
Ping Identity®Security Guide
Version:6.1.0.0

Ping Identity® Security Guide
© Copyright 2004-2017 Ping Identity® Corporation. All rights reserved.

Trademarks

Ping Identity, the Ping Identity logo, PingFederate, PingAccess, and PingOne are registered
trademarks of Ping Identity Corporation ("Ping Identity"). All other trademarks or registered
trademarks are the property of their respective owners.

Disclaimer

The information provided in these documents is provided "as is" without warranty of any kind.
Ping Identity disclaims all warranties, either express or implied, including the warranties of
merchantability and fitness for a particular purpose. In no event shall Ping Identity or its
suppliers be liable for any damages whatsoever including direct, indirect, incidental,
consequential, loss of business profits or special damages, even if Ping Identity or its suppliers
have been advised of the possibility of such damages. Some states do not allow the exclusion
or limitation of liability for consequential or incidental damages so the foregoing limitation may
not apply.

Support

https://support.pingidentity.com/

Table of Contents
Preface viii

Audience viii

Related Documentation viii

Chapter 1: Introduction 1

Security risks in an identity environment 2

Financial and reputation costs 2

Common attack models 2

PingData security features 3

Chapter 2: Client access 6

Identifying potential clients 7

Clients requiring privileged ports 7

Identifying data security 7

Chapter 3: Mitigating system attacks 9

Denial of service prevention 10

Monitoring tools 10

System alerts 11

System alarms and gauges 11

Enforce resource limits 12

Restrict request types with client connection policies 16

Allow and deny client IP addresses 16

Data Breach Prevention 17

Global configuration options for on-disk encryption 18

Implement sensitive attributes 18

Password storage schemes 21

Limit search results 23

Restrict access to certain controls 25

Restrict access to the directory information tree with client connection policies 25

LDAP injection attacks 26

Man-in-the-middle attack prevention 27

Secure system-to-system network connections 27

Features that reduce the risk of network address-spoofing 28

Chapter 4: Host system protection 29

The PingData environment on multiple operating systems 30

- ii -

Chapter 3

Minimize software and running services 30

Keep systems patched 30

Virtualization best practices 31

Maintain the Java Virtual Machine 31

Configure strong authentication for administrators 31

Minimize administrative account capabilities 32

Use system logging and auditing 32

Chapter 5: Filesystem security 33

Filesystem protections 34

Remove Java encryption security restrictions 34

Manage the encryption settings database 34

Supported cipher stream providers 35

Configure data encryption 35

Devise backup and restore strategies 36

Encrypt backups 36

Secure LDIF exports 37

Chapter 6: Protect the PingData Platform 39

Separate user and administrator accounts 40

Use a limited account to run identity server services 40

Considerations for root users 40

Centralized and remote logging 42

Secure the configuration using privileges 42

Safe use of dsconfig and the Administrative Console 43

Maintain consistent server configurations 43

Data security audits 44

Data security audit reports 44

Data security auditors 45

Configure the data security auditors 45

The audit-data-security tool 46

Directory Proxy Server considerations 46

Data Sync Server considerations 47

Chapter 7: Data Integrity 49

Stored Entry Checksums 50

- iii -

Cryptographic Digests 50

Entry Checksum Operational Attribute 50

Schema Integrity 51

Limiting Exposure of Stale Data 52

Time Synchronization 53

Creating a Read-Only Instance of the Directory Server 54

Server Lock-Down Mode 54

Storing Reversible Changes in the Log 55

Chapter 8: Client connection and password policies 56

Associating a Client Connection Policy with a client connection 57

Recommendations for creating Client Connection Policies 57

Password Policies 58

Password validators 59

Password expiration 61

Password changes and administrative reset 62

Account lockout, expiration, and disablement 63

Last login time and last login IP address tracking 64

Password generators 65

Account status notification handlers 66

Per-user Password Policies 67

Additional password policy properties 67

Password encoding during LDIF Import 68

Password policies and the Directory Proxy Server 69

Chapter 9: Access control 70

Overview of access control 71

Validation and security 71

Global ACIs 71

Access controls for public or private backends 72

General format of the access control rules 72

Examples of common access control rules 73

Administrator access 73

Anonymous and authenticated access 74

Delegated access to a manager 74

Proxy authorization 74

Validating ACIs before migrating data 75

- iv -

Chapter 3

Working with privileges 75

Available privileges 75

Chapter 10: Authentication Mechanisms 78

Configuring authentication types 79

Using SASL authentication mechanisms 79

Controll authentication with Client Connection Policies 79

Controll authentication with password policies 80

Reject or Limit unauthenticated requests 80

Restrict authentication with operational attributes 81

Use certificate-based authentication 82

Certificate mappers 82

Configure a SASL mechanism handler 83

Configure SASL ANONYMOUS mechanism 87

Configure SASL CRAM-MD5 mechanism 87

Configure SASL DIGEST-MD5 mechanism 89

Configure SASL EXTERNAL mechanism 91

Configure SASL GSSAPI mechanism 92

Configure SASL PLAIN mechanism 95

Configure the UNBOUNDID-CERTIFICATE-PLUS-PASSWORD mechanism 95

Configure SASL UNBOUNDID-TOTP mechanism 96

Configure SASL UNBOUNDID-DELIVERED-OTP mechanism 97

Configuring the UNBOUNDID-EXTERNALLY-PROCESSED-AUTHENTICATION
mechanism 99

Configure the UNBOUNDID-YUBIKEY-OTP mechanism 99

Configure YubiKey authentication for a user 100

Retire a YubiKey device for a user 100

Configure certificate mappers 101

Configure the Subject Equals DN certificate mapper 101

Configure the Fingerprint certificate mapper 102

Configure the Subject Attribute to User Attribute Certificate Mapper 103

Configure the Subject DN to User Attribute certificate mapper 104

Configuring pass-through authentication 105

Prevent bind information leaks 106

Chapter 11: Monitoring, alerts, alarms, and notifications 108

- v -

Monitoring components 109

About the Data Metrics Server 109

Data Metrics Server Security 109

Monitoring using SNMP 109

Monitoring with JMX 110

Monitoring using the LDAP SDK 110

Monitoring over LDAP 111

Profile server performance using the Stats Logger Plugin 111

Working with administrative alert handlers 111

The Alerts backend 112

View information in the Alerts backend 112

Modify the alert retention time 113

Configure duplicate alert suppression 113

System alarms and gauges 113

Test alerts and alarms 114

Working with account status notifications 115

Account status notification types 116

Chapter 12: Logging security 117

Configure log rotation and retention policies 118

Log signing 118

Configure access logging 119

Configure filtered logging 122

Configure change logging 124

Configure error logging 126

Configure debug logging 127

Configure Data Sync Server logging 128

Options for centralized logging 129

Parse and Analyze log messages 130

Chapter 13: Network security 132

SSL and StartTLS 133

Configure SSL 133

Configure StartTLS 135

Key manager providers 136

Trust manager providers 136

Configure the Key and Trust manager providers 137

- vi -

Chapter 3

Secure LDAP communication 138

Configure LDAP connection handlers 140

Configure external server communication 141

Preventing communication over insecure connections 141

Allow or Deny connections from specific clients 142

Secure replication communication 143

Secure HTTP communication 143

Securing SNMP communication 143

Securing JMX communication 143

Secure database communication 144

Securing syslog communication 144

Other network security configuration options 144

Limit the maximum time for JVM cache 145

Appendix A: SSL details 146

Asymmetric and symmetric encryption 147

Certificates 147

Appendix B: About the Java Keytool 150

Java Keytool utility use 151

Create a server certificate 151

Create a client certificate 153

Appendix C: Understanding Criteria 155

Criteria overview 156

Simple connection criteria 156

Simple request criteria 158

Simple result criteria 161

Simple search entry criteria 164

Simple search reference criteria 165

Aggregate criteria 166

Index 167

- vii -

Preface

The PingData Security Guide provides concepts and procedures to secure and manage the
PingData Platform. This guide is intended for any PingData product deployment.

Audience
This guide is intended for administrators who are responsible for installing and managing
servers in an enterprise identity environment. Knowledge of the following is recommended:

l Identity platforms and LDAP concepts.

l General system administration and networking practices.

l Java VM optimization.

l Application performance monitoring.

Related Documentation
The following documents represent the rest of the PingData product set and may be
referenced in this guide:

l PingData Directory Server Reference (HTML)

l PingData Directory Server Administration Guide (PDF)

l PingData Data Sync Server Reference Guide (HTML)

l PingData Data Sync Server Administration Guide

l PingData Directory Proxy Server Reference (HTML)

l PingData Directory Proxy Server Administration Guide (PDF)

l PingData Data Governance Server Reference (HTML)

l PingData Data Governance Server Administration Guide (PDF)

- viii -

Preface

l PingData Data Metrics Server Administration Guide (PDF)

l LDAP SDK (HTML)

l Server SDK (HTML)

- ix -

Chapter 1: Introduction

Storing and handling consumer identity data requires taking appropriate steps to safeguard it,
while continuing to provide fast, real-time, and highly-available services for the consumers
who consent to its use.

Topics include:

Security in an identity environment

PingData security features

- 1 -

Chapter 1: Introduction

Security risks in an identity environment
The PingData Platform serves as the authentication repository for a wide variety of network
applications, sensitive user information, and application data. Hackers that obtain user
credentials can cause extensive damage to individuals, systems, and businesses. News of
companies suffering from a data breach is more common and more concerning for consumers.

Financial and reputation costs
Business costs to secure and monitor identity deployments can be large, but the total cost is
small compared to the cost of a security breach. A security breach requires resources to
investigate the incident, assess the scope of damage, and identify and fix any compromised
data. Businesses face compensating users for downtime and for costs incurred from the
exposure of their personal data. But, the damage to a company’s reputation is the most costly
result.

Common attack models
Directories are the central component within identity management systems. They streamline
the authentication, authorization, and privilege granting across system boundaries. Whether
for user, account, or subscriber provisioning, directory services systems must be properly
secured so that sensitive information is not accessible by unauthorized individuals externally
or internally.

This guide describes procedures to mitigate three broad classes of security threats.

Attack Model Description Ease of
Detection Potential Loss

Man-in-the-Middle
Attacks

The communication between systems is
compromised, allowing the attacker to insert
himself in the conversation, undetected by
the legitimate systems.

Difficult to
detect.

Generally results in the loss of
specific data.

Denial-of-Service
Attacks

An attacker (or a poorly coded client
application) swamps the system with
requests that cripple its ability to operate and
serve legitimate clients.

Easy to detect. Limited data loss, but severe
disruption to normal business
operations.

Data Breach and
Data Trawling
Attacks

The attacker gains access to data they
should not have.

Difficult to
detect.

Often results in the loss of a
large amount of data in a
single event.

Common Attack Models

- 2 -

PingData security features

PingData security features
The PingData Platform provides the following security and monitoring components:

Network Encryption with SSL and StartTLS. PingData servers support SSL and StartTLS to
encrypt communication with clients. Administrators can configure different certificates for
each connection handler, or use the same certificate for all connection handlers. SSL or
StartTLS can also be configured to secure communication between server components.
Replication between Directory Servers uses SSL. The server also enables fine-grained control
of the key material used in connecting peers in SSL handshakes and trust material for storing
certificates.

SASL Authentication Mechanism Support. PingData servers support SASL mechanisms
including Anonymous, Cram-MD5, Digest-MD5, External, Plain, and GSSAPI. Servers using
Cram-MD5 and Digest-MD5 require access to the clear-text password for a user. In this case,
the Directory Server supports reversible encryption to store passwords with more secure
encoding. The Directory Server server also supports two types of one-time password (OTP)
mechanisms for multi-factor authentication: UnboundID-TOTP SASL and UnboundID-
Delivered-OTP SASL. The proprietary UnboundID-TOTP SASL mechanism allows multi-factor
authentication to the server using time-based one-time password (TOTP) code. The proprietary
UnboundID-Delivered-OTP SASL mechanism allows multi-factor authentication to the server by
delivering a one-time password to the end user through some out-of-band channel, such as
email or SMS.

Another component is the UnboundID Certificate Plus Password SASL mechanism, which is
used to perform multifactor authentication against the Directory Server using both a client
certificate, presented during SSL/TLS negotiation, and a static password.

Certificate-based Authentication. PingData servers support client-based authentication,
which uses a client certificate as the set of credentials for LDAP authentication during SSL or
StartTLS negotiation.

Password Policies. PingData servers provide extensive password policy support including:

l maximum password age

l maximum password reset age

l configurable password warning intervals

l grace logins

l ability to disallow password changes after expiration

l forcing passwords to be changed when accounts are added or reset

l preventing password reuse by time or number of old passwords

l account lock-outs based on failed login attempts

l preset account expiration time (for temporary accounts)

l idle time log-outs

- 3 -

Chapter 1: Introduction

l a password generator

l multiple default password storage schemes

l account expiration

Password Storage Schemes. PingData servers support password storage schemes such as
one-way digests (CRYPT, SCRYPT, BCRYPT, PBKDF2, MD5, SMD5, SHA, SSHA, SSHA256,
SSHA384, SSHA512) and reversible encryption (BASE64, 3DES, AES, RC4, BLOWFISH).
Password Policies can also require a specific authentication mechanisms for users associated
with the policy.

Message Digests & Encryption Algorithms for Passwords. PingData servers support the
use of one-way message digests (CRYPT, SCRYPT, BCRYPT, PBKDF2, 128-bit MD5, 160-bit
SHA-1, and 256-bit, 384-bit, and 512-bit SHA-2), and a number of reversible encryption
algorithms (BASE64, 3DES, AES, RC4, and Blowfish) for storing passwords. Even if passwords
are encoded using reversible encryption, that encryption is intended for use only within the
server. Passwords are not made available to administrators in unencrypted form. Encrypted
password storage should only be used if using an authentication mechanism that requires the
server to have access to clear-text passwords, like CRAM-MD5 or DIGEST-MD5.

Client Connection Policies. PingData servers can control which clients get connected to the
server, how they are connected, and what resources or operations are available to them. For
example, client connection criteria can be defined to block specific IP addresses or domains.

When a client establishes a connection to the server, the server assigns a policy for that
connection. If the client performs a bind, which can change the identity of that connection, or
uses the StartTLS extended operation, which can change an insecure connection to a secure
one, the server re-evaluates the connection and assigns it a different policy.

Full-Featured Access Control System. PingData servers provide an access control
subsystem that determines whether a given operation is allowed based on specified criteria.
The access control system is used to grant or restrict access to data, restrict the use of specific
types of controls and extended operations and provides strong validation for access control
rules before accepting them.

Privileges. PingData servers include a privilege subsystem that works with the access control
subsystem. Operations are only allowed if both privilege and access control criteria are met.

Encrypted Backups. PingData servers protect the integrity of backup contents using
cryptographic digests and encryption. When restoring the backup, servers verify that the
digest matches the content of the backup and generates an error if the backup has been
changed.

Global Settings. Key security features are configured globally, and apply to the service as a
whole. These features include schema validation, authentication and authorization constraint
policies, limiting resource consumption (to defend against denial-of-service attacks), data
protection, and encryption controls.

Lock-Down Mode. PingData servers can automatically enter lockdown mode when certain
events are triggered, and only allow requests from users who have the lockdown-mode
privilege.

- 4 -

PingData security features

Sensitive Attributes. PingData servers support sensitive attributes used to prevent access or
restrict access to secure connections. Sensitive attributes can also restrict access to those
users who are not subject to access control processing (those users with the bypass-acl or
bypass-read-acl privilege), but for which access should still be restricted.

Operational Attributes. The Directory Server provides a number of operational attributes
that can be added to user entries in order to restrict the way those users can authenticate and
the circumstances under which they can be used for proxied authorization.

System and Audit Logging. PingData servers provide extensive logging and auditing
capabilities that can detect attacks and assess potential damage.

Plug-Ins and SDK Extensions. PingData servers provide plug-in points and extensions for
custom certificate mappers, trust manager providers, post-connect and post-disconnect for
client connections and many others.

- 5 -

Chapter 2: Client access

Mitigating the risk of data exposure requires understanding the expected uses of the directory
service, the nature of the data stored, and the clients that can access it. Knowing what data
clients need to access and the ways they need to interact with it can help define security
policies.

Topics include:

Identify potential clients

Clients requiring privileged ports

Identifying data security

- 6 -

Chapter 2: Client access

Identifying potential clients
The capabilities of the clients using PingData services will determine the security features
used. For example, if some clients do not support SSL or StartTLS, a less secure type of
communication maybe required. If some clients can only perform simple binds, SASL
authentication may not be an option.

If the set of clients is known ahead of time, the server can be configured based on their
capabilities. Even if some clients are not known in advance, the client connection policies
enable separating and restricting unknown or insecure clients. Things to consider when tuning
security options for clients include:

l Is the set of clients for the directory service well defined, or an arbitrary or diverse set
of clients? If the answer is not known, is it possible to enforce a minimum set capabilities
for all clients to use?

l Do all clients support the use of SSL and/or StartTLS? If so, the server can be configured
to accept only secure requests.

l Do any clients require unauthenticated access to the server? If not, configure the server
to accept only authenticated requests. If some unauthenticated requests are required,
create a client connection policy specifically for those clients that limits the kinds of
operations they can request.

l If the set of clients that will interact with the server fit into well defined groups, create
separate client connection policies for each group.

Clients requiring privileged ports
Many operating systems consider ports 1 through 1024 to be “privileged” ports. By default only
processes owned by (or initially started by) the root user can listen on them. Though PingData
servers can be configured to listen on any set of ports, running the Directory Server (or any
network process) under a root user account is not recommended.

The vast majority of LDAP client applications make it possible to configure the ports that they
should use to communicate with an LDAP server. If all applications in this environment provide
this support, run all server instances on unprivileged ports (such as 1389 and 1636).

If there are client applications that can only use privileged ports (such as 389 and 636),
configure the operating system to allow servers to use those ports.

Identifying data security
Understanding how to secure data requires knowing what data will be stored and how it will be
accessed. Even if all of the data in the directory environment is considered sensitive to some
extent, some elements are more sensitive, or may have different requirements for client
interaction. For example, although passwords are critical for authentication and must be

- 7 -

Identifying data security

changed over LDAP, well-designed LDAP clients should not need to retrieve them from the
server.

Answer the following questions for attributes that will be stored in the server:

l What do clients need to retrieve the attribute from the server? Do any clients need to
access it over insecure connections?

l What attributes do clients need to be able to use in search filters for searches with a
baseObject scope? Searches with a baseObject scope do not require any attribute
indexes.

l What attributes do clients need to be able to use in search filters for searches with a
scope other than baseObject?

Most of the attributes in an entry will fit into the same category. It is not necessary (and
generally not recommended) to specify different access control rules or sensitive attribute
definitions for each individual attribute. Create one rule for each class of similar attributes.
Attributes that exist in multiple classes can be governed by the most restrictive of those
classes.

Answer the following questions for the client applications that will access attributes:

l What kinds of operations do they perform?

l What indexes are required?

l Is there any need for insecure client access?

l Does the application need to perform any updates?

l Does the application access or store sensitive data?

- 8 -

Chapter 3: Mitigating system attacks

There are three main system attack types:

Denial of Service Attacks – Malicious clients or rogue programs that continuously perform
expensive operations that exhaust the available resources of the server. The primary goal of
this attack is to take the system down and impede user access.

Data Breach Attacks – An attacker accesses and steals private data. Data breaches often
lead to data trawling attacks and unauthorized bulk downloads of data.

Man-in-the-Middle Attacks – A connection is established between the Identity server and a
client by an intermediary host that relays messages between them. The client and target
server are unaware of this eavesdropping attack, which can be used to intercept sensitive
data, manipulate data transmission, or inject malicious code to compromise security.

Topics include:

Denial of service prevention

Data breach prevention

Man-in-the-middle attack prevention

- 9 -

Chapter 3: Mitigating system attacks

Denial of service prevention
The PingData Platform provides a number of features that can help avoid denial of service
attacks:

l Server's monitoring tools detect attacks.

l Resource limits enforced on all clients to prevent a denial of service attack.

l Restrictions on the types of operations that clients can request.

l Cllient type access restrictions.

The Directory Server and the PingData Platform can restrict the type of operations that clients
can request, the rate at which clients can issue requests, the number of concurrent requests
per connection, and the number of concurrent connections per client. For example, access to
expensive unindexed searches can be limited, including restricting access to specific users and
limiting the number of concurrent unindexed searches. Search requests can be limited by the
number of entries returned, the length of time they are allowed to take, and the number of
entries that can be examined during processing. The Directory Proxy Server also provides
health checking and load balancing capabilities that can detect servers that are slow or
unresponsive and route requests to healthy servers.

If a malicious client is discovered, associated connection(s) can be terminated and future
connections prevented. If one or more clients are able to consume all available worker
threads, work queue monitoring can immediately notify administrators, and the servers can
provide additional worker threads that are reserved for processing administrative requests.

Monitoring tools
There are three methods of monitoring the performance of PingData servers. Each of these can
be used to examine server performance and compare suspicious levels of activity with normal
patterns. In conjunction with other tools, they can provide alerts and alarms:

l Data Metrics Server – A data collection and aggregation server that collects
performance and event data from a set of PingData servers. It can report the overall
performance of the entire directory service, as well as report on individual servers. The
Data Metrics Server normalizes and aggregates this data and makes it available through
a REST API and chart output. Both historical and current data is available.

l cn=monitor Entry – The entry used by each PingData server to expose monitoring
information. The cn=monitor data is also available through SNMP Management
Information Bases (MIBs), including the Processing Time MIB, the System Status MIB,
and the LDAP Statistics MIB. Data can be accessed with tools like the servers'
Administrative Console, JConsole, LDAP command-line tools, and JMX.

l Stats Logger – A built-in tool for all PingData servers that is useful for profiling server
performance for a given configuration. When enabled, the Stats Logger writes server

- 10 -

Denial of service prevention

statistics to a log file in a comma separated format (.csv) at a specified interval. The
logger has a negligible impact on server performance unless the log-interval property is
set to a very small value (less than 1 second).

System alerts
The system also supports a number of alert handlers:

l Error Log Alert Handler – Sends administrative alerts to the configured server error
logger(s).

l Exec Alert Handler – Executes a specified command on the local system if an
administrative alert matching the criteria for this alert handler is generated by the
server. Information about the administrative alert will be made available to the executed
application as arguments provided by the command.

l SNMP, JMX, and SMTP (mail) Alert Handlers – Send administrative alerts via their
respective protocols.

l Groovy Scripted Alert Handler – Provides alert handler implementations defined in a
dynamically-loaded Groovy script that implements the ScriptedAlertHandler class
defined in the Server SDK.

l Third Party Alert Handler – Provides alert handler implementations created in third-
party code using the Server SDK.

System alarms and gauges
Each PingData server installs a set of gauges that are specific to the product and that can be
cloned or configured through the dsconfig tool. Existing gauges can be tailored to fit each
environment by adjusting the update interval and threshold values. Configuration of system
gauges determines the criteria by which alarms are triggered. The Stats Logger can be used to
view historical information about the value and severity of all system gauges.

An alarm represents a stateful condition of the server or a resource that may indicate a
problem, such as low disk space or external server unavailability. A gauge defines a set of
threshold values with a specified severity that, when crossed, cause the server to enter or exit
an alarm state. Gauges are used for monitoring continuous values like CPU load or free disk
space (Numeric Gauge), or an enumerated set of values such as 'server available' or ‘server
unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity changes
due to changes in the monitored value. Like alerts, alarms have a severity (NORMAL,
WARNING, MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a
Condition property, and may have a Specific Problem or Resource property. If surfaced
through SNMP, a Probable Cause property and Alarm Type property are also listed. Alarms
can be configured to generate alerts when the alarm's severity changes.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores
information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over
time that can change in severity and be cleared when a monitored value returns to normal.

- 11 -

Chapter 3: Mitigating system attacks

Alarms can be viewed with the status tool. As with other alert types, alert handlers can be
configured to manage the alerts generated by alarms. A complete listing of system alerts,
alarms, and their severity is available in <server-root>/docs/admin-alerts-list.csv.

Enforce resource limits
The PingData product family provides methods to enforce resource limits to protect against
denial-of-service attacks. These include setting global configuration properties, configuring the
limits in Client Connection Policies, or configuring operational attributes. For details about
these properties, see the administration guide for the specific server.

Enforce resource limits with global configuration options
These properties of the Global Configuration are relevant for protection against denial of
service attacks:

l Limit the Max Number of Connections – Includes a number of properties that can be
used to control the maximum number of connections established with the server. This
includes maximum-concurrent-connections, maximum-concurrent-connections-per-
ip-address, and maximum-concurrent-connections-per-bind-dn. If any connection
limit is reached, any subsequent connections are terminated.

l allowed-task – Specifies the task classes that the server can run. Tasks allow LDAP
clients to request operations, including shutting down or restarting the server, importing
data from LDIF, restoring data from a backup, rebuilding a database index, or forcing a
JVM garbage collection. The Server SDK also supports custom Java-based or Groovy-
based tasks.

l disabled-privilege – Specifies privileges that should be disabled. If a privilege is
disabled, it is assumed that all users have that privilege. The user will still be required to
satisfy any other requirements (such as access control permissions) that the server has
in place for that operation.

l size-limit – Specifies the maximum number of entries that a user can retrieve in a
single search operation. This limit can be overridden on a per-user basis with the ds-

rlim-size-limit operational attribute in the user's entry (in a real or virtual attribute),
which is reserved for users that need to retrieve many entries.

l time-limit – Specifies the maximum length of time that the server is allowed to spend
on any user-requested search operation. This limit can be overridden on a per-user basis
using the ds-rlim-time-limit operational attribute (in a real or virtual attribute) in the
user's entry.

l lookthrough-limit – Specifies the maximum number of entries that the server can
examine while processing a single search. This count can include entries that don't match
the search criteria or that the user doesn't have permission to access. The ds-rlim-

- 12 -

Denial of service prevention

lookthrough-limit operational attribute (as a real or virtual attribute) can be used to
set an alternate limit.

l idle-time-limit – Specifies the maximum length of time that a client can maintain a
connection without any active operations. This is useful for dealing with applications that
establish connections, and then fail to close those connections when no longer needed.
This can be overridden on a per-user basis with the ds-rlim-idle-time-limit

operational attribute in a user's entry (as a real or virtual attribute).

l maximum-concurrent-connections – Specifies the maximum number of connections
that can be established with the server at one time. If the limit is reached, new
connection attempts are rejected until existing ones are closed. However, the maximum
number of connections is ultimately determined by the number of file descriptors
available to the JVM (minus the number of descriptors needed for interacting with local
files).

l maximum-concurrent-connections-per-ip-address – Specifies the maximum
number of connections that can be established with the server at one time from a single
IP address. If a client has the maximum connections established, additional attempts
from that client are rejected until existing connections are closed.

l maximum-concurrent-connections-per-bind-dn – Specifies the maximum number
of connections that can be established concurrently while authenticated as a given user.
If this limit is reached, any connection attempts to authenticate as that user will be
terminated.

l maximum-concurrent-unindexed-searches – Specifies the maximum number of
unindexed searches that can be processed at one time. Unindexed searches can tie up
worker threads for a significant length of time.

l duplicate-error-log-limit – Specifies the maximum number of duplicate messages
that can be written to the server error log within a specified time period (defined by the
duplicate-error-log-time-limit property). This prevents a frequently-encountered
problem from filling the server error log. If this limit is exceeded, a message is recorded
at the end of that time period stating the number of messages that were suppressed.

l duplicate-error-log-time-limit – Specifies the duration for which the duplicate-

errorlog-limit property will be in effect.

l duplicate-alert-limit – Specifies the maximum number of administrative alerts of the
same type that can be generated within a specified time period (defined by the
duplicate-alert-time-limit property). This limits the number of administrative
alerts generated if a recurring problem exists within the server. If this limit is exceeded,
an alert is generated at the end of the specified time period stating the number of alerts
that were suppressed.

- 13 -

Chapter 3: Mitigating system attacks

l duplicate-alert-time-limit – Specifies the duration for which the duplicate-alert-

limit property will be in effect.

Enforce resource limits with client connection policies
Configuration properties in client connection policy objects enforce restrictions on the
resources that clients can consume. A policy is associated with each connection to the server.
If multiple policies exist, they are evaluated in ascending order of the assigned evaluation
order index. Policies with a lower index number are evaluated first. The first policy that the
server finds whose criteria match the client connection will be associated with that connection.
If no client connection policy is found with criteria matching the connection, then the
connection is terminated.

Properties include:

l maximum-concurrent-connections – Specifies the maximum number of client
connections allowed at one time per policy. If the maximum number of connections have
already been assigned through the policy, the new connection is terminated.

l maximum-connection-duration – Specifies the maximum length of time that a client
connection is allowed to remain, regardless of the level of activity on that client
connection. If a connection associated with this policy exceeds the value, it is
terminated.

l maximum-idle-connection-duration – Specifies the maximum length of time that a
client connection can remain established without any active requests in progress. If the
connection associated with this policy exceeds this value, it is terminated.

l maximum-operation-count-per-connection – Specifies the maximum number of
operations that a client connection can request over the life of that connection. If the
client submits more than the value, the connection is terminated.

l maximum-concurrent-operations-per-connection – Specifies the maximum
number of operations a connection can have in progress at one time. If the client reaches
the limit, any additional request will either be rejected or delayed before a timeout
(specified through the maximum-concurrent-operation-wait-time-before-rejecting

property).

l maximum-concurrent-operation-wait-time-before-rejecting – Specifies the
maximum length of time that the server should allow a client request to wait for an
operation to complete, before it can be processed within the maximum-concurrent-

operations-per-connection limit.

l maximum-connection-operation-rate – Specifies the maximum rate at which a client
connection associated with the policy can submit operation requests. Values are
specified as "100/s" for a limit of one hundred operations in a one-second period, or
"1000/5m" for a limit of one thousand operations in a five-minute period. Multiple

- 14 -

Denial of service prevention

operation rate limits can be specified. For example, specifying values of "100/s" and
"50000/h" will allow clients to burst up to 100 operations per second, but not more than
50,000 operations in an hour.

l connection-operation-rate-exceeded-behavior – Specifies the action that the
server should take if a client exceeds any of the maximum-connection-operation-rate

values. By default, the server will reject the operation with a result code of 51 (busy). An
option to terminate the client connection is also available.

l maximum-policy-operation-rate – Specifies the maximum operation rate across all
connections associated with the client connection policy. This is useful in cases where a
policy is dedicated to clients associated with a particular application for the purpose of
limiting the aggregate request rate for that application.

l policy-operation-rate-exceeded-behavior – Specifies the behavior that the server
should exhibit if the maximum-policy-operation-rate is exceeded. This has the same
set of options as the connection-operation-rate-exceeded-behavior property.

Enforce search limits with client connection policies
The following settings are used to limit the search parameters of clients for which the client
connection policy applies:

l maximum-search-size-limit – Specifies the maximum search size limit (the
maximum number of entries that can be returned by a search operation). This can be
used to enforce a smaller limit for clients, but will not increase a client's size limit.

l maximum-search-time-limit – Specifies the maximum length of time that the server
can spend processing a client search operation. This can be used to enforce a smaller
time limit for clients than they would otherwise have, but will never increase a client's
time limit.

l maximum-search-lookthrough-limit – Specifies the maximum search lookthrough
limit (the maximum number of entries that the server can examine during the course of
processing a search, regardless of whether those entries are actually returned to the
client). This can be used to enforce a smaller lookthrough limit, but will not increase a
client's lookthrough limit.

l allow-unindexed-searches – Allows clients to request unindexed search operations.
Unindexed searches can occupy worker threads for long periods of time. They can also
be used to retrieve large amounts of data from the server. It is generally recommended
that access to request unindexed searches be limited to administrators, or operations
requested from a specific set of systems.

- 15 -

Chapter 3: Mitigating system attacks

Restrict request types with client connection policies
Client Connection Policies provide a number of properties that can be used to restrict the type
of requests that clients are allowed to issue. They include:

l allowed-operation – Specifies the operations that are allowed for clients associated
with the policy. Allowed values include abandon, add, bind, compare, delete, extended,
modify, modify-dn, and search.

l allowed-request-control – Specifies object IDs of controls that clients are allowed to
use in requests. Any request containing one or more controls not in this list is rejected. If
no allowed-request-control values and no denied-request-control values are
specified, clients can request any controls.

l denied-request-control – Specifies object IDs of controls that clients are not allowed
to use in requests. If a client request includes a control with an object ID that matches a
denied value, that request is rejected. If no allowed-request-control values and no-

denied-request-control values are specified, clients are allowed to request any
controls.

l allowed-extended-operation – Specifies object IDs of extended requests that clients
are allowed to send. If one or more values are specified, any extended request not
contained in this list is rejected. If no allowed-extended-operation and no denied-

extended-operation values are specified, clients are allowed to submit any extended
request.

l denied-extended-operation – Specifies object IDs of extended requests that clients
are not allowed to send. If a client sends an extended request listed as denied, that
request is rejected. If no allowed-extended-operation and no denied-extended-

operation values are specified, clients can submit any extended request.

l required-operation-request-criteria – Specifies a request criteria object that is
required to match any request submitted by the client. If a value is specified, and the
client submits a request that does not match that criteria, the request is rejected.

l prohibited-operation-request-criteria – Specifies a request criteria object that must
not match requests submitted by the client. If a value is specified and the client submits
a request that matches that criteria, the request is rejected.

Allow and deny client IP addresses
The Directory Server provides several means to limit client access using connection handlers,
client connection policies, or operational attributes.

Allow and deny client IP addresses using connection handlers
Limit the client IP addresses using the LDAP or LDAPS connection handlers. The connection
handlers provide two properties that can be used to mitigate denial-of-service attacks:

- 16 -

Data Breach Prevention

l allowed-client – Specifies the set of allowable address masks that can establish
connections to the handler.

l denied-client – Specifies the set of address masks that are not allowed to establish
connections to the handler.

Allow and deny client IP addresses using client connection policies
Access can be restricted by configuring a new client connection policy, then creating a new
connection criteria and associating it with the connection policy. Connection criteria define sets
of criteria for grouping and describing client connections based on a number of properties,
including the protocol, client address, connection security, and authentication state for the
connection.

Limit client IP addresses by specifying the following properties in client connection policies:

l included-client-address – Specifies an address mask that identifies a set of clients
that should be included in the connection criteria.

l excluded-client-address – Specifies an address mask that can be used to specify a set
of clients that should be excluded from the connection criteria.

Allow and deny client IP addresses using an operational attribute
Specified address masks can be limited using the following operational attribute:

ds-auth-allowed-address – Specifies the set of addresses from which a user is allowed to
authenticate. Values can be address masks, which can include individual IP addresses or
resolvable names, addresses with wildcards, CIDR address ranges, or IP addresses with
subnet masks. This attribute can also be used to ensure that accounts used by external
systems are only used by those external systems.

Data Breach Prevention
The PingData Platform provides features that mitigate data breach and trawling attacks such as
on-disk encryption, sensitive attributes, password storage schemes, access control rules, and
client connection policies. Flexible logging capabilities make it possible to record operations
that involve large amounts of data, which can be investigated after a breach.

Client connection policies are effective against trawling attacks, limiting the resource
capabilities for certain clients using connection criteria. For example, limits can be enforced on
the number of requests a client can issue, the rate at which the client can make requests, the
types of filters clients are allowed to issue, and on substring length. Server-wide or per-user
constraints can be defined on the number of entries that can be examined and/or returned per
search, the length of time the server spends processing a search, and whether to process
expensive unindexed searches.

- 17 -

Chapter 3: Mitigating system attacks

Global configuration options for on-disk encryption
A number of Global Configuration properties can set on-disk encryption to protect against data
breach and trawling attacks. Data encryption is only applied to the on-disk storage for a
Directory Server instance. It does not automatically protect information accessed or replicated
between servers, although other mechanisms provide that protection (SSL, StartTLS, SASL).
Client communication using either SSL or StartTLS encryption ensures that the data is
protected from individuals or applications able to eavesdrop on network communication. This
communication security can be enabled independently of data encryption.

The global configuration properties designed to set up on-disk encryption include the following:

l encrypt-data – Specifies whether data encryption should be enabled in the server for
all components that support it, including certain backends, like the LDAP changelog
backends, and the replication database. If this is enabled, the server must be configured
with at least one encryption setting definition.

l encryption-settings-cipher-stream-provider – Specifies the cipher stream provider
used to read from and write to the encryption settings database, which is also encrypted.
If no cipher stream provider is configured, the server uses a hard-coded algorithm for
accessing encrypted data. If data encryption is enabled, a custom cipher stream provider
should be defined so that it uses a non-default mechanism for accessing the contents of
the encryption settings database.

l verify-entry-digests – Specifies whether the server should automatically verify any
cryptographic digests that can exist in the encoded representation of entries during the
course of decoding them. The generation of entry digests is controlled by the hash-
entries configuration property in backends that support this capability. The process of
generating these digests can be controlled independently of their verification.
Verification can be enabled only if database corruption is suspected.

Implement sensitive attributes
Some attributes contained in user data need additional protection beyond what access controls
provide. This is important for those users who are not subject to access control processing
(those users with the bypass-acl or bypass-read-acl privilege), but for which access to
certain attributes should still be restricted. The Directory Server's sensitive attribute
mechanism can be used to accomplish this.

Sensitive attributes are used to restrict certain kinds of access to a specified set of attributes,
or to ensure that they can only be accessed over a secure connection. Sensitive attributes can
be defined as part of the global configuration or in client connection policies.

l Global sensitive attributes – Are applied across all client connection policies, except
those that explicitly exclude them using the sensitive-attribute property.
Administrators can configure this setting using the dsconfig tool.

- 18 -

Data Breach Prevention

l Sensitive attributes – Are configured using the sensitive-attribute property in the
client connection policy configuration object. The exclude-global-sensitive-

attribute property can be used to indicate that certain global sensitive attributes should
not be in effect for clients associated with that client connection policy. It is possible for
the same attribute type to be referenced in multiple sensitive attribute definitions. In this
case, the server enforces the most restrictive combination of these sensitive attribute
definitions during processing.

Global configuration for sensitive attributes
The global configuration property available for use with sensitive attributes include the
following:

sensitive-attribute – In the global configuration, specifies the set of sensitive attribute
definitions, which is automatically applied across all client connection policies. However,
individual client connection policies can exclude one or more global sensitive attribute
definitions if desired. See the section on sensitive attributes for more information.

Client connection policy properties for sensitive attributes
The client connection policy properties available for sensitive attributes include the following:

l sensitive-attribute – Specifies the set of sensitive attribute definitions that are in
effect for clients associated with the client connection policy. Sensitive attributes can be
used to prevent access to specified attributes, or to restrict them so that they can only be
accessed over secure connections.

l exclude-global-sensitive-attribute – Specifies the set of global sensitive attribute
definitions that is excluded for clients associated with the policy. For example, if most
clients should be prevented from retrieving passwords, but the Data Sync Server needs
to be able to retrieve encoded passwords over a secure connection, a global sensitive
attribute can prevent password access, and the policy used by the Data Sync Server can
exclude that global policy.

Configuration properties for sensitive attribute definitions
There are a number of properties used to configure sensitive attributes with the dsconfig
command-line tool:

l attribute-type – Specifies the names of the attributes targeted by this definition.

l include-default-sensitive-operational-attributes – Specifies whether the server
should consider certain operational attributes to be sensitive. This includes the ds-sync-

hist attribute, which is used for holding information for replication conflict resolution
processing. Since this attribute can include previous values for attributes, it could

- 19 -

Chapter 3: Mitigating system attacks

contain values for sensitive attributes, and therefore it needs to provide the same level
of protection as explicitly-defined sensitive attributes.

l allow-in-returned-entries – Specifies whether the server should allow sensitive
attribute values to be returned to the client in search result entries. The value for this
property can be one of the following:

o allow – Include this attribute in search result entries if it is permitted by access
control and other parameters.

o suppress – Exclude this attribute in search result entries, regardless of whether
the user has permission to access it in other ways.

o secure-only – Include this attribute in search result entries, but only for clients
communicating with the server over a secure connection.

l allow-in-filter – Specifies whether the server should allow clients to request search
operations with a filter that targets any of the sensitive attributes. The value for this
property can be one of the following:

o allow – Allow any search containing a filter targeting a sensitive attribute.

o reject – Reject any search containing a filter targeting a sensitive attribute.

o secure-only – Allow any search containing a filter targeting a sensitive attribute,
but only for clients communicating with the server over a secure connection.

l allow-in-add – Specifies whether the server should allow clients to attempt to create
entries that include the sensitive attribute. The value can be one of the following:

o allow – Allow any add requests.

o reject – Reject any add requests.

o secure-only – Allow any add requests for clients communicating with the server
over a secure connection.

l allow-in-compare – Specifies whether the server should allow clients to attempt to
perform a compare operation which targets the sensitive attribute. The value can be one
of the following:

o allow – Allow any compare requests.

o reject – Reject any compare requests.

o secure-only – Allow any compare requests for clients communicating with the
server over a secure connection.

l allow-in-modify – Specifies whether the server should allow clients to attempt to
modify sensitive attributes. The value can be one of the following:

o allow – Allow any modify operations.

o reject – Reject any modify.

o secure-only – Allow any modify operations for clients communicating with the
server over a secure connection.

- 20 -

Data Breach Prevention

Password storage schemes
Many news-worthy security breaches center around stealing large numbers of stored, encoded
passwords. To protect passwords, the Directory Server enables a variety of password storage
schemes. Password storage schemes are used to perform encoding, and to verify that clear-
text passwords provided in a bind request match the encoded representation stored in a user's
entry.

There are a number of different password storage scheme implementations to obscure user
passwords. Many of them use one-way digests that encode passwords in a manner that cannot
be reversed, so that even if someone discovers the encoded representation of a password,
they cannot easily determine the clear-text value used to generate it. Many of them use salts
to provide better resistance to attacks using pre-encoded dictionaries. Others use reversible
encryption that makes it possible for the server to determine the clear-text value, but it is still
difficult for users to determine the clear-text version of that password.

Some implementations use trivial encodings that do not offer any real protection and are only
supported for compatibility with third-party applications. Schemes that use reversible
encryption should be avoided unless clients need to perform SASL authentication with the
DIGEST-MD5 or CRAM-MD5 mechanisms. Storage schemes using one-way digests are
recommended for best security.

The password storage schemes supported by the Directory Serverinclude:

l AES – Uses the AES reversible encryption algorithm.

l Base64 – Uses base64 encoding, which obscures password values but does not provide
any real level of protection.

l Blowfish – Uses the Blowfish reversible encryption algorithm.

l Bcrypt and scrypt – Uses thousands of cryptographic computations in the course of
encoding a password to make the process of encoding a password relatively expensive.
These require the free, open source Bouncy Castle cryptographic library available at
https://www.bouncycastle.org/download/bcprov-jdk15on-157.jar.

l Clear – Stores the clear-text representation of the password with no encoding or
obfuscation.

l Crypt – Uses the UNIX crypt mechanism. The server supports three variants of this
mechanism: the "classic" crypt digest which is weak, and two stronger 256-bit and 512-
bit SHA-2 digests, which are extremely resistant to attacks.

l MD5 – Uses an unsalted form of the MD5 message digest algorithm.

l PBKDF2 – Uses PBKDF2 key derivation function as described in the PKCS#5
specification (RFC2898). PBKDF2 is the preferred option for a strong password storage
scheme that involves multiple rounds of cryptographic processing, and does not require
third-party components (like Bcrypt and scrypt).

l RC4 – Uses the RC4 reversible encryption algorithm.

- 21 -

Chapter 3: Mitigating system attacks

l Salted MD5 – Uses a salted form of the MD5 message digest algorithm.

l Salted SHA1 – Uses a salted form of the SHA-1 message digest algorithm.

l Salted SHA256 – Uses a salted form of the 256-bit SHA-2 message digest algorithm.

l Salted SHA384 – Uses a salted form of the 384-bit SHA-2 message digest algorithm.

l Salted SHA512 – Uses a salted form of the 512-bit SHA-2 message digest algorithm.

l SHA-1 – Uses an unsalted form of the SHA-1 message digest algorithm.

l Third-Party Enhanced – Created in third-party code using the Server SDK. These
storage schemes may have access to the user entry so that content from that entry can
be used in the password encoding and/or validation process if needed.

l Third-Party – Created in third-party code using the Server SDK.

l 3DES – Uses the 3DES reversible encryption algorithm.

Strongest supported password storage schemes
The strongest of the supported storage schemes are the PBKDF2, Bcrypt, and scrypt schemes.
Each of these schemes performs thousands of cryptographic computations in the course of
encoding a password (and the scrypt scheme also relies on memory consumption and memory
access latency) to make the process of encoding a password relatively expensive. In most
cases, this expense is not significant for normal authentication processing, but it is very
effective at impeding brute force and dictionary attacks, even if the attacker has access to the
encoded representation of a password. The Bcrypt and scrypt password storage schemes
requires the free and open source Bouncy Castle cryptographic library
(https://www.bouncycastle.org/download/bcprov-jdk15on-157.jar), which is not
included with the server. The PBKDF2 scheme does not require any additional library to be
installed.

The SHA-2 variants of the crypt password storage scheme use similar techniques for encoding
passwords that are resistant to attack. However, the crypt scheme also supports substantially
weaker variants that may permit the inadvertent use of weakly-encoded passwords. It is
recommended that the crypt scheme only be used if it is necessary for compatibility with other
systems. If that compatibility is only needed for migrating data, the crypt scheme can be
marked as deprecated so that passwords encoded with it are automatically re-encoded with a
stronger scheme the first time the user authenticates with that password.

The password storage schemes that use salted variants of the 256-bit, 384-bit, and 512-bit
SHA-2 digests are also considered strong, although these schemes only apply the digest one
time when encoding a password. Brute force and dictionary attacks against passwords encoded
with these schemes can be conducted much more quickly than with the PBKDF2, Bcrypt, or
scrypt schemes. However, with strong passwords, these attacks are still very expensive to
conduct.

Formats for encoded passwords
The Directory Server supports two different formats for representing encoded passwords:
userPassword and authPassword. The userPassword syntax is widely supported by directory

- 22 -

Data Breach Prevention

servers. It contains the name of the scheme in curly braces followed by an encoded
representation of a password, like {SSHA}7z9Lzvdk3ACw9ITe/yEV5iES5ADcbdZcj3PFZQ==.
The authPassword syntax, as described in RFC 3112, looks like
SHA1$wrOlEecRfV0=$3as1EB+TkA85WWcOugSLsoghU90=, and is not supported by all servers.

Each password policy must have at least one default password storage scheme. When the
server is asked to store a password provided in clear-text, it encodes it using each of the
storage schemes before actually storing it in the database. Multiple default schemes can be
used, but this should only be done for cases in which clients need to retrieve the encoded
password from the server and verify it themselves rather than using an LDAP bind operation,
or if there are multiple clients that require conflicting schemes for offline verification.

Deprecated password storage schemes
Password Policies can also be configured with zero or more deprecated password storage
schemes. Deprecated storage schemes provide a mechanism for retiring old password
schemes that had previously been used but are no longer needed and are not considered
secure. When a user authenticates to the server with a password encoded in any of the
deprecated storage schemes, the deprecated encodings are removed and the password is re-
encoded with the current password storage scheme.

Limit search results
Data trawling attacks are characterized by broad searches that attempt to retrieve as much
data in one operation as possible. Allowed searches can be limited and the server can be
prevented from returning suspiciously large result sets.

Global configuration property that limits search results
The Directory Server provides a global configuration property that limits search results to
mitigate against data trawling attacks:

size-limit – Specifies the maximum number of entries returned in a single search operation.
This limit can be overridden on a per-user basis by including the ds-rlim-size-limit
operational attribute in the user's entry (in a real or virtual attribute), and should be reserved
for users that have a legitimate need to retrieve large numbers of entries.

Client connection policies that limit search results
The Directory Server provides Client Connection Policies that limit search results to mitigate
against data trawling attacks:

l allowed-filter-type – Specifies the kinds of filter components that clients are allowed
to use in search operations. If a client sends a search filter containing one or more
components with a filter type that is not allowed, the search is rejected.

l minimum-substring-length – Specifies the minimum number of consecutive non-
wildcard characters that must be present in a substring search filter component in order
for a search request to be allowed. If a search request contains a filter with a substring

- 23 -

Chapter 3: Mitigating system attacks

component that does not have at least this many consecutive non-wildcard characters,
the search is rejected.

l maximum-search-size-limit – Specifies the maximum search size limit (the
maximum number of entries that can be returned by any search operation) for clients
using the policy. This property can be used to enforce a smaller limit for clients than they
already have, but will never increase a client's size limit.

l maximum-search-time-limit – Specifies the maximum length of time that the server
can spend processing any search operation for clients using the policy. This property can
be used to enforce a smaller time limit for clients than they already have, but will never
increase a client's time limit.

l maximum-search-lookthrough-limit – Specifies the maximum search lookthrough
limit (the maximum number of entries that the server can examine during the course of
processing a search, regardless of whether those entries are actually returned to the
client) for clients using the policy. This property can be used to enforce a smaller
lookthrough limit for clients than they already have, but will never increase a client's
lookthrough limit.

Operational attributes that limit search results
The Directory Server provides operational attributes that limit search results to mitigate
against data trawling attacks:

l ds-rlim-size-limit – Specifies the search size limit that should be enforced for the user.
If a value is not specified, the user inherits the default size limit specified in the global
configuration.

l ds-rlim-time-limit – Specifies the search time limit (in seconds) that should be
enforced for the user. If a value is not specified, the user inherits the default time limit
specified in the global configuration.

l ds-rlim-lookthrough-limit – Specifies the search lookthrough limit that should be
enforced for the user. A value of zero indicates that no lookthrough limit should be
enforced for that user. If this is not specified, the user inherits the default lookthrough
limit specified in the global configuration.

Searches involving sensitive attributes
The Directory Server supports additional restrictions that can be applied to specific attributes.
Several of these are useful in the context of making search requests more secure, such as
allow-in-returned-entries and allow-in-filter.

- 24 -

Data Breach Prevention

Restrict access to certain controls
Another way to protect against a data breach is to limit large searches spanning multiple
requests, which is a risk if an attacker has access to certain controls, such as the simple paged
results and virtual list view. The simple paged results control can be used with a search
operation to iterate sequentially through the search results a page at a time. The virtual list
view control is similar, except that the results are presented in sort order that enables the
server to return a subset of entries.

Using client connection policies to restrict access to controls
By default, these controls are granted to users specifically through access control rules or for
those users who have the bypass-acl privilege. Access to these controls can be limited by
configuring restrictions on what controls are allowed through the Client Connection Policy. The
properties that limit access to controls are as follows:

l allowed-request-control – Specifies the object IDs of the controls that clients can
include in requests. Only specified controls can be included in the requests.

l denied-request-control – Specifies the object IDs of the controls that clients are not
allowed to include in requests.

l required-operation-request-criteria – Specifies a request criteria object that is
required to match all requests submitted by clients. If a client submits a request that
does not satisfy this request criteria object, that request is rejected.

l prohibited-operation-request-criteria – Specifies a request criteria object that must
not match requests submitted by clients. If a client submits a request that satisfies this
request criteria object, that request is rejected.

Note
These properties do not grant a user the ability to use these controls, which is done using
access control rules. They do providemore granular control over circumstances in which they
can be used, and also enforce these restrictions for users with the bypass-acl privilege.

Restrict access to the directory information tree with client connection
policies
Client connection policies can control the portions of the Directory Information Tree (DIT) that
clients can access. This is configured through the set of subtree views associated with the
policy. Subtree views associate a base DN with the logic used to process requests within that
portion of the DIT. Some of these subtree views can be automatically created by the server for
those associated with local backends, but some of them can be manually created by
administrators, especially in the Directory Proxy Server, for views that pass through
operations to backend servers.

The configuration properties used to limit access to portions of the DIT include:

- 25 -

Chapter 3: Mitigating system attacks

l include-backend-subtree-views – Indicates whether the policy should automatically
include subtree views for local backends defined within the server. This should only be
set to false in the Directory Proxy Server, so that it only allows access to proxied data
but prevents access to local content like the server root DSE, schema, configuration, and
monitor data.

l included-backend-base-dn – Specifies the base DNs for backends whose information
should be made available to clients. If base DNs are specified, clients associated with the
policy are only allowed to access data within those DNs. If no backend base DNs are
specified as included or excluded, clients can access all content in all backends.

l excluded-backend-base-dn – Specifies the backend base DNs for content that clients
should be prevented from accessing. If no backend base DNs are specified as included or
excluded, clients can access all content in all backends.

l included-backend-server-pass-through-subtree-views – Used in the Directory
Proxy Server to expose access to each of the backend servers. This can be useful for
administrators who can only access the backend servers through the Directory Proxy
Server but need to interact with a specific server without worrying about how requests
are routed through load balancing and entry balancing. If enabled, each backend server
is available through ds-backend-server={serverID}. For example, for a server with ID
ds1.example.com:389, the cn=monitor entry could be accessed with a DN of
cn=monitor,ds-backendserver= ds1.example.com:389.

l subtree-view – Used in the Directory Proxy Server to control access to proxied data
sets for clients. It can be useful for accessing data sets through proxying, entry
balancing, and failover request processors.

LDAP injection attacks
LDAP Injection attacks are used to manipulate the search filters from a client application to
gain access to an underlying directory database. Where a SQL query can be used to destroy or
alter data, LDAP injection only offers the possibility of providing unexpected read access to the
data. Also, the LDAP syntax used for expressing search filters prevents many kinds of injection
attacks so that an attacker cannot increase the scope of data returned.

To prevent injection attacks, make sure that all clients sanitize the user input that can be
included in search requests. Many LDAP client APIs (including the LDAP SDK for Java) provide
ways of creating search filters that do not require using the string representation, and
therefore do not allow unexpected input to turn into one or more additional search filter
components.

If a client succeeds in performing an LDAP injection, the intended result will be either to get the
server to reveal a large amount of data, or to reveal specific sensitive information. The first
scenario is considered a data trawling attack, which can be prevented with any of the
previously listed configuration options. The second scenario can be addressed by processing

- 26 -

Man-in-the-middle attack prevention

requests with an appropriate authorization identity, and by ensuring that the server is
configured (through the use of access controls, sensitive attributes, client connection policy
restrictions) to only return information that users have a right to retrieve.

Man-in-the-middle attack prevention
The man-in-the-middle attack works by establishing connections between the Directory Server
and the client and relaying messages between them as an intermediary host. The client and
target Directory Server are unaware of this eavesdropping attack, as each believes it is
communicating with the other. This attack can intercept sensitive data, manipulate data
transmission, and inject malicious code.

PingData servers can mitigate these attacks by ensuring that all connections are secure. For
example, clients can connect to the Directory Server over SSL or StartTLS, which enables
determining if the certificate presented can be trusted. Secure naming services like DNSSEC
can also help prevent the kinds of DNS hijacking attacks that are frequently used to trick
clients into establishing connections to the wrong systems.

Secure system-to-system network connections
Another critical aspect of network security lies in making sure that communication occurs
between the intended systems. If a client can be tricked into establishing a connection with an
untrusted system, then it could compromise the client’s credentials or enable a man-in-the-
middle attack, in which the untrusted system could alter traffic between the client and server
or inject completely new requests.

Consider using the following external tools (they are not PingData Platform features) to
mitigate these problems:

l Use DNSSEC – If available, DNSSEC should be used to prevent DNS hijacking in a way
that could cause clients to receive the wrong addresses for servers.

l Strong TCP sequence numbers – Use strong TCP sequence numbers to avoid existing
sessions from being hijacked.

l Reject source-routed packets – Though rarely used, source routing allows the sender
of a packet to specify which route the packet should take to its destination.

l Reject ICMP redirects – Internet Control Message Protocol (ICMP) redirects are used
by routers to notify host systems that a better path is available to its destination. Reject
ICMP redirects avoid traffic routed through untrusted systems.

l Prevent Eavesdropping – Any inter-system communication should be encrypted to
ensure data integrity and confidentiality. For PingData servers, internal configuration
options address this concern. However, communication to remote filesystems can also
include sensitive data that needs to be protected. Encryption for these services can be
configured on an individual basis, or IPsec can be configured to ensure that all

- 27 -

Chapter 3: Mitigating system attacks

communication between systems is encrypted. IPsec can also encrypt communication for
services that do not provide their own encryption support.

Features that reduce the risk of network address-spoofing
The Ping Identity product family provides a number of features that reduce the risk of network
address-spoofing:

l Use a Global Configuration Property – The global configuration property,
networkaddress-cache-ttl, specifies the maximum length of time that the JVM should
cache the IP address for a resolved hostname.

l Use Custom Post-Connect and Post-Disconnect Plug-ins – The Server SDK can be
used to develop custom post-connect and post-disconnect plug-ins. Post-connect plug-ins
are invoked when the server accepts a new client connection and are used to terminate
that connection if it is determined that it should not be allowed. Post-disconnect plug-ins
are invoked just after an existing connection is closed, whether that closure is initiated
by a client or by the server.

l Set Up Credentials for External Servers – If the directory must access content on
an external server, credentials for that server must be supplied. These credentials can
be in the form of a password, or a certificate. Because these credentials are often for
accounts with elevated privileges, they need to be protected. The Directory Server
encrypts the passwords it uses to access external systems and the PINs used to interact
with a certificate keystore. Access to the configuration file, archived configurations, and
the configuration audit log should be carefully protected.

Credentials used to authenticate to external servers should not be shared by other
applications. If possible, the target server should also be configured to accept those
credentials only from PingData servers. This ensures that even if those credentials are
compromised, they can only be usable from PingData servers.

- 28 -

Chapter 4: Host system protection

Securing a directory environment requires securing the systems and networks on which the
servers are running. Even if a server is locked down, someone who has access to the system
on which the server is running may still be able to obtain sensitive data.

There is much information available about how to secure systems and networks. Work with
operating system vendors to understand the security features and best practices specific to
those platforms.

Most PingData server deployments exist on UNIX-based operating systems like Solaris, Linux,
and AIX. The principles addressed in this guide are suitable for any operating system, but
some content is more relevant for UNIX-based operating systems.

Topics include:

The PingData environment on multiple operating systems

Minimize software and running services

Keep systems patched

Virtualization best practices

Maintain the Java Virtual Machine

Configure strong authentication for system administrators

Minimize administrative account capabilities

Use system logging and auditing

- 29 -

Chapter 4: Host system protection

The PingData environment on multiple operating
systems
In many environments, selecting an operating system is a relatively straightforward process.
Most modern operating systems can be configured securely. PingData servers are well-suited
to deployments installed across multiple operating systems because they do not include
system-specific dependencies. The server software itself is pure Java. The data that it stores
does not depend on whether the CPU is bigendian or little-endian, the operating system
specifics, or what end-of-line sequence is used. A backup taken on one operating system can
be restored on another operating system, and in most cases, an entire server instance can be
moved from one operating system to another.

Some operating systems include extensions that add additional security capabilities, including
Solaris Trusted Extensions and SELinux. These can provide advanced security features,
including mandatory access control, role-based access control, and labeled security. In
addition, many of the security concepts from these operating systems have been incorporated
into the PingData server products.

Minimize software and running services
Operating systems often come with a large amount of software installed. Each application or
command on a system is potentially a security hole that could provide unauthorized users a
way to get into the system. Software that is not needed to run the JVM or PingData server
software can be safely removed. Consult the operating system(s) documentation to determine
the applications that can be removed.

For software that cannot be removed from the system, reduce the likelihood that it can be
exploited. Any unnecessary network services should be disabled, and any network daemons
which must run, but are not needed outside the system, should be configured so that they are
not accessible to external clients. When possible, services should be configured to run as a
non-root user with as few rights as possible.

All nonessential network services should be disabled, and firewall software should be used to
ensure that a service that is disabled cannot be accessed.

Keep systems patched
For software that cannot be removed from the system, it should be updated regularly so that
vulnerabilities are fixed as quickly as possible. However, there have been instances in which
security patches caused unforeseen problems. It is strongly recommended that a testing
environment be used to test patches and updates prior to production.

Monitor security-related or operating system mailing lists. These offer timely security
information based on a wide range of use. It can take a significant length of time for an
operating system vendor to prepare and test a patch for a problem, leaving systems
vulnerable during the duration. The sooner these problems are known, the sooner corrective

- 30 -

Virtualization best practices

action can be taken. After fixes are released, review industry reports for any problems
introduced by the patches.

Virtualization best practices
In environments that run multiple network services on the same system, it may be useful to
use virtualization to separate those services. In some cases (like the zones support that
Solaris offers), it can be useful to isolate a service from the rest of the operating system.

The primary advantage of separation is that it limits the effects of a vulnerability in one of the
services. A second advantage is that if an attacker does gain control over a service, the
compartmentalization can prevent the breach from escaping the boundaries of the container.

A third advantage to virtualization is that it can separate security monitoring tools from the
containers in which the servers are running. If an attacker gains access to the container in
which a PingData server is running, the attacker will not have access to the monitoring
process. This can also be useful for server logging. If a syslog daemon is run in one container
and the Directory Server in another, the server log can be run over a private network available
between those containers.

For a heavy virtualization option like VMware or hardware partitions like LDOMs, each
container will be required to have its own operating system installed, which must be secured
and maintained. Lightweight virtualization options that use only one operating system instance
may be more efficient.

Maintain the Java Virtual Machine
A recent version of the JVM should be used to ensure that known security holes have been
patched. However, there are known problems with some recent JVM versions, and it is best to
contact an authorized support provider for assistance in selecting the best version.

Just as with operating systems, consider running JVMs from different vendors to mitigate the
risk of bugs and security holes that can be discovered. On some operating systems, there may
not be many options.

Configure strong authentication for administrators
The mechanism for authenticating to the system should be as secure as possible. Consider who
really needs access to the system to minimize the number of credentials that could be
compromised. Each authorized user should have a distinct set of credentials, so that the
actions of each can be audited. If one leaves or no longer needs access to the system, that
account access can be easily revoked without impacting others. This also makes it easier to
enforce policies that require individuals to change their credentials on a regular basis without
having to coordinate the change among multiple users.

If possible, consider credentials either instead of, or in addition to passwords. SSH keys work
well. They are relatively straightforward to set up and use, do not need to be remembered, and
cannot be guessed. The keys themselves can be protected with passwords, adding another

- 31 -

Chapter 4: Host system protection

layer of security. If passwords alone must be used, configure the system to require strong
passwords and ensure that passwords are encoded with a mechanism that is resistant to
attacks.

If a user account is compromised or its owner leaves, the account should be terminated as
soon as possible. Normally, this is best left to a centralized naming service like LDAP, but this
is not recommended for the systems responsible for providing the directory service itself.
Local file-based accounts are most reliable. Keep a current list of all users with access to these
systems, and all systems they can access with those credentials, so they can all be quickly
accessed and revoked if necessary.

Minimize administrative account capabilities
Each system account should be as limited as possible while still allowing its owner to
accomplish necessary tasks. System administrators need full access to the system, but
administrative accounts should not be allowed to directly authenticate to the system.

The accounts of users authorized to log into the system and assume the administrative role
should be restricted to authentication, and assuming the administrative identity. Ideally, they
should have limited access to the server filesystem, and should not be able to see processes
owned by other users. Restrict the set of commands they can execute using profiles or a
restricted shell.

Use system logging and auditing
Most operating systems provide an audit mechanism that records detailed information about
system events. This can include coarse information, like recording user login and logout
events, or more detailed information like recording each time a user opens or closes a file.
Auditing can provide vital information to diagnose problems or investigate security breaches.
Make sure auditing and logging are tuned properly to avoid saving too much data, which can
hamper problem solving and reduce system performance.

- 32 -

Chapter 5: Filesystem security

If an attacker does gain access to a server system, the next line of defense is the restrictions
the system enforces for access to data on the server. This includes database content,
configuration files, log files, backups, LDIF exports, and other information.

Topics include:

Filesystem protections

Remove Java encryption security restrictions

Manage the encryption settings database

Supported cipher stream providers

Configure data encryption

Devise backup and restore strategies

Secure LDIF exports

- 33 -

Chapter 5: Filesystem security

Filesystem protections
The most basic forms of filesystem protection are file permissions and filesystem encryption.
Any portion of the filesystem containing sensitive data should be accessible only to the account
used to run the server. In the default installation, all components of the server reside in server
root. When the server archive is unzipped, which should be done with the account used to run
the server, the server root directory will have 0700 permission. The content below it cannot be
accessed by any other account on the system, except those not subject to filesystem access
restrictions, like root. Further, directories used to hold database files have permissions of
0700, and access and error log files are given permissions of 0600. If some components of the
server are moved to other filesystems, then permissions and ownership should be set on those
paths to ensure that it is appropriately protected.

Another form of security is filesystem encryption. Although PingData servers provide the
ability to encrypt some content, an additional level of protection may be obtained by
encrypting the entire filesystem. Encryption generally does not add much value for a mounted
filesystem, since it appears unencrypted to applications that use it.

Filesystem auditing software can also be used to identify questionable use of file permissions
and SUID/SGID bits, and keep a record of all filesystem content changes. This is valuable for
files that are part of PingData server installations. Though log and database files change
frequently, changes to jar and configuration files are less frequent. Any change in operating
system binaries and configuration files should be tracked.

Remove Java encryption security restrictions
Although the Java runtime environment includes the Java Cryptography Extensions (JCE)
library for performing encryption, hashing, signing, and other kinds of cryptographic
operations, the strength of the encryption that can be used is limited by default. This restriction
is enforced for legal reasons, because U.S. law forbids exporting strong encryption capabilities
to some countries. If possible, update the installation to remove these restrictions.

To do this, search for and download the "Java Cryptography Extension (JCE) Unlimited Strength
Policy Files 6." Follow the instructions in the README.txt file included with the package.

Manage the encryption settings database
Before enabling data encryption, create an encryption-settings definition to specify the cipher
transformation that should be used to encrypt the data, and encapsulate the encryption key.
The encryption-settings command-line tool can be used to manage the encryption-settings
database.

Because the encryption-settings database contains the encryption keys used to protect server
data, the encryption-settings database is itself encrypted. By default, the server will derive a
key to use for this purpose, but the logic used to access the encryption-settings database with
a cipher stream provider should be customized. The Server SDK provides an API that can be
used to create custom cipher stream provider implementations, but the server also provides
one that will obtain the key from a custom PIN file.

- 34 -

Supported cipher stream providers

Each server in a replicated environment will maintain its own encryption-settings database. If
data encryption is enabled, each replica uses its own encryption settings to encrypt updated
entries. Though it is not necessary for servers to share the same encryption-settings
definitions, it is necessary if the server needs to be able to restore a backup containing
encrypted data on a different instance than the server from which it was originally created. It
is recommended that an encryption-settings definition be created on one server, exported, and
imported on all other servers.

Supported cipher stream providers
The Directory Server supports four Cipher Stream Providers, which are used to obtain cipher
input and output streams to read and write encrypted data. These are advanced configuration
properties, listed in the PingData Directory Server Reference.

Cipher Stream
Providers Description

Default Default cipher stream provider using a hard-coded default key.

File-Based Used to read a specified file in order to obtain a password used to generate cipher
streams for reading and writing encrypted data.

Third-Party Used to provide cipher stream provider implementations created in third-party code
using the Server SDK.

Wait-for-Paraphrase Causes the server to wait for an administrator to enter a passphrase that will be used
to derive the key for cipher streams. Supply the passphrase to the server by running
the encryption-settings supply-passphrase command.

Cipher Stream Providers

Configure data encryption
By default, the server stores information in the database in a compact encoded form, intended
to minimize the amount of space required to hold that data on disk and in memory. Although
this encoding makes the data harder to extract, it is still possible for an attacker to get the
data, and potentially decode the database files on a different server.

To address this problem, the Directory Server enables encrypting the data after it has been
encoded, so that only an individual with access to both the database files and the encryption
key can determine the content. As long as the encryption keys are carefully protected, the
database content remains secure.

The Directory Server relies on data encryption rather than attribute encryption. Instead of
indicating which attributes should be encrypted, the server is enabled to encrypt all data. This
has several advantages over encrypting individual attributes, including:

l Simplicity – Enable data encryption in the global configuration, and it will be applied
where the server supports it. This includes user data, the replication database, and LDAP
changelog.

- 35 -

Chapter 5: Filesystem security

l Better Protection – The problem of selecting attributes and omitting something that
can contain sensitive information is eliminated. This is especially true for operational
attributes, which can contain portions of user data in non-obvious ways. For example,
attributes used for replication conflict resolution can have data from any attribute in the
entry.

l Smaller Database Size – Encrypting everything makes the encoded representation
smaller than if the database contained a mix of encrypted and unencrypted content.

l Efficiency – Encrypting all of the data as a single encryption operation is more efficient
than performing multiple encryption operations for individual attributes.

Once the server has been configured with at least one encryption settings definition, data
encryption can be enabled with the following:

$ dsconfig set-global-configuration-prop \
 --set encrypt-data:true

Data encryption can be enabled at any time, and any writes performed after that time will be
encrypted. Existing entries remain unencrypted until they are updated. To ensure that all data
is immediately encrypted, it is recommended that the server is stopped, the data is exported
to LDIF (optionally encrypting that LDIF file as described below), and the data is re-imported
into the server. This process can also be used to re-encrypt the data if the server is updated
with a new preferred encryption settings definition.

Devise backup and restore strategies
Regularly-tested backup and restore strategies ensure that directory data is safe, correct, and
usable. Beyond the basic data backup mechanisms that the server provides, make sure that
the entire server installation is archived on a regular basis. This ensures that supporting
content like encryption keys, certificate databases, and PIN files are properly backed up.
Encrypted data cannot be used without them, and signed data cannot be trusted.

A security breach may result in altered data. It is important to have copies of data to identify
what has changed. In the event that an attacker might have had access to a system for a long
period of time, archived log data may be critical to understanding how the breach occurred and
the extent of the damage.

Encrypt backups
Even if data encryption is enabled, someone accessing database files may be able to determine
information about the database environment, such as indexes defined and unique values
contained in the data. This applies not only to copies of the database on the server filesystem,
but also for copies such as server backups.

The server provides the ability to encrypt the backup contents, including index and database
structure information, which is not covered by data encryption. The server uses a different
encryption mechanism for backups and LDIF exports than it does for data encryption, and
automatically uses an encryption key shared across all servers in a replicated environment.

- 36 -

Secure LDIF exports

Creating or restoring an encrypted backup requires that the server be online. For example, the
following command performs an encrypted backup of all server backends:

$ bin/backup --task \
 --hostname directory.example.com \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPasswordFile admin.password \
 --backupDirectory bak \
 --backUpAll \
 --encrypt

Note
If data encryption is enabled, make sure that the encryption settings definitions are backed up
with the encrypted data. An attempt to restore a backend containing encrypted data without the
necessary encryption settings definitions, will result in inaccessible data. If all backends (as in
the example above) are included in the backup, the server automatically includes the
encryption settings database. If any backends contain encrypted data, include the encryption
settings backend tomake sure that the necessary keys needed to access that data are
available.

When a backup is performed, a backup.info file is created in the backup directory. This file
provides information about the settings for that backup, including whether the backup is
encrypted. The process for restoring a backup generated with or without the --encrypt
argument is the same. For example:

$ bin/restore --task \
 --hostname directory.example.com \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPasswordFile admin.password \
 --backupDirectory bak/userRoot

If restoring a backend that contains encrypted data, first restore any applicable encryption
settings definitions that may be in use before restoring the data itself. The restore process for
most backends completely eliminates any existing content. The resulting data set is only that
which is contained in the backup. Restoring a backup of the encryption settings database
preserves all definitions contained within, and adds any new definitions that are contained in
the backup.

Secure LDIF exports
LDIF exports provide an additional backup mechanism that offers protection against latent
corruption in the database, can iterate across every entry to discover corruption, and can also
apply data encryption to an existing data set. LDIF exports may also be a more efficient way of
generating indexes for a large number of attributes.

LDIF exports can contain sensitive data. The server provides the ability to encrypt LDIF
exports similar to binary backups, using the --encryptLDIF argument. To encrypt the data,
perform the export with the server online. For example:

$ bin/export-ldif --task \
 --hostname directory.example.com \

- 37 -

Chapter 5: Filesystem security

 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPasswordFile admin.password \
 --backendID userRoot \
 --ldifFile /ds/ldif/userRoot.ldif \
 --encryptLDIF

Although backups generate a descriptor file with information about the settings used for that
backup, that is not available for LDIF files. When performing an import, it is necessary to
explicitly indicate that the data is encrypted, using the --isEncrypted argument. For
example:

$ bin/import-ldif --task \
 --hostname directory.example.com \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPasswordFile admin.password \
 --backendID userRoot \
 --ldifFile /ds/ldif/userRoot.ldif \
 --isEncrypted

- 38 -

Chapter 6: Protect the PingData Platform

Protecting the PingData Platform refers to protecting all of the server components that
manage or store valuable user data. The Directory Proxy Server can front the Directory
Server backends, providing efficient load-balancing or entry-balancing deployments. The Data
Sync Server can be deployed to provide synchronization capabilities between disparate
system databases.

Topics include:

Separate user and administrator accounts

Centralized and remote logging

Secure the configuration using privileges

Directory Proxy Server considerations

Data Sync Server considerations

- 39 -

Chapter 6: Protect the PingData Platform

Separate user and administrator accounts
Accounts used to perform system or software administration should not be allowed to
authenticate directly to the system. Only a set of users that have already authenticated to the
system using limited individual accounts should be allowed to act as administrator.

This is best accomplished with a mechanism like Solaris roles, or through the use of the sudo
command. Only users with a legitimate need should be allowed to access those accounts.

In some organizations, the individuals responsible for managing systems are different from
those responsible for installing them. If there is overlap between these roles, it may be helpful
for those individuals to have separate accounts for each task. This may help in tracking the
actions performed by each account.

Installing or managing PingData software as a user other than the server user account, can
cause files to be created with incorrect ownership, which will interfere with subsequent
attempts to run the software using the server account. PingData server software can detect
and prevent attempts to start the server or use certain administrative tools with an unexpected
user account, but it may still be possible to cause some problems by attempting to manage the
server with an unexpected user account. By maintaining a hard separation between the
accounts for system and service administration, problems arising from mistakes like this are
easier to avoid.

Use a limited account to run identity server services
PingData software should run under a user account that has a minimal set of capabilities. The
account must be able to perform the following:

l Perform network communication.

l Read and write files at least below the server root, and potentially in other locations if
components like log and database files are to be spread across multiple filesystems.

l Execute commands in at least the bin and usr/bin directories, as well as those in the
bin directories below the server and JVM installations.

The account may need additional capabilities not normally granted to regular users, including
the ability to listen on a privileged network port and the ability to use a greater number of file
descriptors.

If running multiple instances of PingData server software on the same system, consider
running each under a separate account. This provides a degree of isolation that can help
minimize exposure if one of the accounts is compromised.

Considerations for root users
A directory root user is an all-powerful account that cannot be limited by access control or
password policy restrictions, and in some cases is only allowed to authenticate through
relatively insecure means. With PingData servers, there is very little difference between root

- 40 -

Separate user and administrator accounts

users and regular users, with the exception that root user entries exist in the server
configuration rather than in user data, and root users can be configured to automatically inherit
certain privileges.

Many directories support only a single root user, which can cause several problems. First, it
requires all administrators to share the same credentials, which makes it difficult to coordinate
users to change those credentials. In addition, the need to share credentials among multiple
individuals increases the risk that those credentials will be exposed, and also makes it difficult
or impossible to audit the activities of individual administrators.

PingData servers can have any number of root users with their own credentials (including non-
simple credentials, like a certificate for SASL EXTERNAL), individual privilege sets, and
password policy restrictions. Since the special rights that root users have are granted through
privileges and operational attributes, it is possible to create a non-root user that is just as
powerful as a root user. The only real difference between a root user and a similarly defined
non-root user is that the root user exists in the server configuration, and will be available even
when other users may not be (if a backend containing user data is taken offline or temporarily
unavailable). It is strongly recommended that root user accounts only be created for server
administrators. If a non-administrator needs elevated privileges, create a normal user account
with only those privileges needed to accomplish the desired tasks.

Root user accounts exist as user entries in the server configuration, below cn=Root
DNs,cn=config. These entries should have a regular user structural object class, such as
inetOrgPerson, and should also include the ds-cfg-root-dn-user auxiliary class. Other
attributes to include in root user entries are:

l ds-cfg-alternate-bind-dn – Specifies an alternate DN that can be used to reference
the root user when authenticating. For example, the default configuration has a single
root user with a DN of cn=Directory Manager,cn=Root DNs,cn=config, but it is also
possible to authenticate as that user with a DN of just cn=Directory Manager.

l ds-cfg-inherit-default-root-privileges – Indicates whether the root user
automatically inherits the set of default root privileges as defined in the default-root-

privilege-name property of the root DN configuration object. If this attribute is included
in a root user's entry with a value of false, then that root user will only have an
explicitly-designed set of privileges.

l ds-privilege-name – Explicitly configures individual privileges for the user. It can be
used in conjunction with the ds-cfg-inherit-default-root-privileges attribute to
add additional privileges on top of the default root privileges, or by prefixing the
privilege name with a minus sign to indicate that privilege should not be granted to the
user. For example, a value of -unindexed-search indicates that the root user should not
have the unindexed-search privilege, even through it would normally be inherited as a
default root privilege. It can also be used to specify the entire set of privileges for a user
if ds-cfg-inherit-default-root-privileges is false.

l ds-pwp-password-policy-dn – Specifies which password policy should be applied to the
root user. If no value is specified, the root user is subject to the server's default

- 41 -

Chapter 6: Protect the PingData Platform

password policy. The server provides a special root password policy (in the "cn=Root

Password Policy,cn=Password Policies,cn=config" configuration entry) that can be
configured independently of the default policy. With the exception of ds-cfg-
alternate-bind-dn and ds-cfg-inherit-default-root-privileges, all of these
attributes can be included in the entries for any user in the server.

The ds-auth-allowed-address, ds-auth-allowed-authentication-types, ds-auth-
require-secure-authentication, ds-auth-require-secure-connection, ds-auth-is-
proxyable, and ds-auth-is-proxyable-by operational attributes can be used in both root
user entries and normal entries. They can be assigned as either real or virtual attributes.

The ds-rlim-size-limit, ds-rlim-time-limit, ds-rlim-lookthrough-limit and ds-rlim-
idle-time-limit operational attributes can be applied to prevent root user accounts from
being used to perform denial of service attacks. See Denial-of-service prevention.

Centralized and remote logging
Directory syslog events should be written to a remote system. Logging to a remote server can
be a vital aspect of security because it is much more difficult for an attacker to alter that
content and compromise multiple systems. Also consider the use of WORM (write once, read
many) drives or filesystems, which offer support for an append-only mode of operation in
which data cannot be altered once it has been written.

PingData server products offer capabilities for logging to remote systems, such as:

l UDP-based Protocol – The Directory Server only supports the UDP-based syslog
protocol, which alone lacks communication security. Therefore, it is recommended that
the server only communicate with a syslog daemon running on the local system over
the loopback interface.

l Loopback Communication – To have the log messages delivered to a remote system,
use loopback communication, to have the local syslog daemon simply act as an
encrypted relay to a remote server. Open source and commercial syslog software
(including rsyslog and syslog-ng) provide the ability to act as a syslog relay for the
purpose of securely logging to a centralized server.

l Custom Logging using the Server SDK – The Server SDK can be used to create
custom loggers to send messages to a centralized system using another mechanism,
such as publishing them to a message queue.

Secure the configuration using privileges
The following are recommended steps to limit access and restrict changes to the system’s
configuration settings. This makes it more difficult for attackers to undo protections that are in
place, or to grant themselves additional access:

- 42 -

Secure the configuration using privileges

l Access to the configuration requires the config-read privilege.

l Modifying the configuration requires the config-write privilege.

l Modifying the server schema requires the update-schema privilege.

l Modifying the server's access control configuration requires the modify-acl privilege.

l All configuration access is subject to access control evaluation. Users must have access
control rights to perform the requested operations (or have the bypass-acl privilege).

l Access to the configuration can be restricted by client connection policy through the
include-dbackend-base-dn and excluded-backend-base-dn properties. Criteria can
also be defined to indicate which clients are allowed access to the configuration from
specific IP addresses, only over secure connections, or only with specific authentication
methods.

l Configuration changes made with the server online are recorded in the config.audit

log. Configuration changes also generate administrative alerts. Configuration changes
made with the server offline are detected and an alert is generated when the server
starts.

Safe use of dsconfig and the Administrative Console
The following points should be considered when making server configuration changes with the
dsconfig tool and the Administrative Console:

l Using dsconfig with No Arguments – When launching dsconfig with no arguments,
only LDAP simple authentication (optionally secured with SSL or StartTLS) is supported.
SASL authentication is available when using command-line arguments (and if providing
arguments needed for SASL in interactive mode).

l Use SSH on Remote Systems – When running dsconfig on a remote system, make
sure that the communication is encrypted so that any credentials or other sensitive
information provided to dsconfig are protected.

l Use SSL or StartTLS – Communication between dsconfig or the Administrative
Console and the target servers, should use LDAP over SSL or StartTLS.

l Use HTTPS – When accessing the Administrative Console, use HTTPS rather than HTTP
to make sure that any credentials or other sensitive information is encrypted.

Maintain consistent server configurations
For deployments with multiple servers, make sure that each server is configured identically.
This prevents a configuration difference that may open one of the servers up to an attacker.
The following global configuration property can be used to specify a server group:

configuration-server-group – Specifies a group (in the administrative data repository) of
servers related to the current server. This is used by tools like dsconfig and the

- 43 -

Chapter 6: Protect the PingData Platform

Administrative Console, so that changes can be applied to all servers in the group. This ensures
that the configuration of all servers in the environment remains synchronized.

Data security audits
The Directory Server provides an audit-data-security command-line tool that invokes a set
of data security auditors to identify the audit type performed, current account, password, and
privilege settings. Each data security auditor generates a time-stamped report. Reports from
consecutive runs can be compared to determine if changes resolve one or more identified
issues.

The audit-data-security tool enables specifying the backends to audit as well as the specific
severity and verbosity levels for each event. The tool can execute on the Local DB, LDIF, and
Configuration backends. Only one data security audit can run on any Local DB backend at any
given time. If multiple backends are audited, the data security auditors scan these
simultaneously. If scheduled for a specific time, the tool invokes an Directory Server task that
runs one or more auditors on the selected backends.

Only administrators with the audit-data-security privilege can run data security audits.

Data security audit reports
Each data security audit generates a detailed report file named after the type of auditor used.
By default, the security audit report files are saved in LDIF format to the <server-
root>/reports/audit-data-security/<timestamp> directory. In the top-level reports
directory, a summary.ldif file provides an overview of the audit results. Sub directories for
each backend store the detailed report files.

Open a report file using a text editor. The following command opens the entries-with-
acis.ldif report for the userRoot backend.

$ cat /PingDirectory/reports/audit-data-security/20110811201049Z/userRoot/entries-with-
acis.ldif
dn: dc=example,dc=com

objectClass: ds-audit-report-aci-entry
objectClass: extensibleObject
ds-audit-severity: notice
ds-audit-reason: presence of access control information
aci: (targetattr!="userPassword")
(version 3.0; acl "Allow anonymous read access for anyone";

 allow (read,search,compare) userdn="ldap:///anyone";)
aci: (targetattr="*")
(version 3.0; acl "Allow users to update their own entries";

 allow (write) userdn="ldap:///self";)
aci: (targetattr="*")

(version 3.0; acl "Grant full access for the admin user";
 allow (all) userdn="ldap:///uid=admin,dc=example,dc=com";)

- 44 -

Data security audits

Data security auditors
The following table lists the available data security auditors in the PingData. Each auditor is
enabled by default, but can be disabled or modified using the dsconfig command.

Auditor Description

ACCESS-CONTROL Reports all entries with access control information.

DISABLED-ACCOUNT Reports all disabled accounts.

EXPIRED-PASSWORD Reports all accounts with expired passwords, accounts with passwords about to expire,
as well as accounts with passwords exceeding a specified age.

LOCKED-ACCOUNT Reports locked accounts including the reason for locking.

MULTIPLE-PASSWORD Reports entries with multiple password values. It is possible to configure the auditor to
only report those entries that have multiple passwords using different password storage
schemes.

PRIVILEGE Reports entries with privileges. The report distinguishes between directly assigned
privileges and privileges assigned by a virtual attribute.

WEAKLY-ENCODED-
PASSWORDS

Reports all entries that use one of the specified weak password storage schemes.

Data Security Auditors

Configure the data security auditors
Data security auditors can be configured using the dsconfig tool. Each auditor can be
independently enabled or disabled. They may also be configured to include one or more
attributes from the audited entry in the detailed report.

Each auditor can be configured to report events at a specific severity and verbosity level. The
three possible severity values are: Error, Warning, and Verbose. If the Warning level is
selected, then both Error and Warning events are included in the reports. Similarly, if the
Verbose level is selected, the report will include events with any severity. By default, all
auditors are configured with the Warning audit severity.

Perform the following steps to configure the data security auditors:

1. Run the dsconfig command and enter the connection parameters for the server.

2. Change to the Advanced menu.

3. On the main menu, enter the number corresponding to Data Security Auditor.

4. On the Data Security Auditor menu, choose to View and Edit an existing Data Auditor.

5. From the displayed list, choose a Data Auditor to modify.

6. For the specific Data Auditor, add or change any properties to be included in the audit.

7. Enter f to apply the changes.

- 45 -

Chapter 6: Protect the PingData Platform

The audit-data-security tool
The audit-data-security tool runs in either interactive mode or non-interactive mode. By
default, the tool executes security audits on all enabled data security auditors on all supported
backends (Local DB, LDIF, and Configuration).

Perform the following steps to run the audit-data-security tool:

1. Run the audit-data-security tool to perform a full audit of the Directory Server.

$ bin/audit-data-security

2. Open the summary.ldif to view the summary audit report, which will be in the time-
stamped directory created by the audit.

$ cat PingDirectory/reports/audit-data-security/20110811201049Z

3. To view a specific audit report, open the report in the backend sub directory.

To run a security audit on a subset of entries, run the audit-data-security tool on a subset
of entries in the userRoot backend, but do not report on entries having privileges:

$ bin/audit-data-security --backendID userRoot \
 --excludeAuditor PRIVILEGE \
 --reportFilter "(employeeType=contactor)"

Directory Proxy Server considerations
Most of the Directory Server security features are also available in the Directory Proxy Server,
such as global configuration options, client connection policy restrictions, and connection
handler options.

Security recommendations specifically for the Directory Proxy Server are:

l Use SSL or StartTLS – Make sure that communication with backend servers is secured
with SSL or StartTLS, so that third parties cannot access them.

l Protect the Proxy User Account – Make sure that the account used by the Directory
Proxy Server to authenticate to the backend Directory Server instances is sufficiently
protected. It should have strong credentials, and should not be used by any application
other than the Directory Proxy Server.

l Prevent Direct Access to Backend Servers – Consider preventing clients from
directly accessing the backend Directory Server instances and only allow access through
the Directory Proxy Server. It may be necessary to allow some degree of direct
administrative access to the Directory Server instances, but all general client access
should pass through the Directory Proxy Server.

l Use Proxy Transformations – Consider installing proxy transformations, such as
suppress attribute/suppress entry, to restrict what data is accessible through the
Directory Proxy Server.

- 46 -

Data Sync Server considerations

l Use a Generic User Account for Entry-Balancing Deployments – If using entry
balancing, consider configuring a generic user account with the same rights as various
classes of users. If a user needs to perform an operation that requires processing in a
backend set that does not contain the user's entry, use an authorization identity of the
closest acceptable generic account.

Data Sync Server considerations
The Data Sync Server shares many of the same security features as the Directory Server and
Directory Proxy Server. However, because the Data Sync Server does not store any data, most
of the security considerations involve securing data transmission from the Sync Source to the
Sync Destination.

Security recommendations specifically for the Data Sync Server are:

l Use SSL or StartTLS with Endpoint Servers – Make sure that communication with
the endpoint servers is secured.

l Use SSL or StartTLS with Client Communication – Make sure that client
communication with the Data Sync Server is secured.

l Make the Encryption Key Sufficiently Complex – When using the Changelog
Password Encryption Plugin in the Directory Server to synchronize passwords to a non-
PingData endpoint, make sure that the encryption key is complex and is handled
securely. The actual decryption key is derived from the user-configured key using a
proprietary method, so it is unlikely that hackers could decrypt passwords stored in the
changelog, even with access to the key.

l Consider Access Control Filters for Notification Mode – For deployments using
notification mode, administrators can configure a Sync Pipe that performs access control
filtering on the changelog data as it comes back from the source Directory Server. The
access controls filter out attributes that the user does not have the privileges to see
before they are returned. This is configurable using the filter-changes-by-user

property on the Sync Pipe configuration.

l Consider Obfuscating Attributes – To secure sensitive user data, the Data Sync
Server is capable of fully synchronizing test or stage servers with production servers
while also obfuscating sensitive customer information, such as social security numbers
and passwords. This is configurable using the scramble-value property on the Direct
Attribute Mapping configuration.

l Set the Appropriate Log Detail Levels – The Sync Log Publisher provides
information about synchronization operations that are processed. The level of detail can
be specified by setting the logged-message-type property. There are three values that
are useful for debugging, but can potentially expose sensitive information in the sync
log: change-detected-detailed, entry-mapping-details, change-applied-

- 47 -

Chapter 6: Protect the PingData Platform

detailed. The Data Sync Server is not aware which attributes are sensitive while they
are in transit, so using one of these detailed log levels may be a security risk. However,
passwords always appear in the Sync log in hashed form, regardless of the log detail
level.

- 48 -

Chapter 7: Data Integrity

The server can be configured to require secure communication with all clients, but that does
not provide protection for individuals that can access the server filesystem and may be able to
interact with the database files. The database files should be protected, as well as alternate
representations of that data including the live database files, database backups, and LDIF
exports of the data).

Topics include:

Stored entry checksums

Schema integrity

Limit exposure of stale data

Time synchronization

Create a read-only instance of the Directory Server

Server lock-down mode

Store reversible changes in the log

- 49 -

Chapter 7: Data Integrity

Stored Entry Checksums
The Directory Server provides two checksum features that can be used to help ensure data
integrity: cryptographic digests and entry checksum operational attributes.

Cryptographic Digests
Cryptographic digests can be included in the encoded representation of an entry stored in the
database. This can help detect database corruption, for example if a bit gets flipped between
the time the server tries to store an entry in the database and the time the data is actually
written to disk. The server provides an option to write these checksums when storing entries.
Another available option enables the server to look for and validate that the entry content still
matches the digest from which it was retrieved. If validation fails, the server generates an
administrative alert.

The following two options can be used to control cryptographic digests in entry contents:

l hash-entries – In JE backends, the hash-entries property is used to indicate whether
the server should include cryptographic digests in entries when they are written. If set to
true, any entry created or updated after that time will be stored with an MD5 digest of
the contents of that entry.

l verify-entry-digests – In the global configuration, indicates whether the server should
automatically verify any cryptographic digests that exist in the encoded representation
of entries when decoding them. Whether entry digests should be generated is controlled
by the hash-entries configuration property in backends that support this capability
(including JE backends). The process of generating these digests can be controlled
independently of their verification, so that verification can be enabled only if there may
be a database corruption.

Because there are separate properties that control generating digests and verifying them,
entry digests can be generated when entries are written to the database, reducing the added
cost of generating the digest. Periodically enable digest validation before performing an
operation that requires retrieving each entry from the database (the export-ldif , verify-
index, or audit-data-security tools). This identifies any entries whose encoded
representation does not match the stored digest.

If data encryption is enabled, the encryption performed when storing entries also serves as a
method for verifying the integrity of encoded entries. If an encrypted entry becomes
corrupted, the server cannot decrypt it, and an administrative alert is generated. If data
encryption is enabled, storing cryptographic digests is redundant.

Entry Checksum Operational Attribute
The Directory Server provides the ability to include a ds-entry-checksum operational attribute
in entries returned to clients, whose value will be a checksum of the attributes contained in

- 50 -

Schema Integrity

that entry.

This is useful in conjunction with the LDAP assertion control to ensure that an entry has not
been altered since it was last retrieved. The process to use both would be to retrieve an entry,
including the value of the ds-entry-checksum attribute, and then issue a modify request that
includes an LDAP assertion control with a filter that ensures that the entry's current ds-entry-
checksum value matches the value that was retrieved. If the entry had been altered by another
client between the time the entry was retrieved and the time the modify request was sent, the
assertion filter will not match and the modify operation is not performed.

The ds-entry-checksum attribute includes a checksum of all attributes in the entry except for
those listed in the excluded-attribute property of the virtual attribute configuration.
However, a similar process without the ds-entry-checksum attribute, would be creating an
assertion filter with the values of a specified set of attributes from that entry. This ensures that
those attributes have not been altered since the entry was last retrieved, but enables updates
to other attributes without causing the assertion to fail. If only concerned about a specified set
of attributes rather than the entire entry, this approach may be used to reduce the likelihood of
an operation failure due to a conflicting update. It can also be used in environments containing
non-PingData servers.

Schema Integrity
The Directory Server supports schema validation, including features such as DIT content rules,
DIT structure rules, name forms, and matching rule uses that many servers do not support. It
also ensures that attribute values conform to the constraints of the associated attribute syntax.

Some servers perform better for operations (like LDIF import) with schema checking disabled,
and administrators opt for performance over integrity. This is not a trade-off that needs to be
made in the Directory Server, because it actually performs better with schema validation
enabled.

There are several security implications when schema validation is disabled. For example, a
client can inadvertently store data in an incorrect attribute. If an ACI or sensitive attribute
definition is configured to deny access, information intended for the specified attribute, but
stored with the wrong name, may not be protected. If that attribute is used for some
operational configuration (for defining access control rules or privileges), the server would not
apply the intended restrictions. Similarly, clients attempting to find that information would not
be able to find it and may behave incorrectly.

Even if the client uses the correct attribute name, supplying a value that violates the
associated syntax may cause unintended behavior. For example, if schema checking or syntax
validation is disabled during an LDIF import, the server will not detect or reject malformed
access control rules. The server can detect malformed access control rules at start up or after
an online import, but it is better to have these problems detected during import rather than at
startup.

The Global Configuration Properties contain these two controls for enforcing schema
validation:

- 51 -

Chapter 7: Data Integrity

l check-schema – Specifies whether the server should enforce compliance with the
defined schema. Schema checking is highly recommended.

l invalid-attribute-syntax-behavior – Specifies the behavior that the server should
exhibit when encountering attribute values that violate the associated attribute syntax.
The value should be one of the following:

o reject – Specifies that the server reject any values that violate the syntax.

o accept – Specifies that the server silently accept such values.

o warn – Specifies that the server accept malformed values, but log a warning
message when these values are encountered.

Note
It is strongly recommended that invalid values be rejected.

Limiting Exposure of Stale Data
Another security concern is the possibility of serving stale data to clients. If one or more
servers have fallen behind in replication, changes to data that impact the security of the
environment may not propagate as quickly, which can leave a window of vulnerability.

The Directory Server detects if there are missed changes and enters lock-down mode if the
missed changes are no longer stored on any other Directory Server. This typically occurs after
the server has been offline or isolated on the network for a period of time longer than the
replication-purge-delay. While in lockdown mode, only Root DN access is allowed.

For example, if an employee leaves the company, his or her account should be removed or
disabled as quickly as possible to remove the ability to authenticate to applications that use the
directory. If one Directory Server instance has fallen behind in replication, that former
employee account still has access until the update to the account is propagated. The same
could be the case for changes that grant or revoke privileges, change group membership, or
otherwise impact the level of access that a given individual might have.

The Directory Server offers the following global configuration properties to avoid exposing
stale data:

l startup-min-replication-backlog-count – Specifies the minimum number of
outstanding replication changes that causes server startup to be delayed until replication
can complete. A server that has been offline for a period of time may have stale data.
Delaying startup until replication has finished prevents stale data from being served to
clients.

l replication-backlog-count-alert-threshold – Specifies the minimum number of
outstanding replication changes that will cause the server send an alert that it has a
significant replication backlog.

- 52 -

Time Synchronization

l replication-backlog-duration-alert-threshold – Specifies the minimum age of
any outstanding replication changes that will cause the server to generate an alert that it
has a significant replication backlog and may be serving stale data to clients.

The previous properties are applicable only to the Directory Server. Stale data can also be an
issue for the Directory Proxy Server and theData Sync Server. Each have features for
addressing this problem:

l In the Proxy, the replication backlog LDAP health check can be used to monitor the
replication state of each Directory Server, and can de-prioritize or stop using a given
server if it falls too far behind, based on either the absolute number of outstanding
changes, or the age of those changes.

l In the Data Sync Server, the sync-backlog-alert-threshold property for Sync
Source objects (for PingData and Sun/Oracle Directory Server instances) can be used to
generate an alert if the Data Sync Server detects a significant number of unprocessed
changes.

In addition, the systems expose replication metrics in two ways:

l Replication MIB – Within the SNMP monitoring feature, each server exposes a
standards compliant Replication MIB containing metrics related to the current state of
replication, which can help diagnose how much outstanding work replication may have to
do.

l Replication Metrics available in the Data Metrics Server – Within the Data
Metrics Server, there are 25-30 metrics that deal specifically with replication, such as
send/receive windows, current backlog, and conflict counts.

Time Synchronization
All systems that participate in an PingData server environment should have time
synchronization enabled, preferably with Network Time Protocol (NTP). Servers should be
synchronized to an atomic clock so that they are accurate as well. Time synchronization is
important for replication conflict resolution, proper handling of password expiration, proper
handling of account expiration and account lockout, proper handling of certificate expiration,
and proper handling of GSSAPI authentication. It is also important to have accurate
timestamps in log messages to correlate events across multiple systems, and potentially with
logs maintained by clients.

If the clocks of one or more systems are out of synchronization by a relatively small amount
(within hours of each other), it is recommended that NTP be used to synchronize them. NTP
synchronization works by adjusting the rate at which the system clock advances gradually to
synchronize it, rather than using a massive jump that can disrupt replication and other server
components like JVM pause. This is important for cases in which a system clock is too fast.
Time changes that cause the clock to move backward could result in unexpected behavior from
replication conflict resolution.

- 53 -

Chapter 7: Data Integrity

If the system clocks are significantly out of synchronization (more than a couple of days), work
with an authorized support provider to determine the best course of action for correcting the
problem without introducing risk of replication problems, accounts being unexpectedly locked,
passwords prematurely expired, or other issues pertaining to state information.

Creating a Read-Only Instance of the Directory Server
The PingData product family provides configuration properties that disable all write access to
the data. This can be useful when exposing the directory service publicly, such as an
authentication service, while blocking malicious attempts to alter the data.

The writability-mode property indicates whether the server will allow write operations. The
value may be one of the following:

l enabled – Write operations are allowed for properly authorized clients.

l disabled – No write operations are allowed.

l internal-only – Allows writes invoked by internal operations or received from
replication, but rejects any write request received from an external client.

Some environments may want to make a server (one located in a DMZ) read-only, but still
allow replicated operations from internal servers, as in the following illustration:

Note
It is also possible to configure the writabilitymode for individual backends.

Server Lock-Down Mode
A PingData server will place itself into lockdown mode to protect data in the following
circumstances:

l Lockdown for ACI Integrity – The PingData product family examines and validates all
ACIs stored in the data whenever a backend is brought online. If any malformed ACIs
are found in the backend, the server generates an alert to notify administrators of the

- 54 -

Storing Reversible Changes in the Log

problem and places itself in lockdown mode. While in lockdown mode, the server only
allows requests from users who have the lockdown-mode privilege. This enables
administrators to correct the malformed ACI while ensuring that no sensitive data is
inadvertently exposed. When the problem has been corrected, the administrator can use
the leave-lockdown-mode tool or restart the server to enable it to resume normal
operation.

l Lockdown for Data Integrity – The Directory Server detects if there are missed
changes and enters lock-down mode if the missed changes are no longer stored on any
other Directory Server. This typically occurs after the server has been offline or isolated
on the network for a period of time longer than the configured replication-purge-

delay. While in lockdown mode, only Root DN access is allowed..

Storing Reversible Changes in the Log
This configuration option is available for the Changelog backend:

use-reversible-form – Indicates whether changelog entries for modify operations should
record information about the change in a way that will allow it to be reverted, restoring the
entry to the way it appeared before the change was applied. If reversible form is enabled, then
delete changelog records will automatically include all deleted entry attributes.

- 55 -

Chapter 8: Client connection and
password policies

Client connection policies provide a way to segregate client connections based on similar
characteristics, and configure the ways they can interact with the server.

The password policy system can assign, manage, or remove password policies for root and
non-root users. The password policy contains configurable properties for password expiration,
failed login attempts, account lockout and other aspects of password and account maintenance
on the Directory Server.

Topics include:

Associate a Client Connection Policy with a client connection

Recommendations for creating Client Connection Policies

Password policies

Password validators

Password expiration

Password changes and administrative reset

Account lockout, expiration, and disablement

Last login time and last login IP address tracking

Password generators

Account status notification handlers

Per-user password policies

Password encoding during LDIF import

Password policies and the Directory Proxy Server

- 56 -

Chapter 8: Client connection and password policies

Associating a Client Connection Policy with a client
connection
When a client establishes a connection to the server, the server assigns a Client Connection
Policy for that connection. If the client performs a bind (which can change the identity of that
connection) or uses the StartTLS extended operation (which can change an insecure connection
to a secure one), the server will re-evaluate the connection and may assign it a different
policy.

The policy properties that the server uses to select a Client Connection Policy for a client
connection are:

l enabled – If a policy is enabled, it is eligible to be selected.

l evaluation-order-index – The evaluation order index controls the order in which
policies are examined to determine whether they are appropriate for a connection. Each
Client Connection Policy must have a unique evaluation order index value. Policies are
evaluated in ascending order based on this index. The evaluation order index values do
not need to be in sequential order.

l connection-criteria – If a policy is associated with connection criteria, then a
connection must match that criteria for it to be associated with the Client Connection
Policy. If a policy does not have any connection criteria, it will match any connection.

When evaluating Client Connection Policies, the server selects the enabled policy with the
lowest evaluation-order-index that either has or does not have criteria that matches that
connection. If none of the enabled policies match the client connection (either at the time the
connection is established, or after performing a bind or StartTLS operation), that connection is
terminated. Similarly, if the Client Connection Policy that is selected has a terminate-
connection value of true, the connection is terminated.

Recommendations for creating Client Connection
Policies
If using Client Connection Policies to enforce restrictions for different classes of clients,
consider the following:

l Client Connection Policies for Unauthenticated Clients – Make sure that a policy
exists that will allow unauthenticated clients. When a new connection is established to
the server, it will be unauthenticated, and remains that way until the client has
successfully completed a bind operation. A Client Connection Policy is selected for the
connection when it is established, so at least one policy must allow unauthenticated
clients by not having a connection-criteria value, or having a connection-criteria

- 57 -

Password Policies

value that references a criteria with a user-auth-type that includes none.

l Client Connection Policies for Authenticated Connections – To have a policy that
only applies to authenticated connections, the policy must have a connection-criteria

object, and the referenced criteria must have a user-auth-type value that does not
include none.

l Client Connection Policies for StartTLS – To allow the use of the StartTLS extended
operation, have a client connection policy that allows insecure connections. StartTLS
converts an existing insecure operation into a secure connection, so it is necessary to
have a client connection policy that allows the initially insecure connection and allows it
to issue the StartTLS extended request.

l Multiple Client Connection Policies – If configuring multiple client connection
policies, it is possible for a connection to match the criteria for more than one policy.
Make sure that the evaluation order indexes of those policies are configured so that the
most appropriate policy for a given connection will have a lower evaluation order index
than any other policy that could be selected for that connection.

Password Policies
Password Policies are used to make sure that a password provided during authentication is
correct, that password changes use strong formats, and that a user can't continue using the
same password for too long. Password Policies also provide features that aren't strictly
password-related, including locking accounts if there are too many failed authentication
attempts, keeping track of the last time that a client authenticated, and enforcing constraints
around the kinds of authentication that are allowed. The server also provides support for
account status notification handlers, which can be used to notify end users or administrators
when significant password policy events occur.

There may be some users that have different password policy requirements than others. For
example:

l Administrative accounts provide a greater level of access than normal user accounts and
may warrant additional forms of protection that are not considered necessary for normal
users.

l Account lockout can be enabled after a certain number of failed attempts for most users.
However, administrative accounts should not be locked out because that might enable an
attacker to orchestrate a denial-of-service attack.

l A small set of users may need to use a particular application, which requires the use of a
weaker password storage scheme than required for most accounts.

The Directory Server provides the ability to define multiple password storage schemes, which
can be configured to reflect the needs of different groups of users. One of those password
policies is configured as the default policy for the server through the default-password-
policy property in the global configuration. It is applied to any user for which no alternate

- 58 -

Chapter 8: Client connection and password policies

policy is configured. To apply an alternate password policy for a user, add the ds-pwp-
password-policy-dn attribute to that user's entry with a value equal to the password policy
that should be enforced for that user. If a user's entry contains a ds-pwp-password-policy-
dn attribute that references a password policy that does not exist, that user will not be allowed
to authenticate to the server.

An alternate password policy can also be assigned by creating a virtual attribute that generates
a ds-pwp-password-policy-dn value in entries for users that match certain criteria. The
user-defined virtual attribute type is ideal for this. For example, the following command can
be used to assign the password policy defined in configuration entry cn=Secure Password
Policy,cn=Password Policies,cn=config to any user that is a member of the cn=Secure
Users,ou=Groups,dc=example,dc=com group:

$ bin/dsconfig create-virtual-attribute \
 --name "Assign Secure Password Policy" \
 --type user-defined \
 --set enabled:true \
 --set attribute-type:ds-pwp-password-policy-dn \
 --set "value:cn=Secure Password Policy,cn=Password Policies,cn=config" \
 --set "group-dn:cn=Secure Users,ou=Groups,dc=example,dc=com" \
 --set "conflict-behavior:real-overrides-virtual"

The real-overrides-virtual conflict behavior means that if any member of that group
already has an explicitly-assigned alternate password policy, that assignment takes
precedence over the virtual attribute. If multiple virtual attributes attempt to assign different
values for the same attribute in the same entry, only one of those values is selected. The
process for selecting which virtual attribute is used is undefined. If virtual attributes are used
to assign a password policy, do not configure virtual attributes that may overlap.

Password validators
Password storage schemes can encode passwords to protect the clear-text password used to
generate that encoding using an algorithmic approach. To protect against attacks that try to
guess passwords, make sure that users have passwords that are complex, and use password
validators to ensure that new passwords are strong.

When a new password is assigned to a user through an add operation, modify operation, or
password modify extended operation, that password must be considered acceptable by all
password validators configured in the password policy for that user. If any password validator
considers the password to be unacceptable, then the attempt to assign that password is
rejected.

The password-validator configuration property controls the set of password validators that
should be used for a given policy. Create a password validator configuration entry in the server
and update one or more password policies to make use of that validator.

The Directory Server supports several password validators, including:

l Attribute value password validator – Ensures that the proposed password does not
match the value of any attribute in the user's entry, such as the user's name, telephone
number, or address. It can be configured to match all attributes in the user's entry or a

- 59 -

Password validators

subset. It can check both forward and reversed versions of the password. It can also
check for cases in which the password is a substring of an attribute value or an attribute
value is a substring of the password.

l Character set password validator – Ensures that the proposed password includes
characters from a number of character sets such as one lowercase letter, one uppercase
letter, one numeric digit, and one symbol. The character sets can be defined, including
the minimum number of characters from each set, and whether passwords can include
characters that are not in any of the defined sets.

l Commonly-Used passwords dictionary validator – Ensures that the proposed
password is not one of 10,000 commonly used passwords. These are words that are
common for attackers to use when trying to access user accounts. The Commonly-Used
Passwords validator is invoked by the Secure Password Policy by default. The word list is
located in <server-root>/config/commonly-used-passwords.txt, and can be used to
create a custom validator, but should not be modified.

l Dictionary password validator – Ensures that the proposed password is not
contained in a specified dictionary file, to prevent common words from being used as
passwords. The server comes with a dictionary file, but an alternate dictionary can be
selected. The validator can also perform case-sensitive validation and look to see if the
reversed password is present in the dictionary.

l Haystack Password validator – Ensures that the proposed password is secure based
on a combination of its length and the types of characters that it contains. For example, a
longer password containing only lowercase letters may be stronger than a shorter
password containing a mix of uppercase and lowercase letters, numbers, and symbols.
This is based on the Gibson Research Corporation Password Haystacks concept.

l Length-based password validator – Ensures that the proposed password meets
certain length constraints.

l Regular expression password validator – Ensures that the proposed password
either matches or does not match a given regular expression.

l Repeated characters password validator – Ensures that the proposed password
does not contain any character repeated more than a specified number of times in a row.
The maximum number of times a character can appear consecutively and case-sensitive
validation can be configured.

l Similarity-based password validator – Ensures that the proposed password is not
too similar to the user's current password. It uses the Levenshtein Distance algorithm to
compute the number of changes (where a change may include inserting a character,
removing a character, or replacing a character). To use this validator, make sure that
the password-change-requires-current-password option is enabled in the password
policy, which requires users to supply the current password when setting a new one.

- 60 -

Chapter 8: Client connection and password policies

l Unique characters password validator – Ensures that the proposed password
contains at least a specified number of different characters. The minimum number of
unique characters and whether to use case-sensitive validation can be defined.

l Custom Password Validator – The Server SDK can also be used to create custom
password validators in Java classes or Groovy scripts. Any number of password
validators can be configured. For example, one dictionary validator can be enabled with
the default wordlist.txt dictionary, and another with an additional set of words that
should be forbidden.

By default, password validation is applied for users changing their own passwords and for
administrators resetting the passwords for other users. If administrators are able to set
temporary passwords that are weak or easily guessable, that may allow an attacker to request
a password reset for another user, creating an avenue to gain access to that user's account.
However, if for some reason a user's password must be reset without password validator
restrictions, the skip-validation-for-administrators property can be set.

Password expiration
Given enough time, a dedicated attacker may be able to guess a user's password. If someone
has access to the encoded representation of a password, with enough time and computing
power they will be able to break the password by trying every possible combination of
characters. There are a number of factors that may impact the time required to accomplish
this, including the length of the password, the set of characters that may be included in it, and
the storage scheme used to encode it.

If using passwords to authenticate, the best ways to mitigate risk is to increase the cost of a
brute force attack by choosing an expensive password storage scheme (like the 512-bit SHA-2
variant of the crypt algorithm and increase the number of digest rounds), and/or to reduce the
length of time that a password can remain valid. The latter can be enforced with password
expiration, which may require that users change their passwords on a regular basis.

Several configuration properties can be used to configure password expiration, including:

l max-password-age – Specifies the maximum length of time that a user can continue to
use a password before it expires. Password expiration is not enabled in the default
password policy.

l password-expiration-warning-interval – Specifies the length of time before a user
receives warnings about a password expiration. Warnings are delivered with LDAP
response controls, but account status notification handlers can also be used to deliver
warnings in other forms, such as e-mail.

l expire-passwords-without-warning – Indicates whether a user's password should be
allowed to expire even if that user has not received a warning about an upcoming
expiration. For example, if there is a relatively short warning interval (such as 5 days)
and a user has been on vacation and has not received the warning. If expire-

- 61 -

Password changes and administrative reset

passwords-without-warning is set to false (which is the default), the server sends at
least one warning before the password is considered expired.

l grace-login-count – Indicates that a user is given a number of grace logins. If a user's
password has expired, a grace login can enable a user to authenticate, but that user
cannot do anything until the password is changed. By default, no grace logins are
granted.

l allow-expired-password-changes – Indicates whether a user should be allowed to
change his or her password after it has expired, using the password modify extended
operation. In the default password policy, this is not allowed. The user can use the
account again is to have an administrator reset the password.

If password expiration is enabled, make sure that LDAP clients can look for and consume the
bind response controls that indicate that a password is about to expire, so that clients can
display those warnings to users. A regular auditing process can also be used to periodically
identify and notify clients whose passwords are about to expire.

Password changes and administrative reset
The Directory Server differentiates between user password changes and administrative
password reset based on whether the user issuing the request is the same as the user whose
password is being changed. If a user is changing his or her own password, that is considered a
self password change. If a user changes someone else's password, that is considered an
administrative password reset. For either password change, the requester must have the
necessary access control permissions to make the change. For administrative password reset,
the requester must also have the password-reset privilege.

The server may be configured to enforce a different set of restrictions for administrative
password reset operations than it does for self password changes. For self password changes,
the following configuration properties may be in effect:

l allow-user-password-changes – Specifies whether users can change their own
passwords. Even if this is set to true, the user must have permission by the access
control subsystem.

l password-change-requires-current-password – Specifies whether users are required
to supply their current password when choosing a new password. If this is set to true, the
current password may be provided in a modify operation by deleting the old password
value and adding the new password. The password modify operation has a dedicated
field for providing the current password.

l min-password-age – Specifies the minimum length of time before a user is allowed to
change his or her password.

Configuration properties that apply to administrative password reset operations include:

- 62 -

Chapter 8: Client connection and password policies

l force-change-on-add – Specifies whether users are required to change their password
the first time they authenticate. If so, no actions can be performed by the user until the
password is changed.

l force-change-on-reset – Specifies whether users are required to change their
password after it has been reset by an administrator. If so, no actions can be performed
until the password is changed.

l max-password-reset-age – Specifies the maximum length of time that a user has to
change his or her password after their account has been created (if force-change-on-
add is true) or their password has been reset (if force-change-on-reset is true). If
specified, this can limit the length of time that the administrator-supplied password can
be used to authenticate, which limits the time that an attacker could use that password to
gain control of the user's account.

An additional set of configuration properties apply to both user password changes and
administrative reset, including:

l allow-pre-encoded-passwords – Specifies whether clients are allowed to provide
passwords in a pre-encoded form in add operations, modify operations, or password
modify extended operations. By default, pre-encoded passwords are not allowed
because they cannot be interpreted by the server to invoke password validators, check
them against password history, and perform other necessary checks. Pre-encoded
passwords should only be allowed for clients that can only provide new passwords in that
format. Clients will never be allowed to use pre-encoded passwords for authentication.

l password-history-count – Specifies the maximum number of previous passwords to
retain in the password history.

l password-history-duration – Specifies the maximum length of time to retain a history
of previous passwords. This can be useful if password history should be based on a
period of time rather than a fixed number of passwords.

Note
If password history is enabled (by setting a password-history-count, a password-
history-duration, or both), users cannot choose a new password that is the same as any
password in the history.

Account lockout, expiration, and disablement
To prevent an attacker from sending repeated LDAP bind requests in an attempt to guess user
passwords, the server provides the ability to lock accounts after too many failed attempts. The
lockout can persist until an administrator resets the user's password, or the account can be
automatically unlocked after a period of time without any administrative action required.

The configuration properties related to account lockout include:

- 63 -

Last login time and last login IP address tracking

l lockout-failure-count – Specifies the maximum number of failed authentication
attempts allowed before an account is locked. A value of zero disables account lockout.

l lockout-duration – Specifies the length of time that an account should remain locked
before it is automatically unlocked. A duration of zero seconds indicates that locked
accounts are not unlocked until an administrator resets the user's password.

l lockout-failure-expiration-interval – Specifies the length of time that information
about a failed authentication attempt is retained by the server. The record of previous
authentication failures for a user is automatically cleared when that user successfully
authenticates, but information about failed authentication attempts can be configured to
expire after a period of time even without a successful authentication.

l ignore-duplicate-password-failures – Specifies whether the server should consider
repeated authentication failures with the same incorrect password as a single failure.
Repeatedly trying the same wrong password is obviously not an attack designed to guess
a user's password, and is more likely the case that the user's password has recently
changed and a client is still trying to use the old password. This feature can prevent the
user's account from being inadvertently locked if the failure looks like an honest
mistake.

In addition to locking an account, the Directory Server provides other features that can be used
to disable accounts. These are not configured in the password policy, but are used by setting
operational attributes in the user's entry.

Those attributes include:

l ds-pwp-account-disabled – When present in a user's entry with a value of true, that
user account is disabled and cannot be used to authenticate. The user's account can be
re-enabled by either changing the value to false or removing the entire attribute.

l ds-pwp-account-expiration-time – When present in a user's entry, the value must be
a timestamp (in generalized time format). The account is not allowed to authenticate
after that time. This can be useful when creating temporary accounts. Once an account
expires, it can be made usable again by changing or removing the account expiration
time.

Last login time and last login IP address tracking
The Directory Server can track information about a user's authentication behavior in that
user's entry, including the time that the user last authenticated and the IP address of the client
system. These features can be configured using the following properties:

l last-login-time-attribute – Specifies the name of the attribute in which the time of
the user's last login may be recorded. The server schema includes the ds-pwp-last-

logintime operational attribute which can be used for this purpose.

- 64 -

Chapter 8: Client connection and password policies

l last-login-time-format – Specifies the format in which the last login time value
should be recorded. This should be given in the format supported by the
java.text.SimpleDateFormat class, like yyyyMMddHHmmss.SSS'Z' (which will report
values in the generalized time format, including millisecond accuracy). An alternate
format with less accuracy can be used, because the server will only update the value in
the user's entry if it is different from the existing value. For example, a value of
yyyyMMdd has only day-level accuracy, which means that the value will be updated once
per day.

l previous-last-login-time-format – Used to hold previous values used by the last-

logintime-format. This allows the server to parse old last login time values for the
purposes of evaluating them for the idle lockout interval.

l idle-lockout-interval – Specifies the maximum length of time allowed to pass
without a user authentication (as determined by the last-login-time attribute) or
password change before that account is locked due to inactivity. If an account is locked
because the user has not authenticated in a period of time greater than the idle lockout
interval, it can be unlocked by an administrative password reset.

l last-login-ip-address-attribute – Specifies the name of the attribute in which the
server will record the IP address of the system from which the client last authenticated.
The server schema includes the ds-pwp-last-login-ip-address attribute, which may
be used for this purpose.

Password generators
When using the password modify extended operation, the client can either supply a new
password or have the server generate a new password for the user included in the extended
response. If the client does not provide the new password, the server uses a password
generator to create one.

The password generators available for use in the server include:

l Random password generator – Can be used to construct passwords from characters
selected at random from one or more character sets. The character sets and patterns
can be defined, specifying which character sets to use and the number of characters
from each. For example, the default instance of the random password generator is
configured to generate eight-character passwords comprised of three alphabetic
characters, two numeric digits, and three more alphabetic characters.

l Custom password generators – The Server SDK also provides the ability to define
custom password generators, using either Java classes or Groovy scripts.

- 65 -

Account status notification handlers

Account status notification handlers
The Directory Server includes the following account status notification handlers:

l Error log account status notification handler – Cause messages to appear in the
server error log for selected account status notification events.

l SMTP account status notification handler – Cause e-mail messages to be sent to
end users (and optionally administrators) for selected account status notification events.

Account status notification handlers can be used to make information available to
administrators and/or end users about significant events related to password policy
processing. These events include:

l account-temporarily-locked – Indicates that a user's account has been locked due to
too many failed authentication attempts, but will automatically be unlocked after a
period of time.

l account-permanently-locked – Indicates that a user's account has been locked due to
too many failed authentication attempts, and will require a password reset to be
unlocked.

l account-unlocked – Indicates that a user's account has been unlocked by an
administrator.

l account-idle-locked – Indicates that a user authentication attempt failed because the
account remained idle for too long.

l account-reset-locked – Indicates that a user authentication attempt failed because the
user failed to change the password in a timely manner, after an administrative password
reset.

l account-disabled – Indicates that an administrator disabled a user account.

l account-enabled – Indicates that an administrator enabled an account that was
disabled.

l account-expired – Indicates that a user authentication attempt failed because the
user's account expired.

l password-expired – Indicates that a user authentication attempt failed because the
user's password expired.

l password-expiring – Indicates that a user's password is about to expire. This
notification will only be used the first time that a warning is sent before an upcoming
expiration. Subsequent authentication attempts during the warning interval will not
result in this notification.

l password-reset – Indicates that an administrator reset the password for another user.

l password-changed – Indicates that a user changed his or her own password.

- 66 -

Chapter 8: Client connection and password policies

Per-user Password Policies
To apply an alternate password policy for a particular user, add the ds-pwp-password-
policy-dn attribute to that user's entry with a value equal to the password policy that should
be enforced.

Note
If a user's entry contains a ds-pwp-password-policy-dn attribute that references a
password policy that does not exist, that user will not be allowed to authenticate to the server.

An alternate password policy can be assigned by creating a virtual attribute that generates a
ds-pwp-password-policy-dn value in entries for users that match certain criteria. The user-
defined virtual attribute type is ideal for this. For example, the following command can be used
to assign the password policy defined in configuration entry cn=Secure Password
Policy,cn=Password Policies,cn=config to any user that is a member of the cn=Secure
Users,ou=Groups,dc=example,dc=com group:

$ bin/dsconfig create-virtual-attribute \
 --name "Assign Secure Password Policy" \
 --type user-defined \
 --set enabled:true \
 --set attribute-type:ds-pwp-password-policy-dn \
 --set "value:cn=Secure Password Policy,cn=Password Policies,cn=config" \
 --set "group-dn:cn=Secure Users,ou=Groups,dc=example,dc=com" \
 --set "conflict-behavior:real-overrides-virtual"

The real-overrides-virtual conflict behavior means that if any member of that group
already has an explicitly-assigned alternate password policy, that assignment will take
precedence over the virtual attribute. If multiple virtual attributes attempt to assign different
values for the same attribute in the same entry, only one value is selected, and the process for
selecting which virtual attribute is currently undefined. If virtual attributes are used to assign a
password policy, make sure that virtual attributes are not configured to overlap for users.

Additional password policy properties
Password policies also provide support for a number of additional configuration properties that
do not fit into the previous categories. They include:

l password-attribute – Specifies the name or object ID of the attribute that should hold
password values in user entries. The attribute type must be defined in the schema and
must have a syntax of either 1.3.6.1.4.1.30221.1.3.1 (for values in the
userPassword syntax) or 1.3.6.1.4.1.4203.1.1.2 (for values in the authPassword

syntax).

l require-secure-authentication – Specifies whether users associated with this policy
are required to authenticate in a secure manner (either over a secure connection, or
using a secure authentication mechanism that does not expose user credentials).

- 67 -

Password encoding during LDIF Import

l require-secure-password-changes – Specifies whether password changes (including
administrative password reset) for users associated with this policy must be processed
over a secure connection.

l allow-multiple-password-values – Specifies whether users are allowed to have
multiple passwords. Although this is technically permitted, it is difficult to maintain
multiple passwords and not recommended.

l require-change-by-time – Requires all users with this password policy to change their
passwords at least once before the specified date and time. It is similar to password
expiration, but it is a one-time event and does not require password expiration to be
enabled.

l state-update-failure-policy – Specifies how the server should behave if a failure
occurred while attempting to update password policy state information in a user's entry
during an authentication attempt. The value can be one of the following:

o proactive – Specifies that a bind request is rejected if it is known that password
policy state information cannot be updated, for example if the associated backend
is operating in read-only mode.

o reactive – Specifies that an otherwise successful bind should be rejected if an
error occurs while attempting to update password policy state information.

o ignore – Specifies that a successful bind should still be successful even if an error
is encountered while attempting to update password policy state information.

Password encoding during LDIF Import
When performing an LDIF import, if the data being imported contains clear-text passwords, the
server needs to make sure that they are properly encoded before adding them into the
database. If an entry to import includes an explicit value for the ds-pwp-passwordpolicy-dn
attribute, that password policy is retrieved and its default storage schemes are used to encode
the password. For entries that do not have an explicit ds-pwp-password-policy-dn value,
they may either be governed by the default password policy or they are governed by a policy
assigned by a virtual attribute (which is not computed during import processing).

To make sure that passwords are encoded for users without an explicitly assigned policy, the
server provides a password policy import plugin. For users with an explicitly-defined policy,
encoding uses the default schemes for their policy. For other users, it will use the schemes
configured in the plugin itself. It will automatically encode any clear-text values found in
attributes with either the userPassword or authPassword syntax. Different schemes can be
configured for use with each syntax.

- 68 -

Chapter 8: Client connection and password policies

Password policies and the Directory Proxy Server
Both the Directory Server and Directory Proxy Server share the same password policy feature
set. However, bind requests sent to an Directory Proxy Server are handled differently based on
whether the request uses simple or SASL authentication.

For bind requests using simple authentication, the Directory Proxy Server can easily determine
whether the target user is local or remote, and will always forward simple bind requests for
remote users to an appropriate backend server. For SASL bind requests, it is not possible to
determine the identity of the target user until much later in the bind processing, and therefore
SASL binds will always be processed by the Directory Proxy Server itself (although it may use
information from backend servers in the process). This means that password policy processing
for simple bind requests is delegated to backend servers, but for SASL bind requests it will be
performed by the Directory Proxy Server itself. Make sure that Directory Server and Directory
Proxy Server password policies are configured identically.

- 69 -

Chapter 9: Access control

The Directory Server provides a fine-grained access control model to ensure that users are
able to access the information they need, but are prevented from accessing information that
they should not be allowed to see. It also includes a privilege subsystem that provides even
greater flexibility and protection in many key areas.

This chapter presents the access control model and provides examples of key access control
functionality.

Topics include:

Overview of access control

General format of the access control rules

Examples of common access control rules

Validate ACIs before migrating data

Working with privileges

- 70 -

Chapter 9: Access control

Overview of access control
The access control model uses access control instructions (ACIs), which are stored in the aci
operational attribute, to determine what a user or a group of users can do with a set of entries,
down to the attribute level. The operational attribute can appear on any entry and affects the
entry or any sub-entries within that branch of the directory information tree (DIT).

Access control instructions specifies four items:

l Resources – Resources are the targeted items or objects that specify the set of entries
and/ or operations to which the access control instruction applies. For example, access
can be given to certain attributes, such as the cn or userPassword password.

l Name – Name is the descriptive label for each access control instruction. Typically,
there are multiple access control instructions for a given branch of your DIT. The access
control name helps describe its purpose. For example, configure an access control
instruction labeled "ACI to grant full access to administrators."

l Clients – Clients are the users or entities to which access is granted or denied. Specify
individual users or groups of users using an LDAP URL, such as:
groupdn="ldap:///cn=admins,ou=groups,dc=example,dc=com.

l Rights – Rights are permissions granted to users or client applications. Access to certain
branches or operations can be denied or granted. For example, read or write permission
can be granted to a telephoneNumber attribute.

Validation and security
The Directory Server provides an access control model with strong validation to make sure
that invalid ACIs are not allowed. For example, the Directory Server ensures that all access
control rules added over LDAP are valid and can be fully parsed. Any operation that attempts to
store one or more invalid ACIs are rejected. The same validation is applied to ACIs contained
in data imported from an LDIF file. Any entry containing a malformed ACI value is rejected.

As an additional level of security, the Directory Server examines and validates all ACIs stored
in the data whenever a backend is brought online. If any malformed ACIs are found in the
backend, the server generates an alert to notify administrators of the problem and places itself
in lockdown mode. While in lockdown mode, the server only allows requests from users who
have the lockdown-mode privilege. This action enables administrators to correct the
malformed ACI while ensuring that no sensitive data is inadvertently exposed. When the
problem is corrected, the administrator can use the leave-lock down-mode tool or restart the
server to resume normal operation.

Global ACIs
Global ACIs are a set of ACIs that can apply to entries anywhere in the server (although they
can also be scoped so that they only apply to a specific set of entries). They work in

- 71 -

General format of the access control rules

conjunction with access control rules stored in user data and provide a convenient way to
define ACIs that span disparate portions of the DIT.

In the Directory Server, global ACIs are defined within the server configuration, in the global-
aci property of configuration object for the access control handler. They can be viewed and
managed using configuration tools like dsconfig and the Administrative Console.

The global ACIs available by default in the Directory Server include:

l Allow anyone (including unauthenticated users) to access key attributes of the root DSE,
including: namingContexts, subschemaSubentry, supportedAuthPasswordSchemes,
supportedControl, supportedExtension, supportedFeatures,
supportedLDAPVersion, supportedSASLMechanisms, vendorName, and vendorVersion.

l Allow anyone (including unauthenticated users) to access key attributes of the
subschema subentry, including: attributeTypes, dITContentRules,
dITStructureRules, ldapSyntaxes, matchingRules, matchingRuleUse, nameForms,
and objectClasses.

l Allow anyone (including unauthenticated users) to include the following controls in
requests made to the server: authorization identity request, manage DSA IT, password
policy, real attributes only, and virtual attributes only.

l Allow anyone (including unauthenticated users) to request the following extended
operations: get symmetric key, password modify request, password policy state,
StartTLS, and Who Am I?

Access controls for public or private backends
The Directory Server classifies backends as either public or private. A private backend is one
whose content is generated by the Directory Server itself, is used in the operation of the server
(for example, the configuration, schema, task, and trust store backends), or whose content is
maintained by the server (for example, the LDAP changelog backend). A public backend is
intended to hold user-defined content, such as user accounts, groups, application data, and
device data.

The Directory Server access control model also supports the distinction between public
backends and private backends. Many private backends do not allow writes of any kind from
clients, and some of the private backends that do allow writes only allow changes to a specific
set of attributes. As a result, any access control instruction intended to permit or restrict
access to information in private backends should be defined as global ACIs, rather than
attempting to add those instructions to the data for that private backend.

General format of the access control rules
Access control instructions (ACIs) are represented as strings that are applied to one or more
entries within the Directory Information Tree (DIT). Typically, an ACI is placed on a subtree,
and applies to that base entry and all entries below it in the tree.

- 72 -

Chapter 9: Access control

The Directory Server iterates through the DIT to compile the access control rules into an
internally-used list of denied and allowed targets and their permissable operations. When a
client application, such as ldapsearch, enters a request, the Directory Server checks that the
user who binds with the server has the necessary access rights to the requested search
targets. ACIs are cumulatively applied, so that a user who has an ACI at an entry, may also
have other access rights available if ACIs are defined higher in the DIT.

In most environments, ACIs are defined at the root of a main branch or a subtree, and not on
individual entries unless absolutely required.

An access control rule has the following syntax:

aci : (targets) (version 3.0; acl "name"; permissions bind rules;)

Access Control
Component Description

targets Specifies the set of entries and/or attributes to which an access control rule applies.
Syntax: (target keyword = || != expression)

name Specifies the name of the ACI.

permissions Specifies the type of operations to which an access control rule might apply. Syntax:
allow||deny (permission)

bind rules Specifies the criteria that indicate whether an access control rule should apply to a
given requestor. Syntax: bind rule keyword = ||!= expression;. The
bind rule syntax requires that it be terminated with a ";".

Access Control Components

Examples of common access control rules
The following examples demonstrate access controls that are commonly used. To be able to
alter access control definitions in the server, a user must have the modify-acl privilege.

Administrator access
The following ACI can be used to enable any member of the
"cn=admins,ou=groups,dc=example,dc=com" group to add, modify and delete entries, reset
passwords and read operational attributes such as isMemberOf and password policy state:

- 73 -

Examples of common access control rules

aci: (targetattr="+")(version 3.0; acl "Administrators can read, search
 or compare operational attributes";
allow (read,search,compare) groupdn="ldap:///cn=admins,ou=groups,dc=example,dc=com";)
aci: (targetattr="*")(version 3.0; acl "Administrators can add,
 modify and delete entries";
allow (all) groupdn="ldap:///cn=admins,ou=groups,dc=example,dc=com";)

Anonymous and authenticated access
The following ACI allows anonymous read, search, and compare on select attributes of
inetOrgPerson entries while authenticated users can access several more. The authenticated
user will inherit the privileges of the anonymous ACI. In addition, the authenticated user can
change userPassword:

aci: (targetattr="objectclass || uid || cn || mail || sn || givenName")
(targetfilter="(objectClass=inetorgperson)")
(version 3.0; acl "Anyone can access names and email addresses of

 entries representing people";
allow (read,search,compare) userdn="ldap:///anyone";)
aci: (targetattr="departmentNumber || manager || isMemberOf")
(targetfilter="(objectClass=inetorgperson)")
(version 3.0; acl "Authenticated users can access these fields for entries

 representing people";
allow (read,search,compare) userdn="ldap:///all";)
aci: (targetattr="userPassword")(version 3.0; acl "Authenticated users
 can change password";
allow (write) userdn="ldap:///all";)

If no unauthenticated access should be allowed to the Directory Server, the preferred method
for preventing unauthenticated, or anonymous access is to set the Global Configuration
property reject-unauthenticated-requests to true.

Delegated access to a manager
The following ACI can be used to allow an employee's manager to edit the value of the
employee's telephoneNumber attribute. This ACI uses the userattr keyword with a bind type
of USERDN, which indicates that the target entry’s manager attribute must have a value equal to
the DN of the authenticated user:

aci: (targetattr="telephoneNumber")
(version 3.0; acl "A manager can update telephone numbers of her direct reports";
allow (read,search,compare,write) userattr="manager#USERDN";)

Proxy authorization
The following ACIs can be used to allow the application
"cn=OnBehalf,ou=applications,dc=example,dc=com" to use the proxied authorization v2
control to request that operations be performed using an alternate identity. The application
user is also required to have the proxied-auth privilege:

aci: (version 3.0;acl "Application OnBehalf can proxy as another entry";
allow (proxy) userdn="ldap:///cn=OnBehalf,ou=applications,dc=example,dc=com";)

- 74 -

Chapter 9: Access control

Validating ACIs before migrating data
Rather than unexpectedly exposing sensitive data, the Directory Server rejects any ACIs that it
cannot interpret, which ensures data access is properly limited. However, problems can arise
when migrating data with existing access control rules to the Directory Server.

To validate an access control instruction, the Directory Server provides a validate-acis tool
in the bin directory (UNIX or Linux systems) or bat directory (Windows systems) that
identifies any ACI syntax problems before migrating data. The tool can examine access control
rules contained in either an LDIF file or an LDAP directory, and write its result in LDIF with
comments about problems that were identified. Each entry in the output contains a single ACI.
Therefore, if an entry in the input contains multiple ACIs, it may be present multiple times in
the output, each time with a different ACI value. The entries contained in the output contains
only ACI values, and all other attributes are ignored.

Working with privileges
In addition to the access control implementation, the Directory Server includes a privilege
subsystem that can also be used to control what users are allowed to do. Privileged operations
are only allowed if they are allowed by the access control configuration and the user has all of
the necessary privileges.

Privileges can be used to grant normal users the ability to perform certain tasks that, in most
other directories, would only be allowed for the root user. In fact, the capabilities extended to
root users in the Directory Server are all granted through privileges. A normal user account
can be created with the ability to perform some or all of the same actions as root users.
Multiple root users can be defined in the server with different sets of privileges so that the
capabilities that they have are restricted to only the tasks that they need to be able to perform.

Available privileges
The following privileges are defined in the Directory Server.

Privilege Description

audit-data-
security

Required to initiate a data security audit on the server, which is invoked by the audit-
data-security tool.

backend-backup Required to initiate an online backup through the tasks interface. The server's access
control configuration must also allow the user to add the corresponding entry in the tasks
backend.

backend-restore Required to initiate an online restore through the tasks interface. The server's access
control configuration must also allow the user to add the corresponding entry in the tasks
backend.

bypass-acl Allows a user to bypass access control evaluation. For a user with this privilege, any
access control determination is allowed. This does not bypass privilege evaluation. The
user must have the appropriate set of privileges to perform any privileged operation.

Summary of Privileges

- 75 -

Working with privileges

Privilege Description

bypass-pw-policy Allows a user entry to bypass password policy evaluation. This privilege is intended for
cases where external synchronization might require passwords that violate the password
validation rules. The privilege is not evaluated for bind operations so that password policy
evaluation will still occur.

bypass-read-acl Allows a user to bypass access control checks performed by the server for bind, search,
and compare operations. Access control evaluation may still be enforced for other types of
operations.

config-read Required for a user to access the server configuration. Access control evaluation is still
performed and can be used to restrict the set of configuration objects that the user is
allowed to see.

config-write Required for a user to alter the server configuration. The user is also required to have the
config-read privilege. Access control evaluation is still performed and can be used to
restrict the set of configuration objects that the user is allowed to alter.

disconnect-client Required for a user to request that an existing client connection be terminated through the
disconnect client task. The server's access control configuration must also allow the user to
add the corresponding entry to the tasks backend.

jmx-notify Required for a user to subscribe to JMX notifications generated by the Directory Server.
The user is also required to have the jmx-read privilege.

jmx-read Required for a user to access any information provided by the Directory Server through the
Java Management Extensions (JMX).

jmx-write Required for a user to update any information exposed by the Directory Server through the
Java Management Extensions (JMX). The user is also required to have the jmx-read
privilege. Currently, all of the information exposed by the server over JMX is read-only.

ldif-export Required to initiate an online LDIF export through the tasks interface. The server's access
control configuration must also allow the user to add the corresponding entry in the Tasks
backend. To allow access to the Tasks backend, set up a global ACI that allows access to
members of an Administrators group as follows:

$ dsconfig set-access-control-handler-prop \
 --add 'global-aci:(target="ldap:///cn=tasks")(targetattr="*||+")

(version 3.0; acl "Access to the tasks backend for administrators";
 allow (all) groupdn="ldap:///
 cn=admins,ou=groups,dc=example,dc=com";)'

ldif-import Required to initiate an online LDIF import through the tasks interface. The server's access
control configuration must also allow the user to add the corresponding entry in the Tasks
backend. To allow access to the Tasks backend, configure the global ACI as shown in the
previous description of the ldif-export privilege.

lockdown-mode Allows the associated user to request that the server enter or leave lockdown mode, or to
perform operations while the server is in lockdown mode.

modify-acl Required for a user to add, modify, or remove access control rules defined in the server.
The server's access control configuration must also allow the user to make the
corresponding change to the aci operational attribute.

password-reset Required for one user to change another user’s password. This privilege is not required for
a user to change his or her own password. The user must also have the access control
instruction privilege to write the userPassword attribute to the target entry.

Summary of Privileges

- 76 -

Chapter 9: Access control

Privilege Description

privilege-change Required for a user to change the set of privileges assigned to a user, including the set of
privileges, which are automatically granted to root users. The server's access control
configuration must also allow the user to make the corresponding change to the ds-
privilege-name operational attribute.

proxied-auth Required for a user to request that an operation be performed with an alternate
authorization identity. This privilege applies to operations that include the proxied
authorization v1 or v2 control operations that include the intermediate client request
control with a value set for the client identity field, or for SASL bind requests that can
include an authorization identity different from the authentication identity.

server-restart Required to initiate a server restart through the tasks interface. The server's access control
configuration must also allow the user to add the corresponding entry in the Tasks
backend.

server-shutdown This privilege is required to initiate a server shutdown through the tasks interface. The
server's access control configuration must also allow the user to add the corresponding
entry in the Tasks backend.

soft-delete-read Required for a user to access a soft-deleted-entry.

stream-values Required for a user to perform a stream values extended operation, which obtains all entry
DNs and/or all values for one or more attributes for a specified portion of the DIT.

unindexed-search Required for a user to be able to perform a search operation in which a reasonable set of
candidate entries cannot be determined using the defined index and instead, a significant
portion of the database needs to be traversed to identify matching entries. The server's
access control configuration must also allow the user to request the search.

update-schema Required for a user to modify the server schema. The server's access control configuration
must allow the user to update the operational attributes that contain the schema elements.

Summary of Privileges

- 77 -

Chapter 10: Authentication Mechanisms

One of the most common uses of LDAP directory environments is as an authentication
repository. This chapter highlights some properties that can be used for client authentication
and authorization.

Topics include:

Configuring Authentication Types

Configuring a SASL Mechanism Handler

Configuring Certificate Mappers

Configuring Pass-Through Authentication

Preventing Bind Information Leaks

- 78 -

Chapter 10: Authentication Mechanisms

Configuring authentication types
The Directory Server supports two kinds of authentication: simple and SASL.

Simple authentication allows a client to identify itself to the Directory Server using the DN and
password of the target user. Because the password is provided in the clear, simple
authentication is inherently insecure, unless the client communication is encrypted using a
mechanism like SSL or StartTLS.

Using SASL authentication mechanisms
SASL (the Simple Authentication and Security Layer, as defined in RFC 4422) is an extensible
framework that includes a number of mechanisms that can use very different kinds of
credentials and ways of authenticating clients. Each supported SASL mechanism is associated
with a SASL mechanism handler configuration object.

l To disable certain SASL mechanisms on a server-wide basis, modify the configuration to
disable the associated SASL mechanism handler.

l To disable one or more SASL mechanisms for only certain clients or to disable simple
authentication for some or all clients, use the allowed-auth-type, allowed-sasl-
mechanism, and/or denied-sasl-mechanism properties provided by Client Connection
Policy configuration objects.

Controll authentication with Client Connection Policies
The following Client Connection Policy properties can be used to enforce secure authentication:

l allowed-auth-type – Specifies the authentication that clients are allowed to use in bind
requests. Allowed values are simple and sasl. A bind request with any other type is
rejected.

l allowed-sasl-mechanism – Specifies the names of SASL mechanisms that clients are
allowed to use when authenticating. If one or more allowed-sasl-mechanism values are
specified, then any SASL bind request that attempts to use a mechanism not included in
this list is rejected. If no allowed-sasl-mechanism and no denied-sasl-mechanism

values are specified, clients are allowed to use any mechanism.

l denied-sasl-mechanism – Specifies the names of SASL mechanisms that clients will not
be allowed to use when authenticating. If a client sends a SASL bind request with a
mechanism that matches one of the denied values, it is rejected. If no allowed-sasl-

mechanism and no denied-sasl-mechanism values are specified, clients can use any
mechanism.

- 79 -

Configuring authentication types

Controll authentication with password policies
The following password policy properties can be used to enforce secure authentication:

l require-secure-authentication – Indicates whether users associated with this policy
are required to authenticate either over a secure connection, or using a secure
authentication mechanism that does not expose user credentials.

l require-secure-password-changes – Indicates whether password changes including
administrative password reset for users associated with this policy are required to be
processed over a secure connection.

Reject or Limit unauthenticated requests
The more information that the server provides to an unauthenticated user, the greater the risk
that information will be compromised. If the needs of supported client applications makes it
possible, configure the server to reject all requests from unauthenticated clients.

l Limiting Access by Global Configuration Properties – Two global configuration
properties are available to limit access to unauthenticated requests.

o reject-unauthenticated-requests – Indicates whether the server should reject
any requests received from a client that has not yet authenticated to the server. If
enabled, the only requests that are allowed from unauthenticated clients are bind
requests (to allow clients to authenticate), the StartTLS extended request, which
can be used to enable secure communication before authenticating, and any
requests defined in allowed-unauthenticated-request-criteria. If the server
does not need to accept any requests from unauthenticated clients, this should be
enabled.

o allowed-unauthenticated-request-criteria – A set of criteria that may be
used to match LDAP requests that may be permitted over an unauthenticated
connection even if reject-unauthenticated-requests is true. Some types of
requests will always be permitted, including bind, StartTLS, and start
administrative session requests.

l Custom Client Connection Policies for Unauthenticated Users – If
unauthenticated client applications do need to perform a limited set of operations prior to
authenticating, create a custom Client Connection Policy for unauthenticated users that
allows requests for those operations. After they authenticate and are assigned a different
Client Connection Policy, they can be granted a greater number of operations.

l Limiting Access by Unauthenticated Users using Access Controls – Limiting
access by unauthenticated users can also be accomplished through access control
configuration. The server's default access control policy provides limited access
(including the ability to retrieve selected attributes from the root DSE or server schema,

- 80 -

Chapter 10: Authentication Mechanisms

and the ability to issue certain extended requests like StartTLS and Who Am I?), and
does not allow any access to user data unless that data itself contains ACIs that allow it.

Restrict authentication with operational attributes
Authentication type restrictions can be enforced globally or through Client Connection Policies.
Operational attributes associated with individual user account entries can also be used to
enforce a number of constraints. The following operational attributes can restrict
authentication. They can either be implemented as explicitly-provided values or as virtual
attributes.

l ds-auth-allowed-address – Specifies the set of addresses from which that user is
allowed to authenticate. Values can be specified address masks including individual IP
addresses or resolvable names, addresses with wildcards, CIDR address ranges, or IP
addresses with subnet masks.

l ds-auth-allowed-authentication-type – Specifies the kinds of authentication that is
allowed for that user, which can be simple and sasl {mechanism}.

l ds-auth-require-secure-authentication – Specifies whether the user is required to
authenticate in a secure manner that ensures credentials are not exposed to anyone with
the ability to observe network communication. If this attribute exists in a users' entry
with a value of true, that user can only authenticate over a secure connection or using
an authentication mechanism (like CRAM-MD5, DIGEST-MD5, or GSSAPI) that does not
expose the client's credentials.

l ds-auth-require-secure-connection – Specifies whether the user is required to
access the server in a secure manner. If this attribute exists in a user's entry with a
value of true, that user can only issue requests over a connection secured with SSL or
StartTLS.

l ds-auth-is-proxyable – Specifies whether the user can be specified as an alternate
authorization identity through the use of the proxied authorization control, intermediate
client control, or a SASL mechanism that supports specifying an alternate authorization
identity. The value can be one of the following:

o allowed – Indicates that the account can be accessed either by direct
authentication or as an alternate authorization identity.

o required – Indicates that the account can only be accessed as an alternate
authorization identity, and is not allowed to directly authenticate.

o prohibited – Indicates that the account can only be accessed through direct
authentication but not as an alternate authorization identity.

l ds-auth-is-proxyable-by– Indicates which users are allowed to access a user in the
form of an alternate authorization identity. If this attribute is present in a user's entry,

- 81 -

Configuring authentication types

users whose DNs are included in the value of that attribute are allowed to specify that
user as an alternate authorization identity.

Use certificate-based authentication
PingData servers provide the ability to use a client certificate presented to the server during
SSL or StartTLS negotiation as the set of credentials for LDAP authentication. There are two
ways that this can be accomplished:

l The client application can send a SASL EXTERNAL bind request to the server.

l The client application can present a certificate to the server (the LDAP connection
handler that accepts the connection must have the auto-authenticate-using-client-

certificate property set to true.)

In either case, the authentication is processed as if the client had requested SASL EXTERNAL
authentication, and the SASL EXTERNAL mechanism handler is used to process the
authentication. Refer to the PingData Directory Server Administration Guide for information
about the certificate mapper configuration properties. The SASL mechanism handler includes
the following configuration properties:

l certificate-mapper – Specifies which certificate mapper should be used to identify the
user to be authenticated.

l certificate-validation-policy – Specifies whether the server should attempt to find
the certificate presented by the client in the user's entry. Values are:

o always – The server must find the presented certificate in the user's entry for
authentication to succeed.

o never – The server will not look in the user entry for the certificate.

o ifpresent – If the user's entry contains one or more certificates, one of them
must match the certificate presented by the client, but authentication will be
allowed if the user's entry does not have any certificates.

l certificate-attribute – Specifies the name of the attribute that will be checked for
certificates if the certificate-validation-policy property has a value of always or
ifpresent.

Certificate mappers
Certificate mappers are used to identify the user attempting to authenticate based on
information contained in the certificate presented to the server. The certificate mapper can
make use of any information contained in the certificate, including the subject, extensions, or
certificate fingerprint. The server provides a number of certificate mapper implementations:

- 82 -

Chapter 10: Authentication Mechanisms

l Subject equals DN – Matches a user whose DN is the same as the certificate subject.

l Subject DN to user attribute – Matches a user whose entry contains a specified
attribute with a value equal to the subject of the presented certificate. If this mapper is
used, the attribute holding the certificate subjects must be indexed for equality.

l Subject attribute to user attribute – Takes attributes from the presented certificate
and uses them to generate a filter for an internal search to identify the target user. It is
possible to customize the mapping between subject attributes and user entry attributes
(for example, "E" in the certificate subject may map to "mail" in the user's entry).

l Fingerprint – Performs an internal search to find a user entry in which the value of a
specified attribute matches the SHA-1, 256-bit SHA-2, or MD5 fingerprint of the
presented certificate. If this mapper is to be used, the attribute holding the fingerprint in
user entries must be indexed for equality.

l Custom – The Server SDK can also be used to develop custom certificate mappers.

Configure a SASL mechanism handler
The dsconfig utility enables configuration of the following SASL mechanism handlers:

ANONYMOUS – Does not perform any authentication, but can be enabled for clients to include
a trace string to identify the purpose of a connection.

CRAM-MD5 – Performs password-based authentication through an MD5 digest. The client
sends a bind request to the server. The server responds with a randomly-generated challenge
to protect against replay attacks. The client responds with an answer to the challenge, a clear-
text password, and an authentication ID. The server encodes the password and requires that
any clients have a password policy that supports two-way, reversible encryption.

By default, SASL DIGEST-MD5 uses the Exact Match identity mapper, which returns a success
result if the authorization ID is an exact match for the value of the uid attribute. Other identity
mappers, such as the Regular Expression identity mapper or a custom mapper, can also be
used.

DIGEST-MD5 – Provides authentication through a stronger MD5 digest that does not expose a
clear-text password. The client sends a bind request with credentials to the server. The server
sends the client a response with a set of authentication options and a special token. The client
sends an encrypted response with the chosen authentication method. The server then validates
the client's response. This is the required authentication mechanism for LDAP v3 servers.

EXTERNAL – Allows a client to authenticate using information about the client, which is
available to the server, but is not directly provided over LDAP. On the server, SASL EXTERNAL
requires the use of a client certificate provided during SSL or StartTLS negotiation. This does
not require the use of passwords, although its use on a broad scale is generally only feasible in
environments with a PKI deployment.

GSSAPI – Provides authentication for LDAP clients using Kerberos V. User credentials are
stored in the Kerberos key distribution center (KDC) rather than the PingData server. When an

- 83 -

Configure a SASL mechanism handler

LDAP client attempts to authenticate with the server, a three-way exchange occurs that allows
the client to verify its identity to the server through the KDC.

PingData's support for GSSAPI is based on the Java Authentication and Authorization Service
(JAAS). By default, the server automatically generates a JAAS configuration that should be
appropriate for most use cases. For more complex deployments, a custom JAAS configuration
can be supplied.

PingData servers support GSSAPI only for authenticating clients, not for securing their
communication with the server.

PLAIN – Performs password-based authentication with an authentication ID, clear-text
password, and optional authorization ID.

UNBOUNDID-CERTIFICATE-PLUS-PASSWORD – Similar to the standard SASL EXTERNAL
mechanism in that the user is identified by the certificate that the client presents during SSL or
StartTLS negotiation (and the configured certificate mapper is used to identify the user to
whom the certificate belongs). But whereas the certificate is the only thing needed to
authenticate with the EXTERNAL mechanism, the UNBOUNDID-CERTIFICATE-PLUS-PASSWORD
also requires that the user provide their static password as a form of two-factor authentication.

UNBOUNDID-TOTP – Provides a proprietary multifactor authentication mechanism that
allows the server to use the Time-based One-Time Password (TOTP) algorithm, specified in
RFC 6238. The TOTP algorithm is an extension of the Hash-based Message Authentication Code
One-Time Password (HTOP) algorithm, specified in RFC 4226. The TOTP algorithm computes a
temporary code using the current time and a secret key that is shared between the client
application and the server.

UNBOUNDID-TOTP issues a bind request that includes at least an authentication ID and a TOTP
code, but may also include an authorization ID and/or a static password. The server first uses
the authentication ID to identify the user that is authenticating and then retrieves the shared
secret from the user's entry (stored as a base32-encoded value in the ds-auth-totp-shared-
secret operational attribute) and uses it with the current time to generate a TOTP code. If that
matches the code that the user entered, then that confirms that the client knows the shared
secret. If a static password was also provided, then the server will confirm that it matches
what is stored in the userPassword attribute (or that specified by the password policy). By
default, the server will require the client to provide a static password.

The Commercial Edition of the LDAP SDK for Java provides the necessary client-side support
for the UNBOUNDID-TOTP mechanism, and provides a
com.unboundid.ldap.sdk.unboundidds.OneTimePassword class to generate TOTP codes for
testing purposes.

UNBOUNDID-DELIVERED-OTP – Provides two-factor authentication, which uses one-time
passwords (OTPs) that are delivered to the end user through an out-of-band mechanism. The
server provides support for e-mail (through an external SMTP external server), SMS (through
the Twilio web service), and custom delivery mechanisms with the Server SDK.

The process for authenticating using this new mechanism involves two steps:

l The client sends a "deliver one-time password" extended request to the server. This
request includes an authentication ID, the user's static password, and an optional set of

- 84 -

Chapter 10: Authentication Mechanisms

allowed delivery mechanisms. If successful, the server generates a one-time password,
stores it in the user's entry, and sends it to the user through one of the allowed
mechanisms.

l Once the user has received the one-time password, the client should perform an
UNBOUNDID-DELIVERED-OTP bind (which may be on the same connection or a different
connection used to send the "deliver one-time password" extended operation). The
credentials for this SASL mechanism include an authentication ID to identify the user, an
optional authorization ID (if operations performed by the client should be authorized as a
different user), and the one-time password.

Unlike UNBOUNDID-TOTP, there is no need to have a shared secret between the client and the
server, or any special client-side software to generate the one-time password, or a need to
worry about whether the client and server clocks are synchronized.

UNBOUNDID-EXTERNALLY-PROCESSED-AUTHENTICATION – Provides authentication
involving credentials that do not reside in, or cannot be forwarded to or validated by the
Directory Server (such as social login through Facebook, Google, or Twitter). The bind request
will not include any credentials, and authentication with this mechanism will not actually
change the state of the underlying client connection. The server will behave as if the bind
request included the retain identity request control, regardless of whether or not that control
was included.

Bind requests using this mechanism can include any request controls that are permitted for use
with other bind requests. If the externally-processed authentication is successful, the client
can include the get password policy state issues request control in the bind request to obtain
information about any password policy state issues that can cause the Directory Server
authentication attempt to fail. The password policy request control can also be included to
obtain certain password policy state warnings and errors, or to look for the password
expired/password expiring controls in the bind response.

By default, the UNBOUNDID-EXTERNALLY-PROCESSED-AUTHENTICATION mechanism uses the
Exact Match Identity Mapper, which returns a success result if the authorization ID is an exact
match for the value of the uid attribute. Other identity mappers, such as the Regular
Expression Identity Mapper or a custom mapper, can also be used.

When an UNBOUNDID-EXTERNALLY-PROCESSED-AUTHENTICATION bind request is received,
the Directory Server validates the request by:

l Decoding the bind request to make sure that it is properly-formed. If not, the
authentication attempt is rejected with a PROTOCOL_ERROR result. If the bind request is
successfully decoded, the operation is updated so that the bind result access log
message includes all relevant details from the request.

l Making sure that the bind request was received on a connection that was already
authenticated as a user with either the permit-externally-processed-

authentication privilege. If not, then the authentication attempt will be rejected with
an AUTH_METHOD_NOT_SUPPORTED result.

- 85 -

Configure a SASL mechanism handler

l Resolving and retrieving the entry indicated by the authenticationID element of the
bind request. If this entry does not exist, the authentication attempt is rejected with an
INVALID_CREDENTIALS result.

The remainder of the processing depends on whether the externally-processed authentication
is considered successful, as determined from the externalAuthenticationWasSuccessful
result. If successful, the server will first determine the state of the target user account. If the
account is not in a useable state, the bind operation will fail with an INVALID_CREDENTIALS
result. The server will also determine whether the authentication should be allowed. If the bind
should not be permitted, the operation will fail with an INVALID_CREDENTIALS result.

If the authentication is still considered successful after all Directory Server validation, a
number of password policy state updates may be applied, including clearing any previous
authentication failures, updating the last login time, or updating the last login IP address. The
server will then return a SUCCESS result to the client.

For a failed attempt, the server may increment the number of failed authentication attempts
and, if appropriate, lock the account.

UNBOUNDID-YUBIKEY-OTP – Provides authentication with YubiKey devices (available from
Yubico), which generate secure one-time passwords. The device generates a different
password for every authentication attempt, and that one-time password is sent to a validation
service to ensure that it is genuine and has not been used in an earlier authentication attempt.
Although it is possible to use this one-time password as the only proof of identity, it is typically
combined with a static password as a form of two-factor authentication.

Supported YubiKey devices include:

l YubiKey 4

l YubiKey 4 Nano

l YubiKey NEO

l YubiKey NEO-n

l YubiKey Edge

l YubiKey Edge-n

l YubiKey Standard

l YubiKey Nano

This mechanism is not enabled by default, and requires configuration of a client ID and API key
to use when communicating with the validation service. The API key is a shared secret
between the YubiKey validation service and the client that is interacting with it (the PingData
server), and is used when generating digital signatures so that both the PingData server and
the YubiKey validation service can ensure that the peer server is genuine. This signature
provides protection against man-in-the-middle attacks in which the Directory Server server
might be tricked into communicating with a fraudulent validation server.

The API key must be kept secret. A malicious user who is able to obtain the API key may be
able to generate fake responses that appear to be valid. Because of its sensitive nature, the
API key itself is never included in the communication between the PingData server and the

- 86 -

Chapter 10: Authentication Mechanisms

validation service. However, the client ID is linked to the API key, so that the validation
service knows which API key to use in conjunction with a given client ID. All communication
between PingData servers and the validation service includes the client ID, and also includes
signatures generated with the corresponding API key. If either party is unable to validate a
signature, the authentication attempt will fail. To obtain a client ID and API key for free,
navigate to https://upgrade.yubico.com. Only one client ID/API key pair is needed for all users
across all servers in the topology.

When authenticating a user with a YubiKey one-time password, the server will communicate
with the validation service to ensure that the one-time password is valid, and it will also ensure
that the public ID from that one-time password is contained in the ds-auth-yubikey-public-
id attribute in the target user's entry. If the user's entry does not include the public ID for
that YubiKey device, authentication will fail.

Configure SASL ANONYMOUS mechanism
The LDAP client tools provided with PingData servers support the use of SASL ANONYMOUS.
The optional "trace" SASL option can be used to specify the trace string to include in the bind
request.

Perform the following steps to configure SASL ANONYMOUS:

1. Use dsconfig to enable the SASL ANONYMOUS mechanism.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name ANONYMOUS \
 --set enabled:true

2. Use ldapsearch to view the root DSE and enter a trace string in the access log.

$ bin/ldapsearch --port 1389 \
 --saslOption mech=ANONYMOUS \
 --saslOption "trace=debug trace string" --baseDN "" \
 --searchScope base "(objectclass=*)"

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 59bab79d-4429-49c8-8a88-c74a86792f26

3. View the access log using a text editor in the /ds/PingData<server>/logs folder.

[26/Oct/2011:16:06:33 -0500] BIND RESULT conn=2 op=0 msgID=1
resultCode=0
additionalInfo="trace='debug trace string'" etime=345.663
clientConnectionPolicy="default"

Configure SASL CRAM-MD5 mechanism
CRAM-MD5 requires an authentication ID (authid) from the client to identify the authenticating
user. The format of that authentication ID can be either:

- 87 -

https://upgrade.yubico.com/

Configure a SASL mechanism handler

n dn: followed by the distinguished name of the target user (or just dn: to perform an
anonymous bind).

n u: followed by a username.

If using u:, an identity mapper is used to identify the target user based on that username.

Perform the following steps to configure CRAM-MD5:

1. Use dsconfig to enable the SASL CRAM-MD5 mechanism if it is disabled. By default, the
CRAM-MD5 mechanism is enabled.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name CRAM-MD5 \
 --set enabled:true

2. For this example, create a password policy for CRAM-MD5 using a reversible password
storage scheme, like 3DES.

$ bin/dsconfig create-password-policy \
 --policy-name "Test UserPassword Policy" \
 --set password-attribute:userpassword \
 --set default-password-storage-scheme:3DES

3. Use ldapmodify to add the ds-pwp-password-policy-dn attribute to an entry to
indicate the Test UserPassword Policy should be used for that entry. When finished,
press CTRL-D to process the modify operation.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: ds-pwp-password-policy-dn
ds-pwp-password-policy-dn: cn=Test UserPassword Policy,cn=Password
Policies,cn=config

Processing MODIFY request for uid=jdoe,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=jdoe,ou=People,dc=example,dc=com

4. Use ldapmodify to change the userPassword to a reversible password storage scheme.
The password storage scheme is specified in the user’s password policy.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
replace: userPassword
userPassword: secret

5. Use ldapsearch to view the root DSE using the authentication ID (authid) option with
the username jdoe. Enter a password for the user.

$ bin/ldapsearch --port 1389 \
 --saslOption mech=CRAM-MD5 \
 --saslOption "authid=u:jdoe" --baseDN "" \

- 88 -

Chapter 10: Authentication Mechanisms

 --searchScope base "(objectclass=*)"
 Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 50567aa3-acd2-4106-a077-37a092275363

Configure SASL DIGEST-MD5 mechanism
DIGEST-MD5 requires an authentication ID (authid) from the client to identify the
authenticating user. The format of that authentication ID can be either:

l dn: followed by the distinguished name of the target user (or just dn: to perform an
anonymous bind).

l u: followed by a username. If using u:, an identity mapper is used to identify the target
user based on that username.

The client may also include the following properties:

l authzID – Specifies an optional authorization ID that should be used for operations
processed on the connection.

l realm – The realm in which the authentication should be processed. This may or may
not be required, based on the server configuration.

l digest-uri – The digest URI that should be used for the bind. It should generally be
"ldap://" followed by the fully-qualified address for the Data Metrics Server. If this is not
provided, then a value will be generated.

l qop – The quality of protection to use for the bind request. Only auth is supported
(indicating that the DIGEST-MD5 bind should only be used for authentication and should
not provide any subsequent integrity or confidentiality protection for the connection),
and if no value is provided then auth will be assumed.

Perform the following steps to configure CRAM-MD5:

1. Use dsconfig to enable the SASL DIGEST-MD5 mechanism if it is disabled. By default,
the DIGEST-MD5 mechanism is enabled.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name DIGEST-MD5 \
 --set enabled:true

2. For this example, create a password policy using a reversible password storage scheme,
like 3DES.

$ bin/dsconfig create-password-policy \
 --policy-name "Test UserPassword Policy" \
 --set password-attribute:userpassword \
 --set default-password-storage-scheme:3DES

- 89 -

Configure a SASL mechanism handler

3. Use ldapmodify to add the ds-pwp-password-policy-dn attribute to an entry to
indicate the Test UserPassword Policy should be used for that entry. When finished,
press CTRL-D to process the modify operation.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: ds-pwp-password-policy-dn
ds-pwp-password-policy-dn: cn=Test UserPassword Policy,cn=Password
Policies,cn=config

Processing MODIFY request for uid=jdoe,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=jdoe,ou=People,dc=example,dc=com

4. Use ldapmodify to change the userPassword to a reversible password storage scheme.
The password storage scheme is specified in the user’s password policy.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
replace: userPassword
userPassword: secret

5. Use ldapsearch to view the root DSE using the authentication ID with the username
jdoe. Enter a password for the authentication ID.

$ bin/ldapsearch --port 1389 \
 --saslOption mech=DIGEST-MD5 \
 --saslOption "authid=u:jdoe" --baseDN "" \
 --searchScope base "(objectclass=*)"
 Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 2188e4d4-c2bb-4ab9-8e1c-848e0168c9de

6. The user identified by the authentication ID requires the proxied-auth privilege to allow
it
to perform operations as another user.

$ bin/ldapmodify

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modifyadd: ds-privilege-name
ds-privilege-name: proxied-auth

7. Use ldapsearch with the authid (required) and authzid option to test the
mechanism.

$ bin/ldapsearch --port 1389 \
 --saslOption mech=DIGEST-MD5 \
 --saslOption authid=u:jdoe \

- 90 -

Chapter 10: Authentication Mechanisms

 --saslOption authzid=dn:uid=admin,dc=example,dc=com \
 --base "" \
 --searchScope base "(objectclass=*)"
 Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 2188e4d4-c2bb-4ab9-8e1c-848e0168c9de

Configure SASL EXTERNAL mechanism
Prior to the SASL EXTERNAL session exchange, the client should have successfully established
a secure communication channel using SSL or StartTLS, and the client must have presented its
own certificate to the server. The SASL EXTERNAL bind request does not contain any
credentials. The server only uses the information contained in the provided client certificate to
identify the target user.

The configuration settings for SASL EXTERNAL includes three required properties:

l certificate-validation-policy – Checks if the certificate presented by the client is
present in the target user’s entry. Possible values are:

o always – Always require the peer certificate to be present in the user’s entry.
Authentication will fail if the user’s entry does not contain any certificates, or if it
contains one or more certificates and the certificate presented by the client is not
included in the user’s entry.

o ifpresent – (Default) If the user’s entry contains one or more certificates,
require that one of them match the peer certificate. Authentication will succeed if
the user’s entry does not have any certificates, but will fail if the user’s entry has
one or more certificates that do not match the certificate provided by the client.

o never – Do not look for the peer certificate to be present in the user’s entry.
Authentication will succeed if the user’s entry does not contain any client
certificates, or if it contains certificates that do not match the certificate provided
by the client.

l certificate-attribute – Specifies the attribute that holds user certificates to be
examined if the certificate-validation-policy attribute has a value of ifpresent
or always. The name must be a valid attribute type defined in the server schema. The
default value is userCertificate. LDAP generally requires certificate values to use the
;binary attribute modifier. Certificates should be stored in user entries using the
attribute userCertificate;binary.

l certificate-mapper – Specifies the certificate mapper that will be used to identify the
target user based on the certificate presented by the client.

Perform the following to configure the EXTERNAL mechanism:

- 91 -

Configure a SASL mechanism handler

1. Change to the server root directory.

$ cd /ds/PingData<server>

2. Determine the certificate-validation-policy property. If not storing the DER-
encoded representation of the client’s certificate in the user’s entry, skip to the next
step.

If always is chosen, make sure that the user’s entry has a valid value. If ifpresent is
selected, the userCertificate attribute can also be present. The client’s certificate
can be stored in the user entry using ldapmodify.

$ bin/ldapmodify

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: userCertificate;binary
userCertificate;binary:<file:///path/to/client.der

3. If using an attribute other than userCertificate, specify it using the certificate-

attribute property. Make sure that the schema is updated to support the attribute.

4. Determine the certificate-mapper property. For more information about certificate
mappers, see Configure certificate mappers.

5. Use dsconfig to enable the SASL EXTERNAL mechanism if it is disabled. By default, the
SASL mechanism is enabled. For this example, set the certificate-mapper property to
Subject Attribute to User Attribute. All other defaults are kept.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name EXTERNAL \
 --set enabled:true \
 --set "certificate-mapper:Subject Attribute to User Attribute"

6. Use ldapsearch to test SASL EXTERNAL.

$ bin/ldapsearch --port 1636 \
 --useSSL \
 --keyStorePath /path/to/clientkeystore \
 --keyStorePasswordFile /path/to/clientkeystore.pin \
 --trustStorePath /path/to/truststore \
 --saslOption mech=EXTERNAL \
 --baseDN "" \
 --searchScope base "(objectClass=*)

Configure SASL GSSAPI mechanism
While the GSSAPI specification includes a provision for protecting client-server
communication, PingData servers currently support GSSAPI only for the purpose of
authenticating clients.

- 92 -

Chapter 10: Authentication Mechanisms

Kerberos configuration considerations
To implement GSSAPI authentication, a Kerberos V deployment must be configured. The
Kerberos deployment should take the following into consideration:

l It is recommended that the KDC be configured to use "aes128-cts" as the TKT and TGS
encryption type, which is supported by all Java VMs. In Kerberos environments using the
MIT libraries, make sure that the following lines are present in the [libdefaults]

section of the /etc/krb.conf configuration file on the KDC system:

default_tkt_enctypes = aes128-cts
default_tgs_enctypes = aes128-cts
permitted_enctypes = aes128-cts

l When a client uses Kerberos to authenticate to a server, the addresses of the target
server and the KDC are used in cryptographic operations. Make sure that all systems
agree on the addresses of the server and KDC systems. Make sure that DNS is
configured so that the primary addresses for the KDC and server are addresses that
clients will use to communicate.

l Kerberos authentication is time-sensitive. If system clocks are not synchronized,
authentication may fail. Use NTP or some other form of time synchronization for all KDC,
server, and client systems.

To authenticate itself to the Kerberos environment, the KDC should include both host and
service principals for all servers. The host principal is in the form
host/directory.example.com, and the service principal should generally be
ldap/directory.example.com. In an MIT Kerberos environment, the kadmin utility can be
used to create these principals, as follows:

/usr/sbin/kadmin -p kws/admin
Authenticating as principal kws/admin with password.
Password for kws/admin@EXAMPLE.COM:
kadmin: add_principal -randkey host/directory.example.com
WARNING: no policy specified for host/directory.example.com@EXAMPLE.COM;
 defaulting to no policy
Principal "host/directory.example.com@EXAMPLE.COM" created.
kadmin: ktadd host/directory.example.com
Entry for principal host/directory.example.com with kvno 3, encryption type AES-128
 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
kadmin: add_principal -randkey ldap/directory.example.com
WARNING: no policy specified for ldap/directory.example.com@EXAMPLE.COM;
 defaulting to no policy
Principal "ldap/directory.example.com@EXAMPLE.COM" created.
kadmin: quit

On each server, the service principal for that instance must be exported to a keytab file, using
a command such as:

/usr/sbin/kadmin -p kws/admin
Authenticating as principal kws/admin with password.
Password for kws/admin@EXAMPLE.COM:
kadmin: ktadd -k /ds/PingData-<server>/config/server.keytab ldap/
directory.example.com

- 93 -

Configure a SASL mechanism handler

Entry for principal ldap/directory.example.com with kvno 4, encryption type AES-128
 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/ds/PingDataMetricsServer/
config/
 server.keytab.
kadmin: quit

Because this file contains the credentials that the server will use to authenticate to the KDC,
make sure that it is only accessible by the server.

GSSAPI mechanism handler options
The GSSAPI SASL mechanism handler provides the following configuration options:

l enabled – Indicates whether the GSSAPI SASL mechanism handler is enabled for use in
the server. By default, it is disabled.

l kdc-address – Specifies the address that the server uses to communicate with the KDC.
If this is not specified, the server uses the underlying system configuration.

l server-fqdn – Specifies the fully-qualified domain name that clients use to
communicate with the server. If this is not specified, the server uses the underlying
system configuration.

l realm – Specifies the Kerberos realm that clients use. If this is not specified, the server
uses the underlying system configuration.

l kerberos-service-principal – Specifies the service principal that the server uses to
authenticate with the KDC. If this is not specified, the service principal is ldap/

followed by the fully-qualified server address.

l keytab – Specifies the path to the keytab file that holds the credentials for the Kerberos
service principal that the server uses to authenticate with the KDC. If this is not
specified, the server uses the system-wide keytab.

l identify-mapper – Specifies the identify mapper that the server uses to map a client’s
Kerberos principal to the entry of the corresponding user account in the server. In the
default configuration, the server uses a regular expression identity mapper that looks for
an entry with a uid value equal to the username portion of the Kerberos principal. For
example, for a Kerberos principal of jdoe@EXAMPLE.COM, the identity mapper will
perform an internal search with a filter of (uid=jdoe).

l enable-debug – Indicates whether the server should write debugging information about
Kerberos-related processing (including JAAS processing) that the server performs. If
enabled, this information is written to standard error in the logs/server.out log file.

l jaas-config file – Specifies the path to a JAAS configuration file that the server should
use. If this is not specified, the server generates a JAAS configuration file based on the
values of the other configuration properties. This should only be used when the server-
generated JAAS configuration is not acceptable.

- 94 -

Chapter 10: Authentication Mechanisms

Configure SASL PLAIN mechanism
LDAP clients can use SASL PLAIN with the following SASL options:

l authid – Specifies the authentication ID to use for the bind. This must be provided.

l authzid– Specifies an optional alternate authorization ID to use for the bind.

Perform the following steps to configure SASL PLAIN:

1. Use dsconfig to enable the SASL PLAIN mechanism.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name PLAIN \
 --set enabled:true

2. Use ldapsearch to view the root DSE using the authentication ID (authid) with the
username jdoe. Enter a password for the authentication ID.

$ bin/ldapsearch --port 1389 \
 --saslOption mech=PLAIN \
 --saslOption "authid=u:jdoe" --baseDN "" \
 --searchScope base "(objectclass=*)"
 Password for user 'u:jdoe':

Or specify the full DN of the user:

$ bin/ldapsearch --port 1389 \
 --saslOption mech=PLAIN \
 --saslOption "authid=dn:uid=jdoe,ou=People,dc=example,dc=com" \
 --baseDN "" \
 --searchScope base "(objectclass=*)"
 Password for user 'dn:uid=jdoe,ou=People,dc=example,dc=com':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 59bab79d-4429-49c8-8a88-c74a86792f26

Configure the UNBOUNDID-CERTIFICATE-PLUS-PASSWORD mechanism
Perform the following to configure the UNBOUNDID-CERTIFICATE-PLUS-PASSWORD
mechanism:

1. Change to the server root directory.

$ cd /ds/PingData<server>

2. Determine the certificate-validation-policy property. If not storing the DER-
encoded representation of the client’s certificate in the user’s entry, skip to the next
step.

- 95 -

Configure a SASL mechanism handler

If always is chosen, make sure that the user’s entry has a valid value. If ifpresent is
selected, the userCertificate attribute can also be present. The client’s certificate
can be stored in the user entry using ldapmodify.

$ bin/ldapmodify

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: userCertificate;binary
userCertificate;binary:<file:///path/to/client.der

3. If using an attribute other than userCertificate, specify it using the certificate-

attribute property. Make sure that the schema is updated to support the attribute.

4. Determine the certificate-mapper property. For more information about certificate
mappers, see Configure certificate mappers.

5. Use dsconfig to enable the SASL UNBOUNDID-CERTIFICATE-PLUS-PASSWORD
mechanism if it is disabled. For this example, set the certificate-mapper property to
Subject Attribute to User Attribute. All other defaults are kept.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name UNBOUNDID-CERTIFICATE-PLUS-PASSWORD \
 --set enabled:true \
 --set "certificate-mapper:Subject Attribute to User Attribute"

Configure SASL UNBOUNDID-TOTP mechanism
Perform the following steps to configure the UNBOUNDID-TOTP mechanism:

1. Configure the server so that ds-auth-totp-shared-secret is a sensitive attribute that
can only be set over a secure connection and not retrieved from the server. Create the
sensitive attribute and reference it from the global configuration using dsconfig:

$ bin/dsconfig create-sensitive-attribute \
 --attribute-name ds-auth-totp-shared-secret \
 --set attribute-type:ds-auth-totp-shared-secret \
 --set allow-in-returned-entries:suppress \
 --set allow-in-filter:reject \
 --set allow-in-compare:reject \
 --set allow-in-add:secure-only \
 --set allow-in-modify:secure-only

$ bin/dsconfig set-global-configuration-prop \
 --add sensitive-attribute:ds-auth-totp-shared-secret

2. Update a user entry so that it contains a ds-auth-totp-shared-secret attribute with a
value that holds the base32-encoded shared secret that will be used for TOTP
authentication. This should be done over a secure connection (SSL or StartTLS). There is

- 96 -

Chapter 10: Authentication Mechanisms

no maximum limit for the ds-auth-totp-shared-secret string, but there is a minimum
length of 16 base32-encoded characters.

dn: uid=user.0,ou=People,dc=example,dc=com
changetype: modify
add: ds-auth-totp-shared-secret
ds-auth-totp-shared-secret: ONSWG4TFORRW6ZDF

3. Use ldapsearch to test the configuration.

$ bin/ldapsearch --saslOption mech=UNBOUNDID-TOTP \
 --saslOption authID=u:user.0 \
 --saslOption totpPassword=628094 \
 --bindPassword password \
 --baseDN "" \
 --searchScope base \
 "(objectClass=*)"

Configure SASL UNBOUNDID-DELIVERED-OTP mechanism
Perform the following steps to configure the UNBOUNDID-DELIVERED-OTP mechanism:

1. Add support for one or more one-time password delivery mechanisms. The following
commands enable an SMTP external server, associate it with the global configuration,
and create the delivery mechanism.

$ bin/dsconfig create-external-server \
 --server-name "Intranet SMTP Server" \
 --type smtp \
 --set server-host-name:server.example.com

$ bin/dsconfig set-global-configuration-prop \
 --add "smtp-server:Intranet SMTP Server"

$ bin/dsconfig create-otp-delivery-mechanism \
 --mechanism-name E-Mail \
 --type email \
 --set enabled:true \
 --set 'sender-address:otp@example.com' \
 --set "email-address-attribute-type:mail" \
 --set "message-subject:Your one-time password" \
 --set "message-text-before-otp:Your one-time password: "

2. With a Twilio account, configure the server to deliver one-time passwords over SMS.

$ bin/dsconfig create-otp-delivery-mechanism \
 --mechanism-name SMS \
 --type twilio \
 --set enabled:true
 --set twilio-account-sid:xxxxx \
 --set twilio-auth-token:xxxxx \
 --set "sender-phone-number:xxxxx" \

- 97 -

Configure a SASL mechanism handler

 --set phone-number-attribute-type:mobile \
 --set "message-text-before-otp:Your one-time password: "

3. With OTP delivery mechanisms established, configure the extended operation handler.

$ bin/dsconfig create-extended-operation-handler \
 --handler-name "Deliver One-Time Password" \
 --type deliver-otp \
 --set enabled:true \
 --set "identity-mapper:Exact Match" \
 --set "password-generator:One-Time Password Generator" \
 --set default-otp-delivery-mechanism:SMS \
 --set default-otp-delivery-mechanism:E-Mail

4. Configure the SASL mechanism handler.

$ bin/dsconfig create-sasl-mechanism-handler \
 --handler-name UNBOUNDID-DELIVERED-OTP \
 --type unboundid-delivered-otp \
 --set enabled:true \
 --set "identity-mapper:Exact Match" \
 --set "otp-validity-duration:5 minutes"

5. Make sure the server contains a user account with the information needed to deliver the
one-time password, such as a valid email address or mobile number.

6. Use the deliver one-time password extended operation to have the server generate and
send a one-time password to the user. The Commercial Edition of LDAP SDK contains
support for the extended request and response needed to do this, or use the deliver-

one-time-password command-line tool:

$ bin/deliver-one-time-password \
 --userName jdoe \
 --promptForBindPassword \
 --deliveryMechanism SMS

Enter the static password for the user:

Successfully delivered a one-time password via mechanism 'SMS' to '123-
456-7890'

If processed successfully, a text message is received:

Your one-time password: 123456

7. Authenticate to the server using the UNBOUNDID-DELIVERED-OTP SASL mechanism. The
Commercial Edition of the LDAP SDK can be used, or the ldapsearch tool:

$ bin/ldapsearch \
 -o mech=UNBOUNDID-DELIVERED-OTP \
 -o authID=u:jdoe \
 -o otp=123456 \
 -b '' \

- 98 -

Chapter 10: Authentication Mechanisms

 -s base '(objectClass=*)' \
 ds-supported-otp-delivery-mechanism

The search returns:

dn:
ds-supported-otp-delivery-mechanism: E-Mail
ds-supported-otp-delivery-mechanism: SMS

Configuring the UNBOUNDID-EXTERNALLY-PROCESSED-
AUTHENTICATION mechanism
If not enabled, use dsconfig to enable this mechanism. By default, the UNBOUNDID-
EXTERNALLY-PROCESSED-AUTHENTICATION mechanism is enabled.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name UNBOUNDID-EXTERNALLY-PROCESSED-AUTHENTICATION \
 --set enabled:true \
 --set "identity-mapper:Exact Match"

Configure the UNBOUNDID-YUBIKEY-OTP mechanism
Once the YubiKey client ID and API key are obtained, edit the server configuration for the
UNBOUNDID-YUBIKEY-OTP SASL mechanism handler and make the following changes:

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name UNBOUNDID-YUBIKEY-OTP \
 --set enabled:true \
 --set yubikey-client-id:<12345> \
 --set "yubikey-api-key:<abcdefghijklmnopqrstuvwxyz=>"

The following properties can also be confgured:

l identity-mapper — Specifies the identity mapper used to determine which user is
trying to authenticate for a provided username. The default Exact Match identity mapper
assumes that the provided username exactly matches the value of either the uid or the
mail attribute in the target user's entry.

l require-static-password — Indicates whether users are required to supply a static
password when authenticating to the server with a YubiKey one-time password. By
default, a static password is required for two-factor authentication. If this properly is set
to false, the one-time password is permitted by itself for single-factor authentication.
However, if an UNBOUNDID-YUBIKEY-OTP bind request includes a static password, that
password is verified even if require-static-password is set to false.

If using a validation service other than the one provided by Yubico, configure the following
properties:

l yubikey-validation-server-base-url — Specifies the HTTP or HTTPS URLs of any
servers that will be used to validate the one-time passwords generated by YubiKey

- 99 -

Configure a SASL mechanism handler

devices. Multiple values can be provided. In the event that the first server is unavailable
or unresponsive, the next server is accessed until one is available.

l key-manager-provider — Specifies the key manager provider that should be used if the
server is to communicate with the validation service over HTTPS, and must provide its
own client certificate. In most deployments, this should be left blank.

l trust-manager-provider — Specifies the trust manager provider that should be used if
the server is to communicate with the validation service over HTTPS, and the certificate
presented by that validation service is not one that is automatically trusted by the JVM.

Configure YubiKey authentication for a user
There are three ways to register a YubiKey device for a particular user:

l RegisterYubiKeyOTPDeviceExtendedRequest – If using the Commercial Edition of the
LDAP SDK for Java, this extended request is supported by the
com.unboundid.ldap.sdk.unboundidds.extensions.RegisterYubiKeyOTPDeviceExt

endedRequest class. If using a different API, consult the javadoc documentation for that
class for the proper format for the value of the extended request and other information.

l register-yubikey-otp-device tool – Command line tool that uses the register YubiKey
OTP device extended request provided with the server. To self register, use the --

authenticationID argument to specify either "dn:" followed by the DN of your entry, or
"u:" followed by username; use one of the --userPassword, --userPasswordFile, or -
-promptForUserPassword arguments to provide a password; and use the --otp

argument to supply a one-time password generated by the YubiKey device that to
register. To register a device on behalf of another user, the user's password is not
needed, but the --authenticationID and --otp arguments must be provided, and you
will also need to authenticate as a user with the password-reset privilege.

l LDAP modify operation or an add operation – If creating a user entry, directly store the
desired public ID in the ds-auth-yubikey-public-id attribute in the target user's
entry.

Retire a YubiKey device for a user
To retire a YubiKey device so that it can no longer be used for a specified user:

l Use the LDAP SDK for Java DeregisterYubiKeyOTPDeviceExtendedRequest.

l Use the register-yubikey-otp-device tool with the --deregister argument.

l Use a standard LDAP modify operation to remove the desired value(s) from the ds-

auth-yubikey-public-id attribute in the target user's entry.

- 100 -

Chapter 10: Authentication Mechanisms

When removing support for a device, a one-time password generated by the YubiKey device
can be supplied to deregister, or support for all devices that are registered for the specified
user can be removed.

Configure certificate mappers
SASL EXTERNAL requires that a certificate mapper be configured in the server. The certificate
mapper is used to identify the entry for the user to whom the certificate belongs. PingData
servers support a number of certificate mapping options including:

l Subject Equals DN – Specifies that the subject of the certificate exactly match the
distinguished name of the associated user entry. This option is not often practical as
certificate subjects (cn=jdoe,ou=Client Cert,o=Example

Company,c=Austin,st=Texas,c=US) are not typically in the same form as an entry
(cn=jdoe,ou=People,o=Example Company, or

uid=jdoe,ou=People,dc=example,dc=com).

l Fingerprint – Specifies that the user's entry contains an attribute (ds-certficate-
fingerprint by default), with values that are the SHA-1, 256-bit SHA-2, or MD5
fingerprints of the certificate(s) that they can use to authenticate. This attribute must be
indexed for equality.

l Subject Attribute to User Attribute – Used to build a search filter to find the
appropriate user entry based on information contained in the certificate subject. For
example, the default configuration expects the cn value from the certificate subject to
match the cn value of the user's entry, and the e value from the certificate subject to
match the mail value of the user's entry.

l Subject DN to User Attribute – Expects the user's entry to contain an attribute (ds-
certificate-subject-dn by default), whose values are the subjects of the certificate
(s) that they can use to authenticate. This multi-valued attribute can contain the subjects
of multiple certificates. The attribute must be indexed for equality.

Configure the Subject Equals DN certificate mapper
The Subject Equals DN certificate mapper is the default mapping option for the SASL EXTERNAL
mechanism. The mapper requires that the subject of the client certificate exactly match the
distinguished name of the corresponding user entry. The mapper, however, is only practical if
the certificate subject has the same format as the server's entries.

Perform the following to change the certificate mapper for the SASL EXTERNAL mechanism and
configure the Subject Equals DN certificate mapper:

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
 --handler-name EXTERNAL \
 --set "certificate-mapper:Subject Equals DN"

- 101 -

Configure certificate mappers

Configure the Fingerprint certificate mapper
The Fingerprint mapper causes the server to compute an MD5, 256-bit SHA-2, or SHA-1
fingerprint of the certificate presented by the client and performs a search to find that
fingerprint value in a user’s entry (ds-certificate-fingerprint by default). The ds-
certificate-fingerprint attribute can be added to the user’s entry together with the ds-
certificate-user auxiliary object class. For multiple certificates, the attribute can have
separate values for each of the acceptable certificates. Make sure this attribute is indexed, if
used.

The following example uses this certificate:

Alias name: client-cert
Creation date: Oct 29, 2011
Entry type: PrivateKeyEntry

Certificate chain length: 1 Certificate[1]:
Owner: CN=jdoe, OU=Client Cert, O=Example Company, L=Austin, ST=Texas, C=US
Issuer: EMAILADDRESS=whatever@example.com, CN=Cert Auth, OU=My Certificate Authority,
O=Example Company, L=Austin, ST=Texas, C=US
Serial number: e19cb2838441dbcd
Valid from: Thu Oct 29 13:07:10 CDT 2011 until: Fri Oct 29 13:07:10 CDT 2012
Certificate fingerprints:
 MD5: 40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB
 SHA1: 2A:89:71:06:1A:F5:DA:FF:51:7B:3D:2D:07:2E:33:BE:C6:5D:97:13
 Signature algorithm name: SHA1withRSA
 Version: 1

Perform the following steps to configure the Fingerprint certificate mapper:

1. Create an LDIF file to add the ds-certificate-user object class and ds-

certificate-fingerprint attribute to the target user’s entry.

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: ds-certificate-user
-
add: ds-certificate-fingerprint
ds-certificate-fingerprint:
40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

2. Apply the change to the entry using ldapmodify:

$ bin/ldapmodify --filename add-cert-attr.ldif

dn: uid=jdoe,ou=People,dc=example,dc=com
ds-certificate-
fingerprint:40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

3. Check that the attribute was added to the entry using ldapsearch.

$ bin/ldapsearch --baseDN dc=example,dc=com "(uid=jdoe)" \
 ds-certificate-fingerprint
 dn:uid=jdoe,ou=People,dc=example,dc=com

- 102 -

Chapter 10: Authentication Mechanisms

 ds-certificate-
fingerprint:40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

4. Create an index for the ds-certificate-fingerprint attribute. If the server is
configured with multiple data backends, the attribute should be indexed in each of those
backends.

$ bin/dsconfig create-local-db-index --backend-name userRoot \
 --index-name ds-certificate-fingerprint \
 --set index-type:equality

5. Use the rebuild-index tool to cause an index to be generated for this attribute.

$ bin/rebuild-index --task --baseDN dc=example,dc=com \
 --index ds-certificate-fingerprint

[14:56:28] The console logging output is also available in
'/ds/PingDataMetricsServer/logs/tools/rebuild-index.log'
[14:56:29] Due to changes in the configuration, index
dc_example_dc_com_ds-certificate-fingerprint.equality is currently
operating in a degraded state and must be rebuilt before it can used
[14:56:29] Rebuild of index(es) ds-certificate-fingerprint started with
161 total records to process
[14:56:29] Rebuild complete. Processed 161 records in 0 seconds (average
rate 1125.9/sec)

6. Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
 --handler-name EXTERNAL \
 --set "certificate-mapper:Fingerprint Mapper"

Configure the Subject Attribute to User Attribute Certificate Mapper
The Subject Attribute to User Attribute certificate mapper maps common attributes from the
subject of the client certificate to the user’s entry. The generated search filter must match
exactly one entry within the scope of the base distinguished name for the mapper. If no match
is returned or if multiple machine entries are found, the mapping fails.

Given the subject of the client certificate:

Owner: CN=John Doe, OU=Client Cert, O=Example Company, L=Austin, ST=Texas, C=US
We want to match to the following user entry:
dn: uid=jdoe,ou=People,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
uid: jdoe
givenName: John
sn: Doe
cn: John Doe
mail: jdoe@example.com

- 103 -

Configure certificate mappers

Perform the following to change the certificate mapper for the SASL EXTERNAL mechanism and
configure the Subject Attribute to User Attribute certificate mapper:

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
 --handler-name EXTERNAL \
 --set "certificate-mapper:Subject Attribute to User Attribute"

Configure the Subject DN to User Attribute certificate mapper
The Subject DN to User Attribute certificate mapper expects the user’s entry to contain an
attribute (ds-certificate-subject-dn by default) whose values match the subjects of the
certificates that the user can use to authenticate. The ds-certificate-subject-dn attribute
can be added to the user’s entry together with the ds-certificate-user auxiliary object
class. The attribute is multi-valued and can contain the subject distinguished names of multiple
certificates. The certificate mapper must match exactly one entry, or the mapping will fail.

If using this attribute, add an equality index for this attribute in all data backends.

Perform the following steps to configure the Subject DN to User Attribute certificate mapper:

1. Create an LDIF file to add the ds-certificate-user object class and ds-certificate-

subject-dn attribute to the target user’s entry.

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: ds-certificate-user
-
add: ds-certificate-subject-dn
ds-certificate-subject-dn:CN=John Doe,OU=Client Certificate,O=Example
Company,L=Austin,ST=Texas,C=US

2. Then, apply the change to the entry using ldapmodify:

$ bin/ldapmodify --filename add-cert-attr.ldif

3. Check that the attribute was added to the entry using ldapsearch.

$ bin/ldapsearch --baseDN dc=example,dc=com "(uid=jdoe)" \
 ds-certificate-subject-dn
 dn: uid=jdoe,ou=People,dc=example,dc=com
 ds-certificate-fingerprint:CN=jdoe, OU=Client Cert, O=Example Company,
 L=Austin, ST=Texas, C=US

4. Create an index to the ds-certificate-subject-dn attribute.

$ bin/dsconfig create-local-db-index --backend-name userRoot \
 --index-name ds-certificate-subject-dn \
 --set index-type:equality

5. Use the rebuild-index tool to ensure that the index is properly generated in all
appropriate backends.

$ bin/rebuild-index --task --baseDN dc=example,dc=com \
 --index ds-certificate-subject-dn

- 104 -

Chapter 10: Authentication Mechanisms

[15:39:19] The console logging output is also available in
'/ds/PingDataMetricsServer/logs/ tools/rebuild-index.log'
[15:39:20] Due to changes in the configuration, index
dc_example_dc_com_ds-certificate-subject-dn.equality is currently
operating in a degraded state and must be rebuilt before it can used
[15:39:20] Rebuild of index(es) ds-certificate-subject-dn started with
161 total records to process
[15:39:20] Rebuild complete. Processed 161 records in 0 seconds (average
rate 2367.6/sec)

6. Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
 --handler-name EXTERNAL \
 --set "certificate-mapper:Subject DN to User Attribute"

Configuring pass-through authentication
Pass-through authentication (PTA) is a mechanism by which one server receives the bind
request and can consult another server to authenticate the bind request. Implement this
functionality by configuring a PTA plug-in that enables the server to accept simple password-
based bind operations.

Perform the following steps to configure PTA:

1. Use dsconfig to define external servers to perform the authentication. The bind DN is
set to uid=pass-throughuser, dc=example,dc=com, which is used to bind to the target
LDAP server for simple authentication. The verify-credentials-method property
ensures that a single set of connections for processing binds and all other types of
operations is in place without changing the identity of the associated connection. Multiple
external servers can be configured.

$ bin/dsconfig create-external-server \
 --server-name "ds-with-pw-1.example.com:389" \
 --type pingdatametricsserver \
 --set server-host-name:ds-with-pw-1.example.com \
 --set server-port:389 \
 --set "bind-dn:uid=pass-through-user,dc=example,dc=com" \
 --set authentication-method:simple \
 --set verify-credentials-method:retain-identity-control

2. Create an instance of the PTA plug-in that will use the external server(s). The server will
first try to process a local bind as the target user (try-local-bind:true). The try-

local-bind:true with override-local-password:true means that if the local bind
fails, it will try sending the request to ds-with-pw-1.example.com:389 or another
server, if configured (server-access-mode:round-robin). If the bind succeeds against
the remote server, the local entry is updated to store the password that was used
(update-local-password:true). The number of connections to initially establish to the

- 105 -

Prevent bind information leaks

LDAP external server is set to 10. The maximum number of connections maintained to
the LDAP external server is 10.

$ bin/dsconfig create-plugin \
 --plugin-name "Pass-Through Authentication" \
 --type pass-through-authentication \
 --set enabled:true \
 --set server:ds-with-pw-1.example.com:389 \
 --set server:ds-with-pw-2.example.com:389 \
 --set try-local-bind:true \
 --set override-local-password:true \
 --set update-local-password:true \
 --set server-access-mode:round-robin \
 --set initial-connections:10 \
 --set max-connections:10

Note
The try-local-bind property workswith the override-local-password property. If try-
local-bind is true and override-local-password is set to its default value of false, the
server attempts a local bind first. If it fails because no password is set, it forwards the bind
request to a remote server. If the password was set but still fails, the server will not send the
request to the remote server.

If try-local-bind is true and override-local-password is true, a local bind is attempted.
The server forwards the request to the remote server, if the local bind fails.

Prevent bind information leaks
For most operations, if a problem prevents the operation from completing successfully, the
server attempts to return a detailed diagnostic message, appearing in the server's access log.
However, for bind operations, returning a diagnostic message could be intercepted by an
attacker. To avoid this, the server does not return diagnostic messages for a number of
authentication failures. The information is included in access log messages in the
authFailureReason element, so it is available to administrators, but not returned to the
client.

If it is deemed that the value of providing this information to clients outweighs the risk of an
attacker using the diagnostic information, the server can be configured to return those
messages. This is controlled by the return-bind-error-messages property.

The following Global Configuration properties help prevent bind information leak:

l return-bind-error-messages – Indicates whether the server should include diagnostic
messages in responses for unsuccessful bind operations. This feature has a value of
false by default for a more secure configuration, but it can be changed to true if the
benefit of providing these messages to clients is believed to outweigh their risk.
Regardless of the setting, the reason for the authentication failure is indicated in the
server access log.

- 106 -

Chapter 10: Authentication Mechanisms

l bind-with-dn-requires-password – Indicates whether the server should reject any
simple bind request that contains a non-empty DN with an empty password. Although
this is allowed by LDAP standards (as an anonymous simple bind), security problems can
arise from poorly written clients that don't check whether an empty password is
provided, and merely checks the bind operation result code. If this is enabled (default
setting), the server rejects these type of bind requests. Simple bind requests with an
empty DN and an empty password are still allowed, so this option should only be
disabled if clients are allowed to perform legitimate anonymous binds that include a non-
empty DN in the bind request.

- 107 -

Chapter 11: Monitoring, alerts, alarms,
and notifications

The PingData servers support a flexible monitoring framework that enables administrators to
detect unusual activity. Each server exposes its monitoring information under the cn=monitor
entry, and provides interfaces through JMX, the Administrative Console, over LDAP, over
SNMP, and through the Data Metrics Server.

PingData servers also provide delivery mechanisms for alarms, alerts, and notifications that
can be sent to end users, operators, and directory administrators, such as account status
notifications and administrative alerts using SMTP, JMX, SNMP or standard error logging.

Topics include:

Monitoring components

Profile server performance using the Stats Logger

Working with administrative alert handlers

The Alerts backend

System alarms and gauges

Test alerts and alarms

Working with account status notifications

- 108 -

Chapter 11: Monitoring, alerts, alarms, and notifications

Monitoring components
The PingData product family exposes its monitoring information under the cn=monitor entry
for easy access to its information. Administrators can use various means to monitor the
server’s information including the Administrative Console, JConsole, LDAP commandline tools,
JMX, through SNMP, and using theData Metrics Server.

About the Data Metrics Server
The Data Metrics Server collects performance and event data from a set of PingData Directory
Server, Directory Proxy Server, and/or Data Sync Servers. A single Data Metrics Server
instance can collect data from up to 50 servers. The Data Metrics Server normalizes and
aggregates this data and makes it available to users through a RESTful API.

For more information, see the PingData Data Metrics Server Administration Guide.

Data Metrics Server Security
The Data Metrics Server can be secured by setting the require-api-authentication
property of the Monitoring Configuration object using the dsconfig command-line tool.

The HTTPS Connection Handler can also be configured for accessing the API to encrypt traffic
over the wire.

Monitoring using SNMP
The Directory Server supports real-time monitoring using SNMP. The Directory Server
provides an embedded SNMPv3 subagent plugin that, when enabled, sets up the server as a
managed device and exchanges monitoring information with a master agent based on the
AgentX protocol.

MIBS
The Directory Server provides SMIv2-compliant MIB definitions (RFC 2578, 2579, 2580) for
distinct monitoring statistics. These MIB definitions are found in text files under resource/mib
directory under the server root directory.

Each MIB provides managed object tables for each specific SNMP management information as
follows:

l LDAP Remote Server MIB – Provides information related to the health and status of
the LDAP servers to which the Directory Proxy Server connects, and statistics about the
operations invoked by the Directory Proxy Server on those LDAP servers.

l LDAP Statistics MIB – Provides a collection of connection-oriented performance data
that is based on a connection handler in the Directory Server. A server typically contains
only one connection handler and therefore supplies only one table entry.

- 109 -

Monitoring components

l Local DB Backend MIB – Provides key metrics related to the state of the local
database backends contained in the server.

l Processing Time MIB – Provides a collection of key performance data related to the
processing time of operations broken down by several criteria but reported as a single
aggregated data set.

l Replication MIB – Provides key metrics related to the current state of replication.

l System Status MIB – Provides a set of critical metrics for determining the status and
health of the system in relation to its work load.

For information on the available monitoring statistics for each MIB available on the Directory
Server and the Directory Proxy Server, see the text files provided in the resource/mib
directory in the server installation.

The Directory Server generates an extensive set of SNMP traps for event monitoring. The traps
display the severity, description, name, object ID, and summary. For information about the
available alert types for event monitoring, see the resource/mib/UNBOUNDID-ALERT-MIB.txt
file.

Monitoring with JMX
The Directory Server supports monitoring the JVM through a Java Management Extensions
(JMX) management agent, which can be accessed using JConsole or a JMX client. The JMX
interface provides JVM performance and resource utilization information for applications
running Java. Generic metrics exposed by the JVM itself can be monitored, including memory
pools, threads, loaded classes, and MBeans, as well as all the monitor information that the
Directory Server provides. JMX notifications for any administrative alerts that are generated
within the server can also be received.

Monitoring using the LDAP SDK
Use the monitoring API to retrieve monitor entries. For example, retrieve all monitor entries
published by the Directory Server and print the information contained in each using the generic
API for accessing monitor entry data as follows:

for (MonitorEntry e : MonitorManager.getMonitorEntries(connection))
{

 System.out.println("Monitor Name: " + e.getMonitorName());
 System.out.println("Monitor Type: " + e.getMonitorDisplayName());
 System.out.println("Monitor Data:");
 for (MonitorAttribute a : e.getMonitorAttributes().values())

{
 for (Object value : a.getValues())

{
 System.out.println(" " + a.getDisplayName() + ": " + String.valueOf(value));
 }
 }
 System.out.println();
 }

- 110 -

Chapter 11: Monitoring, alerts, alarms, and notifications

For more information about the LDAP SDK and the methods in this example, see the LDAP SDK
documentation.

Monitoring over LDAP
The PingData servers expose a majority of their information under the cn=monitor entry.
Access these entries over LDAP using the ldapsearch tool.

$ bin/ldapsearch --hostname server1.example.com \
 --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --baseDN "cn=monitor" "(objectclass=*)"

Profile server performance using the Stats Logger
Plugin
Each server ships with a built-in Stats Logger Plugin (disabled by default) that is useful for
profiling server performance for a given configuration. At a specified interval, the Stats logger
writes server statistics to a log file in a comma-separated format (.csv), which can be read by
spreadsheet applications. The logger has a negligible impact on server performance unless the
log-interval property is set to a very small value (less than 1 second). The statistics that are
logged and their verbosity can be configured with the dsconfig tool.

Working with administrative alert handlers
PingData servers provide mechanisms to send alert notifications to administrators when
significant problems or events occur. Several alert handler implementations are available,
including:

l Error Log Alert Handler – Sends administrative alerts to the configured server error
logger(s).

l Exec Alert Handler – Executes a specified command on the local system if an
administrative alert matching the criteria for this alert handler is generated by the
Directory Server. Information about the administrative alert is made available to the
executed application as arguments provided by the command.

l Groovy Scripted Alert Handler – Provides alert handler implementations defined in a
dynamically-loaded Groovy script that implements the ScriptedAlertHandler class
defined in the Server SDK.

l JMX Alert Handler – Sends administrative alerts to clients using the Java Management
Extensions (JMX) protocol. PingData uses JMX for monitoring entries and requires that
the JMX connection handler be enabled.

- 111 -

The Alerts backend

l SMTP Alert Handler – Sends administrative alerts to clients by email using SMTP. The
server requires that one or more SMTP servers be defined in the global configuration.

l SNMP Alert Handler – Sends administrative alerts to clients using the Simple Network
Monitoring Protocol (SNMP). The server must have an SNMP agent capable of
communicating via SNMP 2c.

l SNMP Subagent Alert Handler – Sends SNMP traps to a master agent in response to
administrative alerts generated within the server.

l Third Party Alert Handler – Provides alert handler implementations created in third-
party code using the Server SDK.

The Alerts backend
PingData servers store recently generated administrative alerts under the cn=alerts branch.
The backend makes it possible to obtain alert information over LDAP for use with remote
monitoring. The backend's primary job is to process search operations for alerts. It does not
support add, modify, or modify DN operations of entries.

The alerts persist on disk in the config/alerts.ldif file so that they can survive server
restarts. By default, the alerts remain on disk for seven days before being removed. However,
administrators can configure the number of days for alert retention using the dsconfig tool.
The administrative alerts of Warning level or worse that have occurred in the last 48 hours are
viewable from the output of the status command-line tool and in the Administrative Console.

View information in the Alerts backend
Use ldapsearch to view the administrative alerts:

$ bin/ldapsearch --port 1389 --bindDN "cn=Directory Manager" \
 --bindPassword secret --baseDN cn=alerts "(objectclass=*)"

dn: cn=alerts
objectClass: top
objectClass: ds-alert-root
cn: alerts

dn: ds-alert-id=3d1857a2-e8cf-4e80-ac0e-ba933be59eca,cn=alerts
objectClass: top
objectClass: ds-admin-alert
ds-alert-id: 3d1857a2-e8cf-4e80-ac0e-ba933be59eca
ds-alert-type: server-started
ds-alert-severity: info
ds-alert-type-oid: 1.3.6.1.4.1.32473.2.11.33
ds-alert-time: 20110126041442.622Z
ds-alert-generator: com.unboundid.directory.server.core.metrics.server
ds-alert-message: The Data Metrics Server has started successfully

- 112 -

Chapter 11: Monitoring, alerts, alarms, and notifications

Modify the alert retention time
Use dsconfig to change the maximum time information about generated alerts retained in the
alerts backend. After this time, the information is purged from the server. The minimum
retention time is 0 milliseconds, which immediately purges the alert information.

$ bin/dsconfig set-backend-prop \
 --backend-name "alerts" \
 --set "alert-retention-time: 2 weeks"

View the property using dsconfig:

$ bin/dsconfig get-backend-prop \
 --backend-name "alerts" \
 --property alert-retention-time

Property : Value(s)
---------------------:---------
alert-retention-time : 2 w

Configure duplicate alert suppression
Use dsconfig to configure the maximum number of times an alert is generated within a
particular time frame for the same condition. The duplicate-alert-time-limit property
specifies the length of time that must pass before duplicate messages are sent over the
administrative alert framework and the maximum number of messages should be sent.

$ bin/dsconfig set-global-configuration-prop \
 --set duplicate-alert-limit:2 \
 --set "duplicate-alert-time-limit:3 minutes"

System alarms and gauges
An alarm represents a stateful condition of the server or a resource that may indicate a
problem, such as low disk space or external server unavailability. A gauge defines a set of
threshold values with a specified severity that, when crossed, cause the server to enter or exit
an alarm state. Gauges are used for monitoring continuous values like CPU load or free disk
space (Numeric Gauge), or an enumerated set of values such as 'server unavailable' or ‘server
unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity changes
due to changes in the monitored value. Like alerts, alarms have severity (NORMAL, WARNING,
MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a Condition
property, and may have a Specific Problem or Resource property. If surfaced through SNMP, a
Probable Cause property and Alarm Type property are also listed. Alarms can be configured
to generate alerts when the alarm's severity changes.

There are two alert types supported by the server - standard and alarm-specific. The server
constantly monitors for conditions that may attention by administrators, such as low disk
space. For this condition, the standard alert is low-disk-space-warning, and the alarm-
specific alert is alarm-warning. The server can be configured to generate alarm-specific alerts
instead of, or in addition to, standard alerts. By default, standard alerts are generated for

- 113 -

Test alerts and alarms

conditions internally monitored by the server. However, gauges can only generate alarm-
alerts.

The server installs a set of gauges that are specific to the product and that can be cloned or
configured through the dsconfig tool. Existing gauges can be tailored to fit each environment
by adjusting the update interval and threshold values. Configuration of system gauges
determines the criteria by which alarms are triggered. The Stats Logger can be used to view
historical information about the value and severity of all system gauges.

The PingData servers are compliant with the International Telecommunication Union CCITT
Recommendation X.733 (1992) standard for generating and clearing alarms. If configured,
entering or exiting an alarm state can result in one or more alerts. An alarm state is exited
when the condition no longer applies. An alarm_cleared alert type is generated by the system
when an alarm's severity changes from a non-normal severity to any other severity. An
alarm_cleared alert will correlate to a previous alarm when the Condition property is the
same. The Alarm Manager, which governs the actions performed when an alarm state is
entered, is configurable through the dsconfig tool and Administrative Console.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores
information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over
time that can change in severity and be cleared when a monitored value returns to normal.
Alarms can be viewed with the status tool. As with other alert types, alert handlers can be
configured to manage the alerts generated by alarms. A complete listing of system alerts,
alarms, and their severity is available in <server-root>/docs/admin-alerts-list.csv.

Test alerts and alarms
After alarms and alert handlers are configured, verify that the server takes the appropriate
action when an alarm state changes by manually increasing the severity of a gauge. Alarms
and alerts can be verified with the status tool.

1. Configure a gauge with dsconfig and set the override-severity property to critical. The
following example uses the CPU Usage (Percent) gauge.

$ dsconfig set-gauge-prop \
 --gauge-name "CPU Usage (Percent)" \
 --set override-severity:critical

2. Run the status tool to verify that an alarm was generated with corresponding alerts.
The status tool provides a summary of the server’s current state with key metrics and
a list of recent alerts and alarms. The sample output has been shortened to show just the
alarms and alerts information.

$ bin/status

 --- Administrative Alerts ---
Severity : Time : Message
---------:---------------:--
Info : 11/Aug/2014 : A configuration change has been made in the
 : 15:48:46-0500 : Directory Server:
 : : [11/Aug/2014:15:48:46.054 -0500]
 : : conn=17 op=73 dn='cn=Directory Manager,cn=Root

- 114 -

Chapter 11: Monitoring, alerts, alarms, and notifications

 : : DNs,cn=config' authtype=[Simple] from=127.0.0.1
 : : to=127.0.0.1 command='dsconfig set-gauge-prop
 : : --gauge-name 'Cleaner Backlog (Number Of Files)'
 : : --set warning-value:-1'
Info : 11/Aug/2014 : A configuration change has been made in the
 : 15:47:32-0500 : Directory Server: [11/Aug/2014:15:47:32.547 -0500]
 : : conn=4 op=196 dn='cn=Directory Manager,cn=Root
 : : DNs,cn=config' authtype=[Simple] from=127.0.0.1
 : : to=127.0.0.1 command='dsconfig set-gauge-prop
 : : --gauge-name 'Cleaner Backlog (Number Of Files)'
 : : --set warning-value:0'
Error : 11/Aug/2014 : Alarm [CPU Usage (Percent). Gauge CPU Usage
 : 15:41:00-0500 : for Host System Recent CPU and Memory has
 : : a current value of '18.583333333333332'.
 : : The severity is currently OVERRIDDEN in the
 : : Gauge's configuration to 'CRITICAL'.
 : : The actual severity is: The severity is
 : : currently 'NORMAL', having assumed this severity
 : : Mon Aug 11 15:41:00 CDT 2014. If CPU use is high,
 : : check the server's current workload and make any
 : : needed adjustments. Reducing the load on the system
 : : will lead to better response times.
 : : Resource='Host System Recent CPU and Memory']
 : : raised with critical severity
Shown are alerts of severity [Info,Warning,Error,Fatal] from the past 48 hours
Use the --maxAlerts and/or --alertSeverity options to filter this list

--- Alarms ---
Severity : Severity : Condition : Resource : Details
 : Start Time : : :
---------:------------:-----------:-------------:---------------------------
Critical : 11/Aug/2014: CPU Usage : Host System : Gauge CPU Usage (Percent) for
 : 15:41:00 : (Percent) : : Host System
 : -0500 : : : has a current value of
 : : : : '18.785714285714285'.
 : : : : The severity is currently
 : : : : 'CRITICAL', having assumed
 : : : : this severity Mon Aug 11
 : : : : 15:49:00 CDT 2014. If CPU use
 : : : : is high, check the server's
 : : : : current workload and make any
 : : : : needed adjustments. Reducing
 : : : : the load on the system will
 : : : : lead to better response times

Shown are alarms of severity [Warning,Minor,Major,Critical]
Use the --alarmSeverity option to filter this list

Working with account status notifications
PingData servers support notification handlers that can be used to notify users and/or
administrators of significant changes related to password policy state for user entries. The
following two notification handlers are available:

- 115 -

Working with account status notifications

l Error Log Account Status Notification Handler – Enabled by default. The handlers
send alerts to the error log when an account event occurs.

l SMTP Account Status Notification Handler – Sends notifications to designated email
addresses, when enabled. The SMTP Handler can be enabled with the dsconfig

command.

Account status notification types
The handlers send alerts when one of the account status events described in the following table
occurs during password policy processing.

Account Status Notification
Types Description

account-disabled Generates a notification when a user account is disabled by an administrator.

account-enabled Generates a notification when a user account is enabled by an administrator.

account-expired Generates a notification when a user authentication attempt fails because the
account has expired.

account-idle-locked Generates a notification when a user authentication attempt fails because the
account has been locked after idling for too long.

account-permanently-locked Generates a notification when a user account is permanently locked
(requiring administrative action to unlock the account) after too many failed
attempts.

account-reset-locked Generates a notification when an authentication attempt fails because the
user account is locked due to a failure to change the password within the
required interval set by the administrator.

account-temporarily-locked Generates a notification whenever a user account is temporarily locked after
too many failed attempts.

account-unlocked Generates a notification whenever a user account is unlocked by an
administrator.

password-changed Generates a notification whenever a user changes his or her own password.

password-expired Generates a notification whenever a user authentication fails because the
password has expired.

password-expiring Generates a notification the first time that a password expiration warning is
encountered for a user password.

password-reset Generates a notification whenever a user's password is reset by an
administrator.

Account Status Notification Types

- 116 -

Chapter 12: Logging security

PingData servers provide logging capabilities to parse and analyze any situational event or
problem that may occur. This chapter summarizes the logging features available on the
servers.

Topics include:

Configure log rotation and retention policies

Log signing

Configure access logging

Configure filtered logging

Configure change logging

Configure error logging

Configure debug logging

Configure Data Sync Server logging

Options for centralized logging

Parse and analyze log messages

- 117 -

Chapter 12: Logging security

Configure log rotation and retention policies
Because disks do not have unlimited space, file-based loggers provide options for log file
rotation and retention. Log file rotation is the process by which the active log file is closed and
renamed, and a new file is created in its place. For example, the default access logger uses a
file named access. When rotation occurs, the current access file is renamed to include a
timestamp such as access.20110102030405Z, and a new empty access file is started. The
primary purpose of log file rotation is to ensure that no individual log file grows too large.

There are a few different kinds of log rotation policies, including:

l Size limit rotation policy – Starts rotation when the log file reaches a given size.

l Time limit rotation policy – Starts rotation based on the length of time since the last
rotation.

l Fixed time rotation policy – Starts rotation at specified times in the day.

l Never rotate policy – Prevents log rotation from occurring.

Each file-based logger must have at least one rotation policy. If there are multiple policies, any
of them can trigger a rotation. For example, the default access logger is configured with two
rotation policies: one that will trigger a rotation if the log file reaches 100MB in size, and
another that will trigger a rotation if it's been 24 hours since the previous rotation. Therefore,
there will be one rotation per day, or more if more than 100MB is written in the course of a
day.

Log retention policies are used to determine when rotated log files should be removed from the
system (with older files deleted before newer files). Available types of log retention policies
include:

l File count retention policy – Deletes rotated log files as necessary to ensure that the
number of rotated files does not exceed a given count.

l Size limit retention policy – Deletes rotated log files as necessary to ensure that the
total size of rotated files (for a particular logger) does not exceed a given threshold.

l Free disk space retention policy – Deletes rotated log files if the amount of
remaining usable disk space on the volume holding those files drops below a given
threshold.

l Never delete retention policy – Causes a log file deletion to never be triggered. Each
file-based logger must have at least one retention policy.

Log signing
Logs can be cryptographically signed to ensure that they have not been modified. For example,
financial institutions require audit logs for all transactions to check for correctness. Tamper-
proof files are needed to ensure that these transactions can be properly validated and that they

- 118 -

Configure access logging

have not been modified by any third-party. Use the dsconfig tool to enable the sign-log
property on a Log Publisher to turn on cryptographic signing.

When enabling signing for a logger that already exists and was enabled without signing, the
first log file will not be completely verifiable because it still contains unsigned content. Only log
files whose entire content was written with signing enabled is considered completely valid. For
the same reason, if a log file is still open for writing, then signature validation will not indicate
that the log is completely valid because the log will not include the necessary "end signed
content" indicator at the end of the file.

To validate log file signatures, use the validate-file-signature tool provided in the bin
directory of the server (or the bat directory for Windows systems).

Once this property is enabled, disable and then re-enable the Log Publisher for the changes to
take effect.

Configure access logging
Access loggers can be used to record information whenever a connection is established and/or
closed, when the server receives a request from a client, and/or when the server sends a
response to a client. Access loggers are a useful way of understanding the processing that the
server has actually performed.

By default, the server configuration includes these access loggers:

l File-Based Access Logger – Logs information about all operations processed by the
server (one message per operation combining both request and response details), as
well as connects and disconnects. This logger is enabled by default and writes to the
logs/access file.

l Failed Operations Access Logger – Logs information about operations that did not
complete successfully. It does this using a result criteria object configured to only match
operations with a result code other than success, compare true, compare false, referral,
SASL bind in progress, and no operation. This logger is enabled by default and writes to
the logs/failed-ops file.

l Expensive Operations Access Logger – Logs operations that took at least 1000
milliseconds to complete. This is useful to determine if a client is issuing requests the
server isn't optimally configured to handle, if searches are returning an unusually large
number of entries, or if the server is under exceptionally heavy load. This logger is
disabled by default. When enabled it writes to the logs/expensive-ops file.

l File-Based Audit Logger – Writes information about successful add, delete, modify,
and modify DN operations. The content of the changes are represented in LDIF form,
which makes it possible to determine exactly what change was requested by the client.
Alternately, it can be configured to log changes in reversible form, which enables a
change to be undone if it was made in error. This logger is disabled by default. If
enabled, it writes to the logs/audit file.

- 119 -

Chapter 12: Logging security

l Successful Searches with no Entries Found – Writes information about successful
search requests including requestor information, search information, and request and
result criteria. This logger is disabled by default. If enabled, it writes to the
logs/searches-returning-no-entries file.

The Server SDK can be used to create additional access loggers. All types of access loggers
provide a number of common options, including:

l suppress-replication-operations – Indicates whether the logger should be used to
record information about operations initiated by replication in addition to those
requested by external clients.

l log-connects – Indicates whether the logger should record information about new
connections established to the server.

l log-disconnects – Indicates whether the logger should record information about
existing connections that are closed.

l log-client-certificates – Indicates whether the logger should record information
about certificates that clients present to the server during SSL or StartTLS negotiation.

l log-requests – Indicates whether the logger should record information about operation
requests sent to the server.

l log-forwards – Indicates whether the logger should record information about requests
forwarded on to one or more backend servers. This is primarily applicable to the
Directory Proxy Server.

l log-forward-failures – Indicates whether the logger should record information about
failures encountered while attempting to process an operation in a backend server. This
is primarily applicable to the Directory Proxy Server.

l log-results – Indicates whether the logger should record information about the
outcome of operation processing.

l log-search-entries – Indicates whether the logger should record information about
each search result entry returned to clients.

l log-search-references – Indicates whether the logger should record information about
each search result reference returned to clients.

l log-intermediate-responses – Indicates whether the logger should record information
about each intermediate response returned to clients.

Several loggers other configuration properties to further customize their behavior, including:

l include-request-details-in-result-messages – Indicates whether the server should
include all of the content that it would provide in request messages in the log message
for the result of that operation. When this is combined with setting log-requests to
false, this makes it possible to write only a single log message per operation rather than

- 120 -

Configure access logging

separate messages for the request and the result. This also makes it easier to interpret
log messages, because information between request and result messages doesn't need
to be correlated.

l include-request-details-in-search-entry-messages – Same effect as include-

request-details-in-result-messages, except that it applies to log messages
generated for search result entries returned to clients.

l include-request-details-in-search-reference-messages – Same effect as
include-request-details-in-result-messages, except that it applies to log
messages generated for search result references returned to clients.

l include-request-details-in-intermediate-response-messages – Same effect as
include-request-details-in-result-messages, except that it applies to log
messages generated for intermediate response messages returned to clients.

l include-extended-search-request-details – Indicates whether log messages for
search requests should include additional information about the request, including the
requested size limit, time limit, alias dereferencing behavior, and types only flag.

l include-add-attribute-names – Indicates whether log messages for add requests
(and/or add result messages if request details should be included in result messages)
should include a field with the names of the attributes included in the add request.

l include-modify-attribute-names – Indicates whether log messages for modify
requests (and/or modify result messages if request details should be included in result
messages) should include a field with the names of the attributes targeted by the modify
request.

l include-search-entry-attribute-names – Indicates whether search result entry
messages should include a field with the names of the attributes in the entry returned to
the client.

l include-product-name – Indicates whether log messages should include the name of
the product that logged the message. This is helpful for logging messages from multiple
products, which may be combined.

l include-instance-name – Indicates whether log messages should include the name of
the server instance that logged the message. The instance name can be specified in the
global configuration, but the server can generate its own instance name (which will
generally contain the address and port on which it is listening for client connections).
This can be helpful for cases in which log messages from multiple instances are
combined.

l include-startup-id – Indicates whether log messages should include a compact
unique identifier that is generated at the time the server is started. This can help
differentiate log messages from the same instance across server restarts. When the

- 121 -

Chapter 12: Logging security

server is restarted, connection IDs are reset to zero, so without a startup ID it may be
difficult to distinguish between operations with the same connection ID and operation ID
before and after the restart.

l include-requester-ip-address – Indicates whether log messages should include the
IP address of the client from which the request was received. The client address will be
included in the message logged when a connection is established, but including the IP
address in request and result messages can avoid the need to locate the connect
message to determine the address of a given client.

l include-requester-dn – Indicates whether log messages should include the DN of the
user authenticated on the connection on which the request was received. The DN of the
authenticated user is included in bind result messages, but it can be useful to include the
requester DN in other kinds of log messages as well.

l include-request-controls – Indicates whether log messages should include the OIDs
of any controls included in the request received from the client.

l include-response-controls – Indicates whether log messages should include the OIDs
of any controls included in responses returned to the client.

l include-replication-change-id – Indicates whether log messages for write
operations should include the replication change ID for an operation. This can be used for
debugging and correlating a replicated change as it is processed across multiple servers.

l max-string-length – Specifies the maximum length of any string allowed for a field
included in an access log message. This ensures that long log elements are truncated
(with an indication of the number of bytes removed) to save space.

l timestamp-precision – Indicates whether to log timestamps with an accuracy of
seconds or milliseconds. Although log message timestamps have traditionally only used
second-level accuracy, when servers are capable of processing hundreds of thousands of
operations per second per instance, timestamp precision can be useful.

l compression-mechanism – Indicates whether the contents of the log file should be
compressed. A compressed log file consumes less space, which makes it possible to
store more data. This setting cannot be changed after a logger has been created. To use
compressed logging, create a new logger and enable compression.

Configure filtered logging
Servers under heavy load can easily generate hundreds of megabytes or more of log content
every minute. While it is useful to have a full log of all operations processed by the server, the
sheer volume of content (and the frequency with which files may be rotated or removed) can
make it difficult to debug certain problems in real time. Further, storage space constraints may
make it difficult to archive the entire history of operations.

- 122 -

Configure filtered logging

PingData servers provide a criteria subsystem that make it easy to filter log contents. When
this is combined with the server's ability to have any number of active access loggers, this
makes it possible to have loggers dedicated to a particular purpose.

Many access loggers (including those that don't log to files) support filtering. The kinds of
messages to include can be customized. For example, to create an access log with only
operations requested by root users, use the "Requests by Root Users" connection criteria
with a change like:

$ bin/dsconfig create-log-publisher \
 --publisher-name "Operations by Root Users" \
 --type file-based-access \
 --set enabled:true \
 --set "connection-criteria:Requests by Root Users" \
 --set log-file:logs/root-operations \
 --set include-requester-ip-address:true \
 --set include-requester-dn:true \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set "retention-policy:Size Limit Retention Policy"

A similar process can be used to log operations from a particular client (based on its address).
In that case, choose a different connection criteria. For example, the following criteria can be
used to match any request from client with IP address "1.2.3.4":

$ bin/dsconfig create-connection-criteria \
 --criteria-name "Clients from IP 1.2.3.4" \
 --type simple \
 --set included-client-address:1.2.3.4

To create an access logger that records every time the server returns a search result entry
containing the userPassword attribute, create a search result entry criteria object that will
match those entries, and then create a logger to use that criteria and configured to log only
search result entry messages, such as:

$ bin/dsconfig create-search-entry-criteria \
 --criteria-name "Search Entries Containing Passwords" \
 --type simple \
 --set "any-included-entry-filter:(userPassword=*)"

$ bin/dsconfig create-log-publisher \
 --publisher-name "Password Retrieval" \
 --type file-based-access \
 --set enabled:true \
 --set log-client-certificates:false \
 --set log-results:false \
 --set log-search-entries:true \
 --set "search-entry-criteria:Search Entries Containing Passwords" \
 --set include-request-details-in-search-entry-messages:true \
 --set include-search-entry-attribute-names:true \
 --set include-requester-ip-address:true \
 --set include-requester-dn:true \
 --set log-file:logs/password-retrieval \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \

- 123 -

Chapter 12: Logging security

 --set "retention-policy:File Count Retention Policy" \
 --set "retention-policy:Size Limit Retention Policy

Configure change logging
The Directory Server provides an audit log (which is implemented as a specialized access log)
that records information about changes processed in the server using LDIF representations.
The Directory Server also provides support for an LDAP changelog, which makes this
information available to LDAP clients in a form that can be consumed using APIs such as the
LDAP SDK for Java. This information can be used to help synchronize changes between multiple
systems, and it can also provide additional information about entries that have been updated
but not included in the audit log.

The LDAP changelog is implemented as a special backend in the Directory Server. The server
configuration includes a changelog backend, which is disabled by default. The configuration
object provides a number of properties that can be used to customize its behavior, including:

l changelog-maximum-age – Specifies the maximum length of time for which the
changelog should hold records. The changelog automatically purges records older than
this to ensure that the database does not grow too large. By default, changelog records
are kept for two days.

l changelog-include-attribute – Restricts the set of changelog entries created for add
and modify operations. If one or more include attributes are defined, changelog entries
are only created for add operations, if the entry to add contains one or more of the
specified attributes. Changelog entries are created for modify operations if one or more
of those attributes was updated by the change. Only those attributes are listed in the
changes attribute of the changelog entry. This setting does not impact modify or modify
DN operations.

l changelog-exclude-attribute – Restricts the set of changelog entries created for add
and modify operations. It is similar to the changelog-include-attribute property,
except that it excludes the named attributes.

l changelog-deleted-entry-include-attribute – Indicates that changelog entries
should contain the values of the specified attributes from entries that have been deleted.
If no include or exclude attributes are specified, then no deleted entry attribute
information is included.

l changelog-deleted-entry-exclude-attribute – Indicates that changelog entries
should contain the values of all except the specified attributes from entries that have
been deleted. If no include or exclude attributes are specified, no deleted entry attribute
information is included.

l changelog-include-key-atttribute – Indicates that changelog entries should include
the values of the specified attributes at the time of the update, regardless of whether
those attributes were altered by the operation. For add, modify, and modify DN

- 124 -

Configure change logging

operations, this reflects the values of those attributes after the operation completes. For
delete operations, this reflects the values of those attributes just before the entry was
removed.

l changelog-max-before-after-values – Indicates that changelog entries should include
the values of attributes updated by the operation, both before and after the operation is
processed. This applies to both modify and modify DN operations. This option specifies
the maximum number of values to report, which prevents including too many entries for
bulk operations.

l index-include-attribute – Indicates that the changelog should maintain indexes for
each of the specified attributes. This tracks changelog records in which the specified
attribute was included in the change that was processed. This can improve performance
with the get changelog batch extended operation when change filtering is requested.

l index-exclude-attribute – Indicates that the changelog should maintain indexes for
all attributes except those specified. This cannot be used with the index-include-

attribute property.

l use-reversible-form – Indicates whether changelog entries for modify operations
should record information about the change that enable it to be reverted. If enabled,
delete changelog records include all deleted entry attributes.

l include-virtual-attributes – Indicates whether to include information about virtual
attributes held in the entry at the time the change was made. Values for this property
include:

o add-attributes – Include information about virtual attributes as they would
appear in the resulting entry after the add completed.

o before-and-after-values – Include information about virtually-generated values
that would be included in the entry before and after the change was applied, for
modify and modify DN operations.

o deleted-entry-attributes – Include virtual attribute values for the entry at the
time it was removed).

o key-attribute-values – Include virtual attribute values for key attributes in the
entry).

l apply-access-controls-to-changelog-entry-contents – Indicates whether the
server should apply access control restrictions to information contained in changelog
entries before they are returned to clients. If true, this removes references to any
attributes that the requester does not have permission to see from the changelog
entries, before returning them to the client. This can be useful if changelog entries are
accessible to non-administrators.

l report-excluded-changelog-attributes– Indicates whether changelog entries
returned to the client should include information about any attributes that were removed

- 125 -

Chapter 12: Logging security

as a result of access control processing. Values include:
o none – Include no information about excluded attributes.

o attribute-counts – Include the number of user and operational attributes that
were excluded.

o attribute-names – Include the names of the user and operational attributes that
were excluded.

The LDAP SDK for Java supports parsing the information contained in changelog entries. The
com.unboundid.ldap.sdk.ChangeLogEntry class interacts with changelog entries using the
specification in the draft-good-ldap-changelog IETF draft, while the
com.unboundid.ldap.sdk.unboundidds.UnboundIDChangeLogEntry class provides enhanced
support for changelog entries in the Directory Server, including key attributes, before and after
values, and virtual attributes.

Configure error logging
Error loggers publish information about warnings, errors, and significant events encountered
during processing. In addition to Server SDK support for creating custom error loggers,
servers provide error loggers that can write messages to local files, a relational database
(JDBC), or to a syslog server.

All error loggers provide support for the following configuration properties:

l default-severity – Specifies the log severities for messages that should be published
by the error logger for all categories for which no override-severity is defined. Values
include fatal-error, severe-error, mild-error, severe-warning, mild-warning,
notice, info, debug, all, and none. Severities are not inherently hierarchical. Specify
all severities for messages that should be included.

l override-severity – Indicates that log messages with a given category should use a
set of severities that differ from those specified by the default-severity property.
Values have a format of category=severity-list, where category is the name of a
log message category (such as access-control, admin, or backend), and severity-list

is a comma-separated list of the severities that should be used for that category. For
example, a value of third-party:fatal-error,severe-error,mild-error indicates
that all errors from third-party components should be logged.

Any number of error loggers can be configured. Logging can be enabled for multiple targets
(log to both local files and to a remote database), and for short-term debugging purposes. To
diagnose a problem, create a temporary error logger with a broader range of severities,
without polluting the primary error log with a greater volume of less important content.

- 126 -

Configure debug logging

Configure debug logging
The debug logging subsystem can access detailed information about internal processing within
a server. This content is useful for developers with access to the underlying source code.
However, if the server is running with one or more custom extensions written with the Server
SDK, then the debugging framework may be useful for diagnosing problems within that code.

By default, debug logging is disabled. Enabling debug logging for a long period of time may
degrade performance due to the volume of debug code. It is recommended that debug logging
remain disabled unless it is needed to solve a particular problem.

Note
Unlike other loggers, the server only provides the ability to record debug information to local
files. There is no support for debugging to targets such as syslog or relational databases, nor is
it possible to implement custom debug loggers in the Server SDK.

The file-based debug logger includes the following configuration properties:

l default-debug-level – Specifies the level of debug messages to be published. Levels
are hierarchical, with the following values from least verbose to most verbose:
disabled, error, warning, info, verbose, and all.

l default-debug-category – Specifies the categories for debug messages to be
published. By default, messages from all categories are eligible for publishing.
Categories include:

o caught – For exceptions caught within the server.

o constructor – For new object creation.

o data – For data read or written.

o database-access – For reads from and writes to a database.

o enter – For method entry.

o exit – For method return.

o message – For general-purpose debugging.

o protocol – For parsed communication with clients.

o thrown – For exceptions thrown within the server.

l default-omit-method-entry-arguments – Indicates whether debug messages for
constructor and method invocation should exclude information about the arguments
provided.

l default-omit-method-return-value – Indicates whether debug messages for a
method return should exclude the return value for that method.

l default-include-throwable-cause – Indicates whether debug messages for
exceptions and errors should include information about exceptions caught that triggered
the exception.

- 127 -

Chapter 12: Logging security

l default-throwable-stack-frames – Specifies the number of stack frames that should
be included in debug messages for exceptions and errors.

The debug level and category options offer only a coarse level of control over what is
published. The server also offers a debug target mechanism that provides fine-grained control,
down to the package, class, or even method from which the debug messages are generated.
The debug scope controls the code locations to which the debug target applies, and may be a
fully-qualified class or package name or a fully-qualified class name followed by an octothorpe
(#) and the name of a method within that class (such as
"com.unboundid.directory.server.core.DirectoryServer#startUp" covers only debug
messages generated from the startUp method in the DirectoryServer class).

Each debug target has its own level and category configuration, and those settings override the
settings of the associated debug logger for messages matching that scope. For example, the
"Server SDK Extension Debug Logger" is configured so that it will not generate any debug
messages, but has a debug target that matches all messages generated from Server SDK
extensions.

Note
Effective use of debug logging requires specific knowledge of the server source code. Unless
debugging custom extensionswritten with the Server SDK, debug logging be used with the
assistance of Ping Identity support.

Configure Data Sync Server logging
The Data Sync Server provides two loggers used to keep track of the synchronization
operations. The first of these is the sync logger, a file-based sync log publisher that provides a
general record of all synchronization activity for the following events:

l change-detected – Provides general information about a change detected in a Sync
Source.

l change-detected-detailed – Provides detailed information about a change detected in
a Sync Source.

l change-applied – Provides general information about a change applied to a Sync
Destination.

l change-applied-detailed – Provides detailed information about a change applied to a
Sync Destination.

l change-failed – Provides general information about a failure encountered while
attempting to apply a change to a Sync Destination that will not be re-tried by the Data
Sync Server.

l change-failed-detailed – Provides detailed information about a failure encountered
while attempting to apply a change to a Sync Destination that will not be re-tried by the
Data Sync Server.

- 128 -

Options for centralized logging

l intermediate-failure – Provides information about a failure encountered while
attempting to apply a change to a Sync Destination, but that will be re-tried by the Data
Sync Server.

l synchronizing-out-of-date-change – Indicates that the server synchronized a stale
change that no longer reflects the current state of the Sync Source and may be updated
by a later change that has already been applied. By default, the Data Sync Server does
not synchronize these changes.

l no-change-needed – Indicates that the server did not synchronize a change made in a
Sync Source because the Sync Destination already had that change applied.

l dropped-out-of-scope – Indicates that a change detected in a Sync Source will not be
applied to a destination because it is out of the scope of any Sync Class.

l dropped-op-type-not-synchronized – Indicates that a change detected in a Sync
Source will not be applied to a destination because its change type is not one that should
be synchronized.

l entry-mapping-details – Provides detailed information about any attribute and/or DN
mapping applied to an entry in the course of preparing it to be applied to a Sync
Destination.

l plugin – Provides a general message generated by a synchronization plugin.

l plugin-error – Provides information about an error encountered during processing
within a synchronization plugin.

l aborted-by-plugin – Indicates that a synchronization plugin has aborted processing for
a change.

The Data Sync Server also provides a "Sync Failed Ops Log Publisher" logger that records
information about failures encountered during synchronization processing. This primarily
contains the DN of the source entry (or an entry constructed from data in the Sync Source),
and may include additional information about the problem encountered.

Options for centralized logging
Servers are configured so that all logging is written to files on the local filesystem. In some
environments, it may be convenient to have content from multiple servers appear in the same
place for easier analysis. Centralized logging can be accomplished with one of the following
options:

l File-based logging to a network filesystem – Each server instance can be
configured to use a separate directory, or can be configured to use a different filename
in the same directory. In either case, each instance maintains its own separate set of
files, but those files are in the same location for easier analysis.

- 129 -

Chapter 12: Logging security

l Logging to a relational database through JDBC – All servers can be configured to
log to separate databases, separate tables in the same database, or the same table in
the same database.

l Logging to a syslog server – The server does not provide any native support for a
secure syslog mechanism. If this option is used, each instance should be configured to
log to a local daemon configured to act as a secure syslog relay.

l Custom Logging using the Server SDK – Use the Server SDK to create custom
loggers to send messages to a centralized system.

If not using centralized logging, or if log files from separate instances can be mixed, configure
those loggers so that the product name and instance name are included. This ensures that each
message can be identified. The startup ID field can also be included, so that messages coming
from the same server instance, with the same connection and operation ID values, can still be
distinguished.

If centralized logging is enabled, local logging should also be enabled. If a problem occurs with
the centralized system, that content is still recorded in local files.

Parse and Analyze log messages
Log messages generated by PingData servers are intended to be easy to read and understand,
and easy to parse by tools for more automated analysis. The LDAP SDK for Java includes APIs
(in the com.unboundid.ldap.sdk.unboundidds.logs package) for parsing access and error
log messages generated by the Directory Server, Directory Proxy Server, and Data Sync
Server. In addition, because audit log records are in LDIF form, the LDAP SDK's LDIF support
(in the com.unboundid.ldif package) can be used to consume those messages.

Note
Because of the nature of messageswritten to the sync logger or the failed ops sync logger,
there are currently no APIs capable of parsing their content.

The summarize-access-log tool, which is provided with the Directory Server and Directory
Proxy Servers, can be used to parse log content and identify a number of interesting elements,
including:

l The total number of operations processed (overall and per operation type), the
percentage of the total each operation type constitutes, and the average rate per second
for those operations.

l The average duration for operations processed (overall and per operation type), in
milliseconds with microsecond accuracy. Processing times are broken out into a
histogram with buckets below 1ms, 1-2ms, 2-3ms, 3-5ms, 5-10ms, 10-20ms, 20-30ms,
30-50ms, 50-100ms, 100-1000ms, and over 1000ms.

l The most popular result codes for each type of operation.

- 130 -

Parse and Analyze log messages

l The number of unindexed search attempts, as well as the numbers of successful and
failed unindexed searches.

l The most common search result entry counts.

l The most common filters used in non-base search requests. These filters are
represented in generic form, like "(uid=?)" for any equality filter targeting the uid

attribute with any value.

The source code for the summarize-access-log tool is provided as an example in the LDAP
SDK for Java and can be used as the starting point for writing a tool.

- 131 -

Chapter 13: Network security

Client-server communication is one of the most critical points in securing a directory
environment. This chapter addresses this issue.

Topics include:

SSL and StartTLS

Key manager providers

Trust manager providers

Secure LDAP communication

Prevent communication over insecure connections

Allow or denying connections from specific clients

Secure replication communication

Secure HTTP communication

Secure SNMP communication

Secure JMX communication

Secure SMTP communication

Secure database communication

Secure syslog communication

Other network security configuration options

- 132 -

Chapter 13: Network security

SSL and StartTLS
The most popular way of securing network communication is through the use of SSL. The
protection that StartTLS offers is the same as SSL, except the time in which the negotiation is
performed.

When an SSL-based connection is established, the client and server immediately begin the
negotiation process so that there is never any unencrypted communication. With StartTLS, the
client establishes an initially-insecure connection, and may optionally issue unencrypted
requests over that connection (such as a request to retrieve the server's root DSE to determine
StartTLS extended operation support). When the client wishes to convert the insecure
connection to a secure one, it sends a StartTLS extended request to the server. If the server
returns a response of "success," the negotiation will start the same way as an SSL-based
connection.

Note
Once a connection has been secured using StartTLS, it will generally remain encrypted for the
duration of that connection.While it is technically possible to end an SSL session without
terminating the connection, many servers (including the PingData server products) do not
support this, because there is no standard way for either the client or the server to indicate that
theywant to end the secure communication phase but continue with unencrypted
communication.

Configure SSL
If SSL was not configured during installation, it can be enabled with the following steps. This
procedure assumes that a certificate is available in a JKS-formatted keystore.

Perform the following steps to configure SSL:

1. Change to the server root directory.

$ cd /ds/PingData<server>

2. Create a text file containing the password for the certificate keystore. The file
permissions (or filesystem ACLs) should be configured so that the file is only readable by
the server user account.

$ echo ’changeit’ > config/keystore.pin
$ chmod 0400 config/keystore.pin

3. Run the dsconfig command in interactive mode (bin/dsconfig).

4. Enter the connection parameters when prompted.

5. On the main menu, switch to the Advanced menu.

6. Enter the option for the Key Manager Provider.

7. On the Key Manager Provider menu, select the option to view and edit an existing key
manager.

- 133 -

SSL and StartTLS

8. On the Key Manager Provider menu, enter the option for JKS.

9. Make any necessary changes to the JKS key manager provider for the keystore. The
provider must be enabled, and the locations of the key-store-file and key-store-

pin-file must be set.

>>>> Configure the properties of the File Based Key Manager Provider

Property Value(s)

1) description -
2) enabled true
3) key-store-file config/keystore
4) key-store-type JKS
5) key-store-pin -
6) key-store-pin-file config/keystore.pin
7) private-key-pin -
8) private-key-pin-file -

10. Type f to save and apply the changes.

11. Return to the main menu, and enter the option for the Trust Manager Provider.

12. On the Trust Manager Provider menu, enter the option to view and edit an existing trust
manager provider.

13. On the Trust Manager Provider menu, enter the option for JKS.

14. Make sure that the JKS trust manager provider is enabled and that the trust-store-

file property has a value that reflects the path to the truststore file.

15. Type f to save and apply the changes.

16. Return to the main menu, and enter the option for the Connection Handler option.

17. On the Connection Handler menu, enter the option to view and edit and existing
connection handler.

18. On the Connection Handler menu, enter the option for LDAPS Connection Handler.

19. On the LDAP Connection Handler menu, make sure that the handler is enabled, the
listen-port property reflects the port on which to listen for SSL-based connections. The
ssl-cert-nickname property should reflect the alias for the target certificate in the
selected keystore.

20. Type f to save and apply the changes.

21. Verify that the server is properly configured to accept SSL-based client connections using
ldapsearch. For example:

$ bin/ldapsearch \
 --port 1636 \
 --useSSL \
 --baseDN "" \
 --searchScope base "(objectclass=*)"

- 134 -

Chapter 13: Network security

The server is using the following certificate:
 Subject DN: CN=179.13.201.1, OU=Server
 Certificate, O=Example Company, L=Austin, ST=Texas,
 C=US Issuer DN: EMAILADDRESS=whatever@example.com,
 CN=Cert Auth, OU=My Certificate Authority, O=Example
 Company, L=Austin, ST=Texas, C=US
 Validity: Fri Sep 25 15:21:10 CDT 2011 through Sat Sep 25 15:21:10 CDT
2012
Do you wish to trust this certificate and continue connecting to the
server?
Please enter 'yes' or 'no':yes

If necessary, disable the LDAP connection handler so only the LDAPS connection handler will
accept connections.

Configure StartTLS
The StartTLS extended operation is used to initiate a TLS-secured communication channel over
a clear-text connection, such as an LDAP connection. StartTLS provides a way to use a single
connection handler for both secure and insecure communication, rather than requiring a
dedicated connection handler for secure communication.

1. Use dsconfig to configure the Connection Handler to allow StartTLS. The allow-

starttls property cannot be set if SSL is enabled. The connection handler must also be
configured with a key manager provider and a trust manager provider.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "LDAP Connection Handler" \
 --set allow-start-tls:true \
 --set key-manager-provider:JKS \
 --set trust-manager-provider:JKS

2. Use ldapsearch to test StartTLS.

$ bin/ldapsearch -p 1389 --useStartTLS -b "" -s base "(objectclass=*)"

The server is using the following certificate:
 Subject DN: CN=Server Cert, OU=Server Certificate,
 O=Example Company, L=Austin, ST=Texas, C=US
 Issuer DN: EMAILADDRESS=whatever@example.com, CN=Cert Auth,
 OU=My Certificate Authority, O=Example Company, L=Austin, ST=Texas,
C=US

Validity: Thu Oct 29 10:29:59 CDT 2013 through Fri Oct 29 10:29:59
CDT 2014

Do you wish to trust this certificate and continue connecting to the
server?
Please enter 'yes' or 'no':yes
dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 6fa8f196-d112-40b4-b8d8-93d6d44d59ea

- 135 -

Key manager providers

Key manager providers
When a server needs to provide a certificate to another system, it will use a key manager
provider to access that certificate. The server offers a key manager provider type for each of
the supported keystore types, and the Server SDK can also be used to add support for
accessing certificates in other ways if desired.

For each of the key manager provider types provided with the server, a PIN is required to
access the keystore content. That PIN can be made available using one of the following
properties:

l key-store-pin – Specifies the PIN used to access the keystore contents. It will be
obscured, but a dedicated attacker with access to the configuration may be able to
determine the clear-text value.

l key-store-pin-file – Specifies the path to a file containing the keystore PIN. The PIN
must be stored in clear text, but filesystem permissions and/or access controls can be
used to limit access.

l key-store-pin-property – Specifies the name of a Java property that holds the
keystore PIN in clear text. This is not recommended, because anyone with access to JVM
information or server monitor output may be able to determine the keystore PIN.

l key-store-pin-environment-variable – Specifies the name of a system environment
variable that will hold the clear-text keystore PIN. This is not recommended, because
anyone with access to the JVM process or server monitor output may be able to
determine the keystore PIN.

For the PKCS#11 key manager provider, the keystore PIN is the only configuration element
that needs to be provided. For the JKS and PKCS#12 key manager providers, it is also
necessary to specify the path to the keystore file, and it may also be necessary to specify a
PIN to use to access the private key (also specified using one of the four methods listed
above). It is not necessary to specify a private key PIN if the value is the same as the keystore
PIN.

Trust manager providers
When a server is presented with a certificate, it must determine whether that certificate should
be trusted. This determination is made by a trust manager provider. The server provides
support for three trust manager providers by default:

l Blind trust – Automatically accepts any certificate that is presented. This can be helpful
for testing and/or debugging purposes, but is discouraged in production environments.

l JKS – Consults a JKS-format truststore file in order to determine whether to accept a
given certificate. In order for a presented certificate to be trusted, either that certificate,
or a certificate in its chain of issuers, must be present in the truststore file.

- 136 -

Chapter 13: Network security

l PKCS#12 – Operates in much the same way as the JKS trust manager provider, except
that it consults a file in PKCS#12 format rather than a file in JKS format.

l PKCS#11 – Interacts with certificates stored in some other repository, such as a
hardware security module (HSM) or cryptographic accelerator. If security requirements
require hardware protection for certificates, use PKCS#11. It may be necessary to use
specialized tools provided by the vendor of the PKCS#11 token to manage certificates for
use with that token.

The Server SDK can be used to create additional trust manager providers.

Configure the Key and Trust manager providers
Ping Identity servers support the following trust and key managers:

l JKS Key Manager Provider and Trust Manager Provider.

l PKCS#11 Key Manager Provider and Trust Manager Provider.

l PKCS#12 Key Manager Provider and Trust Manager Provider.

Perform the following steps to enable a key manager and trust manager and assign a
connection handler with dsconfig:

1. Change location to the server root:

$ cd /PingData<server>

2. Create a text file containing the password for the certificate keystore. It is recommended
that file permissions (or filesystem ACLs) be configured so that the file is only readable
by the server user.

$ echo ’changeit’ > config/keystore.pin
$ chmod 0400 keystore.pin

3. Use the dsconfig to enable the key manager provider.

$ bin/dsconfig set-key-manager-provider-prop \
 --provider-name <JKS, PKCS11, or PKCS12> \
 --set enabled:true \
 --set key-store-file:/config/<Keystore.jks, keystore.p11 or
keystore.p12> \
 --set key-store-type:<JKS, PKCS11 or PKCS12> \
 --set key-store-pin-file:/config/keystore.pin

4. Use dsconfig to enable the trust manager provider.

$ bin/dsconfig set-trust-manager-provider-prop \
 --provider-name <JKS, PKCS11, or PKCS12> \
 --set enabled:true \
 --set trust-store-file:/config/<truststore.jks, truststore.p11, or
truststore.p12>

- 137 -

Secure LDAP communication

5. Use dsconfig to enable the LDAPS connection handler. Port 636 is typically reserved for
LDAPS. If the certificate alias differs from the default server-cert, use the --set ssl-

cert-nickname:<aliasname> option to set it, or use the --reset sslcert-nickname

option for the server to set the alias.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "LDAPS Connection Handler" \
 --set listen-port:1636 \
 --set enabled:true \
 --set ssl-cert-nickname:1 \
 --set key-manager-provider:<JKS, PKCS11, or PKCS12> \
 --set trust-manager-provider:<JKS, PKCS11, or PKCS12>

6. Test the listener port for SSL-based client connection on port 1636 to return the Root
DSE. Type yes to trust the certificate.

$ bin/ldapsearch --port 1636 --useSSL --baseDN "" --searchScope base \
 "(objectclass=*)"

The server is using the following certificate:
Subject DN: CN=179.13.201.1, OU=Server Certificate, O=Example Company,
L=Austin, ST=Texas, C=US
Issuer DN: EMAILADDRESS=whatever@example.com, CN=Cert Auth, OU=My
Certificate Authority, O=Example Company, L=Austin, ST=Texas, C=US
Validity: Fri Sep 25 15:21:10 CDT 2013 through Sat Sep 25 15:21:10 CDT
2014

Do you wish to trust this certificate and continue connecting to the
server?
Please enter 'yes' or 'no':yes

7. If necessary, disable the LDAP Connection Handler so that communication can only pass
through SSL.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "LDAP Connection Handler" \
 --set enabled:false

Secure LDAP communication
There are four primary ways to secure communication with PingData servers:

l Provide an LDAP connection handler configured to accept SSL-based connections.

l Provide an LDAP connection handler configured to allow StartTLS.

l Configure an alternate mechanism, like IPSec, for securing communication between
client and server systems.

l Run clients on the same systems as the target server so that communication can occur
over the loopback interface.

- 138 -

Chapter 13: Network security

Note
This section discusses configuring the server for SSL or StartTLS security. Configuring IPSec
or other forms of network encryption are beyond the scope of this documentation. It is
recommended that the number of processes running on server be limited tominimize risks
from a local attack. In addition, SSL and StartTLS are the only ways to ensure end-to-end
encryption between the client and server.

To configure an LDAP connection handler to require all incoming connections to use SSL, set its
use-ssl property to true. Or, to allow it to support the use of StartTLS, set allow-start-tls
to true. The same connection handler cannot be configured to use both SSL and StartTLS.
However, multiple LDAP connection handlers are supported to allow both SSL and StartTLS.

If a connection handler is configured for either SSL or StartTLS, the following properties are
used to customize its behavior:

l key-manager-provider – Specifies the key manager provider to access certificates that
are presented to clients. This is required for either SSL or StartTLS.

l trust-manager-provider – Specifies the trust manager provider to determine whether
to trust client certificates that are presented to the server. This is required for either SSL
or StartTLS.

l ssl-cert-nickname – Specifies the nickname of the certificate that the key manager
should use for SSL or StartTLS communication. If this is not provided, the key manager
picks the first suitable certificate it finds in the keystore.

l ssl-client-auth-policy – Specifies whether the server will ask clients to provide their
own certificates, and whether to continue communication with clients if they don't
provide a certificate. Allowed values are:

o disabled – The server will not request a client certificate.

o optional – The server will request a client certificate, but will allow clients that
don't provide one). The default value is optional.

o required – The server will request a client certificate, and will terminate the
connection of any client that does not provide one.

l ssl-protocol – Specifies the names of the SSL protocol versions that the server will
accept. The set of supported protocols depends on the underlying JVM. Protocol names
may include SSLv3, TLSv1, or SSLv2Hello. If no values are specified, the JVM's default
set of supported protocols is used.

l ssl-cipher-suite – Specifies the names of the SSL cipher suites that the server will
accept. The set of supported cipher suites depends on the underlying JVM. If no values
are specified, the server will attempt to automatically determine the best cipher suites to
use.

l disable-tls-renegotiation – Indicates whether to allow clients to request TLS
renegotiation. This enables a client to request repeating the process of negotiating the

- 139 -

Secure LDAP communication

SSL protocol, cipher, and symmetric key. This option is rarely used, and may present
security vulnerabilities in some SSL implementations.

l auto-authenticate-using-client-certificate – Indicates whether the connection
handler should attempt to authenticate the client connection if the client provides a
certificate during SSL or StartTLS negotiation. Normally, a client certificate is not used
for LDAP authentication unless the client explicitly sends a SASL EXTERNAL bind request.

In addition to accepting connections from LDAP clients, servers can attempt to establish LDAP
connections to other servers. This is particularly true for the Directory Proxy Server and Data
Sync Server, but it may also be the case for the Directory Server. LDAP external server
configuration objects are used to provide the settings to use for communicating with those
servers, and they have a set of properties for configuring communication security, including:

l connection-security – Specifies the mechanism to secure communication with the
target server. Values are none, SSL, or StartTLS.

l key-manager-provider – Specifies the key manager provider used to obtain a client
certificate to present to the server, if one is requested during SSL or StartTLS
negotiation.

l trust-manager-provider – Specifies the trust manager provider used to determine
whether to trust the server's certificate during SSL or StartTLS negotiation.

Configure LDAP connection handlers
To configure an LDAP connection handler to require all incoming connections to use SSL, set its
use-ssl property to true. To support the use of StartTLS, set allowstart-tls to true.

If a connection handler is configured for either SSL or StartTLS, then the following properties
can be used to customize its behavior:

l key-manager-provider – Specifies the key manager provider to access the certificates
presented to clients. This is required for either SSL or StartTLS.

l trust-manager-provider – Specifies the trust manager provider used to determine
whether to trust client certificates presented to the server. This is required for either SSL
or StartTLS.

l ssl-cert-nickname – Specifies the nickname of the certificate that the key manager
should use for SSL or StartTLS communication. If this is not provided, the key manager
picks the first suitable certificate it finds in the keystore.

l ssl-client-auth-policy – Specifies whether the server will ask clients to provide their
own certificates, and whether to continue communication with clients if they don't
provide a certificate. Allowed values are:

- 140 -

Chapter 13: Network security

o disabled – The server will not request a client certificate.

o optional – The server will request a client certificate, but will allow clients that
don't provide one. The default value is optional.

o required – The server will request a client certificate, and will terminate the
connection of any client that does not provide one.

l ssl-protocol – Specifies the names of the SSL protocol versions that the server will
accept. The set of supported protocols depends on the underlying JVM. If no values are
specified, the JVM's default set of supported protocols is used.

l ssl-cipher-suite – Specifies the names of the SSL cipher suites that the server will
accept. The set of supported cipher suites depends on the underlying JVM. If no values
are specified, the server will attempt to automatically determine the best cipher suites to
use.

l disable-tls-renegotiation – Indicates whether to allow clients to request TLS
renegotiation. This enables a client to request repeating the process of negotiating the
SSL protocol, cipher, and symmetric key. This option is rarely used, and may present
security vulnerabilities in some SSL implementations.

l auto-authenticate-using-client-certificate – Indicates whether the connection
handler should attempt to authenticate the client connection if the client provides a
certificate during SSL or StartTLS negotiation. Normally, a client certificate is not used
for LDAP authentication, unless the client explicitly sends a SASL EXTERNAL bind request.

Configure external server communication
In addition to accepting connections from LDAP clients, servers can attempt to establish LDAP
connections to other servers. This is particularly true for the Directory Proxy Server and Data
Sync Server, but it may also be the case for the Directory Server in certain circumstances.
LDAP external server configuration objects are used to provide the settings to use for
communicating with those servers. Properties for configuring communication security include:

l connection-security – Specifies the mechanism used to secure communication with
the target server. Allowed values are none, SSL, or StartTLS.

l key-manager-provider – Specifies the key manager provider used to obtain a client
certificate to present to the server if one is requested during SSL or StartTLS negotiation.

l trust-manager-provider – Specifies the trust manager provider used to determine
whether to trust the server's certificate during SSL or StartTLS negotiation.

Preventing communication over insecure connections
The server should be configured to accept connections from clients that communicate with the
server only over a secure connection. There are two simple ways to accomplish this:

- 141 -

Allow or Deny connections from specific clients

l Use LDAPS – If all clients support the ability to use LDAP over SSL, disable any LDAP
connection handlers not configured to use SSL communication.

l Use StartTLS – If some clients only support the ability to use StartTLS over an initially
insecure connection, use the reject-insecure-requests global configuration property
to reject any request other than a StartTLS extended request received over an insecure
connection. If the server does not need to accept any requests from insecure clients,
then this should be enabled. For more granular control, set the allowed-insecure-

request-criteria global configuration property, which specifies a set of criteria to
match LDAP requests that may be permitted over an insecure connection, even if
reject-insecure-requests is true. Some types of requests will always be permitted,
including StartTLS and start administrative session requests.

There may be some cases in which clients either cannot communicate securely or require
insecure communication before using StartTLS. In these instances, quarantine those
connections using a custom Client Connection Policy that only allows a minimal set of
operations, and another policy that allows a broader range of operations once that client has
used StartTLS. Also, consider the use of sensitive attribute definitions to prevent access to
certain attributes over insecure connections, or block their access entirely.

Allow or Deny connections from specific clients
Three mechanisms can be used to configure the set of clients that are allowed to establish
connections to the server:

l Client Connection Policies can be associated with connection criteria, and simple
connection criteria objects provide included-client-address and excluded-client-

address specify the set of clients that match that criteria. If no policy has criteria that
matches a given connection, or if policy matches a client and has the terminate-

connection property set to true, any connection for which that policy is selected is
terminated.

l Each connection handler provides allowed-client and denied-client properties that
can be used to restrict the set of clients allowed to establish connections to that
connection handler.

l User entries can include a ds-auth-allowed-address operational attribute that can be
used to specify the addresses of client systems from which that user is allowed to
authenticate.

In each of these cases, address masks are used to target client systems. Address masks can
be used to specify clients in the following ways:

l An individual IPv4 or IPv6 address, such as "1.2.3.4" or
"1234:5678:90ab:cdef:1234:5678:90ab:cdef."

- 142 -

Chapter 13: Network security

l An IPv4 address with one or more elements replaced with an asterisk as a wildcard, such
as "1.2.3.*."

l An IPv4 address range using CIDR notation, which follows a base address with a slash to
specify the number of significant bits, such as "1.2.3.0/24."

l An IPv4 address followed by a slash and a subnet mask, such as "1.2.3.0/
255.255.255.0".

l As individual resolvable hostname, such as "host.example.com."

l As a resolvable name with one or more components replaced with an asterisk, such as
"*.example.com." The asterisk will match exactly one component, so "*.example.com"
will match "a.example.com," but not "a.b.example.com."

l As a resolvable domain (or sub-domain) name preceded by a period, such as
".example.com." This will match any number of components before the given domain, so
".example.com" will match both "a.example.com" and "a.b.example.com."

Secure replication communication
Replication between Directory Servers requires SSL authentication and encryption on a
separate port (default 8989), on which the Directory Server replication server component
listens. Each server has a private key created at startup and stored in the config/ads-
truststore JKS KeyStore. This key is used to authenticate to other replication servers.

Secure HTTP communication
Some components of the directory environment, including the Administrative Console, and the
SCIM server, use HTTP for communication. The most common way to secure this
communication is to use HTTP over SSL (HTTPS). Refer to the documentation for the web
container used for these components to determine how to enable SSL support.

Securing SNMP communication
The Directory Server can expose some monitoring information over SNMP, and generate alerts
as SNMP traps. If secure SNMP communication is needed, configure the server to operate as
an SNMP subagent, and communicate with a master agent on the same system over the
loopback interface. The SNMP master agent should also be configured to require SNMPv3 using
the authPriv security level, which provides authentication and encryption for SNMP clients.

Securing JMX communication
The Directory Server can also make monitor information and administrative alerts available
over JMX. If JMX is used, it can be secured with SSL. It will also require authentication, and

- 143 -

Secure database communication

only users with the jmx-read privilege will be allowed to retrieve any information over JMX.
Only users with the jmx-notify privilege will be allowed to subscribe to receive administrative
alerts as JMX notifications.

Secure database communication
All products can be configured to write access and error log messages to a relational database,
and the Data Sync Server can use them as Sync Sources or Destinations.

When communicating with a relational database, the security features used to protect that
communication depend on the type of database being used, and the JDBC driver used to
interact with it. Many JDBC drivers support the use of SSL, which can be configured using
arguments provided in the JDBC URL. See the documentation for the specific database and
JDBC driver for details on how to configure this or other security features.

Securing syslog communication
The Directory Server can be configured to deliver access and/or error log messages to a
network syslog server over the standard UDP-based protocol. This communication does not
allow for encryption, so the server should be configured to use a syslog server running on the
local system where communication only occurs over the loopback interface.

To have the log messages delivered to a remote system, use loopback communication, but
have the local syslog daemon act as an encrypted relay to a remote server. Open source and
commercial syslog software (including rsyslog and syslog-ng) provide the ability to act as a
syslog relay for this purpose.

Other network security configuration options
Some of the other configuration options related to securing network communication include:

l Limit the Max Time for JVM Cache – The global configuration includes a network-

address-cache-ttl property, which can be used to control the maximum length of time
that the JVM should cache the IP address for which a given hostname resolves. Setting a
reasonable timeout (such as one hour) allows the server to recognize network changes
which assign a different IP address to a given name in a timely manner.

l Limit the Max Number of Connections – The global configuration includes a number
of properties that can be used to control the maximum number of connections that can
be established to the server. This includes maximum-concurrent-connections (the
absolute maximum number of connections allowed to the server at any time), maximum-
concurrent-connections-per-ip-address (the maximum number of connections
allowed from any individual IP address at any time), and maximum-concurrent-

connections-per-bind-dn (the maximum number of connections allowed to be

- 144 -

Chapter 13: Network security

authenticated as any individual user at any time). If any connection limit has already
been reached, then any subsequent connections are terminated.

l Use Custom Post-Connect and Post-Disconnect Plug-ins – The Server SDK can be
used to develop custom post-connect and post-disconnect plug-ins. Post-connect plug-ins
are invoked when the server accepts a new client connection, and may be used to
terminate that connection if it is determined that it should not be allowed. Post-
disconnect plug-ins are invoked just after an existing connection is closed, whether that
closure is initiated by a client or by the server.

Limit the maximum time for JVM cache
The global configuration includes a network-address-cache-ttl property, which specifies the
maximum length of time that the JVM is allowed to cache the IP address associated with a
system hostname. Setting a reasonable time-to-live value allows the server to detect cases in
which a network administrator changes the IP address with which a given hostname is
associated. If no time-out is defined, the JVM can cache these mappings indefinitely, and it
may be necessary to restart the server to detect such changes.

The global configuration also includes a number of properties that can be used to control the
maximum number of connections established to the server. This includes maximum-
concurrent-connections (the maximum number of connections allowed to the server at one
time), maximum-concurrent-connections-per-ip-address (the maximum number of
connections allowed from any individual IP address at any time), and maximum-concurrent-
connections-per-bind-dn (the maximum number of connections allowed to be authenticated
as any individual user at one time). If any connection limit is reached, any subsequent
connections are terminated.

- 145 -

Appendix A: SSL details

SSL provides a relatively simple way for clients to establish a secure connection to servers
without ever having communicated with those systems in the past.

Topics include:

Asymmetric and symmetric encryption

About certificates

- 146 -

Appendix A: SSL details

Asymmetric and symmetric encryption
There are two basic kinds of encryption: symmetric encryption, and asymmetric encryption.
With symmetric encryption, the same key is used for both encryption and decryption.
Asymmetric encryption uses a different key to encrypt data than it does to decrypt it.
Symmetric encryption is generally less expensive than asymmetric, but it requires both the
sender and receiver to have the same key. It also requires that no one else have that key.
Asymmetric encryption is more expensive, but the encryption key (the public key) can be
made available to anyone as long as the decryption key (the private key) is carefully protected
and known only to its owner. Anyone can use the public key to encrypt a message, but only the
one holding the private key can decrypt it.

When using asymmetric encryption, the encryption and decryption keys are mathematically
related, but in a way that makes it extremely difficult to derive one from the other. One
interesting property of some kinds of asymmetric encryption is that not only is it possible to
encrypt messages using the public key in a way that can only be decrypted with the private
key, but it is also possible to encrypt messages using the private key in a way that can only be
decrypted with the public key. Since the public key can be widely available, this isn't useful for
protecting the encrypted data from unintended observers, but it does make it possible to prove
that it was encrypted by the private key, and therefore it can be used as a type of digital
signature.

SSL uses a combination of symmetric and asymmetric encryption. When a client establishes an
SSL-based connection to a server, there is an initial negotiation in which the following occurs:

l The client tells the server that it wants to use SSL and provides information about how
that communication should proceed, including information about the SSL protocol version
and cipher types that it supports.

l The server compares what the client supports with what the server supports, and
informs the client what SSL version and cipher should be used for the rest of the
communication.

l If the client and server can't agree on an SSL version and cipher suite, the negotiation
will fail.

Certificates
The server sends information about its certificate to the client. This includes the public key, the
subject (which is like a DN for the certificate), the time period for which that the certificate
should be considered valid, and information about the certification authority (CA) that issued
the certificate. The client can look at this information to determine whether to trust the
certificate presented by the server. If not trusted, the server can cancel the negotiation.

The server can request that the client provide its own certificate to the server. If the client
receives this type of request, it can send its certificate to the server. If the client does send a
certificate to the server, the server uses it to decide whether to trust the client. If the client

- 147 -

Certificates

does not send a certificate, the server can decide to continue communicating with the client or
not.

The client generates a symmetric encryption key, and then encrypts that through asymmetric
encryption using the server's public key. This ensures that only the client and server know that
key. The client and server will then switch to symmetric encryption using that newly-generated
key.

As described, SSL has an element of trust in addition to providing encryption. Encryption isn't
very useful if communicating with the wrong system, particularly when SSL is designed to
make it easy for clients to communicate with servers with minimal knowledge of the server
ahead of time. Although it is possible to configure clients so that they trust only the specific
certificates configured for use by servers in the directory environment, much of the time this
trust is based on a combination of the following elements:

l The certification authority (CA) that issued the certificate – Unless a certificate
is self-signed, it will contain information about the CA that issued the certificate. Most
clients are configured so that if they trust a certification authority, they will trust any
certificate issued by that authority. Clients can be configured with information about a
small number of CAs that are considered trustworthy, and have some process so that
they will only issue a certificate for an organization after confirming that it was
requested by an authorized representative.

l The validity dates for the server certificate – Nearly all clients will reject a
certificate if it is expired (or not yet valid). It is important for administrators to be aware
of when their server certificates expire so that a replacement certificate can be installed
prior to the expiration.

l Agreement between the address of the system to which the connection has
been established and the address contained in the certificate – Most server
certificates include information about the address of the system for which it is intended,
either in the CN attribute of the certificate's subject, or in a subjectAltName extension.
If the connection does not match an address contained in the certificate, many clients
will reject that certificate because it may have come from an alternate system. Many
clients do support wildcard certificates in which the server address contains a wildcard
(such as "*.example.com") that can legitimately be used across multiple systems in the
same organization, but these certificates are often very expensive.

Some clients may use a validation service, like checking certificate revocation lists (CRLs) or
using the online certificate status protocol (OCSP), to determine whether a previously-valid
certificate was revoked. If a certificate is compromised, mechanisms like CRLs or OCSP may
be the easiest way to indicate that clients should no longer trust it. It is important to carefully
protect the private portion of all server certificates to prevent the need to revoke them.

The process that the client uses to determine whether to trust the certificate presented by the
server is called "server authentication." If the client presents its own certificate to the server,
the server can also decide whether to trust that certificate and continue communicating with

- 148 -

Appendix A: SSL details

the client ("client authentication"). This doesn't necessarily mean that the client's certificate
will actually be associated with a user in the directory and used for the purpose of LDAP
authentication. It is possible to use the client certificate as a means of performing LDAP
authentication using SASL EXTERNAL, or by configuring the connection handler to try to
automatically authenticate the client using the certificate, but this is not done by default.

- 149 -

Appendix B: About the Java Keytool

Java Keytool is a key and certificate management utility, allowing users to manage their own
public/private key pairs and certificates. The keytool utility comes with the standard JDK
distribution and is located in the JAVA_HOME/bin directory.

Topics include:

Java Keytool utility use

Create a server certificate with Keytool

Create a client certificate

- 150 -

Appendix B: About the Java Keytool

Java Keytool utility use
If using a Java JKS KeyStore to hold server certificates, obtain a certificate to include. Most
deployments will want to use a certificate that is signed by a certification authority so that
clients can merely trust that CA and trust certificates signed by that CA.

Maintaining a CA can provide the greatest degree of flexibility, and can be significantly cheaper
than using a commercial CA. However, it can also have a notable management overhead, and
may require updating every client to trust the private CA certificate. A commercial certification
authority can be used, which is relatively straightforward and likely already trusted by most
clients.

Regardless of which certification authority used, a certificate signing request (CSR) must be
generated that can be signed by the CA.

Create a server certificate
The Keytool utility enables management of public/private key pairs, x509 certificate chains and
trusted certificates. The keys and certificates are stored in a keystore, which is a password-
protected file with a default format of JKS. Each key and trusted certificate in the keystore is
accessed by its unique alias.

The following procedure creates a keystore, generates a public/private key pair, and creates a
self-signed certificate based on the key pair. This certificate can be used as the server
certificate or it can be replaced by a CA-signed certificate chain with additional Keytool
commands.

The -dname option is used to specify the certificate’s subject, which is usually a CN attribute
with a value equal to the fully-qualified name of the server. If the -dname option is omitted, the
utility prompts for input. The certificate is valid for 180 days.

Perform the following steps to create a server certificate using Keytool:

1. Change to the directory where the certificates will be stored.

$ cd /ds/PingData<server>/config

2. Use the keytool utility to create a private/public key pair and a keystore. The keytool
utility is part of the Java SDK (${JAVA_HOME}/bin).

$ keytool -genkeypair \
 -dname "CN=server.example.com,ou=Data Metrics Server Certificate,
 O=Example Company,C=US"\
 -alias server-cert \
 -keyalg rsa \
 -keystore keystore \
 -keypass changeit \
 -storepass changeit \
 -storetype JKS \
 -validity 180 \
 -noprompt

- 151 -

Java Keytool utility use

The -keypass and -storepass arguments can be omitted to cause the tool to
interactively prompt for the password. Also, the key password should match the
keystore password.

3. View the keystore. The entry type is privateKeyEntry, which indicates that the entry
has a private key associated with it, which is stored in a protected format to prevent
unauthorized access. Also note that the Owner and Issuer are the same, indicating that
this certificate is self-signed.

$ keytool -list -v -keystore keystore -storepass changeit

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: server-cert
Creation date: Sep 30, 2011
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=server.example.com, OU=Server Certificate, O=Example Company,
C=US
Issuer: CN=server.example.com, OU=Server Certificate, O=Example Company,
C=US
Serial number: 4ac3695f
Valid from: Wed Sep 30 09:21:19 CDT 2011 until: Mon Mar 29 09:21:19 CDT
2012
Certificate fingerprints:
MD5: 3C:7B:99:BA:95:A8:41:3B:08:85:11:91:1B:E1:18:00
SHA1: E9:7E:38:0F:1C:68:29:29:C0:B4:8C:08:2B:7C:DA:14:BF:41:DE:F5
Signature algorithm name: SHA1withRSA
Version: 3

4. If having a certificate signed by a Certificate Authority, skip to step 7. Otherwise export
the self-signed certificate. Then examine the certificate.

$ keytool -export -alias server-cert -keystore keystore -rfc -file
server.crt
Enter keystore password:
Certificate stored in file <server.crt>

5. Import the self-signed certificate into a truststore. When prompted, type yes to trust the
certificate.

$ keytool -importcert -alias server-cert -file server.crt \
 -keystore truststore -storepass changeit

6. View the truststore with the self-signed certificate. If using this certificate as the server
certificate, this is the final step.

$ keytool -list -v -keystore truststore -storepass changeit

- 152 -

Appendix B: About the Java Keytool

7. To create a production-ready certificate, continue by creating the Certificate Signing
Request (CSR) by writing to the file server.csr. Follow the instructions of the third-party
CA, and submit the file to a CA. The CA authenticates then returns a certificate reply,
which can be saved as signed.crt.

$ keytool -certreq -v -alias server-cert -keystore keystore \
 -storepass changeit -file server.csr

Certification request stored in file <server.csr>
Submit this to your CA

8. If working with a third-party CA, both the key and trust stores should include information
about the CA’s root certificate as well as any intermediate certificates used to sign the
server certificate. Obtain the CA root and any intermediate certificates to set up a chain
of trust in your keystore. View the trusted CA and intermediate certificates to check that
the displayed certificate fingerprints
match the expected ones.

$ keytool -v -printcert -file root.crt
$ keytool -v -printcert -file intermediate.crt

9. Import the CA’s root certificate in the keystore and truststore. If there are other
intermediate certificates, then import them using the same commands, giving them each
different aliases in the key and trust stores.

$ keytool -importcert -v -trustcacerts -alias cacert \
 -keystore keystore -storepass changeit -file root.crt
$ keytool -importcert -v -trustcacerts -alias cacert -keystore
truststore \
 -storepass changeit -file root.crt

10. Import the server certificate signed by the CA into the keystore, which will replace the
existing self-signed certificate. When prompted, type yes to trust the certificate.

$ keytool -importcert -v -trustcacerts -alias server-cert -keystore
keystore

-storepass changeit -file signed.crt

11. Add the certificate to the truststore.

$ keytool -importcert -v -trustcacerts -alias server-cert \
 -keystore truststore -storepass changeit -file signed.crt

Create a client certificate
Client certificates can be used when stronger client authentication is desired, but is not
required for SSL connections to be established. There are two important considerations when
using client certificates:

- 153 -

Java Keytool utility use

l If a client presents its own certificate to the server, the server must be configured to
trust that certificate.

l If the client certificates are used for LDAP authentication through SASL EXTERNAL, the
certificate must contain enough information to allow the server to associate it with
exactly one user entry. The requirements for this are dependent upon the certificate
mapper configured for use in the server.

To create a PKCS#12 formatted client certificate with the Keytool utility, follow the steps in
Create a server certificate and use the following command:

$ keytool -genkeypair \
 -dname "CN=server.example.com,ou=Certificate,O=Example Company,C=US"\
 -alias server-cert -keyalg rsa -keystore keystore.p12 -keypass changeit \
 -storepass changeit -storetype pkcs12 -validity 180 -noprompt

- 154 -

Appendix C: Understanding Criteria

The criteria subsystem provides a simple and powerful mechanism for classifying connections
and operations. Understanding how to use criteria is an integral part of maintaining a secure
directory environment.

Topics include:

Criteria overview

Simple connection criteria

Simple request criteria

Simple result criteria

Simple search entry criteria

Simple search reference criteria

Aggregate criteria

- 155 -

Appendix C: Understanding Criteria

Criteria overview
The criteria subsystem is an integral part of many security-related features of PingData server
products. Client Connection Policies use connection criteria to classify clients, and request
criteria in the course of determining which requests should be allowed. The access logging
subsystem uses all types of criteria to provide filtering support, which provides control over
the kinds of messages that should be handled by each logger. Extensions like plug-ins, change
subscription handlers, and virtual attributes can use criteria to identify connections and
operations for which processing should be performed.

There are a number of criteria types in the server, including:

l Connection criteria – Used to classify client connections.

l Request criteria – Used to classify operation requests.

l Result criteria – Used to classify operation results.

l Search entry criteria – Used to classify search result entries encountered while
processing a search.

l Search reference criteria – Used to classify search result references encountered
while processing a search.

For each kind of criteria, there are multiple subtypes that can be used. Each kind of criteria has
two subtypes:

l Simple criteria objects that provide a number of properties for use in the classification.

l Aggregate criteria objects that provide the ability to combine other criteria objects with
Boolean logic.

Simple connection criteria
Simple connection criteria objects provide support for a number of properties that can be used
to classify client connections. Some aspects deal with the method in which the client is
communicating with the server, while others are based on the authenticated identity of the
client.

Those properties dealing with the way the client communicates with the server include:

l included-client-address – Defines the client's IP address or resolved name that must
match one of the given patterns.

l excluded-client-address – Defines the client's IP address or resolved name that must
not match any of the given patterns.

l included-connection-handler – Specifies that the client's connection must have been
accepted by one of the specified connection handlers.

- 156 -

Simple connection criteria

l excluded-connection-handler – Specifies that the client's connection must not have
been accepted by any of the specified connection handlers.

l included-protocol – Specifies that the name of the protocol that the client is using to
communicate with the server must match one of the given values.

l excluded-protocol – Specifies that the protocol that the client is using to communicate
with the server must not match any of the given values.

l communication-security-level – If defined, it may be used to perform matching
based on whether the client is communicating with the server in a secure manner. Values
include:

o secure-only – The client must use secure communication.

o insecure-only – The client must not use secure communication.

o any – The client can use either secure or insecure communication.

The simple connection criteria properties that deal with the client's authentication state are
listed below. All except user-auth-type are evaluated for authenticated client connections,
and will be ignored for unauthenticated clients.

l user-auth-type – Performs matching based on whether, and possibly how, the client
has authenticated. Values are none (matches unauthenticated clients), simple
(matches clients authenticated with simple authentication), and sasl (matches clients
authenticated with SASL authentication). To match only authenticated clients, include
values simple and sasl but not none.

l internal-authentication-security-level – Performs matching based on whether
the client authenticated in a secure manner. Values are secure-only (the client must
have authenticated in a secure manner), insecure-only (the client must have
authenticated in an insecure manner), or any (in which the client may have
authenticated in either a secure or insecure manner).

l included-user-sasl-mechanism – If the client used SASL authentication, it will only
match client connections in which the client authenticated using one of the specified SASL
mechanisms. This is ignored for clients that have not performed SASL authentication.

l excluded-user-sasl-mechanism – If the client used SASL authentication, it will only
match client connections in which the client did not authenticate using one of the
specified SASL mechanisms. This is ignored for clients that have not performed SASL
authentication.

l included-user-base-dn – Matches client connections in which the authenticated user's
entry is equal to or subordinate to one of the provided DNs.

l excluded-user-base-dn – Matches client connections in which the authenticated user's
entry is not equal to or subordinate to one of the provided DNs.

- 157 -

Appendix C: Understanding Criteria

l all-included-user-group-dn – Matches client connections in which the authenticated
user is a member of all of the specified groups.

l any-included-user-group-dn – Matches client connections in which the authenticated
user is a member of at least one of the specified groups.

l not-all-included-user-group-dn – Matches client connections in which the
authenticated user is not a member of at least one of the specified groups. The
authenticated user can be a member of zero or more of the groups, but must not be a
member of all of them.

l none-included-user-group-dn – Matches client connections in which the authenticated
user is not a member of any of the specified groups.

l all-included-user-filter – Matches client connections in which the authenticated
user's entry matches all of the provided filters.

l any-included-user-filter – Matches client connections in which the authenticated
user's entry matches at least one of the provided filters.

l not-all-included-user-filter – Matches client connections in which the
authenticated user's entry does not match at least one of the provided filters. The
authenticated user's entry may match zero or more of the provided filters, but must not
match all of them.

l none-included-user-filter – Matches client connections in which the authenticated
user's entry does not match any of the provided filters.

l all-included-user-privilege – Matches client connections in which the authenticated
user has all of the specified privileges.

l any-included-user-privilege – Matches client connections in which the authenticated
user has at least one of the specified privileges.

l not-all-included-user-privilege – Matches client connections in which the
authenticated user does not have all of the specified privileges. The user may have zero
or more of the privileges, but not all of them.

l none-included-user-privilege – Matches client connections in which the
authenticated user does not have any of the specified privileges.

Simple request criteria
Simple request criteria objects provide support for matching a number of different kinds of
requests. Some of the properties are based on the entry targeted by the requested operation.

l For add operations, this is the entry to be added.

l For bind operations, this is the specified bind DN (it will not look at SASL credentials to
attempt to determine the target identity).

- 158 -

Simple request criteria

l For compare operations, this is the entry to be compared.

l For delete operations, this is the entry to be deleted.

l For modify operations, this is the original entry before any changes have been applied.

l For modify DN operations, this is the original entry before the DN has been altered.

l For search operations, this is the entry specified as the base DN.

Any properties referencing the target entry are ignored for abandon, extended, and unbind
operations (and no attempt is made to look inside any extended request value).

Some properties reference a target attribute.

l For add operations, this is any of the attributes included in the entry to be added.

l For compare operations, this is the target attribute type.

l For modify operations, this is any of the attributes to be altered.

l For modify DN operations, this is any of the attributes included in the new RDN.

l For search operations, this is any of the attributes included in the search filter.

Any properties referencing the target attribute are ignored for abandon, bind, delete,
extended, and unbind operations (and no attempt is made to look inside any extended request
value).

l operation-type – Matches requests based on the type of operation requested.

l operation-origin – Matches requests based on the way the request was initiated.
Values include external-request for requests initiated by an external client,
replicated-operation for requests received through replication, or internal-
operation for internal operations invoked by a plugin, or some other type of extension.

l connection-criteria – Matches requests based on information about the client that
issued the request. At most, one connection criteria can be provided, but it may be an
aggregate connection criteria, which combines multiple connection criteria objects.

l all-included-request-control – Matches requests in which the client included
request controls with all of the specified object IDs. The request can include additional
controls not included in this list.

l any-included-request-control – Matches requests in which the client included at least
one request control with one of the specified object IDs. The request can include
additional controls not included in this list.

l not-all-included-request-control – Matches requests in which the client did not
include request controls with all of the specified object IDs. The request can include
controls with zero or more of the specified object IDs, but not all of them.

l none-included-request-control – Matches requests in which the client did not include
any request control with any of the specified object IDs. It can include control.

- 159 -

Appendix C: Understanding Criteria

l included-target-entry-dn – Matches requests in which the target entry has a DN
equal to or subordinate to one of the given values.

l excluded-target-entry-dn – Matches requests in which the target entry does not have
a DN equal to or subordinate to any of the given values.

l all-included-target-entry-filter – Matches requests in which the target entry
matches all of the provided filters.

l any-included-target-entry-filter – Matches requests in which the target entry
matches at least one of the provided filters.

l not-all-included-target-entry-filter – Matches requests in which the target entry
does not match all of the provided match filters.

l none-included-target-entry-filter – Matches requests in which the target entry
does not match any of the provided filters.

l all-included-target-entry-group-dn – Matches requests in which the target entry is
a member of all of the specified groups.

l any-included-target-entry-group-dn – Matches requests in which the target entry is
a member of at least one of the specified groups.

l not-all-included-target-entry-group-dn – Matches requests in which the target
entry is not a member of all of the specified groups. The target entry may be a member
of zero or more of the specified groups, but not all of them.

l none-included-target-entry-group-dn – Matches requests in which the target entry
is not a member of any of the specified groups.

l target-bind-type – Matches bind requests in which the authentication type matches
one of the given values. Values are simple and sasl. This property is ignored for all
operation types except bind.

l included-target-sasl-mechanism – Matches SASL bind requests in which the specified
SASL mechanism is equal to one of the given values. This property will be ignored for
non-bind requests, as well as for simple bind requests.

l excluded-target-sasl-mechanism – Matches SASL bind requests in which the specified
SASL mechanism is not equal to any of the given values.

l included-target-attribute – Matches requests that target at least one of the
specified attributes.

l excluded-target-attribute – Matches requests that do not target any of the specified
attributes.

l included-extended-operation-oid – Matches extended requests in which the request
object ID is equal to one of the given values. This property is ignored for non-extended
requests.

- 160 -

Simple result criteria

l excluded-extended-operation-oid – Matches extended requests in which the request
object ID is not equal to any of the given values. This property is ignored for non-
extended requests.

l using-administrative-session-worker-thread – Performs matching based on
whether the request is being processed using a dedicated administrative session worker
thread. Values include:

o true – Only match requests processed using an administrative session worker
thread.

o false – Only match requests not processed using an administrative session
worker thread.

o any – Use of an administrative session worker thread is not considered relevant.

Simple result criteria
Simple result criteria objects can be used to perform matching based on the result code of the
operation, the length of time required to process that operation, the length of time the request
remained on the work queue before being picked up for processing by a worker thread,
controls included in the response, attempts to use privileges, and any entries or references
returned during processing.

l request-criteria – Matches results for operations matching the provided request
criteria. Only one request criteria object can be specified, but it may be an aggregate
request criteria object, which combines multiple request criteria objects.

l result-code-criteria – Matching is performed based on the result code for the
associated operation. Values include:

o all-result-codes – The result code is not considered.

o non-failure-result-codes – The associated operation must have completed
successfully.

o failure-result-codes - The associated operation must not have completed
successfully.

o selected-result-codes – The result code must match one of the values of the
result-code-value property. For this property, the following result codes are
considered successful: success, compare-true, compare-false, referral, sasl-
bind-in-progress, and no-operation.

l result-code-value – Matches only operations with one of the specified result codes.
This is only used if the result-code-criteria property has a value of selected-
result-codes.

l processing-time-criteria – Matching is performed based on the length of time
required for the worker thread to process the operation. Values include:

- 161 -

Appendix C: Understanding Criteria

o any – The processing time is not considered.

o less-than-or-equal-to– The processing time must be less than or equal to the
processing-time-value.

o greater-than-or-equal-to– The processing time must be greater than or equal
to the processing-time-value.

l processing-time-value – Performs matching based on the worker thread processing
time for an operation. It is only used if a processing-time-criteria value of less-
than-or-equal-to or greater-than-or-equal-to was specified.

l queue-time-criteria – Matching is performed based on the length of time the request
was required to wait in the work queue before being picked up for processing by a
worker thread. If this property has a value other than any, queue time monitoring must
be enabled. Values include:

o any – The queue time is not considered.

o less-than-or-equal-to – The queue time must be less than or equal to the
queue-time-value.

o greater-than-or-equal-to – The queue time must be greater than or equal to
the queue-time-value.

l queue-time-value – Matching is based on the queue time for an operation. It is only
used if a queue-time-criteria value of less-than-or-equal-to or greater-than-
or-equal-to is set.

l referral-returned – Matching is performed based on whether any referral URLs were
included in the result. Values are:

o required – The result must include one or more referral URLs.

o prohibited – The result must not include any referral URLs.

o optional – The inclusion of referral URLs is not considered.

l all-included-response-control – Matches results which contained response controls
with all of the specified object IDs.

l any-included-response-control – Matches results that contain at least one response
control with one of the given object IDs.

l not-all-included-response-control – Matches results that do not contain response
controls with all of the given object IDs. It may contain response controls with zero or
more of the given object IDs, but not all of them.

l none-included-response-control – Matches results that do not contain response
controls with any of the given object IDs.

l used-alternate-authzid – Matching is performed based on whether the operation was
processed using an authorization identity that differs from the authentication identity

- 162 -

Simple result criteria

(the client used the proxied authorization or intermediate client controls, or a SASL
alternate authorization identity). Values include:

o required – The operation must have been processed with an alternate
authorization identity.

o prohibited – The operation must not have been processed with an alternate
authorization identity.

o optional – The use of an alternate authorization identity is not considered.

l used-any-privilege – Matching is performed based on whether the client made use of
any privileges during processing. Values include required (the client must have used at
least one privilege), prohibited (the client must not have used any privileges), or
optional (the use of privileges is not considered).

l used-privilege – The client must have used at least one of the specified privileges.

l missing-any-privilege – Matching is performed based on whether the client attempted
to perform any operation for which it did not have at least one required privilege. Values
include:

o required – The client must have been missing at least one privilege needed for
the operation.

o prohibited – The client must not have been missing any of the required
privileges.

o optional – Missing privileges are not considered.

l missing-privilege – At least one of the specified privileges was required for
processing the operation, but the client did not have the necessary privilege.

l search-entry-returned-criteria – Matching is performed based on the number of
matching entries returned to the client during search processing. This is ignored for non-
search operations. Values include:

o any – The number of entries returned is not considered.

o equal-to – The number of entries returned must match the search-entry-

returned-count value.

o not-equal-to – The number of entries returned must not match the search-

entry-returned-count value.

o less-than-or-equal-to – The number of entries returned must be less than or
equal to the search-entry-returned-count value.

o greater-than-or-equal-to – The number of entries returned must be greater
than or equal to the search-entry-returned-count value.

l search-entry-returned-count – Specifies the number of search result entries to use
when performing matching based on the search-entry-returned-criteria property.

- 163 -

Appendix C: Understanding Criteria

l search-reference-returned-criteria – Matching is performed based on the number
of search result references returned to the client during search processing. This is
ignored for non-search operations. Values include:

o any – The number of references returned is not considered.

o equal-to – The number of references returned must match the search-

reference-returned-count value.

o not-equal-to – The number of references returned must not match the search-

reference-returned-count value.

o less-than-or-equal-to – The number of references returned must be less than
or equal to the search-reference-returned-count value.

o greater-than-or-equal-to – The number of references returned must be greater
than or equal to the search-reference-returned-count value.

l search-reference-returned-count – Specifies the number of search result references
to use when performing matching based on the search-reference-returned-criteria

property.

Simple search entry criteria
Simple search entry criteria objects may be used to perform matching based on the contents of
search result entries returned to the client. Note that for properties used to perform matching
based on a filter, that filter will be evaluated against the entry actually being returned to the
client rather than the complete entry contained in the server.

l request-criteria – If specified, only matches search result entries for search
operations matching the provided request criteria. Only one request criteria object can
be specified, but it may be an aggregate request criteria object, with multiple request
criteria objects.

l all-included-entry-control – If specified, only matches search result entries
containing controls with all of the specified object IDs.

l any-included-entry-control – If specified, only matches search result entries
containing at least one control with one of the specified object IDs.

l not-all-included-entry-control – If specified, only matches search result entries
that do not contain controls with all of the specified object IDs. It may contain controls
with zero or more of the specified object IDs, but not all of them.

l none-included-entry-control – If specified, only matches search result entries that
do not contain any controls with any of the specified object IDs.

l included-entry-base-dn – If specified, only matches search result entries in which the
DN of that entry is equal to or subordinate to one of the given base DN values.

- 164 -

Simple search reference criteria

l excluded-entry-base-dn – If specified, only matches search result entries in which the
DN of that entry is not equal to or subordinate to one of the given base DN values.

l all-included-entry-filter – If specified, only matches search result entries in which
the pared-down entry matches all of the provided filters.

l any-included-entry-filter – If specified, only matches search result entries in which
the pared-down entry matches at least one of the provided filters.

l not-all-included-entry-filter – If specified, only matches search result entries in
which the pared-down entry does not match all of the provided filters. It can match zero
or more of the provided filters, but must not match all of them.

l none-included-entry-filter – If specified, only matches search result entries in
which the pared-down entry does not match any of the provided filters.

l all-included-entry-group-dn – If specified, only matches search result entries in
which the entry is a member of all of the specified groups.

l any-included-entry-group-dn – If specified, only matches search result entries in
which the entry is a member of at least one of the specified groups.

l not-all-included-entry-group-dn – If specified, only matches search result entries
in which the entry is not a member of at least one of the specified groups. The entry may
be a member of zero or more of the specified groups, but not all of them.

l none-included-entry-group-dn – If specified, only matches search result entries in
which the entry is not a member of any of the specified groups.

Simple search reference criteria
Simple search reference criteria objects can perform matching based on the contents of search
result references returned to the client. Properties for this type of criteria include:

l request-criteria – Matches search result references for search operations matching
the provided request criteria. Only one request criteria object can be specified, but it
may be an aggregate, with multiple request criteria objects.

l all-included-reference-control – Matches search result references containing
controls with all of the specified object IDs.

l any-included-reference-control – Matches search result references containing at
least one control with one of the specified object IDs.

l not-all-included-reference-control – Matches search result references that do not
contain controls with all of the specified object IDs. It may contain controls with zero or
more of the specified object IDs, but not all of them.

l none-included-reference-control – Matches search result references that do not
contain any controls with any of the specified object IDs.

- 165 -

Appendix C: Understanding Criteria

Aggregate criteria
Each kind of criteria has an aggregate subtype that can be used to create logical ANDs, ORs,
and NOTs of other criteria objects. For example, an aggregate connection criteria type can
include the following properties:

l all-included-connection-criteria – Identifies client connections that match all of
the referenced connection criteria objects. If one or more of the referenced criteria
objects do not match a client connection, the aggregate connection criteria will not match
that connection.

l any-included-connection-criteria – Identifies client connections that match at least
one (but possibly more) of the referenced connection criteria objects. If none of the
referenced criteria objects do not match a client connection, the aggregate connection
criteria will not match that connection.

l not-all-included-connection-criteria – Identifies client connections that do not
match at least one (and possibly none of) the referenced connection criteria objects.
Connections may match one or more of the referenced connection criteria objects, as
long as at least one of the referenced connection criteria objects does not match the
connection.

l none-included-connection-criteria – Identifies client connections that do not match
any of the referenced connection criteria objects. If one or more of the referenced
criteria objects do match a client connection, then the aggregate connection criteria will
not match that connection.

Other criteria types have an aggregate subtype with similar sets of all-included, any-
included, not-all-included, and none-included properties.

- 166 -

Index

A

access control instructions (ACIs) 71

examples 73

rule format 72

validate ACIs 75

access control system 4

account 115

Directory Server account 40

lockout, expiration, disablement 63

separate user and administrator 40

status notification 66

address masks 142

administrative accounts

limit capabilities 32

strong authentication for 31

alarms 11, 113

testing setup 114

alert handler 11, 111

alerts

alarm_cleared alert type 114

list of system alerts 12, 114

testing setup 114

alerts backend

alert retention time 112-113

duplicate alert suppression 113

overview 112

view information 112

attack models 2

data breach 17

denial of service 10

man-in-the-middle 27

attributes

entry checksum attribute 50

global configuration for sensitive
attributes 18

limit search results 24

operational 5

sensitive 5

audit-data-security tool 46

auditors for data security 45

authenticatin types 79

control with client connection
policies 79

authentication mechanisms

pass-through authentication 105

B

backup strategies 36

Bcrypt and scrypt password storage
schemes 22

bind information leak 106

C

certificate-based authentication 3

certificate mapper

fingerprint 102

subject DN to user attribute 104

subject equals DN 101

subject to user attribute 103

certificates 147

create with keytool 151

cipher stream providers 35

client connection policies 4

control authentication 79

criteria subsystem 156

enforce resource limits 14

- 167 -

Index: access control instructions (ACIs) – client connection policies

Index: client IP addresses – fingerprint certificate mapper

enforce search limits 15

limit search results 23

properties for sensitive attributes 19

recommendations for creating 57

restrict access to controls 25

restrict access to directory information
tree 25

restrict request types 16

restricting IP addresses 17

client IP addresses 16

clients

identify client access 7

identify data to be accessed 8

identify privileged ports 7

cn=monitor 10

communication

aggregate criteria 166

allow or deny clients 142

secure connections 141

secure database 144

secure HTTP 143

secure JMX 143

secure replication 143

secure SNMP 143

secure syslog 144

simple connection criteria 156

simple request criteria 158, 161

simple search entry criteria 164

simple search reference criteria 165

criteria subsystem 156

aggregate criteria 166

simple connection criteria 156

simple request criteria 158

simple result criteria 161

simple search entry criteria 164

simple search reference criteria 165

D

data access 8

data breach 17

limit search results 23

password storage schemes 21

restrict access to controls 25

data encryption 35

Data Metrics Server 10, 109

data security audits 44

database communication 144

denial of service attacks 10

Directory Proxy Server considerations 46

password policy 69

dsconfig

usage considerations 43

E

encoded passwords 22

encrypt LDIF exports 37

encrypted backups 4

encryption settings database 34

encryption types 147

entry checksums 50

error log handler 11

F

filesystem

Java encryption 34

protection 34

fingerprint certificate mapper 102

- 168 -

Index: gauges – one-time password mechanisms

G

gauges 11, 113

testing related alarms and alerts 114

global configuration options

limit search results 23

limit stale data 52

on-disk encryption 18

options for resource limits 12

prevent bind information leak 106

read-only server instance 54

global settings 4

H

hardware security module (HSM) 137

HTTP 143

J

Java encryption security 34

Java KeyStore 136, 143

Java Management Extension 110

JDBC driver 144

JMX 143

K

key manager 137

key manager providers 136

keytool 151, 153

L

LDAP communication 138

LDAP connection handler 140

restrict client IP addresses 16

LDAP injection attacks 26

LDAPcommunication

configure external server 141

LDAPS 142

LDIF exports 37

LDIF import password encoding 68

lock-down mode 4, 54

logging 5

central and remote 42

centralized logging 129

configure access logging 119

configure change logging 124

configure debug logging 127

configure error logging 126

configure filtered logging 122

Data Sync Server logging 128

log signing 118

parse and analyze logs 130

rotation and retention policies 118

store reversible changes 55

login tracking 64

M

man-in-the-middle attack 27

reduce risk of network address
spoofing 28

monitoring components 109

monitoring tools 10

multi-factor authentication 3

multi-OS environments 30

N

network encryption 3

network security options 144

Network Time Protocol 53

O

one-time password mechanisms 3

UNBOUNDID-DELIVERED-OTP 84

UNBOUNDID-YUBIKEY-OTP 86, 99

- 169 -

Index: operational attributes – syslog communication

operational attributes 24

P

pass-through authentication 105

password encryption 4

password expiration 61

password generators 65

password policies 3

password policy 58, 62

per-user 67

properties 67

password storage 4, 21

strongest schemes 22

password validators 59

periodic stats logger 10

PKCS#11 key manager provider 136

privileges 4, 42, 75

available privileges 75

R

replication

secure communication 143

replication metrics 53

reports for data security audits 44

resource limits 12

client connection policies 14

restore strategies 36

root user considerations 40

S

SASL authentication 3

SASL authentication mechanisms 83

configure ANONYMOUS 87

configure CRAM-MD5 87

configure DIGEST-MD5 89

configure EXTERNAL 91

configure GSSAPI 92

configure PLAIN 95

configure UNBOUNDID-CERTIFICATE-
PLUS-PASSWORD 95

configure UNBOUNDID-EXTERNALLY-
PROCESSED-
AUTHENTICATION 99

configure UNBOUNDID-TOTP 96

configure UNBOUNID-DELIVERED-
OTP 97

schema integrity 51

SDK extensions 5

search limits

client connection policies 15

security features 3

security risks 2

sensitive attribute definitions 19, 24

server authentication 147

server consistency 43

SNMP 109, 143

SSL 133, 143

asymmetric and symmetric
encryption 147

configure 133

stale data 52

StartTLS 133, 142

configure 135

Stats Logger Plugin 111

subject DN to user attribute certificate
mapper 104

subject equals DN certificate mapper 101

subject to user attribute certificate
mapper 103

Sync Server considerations 47

syslog communication 144

- 170 -

Index: system – trust store providers

system

auditing and logging 32

maintain JVM 31

software and services 30

update patches 30

virtualization 31

system alerts 11

system clocks 53

T

time synchronization 53

trust manager 137

trust store providers 136

- 171 -

- 172 -

	Preface
	Audience
	Related Documentation

	Chapter 1: Introduction
	Security risks in an identity environment
	Financial and reputation costs
	Common attack models

	PingData security features

	Chapter 2: Client access
	Identifying potential clients
	Clients requiring privileged ports
	Identifying data security

	Chapter 3: Mitigating system attacks
	Denial of service prevention
	Monitoring tools
	System alerts
	System alarms and gauges
	Enforce resource limits
	Restrict request types with client connection policies
	Allow and deny client IP addresses

	Data Breach Prevention
	Global configuration options for on-disk encryption
	Implement sensitive attributes
	Password storage schemes
	Limit search results
	Restrict access to certain controls
	Restrict access to the directory information tree with client connection poli...

	LDAP injection attacks
	Man-in-the-middle attack prevention
	Secure system-to-system network connections
	Features that reduce the risk of network address-spoofing

	Chapter 4: Host system protection
	The PingData environment on multiple operating systems
	Minimize software and running services
	Keep systems patched
	Virtualization best practices
	Maintain the Java Virtual Machine
	Configure strong authentication for administrators
	Minimize administrative account capabilities
	Use system logging and auditing

	Chapter 5: Filesystem security
	Filesystem protections
	Remove Java encryption security restrictions
	Manage the encryption settings database
	Supported cipher stream providers
	Configure data encryption
	Devise backup and restore strategies
	Encrypt backups

	Secure LDIF exports

	Chapter 6: Protect the PingData Platform
	Separate user and administrator accounts
	Use a limited account to run identity server services
	Considerations for root users

	Centralized and remote logging
	Secure the configuration using privileges
	Safe use of dsconfig and the Administrative Console
	Maintain consistent server configurations

	Data security audits
	Data security audit reports
	Data security auditors
	Configure the data security auditors
	The audit-data-security tool

	Directory Proxy Server considerations
	Data Sync Server considerations

	Chapter 7: Data Integrity
	Stored Entry Checksums
	Cryptographic Digests
	Entry Checksum Operational Attribute

	Schema Integrity
	Limiting Exposure of Stale Data
	Time Synchronization
	Creating a Read-Only Instance of the Directory Server
	Server Lock-Down Mode
	Storing Reversible Changes in the Log

	Chapter 8: Client connection and password policies
	Associating a Client Connection Policy with a client connection
	Recommendations for creating Client Connection Policies
	Password Policies
	Password validators
	Password expiration
	Password changes and administrative reset
	Account lockout, expiration, and disablement
	Last login time and last login IP address tracking
	Password generators
	Account status notification handlers
	Per-user Password Policies
	Additional password policy properties
	Password encoding during LDIF Import
	Password policies and the Directory Proxy Server

	Chapter 9: Access control
	Overview of access control
	Validation and security
	Global ACIs
	Access controls for public or private backends

	General format of the access control rules
	Examples of common access control rules
	Administrator access
	Anonymous and authenticated access
	Delegated access to a manager
	Proxy authorization

	Validating ACIs before migrating data
	Working with privileges
	Available privileges

	Chapter 10: Authentication Mechanisms
	Configuring authentication types
	Using SASL authentication mechanisms
	Controll authentication with Client Connection Policies
	Controll authentication with password policies
	Reject or Limit unauthenticated requests
	Restrict authentication with operational attributes
	Use certificate-based authentication
	Certificate mappers

	Configure a SASL mechanism handler
	Configure SASL ANONYMOUS mechanism
	Configure SASL CRAM-MD5 mechanism
	Configure SASL DIGEST-MD5 mechanism
	Configure SASL EXTERNAL mechanism
	Configure SASL GSSAPI mechanism
	Configure SASL PLAIN mechanism
	Configure the UNBOUNDID-CERTIFICATE-PLUS-PASSWORD mechanism
	Configure SASL UNBOUNDID-TOTP mechanism
	Configure SASL UNBOUNDID-DELIVERED-OTP mechanism
	Configuring the UNBOUNDID-EXTERNALLY-PROCESSED-AUTHENTICATION mechanism
	Configure the UNBOUNDID-YUBIKEY-OTP mechanism
	Configure YubiKey authentication for a user
	Retire a YubiKey device for a user

	Configure certificate mappers
	Configure the Subject Equals DN certificate mapper
	Configure the Fingerprint certificate mapper
	Configure the Subject Attribute to User Attribute Certificate Mapper
	Configure the Subject DN to User Attribute certificate mapper

	Configuring pass-through authentication
	Prevent bind information leaks

	Chapter 11: Monitoring, alerts, alarms, and notifications
	Monitoring components
	About the Data Metrics Server
	Data Metrics Server Security
	Monitoring using SNMP
	Monitoring with JMX
	Monitoring using the LDAP SDK
	Monitoring over LDAP

	Profile server performance using the Stats Logger Plugin
	Working with administrative alert handlers
	The Alerts backend
	View information in the Alerts backend
	Modify the alert retention time
	Configure duplicate alert suppression

	System alarms and gauges
	Test alerts and alarms
	Working with account status notifications
	Account status notification types

	Chapter 12: Logging security
	Configure log rotation and retention policies
	Log signing
	Configure access logging
	Configure filtered logging
	Configure change logging
	Configure error logging
	Configure debug logging
	Configure Data Sync Server logging
	Options for centralized logging
	Parse and Analyze log messages

	Chapter 13: Network security
	SSL and StartTLS
	Configure SSL
	Configure StartTLS

	Key manager providers
	Trust manager providers
	Configure the Key and Trust manager providers

	Secure LDAP communication
	Configure LDAP connection handlers
	Configure external server communication

	Preventing communication over insecure connections
	Allow or Deny connections from specific clients
	Secure replication communication
	Secure HTTP communication
	Securing SNMP communication
	Securing JMX communication
	Secure database communication
	Securing syslog communication
	Other network security configuration options
	Limit the maximum time for JVM cache

	Appendix A: SSL details
	Asymmetric and symmetric encryption
	Certificates

	Appendix B: About the Java Keytool
	Java Keytool utility use
	Create a server certificate
	Create a client certificate

	Appendix C: Understanding Criteria
	Criteria overview
	Simple connection criteria
	Simple request criteria
	Simple result criteria
	Simple search entry criteria
	Simple search reference criteria
	Aggregate criteria

	Index

