
maps ou=east,o=sample in the Sample schema dc=example,dc=com in the Example.com schema.

To Creating the Attribute Mapping Proxy Transformations

1. On the Proxy Transformation menu, enter the number corresponding to "Create a New Proxy Transformation".
2. Create a mapping from the sampleRegion attribute to the exSampleRegion attribute, enter the number

corresponding to "Attribute Mapping Proxy Transformation".

>>>> Select the type of Proxy Transformation that you want to create:

    1)  Attribute Mapping Proxy Transformation 
    2)  Default Value Proxy Transformation 
    3)  DN Mapping Proxy Transformation 
    4)  Groovy Scripted Proxy Transformation 
    5)  Simple To External Bind Proxy Transformation 
    6)  Suppress Attribute Proxy Transformation          
    7)  Suppress Entry Proxy Transformation
    8)  Third Party Proxy Transformation

3. Enter a descriptive name for the new proxy transformation that illustrates the attribute mapping that it performs.
4. Press Enter to enable the proxy transformation.
5. Provide the name of the source attribute in the Sample schema to map to the Example.com schema, which is

sampleRegion.
6. Review the configuration properties, and enter f to create the new attribute mapping proxy transformation.
7. Repeat the previous steps to create another attribute mapping proxy transformation. This time, map between the

Sample Corporation’s sampleID attribute and the Example.com uid attribute.
8. Repeat the previous steps again to create a last attribute mapping proxy transformation, mapping between the

Sample sampleLinkedAccounts attribute and the Example.com exSampleLinkedAccounts attribute.

Creating the DN Mapping Proxy Transformations

Now we create the DN mapping proxy transformations.

To Create the DN Mapping Proxy Transformations

1. On the Proxy Transformation menu, enter the number corresponding to Create a new Proxy Transformation.
2. Enter the option to create a new Proxy Transformation from scratch.
3. Enter the option for "DN Mapping Proxy Transformation."
4. Enter a name for the DN Mapping Proxy Transformation. This transformation maps ou=east,o=sample in the

Sample schema dc=example,dc=com in the Example.com schema.
5. Select TRUE to enable the transformation by default.
6. Specify the source DN as it appears in client requests.

>>>> Configuring the 'source-dn' property
  
     Specifies the source DN that may appear in client 



PingDirectory | Deploying a Standard Directory Proxy Server | 155

     requests which should be remapped to the target DN.
     Note that the source DN must not be equal to the target DN.

     Syntax: DN

Enter a value for the 'source-dn' property: 
ou=east,o=sample

7. Specify the target DN, where requests for the source DN should be routed.

>>>> Configuring the 'target-dn' property

    Specifies the DN to which the source DN should be mapped.
    Note that the target DN must not be equal to the source
    DN.

    Syntax: DN

Enter a value for the 'target-dn' property: dc=example,dc=com

8. Review the configuration properties, and then enter f to create the new DN mapping proxy transformation.
9. using the previous steps, create a new DN mapping proxy transformation that maps ou=west,o=sample in

the Sample schema to dc=example,dc=com in the Example.com schema, and name it sample_west-to-
example.

10. Finally, create a DN mapping proxy transformation for the base DN of the Sample database.

Creating a Request Processor to Manage the Proxy Transformations

Next, we need to create a new proxying request processor that includes our new attribute and DN mapping proxy
transformations. We will use the existing dc_example_dc_com request processor as a template.

To Create a Request Processor to Manage Proxy Transformations

1. On the Configuration main menu, enter the number corresponding to Request Processor.
2. On the Request Processor menu, enter the number corresponding to "Create a new Request Processor."
3. Choose the option to use the current request processor as a template.
4. Provide a name for the new proxying request processor, such as o_sample-req-processor.
5. Review the properties. The load-balancing algorithm is the same as for the previous request processor, though the

transformation property must be changed. Enter the number corresponding to the Transformation property.
6. Enter the number corresponding to the proxy transformations that we created in the previous sections.
7. Select the attribute mapping proxy transformations first. Next, select the DN mapping proxy transformations. The

order of the selection is important because we have related DNs. Begin with the DNs that are lower in the tree
first, and finish with the base DN transformation.

Select the Proxy Transformations you wish to add:

    1)  sample-to-example       5)  sampleLinkedAccounts-to-
                                    exSampleLinkedAccounts
    2)  sample_east-to-example  6)  sampleRegion-to-
                                    exSampleRegion
    3)  sample_west-to-example  7)  Create a new Proxy
                                    Transformation
    4)  sampleID-to-uid         8)  Add all Proxy Transformations

    ?)  help
    b)  back
    q)  quit

Enter one or more choices separated by commas [b]: 4,5,6,2,3,1

8. Confirm that the proxy transformations are listed in the correct order and press Enter to accept and use the values.



PingDirectory | Deploying a Standard Directory Proxy Server | 156

9. Review the request processor properties, and enter f to save changes.

Creating Subtree Views

At this stage, we need to configure subtree views for the Directory Proxy Server.

To Create Subtree Views

1. On the Configuration main menu, enter the number corresponding to Subtree View.
2. On the Subtree View menu, enter the number corresponding to "Create a new Subtree View."
3. Enter the option to create the new subtree view from an existing one.
4. Select the dc_example_dc_com-view subtree view.
5. Enter a descriptive name for the subtree view configuration.
6. Configure the base DN property of the Sample dataset.
7. Enter the request processor created in the previous section.
8. Review the configuration properties, and enter f to save changes.

>>>> Configure the properties of the Subtree View

        Property           Value(s)
        -------------------------------------------------
    1)  description        -
    2)  base-dn            "o=sample"
    3)  request-processor  o_sample-req-processor

    ?)  help
    f)  finish - create the new Subtree View
    d)  display the equivalent dsconfig arguments to create this
        object
    b)  back
    q) quit 

Editing the Client Connection Policy

Finally, we edit the client connection policy to add our new o=sample subtree view.

To Edit the Client Connection Policy

1. On the Configuration main menu, enter the number corresponding to Client Connection Policy.
2. On the Client Connection menu, enter the number corresponding to "Create a new Client Connection."
3. In the configuration properties, select the subtree-view property. Enter the number corresponding to "Add

one or more values" to add the new subtree view created for the previous example.
4. Select the subtree view that was created in the previous section.

Select the Subtree Views you wish to add:

    1)  o_sample-view
    2)  Create a new Subtree View

5. Review the subtree views now referenced by the property and press Enter to use these values.
6. Review the configuration properties of the client connection policy and enter f to save changes.

Testing Proxy Transformations

After setting up the deployment scenario, the Directory Proxy Server will now respond to requests to the
dc=example,dc=com and o=sample base DNs. We now test the service by imitating example client requests to
search and modify users.



PingDirectory | Deploying a Standard Directory Proxy Server | 157

Testing Proxy Transformations

The following example fetches the user with sampleID=scase under the ou=east,o=sample base DN.

1. Run ldapsearch to view a Sample entry.

root@proxy-east-01: bin/ldapsearch --bindDN "cn=directory manager" \
--bindPassword password --baseDN "ou=east,o=sample" "(sampleID=scase)"

dn: sampleID=scase,ou=People,ou=east,o=sample
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: exampleAccount
objectClass: top
description: A customer account migrated from Sample merger
sampleID: scase
userPassword: {SSHA}A5O4RrQHWXc2Ii3btD4exGdP0TVW9VL3CR3ZXA==
exAccountNumber: 234098
givenName: Sterling
cn: Sterling Case
sn: Case
telephoneNumber: +1 804 094 3356
street: 00468 Second Street
mail: sterlingcase@maildomain.com
l: Arlington
st: VA
sampleRegion: east
sampleLinkedAccounts: sampleID=jcase,ou=People,ou=east,o=sample

2. Modify the sampleRegion value, changing it to west. To do this, we first create a ldapmodify input file, called
scase-mod.ldif, with the following contents:

dn: sampleID=scase,ou=People,ou=east,o=sample 
changetype: modify   
replace: sampleRegion
sampleRegion: west

3. Use the file as an argument in the ldapmodify command as follows.

root@proxy-east-01: bin/ldapmodify --bindDN "cn=Directory Manager" \
--bindPassword password --filename scase-mod.ldif

Processing MODIFY request for sampleID=scase,ou=People, ou=east,o=sample    
MODIFY operation successful for DN sampleID=scase,ou=People,
 ou=east,o=sample    

4. Search for scase's sampleRegion value under o=sample, we should see west:

root@proxy-east-01: bin/ldapsearch --bindDN "cn=directory manager" \
--bindPassword password --baseDN "o=sample"  "(sampleID=scase)" \
sampleRegion

dn: sampleID=scase,ou=People,ou=east,o=sample
sampleRegion: west

5. Search for scase by uid rather than sampleID, under the dc=example,dc=com base DN. We see the
Example.com schema version of the entry:

root@proxy-east-01: bin/ldapsearch --bindDN "cn=directory manager" \
--bindPassword password --baseDN "dc=example,dc=com"  "(uid=scase)"

dn: uid=scase,ou=People,dc=example,dc=com
objectClass: person
objectClass: exampleAccount



PingDirectory | Deploying a Standard Directory Proxy Server | 158

objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: top
description: A customer account migrated from Sample merger
uid: scase
userPassword: {SSHA}A5O4RrQHWXc2Ii3btD4exGdP0TVW9VL3CR3ZXA==
exAccountNumber: 234098
givenName: Sterling
cn: Sterling Case
sn: Case
telephoneNumber: +1 804 094 3356
street: 00468 Second Street
mail: sterlingcase@maildomain.com
l: Arlington
st: VA
exSampleRegion: west
exSampleLinkedAccounts: uid=jcase,ou=People,dc=example,dc=com



Chapter

6
Deploying an Entry-Balancing Directory Proxy Server

Topics:

• Deploying an Entry-Balancing
Proxy Configuration

• Rebalancing Your Entries
• Managing the Global Indexes in

Entry-Balancing Configurations
• Working with Alternate

Authorization Identities

You can deploy PingDirectoryProxy Server in a variety of ways, depending
upon the needs of your enterprise. This chapter describes and illustrates an
entry-balancing deployment scenario.



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 160

Deploying an Entry-Balancing Proxy Configuration
Entry-balancing is a Directory Proxy Server configuration that allows the entries within a portion of the Directory
Information Tree (DIT) to reside on multiple external servers. This configuration is typically useful when the DIT
contains many millions of entries, which can be difficult to bring completely into memory for optimal performance.
Entry-balancing allows entries under a balancing point base DN to be divided among any number of separate
directory servers, making the Directory Proxy Server responsible for intelligently routing requests based on the
division.

In this example scenario, the entries in the DIT outside of the balancing point are replicated across all external servers
known to the Directory Proxy Server. Replication on the external directory servers must be properly configured
before proceeding through this example. The directory servers are expected to contain two replication domains: the
global domain, dc=example,dc=com, and the balancing point, ou=people,dc=example,dc=com.

In this deployment scenario, an austin-proxy1 instance of the Directory Proxy Server communicates
with four external directory servers. The Directory Proxy Server is configured to use entry balancing for the
ou=people,dc=example,dc=com base DN, with two sets of user entries split beneath it. The first set of
user entries is defined in the replicated pair of external servers, austin-set1.example.com and newyork-
set1.example.com. The second set of entries is defined in austin-set2.example.com and newyork-
set2.example.com. The entries in the dc=example,dc=com DIT outside of the balancing point base DN are
replicated among the four external servers.

The following dsreplication status output from the PingDirectory Server external servers describes the
replication configuration that exists before creating the Directory Proxy Server configuration.

--- Replication Status for dc=example,dc=com: Enabled ---

Server : Entries : Backlog : Oldest Backlog Change Age : Generation ID
--------:---------:--------:---------------------------:-------------         
             
austin-set1.example.com:389  : 10003   : 0   : N/A  : 722087263
austin-set2.example.com:389  : 10003   : 0   : N/A  : 722087263
newyork-set1.example.com:389 : 10003   : 0   : N/A  : 722087263
newyork-set2.example.com:389 : 10003   : 0   : N/A  : 722087263

--- Replication Status for ou=people,dc=example,dc=com (Set: dataset1):
 Enabled ---    

Server : Entries : Backlog : Oldest Backlog Change Age : Generation ID
--------:---------:---------:---------------------------:-----------------    
                  
austin-set1.example.com:389  : 100001  : 0  : N/A               : 178892712
newyork-set1.example.com:389 : 100001  : 0  : N/A               : 178892712

--- Replication Status for ou=people,dc=example,dc=com (Set: dataset2):
 Enabled ---    

Server : Entries : Backlog : Oldest Backlog Change Age : Generation ID
---------:---------:---------:---------------------------:-----------------   
                   
austin-set2.example.com:389  : 100001  : 0       : N/A        : 1057593890
newyork-set2.example.com:389 : 100001  : 0       : N/A        : 1057593890

Determining How to Balance Your Data

If a single Directory Server instance can hold all of your data, then we recommend storing your data on a single server
and replicating for high availability, as this simplifies your deployment. If a single server cannot hold all of your data,
then you can spread it across multiple servers in several ways:

• If the data is already broken up by hierarchy and all of the clients understand how to access it that way, the number
of top-level branches is small and a single Directory Server instance can hold all of the information within one



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 161

or more branches. Configure the Directory Proxy Server with multiple base DNs and use simple load-balancing
rather than entry balancing to simplify your deployment.

• If simply breaking up the data using the existing hierarchy is not an option, for example if a large number of top-
level branches must be configured, then consider using entry balancing. The contents of any single branch still
must fit on a given server, because only entries that are immediate subordinates of the entry-balancing base DN
may be spread across multiple servers. Any entries that are further subordinates have to be placed in the same
directory server instance as their parent.

• If one or more branches are so large that any single Directory Server instance cannot hold all of the data, you need
to use entry balancing within that branch to divide the entries among two or more sets of Directory Servers. You
may also need to change the way that the data is arranged in the server so that it uses as flat a DIT as possible,
which is easier to use in an entry-balancing deployment.

In an entry-balancing deployment, there can be data that is common to all external directory servers outside
the balancing point. This data is referred to as the global domain. The Directory Proxy Server entry-balancing
configuration will contain at least two subtree views and associated request processors, one for the global
domain and one for the entry-balancing domain. In our examples, the global domain is dc=example,dc=com
and the entry-balancing domain is ou=people, dc=example,dc=com. The entry-balancing base DN,
ou=people,dc=example,dc=com, is also the balancing point.

Entry Balancing and ACIs

In an entry-balancing deployment, access control instructions (ACIs) are still configured in the backend Directory
Server data. When defining access controls in an entry-balancing deployment, you need to ensure that the data used
by the access control rule is available for evaluation on all datasets.

If you use groups for access control and a group contains users from different data sets, then that group must exist on
each dataset. For a single ACI to be applicable to entries in all datasets, it must be specified above the entry-balancing
point. For example, if an ACI allows access to modify users that are part of group 1, then two things must exist on
both data sets:

• Group 1 must exist in the ou=groups branch of both datasets.
• The ACI referencing group 1 must exist in the ou=people branch or above. The ou=people branch entry

itself is part of the common data.

The Directory Proxy Server ensures that any changes to entries within the scope of the entry-balancing request
processor, but outside the balancing point, are applied to all backend server sets. Any ACI stored at the entry-
balancing point will be kept in sync if changes are made through the Directory Proxy Server.

Overview of Deployment Steps

In this deployment scenario, we will take the following steps:

• Install the Directory Proxy Server on austin-proxy1.
• Use the create-initial-proxy-config tool to provide our initial setup for entry balancing. The initial

setup includes defining multiple subtree views and global indexes in support of entry balancing.
• Change the placement algorithm of the austin-proxy-01 server to use an entry-count placement algorithm.

This algorithm is used to select the backend set to which to forward an add request. It looks at the number of
entries in the backend sets and forwards the add request to the backend with either the fewest or the most entries,
depending on the configuration. You can also configure the placement algorithm to make the decision based on the
on-disk database size rather than the number of entries.

Installing the Directory Proxy Server

We start by configuring the Directory Proxy Server. The four external servers, austin-set1.example.com,
newyork-set1.example.com, austin-set2.example.com, and newyork-set2.example.com, are
running.



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 162

To Install the Directory Proxy Server

• Run the setup program in non-interactive mode.

root@austin-proxy1: ./setup --acceptLicense \ 
--listenAddress austin-proxy1.example.com \
--ldapPort 389 --rootUserDN "cn=Directory Manager" \ 
--rootUserPassword pass --entryBalancing \ 
--aggressiveJVMTuning --maxHeapSize 2g --no-prompt   

Configuring the Entry-Balancing Directory Proxy Server

Once the Directory Proxy Server has been installed, it can be automatically configured using the create-
initial-proxy-config tool. This tool can only be used once for this initial configuration, after which we will
have to use dsconfig to make any changes to our Directory Proxy Server configuration.

To Configure the Entry-Balancing Directory Proxy Server

1. Run the create-initial-proxy-config tool.

root@austin-proxy1: ./bin/create-initial-proxy-config     

2. Our topology meets the requirements, press Enter to continue:

Some assumptions are made about the topology to keep 
this tool simple:    

1) all servers will be accessible via a single user account 
2) all servers support the same communication security type 
3) all servers are PingDirectoryProxy Servers

If your topology does not have these characteristics you can 
use this tool to define a basic configuration and then use the 
'dsconfig' tool or the Administrative Console to fine tune the
 configuration.

Would you like to continue? (yes / no) [yes]:

3. Provide the external server access credentials. All of our proxies have identical proxy user accounts and
passwords.

Enter the DN of the proxy user account [cn=Proxy User,cn=Root
 DNs,cn=config]:    

Enter the password for 'cn=Proxy User,cn=Root DNs,cn=config': 
Confirm the password for 'cn=Proxy User,cn=Root DNs,cn=config':    

4. Specify the type of security that the Directory Proxy Server will use to communicate with Directory Servers.
5. Enter a base DN of the Directory Server instances that will be accessed by the Directory Proxy Server.
6. Define the balancing point as a separate base DN, which is entry balanced:

Enter another base DN of the directory server instances that 
will be accessed through the Directory Proxy Server:

    1)Remove dc=example,dc=com

    b)back

    q)quit

Enter a DN or choose a menu item [Press ENTER when finished 
entering base DNs]: ou=people,dc=example,dc=com    

Are entries within 'ou=people,dc=example,dc=com' split across 



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 163

multiple servers so that each server stores only a subset of 
the entries (i.e. is this base DN 'entry balanced')? (yes / no)
[no]: yes    

7. In this example, the data in ou=people,dc=example,dc=com will be split across two backend sets. Enter 2
to specify that the data will be balanced across two sets of servers.

Across how many sets of servers is the data balanced? 

    c) cancel creating ou=people,dc=example,dc=com 
    q) quit    

Enter a number greater than one or choose a menu item: 2    

8. The balancing point is the same as our base DN, ou=people,dc=example,dc=com., so we use it as the entry
balancing base.

>>>> Entry Balancing Base

The entry balancing base DN specifies the entry below which the 
data is balanced. Entries not below this entry must be duplicated 
in all the server sets. If all the entries in the base DN are 
distributed the entry balancing base DN is the same as the base DN. 

    c) cancel creating ou=people,dc=example,dc=com 
    b) back 
    q) quit    

Enter the entry balancing base DN or choose a menu item 
[ou=people,dc=example,dc=com]: ou=people,dc=example,dc=com    

9. To improve the performance for equality search filters referencing the uid attribute, create a uid global index.
Enter yes to add a new attribute to the global index.

10. Specify the uid attribute.

Enter attributes that you would like to add to the global index:

    c)cancel creating ou=people,dc=example,dc=com 
    b)back 
    q)quit    

Enter an attribute name or choose a menu item [Press ENTER when 
finished entering index attributes]: uid    

11. To optimize Directory Proxy Server performance from the moment it starts accepting connections, enter the
number corresponding to "Yes, and all subsequent attributes."

12. Press Enter to finish specifying index attributes.
13. Press Enter to enable RDN index priming.

Would you like to enable RDN index priming for 
'ou=people,dc=example,dc=com'? (yes / no) [yes]:   

14. Press Enter to finish specifying base DNs.

Enter another base DN of the directory server instances that 
will be accessed through the Directory Proxy Server:

    1) Remove dc=example,dc=com 
    2) Remove ou=people,dc=example,dc=com (distributed)         

    b)  back
    q)  quit

Enter a DN or choose a menu item [Press ENTER when finished 



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 164

entering base DNs]:    

15. The external servers are spread among two locations, New York and Austin. This Directory Proxy Server instance
is located in the austin location.

A good rule of thumb when naming locations is to use the 
name of your data centers or the cities containing them.     

    b)  back
    q)  quit

Enter a location name or choose a menu item: austin

    1)  Remove austin

    b)  back
    q)  quit  

16. Define the newyork location:

Enter another location name or choose a menu item [Press ENTER      
when finished entering locations]: newyork

    1)  Remove austin
    2)  Remove newyork

    b)  back
    q)  quit

Enter another location name or choose a menu item [Press ENTER 
when finished entering locations]:     

17. Select the austin location for this Directory Proxy Server instance:

Choose the location for this Directory Proxy Server     

    1) austin
    2) newyork

    b) back
    q) quit

Enter choice [1]:

18. Specify the LDAP external server instances associated with this location.

Enter the host and port (host:port) of the first directory server 
in 'austin'     

     b)  back
     q)  quit
  
Enter a host:port or choose a menu item [localhost:389]: 
austin-set1.example.com:389    

19. Specify that the austin-set1 server can handle requests from the global domain and from set 1 restricted
domain.

Assign server austin-set1.example.com:389 to handle requests for 
one or more of the defined sets of data:      

    1) dc=example,dc=com
    2) ou=people,dc=example,dc=com; Server Set 1
    3) ou=people,dc=example,dc=com; Server Set 2
    
Enter one or more choices separated by commas: 1,2



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 165

20. Enter the number corresponding to "Yes, and all subsequent servers" to prepare the server for access by the
Directory Proxy Server.

Would you like to prepare austin-set1.example.com:389 for access 
by the Directory Proxy Server?

       1)Yes
       2)No
       3)Yes, and all subsequent servers
       4)No, and all subsequent servers

Enter choice [3]:

21. Select the entry-balanced data set that the austin-set1 server replicates with other servers.

You may choose a single entry-balanced data set with which 
austin-set1.example.com:389 will replicate data with other servers   

    1) ou=people,dc=example,dc=com; Server Set 1
    2) None, data will not be replicated
   
Enter choice: 1
  
Testing connection to austin-set1.example.com:389 ..... Done 
Testing 'cn=Proxy User,cn=Root DNs,cn=config' access ....Denied    

22. Modify the root user for use by the Directory Proxy Server, specifying the directory manager password for the
initial creation of the proxy user.

Would you like to create or modify root user 'cn=Proxy User,
cn=Root DNs,cn=config' so that it is available for this 
Directory Proxy Server? (yes / no) [yes]:    

Enter the DN of an account on austin-set1.example.com:389 
with which to create or manage the 'cn=Proxy User,cn=Root DNs,
cn=config' account and configuration [cn=Directory Manager]:

Enter the password for 'cn=Directory Manager':    
Created 'cn=Proxy User,cn=Root DNs,cn=config' 
Testing 'cn=Proxy User,cn=Root DNs,cn=config'privileges...Done 
Setting replication set name .....    

23. Since the replication set name has already been configured, we do not need to use the name created automatically
by the Directory Proxy Server.

This server is currently configured for replication set 'dataset1'. 
Would you like to reconfigure this server for replication set 
'set-1'? (yes / no) [no]:    

Setting replication set name ..... Done 
Verifying backend 'dc=example,dc=com' ..... Done
Verifying backend 'ou=people,dc=example,dc=com' ..... Done    
Testing 'cn=Proxy User' privileges ..... Done 
Verifying backend 'dc=example,dc=com' ..... Done

24. Define the other Austin and New York servers using the same procedure as in the previous example:

Enter another server in 'austin'

    1) Remove austin-set1.example.com:389
    b) back
    q) quit
  
Enter a host:port or choose a menu item [Press ENTER when 
finished entering servers]: austin-set2.example.com:389    



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 166

Assign server austin-set2.example.com:389 to handle requests 
for one or more of the defined sets of data

    1) dc=example,dc=com
    2) ou=people,dc=example,dc=com; Server Set 1
    3) ou=people,dc=example,dc=com; Server Set 2

Enter one or more choices separated by commas: 1,3

You may choose a single entry-balanced data set with which 
austin-set2.example.com:389 will replicate data with other    
servers

    1) ou=people,dc=example,dc=com; Server Set 2
    2) None, data will not be replicated
 
Enter choice: 1
  
Testing connection to austin-set2.example.com:389 ....Done 
Testing 'cn=Proxy User,cn=Root DNs,cn=config' access ... Denied    

Would you like to create or modify root user 'cn=Proxy User,
cn=Root DNs,cn=config' so that it is available for this 
Directory Proxy Server? (yes / no) [yes]:    

Would you like to use the previously entered manager credentials 
to access all prepared servers? (yes / no) [yes]:    

Created 'cn=Proxy User,cn=Root DNs,cn=config' 
Testing 'cn=Proxy User,cn=Root DNs,cn=config' privileges...Done 
Setting replication set name .....    

This server is currently configured for replication set 'dataset2'. 

Would you like to reconfigure this server for replication set 'set-2'? 
(yes / no) [no]:    

Setting replication set name ..... Done 
Verifying backend 'dc=example,dc=com' ..... Done 
Verifying backend 'ou=people,dc=example,dc=com' ..... Done   

Enter another server in 'austin'

    1) Remove austin-set1.example.com:389
    2) Remove austin-set2.example.com:389

    b) back
    q) quit

Enter a host:port or choose a menu item [Press ENTER when 
finished entering servers]:   

>>>> >>>> Location 'newyork' Details
 >>>> External Servers

External Servers identify directory server instances including 
host, port, and authentication information.    

Enter the host and port (host:port) of the first directory server 
in 'newyork':    

    b) back
    q) quit



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 167

  
Enter a host:port or choose a menu item [localhost:389]: 
newyork-set1.example.com:389  

Assign server newyork-set1.example.com:389 to handle requests 
for one or more of the defined sets of data   

    1) dc=example,dc=com
    2) ou=people,dc=example,dc=com; Server Set 1
    3) ou=people,dc=example,dc=com; Server Set 2
 
Enter one or more choices separated by commas: 1,2
 
You may choose a single entry-balanced data set with which 
newyork-set1.example.com:389 will replicate data with other servers   

    1) ou=people,dc=example,dc=com; Server Set 1
    2) None, data will not be replicated
 
Enter choice: 1
  
Testing connection to newyork-set1.example.com:389 ....Done 
Testing 'cn=Proxy User,cn=Root DNs,cn=config' access ... Denied    

Would you like to create or modify root user 'cn=Proxy User,
cn=Root DNs,cn=config' so that it is available for this 
Directory Proxy Server? (yes / no) [yes]:    

Created 'cn=Proxy User,cn=Root DNs,cn=config' 
Testing 'cn=Proxy User,cn=Root DNs,cn=config' privileges...Done 
Setting replication set name .....    

This server is currently configured for replication set 'dataset1'. 

Would you like to reconfigure this server for replication set 
'set-1'? (yes / no) [no]:    

Setting replication set name ..... Done 
Verifying backend 'dc=example,dc=com' ..... Done
Verifying backend 'ou=people,dc=example,dc=com' ..... Done   

Enter another server in 'newyork'

    1) Remove newyork-set1.example.com:389
    b) back
    q) quit
  
Enter a host:port or choose a menu item [Press ENTER when 
finished entering servers]: newyork-set2.example.com:389    

Assign server newyork-set2.example.com:389 to handle requests 
for one or more of the defined sets of data:    

    1) dc=example,dc=com
    2) ou=people,dc=example,dc=com; Server Set 1
    3) ou=people,dc=example,dc=com; Server Set 2
 
Enter one or more choices separated by commas: 1,3
  
You may choose a single entry-balanced data set with which 
new-york-set2.example.com:389 will replicate data with other servers   

    1) ou=people,dc=example,dc=com; Server Set 2
    2) None, data will not be replicated



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 168

 
Enter choice: 1
  
Testing connection to newyork-set2.example.com:389 ..... Done 
Testing 'cn=Proxy User,cn=Root DNs,cn=config' access.... Denied    

Would you like to create or modify root user 'cn=Proxy User,
cn=Root DNs,cn=config' so that it is available for this Directory 
Proxy Server? (yes / no) [yes]:    

Created 'cn=Proxy User,cn=Root DNs,cn=config' Testing 
'cn=Proxy User,cn=Root DNs,cn=config' privileges...Done
Setting replication set name .....    

This server is currently configured for replication set 'dataset2'. 
Would you like to reconfigure this server for replication 
set 'set-2'? (yes / no) [no]:    

Setting replication set name ..... Done 
Verifying backend 'dc=example,dc=com' ..... Done 
Verifying backend 'ou=people,dc=example,dc=com' ..... Done   

Enter another server in 'newyork'

    1)Remove newyork-set1.example.com:389
    2)Remove newyork-set2.example.com:389

    b)back
    q)quit

Enter a host:port or choose a menu item [Press ENTER when
finished entering servers]:

>>>> >>>> Configuration Summary

  External Server Security: None 
  Proxy User DN: cn=Proxy User,cn=Root DNs,cn=config     
  Location austin
    Failover Order: newyork
    Servers: austin-set1.example.com:389,
             austin-set2.example.com:389
  Location newyork
    Failover Order: austin
    Servers: newyork-set1.example.com:389,
             newyork-set2.example.com:389
  Base DN: dc=example,dc=com
    Servers: austin-set1.example.com:389,
             austin-set2.example.com:389,
             newyork-set1.example.com:389,
             newyork-set2.example.com:389
  Base DN:vou=people,dc=example,dc=com 
    Entry Balancing Base: ou=people,dc=example,dc=com 
    Server Set 1: austin-set1.example.com:389,                     
                  newyork-set1.example.com:389
    Server Set 2: austin-set2.example.com:389,
                  newyork-set2.example.com:389
    Index Attributes: uid (primed,unique)
    Prime RDN Index: Yes

    NOTE: The Directory Proxy Server must be restarted after 
    this tool has completed to have index priming take place          

       b) back
       q) quit



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 169

       w) write configuration
 
    Enter choice [w]
    >>>> Write Configuration
  
    The configuration will be written to a 'dsconfig' batch 
    file that can be used to configure other Directory Proxy Servers.

    Writing Directory Proxy Server configuration to /proxy/dps-
cfg.txt.....Done    

25. Enter yes to apply our configuration changes to the Directory Proxy Server.

Apply these configuration changes to the local Directory Proxy 
Server? (yes /no) [yes]:    

How do you want to connect to the Directory Proxy Server on localhost?     

    1) LDAP
    2) LDAP with SSL
    3) LDAP with StartTLS

Enter choice [1]:

Administrator user bind DN [cn=Directory Manager]:
Password for user 'cn=Directory Manager':
Creating Locations ..... Done
Updating Failover Locations ..... Done
Updating Global Configuration ..... Done
Creating Health Checks ..... Done
Creating External Servers ..... Done
Creating Load-Balancing Algorithm for dc=example,dc=com .... Done
Creating Request Processor for dc=example,dc=com ..... Done
Creating Subtree View for dc=example,dc=com ..... Done
Updating Client Connection Policy for dc=example,dc=com ..... Done
Creating Load-Balancing Algorithm for ou=people,dc=example,dc=com; Server
 Set 1 ..... Done
Creating Request Processor for ou=people,dc=example,dc=com; Server Set
 1...Done    
Creating Load-Balancing Algorithm for ou=people,dc=example,dc=com; Server
 Set 2 .... Done
Creating Request Processor for ou=people,dc=example,dc=com; Server Set
 2...Done      
Creating Entry Balancing Request Processor for
 ou=people,dc=example,dc=com ..... Done
Creating Placement Algorithm for ou=people,dc=example,dc=com .... Done
Creating Global Attribute Indexes for ou=people,dc=example,dc=com ..... Done
Creating Subtree View for ou=people,dc=example,dc=com ..... Done
Updating Client Connection Policy for ou=people,dc=example,dc=com ..... Done
   
See /logs/create-initial-proxy-config.log for a detailed log of this
 operation
           
To see basic server configuration status and configuration you can launch /
bin/status

Configuring the Placement Algorithm Using a Batch File

Now, we configure the placement algorithm using a batch file. We want to place new entries added through the
proxy via LDAP ADD operations into the least used dataset. We do this using an entry-count placement algorithm.
To change the placement algorithm from round-robin to entry-count, we first create and enable an entry-count
placement algorithm configuration object and then disable the existing round-robin placement algorithm. Our batch



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 170

file, dsconfig.post-setup, contains the dsconfig commands required to create the entry-count placement
algorithm and disable the old round-robin algorithm.

To Configure the Placement Algorithm Using a Batch File

The batch file contains comments to explain each dsconfig command. Note that in this example, line wrapping is
used for clarity. The dsconfig command requires that the full command be provided on a single line.

The batch file itself looks like the following:

root@austin-proxy1:more ../dsconfig.post-setup
           
# This dsconfig operation creates the entry-count placement
# algorithm with the default behavior of adding entries to the
# smallest backend dataset first.
           
dsconfig create-placement-algorithm
--processor-name ou_people_dc_example_dc_com-eb-req-processor
--algorithm-name entry-count --type entry-counter --set enabled:true
           
# Note that once the entry-count placement algorithm is created
# and enabled, we can disable the round-robin algorithm.
# Since an entry-balancing proxy must always have a placement
# algorithm, we add a second algorithm and then disable the
# original round-robin algorithm created during the setup
# procedure.
           
dsconfig set-placement-algorithm-prop
--processor-name ou_people_dc_example_dc_com-eb-req-processor
--algorithm-name round-robin --set enabled:false
          
# At this point, LDAP ADD operations will be forwarded to an external
# server representing the dataset with the least number of entries.

• Run the dsconfig command using the batch file. Once the batch file has executed, a new entry-count placement
algorithm, called entry-count, has been created, and the old round-robin placement algorithm, round-robin,
has been disabled.

root@austin-proxy1: bin/dsconfig --no-prompt \
--bindDN "cn=directory manager" --bindPassword password \
--port 389  --batch-file ../dsconfig.post-setup

Batch file '../dsconfig.post-setup' contains 2 commands
           
Executing: create-placement-algorithm --no-prompt
--bindDN "cn=directory manager" --bindPassword pass
--port 1389
--processor-name ou_people_dc_example_dc_com-eb-req-processor
--algorithm-name entry-count --type entry-counter --set enabled:true
    
Executing: delete-placement-algorithm --no-prompt
--bindDN "cn=directory manager" --bindPassword pass
--port 1389
--processor-name ou_people_dc_example_dc_com-eb-req-processor
--algorithm-name round-robin --set enabled:false

Rebalancing Your Entries
If your deployment distributes entries using an entry counter placement algorithm or 3rd party algorithm, you may
need to redistribute your entries. For example, imagine that you have an environment that distributes entries across
three backends using an entry counter placement algorithm. This algorithm distributes entries to the backend that has



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 171

the most space. Imagine that the backends all reach their maximum capacity and you decide to add a new backend
to the deployment. You need to move the entries from the full backends and distribute them evenly across all the
backends, including the new backend.

You might also want to deliberately rebalance your entries to meet the needs of your organization. For example, you
can direct entry balancing based on attributes on the entries themselves. You can write a custom algorithm that looks
at the value of an attribute that is being modified on the entry. Based on the attribute, you can then put this entry
somewhere specific. You might use this feature if you want to have certain entries closer geographically to the client
application using them. The geographical information could be included in the entry. Rebalancing would be used to
move these entries to the server in the correct geographical location.

You can redistribute entry-balanced entries in two ways:

• Using dynamic rebalancing. With dynamic rebalancing, as existing entries get modified, they get moved. You
configure dynamic rebalancing in the entry counter placement algorithm.

• Using the move-subtree tool. This tool can be used to move either small subtrees through a transactional
method or to move large subtrees, potentially taking them offline for a short period.

The remainder of this section describes each of these method of entry rebalancing in more detail.

About Dynamic Rebalancing

During dynamic rebalancing entries get moved as they are modified. You configure dynamic rebalancing on the entry
counter placement algorithm or a third-party placement algorithm that supports rebalancing. This algorithm keeps a
count of the number of entries or the size of the backend set. You configure dynamic rebalancing using the following
parameters:

• rebalancing-enabled. Determines whether entry rebalancing is enabled. When rebalancing is enabled, the
placement algorithm is consulted after modify and add operations, to determine whether the target entry should be
moved to a different backend set.

• rebalancing-scope. Indicates which modified entries are candidates for rebalancing. A value of top-level indicates
that only entries immediately below the entry-balancing base can be rebalanced. A value of any indicates that
entries at any level below the entry-balancing base may be rebalanced.

• rebalancing-minimum-percentage. Specifies the minimum threshold for entries to be migrated from one
backend set to a preferred backend set with a smaller size. Entries are not migrated unless the percentage
difference between the value of the current backend set and the value of the preferred backend set exceeds this
threshold. This parameter prevents unnecessarily migrating entries back and forth between backend sets of similar
sizes.

• rebalancing-subtree-size-limit. Specifies the maximum size of a subtree that can be rebalanced.
• poll-interval. Specifies how long to wait between polling the size of the backends to determine how to rebalance;

works in conjunction with the rebalancing-minimum-percentage property.
• placement-criteria. Determines which approach to use to select a destination backend for rebalancing. Possible

values are: entry-count, backend-size, or custom.

The following figure illustrates an entry-balancing base DN and three subtrees, A, B, and C. If the rebalancing scope
is set to any, any child entries under the base DN can be rebalanced. For example, if a change is made to entry A1,
the entire subtree A might be rebalanced, depending upon how you have configured rebalancing. If the rebalancing
scope is set to top-level, rebalancing is only triggered when entries at the top level, such as A, are modified.
Changes made to subentries, such as A1 or A2, do not trigger rebalancing. Rebalancing is also triggered upon the
addition of entries such as A1,A2, provided the scope is any.



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 172

Figure 4: Rebalancing at the Top Level

If you are writing your own 3rd party algorithm, you program dynamic rebalancing using the
SelectRebalancingBackendSet method on the placement algorithm. For more information, see the Server SDK
documentation.

To Configure Dynamic Rebalancing

This procedure describes how to configure dynamic rebalancing on an existing entry balancing configuration.

1. To configure entry rebalancing, you may create an entry counter placement algorithm, if the current placement
algorithm does not support rebalancing. You can either do this using dsconfig in interactive mode, or using the
dsconfig command line as follows:

$ dsconfig create-placement-algorithm \
  --processor-name dc_example_dc_com-eb-req-processor \
  --algorithm-name rebalancing --type entry-counter \
  --set enabled:true --set rebalancing-enabled:true

2. Remove any placement algorithm previously configured on this entry-balancing request processor.
3. You can throttle how many entries are being moved by the proxy, so that the backend servers do not have too

heavy a load. To do this, set the rebalancing-queue-maximum-size property of the request processor created in the
previous step. By default, it is set to 1000. If the load is too high, reduce this value as follows:

$ dsconfig set-request-processor-prop \
  --processor-name dc_example_dc_com-eb-req-processor \
  --set rebalancing-queue-maximum-size:50

4. Verify that the access logs are configured to display the subtrees being moved by dynamic rebalancing. The access
logs provide a good way to monitor progress. So, if the write load on the backend servers is high and you see lots
of rebalancing activity in the access log, lower the queue size to lower the rebalancing activity. You can configure
the access log to display entry rebalancing processing information as follows:

$ dsconfig set-log-publisher-prop \
  --publisher-name "File-Based Access Logger" \
  --set log-entry-rebalancing-requests:true

About the move-subtree Tool

The move-subtree tool allows you to specify subtrees for rebalancing. You specify the source server, the target
server, and one or more base DNs identifying the subtrees you want to move. You can move small subtrees using the
transactional method or move large subtrees, which does not use this method. Instead, the large subtree is not fully
accessible during the move, so clients may get an "insufficient access rights error" if they try to access the subtree. As
entries are moved, clients can read but not write to them. Once the transfer is complete, the entries are fully available
to client requests.

This tool accepts a file containing a list of the base DNs of the subtrees you want to move.



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 173

Note:  The move-subtree tool requires users to have access to the extended operations and controls
needed to run the tool. Make sure to apply the following ACIs to your data.

aci: (targetcontrol="1.3.6.1.4.1.30221.2.5.5 || 
      1.3.6.1.4.1.30221.2.5.24 || 1.3.6.1.4.1.30221.2.5.13")
     (version 3.0; acl "Allow admin to submit move-subtree controls"; 
      allow (read) userdn="ldap:///uid=admin,dc=example,dc=com";)
aci: (extop="1.3.6.1.4.1.30221.2.6.19")
     (version 3.0; acl "Allow admin to request move-subtree extended 
      operation"; allow (read) userdn="ldap:///
uid=admin,dc=example,dc=com";)

About the subtree-accessibility Tool

The subtree-accessibility tool helps you determine if a subtree has restricted access and helps you fix
any problems. If, during rebalancing, the Directory Server issues an alert that a subtree has been unavailable for too
long, then you can use this tool to evaluate the problem. For example, if the move-subtree tool is interrupted by
a host machine going down unexpectedly, the subtree might not be successfully moved. You can use the subtree-
accessibility tool to evaluate and correct any problems with the subtrees, and then re-run the move-subtree
tool.

Managing the Global Indexes in Entry-Balancing Configurations
In an entry-balancing configuration, the Directory Proxy Server maintains the default RDN index as well as one or
more in-memory global attribute indexes. The global indexes allow the Directory Proxy Server to select the correct
backend server set for incoming operations, which avoids broadcasting operations to all backend sets.

The indexes may be preloaded from peer proxies or the backend directory servers when the server starts up, and
are updated by certain operations that come through the Directory Proxy Server. For instance, when a new entry is
added, the DN of the new entry is added to the DN index of the Directory Proxy Server performing the operation.
The indexes are also fault-tolerant and can adapt to changes made in the backend servers without going through the
Directory Proxy Server. For example, operations will be processed directly through the backend server.

This section describes when to create a global attribute index, how to reload the global index, how to monitor its
growth, and how to prime the global index from a peer at start-up.

When to Create a Global Attribute Index

The RDN index is referenced whenever a modify, delete, or base search is requested. In other words, the RDN index
is needed when the LDAP request contains the complete DN of the targeted entry. If the entry-balancing request
processor is not configured to prime the rdn index at startup, then the index is populated over time as LDAP requests
are processed.

A global attribute index is an optional index and is referenced when the Directory Proxy Server is handling a search
request with an equality filter involving the attribute, such as the telephoneNumber attribute with the filter
(telephoneNumber=+11234567890). Since the Directory Proxy Server does not know what the data within the subtree
views looks like or how it will be searched, it cannot create or recommend default global attribute index definitions.
The creation of a global attribute index is based on the range of equality-filtered search requests that the Directory
Proxy Server will handle. The Directory Server must also have an equality or ordering index type for the associated
attribute Local DB Index."

The common candidates for global attribute indexing are the uniquely-valued equality-indexed attributes on the
external servers. Examples of these attributes are uid, mail and telephoneNumber. Though the values of the
attribute need not be unique to be used as a global attribute index by the entry-balancing request processor.

Consider a Directory Proxy Server deployment that expects to handle frequent searches of the form
"(&(mail=user@example.com)(objectclass=person))". Since the filter is constructed with an equality
match and &-clause, we can use a global attribute index on the mail attribute to avoid forwarding the search request
to each entry balanced dataset.



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 174

The following dsconfig command creates the global attribute index. Note that the mail attribute must be indexed
for equality searches on each of the external servers behind the Directory Proxy Server.

$ bin/dsconfig create-global-attribute-index \
  --processor-name ou_people_dc_example_dc_com-eb-req-processor \
  --index-name mail --set prime-index:true \

After creating the index with dsconfig, the index will begin to be populated as search requests involving the mail
attribute are made to the Directory Proxy Server. At this point, you can also use the reload-index tool to fully
populate the index for optimal performance as described in the following section.

Reloading the Global Indexes

The Directory Proxy Server provides a tool, reload-index, which allows you to manually reload the Directory
Proxy Server global indexes. You might need to reload the index when:

• The Directory Proxy Server fails to successfully load its global indexes on startup.
• Changes are made to the set of indexed attributes.
• Significant changes are made to the content in backend servers.
• The integrity of the index is in question.

You can use the tool to reload all configured indexes in the global index, including the RDN index and all attribute
indexes, or to reload only those indexes you specify.

The tool schedules an operation to run within the Directory Proxy Server’s process. You must supply LDAP
connection information so that the tool can communicate with the server through its task interface. Tasks can be
scheduled to run immediately or at a later scheduled time. Once scheduled, you can manage the tasks using the
manage-tasks tool.

To Reload All of the Index

• Run the reload-index tool to reload all of the indexes within the scope of the dc=example,dc=com base
DN. The task is performed as cn=Directory Manager on port 389 of the localhost server. The existing index
contents are erased before reloading.

$ bin/reload-index --task --bindPassword password --baseDN
 "dc=example,dc=com"

To Reload the RDN and UID Index

• To reload the RDN and UID index in the background so that the existing contents of these indexes can continue to
be used, run the command as follows:

$ bin/reload-index --task --bindPassword password \ 
  --baseDN "dc=example,dc=com" --index rdn --index uid --background

To Prime the Backend Server Using the --fromDS Option

You can force the Directory Proxy Server to prime from the backend directory server only using the --fromDS option,
overriding the configuration of the prime-index-source property. You can do this on a one off basis if the
global index appears to be growing too large. For example, run the command as follows:

• Run the reload-index command with the --fromDS option to prime the backend server.

$ bin/reload-index --bindPassword password --baseDN "dc=example,dc=com" --
fromDS

Monitoring the Size of the Global Indexes

Over time, stale entries can build up in the global indexes because proxies do not communicate changes to the indexes
with one another. The Directory Proxy Server continues to operate normally in this situation since the global indexes
are only ever used as a hint at where to find entries.



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 175

The rate of this growth is typically very slow since in most environments the key attributes change infrequently.
The global indexes themselves are also very compact. However, if the global indexes start to fill up the allocated
memory, you may need to flush and reload them. The size of the global indexes can be monitored over LDAP using
the following command:

$ bin/ldapsearch -b "cn=monitor" -D "uid=admin,dc=example,dc=com" -w password
 \
  "(objectClass=ds-entry-balancing-request-processor-monitor-entry)" \
  global-index-current-memory-percent 

If the global indexes fill up, the Directory Proxy Server will continue to operate normally, but it will need to start
evicting entries from the indexes, which will lead to more broadcast searches, reducing the overall throughput of the
Directory Proxy Server.

To reload the indexes so that they no longer hold stale information, run the reload-index command with the --
fromDS option so that data is loaded from backend directory servers. We recommend that you reload the indexes
during off-peak hours because it may have an impact on performance while the reload is in progress.

Sizing the Global Indexes

The Directory Proxy Server includes a tool, global-index-size, to help you estimate the size in memory of
your global indexes. You can estimate the size of more than one index in a single invocation by providing multiple
sets of options. The tool creates its estimate using the following information:

• Number of keys in the index. For example, for the built-in RDN index, the number of keys is the total number of
entries in the Directory Server that are immediately below the balancing point. Entries more than one level below
the balancing point, as well as entries that are not subordinate to the balancing point, will not be contained in the
RDN index. For attribute indexes, the number of keys will be the number of unique values for that attribute in the
entry-balanced portion of the data.

• Average size of each key, in bytes. For attributes indexes, the key is simply the attribute value. For the
built-in RDN index, the key is the RDN directly below the balancing base DN. For example, for the DN
uid=user.0,dc=example,dc=com under the balancing base DN of dc=example,dc=com, the key size
is 10 bytes (the number of bytes in the RDN uid=user.0).

• Estimated number of keys. This value corresponds to the maximum number of keys you expect in your
Directory Server. The number of keys is provided in the index-size configuration property of the global-
attribute-index object when you configure an attribute index. For the built-in RDN index, the configured
number of keys is provided in the rdn-index-size property. If you do not provide a value, the tool assumes
that the configured number of keys is the same as the actual number of keys.

To Size the Global Index

• Run the global-index-size to estimate the size of two separate indexes, both with 10,000,000 keys but with
differing average key sizes. The configured number of keys is assumed to be equal to the actual number of keys:

$ bin/global-index-size --numKeys 10000000 \ 
  --averageKeySize 11 --numKeys 10000000 \
  --averageKeySize 15    

Num Keys : Cfg. Num Keys : Avg. Key Size : Est. Memory Size
---------:---------------:---------------:----------------- 
10000000 : 10000000      : 11            : 159 mb
10000000 : 10000000      : 15            : 197 mb

Priming the Global Indexes on Start Up

The Directory Proxy Server can prime the global indexes on startup from the backend directory server or from a
peer proxy server, preferably one that resides on the same LAN or subnet. When priming occurs locally, you can
avoid WAN bandwidth consumption and reduce the processing load on the directory servers in the topology. You can
specify the data sources for the index priming and the order in which priming from these sources occurs.



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 176

Use the prime-index-source property to specify the sources of data, either ds, file or some combination
of the two. The order you specify is the order in which priming from these sources will be attempted. For example,
if you specify prime-index-source:file,ds, priming will be performed from the global-index data
file created from the previous run of the directory servers. With the file,ds configuration, the contents of the
global index are written to disk periodically if, and only if, the entire global index has been primed previously from a
directory servers source either from startup or reloaded-index. Priming is most efficient if the source server is on the
same local network as the Directory Proxy Server.

To Configure All Indexes at Startup

The following example configures the entry-balancing request processor so that it primes the global index from the
persisted file, if present, or from an external directory servers source if necessary.

• Run the dsconfig tool to prime all indexes at startup.

$ bin/dsconfig set-request-processor-prop \
  --processor-name dc_example_dc_com-eb-req-processor \
  --set prime-all-indexes:true --set prime-index-source:file \
  --set prime-index-source:ds

To Configure the Global Indexes Manually

If you do not want to configure priming during setup, you can configure index priming manually by creating an
external server, creating a global attribute index, and then changing the entry-balancing request processor to load
indexes from this external server.

1. Use the dsconfig tool to create an external server of the type PingDirectoryProxy Server to represent a peer of
the Directory Proxy Server.

$ bin/dsconfig create-external-server \ 
  --server-name intra-proxy-host.example.com:3389 \ 
  --type PingDirectoryProxy-server \ 
  --set server-host-name:intra-proxy-host \ 
  --set server-port:338 \ 
  --set "bind-dn:cn=Directory Manager" \ 
  --set "password:secret123"   

2. Create a global attribute index on the uid attribute as follows:

$ bin/dsconfig create-global-attribute-index \ 
  --processor-name dc_example+dc+com-eb-req-processor \
  --index-name uid \

3. Change the entry-balancing request processor to load the indexes at startup from the peer Directory Proxy Server
using dsconfig set-request-processor-prop as described above.

To Persist the Global Index from a File

The PingDirectoryProxy Server supports periodically persisting the global index to a file and priming the global index
from the persisted file when the server is restarted.

An Entry Balancing Request Processor can be configured to periodically persist the global index to disk, so that when
the Entry Balancing Request Processor is reinitialized (on startup), it can prime the values from disk instead of putting
load on the remote servers. Being able to read the index from disk eliminates the load on backend Directory Server
instances if many PingDirectoryProxy Server instances were to come up at once.

An entry-balancing request processor can be configured to persist the global index to disk by including file as one
of the prime index sources (with the prime-index-source property). The frequency at which the file is written
is controlled by the persist-global-index-frequency property.

The global index needs to be fully primed before it will be persisted. It can be initially primed using a peer
PingDirectoryProxy Server or from a backend Directory Server. On a running PingDirectoryProxy Server, when
new global attribute indexes are added, the global index can be primed with those attribute indexes by running the
rebuild-index tool. The rebuild-index tool always uses a remote server for priming the global index even



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 177

if file is configured as a source). On subsequent restarts of the PingDirectoryProxy Server, the global index will
be primed from the persisted file instead of going over the network to a remote server, which allows it to be primed
much faster than if it were using a remote priming source. Also, during server startup, the global index priming works
by using each configured prime-index-source property in the specified order until it is fully primed to take
advantage of what is available locally before contacting one or more remote servers.

• The following dsconfig command prime all indexes at startup from a file.

dsconfig -n set-request-processor-prop \
  --processor-name entry-balancing \
  --set prime-index-source:file \
  --set prime-index-source:ds \
  --set persist-global-index-frequency:10s \
  --set persist-global-index-directory:/servers/proxy-1/index-files \
  --set prime-all-indexes:true
                    

Priming or Reloading the Global Indexes from Sun Directory Servers

When priming or reloading a global index based on a Sun Directory Server environment, the Sun servers may become
overwhelmed and unresponsive because of their method of streaming data. To reduce the impact of priming on these
server, you can use the prime-search-entry-per-second property. To reduce the impact of reloading these
indexes, use the --searchEntryPerSecond property of the reload-index command. These properties
control the rate at which the Directory Proxy Server accepts search result entries from the backend directory servers.

To find the optimum rate, start low and specify a few thousand search entries per second. Then increase as necessary.

Working with Alternate Authorization Identities
Access control rules in an entry-balanced deployment are configured in the Directory Server backend servers and
require access to the entry contents of the user issuing the request. This can introduce a possible issue when clients to
the Directory Proxy Server authenticate as users whose entries are among the entry-balanced sets. If the server which
is processing a request does not contain the issuing user's entry, then the access control cannot be evaluated.

For example, consider a deployment that has two entry-balancing sets, set-01 and set-02. Set-01 has entries in
the range uid=0-10000, while set-02 has entries for uid=10001-20000. The client with uid=5000 binds
to the Directory Proxy Server, which sends a BIND request to entry-balancing set-01. Next, the client sends a
SEARCH request with filter "(uid=15000)". The Directory Proxy Server determines that uid=15000 lives
on entry-balancing set-02. The Directory Proxy Server then determines that the entry for the authenticated user with
uid=5000 does not exist in set-02 and that the access control handler would reject the SEARCH request issued by
an unknown user.



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 178

Figure 5: Entry-Balancing Issue with Clients Not Present in the Underlying Data Set

One solution to this problem is to make use of an alternate authorization identity for the user, which references an
entry that exists in all Directory Servers in all backend sets and has an equivalent set of access control rights as the
authenticated user. The alternate authorization identity is used when the Directory Proxy Server observes that the
Directory Server processing a request does not contain the entry of the user issuing the request.

The following sections cover the procedures to configure the alternate authorization identities for the Directory Proxy
Server.

About Alternate Authorization Identities

Whenever the Directory Proxy Server forwards a request to the backend set containing the user's entry, it forwards
the request with an authorization identity that reflects the user's actual identity, since servers in that set already know
about that user. However, when forwarding a request to a backend set that does not contain the user's entry, the
Directory Proxy Server uses an alternate authorization identity that reflects the generic user with the same set of
rights as the actual user issuing the request. Alternate authorization identities allow for the proper evaluation of access
control rules for users whose entries are not present within an entry-balanced dataset.

There are typically only a few different generic class of users from an access control perspective, which can be placed
in a portion of the DIT that is not below the entry-balancing base DN and is replicated to all servers in the topology.
For example, assume that you have three classes of users: full administrators, password administrators, and normal
users. You could create the following entries in the topology and assign them the appropriate access rights:

uid=normal user,dc=example,dc=com
uid=server-admin,dc=example,dc=com
uid=password-admin,dc=example,dc=com

Returning to the example scenario, the client with uid=5000 binds to the Directory Proxy Server, which sends a
BIND request to entry-balancing set-01. Next, the client sends a SEARCH request for uid=15000. The Directory
Proxy Server determines that uid=15000 lives on entry-balancing set-02. Next, the Directory Proxy Server then
determines that the client uid=5000 does not have an entry on entry-balancing set-02. The Directory Proxy Server
uses an alternate authorization identity that reflects the generic user, uid=normal user, which has the same set
of rights as the client uid=5000 who is issuing the request. The access control is accepted and the SEARCH request
returns a response for uid=5000.

Whenever a user authenticates to the Directory Proxy Server, the server can keep track of which backend set holds
that user's entry and determine whether an alternate authorization identity is required. The server can also determine
which of these generic accounts best describes the rights that the user should have.



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 179

Figure 6: Alternate Authorization Identity Solves Access Control Issues in Entry-Balancing
Deployments

When an alternate authorization identity is invoked, you will see authzID='dn:uid=normal
user,dc=example,dc=com' in the server log, indicating that the alternate authorization identity was used. For
example, if the user.15000 is in a different backend set from user.5000, the log will show the following:

% bin/ldapsearch -D "uid=user.5000,ou=people,dc=example,dc=com" -w pasword \
  -b uid=user15000,ou=people,dc=example,dc=com "(objectclass=*)"

[18/Aug/2013:11:54:35 -0500] SEARCH REQUEST conn=153 op=1 msgID=2 
via="app='Directory-Proxy address='127.0.0.1'
authzID='dn:uid=normal user,dc=example,dcom' sessionID='conn=2' 
requestID='op=1'" base="uid=user.150000,ou=people,dc=example,dc=com"scope=2 
filter="(objectclass=*)" attrs="ALL"

[18/Aug/2013:11:54:35 -0500] SEARCH REQUEST conn=153 op=1 msgID=2 resultCode=0
 etime=2.038 
entriesReturned=1 authzDN="uid=normal-user,dc=example,dc=com"

Configuring Alternate Authorization Identities

Alternate authorization identities are specified by the authz-attribute property of the entry-balancing request
processor configuration object. By default, the authz-attribute property has the default value of ds-authz-
map-to-dn, which is an attribute reserved for this purpose.

To Configure Alternate Authorization Identity DNs

If a user entry has a value for ds-authz-map-to-dn whether it's explicitly contained in the entry or only present
via a virtual attribute, then that will be used to specify the alternate authorization identity for the user. Otherwise, the
default authorization identity (as indicated via the authz-dn configuration property) will be used to determine the
alternate authorization identity.

1. Use dsconfig to set the authz-dn property of the entry-balancing request processor configuration. If any user
among the balanced entries does not have an alternate authorization identity defined, the Directory Proxy Server
will use the value of the authz-dn property of the entry-balancing request processor configuration.

$ bin/dsconfig set-request-processor-prop \
  --processor-name dc_example_dc_com-eb-req-processor \



PingDirectory | Deploying an Entry-Balancing Directory Proxy Server | 180

  --set "authz-dn:uid=normal user,dc=example,dc=com"

2. Create an auxiliary object class containing ds-authz-map-to-dn as an allowed attribute.
3. Add the auxiliary object class value to all user entries of interest.
4. Then, add the following attribute value to a server-admin user.

ds-authz-map-to-dn: uid=server-admin,dc=example,dc=com



Chapter

7
Managing Entry-Balancing Replication

Topics:

• Overview of Replication in an
Entry-Balancing Environment

• Replication Prerequisites in an
Entry-Balancing Deployment

• About the --restricted Argument
of the dsreplication Command-
Line Tool

• Checking the Status of
Replication in an Entry-
Balancing Deployment

• Example of Configuring Entry-
Balancing Replication

Replication in the PingDirectoryProxy Server synchronizes directory data
between all servers in the topology. In a deployment using the entry-balancing
feature, however, directory data under the entry-balancing point is split into
multiple data sets. Each data set is replicated to ensure high availability
between a subset of the servers in the topology. Other directory data, such as
the schema or data above the entry-balancing point, is replicated between all
servers in the topology.

This chapter presents the following information about replication in an entry-
balancing environment:



PingDirectory | Managing Entry-Balancing Replication | 182

Overview of Replication in an Entry-Balancing Environment
In an entry-balanced deployment, some data is replicated everywhere, such as the schema, the server registry, and
other shared data, and some data is replicated only on certain servers. A replication domain contains all of the servers
in a replicated topology and shares a schema. The replication domain is associated with the base DN and must be a
base DN of a backend.

By default, replication propagates updates to all replication servers in the topology. Updates to data under
the entry-balancing point, however, must be replicated only among server instances in the same data set.
Replication requires that, in such deployments, the Directory Server is configured with a replication set name
global configuration property, and two backends. One backend has a base DN that is replicated globally (such as
dc=example,dc=com) and the second backend has a base DN associated with the entry-balancing point (such as
ou=people,dc=example,dc=com).

Figure 7: Global and Restricted Backends

If a data set name is not defined when you set up the Directory Proxy Server, one will be provided by default.
The proper configuration of an entry-balancing environment requires coordination between the Directory Server
and Directory Proxy Server. Once replication is enabled, the replication domain may be designated as the domain
participating in entry balancing.

Review the P Administration Guide for more details about replication, managing the replication topology, and
working with multiple backends.

Replication Prerequisites in an Entry-Balancing Deployment
Replication in an entry-balanced deployment requires the following:

• Multiple local DB backends. When you set up the Directory Server instances, you need two backends, a global
backend for globally replicated data, such as userRoot, and a backend for the balancing point base DN,
dataSet. Both backends need to be enabled for replication and initialized separately.

• Replication set name. Every Directory Server in your replicated topology must have a replication set name. This
replication set name coordinates the Directory Proxy Server and the Directory Server. The restricted domain is
only replicated within instances using the same replication set name.

• Multiple Directory Proxy Server subtree views. The entry-balanced proxy configuration relies on multiple
subtree views, one for the globally replicated base DN and one for the entry-balancing point base DN. The
globally replicated base DN will have a proxying request processor associated with it. The restricted base DN
will have an entry-balancing request processor associated with it. This configuration is best achieved using the
create-initial-proxy-config tool after running setup.



PingDirectory | Managing Entry-Balancing Replication | 183

About the --restricted Argument of the dsreplication Command-Line Tool
When enabling replication for a server that takes part in an entry balanced environment, it is recommended that the
multiple domains involved are enabled at the same time. There is a global domain, and a restricted domain, where the
restricted domain represents the entry-balancing point. Each base DN is defined in a separate Local DB Backend. The
dsreplication CLI tool has a --restricted argument that is used to specify which base DN is considered an entry-
balancing point.

To Use the --restricted Argument of the dsreplication Command-Line Tool

• Run dsreplication to enable replication between two servers with entry balancing.

• You can run the command in non-interactive mode as follows:

$ bin/dsreplication enable --host1 host1.example.com \ 
  --port1 1389 --bindDN1 "cn=Directory Manager" \ 
  --bindPassword1 secret --replicationPort1 8989 \ 
  --host2 host2.example.com --port2 2389 \
  --bindDN2 "cn=Directory Manager" --bindPassword2 secret \ 
  --replicationPort2 8989 --baseDN dc=example,dc=com \ 
  --baseDN ou=people,dc=example,dc=com \ 
  --restricted ou=people,dc=example,dc=com    

• Alternatively, you can enable replication using the interactive command line, making sure to specify that
an entry balancing is being used and specifying the base DN of the entry-balancing point. After entering
dsreplication and entering the LDAP connection parameters, follow the prompts presented.

You must choose at least one base DN to be replicated. 

Replicate base DN dc=example,dc=com? (yes / no) [yes]: yes

Replicate base DN ou=people,dc=example,dc=com? (yes / no) [yes]: yes    

Do you plan to configure entry balancing using the Directory Proxy Server?
 (yes / no) [no]: yes

Is dc=example,dc=com an entry-balancing point? (yes / no) [no]: no

Is ou=people,dc=example,dc=com an entry-balancing point? (yes / no) [no]:
 yes

Checking the Status of Replication in an Entry-Balancing Deployment
You can use the dsreplication status tool to check the status of an entry-balancing deployment. In this example,
the ou=people,dc=example,dc=com subtree is entry-balanced. The data is split into two sets, set1 and
set2. The servers host1 and host2 are in replication set set1 and servers host3 and host4 are in replication
set set2.

To Check the Status of Replication in an Entry-Balancing Deployment

• Run the dsreplication command to get a status of replication in the entry-balancing deployment. To view
a specific set, use the --setName option to see only the specific replication set; otherwise, all of the sets will be
displayed by default.

$ bin/dsreplication status --hostname host1.example.com \
  --port 1389 --adminUID admin --adminPassword secret    



PingDirectory | Managing Entry-Balancing Replication | 184

Example of Configuring Entry-Balancing Replication
This section describes how to set up a four-server replication topology that uses entry balancing to distribute entries
across the servers. The procedure assumes that none of the servers have participated in any previous replication
topology. This is supported for one or multiple entry balancing domains.

Assumptions

The example uses the LDAP (389) and replication (8989) ports respectively. It configures the following hosts:

austin1.example.com
newyork1.example.com
austin2.example.com
newyork2.example.com

In this example, we have a global domain of dc=example,dc=com, which is replicated across all servers. The
data below the entry-balancing point of ou=people,dc=example,dc=com is distributed across two data sets,
dataSet1 and dataSet2. Each data set is replicated between two directory servers. Each of these servers is associated
with one of two locations, Austin and New York.

Configuration Summary

To configure replication in an entry-balanced deployment, you must do the following:

• Install two directory servers in an Austin location and two directory servers in a New York location.
• Create a new backend, called dataset, to store the entry-balancing data set.
• Define entry-balancing set names dataSet1 and dataSet2 for assignment to the replication-set-

name Global Configuration Property of the Directory Server instances.
• Import the data representing the global domain, stored in userRoot, into a server. Choose a server for each of the

entry-balancing data sets, both stored in the backend named dataset.
• Enable replication and initialize remaining servers.
• Configure the proxies.
• Check the status of replication.



PingDirectory | Managing Entry-Balancing Replication | 185

To Install the Directory Server

First, install the Directory Server instances. In this example, we install the following four servers, two in the Austin
location and two in the New York location:

austin1.example.com
austin2.example.com
newyork1.example.com
newyork2.example.com

1. We install the first server, austin1, as follows:

root@austin1# ./setup --cli --baseDN dc=example,dc=com \ 
--ldapPort 389 --rootUserDN "cn=Directory Manager" \
--rootUserPassword pass --no-prompt --acceptLicense

2. Install the second Austin server, austin2, in the same way:

root@austin2 # ./setup --cli --baseDN dc=example,dc=com \ 
--ldapPort 389 --rootUserDN "cn=Directory Manager" \
--rootUserPassword pass --no-prompt --acceptLicense

3. Next, install the two New York servers, newyork1 and newyork2, as follows:

root@newyork1# ./setup --cli --baseDN dc=example,dc=com \ 
--ldapPort 389 --rootUserDN "cn=Directory Manager" \ 
--rootUserPassword pass --no-prompt --acceptLicense    

root@newyork# ./setup --cli --baseDN dc=example,dc=com \ 
--ldapPort 389 --rootUserDN "cn=Directory Manager" \ 
--rootUserPassword pass --no-prompt --acceptLicense    

To Create the Database Backends and Define the Replication Set Name

1. On all servers, create the dataset backend as follows:

./bin/dsconfig --no-prompt create-backend \
--backend-name dataset --type local-db --set enabled:true \ 
--set base-dn:ou=people,dc=example,dc=com   

2. Set the replication set name for austin1.example.com and newyork1.example.com to dataset1:

./bin/dsconfig --no-prompt \
set-global-configuration-prop \
--set replication-set-name:dataset1

3. Set the replication set name for austin2.example.com and newyork1.example.comto dataset2:

./bin/dsconfig --no-prompt \
set-global-configuration-prop \
--set replication-set-name:dataset2

To Create and Set the Locations

1. On the Austin servers, create the two locations, newyork and austin, and set the location of this instance to austin:

./bin/dsconfig --no-prompt create-location --location-name austin

./bin/dsconfig --no-prompt create-location --location-name newyork \
--set preferred-failover-location:austin

./bin/dsconfig --no-prompt set-location-prop --location-name austin \
--add preferred-failover-location:newyork

./bin/dsconfig --no-prompt set-global-configuration-prop \



PingDirectory | Managing Entry-Balancing Replication | 186

--set location:austin

2. For the New York servers, set the location to newyork:

./bin/dsconfig --no-prompt create-location \
--location-name austin

./bin/dsconfig --no-prompt create-location \
--location-name newyork \ 
--set preferred-failover-location:austin

./bin/dsconfig --no-prompt set-location-prop \
--location-name austin \ 
--add preferred-failover-location:newyork

./bin/dsconfig --no-prompt set-global-configuration-prop \
--set location:newyork      

To Import the Entries

We import the userRoot data, based on data defined in the userRoot.ldif file, into one server. This file does not
contain entries at or within the entry-balancing point, ou=people,dc=example,dc=com.

1. Use the import-ldif command to import the userRoot data.

root@austin1# ./bin/import-ldif --backendID userRoot \ 
--ldifFile /data/userRoot.ldif \
--includeBranch dc=example,dc=com \ 
--rejectFile /data/austin1-import-rejects \
--port 389
--hostname austin1.example.com    

2. Import the dataSet1 data on one server into the dataset backend, which is assigned the dataSet1 replication-
set-name.

root@austin1# ./bin/import-ldif --backendID dataset \ 
--ldifFile /data/dataset1.ldif \
--includeBranch ou=people,dc=example,dc=com \ 
--rejectFile /data/austin1-dataset-import-rejects \ 
--hostname austin1.example.com --port 389

3. Import the dataSet2 data on one server into the dataset backend, which is assigned the dataSet2 replication-
set-name.

root@austin2# ./bin/import-ldif --backendID dataset \ 
--ldifFile /data/dataset2.ldif \
--includeBranch ou=people,dc=example,dc=com \ 
--rejectFile /data/austin2-dataset-import-rejects \ 
--hostname austin2.example.com --port 389

To Enable Replication in an Entry-Balancing Deployment

Now we can enable replication between the servers and initialize the remaining servers without data. Notice that we
specify the --restricted domain in the dsreplication command.

1. Run dsreplication enable to enable the servers in the topology. The first invocation of this command
creates the admin account.

root@austin1# ./bin/dsreplication enable \ 
--host1 austin1.example.com \ 
--port1 389 --bindDN1 "cn=directory manager" \ 
--bindPassword1 pass --host2 austin2.example.com \
--port2 389 --bindDN2 "cn=directory manager" \ 
--bindPassword2 pass \
--replicationPort1 8989 \ 



PingDirectory | Managing Entry-Balancing Replication | 187

--replicationPort2 8989 \ 
--baseDN dc=example,dc=com \ 
--baseDN ou=people,dc=example,dc=com \ 
--restricted ou=people,dc=example,dc=com \ 
--adminUID admin --adminPassword pass --trustAll \
--no-prompt    

2. Enable replication between austin1 and newyork1. This procedure automatically enables replication between
austin2 and newyork1 as well.

root@austin1# ./bin/dsreplication enable \ 
--host1 austin1.example.com \ 
--port1 389 --bindDN1 "cn=directory manager" \ 
--bindPassword1 pass --host2 newyork1.example.com \
--port2 389 --bindDN2 "cn=directory manager" \ 
--bindPassword2 pass \ 
--replicationPort1 8989 \
--replicationPort2 8989 \
--baseDN dc=example,dc=com \
--baseDN ou=people,dc=example,dc=com \ 
--restricted ou=people,dc=example,dc=com \ 
--adminUID admin --adminPassword pass --trustAll \ 
--no-prompt     

3. Enable replication between austin1 and newyork2. This will complete the entry-balancing replication setup.

root@austin1# ./bin/dsreplication enable \ 
  --host1 austin1.example.com \
  --port1 389 --bindDN1 "cn=directory manager" \
  --bindPassword1 pass --host2 newyork2.example.com \
  --port2 389 --bindDN2 "cn=directory manager" \
  --bindPassword2 pass \
  --replicationPort1 8989 \
  --replicationPort2 8989 \
  --baseDN dc=example,dc=com \
  --baseDN ou=people,dc=example,dc=com \
  --restricted ou=people,dc=example,dc=com \
  --adminUID admin --adminPassword pass --trustAll \
  --no-prompt

4. Initialize the remaining servers without data. The global domain, dc=example,dc=com needs to be initialized
on austin2, newyork1 and newyork2. The ou=people,dc=example,dc=com entry-balancing domain needs
to be initialized from austin1 to newyork2, and then again from austin2 to newyork2. We will combine these steps
by initializing both domains with one invocation once austin2 is initialized with the global domain.

root@austin1# ./bin/dsreplication initialize \
  --hostSource austin1.example.com --portSource 389 \
  --hostDestination austin2.example.com \
  --portDestination 389 --adminUID admin \
  --adminPassword password \
  --baseDN dc=example,dc=com \
  --no-prompt

root@austin1# ./bin/dsreplication initialize \
  --hostSource austin1.example.com --portSource 389 \
  --hostDestination newyork1.example.com \
  --portDestination 389 --adminUID admin \
  --adminPassword password \
  --baseDN dc=example,dc=com \
  --baseDN ou=people,dc=example,dc=com \
  --no-prompt

root@austin2# ./bin/dsreplication initialize \
  --hostSource austin2.example.com --portSource 389 \



PingDirectory | Managing Entry-Balancing Replication | 188

  --hostDestination newyork2.example.com \
  --portDestination 389 --adminUID admin \
  --adminPassword password \
  --baseDN dc=example,dc=com \
  --baseDN ou=people,dc=example,dc=com \
  --no-prompt

To Check the Status of Replication

Once replication has been configured, check the status of the replication topology using the dsreplication
status command.

• Run the dsreplication status command to check its status.

root@austin1# ./bin/dsreplication status \
--adminPassword pass --no-prompt --port 389



Chapter

8
Managing the Directory Proxy Server

Topics:

• Managing Logs
• Types of Log Publishers
• Creating New Log Publishers
• About Log Compression
• About Log Signing
• About Encrypting Log Files
• Configuring Log Rotation
• Configuring Log Rotation

Listeners
• Configuring Log Retention
• Setting Resource Limits
• Monitoring the Directory Proxy

Server
• Using the Monitoring Interfaces
• Monitoring with JMX
• Monitoring over LDAP
• Monitoring Using the LDAP

SDK
• Monitoring Using SNMP
• Profiling Server Performance

Using the Stats Logger
• Working with Alarms, Alerts,

and Gauges
• Working with Administrative

Alert Handlers
• Working with Virtual Attributes
• About the Server SDK

Once you have configured the PingDirectoryProxy Server, you can manage
the day-to-day operations of your deployment using the monitoring and
logging features. This chapter provides procedures to help you configure
logging and monitor your deployment.

This chapter includes the following sections:



PingDirectory | Managing the Directory Proxy Server | 190

Managing Logs
The Directory Proxy Server provides a number of different types of log publishers that can be used to provide
information about how the server is processing.

About the Default Logs

You can view all logs in the PingDirectoryProxy/logs directory. This section provides information about the
following default logs:

Error Log
server.out Log
Debug Log
Config Audit Log and the Configuration Archive
Access Log
Setup Log
Tool Log
LDAP SDK Debug Log

Error Log

By default, this log file is available at logs/errors below the server install root and it provides information about
warnings, errors, and other significant events that occur within the server. A number of messages are written to this
file on startup and shutdown, but while the server is running there is normally little information written to it. In the
event that a problem does occur, however, the server writes information about that problem to this file.

The following is an example of a message that might be written to the error log:

[11/Apr/2011:10:31:53.783 -0500] category=CORE severity=NOTICE msgID=458887
 msg="The Directory Server has started successfully"

The category field provides information about the area of the server from which the message was generated. Available
categories include:

ACCESS_CONTROL, ADMIN, ADMIN_TOOL, BACKEND, CONFIG, CORE, DSCONFIG, EXTENSIONS,
PROTOCOL, SCHEMA, JEB, SYNC, LOG, PLUGIN, PROXY, QUICKSETUP, REPLICATION,
RUNTIME_INFORMATION, TASK, THIRD_PARTY, TOOLS, USER_DEFINED, UTIL, VERSION.

The severity field provides information about how severe the server considers the problem to be. Available severities
include:

• DEBUG – Used for messages that provide verbose debugging information and do not indicate any kind of
problem. Note that this severity level is rarely used for error logging, as the Directory Proxy Server provides a
separate debug logging facility as described below.

• INFORMATION – Used for informational messages that can be useful from time to time but are not normally
something that administrators need to see.

• MILD_WARNING – Used for problems that the server detects, which can indicate something unusual occurred,
but the warning does not prevent the server from completing the task it was working on. These warnings are not
normally something that should be of concern to administrators.

• MILD_ERROR – Used for problems detected by the server that prevented it from completing some processing
normally but that are not considered to be a significant problem requiring administrative action.

• NOTICE – Used for information messages about significant events that occur within the server and are
considered important enough to warrant making available to administrators under normal conditions.

• SEVERE_WARNING – Used for problems that the server detects that might lead to bigger problems in the
future and should be addressed by administrators.

• SEVERE_ERROR – Used for significant problems that have prevented the server from successfully completing
processing and are considered important.



PingDirectory | Managing the Directory Proxy Server | 191

• FATAL_ERROR – Used for critical problems that arise which might leave the server unable to continue
processing operations normally.

The messages written to the error log may be filtered based on their severities in two ways. First, the error log
publisher has a default-severity property, which may be used to specify the severity of messages logged
regardless of their category. By default, this includes the NOTICE, SEVERE_WARNING, SEVERE_ERROR, and
FATAL_ERROR severities.

You can override these severities on a per-category basis using the override-severity property. If this property
is used, then each value should consist of a category name followed by an equal sign and a comma-delimited set of
severities that should be logged for messages in that category. For example, the following override severity would
enable logging at all severity levels in the PROTOCOL category:

protocol=debug,information,mild-warning,mild-error,notice,severe-
warning,severe-error,fatal-error

Note that for the purposes of this configuration property, any underscores in category or severity names should be
replaced with dashes. Also, severities are not inherently hierarchical, so enabling the DEBUG severity for a category
will not automatically enable logging at the INFORMATION, MILD_WARNING, or MILD_ERROR severities.

The error log configuration may be altered on the fly using tools like dsconfig, the Administrative Console, or the
LDIF connection handler, and changes will take effect immediately. You can configure multiple error logs that are
active in the server at the same time, writing to different log files with different configurations. For example, a new
error logger may be activated with a different set of default severities to debug a short-term problem, and then that
logger may be removed once the problem is resolved, so that the normal error log does not contain any of the more
verbose information.

server.out Log

The server.out file holds any information written to standard output or standard error while the server is running.
Normally, it includes a number of messages written at startup and shutdown, as well as information about any
administrative alerts generated while the server is running. In most cases, this information is also written to the
error log. The server.out file can also contain output generated by the JVM. For example, if garbage collection
debugging is enabled, or if a stack trace is requested via "kill -QUIT" as described in a later section, then output is
written to this file.

Debug Log

The debug log provides a means of obtaining information that can be used for troubleshooting problems but is not
necessary or desirable to have available while the server is functioning normally. As a result, the debug log is disabled
by default, but it can be enabled and configured at any time.

Some of the most notable configuration properties for the debug log publisher include:

• enabled – Indicates whether debug logging is enabled. By default, it is disabled.
• log-file – Specifies the path to the file to be written. By default, debug messages are written to the logs/debug

file.
• default-debug-level – Specifies the minimum log level for debug messages that should be written. The default

value is “error,” which only provides information about errors that occur during processing (for example,
exception stack traces). Other supported debug levels include warning, info, and verbose. Note that unlike error
log severities, the debug log levels are hierarchical. Configuring a specified debug level enables any debugging
at any higher levels. For example, configuring the info debug level automatically enables the warning and error
levels.

• default-debug-category – Specifies the categories for debug messages that should be written. Some of the
most useful categories include caught (provides information and stack traces for any exceptions caught during
processing), database-access (provides information about operations performed in the underlying database),
protocol (provides information about ASN.1 and LDAP communication performed by the server), and data
(provides information about raw data read from or written to clients).



PingDirectory | Managing the Directory Proxy Server | 192

As with the error and access logs, multiple debug loggers can be active in the server at any time with different
configurations and log files to help isolate information that might be relevant to a particular problem.

Note:  Enabling one or more debug loggers can have a significant impact on server performance. We
recommend that debug loggers be enabled only when necessary, and then be scoped so that only pertinent
debug information is recorded.

Debug targets can be used to further pare down the set of messages generated. For example, you can specify that the
debug logs be generated only within a specific class or package. If you need to enable the debug logger, you should
work with your authorized support provider to best configure the debug target and interpret the output.

Audit log

The audit log is a specialized version of the access log, used for troubleshooting problems that may occur in the
course of processing. The log records all changes to directory data in LDIF format so that administrators can quickly
diagnose the changes an application made to the data or replay the changes to another server for testing purposes.

The audit log does not record authentication attempts but can be used in conjunction with the access log to
troubleshoot security-related issues. The audit log is disabled by default because it does adversely impact the server’s
write performance.

By default, if you enable the audit log on the Directory Proxy Server, the userPassword and authPassword
attribute values are obscured, Each value of an obscured attribute is replaced in the audit log with a string of the form
"***** OBSCURED VALUE *****". You can unobscure these attributes by deleting them from the obscure-
attribute property.

Config Audit Log and the Configuration Archive

The configuration audit log provides a record of any changes made to the server configuration while the server is
online. This information is written to the logs/config-audit.log file and provides information about the
configuration change in the form that may be used to perform the operation in a non-interactive manner with the
dsconfig command. Other information written for each change includes:

• Time that the configuration change was made.
• Connection ID and operation ID for the corresponding change, which can be used to correlate it with information

in the access log.
• DN of the user requesting the configuration change and the method by which that user authenticated to the server.
• Source and destination addresses of the client connection.
• Command that can be used to undo the change and revert to the previous configuration for the associated

configuration object.

In addition to information about the individual changes that are made to the configuration, the Directory Proxy
Server maintains complete copies of all previous configurations. These configurations are provided in the config/
archived-configs directory and are gzip-compressed copies of the config/config.ldif file in use before
the configuration change was made. The filenames contain time stamps that indicate when that configuration was first
used.

Access and Audit Log

The access log provides information about operations processed within the server. The default access log file is
written to logs/access, but multiple access loggers can be active at the same time, each writing to different log
files and using different configurations.

By default, a single access log message is generated, which combines the elements of request, forward, and result
messages. If an error is encountered while attempting to process the request, then one or more forward-failed
messages may also be generated.

[01/Jun/2011:11:10:19.692 -0500] CONNECT conn=49 from="127.0.0.1"
 to="127.0.0.1" 
  protocol="LDAP+TLS" clientConnectionPolicy="default"



PingDirectory | Managing the Directory Proxy Server | 193

[01/Jun/2011:11:10:19.764 -0500] BIND RESULT conn=49 op=0 msgID=1 version="3" 
  dn="cn=Directory Manager" authType="SIMPLE" resultCode=0 etime=0.401 
  authDN="cn=Directory Manager,cn=Root DNs,cn=config"
 clientConnectionPolicy="default"
[01/Jun/2011:11:10:19.769 -0500] SEARCH RESULT conn=49 op=1 msgID=2 
  base="ou=People,dc=example,dc=com" scope=2 filter="(uid=1)" attrs="ALL" 
  resultCode=0 etime=0.549 entriesReturned=1
[01/Jun/2011:11:10:19.788 -0500] DISCONNECT conn=49 reason="Client Unbind"

Each log message includes a timestamp indicating when it was written, followed by the operation type, the connection
ID (which is used for all operations processed on the same client connection), the operation ID (which can be used to
correlate the request and response log messages for the operation), and the message ID used in LDAP messages for
this operation.

The remaining content for access log messages varies based on the type of operation being processed, and whether it
is a request or a result message. Request messages generally include the most pertinent information from the request,
but generally omit information that is sensi- tive or not useful.

Result messages include a resultCode element that indicates whether the operation was successful or if failed and
an etime element that indicates the length of time in milliseconds that the server spent processing the operation.
Other elements that might be present include the following:

• origin=replication – Operation that was processed as a result of data synchronization (for example, replication)
rather than a request received directly from a client.

• message – Text that was included in the diagnosticMessage field of the response sent to the client.
• additionalInfo – Additional information about the operation that was not included in the response sent back to the

client.
• authDN – DN of the user that authenticated to the server (typically only included in bind result messages).
• authzDN – DN of an alternate authorization identify used when processing the operation (for example, if the

proxied authorization control was included in the request).
• authFailureID – Unique identifier associated with the authentication failure reason (only included in non-

successful bind result messages).
• authFailureReason – Information about the reason that a bind operation failed that might be useful to

administrators but was not included in the response to the client for security reasons.
• responseOID – OID included in an extended response returned to the client.
• entriesReturned – Number of matching entries returned to the client for a search operation.
• unindexed=true – Indicates that the associated search operation could not be sufficiently processed using server

indexes and a significant traversal through the database was required.

Note that this is not an exhaustive list, and elements that are not listed here may also be present in access log
messages. The LDAP SDK for Java provides an API for parsing access log messages and provides access to all
elements that they may contain.

The Directory Proxy Server provides a second access log implementation called the audit log, which is used to
provide detailed information about write operations (add, delete, modify, and modify DN) processed within the server.
If the audit log is enabled, the entire content of the change is written to the audit log file (which defaults to logs/
audit) in LDIF form.

The PingDirectoryProxy Server also provides a very rich classification system that can be used to filter the content
for access log files. This can be helpful when debugging problems with client applications, because it can restrict
log information to operations processed only by a particular application (for example, based on IP address and/or
authentication DN), only failed operations, or only operations taking a long time to complete, etc.

Setup Log

The setup tool writes a log file providing information about the processing that it performs. By default, this log
file is written to logs/setup.log although a different name may be used if a file with that name already exists,
because the setup tool has already been run. The full path to the setup log file is provided when the setup tool has
completed.



PingDirectory | Managing the Directory Proxy Server | 194

Tool Log

Many of the administrative tools provided with the Directory Proxy Server (for example, import-ldif, export-
ldif, backup, restore, etc.) can take a significant length of time to complete write information to standard
output or standard error or both while the tool is running. They also write additional output to files in the logs/
tools directory (for example, logs/tools/ import-ldif.log). The information written to these log files can be useful
for diagnosing problems encountered while they were running. When running via the server tasks interface, log
messages generated while the task is running may alternately be written to the server error log file.

LDAP SDK Debug Log

This log can be used to help examine the communication between the Directory Server and the Directory Proxy
Server. It contains information about exceptions that occur during processing, problems establishing and terminating
network connections, and problems that occur during the reading and writing of LDAP messages and LDIF entries.
You can configure the types of debugging that should be enabled, the debug level that should be used, and whether
debug messages should include stack traces. As for other file-based loggers, you can also specify the rotation and
retention policies.

Types of Log Publishers
The PingDirectoryProxy Server provides a number of differently types of loggers that can be used to get processing
information about the server. There are three primary types of loggers:

• Access loggers provide information about operations processed within the server. They can be used for
understanding the operations performed by clients and debugging problems with directory-enabled applications,
and they can also be used for collecting usage information for performance and capacity planning purposes.

• Error loggers provide information about warnings, errors, or significant events that occur within the server.
• Debug loggers can provide detailed information about processing performed by the server, including any

exceptions caught during processing, detailed information about data read from or written to clients, and accesses
to the underlying database.

By default, the following log publishers are enabled on the system:

File-based access logger
File-based error logger
Failed-operations access logger

The PingDirectoryProxy Server also provides the follow log publishers that are disabled by default:

File-based debug logger
File-based audit logger
Expensive operations access logger
Successful searches with no entries returned access logger

Creating New Log Publishers
The PingDirectoryProxy Server provides customization options to help you create your own log publishers with the
dsconfig command.

When you create a new log publisher, you must also configure the log retention and rotation policies for each new
publisher. For more information, see Configuring Log Rotation and Configuring Log Retention.

To Create a New Log Publisher

1. Use the dsconfig command in non-interactive mode to create and configure the new log publisher. This
example shows how to create a logger that only logs disconnect operations.



PingDirectory | Managing the Directory Proxy Server | 195

$ bin/dsconfig create-log-publisher \ 
  --type file-based-access --publisher-name "Disconnect Logger" \ 
  --set enabled:true \ 
  --set "rotation-policy:24 Hours Time Limit Rotation Policy" \ 
  --set "rotation-policy:Size Limit Rotation Policy" \ 
  --set "retention-policy:File Count Retention Policy" \ 
  --set log-connects:false \
  --set log-requests:false --set log-results:false \ 
  --set log-file:logs/disconnect.log

Note:  To configure compression on the logger, add the option to the previous command:

--set compression-mechanism: gzip

Compression cannot be disabled or turned off once configured for the logger. Therefore, careful planning
is required to determine your logging requirements including log rotation and retention with regards to
compressed logs.

2. If needed, view log publishers with the following command:

$ bin/dsconfig list-log-publishers

To Create a Log Publisher Using dsconfig Interactive Command-Line Mode

1. On the command line, type bin/dsconfig.
2. Authenticate to the server by following the prompts.
3. On the main menu, select the option to configure the log publisher.
4. On the Log Publisher menu, select the option to create a new log publisher.
5. Select the Log Publisher type. In this case, select File-Based Access Log Publisher.
6. Type a name for the log publisher.
7. Enable it.
8. Type the path to the log file, relative to the Directory Proxy Server root. For example, logs/

disconnect.log.
9. Select the rotation policy to use for this log publisher.
10. Select the retention policy to use for this log publisher.
11. On the Log Publisher Properties menu, select the option for log-connects:false, log-

disconnects:true, log-requests:false, and log-results:false.
12. Type f to apply the changes.

About Log Compression
The Directory Proxy Server supports the ability to compress log files as they are written. This feature can significantly
increase the amount of data that can be stored in a given amount of space, so that log information can be kept for a
longer period of time.

Because of the inherent problems with mixing compressed and uncompressed data, compression can only be enabled
at the time the logger is created. Compression cannot be turned on or off once the logger is configured. Further,
because of problems in trying to append to an existing compressed file, if the server encounters an existing log file at
startup, it will rotate that file and begin a new one rather than attempting to append to the previous file.

Compression is performed using the standard gzip algorithm, so compressed log files can be accessed using readily-
available tools. The summarize-access-log tool can also work directly on compressed log files, rather than
requiring them to be uncompressed first. However, because it can be useful to have a small amount of uncompressed
log data available for troubleshooting purposes, administrators using compressed logging may wish to have a second
logger defined that does not use compression and has rotation and retention policies that will minimize the amount of



PingDirectory | Managing the Directory Proxy Server | 196

space consumed by those logs, while still making them useful for diagnostic purposes without the need to uncompress
the files before examining them.

You can configure compression by setting the compression-mechanism property to have the value of "gzip"
when creating a new logger.

About Log Signing
The Directory Proxy Server supports the ability to cryptographically sign a log to ensure that it has not been modified
in any way. For example, financial institutions require audit logs for all transactions to check for correctness. Tamper-
proof files are therefore needed to ensure that these transactions can be propertly validated and ensure that they have
not been modified by any third-party entity or internally by unscrupulous employees. You can use the dsconfig
tool to enable the sign-log property on a Log Publisher to turn on cryptographic signing.

When enabling signing for a logger that already exists and was enabled without signing, the first log file will not be
completely verifiable because it still contains unsigned content from before signing was enabled. Only log files whose
entire content was written with signing enabled will be considered completely valid. For the same reason, if a log file
is still open for writing, then signature validation will not indicate that the log is completely valid because the log will
not include the necessary "end signed content" indicator at the end of the file.

To validate log file signatures, use the validate-file-signature tool provided in the bin directory of the
server (or the bat directory for Windows systems).

Once you have enabled this property, you must disable and then re-enable the Log Publisher for the changes to take
effect.

About Encrypting Log Files
The Directory Proxy Server supports the ability to encrypt log files as they are written. The encrypt-log
configuration property controls whether encryption will be enabled for the logger. Enabling encryption causes the
log file to have an .encrypted extension (and if both encryption and compression are enabled, the extension will
be .gz.encrypted). Any change that affects the name used for the log file could prevent older files from getting
properly cleaned up.

Like compression, encryption can only be enabled when the logger is created. Encryption cannot be
turned on or off once the logger is configured. For any log file that is encrypted, enabling compression
is also recommended to reduce the amount of data that needs to be encrypted. This will also reduce
the overall size of the log file. The encrypt-file tool (or custom code, using the LDAP SDK's
com.unboundid.util.PassphraseEncryptedInputStream) is used to access the encrypted data.

To enable encryption, at least one encryption settings definition must be defined in the server. Use the one created
during setup, or create a new one with the encryption-settings create command. By default, the
encryption will be performed with the server's preferred encryption settings definition. To explicitly specify which
definition should be used for the encryption, the encryption-settings-definition-id property can be set
with the ID of that definition. It is recommended that the encryption settings definition is created from a passphrase
so that the file can be decrypted by providing that passphrase, even if the original encryption settings definition is no
longer available. A randomly generated encryption settings definition can also be created, but the log file can only be
decrypted using a server instance that has that encryption settings definition.

When using encrypted logging, a small amount of data may remain in an in-memory buffer until the log file is closed.
The encryption is performed using a block cipher, and it cannot write an incomplete block of data until the file is
closed. This is not an issue for any log file that is not being actively written. To examine the contents of a log file that
is being actively written, use the rotate-log tool to force the file to be rotated before attempting to examine it.

To Configure Log Signing

1. Use dsconfig to enable log signing for a Log Publisher. In this example, set the sign-log property on the
File-based Audit Log Publisher.



PingDirectory | Managing the Directory Proxy Server | 197

$ bin/dsconfig set-log-publisher-prop --publisher-name "File-Based Audit
 Logger" \
  --set sign-log:true

2. Disable and then re-enable the Log Publisher for the change to take effect.

$ bin/dsconfig set-log-publisher-prop --publisher-name "File-Based Audit
 Logger" \
  --set enabled:false
$ bin/dsconfig set-log-publisher-prop --publisher-name "File-Based Audit
 Logger" \
  --set enabled:true

To Validate a Signed File

The Directory Proxy Server provides a tool, validate-file-signature, that checks if a file has not been
tampered with in any way.

• Run the validate-file-signature tool to check if a signed file has been tampered with. For this example,
assume that the sign-log property was enabled for the File-Based Audit Log Publisher.

$ bin/validate-file-signature --file logs/audit

All signature information in file 'logs/audit' is valid

Note:  If any validations errors occur, you will see a message similar to the one as follows:

One or more signature validation errors were encountered 
while validating the contents of file 'logs/audit':
* The end of the input stream was encountered without 
  encountering the end of an active signature block.  
  The contents of this signed block cannot be trusted 
  because the signature cannot be verified

To Configure Log File Encryption

1. Use dsconfig to enable encryption for a Log Publisher. In this example, the File-based Access Log Publisher
"Encrypted Access" is created, compression is set, and rotation and retention policies are set.

$ bin/dsconfig create-log-publisher-prop --publisher-name "Encrypted Access"
 \
  --type file-based-access \
  --set enabled:true \
  --set compression-mechanism:gzip \
  --set encryption-settings-definition-
id:332C846EF0DCD1D5187C1592E4C74CAD33FC1E5FC20B726CD301CDD2B3FFBC2B \
  --set encrypt-log:true \
  --set log-file:logs/encrypted-access \
  --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
  --set "rotation-policy:Size Limit Rotation Policy" \
  --set "retention-policy:File Count Retention Policy" \
  --set "retention-policy:Free Disk Space Retention Policy" \
  --set "retention-policy:Size Limit Retention Policy"

2. To decrypt and decompress the file:

$ bin/encrypt-file --decrypt \
  --decompress-input \
  --input-file logs/encrypted-access.20180216040332Z.gz.encrypted \
  --output-file decrypted-access
Initializing the server's encryption framework...Done



PingDirectory | Managing the Directory Proxy Server | 198

Writing decrypted data to file '/ds/PingDirectoryProxy/decrypted-access'
 using a
key generated from encryption settings definition
 '332c846ef0dcd1d5187c1592e4c74cad33fc1e5fc20b726cd301cdd2b3ffbc2b'
Successfully wrote 123,456,789 bytes of decrypted data

Configuring Log Rotation
The Directory Proxy Server allows you to configure the log rotation policy for the server. When any rotation limit is
reached, the Directory Proxy Server rotates the current log and starts a new log. If you create a new log publisher, you
must configure at least one log rotation policy.

You can select the following properties:

• Time Limit Rotation Policy. Rotates the log based on the length of time since the last rotation. Default
implementations are provided for rotation every 24 hours and every 7 days.

• Fixed Time Rotation Policy. Rotates the logs every day at a specified time (based on 24-hour time). The default
time is 2359.

• Size Limit Rotation Policy. Rotates the logs when the file reaches the maximum size for each log. The default
size limit is 100 MB.

• Never Rotate Policy. Used in a rare event that does not require log rotation.

To Configure the Log Rotation Policy

• Use dsconfig to modify the log rotation policy for the access logger.

$ bin/dsconfig set-log-publisher-prop \ 
  --publisher-name "File-Based Access Logger" \ 
  --remove "rotation-policy:24 Hours Time Limit Rotation Policy" \ 
  --add "rotation-policy:7 Days Time Limit Rotation Policy"

Configuring Log Rotation Listeners
The Directory Proxy Server provides two log file rotation listeners: the copy log file rotation listener and the
summarize log file rotation listener, which can be enabled with a log publisher. Log file rotation listeners allow the
server to perform a task on a log file as soon as it has been rotated out of service. Custom log file listeners can be
created with the Server SDK.

The copy log file rotation listener can be used to compress and copy a recently-rotated log file to an alternate location
for long-term storage. The original rotated log file will be subject to deletion by a log file retention policy, but the
copy will not be automatically removed. Use the following command to create a new copy log file rotation listener:

$ dsconfig create-log-file-rotation-listener \
  --listener-name "Copy on Rotate" \
  --type copy \
  --set enabled:true \
  --set copy-to-directory:/path/to/archive/directory \
  --set compress-on-copy:true

The path specified by the copy-to-directory property must exist, and the filesystem containing that directory
must have enough space to hold all of the log files that will be written there. The server will automatically monitor
free disk space on the target filesystem and will generate administrative alerts if the amount of free space gets too low.

The summarize log file rotation listener invokes the summarize-access-log tool on a recently-rotated log
file and writes its output to a file in a specified location. This provides information about the number and types of
operations processed by the server, processing rates and response times, and other useful metrics. Use this with access
loggers that log in a format that is compatible with the summarize-access-log tool, including the file-



PingDirectory | Managing the Directory Proxy Server | 199

based-access and operation-timing-access logger types. Use the following command to create a new
summarize log file rotation listener:

$ dsconfig create-log-file-rotation-listener \
  --listener-name "Summarize on Rotate" \
  --type summarize \
  --set enabled:true \
  --set output-directory:/path/to/summary/directory

The summary output files have the same name as the rotated log file, with an extension of .summary. If the
output-directory property is specified, the summary files are written to that directory. If not specified, files are
placed in the directory in which the log files are written.

As with the copy log file rotation listener, summary files are not automatically be deleted. Though files are generally
small in comparison to the log files themselves, make sure that there is enough space available in the specified storage
directory. The server automatically monitors free disk space on the filesystem to which the summary files are written.

Configuring Log Retention
The Directory Proxy Server allows you to configure the log retention policy for each log on the server. When any
retention limit is reached, the Directory Proxy Server removes the oldest archived log prior to creating a new log.
Log retention is only effective if you have a log rotation policy in place. If you create a new log publisher, you must
configure at least one log retention policy.

• File Count Retention Policy. Sets the number of log files you want the Directory Proxy Server to retain. The
default file count is 10 logs. If the file count is set to 1, then the log will continue to grow indefinitely without
being rotated.

• Free Disk Space Retention Policy. Sets the minimum amount of free disk space. The default free disk space is
500 MBytes.

• Size Limit Retention Policy. Sets the maximum size of the combined archived logs. The default size limit is 500
MBytes.

• Time Limit Retention Policy. Sets the maximum length of time that rotated log files should be retained.
• Custom Retention Policy. Create a new retention policy that meets your Directory Proxy Server’s requirements.

This will require developing custom code to implement the desired log retention policy.
• Never Delete Retention Policy. Used in a rare event that does not require log deletion.

To Configure the Log Retention Policy

• Use dsconfig to modify the log retention policy for the access logger.

$ bin/dsconfig set-log-publisher-prop \
  --publisher-name "File-Based Access Logger" \
  --set "retention-policy:Free Disk Space Retention Policy"

Setting Resource Limits
You can set resource limits for the Directory Proxy Server using several global configuration properties as well as
setting resource limits on specific client connection policies. If you configure both global and client connection policy
resource limits, the first limit reached will always be honored. For example, if the server-wide maximum concurrent
connections limit is reached, then all subsequent connection will be rejected until existing connections are closed,
regardless of whether a client connection policy limit has been reached.

Setting Global Resource Limits

You can specify the following types of global resource limits:



PingDirectory | Managing the Directory Proxy Server | 200

• Specify the maximum number of client connections that can be established at any given time using the
maximum-concurrent-connections property. If the server already has the maximum number of
connections established, then any new connection attempts from any clients will be rejected until an existing
connection is closed. The default value of zero indicates that no limit is enforced.

• Specify the maximum number of client connections that can be established at any give time from the same client
system using the maximum-concurrent-connections-per-ip-address property. If the server
already has the maximum number of connections established from a given client, then any new connection
attempts from that client will be rejected until an existing connection from that client is closed. The server may
continue to accept connections from other clients that have not yet reached this limit. The default value of zero
indicates that no limit is enforced.

• Specify the maximum number of client connections that can be established at any given time while authenticated
as a particular user with the maximum-concurrent-connections-per-bind-dn property. This
property applies after the connection is established, because the bind operation to authenticate the user happens
after the connection is established rather than during the course of establishing the connection itself. If the
maximum number of connections are authenticated as a given user, then any new attempt to authenticate as
that user will cause the connection performing the bind to be terminated. Note that this limit applies only to
authenticated connections, and will not be enforced for clients that have not authenticated or for clients that have
authenticated as the anonymous user. The default value of zero indicates that no limit is enforced.

Any changes to the maximum-concurrent-connections and maximum-concurrent-connections-
per-ip-address properties will take effect only for new connections established after the change is made. Any
change to the maximum-concurrent-connections-per-bind-dn property will apply only to connections
(including existing connections) which perform authentication after the change is made. Existing connections will be
allowed to remain established even if that would cause the new limit to be exceeded.

Setting Client Connection Policy Resource Limits

You can also configure resource limits in a client connection policy using the following properties of the client
connection policy:

• maximum-concurrent-connections. This property specifies the maximum number of client connections that may
be associated with a specific client connection policy at any given time. Once this limit has been reached, any
further attempts to associate a connection with this client connection policy will result in the termination of the
connection.

• maximum-connection-duration. This property specifies the maximum length of time that a connection
associated with a particular client connection policy may be established. When the connection has been
established longer than this period, it will be terminated.

• maximum-idle-connection-duration. This property specifies the maximum time that a connection associated
with a particular client connection policy may remain established after the completion of the last operation
processed on that connection. Any new operation requested on the connection resets the timer. Connections that
are idle for longer than the specified time will be terminated.

• maximum-operation-count-per-connection. This property specifies the maximum number of operations that
may be requested by any client connection associated with this client connection policy. If an attempt is made to
process more than this number of operations on the connection, then the connection will be terminated.

• maximum-concurrent-operations-per-connection. This property specifies the maximum number of concurrent
operations that can be in progress for any connection. This property can be used to prevent a single client
connection from monopolizing server processing resources by sending a large number of concurrent asynchronous
requests.

• maximum-connection-operation-rate. This property specifies the maximum rate at which a client associated
with a specific client connection policy may issue requests to the Directory Proxy Server. If a client attempts to
request operations at a rate higher than this limit, then the server will behave as described by the connection-
operation-rate-exceeded-behavior property.

• connection-operation-rate-exceeded-behavior. This property describes how the server should behave if a client
connection attempts to exceed a rate defined in the maximum-connection-operation-rate property.

• maximum-policy-operation-rate. This property specifies the maximum rate at which all clients associated with a
particular client connection policy may issue requests to the Directory Proxy Server. If this limit is exceeded, then



PingDirectory | Managing the Directory Proxy Server | 201

the server will exhibit the behavior described in the policy-operation-rate-exceeded-behavior
property.

• policy-operation-rate-exceeded-behavior. This property specifies the behavior of the Directory Proxy Server if a
client connection attempts to exceed the rate defined in the maximum-policy-operation-rate property.

Monitoring the Directory Proxy Server
While the Directory Proxy Server is running, it generates a significant amount of information available through
monitor entries. This section contains information about the following:

• Monitoring Server Status Using the status Tool
• About the Monitor Entries
• Using the Monitoring Interfaces
• Monitoring with JMX

Monitoring System Data Using the PingDataMetrics Server

The PingDataMetrics Server provides collection and storage of performance data from your server topology. You
can use the System Utilization Monitor with the PingDataMetrics Server to collect information about the host system
CPU, disk, and network utilization on any platform except Linux. If you are not using the PingDataMetrics Server,
you do not need to use the system utilization monitor. When data is being collected, it periodically forks the process
and executes commands.

For more information about using the System Utilization Monitor, refer to the data collection chapter of the
PingDataMetrics Server documentation.

To Monitor Server Using the Status Tool

The PingDirectoryProxy Server provides a status tool that provides basic server status information, including
version, connection handlers, a table of LDAP external servers, and the percent of the global index that is used.

1. Run the status tool to view the current state of the server.

$ bin/status

2. Enter the LDAP connection parameters.

>>>> Specify LDAP connection parameters

Administrator user bind DN [cn=Directory Manager]:

Password for user ‘cn=Directory Manager’:

          --- Server Status ---
Server Run Status:    Started 07/Jan/2011:10:59:52.000 -0600
Operational Status:   Available
Open Connections:     4
Max Connections:      8
Total Connections:    25
   
          --- Server Details ---
Host Name:            example
Administrative Users: cn=Directory Manager
Installation Path:    /path/to/PingDirectoryProxy
Version:              PingDirectoryProxy Server 7.2.0.0
Java Version:         jdk-7u9

          --- Connection Handlers ---

Address:Port : Protocol : State



PingDirectory | Managing the Directory Proxy Server | 202

-------------:----------:---------

0.0.0.0:1689 : JMX      : Disabled
0.0.0.0:636  : LDAPS    : Disabled
0.0.0.0:9389 : LDAP     : Enabled

         --- LDAP External Servers ---

Server         : Status    : Score : LB Algorithm
---------------:-----------:-------:----------------------
localhost:389  : Available : 10    : dc_example_dc_com-failover
localhost:1389 : Available : 10    : dc_example_dc_com-failover

         --- LDAP External Server Op Counts ---

Server         : Add : Bind:Compare:Delete:Modify:Mod DN:Search : All
---------------:-----:----:------:-------:-------:------:-------:----
localhost:11389: 0   : 0  : 0    : 0     : 0     : 0    : 1249  : 1249
localhost:12389: 0   : 0  : 0    : 0     : 0     : 0    : 494   : 494       
   

         --- Entry Balancing Request Processors ---

 Base DN                     : Global Index % Used
----------------------------:--------------------
ou=people,dc=example,dc=com : 33

         --- Global Index Stats for ou=people,dc=example,dc=com ---

Index : Total Bytes : Key Bytes : Keys : Size (# Keys) : Inserted : 
Removed : Replaced: Hits : Misses : Discarded : Duplicates   
------:-------------:-----------:---------:---------------:----------
rdn   : 30667304    : 14888906  : 1000001 : 3464494 0 :0 :0 :0 :0 :0   
uid   : 26523480    : 10888902  : 1000001 : 3464494 0 : 0 : 3583 : 0 : 0 : 0

          --- Operation Processing Time ---

Op Type   : Total Ops : Avg Resp Time (ms)
----------:-----------:-------------------
Add       : 0         : 0.0
Bind      : 0         : 0.0
Compare   : 0         : 0.0
Delete    : 0         : 0.0
Modify    : 0         : 0.0
Modify DN : 0         : 0.0
Search    : 3583      : 117.58
All       : 3583      : 117.58

          --- Work Queue ---

           : Recent : Average : Maximum
-----------:--------:---------:--------
Queue Size : 0      : 0       : 1
% Busy     : 0      : 1       : 19



PingDirectory | Managing the Directory Proxy Server | 203

About the Monitor Entries

While the Directory Proxy Server is running, it generates a significant amount of information available through
monitor entries. Monitor entries are available over LDAP in the cn=monitor subtree. The types of monitor entries
that are available include:

• General Monitor Entry (cn=monitor) – Provides a basic set of general information about the server.
• Active Operations Monitor Entry (cn=Active Operations,cn=monitor) – Provides information about all

operations currently in progress in the server.
• Backend Monitor Entries (cn={id} Backend,cn=monitor) – Provides information about the backend, including

the number of entries, the base DN(s), and whether it is private.
• Client Connections Monitor Entry (cn=Client Connections,cn=monitor) – Provides information about all

connections currently established to the server.
• Connection Handler Monitor Entry (cn={name},cn=monitor) – Provides information about the configuration

of each connection handler and the client connections established to it.
• Database Environment Monitor Entries (cn={id} Database Environment,cn=monitor) – Provides statistics

and other data from the Oracle Berkeley DB Java Edition database envi- ronment used by the associated backend.
• Disk Space Usage Monitor Entry (cn=Disk Space Usage,cn=monitor) – Provides infor- mation about the

amount of usable disk space available to server components.
• JVM Memory Usage Monitor Entry (cn=JVM Memory Usage,cn=monitor) – Provides information about

garbage collection activity, the amount of memory available to the server, and the amount of memory consumed
by various server components.

• JVM Stack Trace Monitor Entry (cn=JVM Stack Trace,cn=monitor) – Provides a stack trace of all threads in
the JVM.

• LDAP Statistics Monitor Entries (cn={name} Statistics,cn=monitor) – Provides information about the number
of each type of operation requested and bytes transferred over the connection handler.

• Processing Time Histogram Monitor Entry (cn=Processing Time Histogram,cn=monitor) – Provides
information about the number of percent of operations that completed in various response time categories.

• SSL Context Monitor Entry (cn=SSL Context,cn=monitor) – Provides information about the available and
supported SSL Cipher Suites and Protocols on the server.

• System Information Monitor Entry (cn=System Information,cn=monitor) – Provides information about the
underlying JVM and system.

• Version Monitor Entry (cn=Version,cn=monitor) – Provides information about the Directory Proxy Server
version.

• Work Queue Monitor Entry (cn=Work Queue,cn=monitor) – Provides information about the state of the
Directory Proxy Server work queue, including the number of operations waiting on worker threads and the
number of operations that have been rejected because the queue became full.

Using the Monitoring Interfaces
The PingDirectoryProxy Server exposes its monitoring information under the cn=monitor entry and provides
interfaces through the Administrative Console, JMX, over LDAP, using the LDAP SDK, and using SNMP.

Monitoring with the Administrative Console

Ping Identity has an Administrative Console for administrators to configure the directory server. The console also
provides a status option that accesses the server's monitor content.

To View the Monitor Dashboard

1. Ensure that the Directory Proxy Server is running.
2. Open a browser to http://server-name:8443/console.
3. Type the root user DN and password, and then click Login.
4. Use the top level navigation dropdown and select 'Status.'



PingDirectory | Managing the Directory Proxy Server | 204

5. On the Administrative Console's Status page, select the Monitors tab.

Accessing the Processing Time Histogram

The PingDirectoryProxy Server provides a processing time histogram that classifies operation response time into
user-defined buckets. The histogram tracks the processing on a per operation basis and as a percentage of the overall
processing time for all operations. It also provides statistics for each operation type (add, bind, compare, delete,
modify, modify DN, search).

To Access the Processing Time Histogram

1. On the Administrative Console, click Configuration > Status > Monitors tab.
2. Select Processing Time Histogram. Other monitor entries can be accessed in similar ways.

Monitoring with JMX
The PingDirectoryProxy Server supports monitoring the JVM™ through a Java Management Extensions (JMX™)
management agent, which can be accessed using JConsole or any other kind of JMX client. The JMX interface
provides JVM performance and resource utilization information for applications running Java. You can monitor
generic metrics exposed by the JVM itself, including memory pools, threads, loaded classes, and MBeans, as well
as all the monitor information that the Directory Proxy Server provides. You can also subscribe to receive JMX
notifications for any administrative alerts that are generated within the server.

Running JConsole

Before you can access JConsole, you must configure and enable the JMX Connection Handler for the Directory Proxy
Server using the dsconfig tool. See Configuring the JMX Connection Handler and Alert Handler.

To invoke the JConsole executable, type jconsole on the command line. If JDK_HOME is not set in your path, you
can access JConsole in the bin directory of the JDK_HOME path.

To Run JConsole

1. Use JConsole to open the Java Monitoring and Management Console. You can also run JConsole to monitor a
specific process ID for your application: jconsole PID. Or you can run JConsole remotely using: jconsole
hostname:port.

$ jconsole

Note:  If SSL is configured on the JMX Connection Handler, you must specify the Directory Proxy Server
jar file in the class path when running jconsole over SSL. For example, run the following jconsole
command:

$ jconsole \
  -J-Djavax.net.ssl.trustStore=/path/to/certStores/truststore \
  -J-Djavax.net.ssl.trustStorePassword=secret \
  -J-Djava.class.path=$SERVER_ROOT/lib/PingDirectoryProxy.jar:/
Library/Java/JavaVirtualMachines/jdk-version.jdk/Contents/Home/lib/
jconsole.jar 

2. On the Java Monitoring & Administrative Console, click Local Process, and then click the PID corresponding
to the directory server.
 



PingDirectory | Managing the Directory Proxy Server | 205

 
3. Review the resource monitoring information.

 

 

Monitoring the Directory Proxy Server Using JConsole

You can set up JConsole to monitor the Directory Proxy Server using a remote process. Make sure to enable the JMX
Connection Handler and to assign at least the jmx-read privilege to a regular user account (the jmx-notify
privilege is required to subscibe to receive JMX notifications). Do not use a root user account, as this would pose a
security risk.

To Monitor the Directory Proxy Server using JConsole

1. Start the Directory Proxy Server.

$ bin/start-server

2. Enable the JMX Connection handler using the dsconfig tool. The handler is disabled by default. Remember to
include the LDAP connection parameters (hostname, port, bindDN, bindPassword).

$ bin/dsconfig set-connection-handler-prop \
  --handler-name "JMX Connection Handler" --set enabled:true

3. Assign jmx-read, jmx-write, and jmx-notify (if the user receives notifications) to the user.

$ bin/ldapmodify --hostname server1.example.com --port 1389 \ 
  --bindDN "cn=Directory Manager" --bindPassword secret
dn: uid=admin,dc=example,dc=com 
changetype: modify 
replace: ds-privilege-name 
ds-privilege-name: jmx-read 



PingDirectory | Managing the Directory Proxy Server | 206

ds-privilege-name: jmx-write 
ds-privilege-name: jmx-notify

4. On the Java Monitoring & Administrative Console, click Remote Process, and enter the following JMX URL
using the host and port of your Directory Proxy Server.

service:jmx:rmi:///jndi/rmi://<host>:<port>/
com.unboundid.directory.server.protocols.jmx.client-unknown

5. In the Username and Password fields, type the bind DN and password for a user that has at least the jmx-read
privilege. Click Connect.
 

 
6. Click com.unboundid.directory.server, and expand the rootDSE node and the cn-monitor sub-node.

 

 
7. Click a monitoring entry. In this example, click the LDAP Connection Handler entry.

 



PingDirectory | Managing the Directory Proxy Server | 207

 

Monitoring over LDAP
The PingDirectoryProxy Server exposes a majority of its information under the cn=monitor entry. You can access
these entries over LDAP using the ldapsearch tool.

$ bin/ldapsearch --hostname server1.example.com --port 1389 \ 
  --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret \ 
  --baseDN "cn=monitor" "(objectclass=*)"

Monitoring Using the LDAP SDK
You can use the monitoring API to retrieve monitor entries from the Directory Proxy Server as well as to retrieve
specific types of monitor entries.

For example, you can retrieve all monitor entries published by the Directory Proxy Server and print the information
contained in each using the generic API for accessing monitor entry data as follows:

for (MonitorEntry e : MonitorManager.getMonitorEntries(connection)) 
  {
    System.out.println("Monitor Name: " + e.getMonitorName()); 
    System.out.println("Monitor Type: " + e.getMonitorDisplayName()); 
    System.out.println("Monitor Data:"); 
    for (MonitorAttribute a : e.getMonitorAttributes().values())
    {
      for (Object value : a.getValues()) 
      {
        System.out.println(" " + a.getDisplayName() + ": " +
 String.valueOf(value));
      }
     }
     System.out.println();
  }

For more information about the LDAP SDK and the methods in this example, see the LDAP SDK documentation.



PingDirectory | Managing the Directory Proxy Server | 208

Monitoring Using SNMP
The PingDirectoryProxy Server supports real-time monitoring using the Simple Network Management Protocol
(SNMP). The Directory Proxy Server provides an embedded SNMPv3 subagent plugin that, when enabled, sets up the
server as a managed device and exchanges monitoring information with a master agent based on the AgentX protocol.

SNMP Implementation

In a typical SNMP deployment, many production environments use a network management system (NMS) for a
unified monitoring and administrative view of all SNMP-enabled devices. The NMS communicates with a master
agent, whose main responsibility is to translate the SNMP protocol messages and multiplex any request messages to
the subagent on each managed device (for example, Directory Proxy Server instance, Directory Proxy Server, Data
Sync Server, or OS Subagent). The master agent also processes responses or traps from the agents. Many vendors
provide commercial NMS systems. Consult with your NMS system for specific information.

The PingDirectoryProxy Server contains an SNMP subagent plug-in that connects to a Net-SNMP master agent over
TCP. The main configuration properties of the plug-in are the address and port of the master agent, which default to
localhost and port 705, respectively. When the plug-in is initialized, it creates an AgentX subagent and a managed
object server, and then registers as a MIB server with the Directory Proxy Server instance. Once the plug-in's startup
method is called, it starts a session thread with the master agent. Whenever the connection is lost, the subagent
automatically attempts to reconnect with the master agent. The Directory Proxy Server’s SNMP subagent plug-in
only transmits read-only values for polling or trap purposes (set and inform operations are not supported). SNMP
management applications cannot perform actions on the server on their own or by means of an NMS system.

Figure 8: Example SNMP Deployment

One important note is that the PingDirectoryProxy Server was designed to interface with a Net-SNMP (version
5.3.2.2 or later) master agent implementation with AgentX over TCP. Many operating systems provide their own Net-
SNMP module. However, SMA disables some features present in the Net-SNMP package and only enables AgentX
over UNIX Domain Sockets, which cannot be supported by Java. If your operating system has a native Net-SNMP
master agent that only enables UNIX Domain Sockets, you must download and install a separate Net-SNMP binary
from its web site.

Configuring SNMP

Because all server instances provide information for a common set of MIBs, each server instance provides its
information under a unique SNMPv3 context name, equal to the server instance name. The server instance name is
defined in the Global Configuration, and is constructed from the host name and the server LDAP port by default.
Consequently, information must be requested using SNMPv3, specifying the context name that pertains to the desired
server instance. This context name is limited to 30 characters or less. Any context name longer than 30 characters will



PingDirectory | Managing the Directory Proxy Server | 209

result in an error message. Since the default context name is limited to 30 characters or less, and defaults to the server
instance name and the LDAP port number, pay special attention to the length of the fully-qualified (DNS) hostname.

Note:  The Directory Proxy Server supports SNMPv3, and only SNMPv3 can access the MIBs. For systems
that implement SNMP v1 and v2c, Net-SNMP provides a proxy function to route requests in one version of
SNMP to an agent using a different SNMP version.

To Configure SNMP

1. Enable the Directory Proxy Server’s SNMP plug-in using the dsconfig tool. Make sure to specify the address
and port of the SNMP master agent. On each Directory Proxy Server instance, enable the SNMP subagent. Note
that the SNMPv3 context name is limited to 30 bytes maximum. If the default dynamically-constructed instance
name is greater than 30 bytes, there will be an error when attempting to enable the plugin. Enable the SNMP
Subagent Alert Handler so that the sub-agent will send traps for administrative alerts generated by the server.

$ bin/dsconfig set-alert-handler-prop \
  --handler-name "SNMP Subagent Alert Handler" --set enabled:true

2. View the error log. You will see a message that the master agent is not connected, because it is not yet online.

The SNMP sub-agent was unable to connect to the master 
agent at localhost/705: Timeout

3. Edit the SNMP agent configuration file, snmpd.conf, which is often located in /etc/snmp/snmpd.conf.
Add the directive to run the agent as an AgentX master agent:

master agentx agentXSocket tcp:localhost:705

Note that the use of localhost means that only sub-agents running on the same host can connect to the master
agent. This requirement is necessary since there are no security mechanisms in the AgentX protocol.

4. Add the trap directive to send SNMPv2 traps to localhost with the community name, public (or whatever
SNMP community has been configured for your environment) and the port.

trap2sink localhost public 162

5. To create a SNMPv3 user, add the following lines to the /etc/snmp/snmpd.conf file.

rwuser initial  
createUser initial MD5 setup_passphrase DES    

6. Run the following command to create the SNMPv3 user.

snmpusm -v3 -u initial -n "" -l authNoPriv -a MD5 -A setup_passphrase \
localhost create snmpuser initial    

7. Start the snmpd daemon and after a few seconds you should see the following message in the Directory Proxy
Server error log:

The SNMP subagent connected successfully to the master agent 
at localhost:705. The SNMP context name is host.example.com:389

8. Set up a trap client to see the alerts that are generated by the Directory Proxy Server. Create a config file in /
tmp/snmptrapd.conf and add the directive below to it. The directive specifies that the trap client can process
traps using the public community string, and can log and trigger executable actions.

authcommunity log, execute public

9. Install the MIB definitions for the Net-SNMP client tools, usually located in the /usr/share/snmp/mibs
directory.

$ cp resource/mib/* /usr/share/snmp/mibs

10. Then, run the trap client using the snmptrapd command. The following example specifies that the command
should not create a new process using fork() from the calling shell (-f), do not read any configuration files (-C)
except the one specified with the -c option, print to standard output (-Lo), and then specify that debugging output



PingDirectory | Managing the Directory Proxy Server | 210

should be turned on for the User-based Security Module (-Dusm). The path after the -M option is a directory that
contains the MIBs shipped with our product (i.e., server-root/resource/mib) .

$ snmptrapd -f -C -c /tmp/snmptrapd.conf -Lf /root/trap.log -Dusm \
  -m all -M +/usr/share/snmp/mibs  

11. Run the Net-SNMP client tools to test the feature. The following options are required: -v <SNMP version>, -u
<user name>, -A <user password>, -l <security level>, -n <context name (instance name)> . The -m all option
loads all MIBs in the default MIB directory in /usr/share/snmp/mibs so that MIB names can be used in place of
numeric OIDs.

$ snmpget -v 3 -u snmpuser -A password -l authNoPriv -n host.example.com:389
 \ 
-m all localhost localDBBackendCount.0

$ snmpwalk -v 3 -u snmpuser -A password -l authNoPriv -n
 host.example.com:389 \ 
-m all localhost systemStatus

MIBS

The Directory Proxy Server provides SMIv2-compliant MIB definitions (RFC 2578, 2579, 2580) for distinct
monitoring statistics. These MIB definitions are to be found in text files under resource/mib directory under the
server root directory.

Each MIB provides managed object tables for each specific SNMP management information as follows:

• LDAP Remote Server MIB. Provides information related to the health and status of the LDAP servers that the
Directory Proxy Server connects to, and statistics about the operations invoked by the Directory Proxy Server on
those LDAP servers.

• LDAP Statistics MIB. Provides a collection of connection-oriented performance data that is based on a
connection handler in the Directory Proxy Server. A server typically contain only one connection handler and
therefore supplies only one table entry.

• Local DB Backend MIB. Provides key metrics related to the state of the local database backends contained in the
server.

• Processing Time MIB. Provides a collection of key performance data related to the processing time of operations
broken down by several criteria but reported as a single aggregated data set.

• Replication MIB. Provides key metrics related to the current state of replication, which can help diagnose how
much outstanding work replication may have to do.

• System Status MIB. Provides a set of critical metrics for determining the status and health of the system in
relation to its work load.

For information on the available monitoring statistics for each MIB available on the Directory Server and the
Directory Proxy Server, see the text files provided in the resource/mib directory below the server installation.

The Directory Proxy Server generates an extensive set of SNMP traps for event monitoring. The traps display the
severity, description, name, OID, and summary. For information about the available alert types for event monitoring,
see the resource/mib/UNBOUNDID-ALERT-MIB.txt file.

Profiling Server Performance Using the Stats Logger
The Directory Proxy Server ships with a built-in Stats Logger that is useful for profiling server performance for
a given configuration. At a specified interval, the Stats Logger writes server statistics to a log file in a comma-
separated format (.csv), which can be read by spreadsheet applications. The logger has a negligible impact on server
performance unless the log-interval property is set to a very small value (less than 1 second). The statistics
logged and their verbosity can be customized.

The Stats Logger can also be used to view historical information about server statistics including replication, LDAP
operations, host information, and gauges. Either update the configuration of the existing Stats Logger Plugin to set the



PingDirectory | Managing the Directory Proxy Server | 211

advanced gauge-info property to basic/extended to include this information, or create a dedicated Periodic
Stats Logger for information about statistics of interest.

To Enable the Stats Logger

By default, the Directory Proxy Server ships with the built-in "Stats Logger' disabled. To enable it using the
dsconfig tool or the Administrative Console, go to Plugins menu (available on the Advanced object menu), and
then, select .

1. Run dsconfig in interactive mode. Enter the LDAP or LDAPS connection parameters when prompted.

$ bin/dsconfig

2. Enter o to change to the Advanced Objects menu.
3. On the main menu, enter the number for Plugins.
4. On the Plugin menu, enter the number corresponding to view and edit an existing plug-in.
5. On the Plugin selection list, enter the number corresponding to the Stats Logger.
6. On the Stats Logger Plugin menu, enter the number to set the enabled property to TRUE. When done, enter

f to save and apply the configuration. The default logger will log information about the server every second to
<server-root>/logs/dsstats.csv. If the server is idle, nothing will be logged, but this can be changed
by setting the suppress-if-idle property to FALSE (suppress-if-idle=false).

>>>> Configure the properties of the Stats Logger Plugin

Property                Value(s)
------------------------------------------------------------------------
1)   description        Logs performance stats to a log file
                        periodically.
2)   enabled                     false
3)   local-db-backend-info       basic
4)   replication-info            basic
5)   entry-cache-info            -
6)   host-info                   -
7)   included-ldap-application   If per-application LDAP stats is enabled,
                                 then stats will be included for all
                                 applications.
8)   log-interval                1 s
9)   collection-interval         200 ms
10)  suppress-if-idle            true
11)  header-prefix-per-column    false
12)  empty-instead-of-zero       true
13)  lines-between-header        50
14)  included-ldap-stat          active-operations, num-connections,
                                 op-count-and-latency, work-queue
15)  included-resource-stat      memory-utilization
16)  histogram-format            count
17)  histogram-op-type           all
18)  per-application-ldap-stats  aggregate-only
19)  ldap-changelog-info         -
20)  gauge-info                  none
21)  log-file                    logs/dsstats.csv
22)  log-file-permissions        640
23)  append                      true
24)  rotation-policy             Fixed Time Rotation Policy, Size Limit
                                 Rotation Policy
25)  retention-policy            File Count Retention Policy

?)   help
f)   finish - apply any changes to the Periodic Stats Logger Plugin
a)   hide advanced properties of the Periodic Stats Logger Plugin
d)   display the equivalent dsconfig command lines to either re-create this



PingDirectory | Managing the Directory Proxy Server | 212

           object or only to apply pending changes
b)   back
q)   quit

Enter choice [b]:

7. Run the Directory Proxy Server. For example, if you are running in a test environment, you can run the search-
and-mod-rate tool to apply some searches and modifications to the server. You can run search-and-mod-
rate --help to see an example command.

8. View the Stats log output at <server-root>/logs/dsstats.csv. You can open the file in a spreadsheet.
The following image displays a portion of the file’s output. On the actual file, you will need to scroll right for
more statistics.
 

 

To Configure Multiple Periodic Stats Loggers

Multiple Periodic Stats Loggers can be created to log different statistics, view historical information about gauges, or
to create a log at different intervals (such as logging cumulative operations statistics every hour). To create a new log,
use the existing Stats Logger as a template to get reasonable settings, including rotation and retention policy.

1. Run dsconfig by repeating steps 1–3 in To Enable the Stats Logger.
2. From the Plugin management menu, enter the number to create a new plug-in.
3. From the Create a New Periodic Stats Logger Plugin menu, enter t to use an existing plug-in as a template.
4. Enter the number corresponding to the existing stats logger as a template.
5. Next, enter a descriptive name for the new stats logger. For this example, type Stats Logger-10s.
6. Enter the log file path to the file. For this example, type logs/dsstats2.csv.
7. On the menu, make any other change to the logger. For this example, change the log-interval to 10s, and the

suppress-if-idle to false. When finished, enter f to save and apply the configuration.
8. You should now see two loggers dsstats.csv and dsstats2.csv in the logs directory.

Adding Custom Logged Statistics to a Periodic Stats Logger

Add custom statistics based on any attribute in any entry under cn=monitor using the Custom Logged Stats object.
This configuration object provides powerful controls for how monitor attributes are written to the log. For example,
you can extract a value from a monitor attribute using a regular expression. Newly created Custom Logged Stats will
automatically be included in the Periodic Stats Logger output.

Besides allowing a straight pass-through of the values using the 'raw' statistic-type, you can configure attributes to
be treated as a counter (where the interval includes the difference in the value since the last interval), an average, a
minimum, or a maximum value held by the attribute during the specified interval. The value of an attribute can also
be scaled by a fixed value or by the value of another monitor attribute.



PingDirectory | Managing the Directory Proxy Server | 213

Note:  Custom third-party server extensions that were written using the Server SDK can also expose interval
statistics using a Periodic Stats Logger. The extension must first implement the SDK's MonitorProvider
interface and register with the server. The monitor attributes produced by this custom MonitorProvider
are then available to be referenced by a Custom Logged Stats object.

To illustrate how to configure a Custom Logged Statistics Logger, the following procedure reproduces the built-in
"Consumer Total GB" column that shows up in the output when the included-resource-stat property is set
to memory-utilization on the Periodic Stats Logger. The column is derived from the total-bytes-used-by-
memory-consumers attribute of the cn=JVM Memory Usage,cn=monitor entry as follows:

dn: cn=JVM Memory Usage,cn=monitor 
objectClass: top 
objectClass: ds-monitor-entry 
objectClass: ds-memory-usage-monitor-entry 
objectClass: extensibleObject
cn: JVM Memory Usage 
... 
total-bytes-used-by-memory-consumers: 3250017037

To Configure a Custom Logged Statistic Using dsconfig Interactive

1. Run dsconfig and enter the LDAP/LDAPS connection parameters when prompted.

$ bin/dsconfig

2. On the Directory Proxy Server configuration main menu (Advanced Objects menu), enter the number
corresponding to Custom Logged Stats.

3. On the Custom Logged Stats menu, enter the number corresponding to Create a new Custom Logged Stats.
4. Select the Stats Logger Plugin from the list if more than one is present on the system. If you only have one stats

logger, press Enter to confirm that you want to use the existing plugin.
5. Enter a descriptive name for the Custom Logged Stats. For this example, enter Memory Usage.
6. From the monitor-objectclass property menu, enter the objectclass attribute to monitor. For this example,

enter ds-memory-usage-monitor-entry. You can run ldapsearch using the base DN "cn=JVM
Memory Usage,cn=monitor" entry to view the entry.

7. Next, specify the attributes of the monitor entry that you want to log in the stats logger. In this example, enter
total-bytes-used-by-memory-consumers, and then press Enter again to continue.

8. Next, specify the type of statistics for the monitored attribute that will appear in the log file. In this example, enter
the option for raw statistics as recorded by the logger.

9. In the Custom Logged Stats menu, review the configuration. At this point, we want to set up a column name that
lists the Memory Usage. Enter the option to change the column-name property.

10. Next, we want to add a specific label for the column name. Enter the option to add a value, and then enter
Memory Consumer Total (GB), and press Enter again to continue.

11. Confirm that you want to use the column-name value that you entered in the previous step, and then press
Enter to use the value.

12. Next, we want to scale the Memory Consumer Totals by one gigabyte. On the Custom Logged Stats menu, enter
the option to change the divide-value-by property.

13. On the divide-value-by property menu, enter the option to change the value, and then enter 1073741824
(i.e., 1073741824 bytes = 1 gigabytes).

14. On the Custom Logged Stats menu, review your configuration. When finished, enter f to save and apply the
settings.

>>>> Configure the properties of the Custom Logged Stats
 >>>> via creating 'Memory Usage' Custom Logged Stats

         Property                   Value(s)
         ---------------------------------------------------------------
    1)   description                -



PingDirectory | Managing the Directory Proxy Server | 214

    2)   enabled                    true
    3)   monitor-objectclass        ds-memory-usage-monitor-entry
    4)   include-filter             -
    5)   attribute-to-log           total-bytes-used-by-memory-consumers
    6)   column-name                Memory Consumer Total (GB)
    7)   statistic-type             raw
    8)   header-prefix              -
    9)   header-prefix-attribute    -
    10)  regex-pattern              -
    11)  regex-replacement          -
    12)  divide-value-by            1073741824
    13)  divide-value-by-attribute  -
    14)  decimal-format             #.##
    15)  non-zero-implies-not-idle  false

    ?)   help
    f)   finish - create the new Custom Logged Stats
    a)   hide advanced properties of the Custom Logged Stats
    d)   display the equivalent dsconfig arguments to create this object
    b)   back
    q)   quit

Enter choice [b]:

The Custom Logged Stats was created successfully

When the Custom Logged Stats configuration change is completed, the new stats value should immediately show
up in the Stats Logger output file.

To Configure a Custom Stats Logger Using dsconfig Non-Interactive

• Use the dsconfig non-interactive command-line equivalent to create your custom stats logger. The following
one-line command replicates the procedure in the previous section. This command produces a column named
"Memory Consumer Total (GB)" that contains the value of the of total-bytes-used-by-memory-
consumers attribute pulled from the entry with the ds-memory-usage-monitor-entry objectclass. This
value is scaled by 1073741824 to get to a value represented in GBs.

$ bin/dsconfig create-custom-logged-stats --plugin-name "Stats Logger" \ 
  --stats-name "Memory Usage" --type custom \
  --set monitor-objectclass:ds-memory-usage-monitor-entry \ 
  --set attribute-to-log:total-bytes-used-by-memory-consumers \ 
  --set "column-name:Memory Consumer Total (GB)" --set statistic-type:raw \ 
  --set divide-value-by:1073741824

Working with Alarms, Alerts, and Gauges
An alarm represents a stateful condition of the server or a resource that may indicate a problem, such as low disk
space or external server unavailability. A gauge defines a set of threshold values with a specified severity that,
when crossed, cause the server to enter or exit an alarm state. Gauges are used for monitoring continuous values
like CPU load or free disk space (Numeric Gauge), or an enumerated set of values such as 'server unavailable' or
‘server unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity changes due to changes
in the monitored value. Like alerts, alarms have severity (NORMAL, WARNING, MINOR, MAJOR, CRITICAL),
name, and message. Alarms will always have a Condition property, and may have a Specific Problem or Resource
property. If surfaced through SNMP, a Probable Cause property and Alarm Type property are also listed. Alarms can
be configured to generate alerts when the alarm's severity changes. The Alarm Manager, which governs the actions
performed when an alarm state is entered, is configurable through the dsconfig tool and Administrative Console.
A complete listing of system alerts, alarms, and their severity is available in <server-root>/docs/admin-
alerts-list.csv.



PingDirectory | Managing the Directory Proxy Server | 215

There are two alert types supported by the server - standard and alarm-specific. The server constantly monitors for
conditions that may need attention by administrators, such as low disk space. For this condition, the standard alert is
low-disk-space-warning, and the alarm-specific alert is alarm-warning. The server can be configured to
generate alarm-specific alerts instead of, or in addition to, standard alerts. By default, standard alerts are generated for
conditions internally monitored by the server. However, gauges can only generate alarm-alerts.

The Directory Proxy Server installs a set of gauges that are specific to the product and that can be cloned or
configured through the dsconfig tool. Existing gauges can be tailored to fit each environment by adjusting the
update interval and threshold values. Configuration of system gauges determines the criteria by which alarms are
triggered. The Stats Logger can be used to view historical information about the value and severity of all system
gauges.

The Directory Proxy Server is compliant with the International Telecommunication Union CCITT Recommendation
X.733 (1992) standard for generating and clearing alarms. If configured, entering or exiting an alarm state can result
in one or more alerts. An alarm state is exited when the condition no longer applies. An alarm_cleared alert type
is generated by the system when an alarm's severity changes from a non-normal severity to any other severity. An
alarm_cleared alert will correlate to a previous alarm when the Condition and Resource properties are the same.
The Condition corresponds to the Summary column in the admin-alerts-list.csv file.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores information within
the cn=alarms backend. Unlike alerts, alarm thresholds have a state over time that can change in severity and be
cleared when a monitored value returns to normal. Alarms can be viewed with the status tool. As with other alert
types, alert handlers can be configured to manage the alerts generated by alarms.

To Test Alarms and Alerts

1. Configure a gauge with dsconfig and set the override-severity property to critical. The following
example uses the CPU Usage (Percent) gauge.

$ dsconfig set-gauge-prop \
  --gauge-name "CPU Usage (Percent)" \
  --set override-severity:critical

2. Run the status tool to verify that an alarm was generated with corresponding alerts. The status tool provides
a summary of the server’s current state with key metrics and a list of recent alerts and alarms. The sample output
has been shortened to show just the alarms and alerts information.

$ bin/status

                        --- Administrative Alerts ---
 Severity : Time            : Message
 ---------:-----------------:------------------------------------------------------
 Info     : 11/Aug/2014     : A configuration change has been made in the
          : 15:48:46 -0500  : Directory Server:
          :                 : [11/Aug/2014:15:48:46.054 -0500]
          :                 : conn=17 op=73 dn='cn=Directory Manager,cn=Root
          :                 : DNs,cn=config' authtype=[Simple]
 from=127.0.0.1
          :                 : to=127.0.0.1 command='dsconfig set-gauge-prop
          :                 :  --gauge-name 'Cleaner Backlog (Number Of
 Files)'
          :                 : --set warning-value:-1'
 Info     : 11/Aug/2014     : A configuration change has been made in the
          :  15:47:32 -0500 : Directory Server: [11/Aug/2014:15:47:32.547
 -0500]
          :                 : conn=4 op=196 dn='cn=Directory Manager,cn=Root
          :                 : DNs,cn=config' authtype=[Simple]
 from=127.0.0.1
          :                 : to=127.0.0.1 command='dsconfig set-gauge-prop
          :                 : --gauge-name 'Cleaner Backlog (Number Of
 Files)'
          :                 :  --set warning-value:0'



PingDirectory | Managing the Directory Proxy Server | 216

 Error    : 11/Aug/2014     : Alarm [CPU Usage (Percent). Gauge CPU Usage
 (Percent)
          :  15:41:00 -0500 : for Host System has
          :                 : a current value of '18.583333333333332'.
          :                 : The severity is currently OVERRIDDEN in the
          :                 : Gauge's configuration to 'CRITICAL'.
          :                 : The actual severity is: The severity is
          :                 : currently 'NORMAL', having assumed this
 severity
          :                 : Mon Aug 11 15:41:00 CDT 2014. If CPU use is
 high,
          :                 : check the server's current workload and make
 any
          :                 : needed adjustments. Reducing the load on the
 system
          :                 : will lead to better response times.
          :                 : Resource='Host System']
          :                 : raised with critical severity
Shown are alerts of severity [Info,Warning,Error,Fatal] from the past 48
 hours
 Use the --maxAlerts and/or --alertSeverity options to filter this list

                         --- Alarms ---
 Severity : Severity Start : Condition : Resource    : Details
          : Time           :           :             :
 ---------:----------------:-----------:-------------:------------------------------
 Critical : 11/Aug/2014    : CPU Usage : Host System : Gauge CPU Usage
 (Percent) for
          : 15:41:00 -0500 : (Percent) :             : Host System
          :                :           :             : has a current value
 of
          :                :           :             : '18.785714285714285'.
          :                :           :             : The severity is
 currently
          :                :           :             : 'CRITICAL', having
 assumed
          :                :           :             : this severity Mon Aug
 11
          :                :           :             : 15:49:00 CDT 2014. If
 CPU use
          :                :           :             : is high, check the
 server's
          :                :           :             : current workload and
 make any
          :                :           :             : needed adjustments.
 Reducing
          :                :           :             : the load on the
 system will
          :                :           :             : lead to better
 response times
 Warning  : 11/Aug/2014    : Work Queue: Work Queue  : Gauge Work Queue Size
 (Number
          : 15:39:40 -0500 : Size      :             : of Requests) for Work
 Queue
          :                : (Number of:             : has a current value
 of '27'.
          :                : Requests) :             : The severity is
 currently
          :                :           :             : 'WARNING' having
 assumed this
          :                :           :             : severity Mon Aug 11
 15:48:50



PingDirectory | Managing the Directory Proxy Server | 217

          :                :           :             : CDT 2014. If all
 worker
          :                :           :             : threads are busy
 processing
          :                :           :             : other client
 requests, then
          :                :           :             : new requests that
 arrive will
          :                :           :             : be forced to wait in
 the work
          :                :           :             : queue until a worker
 thread
          :                :           :             : becomes available
Shown are alarms of severity [Warning,Minor,Major,Critical]
Use the --alarmSeverity option to filter this list

Indeterminate Alarms

Indeterminate alarms are raised for a server condition for which a severity cannot be determined. In most cases these
alarms are benign and do not issue alerts nor appear in the output of the status tool or Administrative Console
by default. These alarms are usually caused by an enabled gauge that is intended to measure an aspect of the server
that is not currently enabled. For example, gauges intended to monitor metrics related to replication may produce
indeterminate alarms if a Directory Server is not currently replicating data. The gauge can be disabled if needed.

For more information about indeterminate alarms, view the gauge's associated monitor entry. There may be
messages that can help determine the issue. The following is sample output from the status tool run with the —
alarmSeverity=indeterminate option:

                        --- Alarms ---
Severity     : Severity Start : Condition      : Resource   : Details
             : Time           :                :            :
-------------:----------------:----------------:------------:------------------------
Normal       : 26/Aug/2014    : Startup Begun  : cn=config  : The Directory
 Server
             : 14:16:29 -0500 :                :            : is starting.
             :                :                :            :
Indeterminate: 26/Aug/2014    : Replication    : not        : The value of
 gauge
             : 14:16:40 -0500 : Latency        : available  : Replication
 Latency
             :                : (Milliseconds) :            : (Milliseconds)
 could not
             :                :                :            : be determined.
 The
             :                :                :            : severity is
 INDETERMINATE,
             :                :                :            : having assumed
 this
             :                :                :            : severity Tue Aug
 26
             :                :                :            : 14:17:10 CDT
 2014.

The following is an indeterminate alarm for the Replication Latency (Milliseconds) gauge. The following is a sample
search of the monitor backend for this gauge’s entry. The result is an error message may explain the indeterminate
severity:

# ldapsearch -w password --baseDN "cn=monitor"  \
-D"cn=directory manager" gauge-name="Replication Latency (Milliseconds)"

dn: cn=Gauge Replication Latency (Milliseconds),cn=monitor
objectClass: top



PingDirectory | Managing the Directory Proxy Server | 218

objectClass: ds-monitor-entry
objectClass: ds-numeric-gauge-monitor-entry
objectClass: ds-gauge-monitor-entry
objectClass: extensibleObject
cn:          Gauge Replication Latency (Milliseconds)
gauge-name:  Replication Latency (Milliseconds)
resource:
severity:    indeterminate
summary:     The value of gauge Replication Latency (Milliseconds) could not
             be determined. The severity is INDETERMINATE, having assumed
             this severity Tue Aug 26 15:42:40 CDT 2014
error-message: No entries were found under cn=monitor having object
               class ds-replica-monitor-entry
              …

Working with Administrative Alert Handlers
The PingDirectoryProxy Server provides mechanisms to send alert notifications to administrators when significant
problems or events occur during processing, such as problems during server startup or shutdown. The Directory Proxy
Server provides a number of alert handler implementations, including:

• Error Log Alert Handler. Sends administrative alerts to the configured server error logger(s).
• Exec Alert Handler. Executes a specified command on the local system if an administrative alert matching the

criteria for this alert handler is generated by the Directory Proxy Server. Information about the administrative alert
will be made available to the executed application as arguments provided by the command.

• Groovy Scripted Alert Handler. Provides alert handler implementations defined in a dynamically-loaded
Groovy script that implements the ScriptedAlertHandler class defined in the Server SDK.

• JMX Alert Handler. Sends administrative alerts to clients using the Java Management Extensions (JMX)
protocol. Ping Identity uses JMX for monitoring entries and requires that the JMX connection handler be enabled.

• SMTP Alert Handler. Sends administrative alerts to clients via email using the Simple Mail Transfer Protocol
(SMTP). The server requires that one or more SMTP servers be defined in the global configuration.

• SNMP Alert Handler. Sends administrative alerts to clients using the Simple Network Monitoring Protocol
(SNMP). The server must have an SNMP agent capable of communicating via SNMP 2c.

• SNMP Subagent Alert Handler. Sends SNMP traps to a master agent in response to administrative alerts
generated within the server.

• Third Party Alert Handler. Provides alert handler implementations created in third-party code using the Server
SDK.

Configuring the JMX Connection Handler and Alert Handler

You can configure the JMX connection handler and alert handler respectively using the dsconfig tool. Any
user allowed to receive JMX notifications must have the jmx-read and jmx-notify privileges. By default,
these privileges are not granted to any users (including root users or global administrators). For security reasons,
we recommend that you create a separate user account that does not have any other privileges but these. Although
not shown in this section, you can configure the JMX connection handler and alert handler using dsconfig in
interactive command-line mode, which is visible on the "Standard" object menu.

To Configure the JMX Connection Handler

1. Use dsconfig to enable the JMX Connection Handler.

$ bin/dsconfig set-connection-handler-prop \ 
  --handler-name "JMX Connection Handler" \ 
  --set enabled:true \ 
  --set listen-port:1689

2. Add a new non-root user account with the jmx-read and jmx-notify privileges. This account can be added
using the ldapmodify tool using an LDIF representation like:



PingDirectory | Managing the Directory Proxy Server | 219

dn: cn=JMX User,cn=Root DNs,cn=config
changetype: add
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: ds-cfg-root-dn-user
givenName: JMX
sn: User
cn: JMX User
userPassword: password
ds-cfg-inherit-default-root-privileges: false
ds-cfg-alternate-bind-dn: cn=JMX User
ds-privilege-name: jmx-read
ds-privilege-name: jmx-notify

To Configure the JMX Alert Handler

• Use dsconfig to configure the JMX Alert Handler.

$ bin/dsconfig set-alert-handler-prop --handler-name "JMX Alert Handler" \
  --set enabled:true

Configuring the SMTP Alert Handler

By default, there is no configuration entry for an SMTP alert handler. To create a new instance of an SMTP alert
handler, use the dsconfig tool.

Configuring the SMTP Alert Handler

• Use the dsconfig tool to configure the SMTP Alert Handler.

$ bin/dsconfig create-alert-handler \ 
  --handler-name "SMTP Alert Handler" \ 
  --type smtp \ 
  --set enabled:true \
  --set "sender-address:alerts@example.com" \ 
  --set "recipient-address:administrators@example.com" \ 
  --set "message-subject:Directory Admin Alert \%\%alert-type\%\%" \ 
  --set "message-body:Administrative alert:\\n\%\%alert-message\%\%"

Configuring the SNMP Subagent Alert Handler

You can configure the SNMP Subagent alert handler using the dsconfig tool, which is visible at the "Standard"
object menu. Before you begin, you need an SNMP Subagent capable of communicating via SNMP2c. For more
information on SNMP, see Monitoring Using SNMP.

To Configure the SNMP Subagent Alert Handler

• Use dsconfig to configure the SNMP subagent alert handler. The server-host-name is the address of the
system running the SNMP subagent. The server-port is the port number on which the subagent is running.
The community-name is the name of the SNMP community that is used for the traps.
The Directory Proxy Server also supports a SNMP Alert Handler, which is used in deployments that do not enable
an SNMP subagent.

$ bin/dsconfig set-alert-handler-prop \ 
  --handler-name "SNMP Subagent Alert Handler" \ 
  --set enabled:true \ 
  --set server-host-name:host2 \ 
  --set server-port:162 \
  --set community-name:public



PingDirectory | Managing the Directory Proxy Server | 220

Working with Virtual Attributes
The PingDirectoryProxy Server provides dynamically generated attributes called virtual attributes for local Directory
Proxy Server data. The proxy virtual attributes apply to a local proxy backend, such as cn=config or the Root DSE.
If you want to have virtual attributes in entries for proxied requests, then they must be configured in the backend
servers. Alternately, attributes may be inserted into those entries using proxy transformations. For more information
about configuring proxy transformations, see “Configuring Proxy Transformations”.

For example, you can define a virtual attribute and assign it to the Root DSE as follows:

$ bin/dsconfig create-virtual-attribute \ 
  --name defineDescriptionOnRootDSE --type user-defined \
  --set enabled:true --set attribute-type:description \ 
  --set filter:objectclass=ds-root-dse --set value:PrimaryProxy   

If you search the Root DSE using the following LDAP search, you see that the description attribute now has the value
PrimaryProxy.

$ bin/ldapsearch --baseDN "" --searchScope base --bindDN "" \ 
  --bindPassword "" --port 5389 -- hostname localhost \ 
  "objectclass=*" description                  

dn:
description:PrimaryProxy

About the Server SDK
You can create extensions that use the Server SDK to extend the functionality of your Directory Proxy Server.
Extension bundles are installed from a .zip archive or a file system directory. You can use the manage-extension
tool to install or update any extension that is packaged using the extension bundle format. It opens and loads the
extension bundle, confirms the correct extension to install, stops the server if necessary, copies the bundle to the
server install root, and then restarts the server.

Note:  The manage-extension tool may only be used with Java extensions packaged using the extension
bundle format. Groovy extensions do not use the extension bundle format. For more information, see the
"Building and Deploying Java-Based Extensions" section of the Server SDK documentation, which describes
the extension bundle format and how to build an extension.



Chapter

9
Managing Monitoring

Topics:

• The Monitor Backend
• Monitoring Disk Space Usage
• Monitoring with the

PingDataMetrics Server
• Monitoring Using SNMP
• Monitoring with the

Administrative Console
• Accessing the Processing Time

Histogram
• Monitoring with JMX
• Monitoring Using the LDAP

SDK
• Monitoring over LDAP
• Profiling Server Performance

Using the Stats Logger

The PingDirectoryProxy Server also provides a flexible monitoring
framework that exposes its monitoring information under the cn=monitor
entry and provides interfaces via the PingDataMetrics™ Server, the
Administrative Console, SNMP, JMX, and over LDAP. The Directory Proxy
Server also provides a tool, the Periodic Stats Logger, to profile server
performance.

This chapter presents the following information:



PingDirectory | Managing Monitoring | 222

The Monitor Backend
The Directory Proxy Server exposes its monitoring information under the cn=monitor entry. Administrators can
use various means to monitor the servers, including the PingData Metrics Server, through SNMP, the Administrative
Console, JConsole, LDAP command-line tools, and the Periodic Stats Logger. Use the bin/status tool to display
server component activity and state.

The list of all monitor entries can be seen using ldapsearch as follows:

$ bin/ldapsearch --hostname server1.example.com --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret \
 --baseDN "cn=monitor" "(objectclass=*)" cn

The following table describes a subset of the monitor entries:

Table 11: Directory Proxy Server Monitoring Components

Component Description

Active Operations Provides information about the operations currently being processed by the
Directory Proxy Server. Shows the number of operations, information on each
operation, and the number of active persistent searches.

Backends Provides general information about the state of an a Directory Proxy Server
backend, including the entry count. If the backend is a local database, there is a
corresponding database environment monitor entry with information on cache usage
and on-disk size.

Client Connections Provides information about all client connections to the Directory Proxy Server.
The client connection information contains a name followed by an equal sign and a
quoted value (e.g., connID="15", connectTime="20100308223038Z", etc.)

Connection Handlers Provides information about the available connection handlers on the Directory Proxy
Server, which includes the LDAP and LDIF connection handlers. These handlers are
used to accept client connections and to read requests and send responses to those
clients.

Disk Space Usage Provides information about the disk space available to various components of the
Directory Proxy Server.

General Provides general information about the state of the Directory Proxy Server,
including product name, vendor name, server version, etc.

Index Provides on each index. The monitor captures the number of keys preloaded, and
counters for read/write/remove/open-cursor/read-for-search. These counters provide
insight into how useful an index is for a given workload.

HTTP/HTTPS Connection
Handler Statistics

Provides statistics about the interaction that the associated HTTP connection handler
has had with its clients, including the number of connections accepted, average
requests per connection, average connection duration, total bytes returned, and
average processing time by status code.

JVM Stack Trace Provides a stack trace of all threads processing within the JVM.

LDAP Connection Handler
Statistics

Provides statistics about the interaction that the associated LDAP connection handler
has had with its clients, including the number of connections established and closed,
bytes read and written, LDAP messages read and written, operations initiated,
completed, and abandoned, etc.



PingDirectory | Managing Monitoring | 223

Component Description

Processing Time Histogram Categorizes operation processing times into a number of user-defined buckets of
information, including the total number of operations processed, overall average
response time (ms), number of processing times between 0ms and 1ms, etc.

System Information Provides general information about the system and the JVM on which the Directory
Proxy Server is running, including system host name, operation system, JVM
architecture, Java home, Java version, etc.

Version Provides information about the Directory Proxy Server version, including build ID,
version, revision number, etc.

Work Queue Provides information about the state of the Directory Proxy Server work queue,
which holds requests until they can be processed by a worker thread, including the
requests rejected, current work queue size, number of worker threads, and number
of busy worker threads. The work queue configuration has a monitor-queue-
time property set to true by default. This logs messages for new operations
with a qtime attribute included in the log messages. Its value is expressed in
milliseconds and represents the length of time that operations are held in the work
queue.

A dedicated thread pool can be used for processing administrative operations.
This thread pool enables diagnosis and corrective action if all other worker threads
are processing operations. To request that operations use the administrative
thread pool, using the ldapsearch command for example, use the --
useAdministrativeSession option. The requester must have the use-
admin-session privilege (included for root users). By default, eight threads are
available for this purpose. This can be changed with the num-administrative-
session-worker-threads property in the work queue configuration.

Monitoring Disk Space Usage
The disk space usage monitor provides information about the amount of usable disk space available for Directory
Proxy Server components. The disk space usage monitor evaluates the free space at locations registered through
the DiskSpaceConsumer interface by various components of the server. Disk space monitoring excludes disk
locations that do not have server components registered. However, other disk locations may still impact server
performance, such as the operating system disk, if it becomes full. When relevant to the server, these locations include
the server root, the location of the /config directory, the location of every log file, all JE backend directories,
the location of the changelog, the location of the replication environment database, and the location of any server
extension that registers itself with the DiskSpaceConsumer interface.

The disk space usage monitor provides the ability to generate administrative alerts, as well as take additional action if
the amount of usable space drops below the defined thresholds.

Three thresholds can be configured for this monitor:

• Low space warning threshold. This threshold is defined as either a percentage or absolute amount of usable
space. If the amount of usable space drops below this threshold, then the Directory Proxy Server will generate an
administrative alert but will remain fully functional. It will generate alerts at regular intervals that you configure
(such as once a day) unless action is taken to increase the amount of usable space. The Directory Proxy Server
will also generate additional alerts as the amount of usable space is further reduced (e.g., each time the amount of
usable space drops below a value 10% closer to the low space error threshold). If an administrator frees up disk
space or adds additional capacity, then the server should automatically recognize this and stop generating alerts.

• Low space error threshold. This threshold is also defined as either a percentage or absolute size. Once the
amount of usable space drops below this threshold, then the server will generate an alert notification and will
begin rejecting all operations requested by non-root users with "UNAVAILABLE" results. The server should
continue to generate alerts during this time. Once the server enters this mode, then an administrator will have to



PingDirectory | Managing Monitoring | 224

take some kind of action (e.g., running a command to invoke a task or removing a signal file) before the server
will resume normal operation. This threshold must be less than or equal to the low space warning threshold. If
they are equal, the server will begin rejecting requests from non-root users immediately upon detecting low usable
disk space.

• Out of space error threshold. This threshold may also be defined as a percentage or absolute size. Once the
amount of usable space drops below this threshold, then the PingDirectoryProxy Server will generate a final
administrative alert and will shut itself down. This threshold must be less than or equal to the low space error
threshold. If they are equal, the server will shut itself down rather than rejecting requests from non-root users.

• Disk space monitoring for tools. The server monitors disk space consumption during processing for the
export-ldif, rebuild-index, and backup tools. Space is monitored every 10 seconds if usable space
for all monitored paths is greater than 15 percent of the capacity of those volumes. If usable space for any path
drops below 15 percent, or below 10GB free, the space check frequency is increased to every second. Warning
messages are generated if available space falls below 10 percent, or below 5GB free. If usable space for any path
drops below two percent, or 1GB free, the tool processing is aborted and files may be removed to free up space.

The default configuration uses the same values for the low space error threshold and out of space error threshold. This
is to prevent having the server online but rejecting requests, which will cause problems with applications trying to
interact with the server. The low space warning threshold generates an alert before the problem becomes serious, well
in advance of available disk space dropping to a point that it is critical.

The default values may not be suitable for all disk sizes, and should be adjusted to fit the deployment. Determining
the best values should factor in the size of the disk, how big the database may become, how much space log files may
consume, and how many backups will be stored.

The threshold values may be specified either as absolute sizes or as percentages of the total available disk space. All
values must be specified as absolute values or as percentages. A mix of absolute values and percentages cannot be
used. The low space warning threshold must be greater than or equal to the low space error threshold, the low space
error threshold must be greater than or equal to the out of space error threshold, and the out of space error threshold
must be greater than or equal to zero.

If the out of space error threshold is set to zero, then the server will not attempt to automatically shut itself down if it
detects that usable disk space has become critically low. If the amount of usable space reaches zero, then the database
will preserve its integrity but may enter a state in which it rejects all operations with an error and requires the server
(or at least the affected backends) to be restarted. If the low space error threshold is also set to zero, then the server
will generate periodic warnings about low available disk space but will remain fully functional for as long as possible.
If all three threshold values are set to zero, then the server will not attempt to warn about or otherwise react to a lack
of usable disk space.

Monitoring with the PingDataMetrics Server
The PingDataMetrics Server is an invaluable tool for collecting, aggregating and exposing historical and
instantaneous data from the various Ping Identity servers in a deployment. The PingDataMetrics Server relies on a
captive PostgreSQL data store for the metrics, which it collects from internal instrumentation across the instances,
replicas, and data centers in your environment. The data is available via a Monitoring API that can be used to build
custom dashboards and monitoring applications to monitor the overall health of your Ping Identity Platform system.
For more information, see the PingDataMetrics Server Administration Guide.

Monitoring Key Performance Indicators by Application

The PingDirectoryProxy Server can be configured to track many key performance metrics (for example, throughput
and response-time) by the client applications requesting them. This feature is invaluable for measuring whether the
Ping Identity identify infrastructure meets all of your service-level agreements (SLA) that have been defined for client
applications.

When enabled, the per-application monitoring data can be accessed in the cn=monitor backend, the Periodic
Stats Logger, and made available for collection by the Metrics Server. See the “Profiling Server Performance Using
the Periodic Stats Logger” for more information on using that component. Also, see the Directory Proxy Server
Configuration section of the PingData Metrics Server Administration Guide for details on configuring the server to



PingDirectory | Managing Monitoring | 225

expose metrics that interest you. Tracked application information is exposed in the PingDataMetrics Server by metrics
having the 'application-name' dimension. See the documentation under docs/metrics of the PingDataMetrics
Server for information on which metrics are available with the 'application-name' dimension.

Configuring the External Servers

Before you install the PingDataMetrics Server, you need to configure the servers you will be monitoring:
PingDirectory Server, PingDirectoryProxy Server, and PingDataSync Server. The PingDataMetrics Server requires all
servers to be version 3.5.0 or later. See the administration guides for each product for installation instructions.

Once you have installed the Directory Proxy Server, you can use the dsconfig tool to make configuration changes
for the PingDataMetrics Server. When using the dsconfig tool interactively, set the complexity level to Advanced,
so that you can make all the necessary configuration changes.

Preparing the Servers Monitored by the PingDataMetrics Server

The Metrics Backend manages the storage of metrics and provides access to the stored blocks of metrics via LDAP.
The Metrics Backend is configured to keep a maximum amount of metric history based on log retention policies.
The default retention policy uses the Default Size Limit Retention Policy, Free Disk Space Retention Policy, and
the File Growth Limit Policy, limiting the total disk space used to 500 MB. This amount of disk typically contains
more than 24 hours of metric history, which is ample. The Directory Proxy Server keeps a metric history so that the
PingDataMetrics Server can be down for a period and then catch up when it comes back online.

The following two commands create a Retention Policy that limits the number of files to 2000, and sets the Metrics
Backend to flush data to a new file every 30 seconds.

$ bin/dsconfig create-log-retention-policy \
  --policy-name StatsCollectorRetentionPolicy \
  --type file-count --set number-of-files:2000

$ bin/dsconfig set-backend-prop \
  --backend-name metrics --set sample-flush-interval:30s \
  --set retention-policy:StatsCollectorRetentionPolicy

These commands configure the Metrics Backend to keep 16 hours of metric history, which consumes about 250
MB of disk, ensuring that captured metrics are available to the PingDataMetrics Server within 30 seconds of when
the metric was captured. The value of the sample-flush-interval attribute determines the maximum delay
between when a metric is captured and when it can be picked up by the PingDataMetrics Server.

The flush interval can be set between 15 seconds and 60 seconds, with longer values resulting in less processing
load on the PingDataMetrics Server. However, this flush interval increases the latency between when the metric
was captured and when it becomes visible in the Dashboard Application. If you change the sample-flush-
interval attribute to 60 seconds in the example above, then the Directory Proxy Server keeps 2000 minutes of
history. Because the number of metrics produced per unit of time can vary depending on the configuration, no exact
formula can be used to compute how much storage is required for each hour of history. However, 20 MB per hour is a
good estimate.

Configuring the Processing Time Histogram Plugin

The Processing Time Histogram plugin is configured on each Directory Proxy Server and Directory Proxy Server
as a set of histogram bucket ranges. When the bucket ranges for a histogram change, the PingDataMetrics Server
notices the change and marks samples differently. This process allows for histograms with the same set of bucket
definitions to be properly aggregated and understood when returned in a query. If different servers have different
bucket definitions, then a single metric query cannot return histogram data from the servers.

You should try to keep the Processing Time Histogram bucket definitions the same on all servers. Having different
definitions restricts the ability of the PingDataMetrics Server API to aggregate histogram data across servers and
makes the results of a query asking "What percentage of the search requests took less than 12 milliseconds?" harder to
understand.



PingDirectory | Managing Monitoring | 226

For each server in your topology, you must set the separate-monitor-entry-per-tracked-application property of the
processing time histogram plugin to true. This property must be set to expose per-application monitoring information
under cn=monitor. When the separate-monitor-entry-per-tracked-application property is set to true, then the per-
application-ldap-stats property must be set to per-application-only on the Stats Collector Plugin and vice versa.

For example, the following dsconfig command line sets the required properties of the Processing Time Histogram
plugin:

$ bin/dsconfig set-plugin-prop --plugin-name “Processing Time Histogram” \
  --set separate-monitor-entry-per-tracked-application:true

The following dsconfig command line sets the per-application-ldap-stats property of the Stats Collector plugin to
per-application-only:

$ bin/dsconfig set-plugin-prop --plugin-name “Stats Collector” \
 --set per-application-ldap-stats:per-application-only

Setting the Connection Criteria to Collect SLA Statistics by Application

If you want to collect data about your SLAs, you need to configure connection criteria for each Service Level
Agreement that you want to track. The connection criteria are used in many areas within the server. They are used
by the client connection policies, but they can also be used when the server needs to perform matching based on
connection-level properties, such as filtered logging. For assistance using connection criteria, contact your authorized
support provider.

For example, imagine that we are interested in collecting statistics on data that is accessed by clients authenticating
as the Directory Manager. We need to create connection criteria on the Directory Proxy Server that identifies any
user authenticating as the Directory Manager. The connection criteria name corresponds to the application-name
dimension value that clients will specify when accessing the data via the API. When you define the Connection
Criteria, change the included-user-base-dn property to include the Directory Manager’s full LDIF entry.

The following dsconfig command line creates connection criteria for the Directory Manager:

$ bin/dsconfig create-connection-criteria \
  --criteria-name “Directory Manager” \
  --type simple \
  --set “included-user-base-dn:cn=Directory Manager,cn=Root DNs,cn=config”

Updating the Global Configuration

You also need to create Global Configuration-tracked applications for each app (connection criteria) you intend
to track. The tracked-application property allows individual applications to be identified in the server by
connection criteria. The name of the tracked application is the same as the name you defined for the connection
criteria.

For example, the following dsconfig command line adds the connection criteria we created in the previous step to
the list of tracked applications:

$ bin/dsconfig set-global-configuration-prop \
  --set "tracked-application:Directory Manager”

The value of the tracked-application field corresponds to the value of the application-name dimension
value that clients will specify when accessing the data via the API.

Proxy Considerations for Tracked Applications

In a proxy environment, the criteria should be defined in the Directory Proxy Server since the Directory Proxy
Server passes the application name through to the Directory Server in the intermediate client control. If a client of
the Directory Proxy Server or Directory Server happens to use the intermediate client control, then the client name



PingDirectory | Managing Monitoring | 227

specified in the control will be used as the application name regardless of the criteria listed in the tracked-application
property.

Monitoring Using SNMP
The PingDirectoryProxy Server supports real-time monitoring using the Simple Network Management Protocol
(SNMP). The Directory Proxy Server provides an embedded SNMPv3 subagent plugin that, when enabled, sets up the
server as a managed device and exchanges monitoring information with a master agent based on the AgentX protocol.

SNMP Implementation

In a typical SNMP deployment, many production environments use a network management system (NMS) for a
unified monitoring and administrative view of all SNMP-enabled devices. The NMS communicates with a master
agent, whose main responsibility is to translate the SNMP protocol messages and multiplex any request messages to
the subagent on each managed device (for example, Directory Proxy Server instance, Directory Proxy Server, Data
Sync Server, or OS Subagent). The master agent also processes responses or traps from the agents. Many vendors
provide commercial NMS systems. Consult with your NMS system for specific information.

The PingDirectoryProxy Server contains an SNMP subagent plug-in that connects to a Net-SNMP master agent over
TCP. The main configuration properties of the plug-in are the address and port of the master agent, which default to
localhost and port 705, respectively. When the plug-in is initialized, it creates an AgentX subagent and a managed
object server, and then registers as a MIB server with the Directory Proxy Server instance. Once the plug-in's startup
method is called, it starts a session thread with the master agent. Whenever the connection is lost, the subagent
automatically attempts to reconnect with the master agent. The Directory Proxy Server’s SNMP subagent plug-in
only transmits read-only values for polling or trap purposes (set and inform operations are not supported). SNMP
management applications cannot perform actions on the server on their own or by means of an NMS system.

Figure 9: Example SNMP Deployment

One important note is that the PingDirectoryProxy Server was designed to interface with a Net-SNMP (version
5.3.2.2 or later) master agent implementation with AgentX over TCP. Many operating systems provide their own Net-
SNMP module. However, SMA disables some features present in the Net-SNMP package and only enables AgentX
over UNIX Domain Sockets, which cannot be supported by Java. If your operating system has a native Net-SNMP
master agent that only enables UNIX Domain Sockets, you must download and install a separate Net-SNMP binary
from its web site.

Configuring SNMP

Because all server instances provide information for a common set of MIBs, each server instance provides its
information under a unique SNMPv3 context name, equal to the server instance name. The server instance name is
defined in the Global Configuration, and is constructed from the host name and the server LDAP port by default.



PingDirectory | Managing Monitoring | 228

Consequently, information must be requested using SNMPv3, specifying the context name that pertains to the desired
server instance. This context name is limited to 30 characters or less. Any context name longer than 30 characters will
result in an error message. Since the default context name is limited to 30 characters or less, and defaults to the server
instance name and the LDAP port number, pay special attention to the length of the fully-qualified (DNS) hostname.

Note:  The Directory Proxy Server supports SNMPv3, and only SNMPv3 can access the MIBs. For systems
that implement SNMP v1 and v2c, Net-SNMP provides a proxy function to route requests in one version of
SNMP to an agent using a different SNMP version.

To Configure SNMP

1. Enable the Directory Proxy Server’s SNMP plug-in using the dsconfig tool. Make sure to specify the address
and port of the SNMP master agent. On each Directory Proxy Server instance, enable the SNMP subagent. Note
that the SNMPv3 context name is limited to 30 bytes maximum. If the default dynamically-constructed instance
name is greater than 30 bytes, there will be an error when attempting to enable the plugin. Enable the SNMP
Subagent Alert Handler so that the sub-agent will send traps for administrative alerts generated by the server.

$ bin/dsconfig set-alert-handler-prop \
  --handler-name "SNMP Subagent Alert Handler" --set enabled:true

2. View the error log. You will see a message that the master agent is not connected, because it is not yet online.

The SNMP sub-agent was unable to connect to the master 
agent at localhost/705: Timeout

3. Edit the SNMP agent configuration file, snmpd.conf, which is often located in /etc/snmp/snmpd.conf.
Add the directive to run the agent as an AgentX master agent:

master agentx agentXSocket tcp:localhost:705

Note that the use of localhost means that only sub-agents running on the same host can connect to the master
agent. This requirement is necessary since there are no security mechanisms in the AgentX protocol.

4. Add the trap directive to send SNMPv2 traps to localhost with the community name, public (or whatever
SNMP community has been configured for your environment) and the port.

trap2sink localhost public 162

5. To create a SNMPv3 user, add the following lines to the /etc/snmp/snmpd.conf file.

rwuser initial  
createUser initial MD5 setup_passphrase DES    

6. Run the following command to create the SNMPv3 user.

snmpusm -v3 -u initial -n "" -l authNoPriv -a MD5 -A setup_passphrase \
localhost create snmpuser initial    

7. Start the snmpd daemon and after a few seconds you should see the following message in the Directory Proxy
Server error log:

The SNMP subagent connected successfully to the master agent 
at localhost:705. The SNMP context name is host.example.com:389

8. Set up a trap client to see the alerts that are generated by the Directory Proxy Server. Create a config file in /
tmp/snmptrapd.conf and add the directive below to it. The directive specifies that the trap client can process
traps using the public community string, and can log and trigger executable actions.

authcommunity log, execute public

9. Install the MIB definitions for the Net-SNMP client tools, usually located in the /usr/share/snmp/mibs
directory.

$ cp resource/mib/* /usr/share/snmp/mibs



PingDirectory | Managing Monitoring | 229

10. Then, run the trap client using the snmptrapd command. The following example specifies that the command
should not create a new process using fork() from the calling shell (-f), do not read any configuration files (-C)
except the one specified with the -c option, print to standard output (-Lo), and then specify that debugging output
should be turned on for the User-based Security Module (-Dusm). The path after the -M option is a directory that
contains the MIBs shipped with our product (i.e., server-root/resource/mib) .

$ snmptrapd -f -C -c /tmp/snmptrapd.conf -Lf /root/trap.log -Dusm \
  -m all -M +/usr/share/snmp/mibs  

11. Run the Net-SNMP client tools to test the feature. The following options are required: -v <SNMP version>, -u
<user name>, -A <user password>, -l <security level>, -n <context name (instance name)> . The -m all option
loads all MIBs in the default MIB directory in /usr/share/snmp/mibs so that MIB names can be used in place of
numeric OIDs.

$ snmpget -v 3 -u snmpuser -A password -l authNoPriv -n host.example.com:389
 \ 
-m all localhost localDBBackendCount.0

$ snmpwalk -v 3 -u snmpuser -A password -l authNoPriv -n
 host.example.com:389 \ 
-m all localhost systemStatus

MIBS

The Directory Proxy Server provides SMIv2-compliant MIB definitions (RFC 2578, 2579, 2580) for distinct
monitoring statistics. These MIB definitions are to be found in text files under resource/mib directory under the
server root directory.

Each MIB provides managed object tables for each specific SNMP management information as follows:

• LDAP Remote Server MIB. Provides information related to the health and status of the LDAP servers that the
Directory Proxy Server connects to, and statistics about the operations invoked by the Directory Proxy Server on
those LDAP servers.

• LDAP Statistics MIB. Provides a collection of connection-oriented performance data that is based on a
connection handler in the Directory Proxy Server. A server typically contain only one connection handler and
therefore supplies only one table entry.

• Local DB Backend MIB. Provides key metrics related to the state of the local database backends contained in the
server.

• Processing Time MIB. Provides a collection of key performance data related to the processing time of operations
broken down by several criteria but reported as a single aggregated data set.

• Replication MIB. Provides key metrics related to the current state of replication, which can help diagnose how
much outstanding work replication may have to do.

• System Status MIB. Provides a set of critical metrics for determining the status and health of the system in
relation to its work load.

For information on the available monitoring statistics for each MIB available on the Directory Server and the
Directory Proxy Server, see the text files provided in the resource/mib directory below the server installation.

The Directory Proxy Server generates an extensive set of SNMP traps for event monitoring. The traps display the
severity, description, name, OID, and summary. For information about the available alert types for event monitoring,
see the resource/mib/UNBOUNDID-ALERT-MIB.txt file.

Monitoring with the Administrative Console
Ping Identity has an Administrative Console for administrators to configure the directory server. The console also
provides a status option that accesses the server's monitor content.



PingDirectory | Managing Monitoring | 230

To View the Monitor Dashboard

1. Ensure that the Directory Proxy Server is running.
2. Open a browser to http://server-name:8443/console.
3. Type the root user DN and password, and then click Login.
4. Use the top level navigation dropdown and select 'Status.'
5. On the Administrative Console's Status page, select the Monitors tab.

Accessing the Processing Time Histogram
The PingDirectoryProxy Server provides a processing time histogram that classifies operation response time into
user-defined buckets. The histogram tracks the processing on a per operation basis and as a percentage of the overall
processing time for all operations. It also provides statistics for each operation type (add, bind, compare, delete,
modify, modify DN, search).

To Access the Processing Time Histogram

1. On the Administrative Console, click Configuration > Status > Monitors tab.
2. Select Processing Time Histogram. Other monitor entries can be accessed in similar ways.

Monitoring with JMX
The PingDirectoryProxy Server supports monitoring the JVM™ through a Java Management Extensions (JMX™)
management agent, which can be accessed using JConsole or any other kind of JMX client. The JMX interface
provides JVM performance and resource utilization information for applications running Java. You can monitor
generic metrics exposed by the JVM itself, including memory pools, threads, loaded classes, and MBeans, as well
as all the monitor information that the Directory Proxy Server provides. You can also subscribe to receive JMX
notifications for any administrative alerts that are generated within the server.

Running JConsole

Before you can access JConsole, you must configure and enable the JMX Connection Handler for the Directory Proxy
Server using the dsconfig tool. See Configuring the JMX Connection Handler and Alert Handler.

To invoke the JConsole executable, type jconsole on the command line. If JDK_HOME is not set in your path, you
can access JConsole in the bin directory of the JDK_HOME path.

To Run JConsole

1. Use JConsole to open the Java Monitoring and Management Console. You can also run JConsole to monitor a
specific process ID for your application: jconsole PID. Or you can run JConsole remotely using: jconsole
hostname:port.

$ jconsole

Note:  If SSL is configured on the JMX Connection Handler, you must specify the Directory Proxy Server
jar file in the class path when running jconsole over SSL. For example, run the following jconsole
command:

$ jconsole \
  -J-Djavax.net.ssl.trustStore=/path/to/certStores/truststore \
  -J-Djavax.net.ssl.trustStorePassword=secret \
  -J-Djava.class.path=$SERVER_ROOT/lib/PingDirectoryProxy.jar:/
Library/Java/JavaVirtualMachines/jdk-version.jdk/Contents/Home/lib/
jconsole.jar 



PingDirectory | Managing Monitoring | 231

2. On the Java Monitoring & Administrative Console, click Local Process, and then click the PID corresponding
to the directory server.
 

 
3. Review the resource monitoring information.

 

 

Monitoring the Directory Proxy Server Using JConsole

You can set up JConsole to monitor the Directory Proxy Server using a remote process. Make sure to enable the JMX
Connection Handler and to assign at least the jmx-read privilege to a regular user account (the jmx-notify
privilege is required to subscibe to receive JMX notifications). Do not use a root user account, as this would pose a
security risk.

To Monitor the Directory Proxy Server using JConsole

1. Start the Directory Proxy Server.

$ bin/start-server

2. Enable the JMX Connection handler using the dsconfig tool. The handler is disabled by default. Remember to
include the LDAP connection parameters (hostname, port, bindDN, bindPassword).

$ bin/dsconfig set-connection-handler-prop \
  --handler-name "JMX Connection Handler" --set enabled:true

3. Assign jmx-read, jmx-write, and jmx-notify (if the user receives notifications) to the user.

$ bin/ldapmodify --hostname server1.example.com --port 1389 \ 
  --bindDN "cn=Directory Manager" --bindPassword secret



PingDirectory | Managing Monitoring | 232

dn: uid=admin,dc=example,dc=com 
changetype: modify 
replace: ds-privilege-name 
ds-privilege-name: jmx-read 
ds-privilege-name: jmx-write 
ds-privilege-name: jmx-notify

4. On the Java Monitoring & Administrative Console, click Remote Process, and enter the following JMX URL
using the host and port of your Directory Proxy Server.

service:jmx:rmi:///jndi/rmi://<host>:<port>/
com.unboundid.directory.server.protocols.jmx.client-unknown

5. In the Username and Password fields, type the bind DN and password for a user that has at least the jmx-read
privilege. Click Connect.
 

 
6. Click com.unboundid.directory.server, and expand the rootDSE node and the cn-monitor sub-node.

 

 
7. Click a monitoring entry. In this example, click the LDAP Connection Handler entry.

 



PingDirectory | Managing Monitoring | 233

 

Monitoring Using the LDAP SDK
You can use the monitoring API to retrieve monitor entries from the Directory Proxy Server as well as to retrieve
specific types of monitor entries.

For example, you can retrieve all monitor entries published by the Directory Proxy Server and print the information
contained in each using the generic API for accessing monitor entry data as follows:

for (MonitorEntry e : MonitorManager.getMonitorEntries(connection)) 
  {
    System.out.println("Monitor Name: " + e.getMonitorName()); 
    System.out.println("Monitor Type: " + e.getMonitorDisplayName()); 
    System.out.println("Monitor Data:"); 
    for (MonitorAttribute a : e.getMonitorAttributes().values())
    {
      for (Object value : a.getValues()) 
      {
        System.out.println(" " + a.getDisplayName() + ": " +
 String.valueOf(value));
      }
     }
     System.out.println();
  }

For more information about the LDAP SDK and the methods in this example, see the LDAP SDK documentation.

Monitoring over LDAP
The PingDirectoryProxy Server exposes a majority of its information under the cn=monitor entry. You can access
these entries over LDAP using the ldapsearch tool.

$ bin/ldapsearch --hostname server1.example.com --port 1389 \ 
  --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret \ 
  --baseDN "cn=monitor" "(objectclass=*)"



PingDirectory | Managing Monitoring | 234

Profiling Server Performance Using the Stats Logger
The Directory Proxy Server ships with a built-in Stats Logger that is useful for profiling server performance for
a given configuration. At a specified interval, the Stats Logger writes server statistics to a log file in a comma-
separated format (.csv), which can be read by spreadsheet applications. The logger has a negligible impact on server
performance unless the log-interval property is set to a very small value (less than 1 second). The statistics
logged and their verbosity can be customized.

The Stats Logger can also be used to view historical information about server statistics including replication, LDAP
operations, host information, and gauges. Either update the configuration of the existing Stats Logger Plugin to set the
advanced gauge-info property to basic/extended to include this information, or create a dedicated Periodic
Stats Logger for information about statistics of interest.

To Enable the Stats Logger

By default, the Directory Proxy Server ships with the built-in "Stats Logger' disabled. To enable it using the
dsconfig tool or the Administrative Console, go to Plugins menu (available on the Advanced object menu), and
then, select .

1. Run dsconfig in interactive mode. Enter the LDAP or LDAPS connection parameters when prompted.

$ bin/dsconfig

2. Enter o to change to the Advanced Objects menu.
3. On the main menu, enter the number for Plugins.
4. On the Plugin menu, enter the number corresponding to view and edit an existing plug-in.
5. On the Plugin selection list, enter the number corresponding to the Stats Logger.
6. On the Stats Logger Plugin menu, enter the number to set the enabled property to TRUE. When done, enter

f to save and apply the configuration. The default logger will log information about the server every second to
<server-root>/logs/dsstats.csv. If the server is idle, nothing will be logged, but this can be changed
by setting the suppress-if-idle property to FALSE (suppress-if-idle=false).

>>>> Configure the properties of the Stats Logger Plugin

Property                Value(s)
------------------------------------------------------------------------
1)   description        Logs performance stats to a log file
                        periodically.
2)   enabled                     false
3)   local-db-backend-info       basic
4)   replication-info            basic
5)   entry-cache-info            -
6)   host-info                   -
7)   included-ldap-application   If per-application LDAP stats is enabled,
                                 then stats will be included for all
                                 applications.
8)   log-interval                1 s
9)   collection-interval         200 ms
10)  suppress-if-idle            true
11)  header-prefix-per-column    false
12)  empty-instead-of-zero       true
13)  lines-between-header        50
14)  included-ldap-stat          active-operations, num-connections,
                                 op-count-and-latency, work-queue
15)  included-resource-stat      memory-utilization
16)  histogram-format            count
17)  histogram-op-type           all
18)  per-application-ldap-stats  aggregate-only
19)  ldap-changelog-info         -
20)  gauge-info                  none



PingDirectory | Managing Monitoring | 235

21)  log-file                    logs/dsstats.csv
22)  log-file-permissions        640
23)  append                      true
24)  rotation-policy             Fixed Time Rotation Policy, Size Limit
                                 Rotation Policy
25)  retention-policy            File Count Retention Policy

?)   help
f)   finish - apply any changes to the Periodic Stats Logger Plugin
a)   hide advanced properties of the Periodic Stats Logger Plugin
d)   display the equivalent dsconfig command lines to either re-create this
           object or only to apply pending changes
b)   back
q)   quit

Enter choice [b]:

7. Run the Directory Proxy Server. For example, if you are running in a test environment, you can run the search-
and-mod-rate tool to apply some searches and modifications to the server. You can run search-and-mod-
rate --help to see an example command.

8. View the Stats log output at <server-root>/logs/dsstats.csv. You can open the file in a spreadsheet.
The following image displays a portion of the file’s output. On the actual file, you will need to scroll right for
more statistics.
 

 

To Configure Multiple Periodic Stats Loggers

Multiple Periodic Stats Loggers can be created to log different statistics, view historical information about gauges, or
to create a log at different intervals (such as logging cumulative operations statistics every hour). To create a new log,
use the existing Stats Logger as a template to get reasonable settings, including rotation and retention policy.

1. Run dsconfig by repeating steps 1–3 in To Enable the Stats Logger.
2. From the Plugin management menu, enter the number to create a new plug-in.
3. From the Create a New Periodic Stats Logger Plugin menu, enter t to use an existing plug-in as a template.
4. Enter the number corresponding to the existing stats logger as a template.
5. Next, enter a descriptive name for the new stats logger. For this example, type Stats Logger-10s.
6. Enter the log file path to the file. For this example, type logs/dsstats2.csv.
7. On the menu, make any other change to the logger. For this example, change the log-interval to 10s, and the

suppress-if-idle to false. When finished, enter f to save and apply the configuration.
8. You should now see two loggers dsstats.csv and dsstats2.csv in the logs directory.



PingDirectory | Managing Monitoring | 236

Adding Custom Logged Statistics to a Periodic Stats Logger

Add custom statistics based on any attribute in any entry under cn=monitor using the Custom Logged Stats object.
This configuration object provides powerful controls for how monitor attributes are written to the log. For example,
you can extract a value from a monitor attribute using a regular expression. Newly created Custom Logged Stats will
automatically be included in the Periodic Stats Logger output.

Besides allowing a straight pass-through of the values using the 'raw' statistic-type, you can configure attributes to
be treated as a counter (where the interval includes the difference in the value since the last interval), an average, a
minimum, or a maximum value held by the attribute during the specified interval. The value of an attribute can also
be scaled by a fixed value or by the value of another monitor attribute.

Note:  Custom third-party server extensions that were written using the Server SDK can also expose interval
statistics using a Periodic Stats Logger. The extension must first implement the SDK's MonitorProvider
interface and register with the server. The monitor attributes produced by this custom MonitorProvider
are then available to be referenced by a Custom Logged Stats object.

To illustrate how to configure a Custom Logged Statistics Logger, the following procedure reproduces the built-in
"Consumer Total GB" column that shows up in the output when the included-resource-stat property is set
to memory-utilization on the Periodic Stats Logger. The column is derived from the total-bytes-used-by-
memory-consumers attribute of the cn=JVM Memory Usage,cn=monitor entry as follows:

dn: cn=JVM Memory Usage,cn=monitor 
objectClass: top 
objectClass: ds-monitor-entry 
objectClass: ds-memory-usage-monitor-entry 
objectClass: extensibleObject
cn: JVM Memory Usage 
... 
total-bytes-used-by-memory-consumers: 3250017037

To Configure a Custom Logged Statistic Using dsconfig Interactive

1. Run dsconfig and enter the LDAP/LDAPS connection parameters when prompted.

$ bin/dsconfig

2. On the Directory Proxy Server configuration main menu (Advanced Objects menu), enter the number
corresponding to Custom Logged Stats.

3. On the Custom Logged Stats menu, enter the number corresponding to Create a new Custom Logged Stats.
4. Select the Stats Logger Plugin from the list if more than one is present on the system. If you only have one stats

logger, press Enter to confirm that you want to use the existing plugin.
5. Enter a descriptive name for the Custom Logged Stats. For this example, enter Memory Usage.
6. From the monitor-objectclass property menu, enter the objectclass attribute to monitor. For this example,

enter ds-memory-usage-monitor-entry. You can run ldapsearch using the base DN "cn=JVM
Memory Usage,cn=monitor" entry to view the entry.

7. Next, specify the attributes of the monitor entry that you want to log in the stats logger. In this example, enter
total-bytes-used-by-memory-consumers, and then press Enter again to continue.

8. Next, specify the type of statistics for the monitored attribute that will appear in the log file. In this example, enter
the option for raw statistics as recorded by the logger.

9. In the Custom Logged Stats menu, review the configuration. At this point, we want to set up a column name that
lists the Memory Usage. Enter the option to change the column-name property.

10. Next, we want to add a specific label for the column name. Enter the option to add a value, and then enter
Memory Consumer Total (GB), and press Enter again to continue.

11. Confirm that you want to use the column-name value that you entered in the previous step, and then press
Enter to use the value.

12. Next, we want to scale the Memory Consumer Totals by one gigabyte. On the Custom Logged Stats menu, enter
the option to change the divide-value-by property.



PingDirectory | Managing Monitoring | 237

13. On the divide-value-by property menu, enter the option to change the value, and then enter 1073741824
(i.e., 1073741824 bytes = 1 gigabytes).

14. On the Custom Logged Stats menu, review your configuration. When finished, enter f to save and apply the
settings.

>>>> Configure the properties of the Custom Logged Stats
 >>>> via creating 'Memory Usage' Custom Logged Stats

         Property                   Value(s)
         ---------------------------------------------------------------
    1)   description                -
    2)   enabled                    true
    3)   monitor-objectclass        ds-memory-usage-monitor-entry
    4)   include-filter             -
    5)   attribute-to-log           total-bytes-used-by-memory-consumers
    6)   column-name                Memory Consumer Total (GB)
    7)   statistic-type             raw
    8)   header-prefix              -
    9)   header-prefix-attribute    -
    10)  regex-pattern              -
    11)  regex-replacement          -
    12)  divide-value-by            1073741824
    13)  divide-value-by-attribute  -
    14)  decimal-format             #.##
    15)  non-zero-implies-not-idle  false

    ?)   help
    f)   finish - create the new Custom Logged Stats
    a)   hide advanced properties of the Custom Logged Stats
    d)   display the equivalent dsconfig arguments to create this object
    b)   back
    q)   quit

Enter choice [b]:

The Custom Logged Stats was created successfully

When the Custom Logged Stats configuration change is completed, the new stats value should immediately show
up in the Stats Logger output file.

To Configure a Custom Stats Logger Using dsconfig Non-Interactive

• Use the dsconfig non-interactive command-line equivalent to create your custom stats logger. The following
one-line command replicates the procedure in the previous section. This command produces a column named
"Memory Consumer Total (GB)" that contains the value of the of total-bytes-used-by-memory-
consumers attribute pulled from the entry with the ds-memory-usage-monitor-entry objectclass. This
value is scaled by 1073741824 to get to a value represented in GBs.

$ bin/dsconfig create-custom-logged-stats --plugin-name "Stats Logger" \ 
  --stats-name "Memory Usage" --type custom \
  --set monitor-objectclass:ds-memory-usage-monitor-entry \ 
  --set attribute-to-log:total-bytes-used-by-memory-consumers \ 
  --set "column-name:Memory Consumer Total (GB)" --set statistic-type:raw \ 
  --set divide-value-by:1073741824



Chapter

10
Troubleshooting the Directory Proxy Server

Topics:

• Garbage Collection Diagnostic
Information

• Working with the
Troubleshooting Tools

• Directory Proxy Server
Troubleshooting Tools

• Troubleshooting Resources for
Java Applications

This chapter provides the common problems and potential solutions that
might occur when running PingDirectoryProxy Server. It is primarily targeted
at cases in which the Directory Proxy Server is running on Linux® systems,
but much of the information can be useful on other platforms as well.

This chapter presents the following information:



PingDirectory | Troubleshooting the Directory Proxy Server | 240

Garbage Collection Diagnostic Information
You can enable the JVM debugging options to track garbage collection data for your system. The options can impact
JVM performance, but they provide valuable data to tune your server when troubleshooting garbage collection issues.
While the jstat utility with the -gc option can be used to obtain some information about garbage collection activity,
there are additional arguments that can be added to the JVM to use when running the server to provide additional
detail.

-XX:+PrintGCDetails
-XX:+PrintTenuringDistribution
-XX:+PrintGCApplicationConcurrentTime
-XX:+PrintGCApplicationStoppedTime
-XX:+PrintGCDateStamps

To run the Directory Proxy Server with these options, edit the config/java.properties file and add them to
the end of the line that begins with "bin/start-server.java-args". After the file has been saved, invoke the
following command to make those new arguments take effect the next time the server is started:

$ bin/dsjavaproperties

Working with the Troubleshooting Tools
If problems arise with the Directory Proxy Server (whether from issues in the Directory Proxy Server itself or a
supporting component, like the JVM, operating system, or hardware), then it is essential to be able to diagnose the
problem quickly to determine the underlying cause and the best course of action to take towards resolving it.

Working with the Collect Support Data Tool

The Directory Proxy Server provides a significant amount of information about its current state including any
problems that it has encountered during processing. If a problem occurs, the first step is to run the collect-
support-data tool in the bin directory. The tool aggregates all relevant support files into a zip file that
administrators can send to your authorized support provider for analysis. The tool also runs data collector utilities,
such as jps, jstack, and jstat plus other diagnostic tools, and bundles the results in the zip file.

The tool may only archive portions of certain log files to conserve space, so that the resulting support archive does not
exceed the typical size limits associated with e-mail attachments.

The data collected by the collect-support-data tool varies between systems. However, the tool always tries
to get the same information across all systems for the target Directory Proxy Server. The data collected includes the
configuration directory, summaries and snippets from the logs directory, an LDIF of the monitor and RootDSE
entries, and a list of all files in the server root.

Available Tool Options

The collect-support-data tool has some important options that you should be aware of:

• --noLdap. Specifies that no effort should be made to collect any information over LDAP. This option should only
be used if the server is completely unresponsive or will not start and only as a last resort.

• --pid {pid}. Specifies the ID of an additional process from which information is to be collected. This option
is useful for troubleshooting external server tools and can be specified multiple times for each external server,
respectively.

• --sequential. Use this option to diagnose “Out of Memory” errors. The tool collects data in parallel to minimize
the collection time necessary for some analysis utilities. This option specifies that data collection should be run
sequentially as opposed to in parallel. This action has the effect of reducing the initial memory footprint of this
tool at a cost of taking longer to complete.



PingDirectory | Troubleshooting the Directory Proxy Server | 241

• --reportCount {count}. Specifies the number of reports generated for commands that supports sampling (for
example, vmstat, iostat, or mpstat). A value of 0 (zero) indicates that no reports will be generated for these
commands. If this option is not specified, it defaults to 10.

• --reportInterval {interval}. Specifies the number of seconds between reports for commands that support
sampling (for example, mpstat). This option must have a value greater than 0 (zero). If this option is not
specified, it default to 1.

• --maxJstacks {number}. Specifies the number of jstack samples to collect. If not specified, the default number of
samples collected is 10.

• --collectExpensiveData. Specifies that data on expensive or long running processes be collected. These processes
are not collected by default, because they will impact the performance of a running server.

• --comment {comment}. Provides the ability to submit any additional information about the collected data set. The
comment will be added to the generated archive as a README file.

• --includeBinaryFiles. Specifies that binary files be included in the archive collection. By default, all binary files
are automatically excluded in data collection.

• --adminPassword {adminPassword}. Specifies the global administrator password used to obtain
dsreplication status information.

• --adminPasswordFile {adminPasswordFile}. Specifies the file containing the password of the global
administrator used to obtain dsreplication status information.

To Run the Collect Support Data Tool

1. Go to the server root directory.
2. Use the collect-support-data tool. Make sure to include the host, port number, bind DN, and bind

password.

$ bin/collect-support-data --hostname 127.0.0.1 --port 389 \ 
  --bindDN "cn=Directory Manager" --bindPassword secret \ 
  --serverRoot /opt/PingDirectoryProxy --pid 1234

3. Email the zip file to your Authorized Support Provider.

Directory Proxy Server Troubleshooting Tools
The PingDirectoryProxy Server provides a set of tools that can also be used to obtain information for diagnosing and
solving problems.

Server Version Information

If it becomes necessary to contact your authorized support provider, then it will be important to provide precise
information about the version of the Directory Proxy Server software that is in use. If the server is running, then
this information can be obtained from the "cn=Version,cn=monitor" entry. It can also be obtained using the
command:

$ bin/status --fullVersion

This command outputs a number of important pieces of information, including:

• Major, minor, point and patch version numbers for the server.
• Source revision number from which the server was built.
• Build information including build ID with time stamp, OS, user, Java and JVM version for the build.
• Auxiliary software versions: Jetty, JZlib, SNMP4j (SNMP4J, Agent, Agentx), Groovy, LDAP SDK for Java, and

the Server SDK.



PingDirectory | Troubleshooting the Directory Proxy Server | 242

LDIF Connection Handler

The Directory Proxy Server provides an LDIF connection handler that provides a way to request operations that do
not require any network communication with the server. This can be particularly helpful if a configuration problem or
bug in the server has left a connection handler unusable, or if all worker threads are busy processing operations.

The LDIF connection handler is enabled by default and looks for LDIF files to be placed in the config/auto-
process-ldif directory. This Directory Proxy Server does not exist by default, but if it is created and an LDIF file
is placed in it that contains one or more changes to be processed, then those changes will be applied.

Any changes that can be made over LDAP can be applied through the LDIF connection handler. It is primarily
intended for administrative operations like updating the server configuration or scheduling tasks, although other types
of changes (including changes to data contained in the server) can be processed. As the LDIF file is processed, a new
file is written with comments for each change providing information about the result of processing that change.

Embedded Profiler

If the Directory Proxy Server appears to be running slowly, then it is helpful to know what operations are being
processed in the server. The JVM Stack Trace monitor entry can be used to obtain a point-in-time snapshot of what
the server is doing, but in many cases, it might be useful to have information collected over a period of time.

The embedded profiler is configured so that it is always available but is not active by default so that it has no impact
on the performance of the running server. Even when it is running, it has a relatively small impact on performance,
but it is recommended that it remain inactive when it is not needed. It can be controlled using the dsconfig tool
or the Administrative Console by managing the "Profiler" configuration object in the "Plugin" object type, available
at the standard object level. The profile-action property for this configuration object can have one of the
following values:

• start – Indicates that the embedded profiler should start capturing data in the background.
• stop – Indicates that the embedded profiler should stop capturing data and write the information that it has

collected to a logs/profile{timestamp} file.
• cancel – Indicates that the embedded profiler should stop capturing data and discard any information that it has

collected.

Any profiling data that has been captured can be examined using the profiler-viewer tool. This tool can operate
in either a text-based mode, in which case it dumps a formatted text representation of the profile data to standard
output, or it can be used in a graphical mode that allows the information to be more easily understood.

To Invoke the Profile Viewer in Text-based Mode

• Run the profile-viewer command and specify the captured log file using the --fileName option.

$ bin/profile-viewer --fileName logs/profile.20110101000000Z

To Invoke the Profile Viewer in GUI Mode

• Run the profile-viewer command and specify the captured log file using the --fileName option. To invoke
GUI mode, add the option --useGUI.

$ bin/profile-viewer --fileName logs/profile.20110101000000Z --useGUI

Troubleshooting Resources for Java Applications
Because the PingDirectoryProxy Server is written entirely in Java, it is possible to use standard Java debugging and
instrumentation tools when troubleshooting problems with the Directory Proxy Server. In many cases, obtaining the
full benefit of these tools requires access to the Directory Proxy Server source code. These Java tools should be used
under the advisement of your authorized support provider.



PingDirectory | Troubleshooting the Directory Proxy Server | 243

Java Troubleshooting Tools

The Java Development Kit provides a number of very useful tools to obtain information about Java applications
and diagnosing problems. These tools are not included with the Java Runtime Environment (JRE), so the full Java
Development Environment (JDK) should always be installed and used to run the PingDirectoryProxy Server.

jps

The jps tool is a Java-specific version of the UNIX ps tool. It can be used to obtain a list of all Java processes
currently running and their respective process identifiers. When invoked by a non-root user, it will list only Java
processes running as that user. When invoked by a root user, then it lists all Java processes on the system.

This tool can be used to see if the Directory Proxy Server is running and if a process ID has been assigned to it. This
process ID can be used in conjunction with other tools to perform further analysis.

This tool can be run without any arguments, but some of the more useful arguments that include:

• -v – Includes the arguments passed to the JVM for the processes that are listed.
• -m – Includes the arguments passed to the main method for the processes that are listed.
• -l – (lowercase L). Include the fully qualified name for the main class rather than only the base class name.

jstack

The jstack tool is used to obtain a stack trace of a running Java process, or optionally from a core file generated
if the JVM happens to crash. A stack trace can be extremely valuable when trying to debug a problem, because it
provides information about all threads running and exactly what each is doing at the point in time that the stack trace
was obtained.

Stack traces are helpful when diagnosing problems in which the server appears to be hung or behaving slowly. Java
stack traces are generally more helpful than native stack traces, because Java threads can have user-friendly names
(as do the threads used by the PingDirectoryProxy Server), and the frame of the stack trace may include the line
number of the source file to which it corresponds. This is useful when diagnosing problems and often allows them to
be identified and resolved quickly.

To obtain a stack trace from a running JVM, use the command:

jstack {processID}

where {processID} is the process ID of the target JVM as returned by the jps command. To obtain a stack trace from
a core file from a Java process, use the command:

jstack {pathToJava} {pathToCore}

where {pathToJava} is the path to the java command from which the core file was created, and {pathToCore}
is the path to the core file to examine. In either case, the stack trace is written to standard output and includes the
names and call stacks for each of the threads that were active in the JVM.

In many cases, no additional options are necessary. The "-l" option can be added to obtain a long listing, which
includes additional information about locks owned by the threads. The “-m” option can be used to include native
frames in the stack trace.

jmap

The jmap tool is used to obtain information about the memory consumed by the JVM. It is very similar to the native
pmap tool provided by many operating systems. As with the jstack tool, jmap can be invoked against a running
Java process by providing the process ID, or against a core file, like:

jmap {processID} 
jmap {pathToJava} {pathToCore}

Some of the additional arguments include:

• -dump:live,format=b,file=filename – Dump the live heap data to a file that can be examined by the jhat tool



PingDirectory | Troubleshooting the Directory Proxy Server | 244

• -heap – Provides a summary of the memory used in the Java heap, along with information about the garbage
collection algorithm in use.

• -histo:live – Provides a count of the number of objects of each type contained in the heap. If the “:live” portion is
included, then only live objects are included; otherwise, the count include objects that are no longer in use and are
garbage collected.

jhat

The jhat (Java Heap Analysis Tool) utility provides the ability to analyze the contents of the Java heap. It can be
used to analyze a heap dump file, which is generated if the Directory Proxy Server encounters an out of memory error
(as a result of the "-XX:+HeapDumpOnOutOfMemoryError" JVM option) or from the use of the jmap command
with the "-dump" option.

The jhat tool acts as a web server that can be accessed by a browser in order to query the contents of the heap.
Several predefined queries are available to help determine the types of objects consuming significant amounts of
heap space, and it also provides a custom query language (OQL, the Object Query Language) for performing more
advanced types of analysis.

The jhat tool can be launched with the path to the heap dump file, like:

jhat /path/to/heap.dump

This command causes the jhat web server to begin listening on port 7000. It can be accessed in a browser at
http://localhost:7000 (or http://address:7000 from a remote system). An alternate port number can
be specified using the "-port" option, like:

jhat -port 1234 /path/to/heap.dump

To issue custom OQL searches, access the web interface using the URL http://localhost:7000/oql/ (the
trailing slash must be provided). Additional information about the OQL syntax may be obtained in the web interface
at http://localhost:7000/oqlhelp/.

jstat

The jstat tool is used to obtain a variety of statistical information from the JVM, much like the vmstat utility that
can be used to obtain CPU utilization information from the operating system. The general manner to invoke it is as
follows:

jstat {type} {processID} {interval}

The {interval} option specifies the length of time in milliseconds between lines of output. The {processID} option
specifies the process ID of the JVM used to run the Directory Proxy Server, which can be obtained by running jps as
mentioned previously. The {type} option specifies the type of output that should be provided. Some of the most useful
types include:

• -class – Provides information about class loading and unloading.
• -compile – Provides information about the activity of the JIT complex.
• -printcompilation – Provides information about JIT method compilation.
• -gc – Provides information about the activity of the garbage collector.
• -gccapacity – Provides information about memory region capacities.

Java Diagnostic Information

In addition to the tools listed in the previous section, the JVM can provide additional diagnostic information in
response to certain events.

Garbage Collection Diagnostic Information

You can enable the JVM debugging options to track garbage collection data for your system. The options can impact
JVM performance, but they provide valuable data to tune your server when troubleshooting garbage collection issues.
While the jstat utility with the -gc option can be used to obtain some information about garbage collection activity,



PingDirectory | Troubleshooting the Directory Proxy Server | 245

there are additional arguments that can be added to the JVM to use when running the server to provide additional
detail.

-XX:+PrintGCDetails
-XX:+PrintTenuringDistribution
-XX:+PrintGCApplicationConcurrentTime
-XX:+PrintGCApplicationStoppedTime
-XX:+PrintGCDateStamps

To run the Directory Proxy Server with these options, edit the config/java.properties file and add them to
the end of the line that begins with "bin/start-server.java-args". After the file has been saved, invoke the
following command to make those new arguments take effect the next time the server is started:

$ bin/dsjavaproperties

JVM Crash Diagnostic Information

If the JVM itself should happen to crash for some reason, then it generates a fatal error log with information about
the state of the JVM at the time of the crash. By default, this file is named hs_err_pid{processID}.log and
is written into the base directory of the Directory Proxy Server installation. This file includes information on the
underlying cause of the JVM crash, information about the threads running and Java heap at the time of the crash, the
options provided to the JVM, environment variables that were set, and information about the underlying system.

Troubleshooting Resources in the Operating System

The underlying operating system also provides a significant amount of information that can help diagnose issues that
impact the performance and the stability of the Directory Proxy Server. In some cases, problems with the underlying
system can be directly responsible for the issues seen with the Directory Proxy Server, and in others system, tools can
help narrow down the cause of the problem.

Identifying Problems with the Underlying System

If the underlying system itself is experiencing problems, it can adversely impact the function of applications running
on it. To look for problems in the underlying system view the system log file (/var/log/messages on Linux).
Information about faulted or degraded devices or other unusual system conditions are written there.

Monitoring System Data Using the PingDataMetrics Server

The PingDataMetrics Server provides collection and storage of performance data from your server topology. You
can use the System Utilization Monitor with the PingDataMetrics Server to collect information about the host system
CPU, disk, and network utilization on any platform except Linux. If you are not using the PingDataMetrics Server,
you do not need to use the system utilization monitor. When data is being collected, it periodically forks the process
and executes commands.

For more information about using the System Utilization Monitor, refer to the data collection chapter of the
PingDataMetrics Server documentation.

Examining CPU Utilization

Observing CPU utilization for the Directory Proxy Server process and the system as a whole provides clues as to the
nature of the problem.

System-Wide CPU Utilization

To investigate CPU consumption of the system as a whole, use the vmstat command with a time interval in seconds,
like:

vmstat 5

The specific output of this command varies between different operating systems, but it includes the percentage of the
time the CPU was spent executing user-space code (user time), the percentage of time spent executing kernel-space
code (system time), and the percentage of time not executing any code (idle time).



PingDirectory | Troubleshooting the Directory Proxy Server | 246

If the CPUs are spending most of their time executing user-space code, the available processors are being well-
utilized. If performance is poor or the server is unresponsive, it can indicate that the Directory Proxy Server is not
optimally tuned. If there is a high system time, it can indicate that the system is performing excessive disk and/or
network I/O, or in some cases, there can be some other system-wide problem like an interrupt storm. If the system
is mostly idle but the Directory Proxy Server is performing poorly or is unresponsive, there can be a resource
constraint elsewhere (for example, waiting on disk or memory access, or excessive lock contention), or the JVM can
be performing other tasks like stop-the-world garbage collection that cannot be run heavily in parallel.

Per-CPU Utilization

To investigate CPU consumption on a per-CPU basis, use the mpstat command with a time interval in seconds, like:

mpstat 5

On Linux systems, it might be necessary to add "-P ALL" to the command, like:

mpstat -P ALL 5

Among other things, this shows the percentage of time each CPU has spent in user time, system time, and idle time.
If the overall CPU utilization is relatively low but mpstat reports that one CPU has a much higher utilization than
the others, there might be a significant bottleneck within the server or the JVM might be performing certain types of
garbage collection which cannot be run in parallel. On the other hand, if CPU utilization is relatively even across all
CPUs, there is likely no such bottleneck and the issue might be elsewhere.

Per-Process Utilization

To investigate CPU consumption on a per-process basis, use a command such as the top utility on Linux. If a process
other than the Java process used to run the Directory Proxy Server is consuming a significant amount of available
CPU, it might be interfering with the ability of the Directory Proxy Server to run effectively.

Examining Disk Utilization

If the underlying system has a very high disk utilization, it can adversely impact Directory Proxy Server performance.
It could delay the ability to read or write database files or write log files. It could also raise concerns for server
stability if excessive disk I/O inhibits the ability of the cleaner threads to keep the database size under control.

The iostat tool may be used to obtain information about the disk activity on the system.

On Linux systems, iostat should be invoked with the "-x" argument, like:

iostat -x 5

A number of different types of information will be displayed, but to obtain an initial feel for how busy the underlying
disks are, look at the "%util" column on Linux. This field shows the percentage of the time that the underlying disks
are actively servicing I/O requests. A system with a high disk utilization likely exhibits poor Directory Proxy Server
performance.

If the high disk utilization is on one or more disks that are used to provide swap space for the system, the system
might not have enough free memory to process requests. As a result, it might have started swapping blocks of
memory that have not been used recently to disk. This can cause very poor server performance. It is important to
ensure that the server is configured appropriately to avoid this condition. If this problem occurs on a regular basis,
then the server is likely configured to use too much memory. If swapping is not normally a problem but it does arise,
then check to see if there are any other processes running, which are consuming a significant amount of memory, and
check for other potential causes of significant memory consumption (for example, large files in a tmpfs filesystem).

Examining Process Details

There are a number of tools provided by the operating system that can help examine a process in detail.

ps

The standard ps tool can be used to provide a range of information about a particular process. For example, the
command can be used to display the state of the process, the name of the user running the process, its process ID and



PingDirectory | Troubleshooting the Directory Proxy Server | 247

parent process ID, the priority and nice value, resident and virtual memory sizes, the start time, the execution time,
and the process name with arguments:

ps -fly -p {processID}

Note that for a process with a large number of arguments, the standard ps command displays only a limited set of the
arguments based on available space in the terminal window.

pstack

The pstack command can be used to obtain a native stack trace of all threads in a process. While a native stack
trace might not be as user-friendly as a Java stack trace obtained using jstack, it includes threads that are not
available in a Java stack trace. For example, the command displays those threads used to perform garbage collection
and other housekeeping tasks. The general usage for the pstack command is:

pstack {processID}

dbx / gdb

A process debugger provides the ability to examine a process in detail. Like pstack, a debugger can obtain a stack
trace for all threads in the process, but it also provides the ability to examine a process (or core file) in much greater
detail, including observing the contents of memory at a specified address and the values of CPU registers in different
frames of execution. The GNU debugger gdb is widely-used on Linux systems.

Note that using a debugger against a live process interrupts that process and suspends its execution until it detaches
from the process. In addition, when running against a live process, a debugger has the ability to actually alter the
contents of the memory associated with that process, which can have adverse effects. As a result, it is recommended
that the use of a process debugger be restricted to core files and only used to examine live processes under the
direction of your authorized support provider.

pfiles / lsof

To examine the set of files that a process is using (including special types of files, like sockets), you can use a tool
such as lsof on Linux systems, (

lsof -p {processID}

)

Tracing Process Execution

If a process is unresponsive but is consuming a nontrivial amount of CPU time, or if a process is consuming
significantly more CPU time than is expected, it might be useful to examine the activity of that process in more detail
than can be obtained using a point-in-time snapshot. For example, if a process is performing a significant amount of
disk reads and/or writes, it can be useful to see which files are being accessed. Similarly, if a process is consistently
exiting abnormally, then beginning tracing for that process just before it exits can help provide additional information
that cannot be captured in a core file (and if the process is exiting rather than being terminated for an illegal operation,
then no core file may be available).

This can be accomplished using the strace tool on Linux (

strace -f -p {processID}

).

Consult the strace manual page for additional information.

Problems with SSL Communication

Enable TLS debugging in the server to troubleshoot SSL communication issues:

$ dsconfig create-debug-target \
  --publisher-name "File-Based Debug Logger" \



PingDirectory | Troubleshooting the Directory Proxy Server | 248

  --target-name
 com.unboundid.directory.server.extensions.TLSConnectionSecurityProvider \
  --set debug-level:verbose \
  --set include-throwable-cause:true

$ dsconfig set-log-publisher-prop \
  --publisher-name "File-Based Debug Logger" \
  --set enabled:true \
  --set default-debug-level:disabled

In the java.properties file, add -Djavax.net.debug=ssl to the start-server line, and run bin/
dsjavaproperties to make the option take effect on a scheduled server restart.

Examining Network Communication

Because the PingDirectoryProxy Server is a network-based application, it can be valuable to observe the network
communication that it has with clients. The Directory Proxy Server itself can provide details about its interaction with
clients by enabling debugging for the protocol or data debug categories, but there may be a number of cases in which
it is useful to view information at a much lower level. A network sniffer, like the tcpdump tool on Linux, can be used
to accomplish this.

There are many options that can be used with these tools, and their corresponding manual pages will provide a more
thorough explanation of their use. However, to perform basic tracing to show the full details of the packets received
for communication on port 389 with remote host 1.2.3.4, the following command can be used on Linux:

tcpdump -i {interface} -n -XX -s 0 host 1.2.3.4 and port 389

It does not appear that the tcpdump tool provides support for LDAP parsing. However, it is possible to write
capture data to a file rather than displaying information on the terminal (using "-w {path}" with tcpdump), so that
information can be later analyzed with a graphical tool like Wireshark, which provides the ability to interpret LDAP
communication on any port.

Note that enabling network tracing generally requires privileges that are not available to normal users and therefore
may require root access.

Common Problems and Potential Solutions

This section describes a number of different types of problems that can occur and common potential causes for them.

General Methodology to Troubleshoot a Problem

When a problem is detected, Ping Identity recommends using the following general methodology to isolate the
problem:

1. Run the bin/status tool or look at the server status in the Administrative Console. The status tool provides
a summary of the server’s current state with key metrics and a list of recent alerts.

2. Look in the server logs. In particular, view the following logs:

logs/errors
logs/failed-ops
logs/expensive-ops

3. Use system commands, such as vmstat and iostat to determine if the server is bottle-necked on a system
resource like CPU or disk throughput.

4. For performance problem (especially intermittent ones like spikes in response time), enabling the periodic-
stats-logger can help to isolate problems, because it stores important server performance information on a
per-second basis. The periodic-stats-logger can save the information in a csv-formatted file that can
be loaded into a spreadsheet. The information this logger makes available is very configurable. You can create
multiple loggers for different types of information or a different frequency of logging (for example, hourly data
in addition to per-second data). For more information, see "Profiling Server Performance Using the Periodic Stats
Logger".



PingDirectory | Troubleshooting the Directory Proxy Server | 249

5. For replication problem, run dsreplication status and look at the logs/replication file.
6. For more advanced users, run the collect-support-data tool on the system, unzip the archive somewhere,

and look through the collected information. This is often useful when administrators most familiar with the Ping
Identity Platform do not have direct access to the systems where the production servers are running. They can
examine the collect-support-data archive on a different server. For more information, see Using the
Collect Support Data Tool.

Important:  Run the collect-support-data tool whenever there is a problem whose cause is not
easily identified, so that this information can be passed back to your authorized support provider before
corrective action can be taken.

The Server Will Not Run Setup

If the setup tool does not run properly, some of the most common reasons include the following:

A Suitable Java Environment Is Not Available

The PingDirectoryProxy Server requires that Java be installed on the system and made available to the server, and
it must be installed prior to running setup. If the setup tool does not detect that a suitable Java environment is
available, it will refuse to run.

To ensure that this does not happen, the setup tool should be invoked with an explicitly-defined value for the
JAVA_HOME environment variable that specifies the path to the Java installation that should be used. For example:

env JAVA_HOME=/ds/java ./setup

If this still does not work for some reason, then it can be that the value specified in the provided JAVA_HOME
environment variable can be overridden by another environment variable. If that occurs, try the following command,
which should override any other environment variables that can be set:

env UNBOUNDID_JAVA_HOME="/ds/java" UNBOUNDID_JAVA_BIN="" ./setup

Unexpected Arguments Provided to the JVM

If the setup script attempts to launch the java command with an invalid set of Java arguments, it might prevent
the JVM from starting. By default, no special options are provided to the JVM when running setup, but this might
not be the case if either the JAVA_ARGS or UNBOUNDID_JAVA_ARGS environment variable is set. If the setup
tool displays an error message that indicates that the Java environment could not be started with the provided set of
arguments, then invoke the following command before trying to re-run setup:

unset JAVA_ARGS UNBOUNDID_JAVA_ARGS

The Server Has Already Been Configured or Used

The setup tool is only intended to provide the initial configuration for the Directory Proxy Server. It refuses to run
if it detects that the setup tool has already been run, or if an attempt has been made to start the Directory Proxy
Server prior to running the setup tool. This protects an existing Directory Proxy Server installation from being
inadvertently updated in a manner that could harm an existing configuration or data set.

If the Directory Proxy Server has been previously used and if you want to perform a fresh installation, it is
recommended that you first remove the existing installation, create a new one and run setup in that new installation.
However, if you are confident that there is nothing of value in the existing installation (for example, if a previous
attempt to run setup failed to complete successfully for some reason but it will refuse to run again), the following
steps can be used to allow the setup program to run:

• Remove the config/config.ldif file and replace it with the config/update/config.ldif.
{revision} file containing the initial configuration.

• If there are any files or subdirectories below the db directory, then remove them.
• If a config/java.properties file exists, then remove it.
• If a lib/setup-java-home script (or lib\set-java-home.bat file on Microsoft Windows) exists, then

remove it.



PingDirectory | Troubleshooting the Directory Proxy Server | 250

The Server Will Not Start

If the Directory Proxy Server does not start, then there are a number of potential causes.

The Server or Other Administrative Tool Is Already Running

Only a single instance of the Directory Proxy Server can run at any time from the same installation root. If an
instance is already running, then subsequent attempts to start the server will fail. Similarly, some other administrative
operations can also prevent the server from being started. In such cases, the attempt to start the server should fail with
a message like:

The Directory Proxy Server could not acquire an exclusive lock on file 
/ds/PingDirectoryProxy/locks/server.lock: The exclusive lock requested for
 file 
/ds/PingDirectoryProxy/locks/ server.lock was not granted, which indicates 
that another process already holds a shared or exclusive lock on that 
file. This generally means that another instance of this server is already 
running

If the Directory Proxy Server is not running (and is not in the process of starting up or shutting down) and there are no
other tools running that could prevent the server from being started, and the server still believes that it is running, then
it is possible that a previously-held lock was not properly released. In that case, you can try removing all of the files in
the locks directory before attempting to start the server.

If you wish to have multiple instances running at the same time on the same system, then you should create a
completely separate installation in another location on the filesystem.

There Is Not Enough Memory Available

When the Directory Proxy Server is started, the JVM attempts to allocate all memory that it has been configured to
use. If there is not enough free memory available on the system, then the Directory Proxy Server generates an error
message that indicates that the server could not be started with the specified set of arguments. Note that it is possible
that an invalid option was provided to the JVM (as described below), but if that same set of JVM arguments has
already been used successfully to run the server, then it is more likely that the system does not have enough memory
available.

There are a number of potential causes for this:

• If the amount of memory in the underlying system has changed (for example, system memory has been removed,
or if the Directory Proxy Server is running in a zone or other type of virtualized container and a change has been
made to the amount of memory that container will be allowed to use), then the Directory Proxy Server might need
to be re-configured to use a smaller amount of memory than had been previously configured.

• Another process running on the system is consuming a significant amount of memory so that there is not enough
free memory available to start the server. If this is the case, then either terminate the other process to make more
memory available for the Directory Proxy Server, or reconfigure the Directory Proxy Server to reduce the amount
of memory that it attempts to use.

• The Directory Proxy Server was just shut down and an attempt was made to immediately restart it. In some cases,
if the server is configured to use a significant amount of memory, then it can take a few seconds for all of the
memory that had been in use by the server, when it was previously running, to be released back to the operating
system. In that case, run the vmstat command and wait until the amount of free memory stops growing before
attempting to restart the server.

• If the system is configured with one or more memory-backed filesystems, then look to see if there are any large
files that can be consuming a significant amount of memory in any of those locations. If so, then remove them or
relocate them to a disk-based filesystem.

• For Linux systems only, if there is a mismatch between the huge pages setting for the JVM and the huge pages
reserved in the operating system.

If nothing else works and there is still not enough free memory to allow the JVM to start, then as a last resort, try
rebooting the system.



PingDirectory | Troubleshooting the Directory Proxy Server | 251

An Invalid Java Environment or JVM Option Was Used

If an attempt to start the Directory Proxy Server fails with an error message indicating that no valid Java environment
could be found, or indicates that the Java environment could not be started with the configured set of options, then
you should first ensure that enough memory is available on the system as described above. If there is a sufficient
amount of memory available, then other causes for this error can include the following:

• The Java installation that was previously used to run the server no longer exists (for example, an
updated Java environment was installed and the old installation was removed). In that case, update the
config/java.properties file to reference to path to the new Java installation and run the bin/
dsjavaproperties command to apply that change.

• The Java installation used to run the server has been updated and the server is trying to use the correct Java
installation but one or more of the options that had worked with the previous Java version no longer work with the
new version. In that case, it is recommended that the server be re-configured to use the previous Java version, so
that it can be run while investigating which options should be used with the new installation.

• If an UNBOUNDID_JAVA_HOME or UNBOUNDID_JAVA_BIN environment variable is set, then its value may
override the path to the Java installation used to run the server as defined in the config/java.properties
file. Similarly, if an UNBOUNDID_JAVA_ARGS environment variable is set, then its value might override
the arguments provided to the JVM. If this is the case, then explicitly unset the UNBOUNDID_JAVA_HOME,
UNBOUNDID_JAVA_BIN, and UNBOUNDID_JAVA_ARGS environment variables before trying to start the
server.

Note that any time the config/java.properties file is updated, the bin/dsjavaproperties tool
must be run to apply the new configuration. If a problem with the previous Java configuration prevents the bin/
dsjavaproperties tool from running properly, then it can be necessary to remove the lib/set-java-home
script (or lib\set-java-home.bat file on Microsoft Windows) and invoke the bin/dsjavaproperties
tool with an explicitly-defined path to the Java environment, like:

env UNBOUNDID_JAVA_HOME=/ds/java bin/dsjavaproperties

An Invalid Command-Line Option Was Provided

There are a small number of arguments that are provided when running the bin/start-server command, but in
most cases, none are required. If one or more command-line arguments were provided for the bin/start-server
command and any of them is not recognized, then the server provides an error message indicating that an argument
was not recognized and displays version information. In that case, correct or remove the invalid argument and try to
start the server again.

The Server Has an Invalid Configuration

If a change is made to the Directory Proxy Server configuration using an officially-supported tool like dsconfig
or the Administrative Console, the server should validate that configuration change before applying it. However, it is
possible that a configuration change can appear to be valid at the time that it is applied, but does not work as expected
when the server is restarted. Alternately, a change in the underlying system can cause a previously-valid configuration
to become invalid.

In most cases involving an invalid configuration, the Directory Proxy Server displays (and writes to the error
log) a message that explains the problem, and this can be sufficient to identify the problem and understand what
action needs to be taken to correct it. If for some reason the startup failure does not provide enough information to
identify the problem with the configuration, then look in the logs/config-audit.log file to see what recent
configuration changes have been made with the server online, or in the config/archived-configs directory
to see if there might have been a recent configuration change resulting from a direct change to the configuration file
itself that was not made through a supported configuration interface.

If the server does not start as a result of a recent invalid configuration change, then it can be possible to start the
server using the configuration that was in place the last time that the server started successfully (for example, the "last
known good" configuration). This can be achieved using the --useLastKnownGoodConfig option:

$ bin/start-server --useLastKnownGoodConfig



PingDirectory | Troubleshooting the Directory Proxy Server | 252

Note that if it has been a long time since the last time the server was started and a number of configuration changes
have been made since that time, then the last known good configuration can be significantly out of date. In such cases,
it can be preferable to manually repair the configuration.

If there is no last known good configuration, if the server no longer starts with the last known good configuration, or
if the last known good configuration is significantly out of date, then manually update the configuration by editing the
config/config.ldif file. In that case, you should make sure that the server is offline and that you have made
a copy of the existing configuration before beginning. You might wish to discuss the change with your authorized
support representative before applying it to ensure that you understand the correct change that needs to be made.

Note:  In addition to manually-editing the config file, you can look at previous achived configurations to see
if the most recent one works. You can also use the ldif-diff tool to compare the configurations in the
archive to the current configuration to see what is different.

You Do Not Have Sufficient Permissions

The Directory Proxy Server should only be started by the user or role used to initially install the server. In most cases,
if an attempt is made to start the server as a user or role other than the one used to create the initial configuration, then
the server will fail to start, because the user will not have sufficient permissions to access files owned by the other
user, such as database and log files. However, if the server was initially installed as a non-root user and then the server
is started by the root account, then it can no longer be possible to start the server as a non-root user because new files
that are created would be owned by root and could not be written by other users.

If the server was inadvertently started by root when it is intended to be run by a non-root user, or if you wish to
change the user account that should be used to run the server, then it should be sufficient to simply change ownership
on all files in the Directory Proxy Server installation, so that they are owned by the user or role under which the
server should run. For example, if the Directory Proxy Server should be run as the "ds" user in the "other" group, then
the following command can be used to accomplish this (invoked by the root user):

chown -R ds:other /ds/PingDirectoryProxy

The Server Has Crashed or Shut Itself Down

You can first check the current server state by using the bin/server-state command. If the Directory Proxy
Server was previously running but is no longer active, then the potential reasons include the following:

• The Directory Proxy Server was shut down by an administrator. Unless the server was forcefully terminated (for
example, using “kill -9”), then messages are written to the error and server.out logs explaining the reason
for the shutdown.

• The Directory Proxy Server was shut down when the underlying system crashed or was rebooted. If this is the
case, then running the uptime command on the underlying system shows that it was recently booted.

• The Directory Proxy Server process was terminated by the underlying operating system for some reason (for
example, the out of memory killer on Linux). If this happens, then a message will be written to the system error
log.

• The Directory Proxy Server decided to shut itself down in response to a serious problem that had arisen. At
present, this should only occur if the server has detected that the amount of usable disk space has become critically
low, or if significant errors have been encountered during processing that left the server without any remaining
worker threads to process operations. If this happens, then messages are written to the error and server.out
logs (if disk space is available) to provide the reason for the shutdown.

• The JVM in which the Directory Proxy Server was running crashed. If this happens, then the JVM should dump a
fatal error log (a hs_err_pid{processID}.log file) and potentially a core file.

In the event that the operating system itself crashed or terminated the process, then you should work with your
operating system vendor to diagnose the underlying problem. If the JVM crashed or the server shut itself down for a
reason that is not clear, then contact your authorized support provider for further assistance.

Conditions for Automatic Server Shutdown

All PingDirectoryProxy Server servers will shutdown in an out of memory condition, a low disk space error state,
or for running out of file descriptors. The Directory Server will enter lockdown mode on unrecoverable database
environment errors, but can be configured to shutdown instead with this setting:



PingDirectory | Troubleshooting the Directory Proxy Server | 253

$ dsconfig set-global-configuration-prop \
            --set unrecoverable-database-error-mode:initiate-server-shutdown

The Server Will Not Accept Client Connections

You can first check the current server state by using the bin/server-state command. If the Directory Proxy
Server does not appear to be accepting connections from clients, then potential reasons include the following:

• The Directory Proxy Server is not running.
• The underlying system on which the Directory Proxy Server is installed is not running.
• The Directory Proxy Server is running but is not reachable as a result of a network or firewall configuration

problem. If that is the case, then connection attempts should time out rather than be rejected.
• If the Directory Proxy Server is configured to allow secure communication via SSL or StartTLS, then a problem

with the key manager and/or trust manager configuration can cause connections to be rejected. If that is the case,
then messages should be written to the server access log for each failed connection attempt.

• If the Directory Proxy Server has been configured with a maximum allowed number of connections, then it can be
that the maximum number of allowed client connections are already established. If that is the case, then messages
should be written to the server access log for each rejected connection attempt.

• If the Directory Proxy Server is configured to restrict access based on the address of the client, then messages
should be written to the server access log for each rejected connection attempt.

• If a connection handler encounters a significant error, then it can stop listening for new requests. If this occurs,
then a message should be written to the server error log with information about the problem. Another solution is to
restart the server. A third option is to restart the connection handler using the LDIF connection handler to make it
available again. To do this, create an LDIF file that disables and then re-enables the connection handler, create the
config/auto-process-ldif directory if it does not already exist, and then copy the LDIF file into it.

The Server is Unresponsive

You can first check the current server state by using the bin/server-state command. If the Directory Proxy
Server process is running and appears to be accepting connections but does not respond to requests received on those
connections, then potential reasons for this behavior include:

• If all worker threads are busy processing other client requests, then new requests that arrive will be forced to wait
in the work queue until a worker thread becomes available. If this is the case, then a stack trace obtained using the
jstack command shows that all of the worker threads are busy and none of them are waiting for new requests to
process.

A dedicated thread pool can be used for processing administrative operations. This thread pool enables
diagnosis and corrective action if all other worker threads are processing operations. To request that
operations use the administrative thread pool, using the ldapsearch command for example, use the --
useAdministrativeSession option. The requester must have the use-admin-session privilege
(included for root users). By default, eight threads are available for this purpose. This can be changed with the
num-administrative-session-worker-threads property in the work queue configuration.

Note:  If all of the worker threads are tied up processing the same operation for a long time, the server will
also issue an alert that it might be deadlocked, which may not actually be the case. All threads might be
tied up processing unindexed searches.

• If a request handler is stuck performing some expensive processing for a client connection, then other requests
sent to the server on connections associated with that request handler is forced to wait until the request handler is
able to read data on those connections. If this is the case, then only some of the connections can experience this
behavior (unless there is only a single request handler, in which it will impact all connections), and stack traces
obtained using the jstack command shows that a request handler thread is continuously blocked rather than
waiting for new requests to arrive. Note that this scenario is a theoretical problem and one that has not appeared in
production.

• If the JVM in which the Directory Proxy Server is running is not properly configured, then it can be forced to
spend a significant length of time performing garbage collection, and in severe cases, could cause significant
interruptions in the execution of Java code. In such cases, a stack trace obtained from a pstack of the native
process should show that most threads are idle but at least one thread performing garbage collection is active. It is
also likely that one or a small number of CPUs is 100% busy while all other CPUs are mostly idle. The server will



PingDirectory | Troubleshooting the Directory Proxy Server | 254

also issue an alert after detecting a long JVM pause (due to garbage collection). The alert will include details of
the pause.

• If the JVM in which the Directory Proxy Server is running has hung for some reason, then the pstack utility
should show that one or more threads are blocked and unable to make progress. In such cases, the system CPUs
should be mostly idle.

• If a network or firewall configuration problem arises, then attempts to communicate with the server cannot be
received by the server. In that case, a network sniffer like snoop or tcpdump should show that packets sent to
the system on which the Directory Proxy Server is running are not receiving TCP acknowledgement.

• If the system on which the Directory Proxy Server is running has become hung or lost power with a graceful
shutdown, then the behavior is often similar to that of a network or firewall configuration problem.

If it appears that the problem is with the Directory Proxy Server software or the JVM in which it is running, then you
need to work with your authorized support provider to fully diagnose the problem and determine the best course of
action to correct it.

The Server is Slow to Respond to Client Requests

If the Directory Proxy Server is running and does respond to clients, but clients take a long time to receive responses,
then the problem can be attributable to a number of potential problems. In these cases, use the Periodic Stats Logger,
which is a valuable tool to get per-second monitoring information on the Directory Proxy Server. The Periodic Stats
Logger can save the information in csv format for easy viewing in a spreadsheet. For more information, see "Profiling
Server Performance Using the Periodic Stats Logger". The potential problems that cause slow responses to client
requests are as follows:

• The server is not optimally configured for the type of requests being processed, or clients are requesting inefficient
operations. If this is the case, then the access log should show that operations are taking a long time to complete
and they will likely be unindexed. In that case, updating the server configuration to better suit the requests,
or altering the requests to make them more efficient, could help alleviate the problem. In this case, view the
expensive operations access log in logs/expensive-ops, which by default logs operations that take longer
than 1 second. You can also run the bin/status command or view the status in the Administrative Console to
see the Directory Proxy Server’s Work Queue information (also see the next bullet point).

• The server is overwhelmed with client requests and has amassed a large backlog of requests in the work queue.
This can be the result of a configuration problem (for example, too few worker thread configured), or it can be
necessary to provision more systems on which to run the Directory Proxy Server software. Symptoms of this
problem appear similar to those experienced when the server is asked to process inefficient requests, but looking
at the details of the requests in the access log show that they are not necessarily inefficient requests. Run the bin/
status command to view the Work Queue information. If everything is performing well, you should not see a
large queue size or a server that is near 100% busy. The %Busy statistic is calculated as the percentage of worker
threads that are busy processing operations.

           --- Work Queue --- 
           : Recent : Average : Maximum
-----------:--------:---------:-------- 
Queue Size : 10  : 1       : 10 
% Busy     : 17     : 14      : 100

You can also view the expensive operations access log in logs/expensive-ops, which by default logs
operations that take longer than 1 second.

• The server is not configured to fully cache all of the data in the server, or the cache is not yet primed. In this case,
iostat reports a very high disk utilization. This can be resolved by configuring the server to fully cache all data,
and to load database contents into memory on startup. If the underlying system does not have enough memory
to fully cache the entire data set, then it might not be possible to achieve optimal performance for operations that
need data which is not contained in the cache. For more information, see Disk-Bound Deployments.

• If the JVM is not properly configured, then it will need to perform frequent garbage collection and periodically
pause execution of the Java code that it is running. In that case, the server error log should report that the server
has detected a number of pauses and can include tuning recommendations to help alleviate the problem.

• If the Directory Proxy Server is configured to use a large percentage of the memory in the system, then it is
possible that the system has gotten low on available memory and has begun swapping. In this case, iostat



PingDirectory | Troubleshooting the Directory Proxy Server | 255

should report very high utilization for disks used to hold swap space, and commands like cat /proc/
meminfo on Linux can report a large amount of swap memory in use. Another cause of swapping is if
swappiness is not set to 0 on Linux. For more information, see Disable File System Swapping.

• If another process on the system is consuming a significant amount of CPU time, then it can adversely impact the
ability of the Directory Proxy Server to process requests efficiently. Isolating the processes (for example, using
processor sets) or separating them onto different systems can help eliminate this problem.

The Server Returns Error Responses to Client Requests

If a large number of client requests are receiving error responses, then view the logs/failed-ops log, which is
an access log for only failed operations. The potential reasons for the error responses include the following:

• If clients are requesting operations that legitimately should fail (for example, they are targeting entries that do not
exist, are attempting to update entries in a way that would violate the server schema, or are performing some other
type of inappropriate operation), then the problem is likely with the client and not the server.

• If a portion of the Directory Proxy Server data is unavailable (for example, because an online LDIF import or
restore is in progress), then operations targeting that data will fail. Those problems will be resolved when the
backend containing that data is brought back online. During the outage, it might be desirable to update proxies or
load balancers or both to route requests away from the affected server. As of Directory Proxy Server version 3.1
or later, the Directory Proxy Server will indicate that it is in a degraded status and the Directory Proxy Server will
route around it.

• If the Directory Proxy Server work queue is configured with a maximum capacity and that capacity has been
reached, then the server begins rejecting all new requests until space is available in the work queue. In this case,
it might be necessary to alter the server configuration or the client requests or both, so that they can be processed
more efficiently, or it might be necessary to add additional server instances to handle some of the workload.

• If an internal error occurs within the server while processing a client request, then the server terminates the
connection to the client and logs a message about the problem that occurred. This should not happen under
normal circumstances, so you will need to work with your authorized support provider to diagnose and correct the
problem.

• If a problem is encountered while interacting with the underlying database (for example, an attempt to read from
or write to disk failed because of a disk problem or lack of available disk space), then it can begin returning errors
for all attempts to interact with the database until the backend is closed and re-opened and the database has been
given a change to recover itself. In these cases, the je.info.* file in the database directory should provide
information about the nature of the problem.

The Server Must Disconnect a Client Connection

If a client connection must be disconnected due to the expense of the client's request, such as an unindexed search
across a very large database, perform the following:

• Find the client's connection ID by looking in the cn=Active Operations,cn=monitor monitor entry.

$ bin/ldapsearch -baseDN cn=monitor "cn=active operations" \
  --bindDN "cn=directory manager"  \
  --bindPassword password

• The monitor entry will contain attribute values for operation-in-progress, which look like an access log
message. Look for the value of conn in the client request that should be disconnected. In the following example,
the client to be disconnected is requesting a search for (description=expensive), which is on connection
6.

dn: cn=Active Operations,cn=monitor
objectClass: top
objectClass: ds-monitor-entry
objectClass: ds-active-operations-monitor-entry
objectClass: extensibleObject
cn: Active Operations
num-operations-in-progress: 2
operation-in-progress: [15/Dec/2014:10:55:35 -0600] SEARCH conn=6 op=3
 msgID=4



PingDirectory | Troubleshooting the Directory Proxy Server | 256

     clientIP="10.8.4.21" authDN="cn=app1,ou=applications,dc=example,dc=com"
 base="dc
     =example,dc=com" scope=wholeSubtree filter="(description=expensive)"
 attrs="A
     LL" unindexed=true
operation-in-progress: [15/Dec/2014:10:56:11 -0600] SEARCH conn=7 op=1
 msgID=2
     clientIP="127.0.0.1" authDN="cn=Directory Manager,cn=Root
 DNs,cn=config" base="c
     n=monitor" scope=wholeSubtree filter="(cn=active operations)"
 attrs="ALL"
     num-persistent-searches-in-progress: 0

• With the connection ID value, create a file with the following contents, named disconnect6.ldif.

dn: ds-task-id=disconnect6,cn=scheduled Tasks,cn=tasks
objectClass: top
objectClass: ds-task
objectClass: ds-task-disconnect
ds-task-disconnect-connection-id: 6
ds-task-id: disconnect6
ds-task-class-name:
 com.unboundid.directory.server.tasks.DisconnectClientTask

• This LDIF file represents a task entry. The connection ID value 6 is assigned to ds-task-disconnect-
connection-id. The value for ds-task-id value does not follow a specific convention. It must be unique
among other task entries currently cached by the server.

• Disconnect the client and cancel the associated operation by adding the task entry to the server:

$ bin/ldapmodify --filename disconnect6.ldif  \
  --defaultAdd --bindDN "cn=directory manager" \
  --bindPassword password

Problems with the Administrative Console

If a problem arises when trying to use the Administrative Console, then potential reasons for the problem may include
the following:

• The web application container used to host the console is not running. If an error occurs while trying to start it,
then consult the logs for the web application container.

• If a problem occurs while trying to authenticate to the web application container, then make sure that the target
Directory Proxy Server is online. If it is online, then the access log may provide information about the reasons for
the authentication failure.

• If a problem occurs while attempting to interact with the Directory Proxy Server instance using the Administrative
Console, then the access and error logs for that Directory Proxy Server instance might provide additional
information about the underlying problem.

Problems with the Administrative Console: JVM Memory Issues

Console runs out of memory (PermGen). An inadequate PermSize setting in the server, while hosting web
applications like the Administrative Console may result in errors like this in the error log:

[02/Mar/2016:07:50:27.017 -0600] threadID=2 category=UTIL
    severity=SEVERE_ERROR msgID=-1 msg="The server experienced an unexpected
    error. Please report this problem and include this log file.
    OutOfMemoryError: PermGen space
    ()\ncom.unboundid.directory.server.core.DirectoryServer.uncaughtException
    (DirectoryServer.java:15783)\njava.lang.ThreadGroup.uncaughtException
    (ThreadGroup.java:1057)\njava.lang.ThreadGroup.uncaughtException
    (ThreadGroup.java:1052)\njava.lang.ThreadGroup.uncaughtException
    (ThreadGroup.java:1052)\njava.lang.Thread.dispatchUncaughtException
    (Thread.java:1986)\nBuild revision: 22496\n"



PingDirectory | Troubleshooting the Directory Proxy Server | 257

This is only relevant for servers running Java 7.

Global Index Growing Too Large

If the global index appears to be growing too large, you can reload from the backend directory servers. Use the
reload-index tool with the --fromDS option, overriding the configuration of the prime-index-source
property. You can do this on a one off basis if the global index appears to be growing too large as follows:

$ bin/reload-index \
  --bindPassword password \
  --baseDN "dc=example,dc=com" \ 
  --fromDS   

Forgotten Proxy User Password

If you have forgotten the password you set for the cn=Proxy User entry, you can work around the problem as
follows:

• You can temporarily add a second password to the proxy user entry so that you can transition all of the proxy
server instances to the new password. However, you should have multiple passwords on the cn=Proxy User
entry for the shortest time possible.

• If you do not know the clear-text value, then you can use the encrypted value when configuring the new Directory
Proxy Server. The encryption scheme allows reversible passwords that are stored in the server configuration so
that they can be decrypted by any server instance.

• You can create a new root user in the directory server instances with the appropriate set of privileges and have
the new proxy server instance use that account to authenticate. Since it is not a good idea to have an account for
which you do not know the password, you may want to update all of the other proxy server instances to use the
new account.

• You can use a protocol analyzer like snoop or Wireshark, to capture the password from the network
communication.

Providing Information for Support Cases

If a problem arises that you are unable to fully diagnose and correct on your own, then contact your authorized
support provider for assistance. To ensure that the problem can be addressed as quickly as possible, be sure to provide
all of the information that the support personnel may need to fully understand the underlying cause by running the
collect-support-data tool, and then sending the generated zip file to your authorized support provider. It is
good practice to run this tool and send the ZIP file to your authorized support provider before any corrective action
has taken place.



Chapter

11
Managing the SCIM Servlet Extension

Topics:

• Overview of SCIM
Fundamentals

• Creating Your Own SCIM
Application

• Configuring SCIM
• Configuring Advanced SCIM

Extension Features
• Configuring the Identity Access

API
• Monitoring the SCIM Servlet

Extension

The PingDirectoryProxy Server provides a System for Cross-domain Identity
Management (SCIM) servlet extension to facilitate moving users to, from, and
between cloud-based Software-as-a-Service (SaaS) applications in a secure,
fast, and simple way. SCIM is an alternative to LDAP, allowing identity data
provisioning between cloud-based applications over HTTPS.

This section describes fundamental SCIM concepts and provides information
on configuring SCIM on your server.



PingDirectory | Managing the SCIM Servlet Extension | 260

Overview of SCIM Fundamentals
Understanding the basic concepts of SCIM can help you use the SCIM extension to meet the your deployment needs.
SCIM allows you to:

• Provision identities. Through the API, you have access to the basic create, read, update, and delete functions, as
well as other special functions.

• Provision groups. SCIM also allows you to manage groups.
• Interoperate using a common schema. SCIM provides a well-defined, platform-neutral user and group schema,

as well as a simple mechanism to extend it.

The SCIM extension implements the 1.1 version of the SCIM specification. Familiarize yourself with this
specification to help you understand and make efficient use of the SCIM extension and the SCIM SDK. The SCIM
specifications are located on the Simplecloud website.

Note:  SCIM will be deprecated in a future release and replaced with the Directory API.

Summary of SCIM Protocol Support

PingDirectoryProxy Server supports all required features of the SCIM protocol and most optional features. The
following table describes SCIM features and whether they are supported.

Table 12: SCIM Protocol Support

SCIM Feature Supported

Etags Yes

JSON Yes

XML* Yes

Authentication/Authorization Yes, via HTTP basic authentication or OAuth 2.0 bearer
tokens

Service Provider Configuration Yes

Schema Yes

User resources Yes

Group resources Yes

User-defined resources Yes

Resource retrieval via GET Yes

List/query resources Yes

Query filtering* Yes

Query result sorting* Yes

Query result pagination* Yes (Directory Server, not Directory Proxy Server)

Resource updates via PUT Yes

Partial resource updates via PATCH* Yes

Resource deletes via DELETE Yes

Resource versioning* Yes (requires configuration for updated servers)

Bulk* Yes

HTTP method overloading Yes



PingDirectory | Managing the SCIM Servlet Extension | 261

SCIM Feature Supported

Raw LDAP Endpoints** Yes

* denotes an optional feature of the SCIM protocol.

** denotes a PingDirectoryProxy Server extension to the basic SCIM functionality.

About the Identity Access API

The PingDirectory Server, PingDirectoryProxy Server, and PingDataSync Server support an extension to the SCIM
standard called the Identity Access API. The Identity Access API provides an alternative to LDAP by supporting
CRUD (create, read, update, and delete) operations to access directory server data over an HTTP connection.

SCIM and the Identity Access API are provided as a unified service through the SCIM HTTP Servlet Extension. The
SCIM HTTP Servlet Extension can be configured to only enable core SCIM resources (e.g., 'Users' and 'Groups'),
only LDAP object classes (e.g., top, domain, inetOrgPerson, or groupOfUniqueNames), or both. Because
SCIM and the Identity Access API have different schemas, if both are enabled, there may be two representations
with different schemas for any resources defined in the scim-resources.xml file: the SCIM representation
and the raw LDAP representation. Likewise, because resources are exposed by an LDAP object class, and because
these are hierarchical (e.g., top --> person --> organizationalPerson --> inetOrgPerson, etc.), a client
application can access an entry in multiple ways due to the different paths/URIs to a given resource.

This chapter provides information on configuring the SCIM and the Identity Access API services on the
PingDirectory Server.

Creating Your Own SCIM Application
The System for Cross-domain Identity Management (SCIM) is an open initiative designed to make moving identity
data to, from, and between clouds standard, secure, fast, and easy. The SCIM SDK is a pre-packaged collection of
libraries and extensible classes that provides developers with a simple, concrete API to interact with a SCIM service
provider.

The SCIM SDK is available for download at https://github.com/pingidentity/scim.

Note:  The value of a read-only SCIM attribute can be set by a POST operation if the SCIM attribute is a
custom attribute in the scim-resource.xml config file, but not if the SCIM attribute is a core SCIM
attribute.

Configuring SCIM
This section discusses details about the PingDirectoryProxy Server implementation of the SCIM protocol. Before
reading this chapter, familiarize yourself with the SCIM Protocol specification, available on the Simplecloud website.

Before You Begin

To set up your SCIM servlet extension, the Directory Server provides a dsconfig batch file file, scim-config-
proxy.dsconfig, located in the <server-root>/config directory. The script runs a series of commands
that enables the HTTP Connection Handler and SCIM HTTP Servlet Extension, increases the level of detail logged by
the HTTP Detailed Access Log Publisher, adds access controls to allow access to LDAP controls used by the SCIM
servlet, adds support to the request processor for LDAP controls used by the SCIM servlet, and sets the subordinate
base DN property of the root DSE so that SCIM requests can be authenticated using LDAP uid values. You should
edit this dsconfig batch file before running the details of your deployment.

The SCIM resource mappings are defined by the scim-resources.xml file located in the config directory.
This file defines the SCIM schema and maps it to the LDAP schema. This file can be customized to define and expose
deployment specific resources. See Managing the SCIM Schema for more information.



PingDirectory | Managing the SCIM Servlet Extension | 262

Configuring the SCIM Servlet Extension

The Directory Proxy Server provides a default SCIM HTTP Servlet Extension that can be enabled and configured
using a dsconfig batch script, scim-config-proxy.dsconfig, located in the config directory. The script
runs a series of commands that enables the HTTPS Connection Handler, increases the level of detail logged by the
HTTP Detailed Access log publisher, and adds access controls to allow access to LDAP controls used by the SCIM
Servlet Extension.

When configuring the Directory Proxy Server to act as a SCIM server, enable the entryDN virtual attribute on any
directory servers fronted by the Directory Proxy Server. This is also needed when using the Identity Access API.

To Configure the SCIM Servlet Extension

1. Before you enable the SCIM servlet extension, add access controls on each of the backend Directory Servers
to allow read access to operational attributes used by the SCIM Servlet Extension. We recommend using the
following non-interactive command to add access control instructions, rather than its dsconfig interactive
equivalent.

$ bin/dsconfig set-access-control-handler-prop \
  --add 'global-aci:(targetattr="entryUUID || entryDN || ds-entry-unique-id
 || 
    createTimestamp || modifyTimestamp")
    (version 3.0;acl "Authenticated read access to operational attributes \
    used by the SCIM servlet extension"; allow (read,search,compare) 
    userdn="ldap:///all";)'

2. On the Directory Proxy Server, enable the SCIM servlet extension by running the dsconfig batch file.

$ bin/dsconfig --batch-file config/scim-config-proxy.dsconfig

3. The dsconfig batch file must be edited to use the correct request processor name and base DN name(s) for the
set-request-processor-prop and set-root-dse-backend-prop commands, respectively, as
described in the "Configuring LDAP Control Support on All Request Processors" and "SCIM Servlet Extension
Authentication" sections later in the chapter.

To Enable Resource Versioning

Resource versioning is enabled by default in new installations. Upgraded servers that had SCIM enabled need
additional configuration to enable resource versioning.

1. Enable the ds-entry-checksum virtual attribute.

$ bin/dsconfig set-virtual-attribute-prop \
                        --name ds-entry-checksum \
                        --set enabled:true

2. Remove any existing access controls required by SCIM for read access to operational attributes:

$ bin/dsconfig set-access-control-handler-prop \
                        --remove 'global-aci:(targetattr="entryUUID ||
 entryDN || ds-entry-unique-id || createTimestamp || ds-create-time ||
 modifyTimestamp || ds-update-time")(version 3.0;acl "Authenticated read
 access to operational attributes used by the SCIM servlet extension"; allow
 (read,search,compare) userdn="ldap:///all"'

3. On the backend Directory Server, make sure new access controls required by SCIM for read access to operational
attributes are enabled with the following command. If this ACI is not present, issues will occur when a SCIM
client tries to authenticate with an non-root DN.

$ bin/dsconfig set-access-control-handler-prop \
                        --add  'global-aci:(targetattr="entryUUID ||
 entryDN || ds-entry-unique-id || createTimestamp || ds-create-time ||
 modifyTimestamp || ds-update-time || ds-entry-checksum")(version 3.0;acl



PingDirectory | Managing the SCIM Servlet Extension | 263

 "Authenticated read access to operational attributes used by the SCIM
 servlet extension"; allow (read,search,compare) userdn="ldap:///all"'

Configuring LDAP Control Support on All Request Processors (Proxy Only)

You need to configure support for the required LDAP controls on all request processors handling LDAP requests
that result from SCIM requests. Change the request processor name that was provided as an example and repeat the
command for all additional request processors.

To Configure LDAP Control Support on All Request Processors

• Use dsconfig to change the request processor name that was provided as an example and repeat the command
for all additional request processors. Make sure to use your deployment's request processor name.

$ bin/dsconfig set-request-processor-prop \
  --processor-name dc_example_dc_com-req-processor \
  --add supported-control-oid:1.2.840.113556.1.4.319 \
  --add supported-control-oid:1.2.840.113556.1.4.473 \
  --add supported-control-oid:2.16.840.1.113730.3.4.9

SCIM Servlet Extension Authentication

The SCIM servlet supports authentication using either the HTTP Basic authentication scheme, or OAuth 2.0 bearer
tokens. When authenticating using HTTP Basic authentication, the SCIM servlet attempts to correlate the username
component of the Authorization header to a DN in the Directory Proxy Server. If the username value cannot be parsed
directly as a DN, it is correlated to a DN using an Identity Mapper. The DN is then used in a simple bind request to
verify the password.

In deployments that use an OAuth authorization server, the SCIM extension can be configured to authenticate
requests using OAuth bearer tokens. The SCIM extension supports authentication with OAuth 2.0 bearer tokens (per
RFC 6750) using an OAuth Token Handler Server SDK Extension. Because the OAuth 2.0 specification does not
specify how contents of a bearer token are formatted, PingDirectoryProxy Server provides the token handler API to
decode incoming bearer tokens and extract or correlate associated authorization DNs.

Neither HTTP Basic authentication nor OAuth 2.0 bearer token authentication are secure unless SSL is used to
encrypt the HTTP traffic.

Enabling HTTPS Communications

If you want the SCIM HTTP connection handler to use SSL, which is mandated by the SCIM specification, you need
to enable a Key Manager provider and Trust Manager provider.

To enable SSL during the Directory Proxy Server's initial setup, include the --ldapsPort and the --
generateSelfSignedCertificate arguments with the setup command. If your server already has a certificate that you
would like to use, set the key-manager-provider to the value you set when you enabled SSL in the Directory
Proxy Server, or define a new key manager provider (see Configuring HTTP Connection Handlers).

To Configure Basic Authentication Using an Identity Mapper

By default, the SCIM servlet is configured to use the Exact Match Identity Mapper, which matches against the uid
attribute. In this example, an alternate Identity Mapper is created so that clients can authenticate using cn values.

1. Create a new Identity Mapper that uses a match attribute of cn.

$ bin/dsconfig create-identity-mapper \
  --mapper-name "CN Identity Mapper" \
  --type exact-match \
  --set enabled:true \
  --set match-attribute:cn

2. Configure the SCIM servlet to use the new Identity Mapper.

$ bin/dsconfig set-http-servlet-extension-prop \



PingDirectory | Managing the SCIM Servlet Extension | 264

  --extension-name SCIM \
  --set "identity-mapper:CN Identity Mapper"

To Enable OAuth Authentication

To enable OAuth authentication, you need to create an implementation of the OAuthTokenHandler using the
API provided in the Server SDK. For details on creating an OAuthTokenHandler extension, see the Server SDK
documentation.

1. Install your OAuth token handler on the server using dsconfig.

$ bin/dsconfig create-oauth-token-handler \
  --handler-name ExampleOAuthTokenHandler \
  --type third-party \
  --set extension-
class:com.unboundid.directory.sdk.examples.ExampleOAuthTokenHandler

2. Configure the SCIM servlet extension to use it as follows:

$ bin/dsconfig set-http-servlet-extension-prop \
  --extension-name SCIM \
  --set oauth-token-handler:ExampleOAuthTokenHandler

Using HTTP Basic Authentication with Bare UID on the Directory Proxy Server

As discussed above, clients can authenticate to the SCIM extension using HTTP basic authentication and a bare UID
value. However, when a SCIM extension is hosted by a Directory Proxy Server, the server needs to be explicitly
configured with the names of subordinate base DNs to search. To do this, run the following command on the
Directory Proxy Server for every base DN that may be accessed via SCIM. Make sure to specify your deployment's
subordinate base DN.

$ bin/dsconfig set-root-dse-backend-prop \
  --set subordinate-base-dn:dc=example,dc=com 

Verifying the SCIM Servlet Extension Configuration

You can verify the configuration of the SCIM extension by navigating to a SCIM resource URL via the command line
or through a browser window.

To Verify the SCIM Servlet Extension Configuration

You can verify the configuration of the SCIM extension by navigating to a SCIM resource URL via the command line
or through a browser window.

• Run curl to verify that the SCIM extension is running. The -k (or --insecure) option is used to turn off curl's
verification of the server certificate, since the example Directory Proxy Server is using a self-signed certificate.

$ curl -u "cn=Directory Manager:password" \
-k "https://localhost:8443/scim/ServiceProviderConfigs"

{"schemas":["urn:scim:schemas:core:1.0"],"id":"urn:scim:schemas:core:1.0",
"patch":{"supported":true},"bulk":{"supported":true,"maxOperations":10000,
"maxPayloadSize":10485760},"filter":{"supported":true,"maxResults":100},
"changePassword":{"supported":true},"sort":{"supported":true},
"etag":{"supported":false},"authenticationSchemes":[{"name":"HttpBasic",
"description":"The HTTP Basic Access Authentication scheme. This scheme is 
not considered to be a secure method of user authentication (unless used in 
conjunction with some external secure system such as SSL), as the user 
name and password are passed over the network as cleartext.","specUrl":
"http://www.ietf.org/rfc/rfc2617","documentationUrl":
"http://en.wikipedia.org/wiki/Basic_access_authentication"}]} 

• If the user ID is a valid DN (such as cn=Directory Manager), the SCIM extension authenticates by binding
to the Directory Proxy Server as that user. If the user ID is not a valid DN, the SCIM extension searches for an



PingDirectory | Managing the SCIM Servlet Extension | 265

entry with that uid value, and binds to the server as that user. To verify authentication to the server as the user
with the uid of user.0, run the following command:

$ curl -u "user.0:password" \
  -k "https://localhost:8443/scim/ServiceProviderConfigs"

Configuring Advanced SCIM Extension Features
The following sections show how to configure advanced SCIM servlet extension features, such as bulk operation
implementation, mapping SCIM resource IDs, and transformations.

Managing the SCIM Schema

This section describes the SCIM schema and provides information on how to map LDAP schema to the SCIM
resource schema.

About SCIM Schema

SCIM provides a common user schema and extension model, making it easier to interoperate with multiple Service
Providers. The core SCIM schema defines a concrete schema for user and group resources that encompasses common
attributes found in many existing schemas.

Each attribute is defined as either a single attribute, allowing only one instance per resource, or a multi-valued
attribute, in which case several instances may be present for each resource. Attributes may be defined as simple,
name-value pairs or as complex structures that define sub-attributes.

While the SCIM schema follows an object extension model similar to object classes in LDAP, it does not have an
inheritance model. Instead, all extensions are additive, similar to LDAP Auxiliary Object Classes.

Mapping LDAP Schema to SCIM Resource Schema

The resources configuration file is an XML file that is used to define the SCIM resource schema and its mapping
to LDAP schema. The default configuration of the scim-resources.xml file provides definitions for
the standard SCIM Users and Groups resources, and mappings to the standard LDAP inetOrgPerson and
groupOfUniqueNames object classes.

The default configuration may be customized by adding extension attributes to the Users and Groups resources, or by
adding new extension resources. The resources file is composed of a single <resources> element, containing one
or more <resource> elements.

For any given SCIM resource endpoint, only one <LDAPAdd> template can be defined, and only one
<LDAPSearch> element can be referenced. If entries of the same object class can be located under different
subtrees or base DNs of the Directory Proxy Server, then a distinct SCIM resource must be defined for each unique
entry location in the Directory Information Tree. This can be implemented in many ways. For example:

• Create multiple SCIM servlets, each with a unique scim-resources.xml configuration, and each running
under a unique HTTP connection handler.

• Create multiple SCIM servlets, each with a unique scim-resources.xml configuration, each running under a
single, shared HTTP connection handler, but each with a unique context path.

Note that LDAP attributes are allowed to contain characters that are invalid in XML (because not all valid UTF-8
characters are valid XML characters). The easiest and most-correct way to handle this is to make sure that any
attributes that may contain binary data are declared using "dataType=binary" in the scim-resources.xml file.
Likewise, when using the Identity Access API make sure that the underlying LDAP schema uses the Binary or Octet
String attribute syntax for attributes which may contain binary data. This will cause the server to automatically
base64-encode the data before returning it to clients and will also make it predictable for clients because they can
assume the data will always be base64-encoded.

However, it is still possible that attributes that are not declared as binary in the schema may contain binary data (or
just data that is invalid in XML), and the server will always check for this before returning them to the client. If the



PingDirectory | Managing the SCIM Servlet Extension | 266

client has set the content-type to XML, then the server may choose to base64-encode any values which are found to
include invalid XML characters. When this is done, a special attribute is added to the XML element to alert the client
that the value is base64-encoded. For example:

<scim:value base64Encoded="true">AAABPB0EBZc=</scim:value>

The remainder of this section describes the mapping elements available in the scim-resources.xml file.

About the <resource> Element

A resource element has the following XML attributes:

• schema: a required attribute specifying the SCIM schema URN for the resource. Standard SCIM resources
already have URNs assigned for them, such as urn:scim:schemas:core:1.0. A new URN must be
obtained for custom resources using any of the standard URN assignment methods.

• name: a required attribute specifying the name of the resource used to access it through the SCIM REST API.
• mapping: a custom Java class that provides the logic for the resource mapper. This class must extend the

com.unboundid.scim.ldap.ResourceMapper class.

A resource element contains the following XML elements in sequence:

• description: a required element describing the resource.
• endpoint: a required element specifying the endpoint to access the resource using the SCIM REST API.
• LDAPSearchRef: a mandatory element that points to an LDAPSearch element. The LDAPSearch element

allows a SCIM query for the resource to be handled by an LDAP service and also specifies how the SCIM
resource ID is mapped to the LDAP server.

• LDAPAdd: an optional element specifying information to allow a new SCIM resource to be added through an
LDAP service. If the element is not provided then new resources cannot be created through the SCIM service.

• attribute: one or more elements specifying the SCIM attributes for the resource.

About the <attribute> Element

An attribute element has the following XML attributes:

• schema: a required attribute specifying the schema URN for the SCIM attribute. If omitted, the schema URN is
assumed to be the same as that of the enclosing resource, so this only needs to be provided for SCIM extension
attributes. Standard SCIM attributes already have URNs assigned for them, such as urn:scim:schemas:core:1.0. A
new URN must be obtained for custom SCIM attributes using any of the standard URN assignment methods.

• name: a required attribute specifying the name of the SCIM attribute.
• readOnly: an optional attribute indicating whether the SCIM sub-attribute is not allowed to be updated by the

SCIM service consumer. The default value is false.
• required: an optional attribute indicating whether the SCIM attribute is required to be present in the resource.

The default value is false.

An attribute element contains the following XML elements in sequence:

• description: a required element describing the attribute. Then just one of the following elements:

simple: specifies a simple, singular SCIM attribute.
complex: specifies a complex, singular SCIM attribute.
simpleMultiValued: specifies a simple, multi-valued SCIM attribute.
complexMultiValued: specifies a complex, multi-valued SCIM attribute.

About the <simple> Element

A simple element has the following XML attributes:

• dataType: a required attribute specifying the simple data type for the SCIM attribute. The following values are
permitted: binary, boolean, dateTime, decimal, integer, string.

• caseExact: an optional attribute that is only applicable for string data types. It indicates whether comparisons
between two string values use a case-exact match or a case-ignore match. The default value is false.



PingDirectory | Managing the SCIM Servlet Extension | 267

A simple element contains the following XML element:

• mapping: an optional element specifying a mapping between the SCIM attribute and an LDAP attribute. If this
element is omitted, then the SCIM attribute has no mapping and the SCIM service ignores any values provided for
the SCIM attribute.

About the <complex> Element

The complex element does not have any XML attributes. It contains the following XML element:

• subAttribute: one or more elements specifying the sub-attributes of the complex SCIM attribute, and an
optional mapping to LDAP. The standard type, primary, and display sub-attributes do not need to be
specified.

About the <simpleMultivalued> Element

A simpleMultiValued element has the following XML attributes:

• childName: a required attribute specifying the name of the tag that is used to encode values of the SCIM
attribute in XML in the REST API protocol. For example, the tag for the standard emails SCIM attribute is email.

• dataType: a required attribute specifying the simple data type for the plural SCIM attribute (i.e. the data type
for the value sub-attribute). The following values are permitted: binary, boolean, dateTime, integer,
string.

• caseExact: an optional attribute that is only applicable for string data types. It indicates whether comparisons
between two string values use a case-exact match or a case-ignore match. The default value is false.

A simpleMultiValued element contains the following XML elements in sequence:

• canonicalValue: specifies the values of the type sub-attribute that is used to label each individual value, and
an optional mapping to LDAP.

• mapping: an optional element specifying a default mapping between the SCIM attribute and an LDAP attribute.

About the <complexMultiValued> Element

A complexMultiValued element has the following XML attribute:

• tag: a required attribute specifying the name of the tag that is used to encode values of the SCIM attribute in
XML in the REST API protocol. For example, the tag for the standard addresses SCIM attribute is address.

A complexMultiValued element contains the following XML elements in sequence:

• subAttribute: one or more elements specifying the sub-attributes of the complex SCIM attribute. The
standard type, primary, and display sub-attributes do not need to be specified.

• canonicalValue: specifies the values of the type sub-attribute that is used to label each individual value, and
an optional mapping to LDAP.

About the <subAttribute> Element

A subAttribute element has the following XML attributes:

• name: a required element specifying the name of the sub-attribute.
• readOnly: an optional attribute indicating whether the SCIM sub-attribute is not allowed to be updated by the

SCIM service consumer. The default value is false.
• required: an optional attribute indicating whether the SCIM sub-attribute is required to be present in the SCIM

attribute. The default value is false.
• dataType: a required attribute specifying the simple data type for the SCIM sub-attribute. The following values

are permitted: binary, boolean, dateTime, integer, string.
• caseExact: an optional attribute that is only applicable for string data types. It indicates whether comparisons

between two string values use a case-exact match or a case-ignore match. The default value is false.

A subAttribute element contains the following XML elements in sequence:

• description: a required element describing the sub-attribute.



PingDirectory | Managing the SCIM Servlet Extension | 268

• mapping: an optional element specifying a mapping between the SCIM sub-attribute and an LDAP attribute.
This element is not applicable within the complexMultiValued element.

About the <canonicalValue> Element

A canonicalValue element has the following XML attribute:

• name: specifies the value of the type sub-attribute. For example, work is the value for emails, phone numbers and
addresses intended for business purposes.

A canonicalValue element contains the following XML element:

• subMapping: an optional element specifying mappings for one or more of the sub-attributes. Any sub-attributes
that have no mappings will be ignored by the mapping service.

About the <mapping> Element

A mapping element has the following XML attributes:

• ldapAttribute: A required element specifying the name of the LDAP attribute to which the SCIM attribute or
sub-attribute map.

• transform: An optional element specifying a transformation to apply when mapping an attribute value from
SCIM to LDAP and vice-versa. The available transformations are described in the Mapping LDAP Entries to
SCIM Using the SCIM-LDAP API section.

About the <subMapping> Element

A subMapping element has the following XML attributes:

• name: a required element specifying the name of the sub-attribute that is mapped.
• ldapAttribute: a required element specifying the name of the LDAP attribute to which the SCIM sub-

attribute maps.
• transform: an optional element specifying a transformation to apply when mapping an attribute value from

SCIM to LDAP and vice-versa. The available transformations are described later. The available transformations
are described in Mapping LDAP Entries to SCIM Using the SCIM-LDAP API.

About the <LDAPSearch> Element

An LDAPSearch element contains the following XML elements in sequence:

• baseDN: a required element specifying one or more LDAP search base DNs to be used when querying for the
SCIM resource.

• filter: a required element specifying an LDAP filter that matches entries representing the SCIM resource. This
filter is typically an equality filter on the LDAP object class.

• resourceIDMapping: an optional element specifying a mapping from the SCIM resource ID to an LDAP
attribute. When the element is omitted, the resource ID maps to the LDAP entry DN. Note The LDAPSearch
element can be added as a top-level element outside of any <Resource> elements, and then referenced within them
via an ID attribute.

Note:  The LDAPSearch element can be added as a top-level element outside of any <Resource> elements,
and then referenced within them via an ID attribute.

About the <resourceIDMapping> Element

The resourceIDMapping element has the following XML attributes:

• ldapAttribute: a required element specifying the name of the LDAP attribute to which the SCIM resource ID
maps.

• createdBy: a required element specifying the source of the resource ID value when a new resource is created
by the SCIM consumer using a POST operation. Allowable values for this element include scim-consumer,
meaning that a value must be present in the initial resource content provided by the SCIM consumer, or Directory
Proxy Server, meaning that a value is automatically provided by the Directory Proxy Server (as would be the case
if the mapped LDAP attribute is entryUUID).

The following example illustrates an LDAPSearch element that contains a resourceIDMapping element:



PingDirectory | Managing the SCIM Servlet Extension | 269

<LDAPSearch id="userSearchParams">
  <baseDN>ou=people,dc=example,dc=com</baseDN>
  <filter>(objectClass=inetOrgPerson)</filter>
  <resourceIDMapping ldapAttribute="entryUUID" createdBy="directory"/>
</LDAPSearch>

About the <LDAPAdd> Element

An LDAPAdd element contains the following XML elements in sequence:

• DNTemplate: a required element specifying a template that is used to construct the DN of an entry representing
a SCIM resource when it is created. The template may reference values of the entry after it has been mapped using
{ldapAttr}, where ldapAttr is the name of an LDAP attribute.

• fixedAttribute: zero or more elements specifying fixed LDAP values to be inserted into the entry after it has
been mapped from the SCIM resource.

About the <fixedAttribute> Element

A fixedAttribute element has the following XML attributes:

• ldapAttribute: a required attribute specifying the name of the LDAP attribute for the fixed values.
• onConflict: an optional attribute specifying the behavior when the LDAP entry already contains the specified

LDAP attribute. The value merge indicates that the fixed values should be merged with the existing values. The
value overwrite indicates that the existing values are to be overwritten by the fixed values. The value preserve
indicates that no changes should be made. The default value is merge.

A fixedAttribute element contains one or more fixedValue XML element, which specify the fixed LDAP
values.

Validating Updated SCIM Schema

The PingDirectoryProxy Server SCIM extension is bundled with an XML Schema document, resources.xsd,
which describes the structure of a scim-resources.xml resource configuration file. After updating the resource
configuration file, you should confirm that its contents are well-formed and valid using a tool such as xmllint.

For example, you could validate your updated file as follows:

$ xmllint --noout --schema resources.xsd scim-resources.xml
scim-resources.xml validates

Mapping SCIM Resource IDs

The default scim-resources.xml configuration maps the SCIM resource ID to the LDAP entryUUID
attribute. The entryUUID attribute, whose read-only value is assigned by the Directory Proxy Server, meets the
requirements of the SCIM specification regarding resource ID immutability. However, configuring a mapping
to the attribute may result in inefficient group processing, since LDAP groups use the entry DN as the basis of
group membership. The resource configuration allows the SCIM resource ID to be mapped to the LDAP entry DN.
However, the entry DN does not meet the requirements of the SCIM specification regarding resource ID immutability.
LDAP permits entries to be renamed or moved, thus modifying the DN. Likewise, you can use the Identity Access
API to change the value of an entry's RDN attribute, thereby triggering a MODDN operation.

A resource may also be configured such that its SCIM resource ID is provided by an arbitrary attribute in the request
body during POST operations. This SCIM attribute must be mapped to an LDAP attribute so that the SCIM resource
ID may be stored in the Directory Proxy Server. By default, it is the responsibility of the SCIM client to guarantee
ID uniqueness. However, the UID Unique Attribute Plugin may be used by the Directory Proxy Server to enforce
attribute value uniqueness. For information about the UID Unique Attribute Plugin, see "Working with the UID
Unique Attribute Plug-in" in the PingDirectory Server Administration Guide.

Note:  Resource IDs may not be mapped to virtual attributes. For more information about configuring SCIM
Resource IDs, see "About the <resourceIDMapping> Element".



PingDirectory | Managing the SCIM Servlet Extension | 270

Using Pre-defined Transformations

Transformations are required to change SCIM data types to LDAP syntax values. The following pre-defined
transformations may be referenced by the transform XML attribute:

• com.unboundid.scim.ldap.BooleanTransformation. Transforms SCIM boolean data type values to
LDAP Boolean syntax values and vice-versa.

• com.unboundid.scim.ldap.GeneralizedTimeTransformation. Transforms SCIM dateTime data
type values to LDAP Generalized Time syntax values and vice-versa.

• com.unboundid.scim.ldap.PostalAddressTransformation. Transforms SCIM formatted address
values to LDAP Postal Address syntax values and vice-versa. SCIM formatted physical mailing addresses are
represented as strings with embedded new lines, whereas LDAP uses the $ character to separate address lines.
This transformation interprets new lines in SCIM values as address line separators.

• com.unboundid.scim.ldap.TelephoneNumberTransformation. Transforms LDAP Telephone
Number syntax (E.123) to RFC3966 format and vice-versa.

You can also write your own transformations using the SCIM API described in the following section.

Mapping LDAP Entries to SCIM Using the SCIM-LDAP API

In addition to the SCIM SDK, PingDirectoryProxy Server provides a library called SCIM-LDAP, which provides
facilities for writing custom transformations and more advanced mapping.

You can add the SCIM-LDAP library to your project using the following dependency:

<dependency>
    <groupId>com.unboundid.product.scim</groupId>
    <artifactId>scim-ldap</artifactId>
    <version>1.5.0</version>
</dependency>

Create your custom transformation by extending the com.unboundid.scim.ldap.Transformation class.
Place your custom transformation class in a jar file in the server’s lib directory.

Note:  The Identity Access API automatically maps LDAP attribute syntaxes to the appropriate SCIM
attribute types. For example, an LDAP DirectoryString is automatically mapped to a SCIM string.

SCIM Authentication

SCIM requests to the LDAP endpoints will support HTTP Basic Authentication and OAuth2 Authentication using a
bearer token. There is existing support for this feature in the Directory Server and the Directory Proxy Server using
the OAuthTokenHandler API (i.e., via a Server SDK extension, which requires some technical work to implement).

Note that our implementation only supports the HTTP Authorization header for this purpose; we do not support the
form-encoded body parameter or URI query parameter mechanisms for specifying the credentials or bearer token.

SCIM Logging

The Directory Proxy Server already provides a detailed HTTP log publisher to capture the SCIM and HTTP request
details. To be able to correlate this data to the internal LDAP operations that are invoked behind the scenes, the
Access Log Publisher will use "origin=scim" in access log messages that are generated by the SCIM servlet.

For example, you will see a message for operations invoked by replication:

[30/Oct/2012:18:45:10.490 -0500] MODIFY REQUEST conn=-3 op=190 msgID=191
origin="replication" dn="uid=user.3,ou=people,dc=example,dc=com"

Likewise for SCIM messages, you will see a message like this:

[30/Oct/2012:18:45:10.490 -0500] MODFIY REQUEST conn=-3 op=190 msgID=191
origin="scim" dn="uid=user.3,ou=people,dc=example,dc=com"



PingDirectory | Managing the SCIM Servlet Extension | 271

SCIM Monitoring

There are two facilities that can be used to monitor the SCIM activity in the server.

• HTTPConnectionHandlerStatisticsMonitorProvider -- Provides statistics straight about total and average
active connections, requests per connection, connection duration, processing time, invocation count, etc.

• SCIMServletMonitorProvider -- Provides high level statistics about request methods (POST, PUT, GET, etc.),
content types (JSON, XML), and response codes, for example, "user-patch-404:26".

The LDAP object class endpoints are treated as their own resource types, so that for requests using the Identity
Access API, there will be statistics, such as person-get-200 and inetorgperson-post-401.

Configuring the Identity Access API
Once you have run the <server-root>/config/scim-config-ds.dsconfig script, the resources defined
in the scim-resources.xml will be available as well as the Identity Access API. However, to allow SCIM
access to the raw LDAP data, you must set a combination of configuration properties on the SCIM Servlet Extension
using the dsconfig tool.

• include-ldap-objectclass. Specifies a multi-valued property that lists the object classes for entries that will be
exposed. The object class used here will be the one that clients need to use when referencing Identity Access API
resources. This property allows the special value "*" to allow all object classes. If "*" is used, then the SCIM
servlet uses the same case used in the Directory Proxy Server LDAP Schema.

• exclude-ldap-objectclass. Specifies a multi-valued property that lists the object classes for entries that will not be
exposed. When this property is specified, all object classes will be exposed except those in this list.

• include-ldap-base-dn. Specifies a multi-valued property that lists the base DNs that will be exposed. If specified,
only entries under these base DNs will be accessible. No parent-child relationships in the DNs are allowed here.

• exclude-ldap-base-dn. Specifies a multi-valued property that lists the base DNs that will not be exposed. If
specified, entries under these base DNs will not be accessible. No parent-child relationships in the DNs are
allowed here.

Using a combination of these properties, SCIM endpoints will be available for all included object classes, just as if
they were SCIM Resources defined in the scim-resources.xml file.

To Configure the Identity Access API

1. Ensure that you have run the scim-config-ds.dsconfig script to configure the SCIM interface. Be sure to
enable the entryDN virtual attribute. See the Configure SCIM section for more information.

2. Set a combination of properties to allow the SCIM clients access to the raw LDAP data: include-ldap-
objectclass, exclude-ldap-objectclass, include-ldap-base-dn, or exclude-ldap-
base-dn.

$ bin/dsconfig set-http-servlet-extension-prop \
  --extension-name SCIM --set 'include-ldap-objectclass:*' \
  --set include-ldap-base-dn:ou=People,dc=example,dc=com

The SCIM clients now have access to the raw LDAP data via LDAP object class-based resources as well as core
SCIM resources as defined in the scim.resource.xml file.

To Disable Core SCIM Resources

1. Open the config/scim-resources.xml file, and comment out or remove the <resource> elements that
you would like to disable.

2. Disable and re-enable the HTTP Connection Handler, or restart the server to make the changes take effect. In
general, changing the scim-resources.xml file requires a HTTP Connection Handler restart or server
restart.



PingDirectory | Managing the SCIM Servlet Extension | 272

Note:  When making other changes to the SCIM configuration by modifying the SCIM HTTP Servlet
Extension using dsconfig, the changes take effect immediately without any restart required.

To Verify the Identity Access API Configuration

• Perform a curl request to verify the Identity Access API configuration.

$ curl -k -u "cn=directory manager:password" \
  -H "Accept: application/json" \
  "https://example.com/top/56c9fd6b-f870-35ef-9959-691c783b7318?
     attributes=entryDN,uid,givenName,sn,entryUUID" 
     {"schemas":
["urn:scim:schemas:core:1.0","urn:unboundid:schemas:scim:ldap:1.0"],
      "id":"56c9fd6b-f870-35ef-9959-691c783b7318",
      "meta":{"lastModified":"2013-01-11T23:38:26.489Z",
      "location":"https://example.com:443/v1/top/56c9fd6b-
f870-35ef-9959-691c783b7318"},
      "urn:unboundid:schemas:scim:ldap:1.0":{"givenName":["Rufus"],"uid":
["user.1"],
      "sn":["Firefly"],"entryUUID":["56c9fd6b-f870-35ef-9959-691c783b7318"],
      "entrydn":"uid=user.1,ou=people,dc=example,dc=com"}} 

Monitoring the SCIM Servlet Extension
The SCIM SDK provides a command-line tool, scim-query-rate, that measures the SCIM query performance
for your extension. The SCIM extension also exposes monitoring information for each SCIM resource, such as the
number of successful operations per request, the number of failed operations per request, the number of operations
with XML or JSON to and from the client. Finally, the Directory Proxy Server automatically logs SCIM-initiated
LDAP operations to the default File-based Access Logger. These operations will have an origin='scim' attribute
to distinguish them from operations initiated by LDAP clients. You can also create custom logger or request criteria
objects that can track incoming HTTP requests, which the SCIM extension rewrites as internal LDAP operations.

Testing SCIM Query Performance

You can use the scim-query-rate tool, provided in the SCIM SDK, to test query performance, by performing
repeated resource queries against the SCIM server.

The scim-query-rate tool performs searches using a query filter or can request resources by ID. For example,
you can test performance by using a filter to query randomly across a set of one million users with eight concurrent
threads. The user resources returned to the client in this example is in XML format and includes the userName and
name attributes.

scim-query-rate --hostname server.example.com --port 80 \
--authID admin --authPassword password --xml \
--filter 'userName eq "user.[1-1000000]"' --attribute userName \
--attribute name --numThreads 8

You can request resources by specifying a resource ID pattern using the --resourceID argument as follows:

scim-query-rate --hostname server.example.com --port 443 \
--authID admin --authPassword password --useSSL --trustAll\
--resourceName User \
--resourceID 'uid=user.[1-150000],ou=people,dc=example,dc=com'

The scim-query-rate tool reports the error "java.net.SocketException: Too many open
files" if the open file limit is too low. You can increase the open file limit to increase the number of file
descriptors.



PingDirectory | Managing the SCIM Servlet Extension | 273

Monitoring Resources Using the SCIM Extension

The monitor provider exposes the following information for each resource:

Number of successful operations per request type (such as GET, PUT, and POST).
Number of failed operations and their error codes per request type.
Number of operations with XML or JSON from client.
Number of operations that sent XML or JSON to client.

In addition to the information about the user-defined resources, monitoring information is also generated for the
schema, service provider configuration, and monitor resources. The attributes of the monitor entry are formatted as
follows:

{resource name}-resource-{request type}-{successful or error status code}

You can search for one of these monitor providers using an ldapsearch such as the following:

$ bin/ldapsearch --port 1389 bindDN uid=admin,dc=example,dc=com \
  --bindPassword password --baseDN cn=monitor \
  --searchScope sub "(objectclass=scim-servlet-monitor-entry)"

For example, the following monitor output was produced by a test environment with three distinct SCIM servlet
instances, Aleph, Beth, and Gimel. Note that the first instance has a custom resource type called host.

$ bin/ldapsearch --baseDN cn=monitor \
  '(objectClass=scim-servlet-monitor-entry)'
dn: cn=SCIM Servlet (SCIM HTTP Connection Handler),cn=monitor
objectClass: top
objectClass: ds-monitor-entry
objectClass: scim-servlet-monitor-entry
objectClass: extensibleObject
cn: SCIM Servlet (SCIM HTTPS Connection Handler) [from 
  ThirdPartyHTTPServletExtension:SCIM (Aleph)]
ds-extension-monitor-name: SCIM Servlet (SCIM HTTPS Connection Handler)
ds-extension-type: ThirdPartyHTTPServletExtension
ds-extension-name: SCIM (Aleph)
version: 1.2.0
build: 20120105174457Z
revision: 820
schema-resource-query-successful: 8
schema-resource-query-401: 8
schema-resource-query-response-json: 16
user-resource-delete-successful: 1
user-resource-put-content-xml: 27
user-resource-query-response-json: 3229836
user-resource-put-403: 5
user-resource-put-content-json: 2
user-resource-get-401: 1
user-resource-put-response-json: 23
user-resource-get-response-json: 5
user-resource-get-response-xml: 7
user-resource-put-400: 2
user-resource-query-401: 1141028
user-resource-post-content-json: 1
user-resource-put-successful: 22
user-resource-post-successful: 1
user-resource-delete-404: 1
user-resource-query-successful: 2088808
user-resource-get-successful: 10
user-resource-put-response-xml: 6
user-resource-get-404: 1
user-resource-delete-401: 1
user-resource-post-response-json: 1



PingDirectory | Managing the SCIM Servlet Extension | 274

host-resource-query-successful: 5773268
host-resource-query-response-json: 11576313
host-resource-query-400: 3
host-resource-query-response-xml: 5
host-resource-query-401: 5788152
dn: cn=SCIM Servlet (SCIM HTTP Connection Handler),cn=monitor
objectClass: top
objectClass: ds-monitor-entry
objectClass: scim-servlet-monitor-entry
objectClass: extensibleObject
cn: SCIM Servlet (SCIM HTTPS Connection Handler) [from 
  ThirdPartyHTTPServletExtension:SCIM (Beth)]
ds-extension-monitor-name: SCIM Servlet (SCIM HTTPS Connection 
  Handler)
ds-extension-type: ThirdPartyHTTPServletExtension
ds-extension-name: SCIM (Beth)
version: 1.2.0
build: 20120105174457Z
revision: 820
serviceproviderconfig-resource-get-successful: 3
serviceproviderconfig-resource-get-response-json: 2
serviceproviderconfig-resource-get-response-xml: 1
schema-resource-query-successful: 8
schema-resource-query-401: 8
schema-resource-query-response-json: 16
group-resource-query-successful: 245214
group-resource-query-response-json: 517841
group-resource-query-400: 13711
group-resource-query-401: 258916
user-resource-query-response-json: 107876
user-resource-query-400: 8288
user-resource-get-400: 33
user-resource-get-response-json: 1041
user-resource-get-successful: 2011
user-resource-query-successful: 45650
user-resource-get-response-xml: 1003
user-resource-query-401: 53938
dn: cn=SCIM Servlet (SCIM HTTP Connection Handler),cn=monitor
objectClass: top
objectClass: ds-monitor-entry
objectClass: scim-servlet-monitor-entry
objectClass: extensibleObject
cn: SCIM Servlet (SCIM HTTPS Connection Handler) [from 
  ThirdPartyHTTPServletExtension:SCIM (Gimel)]
ds-extension-monitor-name: SCIM Servlet (SCIM HTTPS Connection 
  Handler)
ds-extension-type: ThirdPartyHTTPServletExtension
ds-extension-name: SCIM (Gimel)
version: 1.2.0
build: 20120105174457Z
revision: 820
schema-resource-query-successful: 1
schema-resource-query-401: 1
schema-resource-query-response-json: 2
user-resource-query-successful: 65
user-resource-get-successful: 4
user-resource-get-response-json: 6
user-resource-query-response-json: 132
user-resource-get-404: 2
user-resource-query-401: 67



PingDirectory | Managing the SCIM Servlet Extension | 275

About the HTTP Log Publishers

HTTP operations may be logged using either a Common Log File HTTP Operation Log Publisher or a Detailed
HTTP Operation Log Publisher. The Common Log File HTTP Operation Log Publisher is a built-in log publisher
that records HTTP operation information to a file using the W3C common log format. Because the W3C common log
format is used, logs produced by this log publisher can be parsed by many existing web analysis tools.

Log messages are formatted as follows:

• IP address of the client.
• RFC 1413 identification protocol. The Ident Protocol is used to format information about the client.
• The user ID provided by the client in an Authorization header, which is typically available server-side in the

REMOTE_USER environment variable. A dash appears in this field if this information is not available.
• A timestamp, formatted as "'['dd/MM/yyyy:HH:mm:ss Z']'"
• Request information, with the HTTP method followed by the request path and HTTP protocol version.
• The HTTP status code value.
• The content size of the response body in bytes. This number does not include the size of the response headers.

The HTTP Detailed Access Log Publisher provides more information than the common log format in a format that is
familiar to administrators who use the File-Based Access Log Publisher.

The HTTP Detailed Access Log Publisher generates log messages such as the following. The lines have been
wrapped for readability.

[15/Feb/2012:21:17:04 -0600] RESULT requestID=10834128 
from="10.2.1.114:57555" method="PUT" 
url="https://10.2.1.129:443/Aleph/Users/6272c691-
38c6-012f-d227-0dfae261c79e" authorizationType="Basic" 
requestContentType="application/json" statusCode=200 
etime=3.544 responseContentLength=1063 
redirectURI="https://server1.example.com:443/Aleph/Users/6272c691-38c6-012f-
d227-0dfae261c79e" 
responseContentType="application/json"

In this example, only default log publisher properties are used. Though this message is for a RESULT, it contains
information about the request, such as the client address, the request method, the request URL, the authentication
method used, and the Content-Type requested. For the response, it includes the response length, the redirect URI, the
Content-Type, and the HTTP status code.

You can modify the information logged, including adding request parameters, cookies, and specific request and
response headers. For more information, refer to the dsconfig command-line tool help.



Chapter

12
Managing Server SDK Extensions

Topics:

• About the Server SDK
• Available Types of Extensions

The PingDirectoryProxy Server provides support for any custom extensions
that you create using the Server SDK. This chapter summarizes the various
features and extensions that can be developed using the Server SDK.



PingDirectory | Managing Server SDK Extensions | 278

About the Server SDK
You can create extensions that use the Server SDK to extend the functionality of your Directory Proxy Server.
Extension bundles are installed from a .zip archive or a file system directory. You can use the manage-extension
tool to install or update any extension that is packaged using the extension bundle format. It opens and loads the
extension bundle, confirms the correct extension to install, stops the server if necessary, copies the bundle to the
server install root, and then restarts the server.

Note:  The manage-extension tool may only be used with Java extensions packaged using the extension
bundle format. Groovy extensions do not use the extension bundle format. For more information, see the
"Building and Deploying Java-Based Extensions" section of the Server SDK documentation, which describes
the extension bundle format and how to build an extension.

Available Types of Extensions
The Server SDK provides support for creating a number of different types of extensions for Ping Identity Server
Products, including the PingDirectory Server, PingDirectoryProxy Server, and PingDataSync Server. Some of those
extensions include:

Cross-Product Extensions

Access Loggers
Alert Handlers
Error Loggers
Key Manager Providers
Monitor Providers
Trust Manager Providers
OAuth Token Handlers
Manage Extension Plugins

PingDirectory Server Extensions

Certificate Mappers
Change Subscription Handlers
Extended Operation Handlers
Identity Mappers
Password Generators
Password Storage Schemes
Password Validators
Plugins
Tasks
Virtual Attribute Providers

PingDirectoryProxy Server Extensions

LDAP Health Checks
Placement Algorithms
Proxy Transformations

PingDataSync Server Extensions

JDBC Sync Sources
JDBC Sync Destinations
LDAP Sync Source Plugins
LDAP Sync Destination Plugins
Sync SourcesSync Destinations



PingDirectory | Managing Server SDK Extensions | 279

Sync Pipe Plugins

For more information on the Server SDK, see the documentation available in the SDK build.



Chapter

13
Command-Line Tools

Topics:

• Using the Help Option
• Available Command-Line

Utilities
• Managing the tools.properties

File
• Running Task-based Utilities

The PingDirectoryProxy Server provides a full suite of command-line tools
necessary to administer the server. The command-line tools are available
in the bin directory for UNIX or Linux systems and bat directory for
Microsoft Windows systems.

This chapter presents the following topics:



PingDirectory | Command-Line Tools | 282

Using the Help Option
Each command-line utility provides a description of the subcommands, arguments, and usage examples needed to run
the tool. You can view detailed argument options and examples by typing --help with the command.

bin/dsconfig --help

For those utilities that support additional subcommands (for example, dsconfig), you can get a list of the
subcommands by typing --help-subcommands.

bin/dsconfig --help-subcommands

You can also get more detailed subcommand information by typing --help with the specific subcommand.

bin/dsconfig list-log-publishers --help

Note:  For detailed information and examples of the command-line tools, see the Ping Identity Directory
Proxy Server Command-Line Tool Reference.

Available Command-Line Utilities
The Directory Proxy Server provides the following command-line utilities, which can be run directly in interactive,
non-interactive, or script mode.

Table 13: Command-Line Utilities

Command-Line Tools Description

authrate Perform repeated authentications against an LDAP directory server, where each
authentication consists of a search to find a user followed by a bind to verify the
credentials for that user.

backup Run full or incremental backups on one or more Directory Proxy Server
backends. This utility also supports the use of a properties file to pass predefined
command-line arguments. See Managing the tools.properties File for more
information.

base64 Encode raw data using the base64 algorithm or decode base64-encoded data
back to its raw representation.

collect-support-data Collect and package system information useful in troubleshooting problems. The
information is packaged as a ZIP archive that can be sent to a technical support
representative.

create-initial-proxy-config Create an inital Directory Proxy Server configuration.

create-rc-script Create an Run Control (RC) script that may be used to start, stop, and restart the
Directory Proxy Server on UNIX-based systems.

create-recurring-task Create a recurring task to run on the server. Tasks can be created for backups,
LDIF exports, a statically defined task, or a third-party task.

create-recurring-task-chain Create a chain of recurring tasks to run on the server.

dsconfig View and edit the Directory Proxy Server configuration.

dsjavaproperties Configure the JVM arguments used to run the Directory Proxy Server and
associated tools. Before launching the command, edit the properties file located
in config/java.properties to specify the desired JVM options and
JAVA_HOME environment variable.



PingDirectory | Command-Line Tools | 283

Command-Line Tools Description

dump-dns Obtain a listing of all of the DNs for all entries below a specified base DN in the
Directory Server.

enter-lockdown-mode Request that the Directory Proxy Server enter lockdown mode, during which it
only processes operations requested by users holding the lockdown-mode
privilege.

global-index-size Estimates the size in memory of one or more global indexes from the actual
number of keys, the configured number of keys and the average key size.

ldap-diff Compare the contents of two LDAP directory server servers.

ldap-result-code Display and query LDAP result codes.

ldapcompare Perform LDAP compare operations in the Directory Proxy Server.

ldapdelete Perform LDAP delete operations in the Directory Proxy Server.

ldapmodify Perform LDAP modify, add, delete, and modify DN operations in the Directory
Proxy Server.

ldappasswordmodify Perform LDAP password modify operations in the Directory Proxy Server.

ldapsearch Perform LDAP search operations in the Directory Proxy Server.

ldif-diff Compare the contents of two LDIF files, the output being an LDIF file needed to
bring the source file in sync with the target.

ldifmodify Apply a set of modify, add, and delete operations against data in an LDIF file.

ldifsearch Perform search operations against data in an LDIF file.

leave-lockdown-mode Request that the Directory Proxy Server leave lockdown mode and resume
normal operation.

list-backends List the backends and base DNs configured in the Directory Proxy Server.

make-ldif Generate LDIF data based on a definition in a template file.

manage-extension Install or update extension bundles. An extension bundle is a package of
extension(s) that utilize the Server SDK to extend the functionality of the
PingDirectoryProxy Server. Extension bundles are installed from a zip archive
or file system directory. The Directory Proxy Server will be restarted if running
to activate the extension(s).

manage-tasks Access information about pending, running, and completed tasks scheduled in
the Directory Proxy Server.

modrate Perform repeated modifications against an LDAP directory server.

move-subtree Move a subtree entries or a single entry from one server to another.

parallel-update Perform add, delete, modify, and modify DN operations concurrently using
multiple threads.

prepare-external-server Prepare  and a directory server for communication.

profile-viewer View information in data files captured by the Directory Proxy Server profiler.

reload-index Reload the contents of the global index.

remove-backup Safely remove a backup and optionally all of its dependent backups from the
specified Directory Proxy Server backend.

remove-defunct-server Remove a server from this server's topology.

restore Restore a backup of the Directory Proxy Server backend.



PingDirectory | Command-Line Tools | 284

Command-Line Tools Description

revert-update Returns a server to the version before the last update was performed.

review-license Review and/or indicate your acceptance of the product license.

scramble-ldif Obscure the contents of a specified set of attributes in an LDIF file.

search-and-mod-rate Perform repeated searches against an LDAP directory server and modify each
entry returned.

search-rate Perform repeated searches against an LDAP directory server.

server-state View information about the current state of the Directory Proxy Server process.

setup Perform the initial setup for the Directory Proxy Server instance.

start-server Start the Directory Proxy Server.

status Display basic server information.

stop-server Stop or restart the Directory Proxy Server.

subtree-accessibility List or update the a set of subtree accessibility restrictions defined in the
Directory Server.

sum-file-sizes Calculate the sum of the sizes for a set of files.

summarize-access-log Generate a summary of one or more access logs to display a number of metrics
about operations processed within the server.

uninstall Uninstall the Directory Proxy Server.

update Update the Directory Proxy Server to a newer version by downloading and
unzipping the new server install package on the same host as the server you wish
to update. Then, use the update tool from the new server package to update the
older version of the server. Before upgrading a server, you should ensure that it
is capable of starting without severe or fatal errors. During the update process,
the server is stopped if running, then the update performed, and a check is made
to determine if the newly updated server starts without major errors. If it cannot
start cleanly, the update will be backed out and the server returned to its prior
state. See the revert-update tool for information on reverting an update.

validate-ldif Validate the contents of an LDIF file against the server schema.

Managing the tools.properties File
The PingDirectoryProxy Server supports the use of a tools properties file that simplifies command-line invocations
by reading in a set of arguments for each tool from a text file. Each property is in the form of name/value pairs that
define predetermined values for a tool’s arguments. Properties files are convenient when quickly testing the Directory
Proxy Server in multiple environments.

The Directory Proxy Server supports two types of properties file: default properties files that can be applied to all
command-line utilities or tool-specific properties file that can be specified using the --propertiesFilePath option. You
can override all of the Directory Proxy Server's command-line utilities with a properties file using the config/
tools.properties file.

Creating a Tools Properties File

You can create a properties file with a text editor by specifying each argument, or option, using standard Java
properties file format (name=value). For example, you can create a simple properties file that define a set of LDAP
connection parameters as follows:



PingDirectory | Command-Line Tools | 285

hostname=server1.example.com 
port=1389 
bindDN=cn=Directory\ Manager 
bindPassword=secret 
baseDN=dc=example,dc=com

Next, you can specify the location of the file using the --propertiesFilePath /path/to/ File option with the command-
line tool. For example, if you save the previous properties file as bin/mytool.properties, you can specify the
path to the properties file with ldapsearch as follows:

$ bin/ldapsearch --propertiesFilePath bin/mytools.properties "(objectclass=*)"

Properties files do not allow quotation marks of any kind around values. Any spaces or special characters should be
escaped. For example,

bindDN=cn=QA\ Managers,ou=groups,dc=example,dc=com

The following is not allowed as it contains quotation marks:

bindDN=cn="QA Managers,ou=groups,dc=example,dc=com"

Tool-Specific Properties

The Directory Proxy Server also supports properties for specific tool options using the format:
tool.option=value. Tool-specific options have precedence over general options. For example, the following
properties file uses ldapsearch.port=2389 for ldapsearch requests by the client. All other tools that use the
properties file uses port=1389.

hostname=server1.example.com 
port=1389 
ldapsearch.port=2389 
bindDN=cn=Directory\ Manager

Another example using the dsconfig configuration tool is as follows:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
dsconfig.bindPasswordFile=/ds/config/password 

Note:  The .bindPasswordFile property requires an absolute path. If you were to specify ~/ds/
config/password, where ~ refers to the home directory, the server does not expand the ~ value when
read from the properties file.

Specifying Default Properties Files

The Directory Proxy Server provides a default properties files that apply to all command-line utilities used in client
requests. A default properties file, tools.properties, is located in the <server-root>/config directory.

If you place a custom properties file that has a different filename as tools.properties in this default location,
you need to specify the path using the --propertiesFilePath option. If you make changes to the tools.properties
file, you do not need the --propertiesFilePath option. See the examples in the next section.

Evaluation Order Summary

The Directory Proxy Server uses the following evaluation ordering to determine options for a given command-line
utility:

• All options used with a utility on the command line takes precedence over any options in any properties file.
• If the --propertiesFilePath option is used with no other options, the Directory Proxy Server takes its options from

the specified properties file.



PingDirectory | Command-Line Tools | 286

• If no options are used on the command line including the --propertiesFilePath option (and --noPropertiesFile), the
Directory Proxy Server searches for the tools.properties file at <server-root>

• If no default properties file is found and a required option is missing, the tool generates an error.
• Tool-specific properties (for example, ldapsearch.port=3389) have precedence over general properties (for

example, port=1389).

Evaluation Order Example

Given the following properties file that is saved as <server-root>/bin/tools.properties:

hostname=server1.example.com 
port=1389 
bindDN=cn=Directory\ Manager 
bindPassword=secret

The Directory Proxy Server locates a command-line option in a specific priority order.

1. All options presented with the tool on the command line take precedence over any options in any properties
file. In the following example, the client request is run with the options specified on the command line (port and
baseDN). The command uses the bindDN and bindPassword arguments specified in the properties file.

$ bin/ldapsearch --port 2389 --baseDN ou=People,dc=example,dc=com \ 
  --propertiesFilePath bin/tools.properties “(objectclass=*)”

2. Next, if you specify the properties file using the --propertiesFilePath option and no other command-line
options, the Directory Proxy Server uses the specified properties file as follows:

$ bin/ldapsearch --propertiesFilePath bin/tools.properties \ 
  “(objectclass=*)”

3. If no options are presented with the tool on the command line and the --noPropertiesFile option is not
present, the Directory Proxy Server attempts to locate any default tools.properties file in the following
location:

<server-root>/config/tools.properties

Assume that you move your tools.properties file from <server-root>/bin to the <server-root>/
config directory. You can then run your tools as follows:

$ bin/ldapsearch "(objectclass=*)"

The Directory Proxy Server can be configured so that it does not search for a properties file by using the --
noPropertiesFile option. This options tells the Directory Proxy Server to use only those options specified on the
command line. The --propertiesFilePath and --noPropertiesFile options are mutually exclusive and cannot be used
together.

4. If no default tools.properties file is found and no options are specified with the command-line tool, then
the tool generates an error for any missing arguments.

Running Task-based Utilities
The Directory Proxy Server has a Tasks subsystem that allows you to schedule basic operations, such as backup,
restore, bin/start-server, bin/start-server and others. All task-based utilities require the --task option that explicitly
indicates the utility is intended to run as a task rather than in offline mode. The following table shows the arguments
that can be used for task-based operations:



PingDirectory | Command-Line Tools | 287

Table 14: Task-based Utilities

Option Description

--task Indicates that the tool is invoked as a task. The --task argument is required. If a
tool is invoked as a task without this --task argument, then a warning message
will be displayed stating that it must be used. If the --task argument is provided
but the tool was not given the appropriate set of authentication arguments to the
server, then an error message will be displayed and the tool will exit with an
error.

--start Indicates the date and time, expressed in the format 'YYYYMMDDhhmmss',
when the operation starts when scheduled as a server task. A value of '0' causes
the task to be scheduled for immediate execution. When this option is used, the
operation is scheduled to start at the specified time, after which this utility will
exit immediately.

--dependency Specifies the ID of a task upon which this task depends. A task will not start
execution until all its dependencies have completed execution. This option can
be used multiple times in a single command.

--failedDependencyAction Specifies the action this task will take should one of its dependent tasks fail.
The value must be one of the following: PROCESS, CANCEL, DISABLE. If not
specified, the default value is CANCEL. This option can be used multiple times
in a single command.

--completionNotify Specifies the email address of a recipient to be notified when the task completes.
This option can be used multiple times in a single command.

--errorNotify Specifies the email address of a recipient to be notified if an error occurs when
this task executes. This option can be used multiple times in a single command.


	PingDirectory™ Product Documentation
	Contents
	Introduction
	Overview of the PingDirectoryProxy Server Features
	Overview of the Directory Proxy Server Components and Terminology
	About Locations
	About LDAP External Servers
	About LDAP Health Checks
	About Load-Balancing Algorithms
	About Proxy Transformations
	About Request Processors
	About Server Affinity Providers
	About Subtree Views
	About the Connection Pools
	About Client Connection Policies
	About Entry Balancing

	Server Component Architecture
	Architecture of a Simple Directory Proxy Server Deployment
	Architecture of an Entry-Balancing Directory Proxy Server Deployment

	Directory Proxy Server Configuration Overview

	Installing the Directory Proxy Server
	Before You Begin
	Supported Platforms
	Defining a Naming Strategy for Server Locations
	Software Requirements: Java
	To Install Java (Oracle/Sun)


	Preparing the Operating System
	Configuring the File Descriptor Limits
	To Set the File Descriptor Limit (Linux)

	Enabling the Server to Listen on Privileged Ports (Linux)
	To Set the Filesystem Flushes
	Disable Filesystem Swapping
	About Editing OS-Level Environment Variables
	Install sysstat and pstack (Red Hat)
	Install dstat (SUSE Linux)
	Omit vm.overcommit_memory
	Managing System Entropy
	Set Filesystem Event Monitoring (inotify)
	Tune IO Scheduler

	Getting the Installation Packages
	To Unpack the Build Distribution

	PingDirectoryProxy Server License Keys
	About the RPM Package
	To Install the RPM Package

	Installing the Directory Proxy Server
	About the setup Tool
	Installing the First Directory Proxy Server in Interactive Mode
	To Install the First Directory Proxy Server in Interactive Mode
	To Install Additional Directory Proxy Server Instances in Interactive Mode

	Installing the First Directory Proxy Server in Non-Interactive Mode
	To Install the First Directory Proxy Server in Non-Interactive Mode

	To Install Additional Directory Proxy Server in Non-Interactive Mode
	To Install Additional Directory Proxy Server in Non-Interactive Mode

	Installing the Directory Proxy Server with a Truststore in Non-Interactive Mode
	To Install the Directory Proxy Server with a Truststore in Non-Interactive Mode


	About the Layout of the Directory Proxy Server Folders
	Running the Server
	To Start the Directory Proxy Server
	To Run the Server as a Foreground Process
	To Start the Server at Boot Time
	Logging into the Administrative Console

	Stopping the Directory Proxy Server
	To Stop the Server
	To Schedule a Server Shutdown
	To Restart the Server

	Run the Server as a Microsoft Windows Service
	To Register the Server as a Windows Service
	To Run Multiple Service Instances
	To Deregister and Uninstall Services
	Log Files for Services

	Uninstalling the Server
	To Uninstall the Server in Interactive Mode
	To Uninstall the Server in Non-Interactive Mode
	To Uninstall Selected Components in Non-Interactive Mode
	To Uninstall the RPM Build Package

	Updating the Directory Proxy Server
	Updating Servers in a Topology
	To Update the Directory Proxy Server
	To Upgrade the RPM Package
	Reverting an Update
	To Revert to the Most Recent Server Version
	Configure SCIM After Upgrade



	Configuring the Directory Proxy Server
	About the Configuration Tools
	Using the create-initial-proxy-config Tool
	Configuring a Standard Directory Proxy Server Deployment
	To Configure a Standard Directory Proxy Server Deployment

	About dsconfig Configuration Tool
	Using dsconfig in Interactive Command-Line Mode
	Using dsconfig Interactive Mode: Viewing Object Menus
	To Change the dsconfig Object Menu

	Using dsconfig in Non-Interactive Mode
	To Get the Equivalent dsconfig Non-Interactive Mode Command

	Using dsconfig Batch Mode
	To Configure the Directory Proxy Server in dsconfig Batch Mode


	Topology Configuration
	Topology Master Requirements and Selection
	Topology Components
	Monitor Data for the Topology
	Updating the Server Instance Listener Certificate
	Remove the Self-signed Certificate
	Prepare a New Keystore with the Replacement Key-pair
	To Use an Existing Key-pair
	To Use the Certificate Associated with the Original Key-pair

	Remove a server from the topology
	To Update the Server Configuration to Use the New Certificate
	To Update the ads-truststore File to Use the New Key-pair
	To Retire the Old Certificate

	Using the Configuration API
	Authentication and Authorization with the Configuration API
	Relationship Between the Configuration API and the dsconfig Tool
	GET Example
	GET List Example
	PATCH Example
	Configuration API Paths
	Sorting and Filtering Objects
	Updating Properties
	Administrative Actions
	Updating Servers and Server Groups
	Configuration API Responses

	Working with the Directory REST API
	Generating a Summary of Configuration Components
	To Generate a Summary of Configuration Components

	Configuring Server Groups
	About the Server Group Example
	To Create a Server Group

	Domain Name Service (DNS) Caching
	IP Address Reverse Name Lookups
	Configuring Traffic Through a Load Balancer
	Managing Root Users Accounts
	Default Root Privileges

	Configuring Locations
	To Configure Locations Using dsconfig
	To Modify Locations Using dsconfig

	Configuring Batched Transactions
	To Configure Batched Transactions

	Configuring Server Health Checks
	About the Default Health Checks
	About Creating a Custom Health Check
	To Configure a Health Check Using dsconfig


	Configuring LDAP External Servers
	About the prepare-external-server Tool
	To Configure Server Communication Using the prepare-external-server Tool

	To Configure an External Server Using dsconfig
	To Configure Authentication with a SASL External Certificate

	Configuring Load Balancing
	Configure Failover Load-balancing for Load Spreading
	To Configure Load Balancing Using dsconfig
	Configuring Criteria-Based Load-Balancing Algorithms
	Preferring Failover LBA for Write Operations
	To Route Operations to a Single Server
	To Route Operations from a Single Client to a Specific Set of Servers

	Understanding Failover and Recovery

	Configuring HTTP Connection Handlers
	To Configure an HTTP Connection Handler
	HTTP Correlation IDs
	Configure HTTP Correlation ID Support
	HTTP Correlation ID Example Use


	Configuring Proxy Transformations
	To Configure Proxy Transformations Using dsconfig

	Configuring Request Processors
	To Configure Request Processors Using dsconfig
	To Pass LDAP Controls with the Proxying Request Processor

	Configuring Server Affinity
	To Configure Server Affinity

	Configuring Subtree Views
	To Configure Subtree View

	Configuring Client Connection Policies
	Understanding the Client Connection Policy
	When a Client Connection Policy is Assigned
	Restricting the Type of Search Filter Used by Clients
	Defining Request Criteria
	Setting Resource Limits
	Defining the Operation Rate
	Client Connection Policy Deployment Example
	Defining the Connection Policies
	How the Policy is Evaluated
	To Configure a Client Connection Policy Using dsconfig


	Configuring Globally Unique Attributes
	About the Globally Unique Attribute Plug-in
	To Configure the Globally Unique Attribute Plug-in

	Configuring the Global Referential Integrity Plug-in
	Sample Global Referential Integrity Plug-in

	Configuring an Active Directory Server Back-end

	Managing Access Control
	Overview of Access Control
	Key Access Control Features
	Improved Validation and Security
	Global ACIs
	Access Controls for Public or Private Backends

	General Format of the Access Control Rules
	Summary of Access Control Keywords
	Targets
	Permissions
	Bind Rules


	Working with Targets
	target
	targetattr
	targetfilter
	targattrfilters
	targetscope
	targetcontrol
	extOp

	Examples of Common Access Control Rules
	Administrator Access
	Anonymous and Authenticated Access
	Delegated Access to a Manager
	Proxy Authorization

	Validating ACIs Before Migrating Data
	To Validate ACIs from a File
	To Validate ACIs in Another Directory Proxy Server

	Migrating ACIs from Sun/Oracle to PingDirectory Server
	Support for Macro ACIs
	Support for the roleDN Bind Rule
	Targeting Operational Attributes
	Specification of Global ACIs
	Defining ACIs for Non-User Content
	Limiting Access to Controls and Extended Operations
	Tolerance for Malformed ACI Values
	About the Privilege Subsystem
	Identifying Unsupported ACIs

	Working with Privileges
	Available Privileges
	Privileges Automatically Granted to Root Users
	Assigning Additional Privileges for Administrators
	Assigning Privileges to Normal Users and Individual Root Users
	Disabling Privileges


	Deploying a Standard Directory Proxy Server
	Creating a Standard Multi-Location Deployment
	Overview of the Deployment Steps
	Installing the First Directory Proxy Server
	To Install the First Directory Proxy Server

	Configuring the First Directory Proxy Server
	To Configure the First Directory Proxy Server

	Defining Locations
	To Define Proxy Locations

	Configuring the External Servers in the East Location
	To Configure the External Servers in the East Location
	To Configure the External Servers in the West Location

	Apply the Configuration to the Directory Proxy Server
	To Apply the Changes to the Directory Proxy Server

	Configuring Additional Directory Proxy Server Instances
	To Configure Additional Directory Proxy Server Instances

	Testing External Server Communications After Initial Setup
	To Test the External Communications After Initial Setup

	Testing a Simulated External Server Failure
	To Test a Simulated External Server Failure


	Expanding the Deployment
	Overview of Deployment Steps
	Preparing Two New External Servers Using the prepare-external-server Tool
	To Prepare Two New External Servers Using the prepare-external-server Tool

	Adding the New PingDirectory Servers to the Directory Proxy Server
	To Add the New PingDirectory Servers to the Directory Proxy Server

	Adding New Locations
	To Add a New Location

	Editing the Existing Locations
	To Edit Existing Locations

	Adding New Health Checks for the Central Servers
	To Add New Health Checks for the Central Servers

	Adding New External Servers
	To Add New External Servers

	Modifying the Load Balancing Algorithm
	To Modify the Load-Balancing Algorithm

	Testing External Server Communication
	To Test External Server Communication

	Testing a Simulated External Server Failure
	To Test a Simulated External Server Failure


	Merging Two Data Sets Using Proxy Transformations
	Overview of the Attribute and DN Mapping
	About Mapping Multiple Source DNs to the Same Target DN
	An Example of a Migrated Sample Customer Entry
	Overview of Deployment Steps
	About the Schema
	Creating Proxy Transformations
	To Create Proxy Transformations

	Creating the Attribute Mapping Proxy Transformations
	To Creating the Attribute Mapping Proxy Transformations

	Creating the DN Mapping Proxy Transformations
	To Create the DN Mapping Proxy Transformations

	Creating a Request Processor to Manage the Proxy Transformations
	To Create a Request Processor to Manage Proxy Transformations

	Creating Subtree Views
	To Create Subtree Views

	Editing the Client Connection Policy
	To Edit the Client Connection Policy

	Testing Proxy Transformations
	Testing Proxy Transformations



	Deploying an Entry-Balancing Directory Proxy Server
	Deploying an Entry-Balancing Proxy Configuration
	Determining How to Balance Your Data
	Entry Balancing and ACIs
	Overview of Deployment Steps
	Installing the Directory Proxy Server
	To Install the Directory Proxy Server

	Configuring the Entry-Balancing Directory Proxy Server
	To Configure the Entry-Balancing Directory Proxy Server

	Configuring the Placement Algorithm Using a Batch File
	To Configure the Placement Algorithm Using a Batch File


	Rebalancing Your Entries
	About Dynamic Rebalancing
	To Configure Dynamic Rebalancing

	About the move-subtree Tool
	About the subtree-accessibility Tool

	Managing the Global Indexes in Entry-Balancing Configurations
	When to Create a Global Attribute Index
	Reloading the Global Indexes
	To Reload All of the Index
	To Reload the RDN and UID Index
	To Prime the Backend Server Using the --fromDS Option

	Monitoring the Size of the Global Indexes
	Sizing the Global Indexes
	To Size the Global Index

	Priming the Global Indexes on Start Up
	To Configure All Indexes at Startup
	To Configure the Global Indexes Manually
	To Persist the Global Index from a File

	Priming or Reloading the Global Indexes from Sun Directory Servers

	Working with Alternate Authorization Identities
	About Alternate Authorization Identities
	Configuring Alternate Authorization Identities
	To Configure Alternate Authorization Identity DNs



	Managing Entry-Balancing Replication
	Overview of Replication in an Entry-Balancing Environment
	Replication Prerequisites in an Entry-Balancing Deployment
	About the --restricted Argument of the dsreplication Command-Line Tool
	To Use the --restricted Argument of the dsreplication Command-Line Tool

	Checking the Status of Replication in an Entry-Balancing Deployment
	To Check the Status of Replication in an Entry-Balancing Deployment

	Example of Configuring Entry-Balancing Replication
	Assumptions
	Configuration Summary
	To Install the Directory Server
	To Create the Database Backends and Define the Replication Set Name
	To Create and Set the Locations
	To Import the Entries
	To Enable Replication in an Entry-Balancing Deployment
	To Check the Status of Replication



	Managing the Directory Proxy Server
	Managing Logs
	About the Default Logs
	Error Log
	server.out Log
	Debug Log
	Audit log
	Config Audit Log and the Configuration Archive
	Access and Audit Log
	Setup Log
	Tool Log
	LDAP SDK Debug Log

	Types of Log Publishers
	Creating New Log Publishers
	To Create a New Log Publisher
	To Create a Log Publisher Using dsconfig Interactive Command-Line Mode

	About Log Compression
	About Log Signing
	About Encrypting Log Files
	To Configure Log Signing
	To Validate a Signed File
	To Configure Log File Encryption

	Configuring Log Rotation
	To Configure the Log Rotation Policy

	Configuring Log Rotation Listeners
	Configuring Log Retention
	To Configure the Log Retention Policy

	Setting Resource Limits
	Setting Global Resource Limits
	Setting Client Connection Policy Resource Limits

	Monitoring the Directory Proxy Server
	Monitoring System Data Using the PingDataMetrics Server
	To Monitor Server Using the Status Tool
	About the Monitor Entries

	Using the Monitoring Interfaces
	Monitoring with the Administrative Console
	To View the Monitor Dashboard

	Accessing the Processing Time Histogram
	To Access the Processing Time Histogram


	Monitoring with JMX
	Running JConsole
	To Run JConsole

	Monitoring the Directory Proxy Server Using JConsole
	To Monitor the Directory Proxy Server using JConsole


	Monitoring over LDAP
	Monitoring Using the LDAP SDK
	Monitoring Using SNMP
	SNMP Implementation
	Configuring SNMP
	To Configure SNMP

	MIBS

	Profiling Server Performance Using the Stats Logger
	To Enable the Stats Logger
	To Configure Multiple Periodic Stats Loggers
	Adding Custom Logged Statistics to a Periodic Stats Logger
	To Configure a Custom Logged Statistic Using dsconfig Interactive
	To Configure a Custom Stats Logger Using dsconfig Non-Interactive


	Working with Alarms, Alerts, and Gauges
	To Test Alarms and Alerts
	Indeterminate Alarms

	Working with Administrative Alert Handlers
	Configuring the JMX Connection Handler and Alert Handler
	To Configure the JMX Connection Handler
	To Configure the JMX Alert Handler

	Configuring the SMTP Alert Handler
	Configuring the SMTP Alert Handler

	Configuring the SNMP Subagent Alert Handler
	To Configure the SNMP Subagent Alert Handler


	Working with Virtual Attributes
	About the Server SDK

	Managing Monitoring
	The Monitor Backend
	Monitoring Disk Space Usage
	Monitoring with the PingDataMetrics Server
	Monitoring Key Performance Indicators by Application
	Configuring the External Servers
	Preparing the Servers Monitored by the PingDataMetrics Server
	Configuring the Processing Time Histogram Plugin
	Setting the Connection Criteria to Collect SLA Statistics by Application
	Updating the Global Configuration

	Proxy Considerations for Tracked Applications

	Monitoring Using SNMP
	SNMP Implementation
	Configuring SNMP
	To Configure SNMP

	MIBS

	Monitoring with the Administrative Console
	To View the Monitor Dashboard

	Accessing the Processing Time Histogram
	To Access the Processing Time Histogram

	Monitoring with JMX
	Running JConsole
	To Run JConsole

	Monitoring the Directory Proxy Server Using JConsole
	To Monitor the Directory Proxy Server using JConsole


	Monitoring Using the LDAP SDK
	Monitoring over LDAP
	Profiling Server Performance Using the Stats Logger
	To Enable the Stats Logger
	To Configure Multiple Periodic Stats Loggers
	Adding Custom Logged Statistics to a Periodic Stats Logger
	To Configure a Custom Logged Statistic Using dsconfig Interactive
	To Configure a Custom Stats Logger Using dsconfig Non-Interactive



	Troubleshooting the Directory Proxy Server
	Garbage Collection Diagnostic Information
	Working with the Troubleshooting Tools
	Working with the Collect Support Data Tool
	Available Tool Options
	To Run the Collect Support Data Tool


	Directory Proxy Server Troubleshooting Tools
	Server Version Information
	LDIF Connection Handler
	Embedded Profiler
	To Invoke the Profile Viewer in Text-based Mode
	To Invoke the Profile Viewer in GUI Mode


	Troubleshooting Resources for Java Applications
	Java Troubleshooting Tools
	jps
	jstack
	jmap
	jhat
	jstat

	Java Diagnostic Information
	Garbage Collection Diagnostic Information
	JVM Crash Diagnostic Information

	Troubleshooting Resources in the Operating System
	Identifying Problems with the Underlying System
	Monitoring System Data Using the PingDataMetrics Server
	Examining CPU Utilization
	System-Wide CPU Utilization
	Per-CPU Utilization
	Per-Process Utilization

	Examining Disk Utilization
	Examining Process Details
	ps
	pstack
	dbx / gdb
	pfiles / lsof

	Tracing Process Execution
	Problems with SSL Communication
	Examining Network Communication

	Common Problems and Potential Solutions
	General Methodology to Troubleshoot a Problem
	The Server Will Not Run Setup
	A Suitable Java Environment Is Not Available
	Unexpected Arguments Provided to the JVM
	The Server Has Already Been Configured or Used

	The Server Will Not Start
	The Server or Other Administrative Tool Is Already Running
	There Is Not Enough Memory Available
	An Invalid Java Environment or JVM Option Was Used
	An Invalid Command-Line Option Was Provided
	The Server Has an Invalid Configuration
	You Do Not Have Sufficient Permissions

	The Server Has Crashed or Shut Itself Down
	Conditions for Automatic Server Shutdown
	The Server Will Not Accept Client Connections
	The Server is Unresponsive
	The Server is Slow to Respond to Client Requests
	The Server Returns Error Responses to Client Requests
	The Server Must Disconnect a Client Connection
	Problems with the Administrative Console
	Problems with the Administrative Console: JVM Memory Issues
	Global Index Growing Too Large
	Forgotten Proxy User Password
	Providing Information for Support Cases



	Managing the SCIM Servlet Extension
	Overview of SCIM Fundamentals
	Summary of SCIM Protocol Support
	About the Identity Access API

	Creating Your Own SCIM Application
	Configuring SCIM
	Before You Begin
	Configuring the SCIM Servlet Extension
	To Configure the SCIM Servlet Extension
	To Enable Resource Versioning

	Configuring LDAP Control Support on All Request Processors (Proxy Only)
	To Configure LDAP Control Support on All Request Processors

	SCIM Servlet Extension Authentication
	Enabling HTTPS Communications
	To Configure Basic Authentication Using an Identity Mapper
	To Enable OAuth Authentication
	Using HTTP Basic Authentication with Bare UID on the Directory Proxy Server

	Verifying the SCIM Servlet Extension Configuration
	To Verify the SCIM Servlet Extension Configuration


	Configuring Advanced SCIM Extension Features
	Managing the SCIM Schema
	About SCIM Schema
	Mapping LDAP Schema to SCIM Resource Schema
	About the <resource> Element
	About the <attribute> Element
	About the <simple> Element
	About the <complex> Element
	About the <simpleMultivalued> Element
	About the <complexMultiValued> Element
	About the <subAttribute> Element
	About the <canonicalValue> Element
	About the <mapping> Element
	About the <subMapping> Element
	About the <LDAPSearch> Element
	About the <resourceIDMapping> Element
	About the <LDAPAdd> Element
	About the <fixedAttribute> Element

	Validating Updated SCIM Schema

	Mapping SCIM Resource IDs
	Using Pre-defined Transformations
	Mapping LDAP Entries to SCIM Using the SCIM-LDAP API
	SCIM Authentication
	SCIM Logging
	SCIM Monitoring

	Configuring the Identity Access API
	To Configure the Identity Access API
	To Disable Core SCIM Resources
	To Verify the Identity Access API Configuration

	Monitoring the SCIM Servlet Extension
	Testing SCIM Query Performance
	Monitoring Resources Using the SCIM Extension
	About the HTTP Log Publishers


	Managing Server SDK Extensions
	About the Server SDK
	Available Types of Extensions

	Command-Line Tools
	Using the Help Option
	Available Command-Line Utilities
	Managing the tools.properties File
	Creating a Tools Properties File
	Tool-Specific Properties
	Specifying Default Properties Files
	Evaluation Order Summary
	Evaluation Order Example

	Running Task-based Utilities




