
Ping Identity® Identity Access API
Guide
Version 6.2.0.0

Ping Identity® Identity Access API Documentation

© Copyright 2004-2017 Ping Identity® Corporation. All rights reserved.

Trademarks

Ping Identity, the Ping Identity logo, PingFederate, PingAccess, PingDirectory, and PingOne
are registered trademarks of Ping Identity Corporation ("Ping Identity"). All other trademarks or
registered trademarks are the property of their respective owners.

Disclaimer

The information provided in these documents is provided "as is" without warranty of any
kind. Ping Identity disclaims all warranties, either express or implied, including the warranties
of merchantability and fitness for a particular purpose. In no event shall Ping Identity or
its suppliers be liable for any damages whatsoever including direct, indirect, incidental,
consequential, loss of business profits or special damages, even if Ping Identity or its suppliers
have been advised of the possibility of such damages. Some states do not allow the exclusion or
limitation of liability for consequential or incidental damages so the foregoing limitation may
not apply.

Support

https://support.pingidentity.com/

Published: 2017-12-12

Contents

i

Contents

Preface.. iii
Purpose of This Guide.. iii
Audience.. iii
Related Documentation... iii
Document Conventions..iv

Chapter 1: Introduction.. 1

Available SDKs.. 2
About SCIM..2
Summary of SCIM Protocol Support...3
About the Identity Access API.. 3
Getting Started.. 6

Chapter 2: Interfaces.. 7

Create...8
Modify...9

Put..9
Patch.. 10

Delete...10
Search.. 10
Bulk Operations.. 12

Bulk Operation Implementation... 12
BulkId References...12
Memory and Disk Usage..12
Overview of Status Codes.. 13
Authentication... 13

Contents

ii

Contents

iii

Preface

This guide presents the procedures and reference material necessary to install, administer and
troubleshoot the Ping Identity Access API in multi-client, high-load production environments.

Purpose of This Guide

The purpose of this guide is to provide procedures and concepts that can be used to manage the
Ping Identity® Identity Access API in a multi-client environment. It also provides information to
monitor and set up the necessary logs needed to troubleshoot the server’s performance.

The Identity Access API is part of the PingData Platform. The PingData Platform is the
consumer-grade identity access and management platform—built specifically to handle the
massive scale and real-time demands of hundreds of millions of customers. It delivers a
consistent, seamless, personalized brand experience that makes each customer feel valued.

The PingData Platform provides a unified view of customer data across all applications,
channels, partners, and lines of business. The result is:

• Increased customer trust and confidence through greater transparency and customer control
of personal data.

• A consistent, personalized customer experience that promotes better conversion, up-selling,
and cross-selling.

Audience

The guide is intended for developers who are creating applications that will use the Identity
Access API.

Related Documentation

The following list shows the full documentation set that may help you manage your deployment:

➢ Ping Identity® Directory Server Administration Guide
➢ Ping Identity® Directory Server Reference Guide (HTML)
➢ Ping Identity® Directory Proxy Server Administration Guide
➢ Ping Identity® Directory Proxy Server Reference Guide (HTML)
➢ PingData® Data Sync Server Administration Guide
➢ PingData® Data Sync Server Reference Guide (HTML)
➢ PingData® Data Metrics Server Administration Guide
➢ PingData® Data Governance Server Administration Guide
➢ PingData Security Guide

Contents

iv

➢ UnboundID® LDAP SDK
➢ UnboundID® Server SDK

Document Conventions

The following table shows the document convention used in this guide.

Convention Usage

Monospace Commands, filenames, directories, and file paths

Monospace Bold User interface elements, menu items and buttons

Italic Identifies file names, doc titles, terms, variable names, and
emphasized text

Introduction

1

Chapter

1 Introduction

The Identity Access API is an alternative to LDAP by supporting REST-based CRUD (create,
read, update, and delete) operations to access Directory Server or directory data over an HTTP
connection. The Identity Access API is an extension to the SCIM standard and is fully supported
by the Directory Servers and Directory Proxy Servers.

REST (Representational State Transfer) is a lightweight architectural style for designing
networked applications that is based on the existing design of the HTTP protocol. REST
promotes vocabulary re-use through the well-known HTTP verbs (i.e. GET, POST, PUT,
DELETE, etc), as opposed to RPC-style architectures which encourage each application
designer to define new application-specific methods for each part of the interface. A RESTful
service decouples the client and server with a uniform interface, so that servers can be simpler
and more scalable. REST architectures are also stateless, cacheable, and can be layered (for
example with proxy servers and load balancers) to improve scalability.

REST identifies individual resources using a Uniform Resource Identifier (URI). The physical
resources themselves are conceptually separate from the representations that are returned to
the client. For example, the Directory Server may send a XML or JSON representation of an
LDAP entry in it's database, depending on the details of the request. When a client holds a
representation of a resource, it has enough information to modify or delete the resource on the
server (if it has permission to do so).

Topics:

• Available SDKs
• About SCIM
• Summary of SCIM Protocol Support
• About the Identity Access API
• Getting Started

Introduction

2

Available SDKs

PingData has developed a number of APIs and SDKs for developers to extend the capabilities
of the Directory Servers and Directory Proxy Servers. The following section summarizes the
differences of each API:

• The LDAP SDK for Java is a fast, powerful, user-friendly, and completely free Java API
for communicating with LDAP directory servers. It offers better performance, better ease of
use, and more features than other Java-based LDAP APIs, and it's the only one that's being
actively developed and enhanced.

• The Server SDK is a software development kit that allows you to extend and alter the
behavior of the Directory, Directory Proxy, and Data Sync servers in a manner that does
not require changes to the underlying server code base. In many cases, this means that new
functionality can be added to the server without the need to upgrade the product, creating a
solution for a desired feature that does not exist in the current product.

• The SCIM SDK is a software development kit that provides an API to interact with a SCIM
service provider. More information is presented in the next section.

About SCIM

The System for Cross-domain Identity Management (SCIM) is an open initiative designed to
make moving identity data to, from, and between cloud-based Software-as-a-Service (SaaS)
applications in a secure, fast, and easy manner. PingData provides an open source SCIM SDK
and Reference Implementation with which you can build a SCIM application.

The SCIM SDK is a pre-packaged collection of libraries and extensible classes that provides
developers with a simple, concrete API to interact with a SCIM service provider.

The SCIM SDK is available for download at the following sites:

• SCIM Repository:

https://github.com/UnboundID/scim

• Maven Central Public Repository:

http://search.maven.org/

If using Maven, use the following dependency element in your project's POM file:

<dependency>
 <groupId>com.unboundid.product.scim</groupId>
 <artifactId>scim-sdk</artifactId>
 <version>1.5.0</version>
</dependency>

Introduction

3

Summary of SCIM Protocol Support

PingData implements all required features of the SCIM protocol and most optional features. The
following table lists SCIM features and whether they are supported.

Table 1: SCIM Protocol Support

SCIM Feature Supported

JSON Yes

XML Yes

Authentication/Authorization Yes, via HTTP basic authentication or OAuth 2.0 bearer tokens

Service Provider Configuration Yes

Schema Yes

User resources Yes

Group resources Yes

User-defined resources Yes

Resource Retrieval via Get Yes

List/query resources Yes

Query Filtering* Yes

Query result sorting* Yes

Query result pagination Yes

Resource updates via PUT Yes

Partial resource updates via PATCH* Yes

Resource deletes via DELETE Yes

Resource versioning* Yes

Bulk Yes

HTTP method overloading Yes

Raw LDAP Endpoints** Yes

* denotes an optional feature of the SCIM protocol

** denotes a PingData extension to the basic SCIM functionality

About the Identity Access API

SCIM and the Identity Access API are provided as a unified service through the SCIM HTTP
Servlet Extension, which can be configured on the Directory Server and Directory Proxy Server.
From the client perspective, “SCIM” and the “Identity Access API” are the same thing, if
you’ve enabled SCIM, you’ve enabled the REST API.

Exposing endpoints above and beyond what is configured in the scim-resources.xml file
will be a matter of configuring which object classes and/or base DNs to expose, and these will
be specified via properties on the SCIM HTTP Servlet Extension. The SCIM HTTP Servlet
Extension can be configured to only enable core SCIM resources (e.g., 'Users' and 'Groups'),
only LDAP object classes (e.g., top, domain, inetOrgPerson, or groupOfUniqueNames), or
both. Because SCIM and the Identity Access API have different schemas, if both are enabled,

Introduction

4

there may be two representations with different schemas for any resources defined in the scim-
resources.xml file: the SCIM representation and the raw LDAP representation.

The RESTful Identity service (SCIM + Identity Access API) can be wholly available on a single
address and port. Alternatively, multiple HTTP Connection Handlers can be configured to
provide different configurations of the API on different ports.

Once the LDAP object classes have been configured as a resource type, client services can now
access the raw Directory Server schema exposed and then access the Directory Server entries
over the SCIM interface. Because resources are exposed by an LDAP object class, and because
these are hierarchical (e.g., top --> person --> organizationalPerson --> inetOrgPerson ,
etc.), a client application can access an entry in multiple ways due to the different paths/URIs to
a given resource.

The LDAP attributes are mapped to SCIM Schema resources as follows:

Table 2: Attribute Mappings

LDAP Attribute Syntax OID SCIM Attribute

Boolean 1.3.6.1.4.1.1466.115.121.1.7 SCIM Boolean

Integer 1.3.6.1.4.1.1466.115.121.1.27 SCIM Integer

Generalized Time 1.3.6.1.4.1.1466.115.121.1.24 SCIM Date Time

Binary 1.3.6.1.4.1.1466.115.121.1.5 SCIM Binary

JPEG 1.3.6.1.4.1.1466.115.121.1.28 SCIM Binary

Octet String 1.3.6.1.4.1.1466.115.121.1.40 SCIM Binary

Compact Timestamp 1.3.6.1.4.1.30221.2.3.1 SCIM Binary

Certificate 1.3.6.1.4.1.1466.115.121.1.8 SCIM Binary

Certificate List 1.3.6.1.4.1.1466.115.121.1.9 SCIM Binary

Certificate Pair 1.3.6.1.4.1.1466.115.121.1.10 SCIM Binary

Everything Else SCIM String

For example, a client might make a request using the configured SCIM Users endpoint:

GET /Users/2819c223-7f76-453a-919d-413861904646
Host: example.com
Accept: application/json
Authorization: Bearer h480djs93hd8

and get the following response back:

HTTP/1.1 200 OK
Content-Type: application/json
Location: https://example.com/scim/v1/Users/2819c223-7f76-453a-919d- 413861904646
{
 "schemas":["urn:scim:schemas:core:1.0"],
 "id":"2819c223-7f76-453a-919d-413861904646,
 "externalId":"bjensen",
 "meta":
 {
 "created":"2011-08-01T18:29:49.793Z",
 "lastModified":"2011-08-01T18:29:49.793Z",
 "location":"https://example.com/scim/v1/
Users/2819c223-7f76-453a-919d-413861904646"
 },
 "name":
 {
 "formatted":"Ms. Barbara J Jensen III",
 "familyName":"Jensen",
 "givenName":"Barbara"
 },

Introduction

5

 "userName":"bjensen",
 "phoneNumbers":
 [
 {
 "value":"555-555-8377",
 "type":"work"
 }
],
 "emails":
 [
 {
 "value":"bjensen@example.com",
 "type":"work"
 }
]
}

Or the client might make a request for that same entry using one of the LDAP object class
endpoints:

GET /inetorgperson/2819c223-7f76-453a-919d-413861904646
Host: example.com
Accept: application/json
Authorization: Bearer h480djs93hd8

and get the following response back:

HTTP/1.1 200 OK
Content-Type: application/json
Location: https://example.com/scim/v1/inetorgperson/2819c223-7f76-453a-919d-413861904646
{
 "schemas":["urn:scim:schemas:core:1.0", "urn:unboundid:schemas:scim:ldap:1.0"],
 "id":"2819c223-7f76-453a-919d-413861904646,
 "externalId":"bjensen",
 "meta":
 {
 "created":"2011-08-01T18:29:49.793Z",
 "lastModified":"2011-08-01T18:29:49.793Z",
 "location":"https://example.com/scim/v1/
inetorgperson/2819c223-7f76-453a-919d-413861904646"
 },
 "urn:unboundid:schemas:scim:ldap:1.0":
 {
 "entryDN":"uid=bjensen,ou=people,dc=example,dc=com",
 "objectClass":[
 { "value":"top" },
 { "value":"person" },
 { "value":"organizationalPerson" },
 { "value":"inetOrgPerson" },
],
 "cn":[
 { "value":"Ms. Barbara J Jensen III" }
],
 "sn":[
 { "value":"Jensen" }
],
 "givenName":[
 { "value":"Barbara" }
],
 "uid":[
 { "value":"bjensen" }
],
 "telephoneNumber":[
 { "value":"555-555-8377" }
],
 "mail":[
 { "value":"bjensen@example.com" },
 { "value":"barbara@yahoo.com" }
],
 ...omitted for brevity; all user attributes are returned...
 }
}

Note these examples are using the entryUUID as the SCIM “ID”. The SCIM “ID” is
configurable in the scim-resources.xml file for any SCIM endpoints, and uses the entryDN by

Introduction

6

default. For the LDAP endpoint, the SCIM “ID” will always be the entryUUID attribute and will
not be configurable.

Getting Started

To get started with the Identity Access API:

1. Configure the SCIM HTTP Servlet Extension. The SCIM HTTP Servlet Extension can
be enabled on the Directory Server or the Directory Proxy Server. For example, the The
Directory Server provides a dsconfig batch script, scim-config-ds.dsconfig, in the
config directory that you can run to configure the SCIM HTTP Servlet Extension. See
the "Managing the SCIM Servlet Extension" chapter in the PingData Directory Server
Administration Guide for procedural information. Pay particular attention to the four
configuration properties on the SCIM HTTP Servlet Extention that exposes (or excludes) the
LDAP object classes or base DNs as resource endpoints.

2. View the SCIM REST API. The Identity Access API extends the SCIM REST API so
that LDAP resources can be included as endpoints. The current SCIM specification can be
accessed at http://tools.ietf.org/html/draft-ietf-scim-core-schema-01. The SCIM
REST API provides schema information and the CRUD operations needed to access the core
SCIM resources.

3. Try the SCIM SDK. The SCIM SDK is available at https://github.com/UnboundID/
scim.

Interfaces

7

Chapter

2 Interfaces

The LDAP object class endpoints conform to the SCIM REST API for creating, retrieving,
querying, modifying, and deleting resources with the addition of some custom query parameters
to enhance the functionality. The supported operations and arguments are enumerated below
with examples.

The schema URN for the Identity Access API is "urn:unboundid:schemas:scim:ldap:1.0".

Topics:

• Create
• Modify
• Delete
• Search
• Bulk Operations

Interfaces

8

Create

A CREATE operation uses the HTTP POST method and can be invoked on any of the object
class endpoints (including top). The request body must contain the objectclass attribute, and at
least the required attributes for that object class. It also must contain a special entryDN attribute,
so that the server will know where to create the entry.

Note that the objectclass attribute must contain a structural value that is compatible with
the associated endpoint (“person” in the following example), or else a 400 error code will be
returned.

POST /person HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Bearer h480djs93hd8
Content-Length: ...
{
 "schemas":["urn:unboundid:schemas:scim:ldap:1.0"],
 "urn:unboundid:schemas:scim:ldap:1.0":
 {
 "entryDN":"uid=bjensen,ou=people,dc=example,dc=com",
 "objectClass":["top","person","organizationalPerson","iNetOrgPerson"],
 "cn":"Ms. Barbara J Jensen III",
 "sn":"Jensen",
 "givenName":"Barbara",
 "uid":"bjensen",
 "telephoneNumber":"555-555-8377",
 "mail":["bjensen@example.com","barbara@yahoo.com"]
 }
}

The SCIM specification states that the response to this request contains the full entry that was
just created on the server, or else an error response and error description in the response body.

There are no additional query parameters supported for this operation (other than the
standard SCIM “attributes” query parameter). Note that wrapping the attributes in
"urn:unboundid:schemas:scim:ldap:1.0": { ... } is optional here because there is only a
single schema; they could be specified at the top-level.

Here is another example that should return an error because it is being invoked on an incom-
patible endpoint (posting a “domain” to the inetorgperson object class):

POST /inetorgperson HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Bearer h480djs93hd8
Content-Length: ...
{
 "schema":["urn:unboundid:schemas:scim:ldap:1.0"],
 "dn":"dc=example,dc=com",
 "objectClass":["top","domain"],
 "dc":"example",
 "postalAddress":"456 South Street",
 "telephoneNumber":"512-734-8377",
 "st":"TX",
 "description":"An example domain."
}

Here’s the example response from this request:

HTTP/1.1 400 BAD REQUEST

Interfaces

9

{ "Errors":
 [
 {
 "description":"Objectclass values [top,domain] are incompatible with the
 inetorgperson resource.",
 "code":"400"
 }
]
}

Note: Many LDAP syntaxes, such as DirectoryString, support the UTF-8
encoding of the entire Unicode character set; some of these characters are
not permitted in well-formed XML. If an LDAP attribute is not declared
BINARY in the schema but an atribute value contains a character that is not
permitted in XML, then the server will Base64-encode the value and add a
"based64Encoded=true" attribute to the corresponding XML element.

Modify

A MODIFY operation must use the HTTP PUT or PATCH method. There are no special query
parameters expected here; this should just follow the standard SCIM REST API. Note that
the special “ dn ” attribute is not allowed in the payload for a modify operation, and MODDN
operations are not directly supported by this API; however, if you modify an RDN attribute then
under the covers this will result in a MODDN. Just as in the case of CREATE, the objectclass
attribute has to be compatible with the endpoint which is being invoked.

There are no additional query parameters supported for this operation (other than the standard
SCIM "attributes" query parameter) to the MODIFY (PUT and PATCH) sections.

Put

Here is an example of a PUT method:

PUT /top/2819c223-7f76-453a-919d-413861904646
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Bearer h480djs93hd8
{
 "schemas": ["urn:scim:schemas:core:1.0","urn:unboundid:schemas:scim:ldap:1.0"],
 "id":"2819c223-7f76-453a-919d-413861904646",
 "urn:unboundid:schemas:scim:ldap:1.0":
 {
 "objectClass":["top","person","organizationalPerson","iNetOrgPerson"],
 "cn":"Ms. Barbara J Jensen III",
 "sn":"Jensen",
 "givenName":"Barbara”,
 "uid":"bjensen",
 "telephoneNumber":"555-555-8377",
 "mail":["bjensen@example.com","barbara@yahoo.com"]
 }
}

Note in the case of PUT, special care must be taken to avoid accidentally deleting attributes
because you forget to include them in the payload. However, the server will not delete virtual

Interfaces

10

attributes and sensitive attributes that would not normally be returned if they are not included in
the PUT.

Also note that the “id” attribute is read-only, and thus is not required to be present
in the body. But since it is present, we are required to declare two schemas (SCIM
Core and PingData LDAP) and wrap our attributes in the schema URN, i.e. "
urn:unboundid:schemas:scim:ldap:1.0": { ... }.

Patch

This example demonstrates how to remove the description and add two new email addresses to a
user entry:

PATCH /inetorgperson/acbf3ae7-8463-4692-b4fd-9b4da3f908ce
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Bearer h480djs93hd8
{
 "schemas":["urn:scim:schemas:core:1.0","urn:unboundid:schemas:scim:ldap:1.0"],
 "meta":
 {
 "attributes":
 [
 "description"
]
 },
 "urn:unboundid:schemas:scim:ldap:1.0":
 {
 "mail":["johndoe@example.com","jdoe@yahoo.com"]
 }
}

Delete

A DELETE operation must use the HTTP DELETE method. There are no special query
parameters expected here; this should just follow the standard SCIM REST API. Delete
operations will use the server-side soft-delete policy to decide whether a delete operation results
in a soft-delete. Also note that only leaf nodes can be deleted; there is no support for subtree
delete operations. Here is a simple example:

DELETE /inetorgperson/2819c223-7f76-453a-919d-413861904646
Host: example.com
Authorization: Bearer h480djs93hd8

Search

As the previous examples show, resources can be accessed directly using their SCIM ID:

https://example.com/scim/Users/{id}

or using their entryUUID:

https://example.com/scim/inetorgperson/{entryUUID}

Interfaces

11

This format is specified by the SCIM protocol. If you do not know the SCIM ID of the entry
you are looking for, then you have to do a search. Search via the LDAP object class endpoints
conforms to the SCIM filtering semantics (using the “filter” query parameter, Section 3.2.2.1 of
the SCIM REST API), and supports the following parameters:

• base-id -- The SCIM ID of the entry to use as the LDAP search base. If not specified, the
search will be based at the root DSE. Note that this does not take an LDAP base DN.

• scope -- The LDAP search scope to use. Valid values are “base”, “one”, “sub”, or
“subordinate”. If not specified, the default value is “sub”.

Section 3.7 of the SCIM REST API, any request that returns a Resource can include the
“attributes” query parameter, which limits the returned attributes to those specified. When
used with the LDAP object class endpoints, the attribute names must be raw LDAP attribute
names, and may contain the special entryDN attribute as well. Note this applies to POST, PUT,
PATCH, and GET operations.

For example, here is a request for a specific entry that should only return the entryDN and uid
attribute:

GET /inetorgperson/2819c223-7f76-453a-919d-413861904646?attributes=uid,entryDN
Host: example.com
Accept: application/json
Authorization: Bearer h480djs93hd8

Here is an example using the custom LDAP query parameters:

GET /person?base-id=550e8400-e29b-41d4-a716-446655440000&scope=base&filter=sn
eq "Jensen" and (telephoneNumber sw "512" or mail co "example.com")
&attributes=id,entryDN,givenName,sn,isMemberOf,isActive,ds-rlim-size-limit
Host: example.com
Accept: application/json
Authorization: Bearer h480djs93hd8

And the server response:

HTTP/1.1 200 OK
Content-Type: application/json
{
 "totalResults":2,
 "schemas": ["urn:scim:schemas:core:1.0","urn:unboundid:schemas:scim:ldap:1.0"],
 "Resources":
 [
 {
 "id":"2819c223-7f76-453a-919d-413861904646",
 "entryDN":"uid=bjensen,ou=people,dc=example,dc=com",
 "givenName":[
 { "value":"Barbara" }
],
 "sn":[
 { "value":"Jensen" }
],
 "isMemberOf":[
 { "value":"cn=accounting,ou=groups,dc=example,dc=com" }
],
 "isActive":true,
 "ds-rlim-size-limit":100
}, {
 "id":"e9e30dba-f08f-4109-8486-d5c6a331660a",
 "entryDN":"uid=bryanj,ou=people,dc=example,dc=com",
 "givenName":[
 { "value":"Bryan" }
],
 "sn":[
 { "value":"Jensen" }
],
 "isMemberOf":[
 { "value":"cn=engineering,ou=groups,dc=example,dc=com" },

Interfaces

12

 { "value":"cn=management,ou=groups,dc=example,dc=com" }
],
 "isActive":false,
 "ds-rlim-size-limit":500
 }
]
}

Bulk Operations

Bulk operations should work as described in the SCIM REST API. There should be no special
or extra provisions needed.

Bulk Operation Implementation

The SCIM extension supports bulk operations as specified in the SCIM protocol. The remainder
of this section describes details about how bulk operations are executed in a bulk request,
memory and disk usage, and status codes.

BulkId References

Bulk operations within a bulk request are executed in the order that the client presents the
operations. So, any forward bulkId references will result in an error. For example, if a bulk
request creates a new user using a POST and assigns that user to a group using a PUT, then the
POST must appear before the PUT.

In addition to allowing bulkId references in resource data, the PingData implementation allows a
bulkId reference in the path of a bulk operation. For example, the client could POST a new user
with a bulkId of user1. Then later, in the same bulk request, the client could PUT that same user
using the path /Users/bulkId:user1 .

Memory and Disk Usage

The SCIM extension tries to minimize the amount of heap memory required to process a bulk
request by writing temporary data to files in the tmpDataDir directory. A significant amount of
heap memory may still be used to resolve bulkId references to resource IDs. The amount of heap
memory needed is bounded by the maximum size of a bulk request (bulkMaxPayloadSize)
multiplied by the maximum number of concurrent bulk requests (bulkMaxConcurrentRequests
). Typically, the actual amount of memory used is far less. Care should be taken to ensure
that the Directory Server running the SCIM extension has enough total heap to allow for the
memory needed by the SCIM extension. If necessary, reduce the bulkMaxPayloadSize and/or
bulkMaxConcurrentRequests settings.

Note that these settings are controlled by the Directory Server administrator, not the client
developer. However, a client can retrieve the values of these settings through the SCIM server’s
/serviceProvider configuration end points.

Interfaces

13

Overview of Status Codes

The most common status codes that may be returned by a bulk request follow:

• 200 - The bulk request was processed, although one or more of the contained operations may
have failed or may not have been valid.

• 400 - The bulk request could not be understood.

• 413 - The request exceeds the bulkMaxOperations or bulkMaxPayloadSize limits.

• 503 - The bulkMaxConcurrentRequests limit would have been exceeded.

Authentication

SCIM requests to the LDAP endpoints will support HTTP Basic Authentication and OAuth2
Authentication using a bearer token. There is existing support for this in the Directory Server
and Directory Proxy Servers using the OAuthTokenHandler API (i.e., using a Server SDK
extension). There should be no additional work required to support this.

Note that our implementation only supports the HTTP Authorization header for this purpose;
we do not support the form-encoded body parameter or URI query parameter mechanisms for
specifying the credentials or bearer token.

Interfaces

14

	Contents
	Ping Identity® Identity Access API Documentation
	Preface
	Purpose of This Guide
	Audience
	Related Documentation
	Document Conventions

	Introduction
	Available SDKs
	About SCIM
	Summary of SCIM Protocol Support
	About the Identity Access API
	Getting Started

	Interfaces
	Create
	Modify
	Put
	Patch

	Delete
	Search
	Bulk Operations
	Bulk Operation Implementation
	BulkId References
	Memory and Disk Usage
	Overview of Status Codes
	Authentication

	Index

