
Release 7.3.0.3

Server Administration Guide

PingDirectory | Contents | ii

Contents

Introduction.. 8
Overview of PingDataSync Server..8
Data synchronization process... 9

Synchronization architecture...9
Change tracking, monitoring, and logging..10

Synchronization modes... 11
Standard synchronization... 11
Notification synchronization.. 11

PingDataSync Server operations...11
Real-time synchronization...11
Data transformations.. 12
Bulk resync... 12
The sync retry mechanism... 12

Configuration components...13
Sync flow examples.. 15

Modify operation example.. 16
Add operation example...16
Delete operation example...17
Delete after source entry is re-added.. 17
Standard modify after source entry is deleted... 18
Notification add, modify, modifyDN, and delete... 18

Sample synchronization.. 18

Install PingDataSync Server...19
System requirements...20

Platforms... 20
Docker...20
Java Runtime Environment.. 20
Browsers... 20

Install the JDK... 21
Optimize the Linux operating system..21

Setting the file descriptor limit..21
Set the file system flushes... 22
Install sysstat and pstack on Red Hat... 22
Install the dstat utility..22
Disable file system swapping... 22
Manage system entropy... 23
Set file system event monitoring (inotify)... 23
Tune IO scheduler..23
Enable the server to listen on privileged ports...23

Ping license keys.. 24
Installing PingDataSync Server...24
Log on to the Administrative Console...26
Server folders and files... 26
Start and stop the server.. 27

Start the server as a background process...27
Start the server at boot time.. 27
Stop the server... 27

PingDirectory | Contents | iii

Restart the server...28
Run the server as a Microsoft Windows service.. 28

Register the service..28
Run multiple service instances...28
Deregister and uninstall..28
Log files.. 29

Uninstall the server... 29
Update servers in a topology..29

Update the server...30
Reverting an update... 30

Revert an update...31
Revert from version 7.x to a version earlier than 7.0...31
To revert to the most recent server version...32

Install a failover server..32
Administrative accounts...33

Change the administrative password... 33

Configure PingDataSync Server.. 34
Configuration checklist.. 35

External servers..35
Sync pipes.. 35
Sync classes...35

Sync user account...37
Configure PingDataSync Server in Standard mode... 38

Use the create-sync-pipe tool to configure synchronization...38
Configuring attribute mapping.. 40
Configure server locations..41

Use the Configuration API.. 42
Authentication and authorization.. 43
Relationship between the Configuration API and the dsconfig tool....................................... 43
API paths.. 50
Sorting and filtering configuration objects.. 51
Update properties... 52
Administrative actions...53
Update servers and server groups...54
Configuration API responses..54

Configuration with the dsconfig tool..55
Use dsconfig in interactive mode... 56
Use dsconfig in non-interactive mode..56
Use dsconfig batch mode...57

Topology configuration.. 57
Topology master requirements and selection.. 57
Topology components.. 58
Monitor data for the topology... 59
Certificates.. 59

Domain Name Service (DNS) caching... 67
IP address reverse name lookups.. 67
Configure the synchronization environment with dsconfig..68

Configure server groups with dsconfig interactive... 68
Start the Global Sync configuration with dsconfig interactive.. 68

Prepare external server communication... 68
HTTP connection handlers..69

Configure an HTTP connection handler...70
HTTP correlation IDs..71

Resync tool..75

PingDirectory | Contents | iv

Test attribute and DN maps...76
Verify the synchronization configuration...76
Populate an empty sync destination topology..76
Set the synchronization rate...77
Synchronize a specific list of DNs... 78

Realtime-sync tool... 79
Start real-time synchronization globally..79
Start or Pause synchronization.. 79
Set startpoints...80
Restart synchronization at a specific change log event...81
Change the synchronization state by a specific time duration... 81
Schedule a real-time sync as a task..82

Configure the PingDirectory Server backend for synchronizing deletes... 82
Configure DN maps...83

Configure a DN map by using dsconfig...84
Configure synchronization with JSON attribute values... 84

Synchronize ubidEmailJSON fully.. 85
Synchronize a subset of fields from the source attribute... 85
Retain destination-only fields..86
Synchronize a field of a JSON attribute into a non-JSON attribute....................................... 86
Synchronize a non-JSON attribute into a field of a JSON attribute....................................... 87
Synchronize multiple non-JSON attributes into fields of a JSON attribute.............................88
Correlating attributes based on JSON fields..89

Configure fractional replication..89
Configure failover behavior... 91

Conditions that trigger immediate failover..91
Failover server preference..92
Configuration properties that control failover behavior...93
The max-operation-attempts property.. 94
The response-timeout property.. 94
The max-failover-error-code-frequency property.. 95
The max-backtrack-replication-latency property...95

Configure traffic through a load balancer... 96
Configure authentication with a SASL external certificate.. 96
Configure an LDAPv3 Sync Source..97
Server SDK extensions... 98

Synchronize with PingOne for Customers... 98
Prerequisites.. 98

Worker application.. 98
PingOne user resource model... 100

Synchronize changes to a PingOne for Customers environment... 100
Create a PingOne for Customers sync destination..100
Configure attribute mapping... 100
Considerations and limitations..101

Synchronize changes from a PingOne for Customers environment... 101
Create a PingOne for Customers sync source.. 101
Configure attribute mapping... 102
Considerations and limitations..102

Synchronize with Active Directory systems...102
Overview of configuration tasks.. 103
Configuring synchronization with Active Directory.. 104
Active Directory sync user account...104

PingDirectory | Contents | v

Prepare external servers...105
Configure sync pipes and sync classes..105
Configure password encryption...107
Password sync agent.. 107

Install the password sync agent...109
Upgrade or uninstall the password agent.. 109
Manually configure the password sync agent.. 109

Synchronize with relational databases... 110
Use the server SDK.. 110
RDBMS synchronization process..111
DBSync example... 111

Example directory server entries..112
Configure DBSync... 112
Create the JDBC extension.. 113

Implement a JDBC sync source...113
Implement a JDBC sync destination.. 114

Configure the database for synchronization... 115
Considerations for synchronizing to database destination..116
Configure a directory-to-database sync pipe.. 117

Create the sync pipe.. 118
Configure the sync pipe and sync classes.. 119

Considerations for synchronizing from a database source...120
Synchronize a specific list of database elements... 120

Synchronize with Apache Kafka.. 121
Restrictions.. 121
Configure a Kafka sync destination.. 122

SSL configuration... 122
Message format...123

Example ADD... 123
Example MODIFY...123
Example DELETE...124
Message customization.. 125

Synchronize through PingDirectoryProxy servers.............................. 125
Synchronization through a Proxy Server overview... 125

Change log operations... 126
PingDirectory Server and PingDirectoryProxy Server tokens.. 126
Change log tracking in entry balancing deployments.. 127

Example configuration... 128
Configure the source PingDirectory Server.. 128
Configure a proxy server...129
Configure PingDataSync Server... 132
Test the configuration..133
Index the LDAP changelog... 134
Changelog synchronization considerations...135

Synchronize in Notification Mode..136
Notification mode overview... 136

Implementation considerations... 136
Use the server SDK and LDAP SDK...137

PingDirectory | Contents | vi

Notification mode architecture...137
Sync source requirements..138
Failover capabilities.. 138
Notification sync pipe change flow...139

Configure notification mode...139
Use the create-sync-pipe-config tool..139
No resync command functionality.. 139
LDAP change log features required for notifications..139
LDAP change log for Notification and Standard Mode.. 141

Implementing the server extension... 141
Configure the Notification sync pipe... 143

Considerations for configuring sync classes.. 143
Create the sync pipe.. 143
Configure the sync source... 144
Configure the destination endpoint server... 144

Access control filtering on the sync pipe.. 145
Considerations for access control filtering... 145
Configure the sync pipe to filter changes by access control instructions............................. 145

Configure synchronization with SCIM...146
Synchronize with a SCIM sync destination overview..146

SCIM destination configuration objects.. 147
Considerations for synchronizing to a SCIM destination..147
Rename a SCIM resource..147
Password considerations with SCIM.. 147

Configure synchronization with SCIM... 148
Configure the external servers... 148
Configure the PingDirectory Server sync source... 149
Configure the SCIM sync destination...150
Configure the sync pipe, sync classes, and evaluation order.. 150
Configure communication with the source server.. 151
Start the sync pipe... 152

Map LDAP schema to SCIM resource schema..152
<resource> element..153
<attribute> element...154
<simple> element... 154
<complex> element.. 154
<simpleMultiValued> element...154
<complexMultiValued> element..155
<subAttribute> element...155
<canonicalValue> element..155
<mapping> element.. 156
<subMapping> element.. 156
<LDAPSearch> element... 156
<resourceIDMapping> element...156
<LDAPAdd> element.. 157
<fixedAttribute> element...157

Identify a SCIM resource at the destination... 157

Manage logging, alerts, and alarms.. 158
Logs and log publishers..158

Types of log publishers.. 158
View the list of log publishers.. 159
Log compression.. 159

PingDirectory | Contents | vii

Configure log file encryption...159
Synchronization logs and messages...161
Sync log message types...161
Create a new log publisher...162
Configure log signing.. 163
Configure log retention and log rotation policies.. 164

Configure the log rotation policy.. 165
Configure the log retention policy.. 165

Configure log listeners.. 165
System alarms, alerts, and gauges.. 166

Alert handlers..167
Configure alert handlers... 167

Test alerts and alarms.. 167
Use the status tool.. 169
Synchronization-specific status... 169
Monitor PingDataSync Server... 171

Troubleshooting...173
Synchronization troubleshooting..173
Management tools... 173
Troubleshooting tools.. 174
Use the status tool.. 175
Use the collect-support-data tool.. 175
Use the Sync log...176

Sync log example 1..176
Sync log example 2..176
Sync log example 3..177

Troubleshoot synchronization failures...177
Troubleshoot "Entry Already Exists" failures..178
Troubleshoot "No Match Found" failures... 179
Troubleshoot "Failed at Resource" failures..180

Installation and maintenance issues... 182
The setup program will not run.. 182
The server will not start..182
The server has shutdown...184
The server will not accept client connections.. 185
The server is unresponsive.. 185
Problems with the Administrative Console...186

Problems with SSL communication...186
Conditions for automatic server shutdown..186
Insufficient memory errors...186
Enable JVM debugging... 187

PingDataSync Server 7.3.0.3 Release Notes...187

PingDataSync Server Release Notes archive....................................... 187
PingDataSync Server 7.3.0.1 Release Notes... 187
PingDataSync Server 7.3.0.0 Release Notes... 188

Index.. 196

PingDirectory | PingDirectory™ Product Documentation | 8

 PingDirectory™ Product Documentation

© Copyright 2004-2019 Ping Identity® Corporation. All rights reserved.

Trademarks

Ping Identity, the Ping logo, PingFederate, PingAccess, and PingOne are registered trademarks of Ping
Identity Corporation ("Ping Identity"). All other trademarks or registered trademarks are the property of their
respective owners.

Disclaimer

The information provided in these documents is provided "as is" without warranty of any kind. Ping
Identity disclaims all warranties, either express or implied, including the warranties of merchantability and
fitness for a particular purpose. In no event shall Ping Identity or its suppliers be liable for any damages
whatsoever including direct, indirect, incidental, consequential, loss of business profits or special damages,
even if Ping Identity or its suppliers have been advised of the possibility of such damages. Some states
do not allow the exclusion or limitation of liability for consequential or incidental damages so the foregoing
limitation may not apply.

Support

https://support.pingidentity.com/

Introduction

PingDataSync Server is a high-capacity, high-reliability data synchronization and transfer pipe between
source and destination topologies.

This chapter presents a general overview of the PingDataSync Server process and examples for use.

Topics include:

Overview of PingDataSync Server

Data synchronization process

Synchronization modes

PingDataSync Server operations

Configuration components

Synchronization flow examples

Sample synchronization

Overview of PingDataSync Server
PingDataSync Server is an efficient, Java-based server that provides high throughput, lowlatency, and
bidirectional real-time synchronization between two endpoint topologies consisting of PingDirectory
Servers, PingDirectoryProxy Servers, PingOne, and/or Relational Database Management Systems
(RDBMS) systems. PingDataSync Server uses a dataless approach that synchronizes changes directly
from the data sources in the background, so that applications can continue to update their data sources
directly. PingDataSync Server does not store any data from the endpoints themselves, thereby reducing
hardware and administration costs. The server's high-availability mechanisms also makes it easy to fail
over from the main PingDataSync Server to redundant instances.

https://support.pingidentity.com/

PingDirectory | Introduction | 9

Designed to run with little administrative maintenance, PingDataSync Server includes the following
features:

• High performance and availability with built-in redundancy.
• Dataless virtual architecture for a small-memory footprint and easy maintenance.
• Hassle-free setup that enables mapping attribute names, values, and DNs between endpoints. For

directory server endpoints, this enables making schema and Directory Information Tree (DIT) changes
without custom coding and scripting.

• Multi-vendor directory server support including the PingDirectory Server, PingDirectoryProxy Server,
Nokia 8661 Directory Server, Nokia 8661 Directory Proxy Server, Oracle/Sun Directory Server
Enterprise Edition, Oracle/Sun Directory Server, Oracle Unified Directory, OpenDJ, and Microsoft Active
Directory, and generic LDAP directories.

• RDBMS support including Oracle Database, and Microsoft SQL Server systems.
• Proxy Server support including the PingDirectoryProxy Server and the Nokia 8661 Directory Proxy

Server.
• Notification support that allows real-time change notifications to be pushed to client applications or

services as they occur.

Data synchronization process
PingDataSync Server performs point-to-point synchronization between a source endpoint and a destination
endpoint. An endpoint is defined as any source or destination topology of directory or database servers.

PingDataSync Server synchronizes data in one direction or bidirectionally between endpoints.
For example, in a migration phase from Sun Directory Server to a PingData PingDirectory Server,
synchronization can occur in one direction from the source server to a staging server. With one-way
synchronization, the source server is the authoritative endpoint for changes in the system. Bidirectional
synchronization allows for parallel active installations between the source and the destination endpoints.
With bidirectional synchronization, both endpoints are authoritative for the same set of attributes or for
different sets of data.

PingDataSync Server also contains no single point of failure, either for detecting changes or for applying
changes. PingDataSync Server instances themselves are redundant. There can be multiple instances
running at a time, but only the server with the highest priority is actively synchronizing changes. The stand-
by servers are constantly polling the active server instance to update their persistent state. This state
contains the minimum amount of information needed to begin synchronization where the primary server
left off, which logically is the last processed change number for the source server. In the case of a network
partition, multiple servers can synchronize simultaneously without causing problems as they each verify the
full entry before making changes.

Synchronization architecture

PingDataSync Server uses a virtualized, dataless approach that does not store directory data locally. The
log files, administrator entries, configuration, sync state information are stored as flat files (LDIF format)
within the system. No additional database is required.

PingDirectory | Introduction | 10

Change tracking, monitoring, and logging

PingDataSync Server tracks and manages processes and server health with the following tools:

Change Tracking Each directory instance stores a separate entry
under cn=changelog for every modification made
to the directory. PingDataSync Server provides
full control over the synchronization process by
determining which entries are synchronized, how
they are correlated to the entries at the destination
endpoint, and how they are transformed into the
destination schema.

• For the PingData PingDirectory Server or Nokia
8661 Directory Server topologies, PingDataSync
Server uses the server's LDAP Change Log for
modification detection.

• For Oracle/Sun Directory Server, OpenDJ,
Oracle Unified Directory, and generic LDAP
directory topologies, PingDataSync Server uses
the server’s Retro Change Log, which provides a
detailed summary of each change.

• For Active Directory, PingDataSync Server
uses the DirSync control, which polls for object
attribute changes.

• For RDBMS systems, PingDataSync Server
uses an Ping Identity Server SDK plugin to
interface with a customized RDBMS change log
table. Database triggers on each table record all
INSERT, UPDATE, and DELETE operations to
the change log table.

Monitoring, Alerts, and Alarms PingDataSync Server supports several industry-
standard, administrative protocols for monitoring,
alarms, and alerts. System alarms and gauges can
be configured to determine healthy performance

PingDirectory | Introduction | 11

thresholds and the server actions taken when
performance values are outside the threshold.
All administrative alarms are exposed over
LDAP as entries under base DN cn=alarms.
An administrative alert framework sends
warnings, errors, or other server events through
log messages, email, or JMX notifications.
Administrative alerts are also exposed over LDAP
as entries below base DN cn=alerts. Typical
alert events are startup or shutdown, applied
configuration changes, or synchronized resources
unavailable.

Logging PingDataSync Server provides standard
logs (sync, access, error, failed-
operations, config-audit.log, debug).
The server can also be configured for multiple
active sync logs. For example, each detected
change, each dropped change, each applied
change, or each failed change can be logged.

Synchronization modes
PingDataSync Server runs as a standalone Java process with two synchronization modes: standard and
notification.

Standard synchronization

In standard synchronization mode, PingDataSync Server polls the directory server change log for create,
modify, and delete operations on any entry. The server fetches the full entries from both the source and
destination endpoints, and compares them to produce the minimal set of changes required to synchronize
the destination with the source.

The following shows the standard synchronization change flow between two servers. The changes are
processed in parallel, which increases throughput and offsets network latency.

Notification synchronization

In notification synchronization mode, PingDataSync Server skips the fetch and compare phases of
processing and simply notifies the destination that a change has happened and provides the details of the
change. Notification mode is currently available for the PingData and Alcatel-Lucent 8661 directory and
proxy servers only.

 PingDataSync Server operations
PingDataSync Server provides seamless integration between disparate systems to transform data using
attribute and DN mappings. A bulk resynchronization operation can be run verify mappings and test
synchronization settings.

Real-time synchronization

Real-time synchronization is performed with the realtime-sync utility. The realtime-sync utility polls
the source server for changes and synchronizes the destination entries immediately. Once the server
determines that a change should be synchronized, it fetches the full entry from the source. It then searches
for the corresponding entry in the destination endpoint using correlation rules and applies the minimum set

PingDirectory | Introduction | 12

of changes to synchronize the attributes. The server fetches and compares the full entries to make sure it
does not synchronize any old data from the change log.

After a synchronization topology is configured, run resync to synchronize the endpoints, and then run
realtime-sync to start global synchronization.

The realtime-sync tool is used for the following tasks:

• Start or stop synchronization globally or for specific sync pipes only.
• Set a start point at which synchronization should begin such as the beginning or end of the change log,

at a specified change number, at a specified change sequence number, or at a specified time frame in
the change log.

Data transformations

Data transformations alter the contents of synchronized entries between the source and destination
directory server to handle variances in attribute names, attribute values, or DN structures. When entries
are synchronized between a source and a destination server, the contents of these entries can be changed
using attribute and DN mappings, so that neither server needs be aware of the transformations.

• Attribute Mapping – Any attribute in the entry can be renamed to fit the schema definitions from the
source endpoint to the destination endpoint. This mapping makes it possible to synchronize information
stored in one directory's attribute to an attribute with a different name in another directory server, or to
construct an attribute using portions of the source attribute values.

• DN Mapping – Any DNs referenced in the entries can be transparently altered. This mapping makes
it possible to synchronize data from a topology that uses one DIT structure to a system that uses a
different DIT structure.

Bulk resync

The resync tool performs a bulk comparison of entries on source topologies and destination topologies.
PingDataSync Server streams entries from the source, and either updates the corresponding destination
entries or reports those that are different. The resync utility resides in the /bin folder (UNIX or LINUX) or
\bat folder (Windows), and can be used for the following tasks:

• Verify that the two endpoints are synchronized after an initial configuration.
• Initially populate a newly configured target endpoint.
• Validate that the server is behaving as expected. The resync tool has a --dry-run option that

validates that synchronization is operating properly, without updating any entries. This option also can
be used to check attribute or DN mappings.

• Perform scheduled synchronization.
• Recover from a failover by resynchronizing entries that were modified since the last backup was taken.

The resync tool also enables control over what can be synchronized, such as:

• Include or exclude any source and destination attributes.
• Apply an LDAP filter to only sync entries created since that last time the tool ran.
• Synchronize only creations or only modifications.
• Change the logging verbosity.
• Set a limit on resync operations (such as 2000 operations per second) to reduce impact on endpoint

servers.

The sync retry mechanism

PingDataSync Server is designed to quickly synchronize data and attempt a retry should an operation fail
for any reason. The retry mechanism involves two possible retry levels, which are configurable on the Sync
Pipe configuration using advanced Sync Pipe properties. For detailed information, see the PingDataSync
Server Reference Guide for the Sync Pipe configuration parameters.

Retry involves two possible levels:

PingDirectory | Introduction | 13

First Level Retry If an operation fails to synchronize, the server
will attempt a configurable number of retries. The
total number of retry attempts is set in the max-
operation-attempts property on the Sync Pipe.
The property indicates how many times a worker
thread should retry the operation before putting the
operation into the second level of retry, or failing the
operation altogether.

Second Level Retry Once the max-operation-attempts property
has been exceeded, the retry is sent to the
second level, called the delayed-retry queue. The
delayed-retry queue uses two advanced Sync Pipe
properties to determine the number of times an
operation should be retried in the background after
a specified delay.

Operations that make it to this level will be retried
after the failed-op-background-retrydelay
property (default: 1 minute). Next, PingDataSync
Server checks the max-failedop-background-
retries property to determine the number of
times a failed operation should be retried in the
background. By default, this property is set to 0,
which indicates that no background retry should be
attempted, and that the operation should be logged
as failed.

Note:

Background operations can hold up processing
other changes, since PingDataSync Server will only
process up to the next 5000 changes while waiting
for a retried operation to complete.

Retry can be controlled by the custom endpoint based on the type of error exception. When throwing an
exception, the endpoint code can signal that a change should be aborted, retried a limited number of times,
or retried an unlimited number of times. Some errors, such as endpoint server down, should be retried
indefinitely.

If the max-failed-op-background-retries property has been exceeded, the retry is logged as a
failure and appears in the sync and the sync-failed-ops logs.

Configuration components
PingDataSync Server supports the following configuration parameters that determine how synchronization
takes place between directories or databases:

Sync Pipe Defines a single synchronization path between the
source and destination topologies. Every Sync Pipe
has one or more Sync Classes that control how and
what is synchronized. Multiple Sync Pipes can run
in a single server instance.

Sync Source Defines the directory topology that is the source of
the data to be synchronized. A Sync Source can
reference one or more supported external servers.

PingDirectory | Introduction | 14

Sync Destination Defines the topology of directory servers where
changes detected at the Sync Source are applied.
A Sync Destination can reference one or more
external servers.

External Server Defines a single server in a topology of identical,
replicated servers to be synchronized. A single
external server configuration object can be
referenced by multiple Sync Sources and Sync
Destinations

Sync Class Defines the operation types and attributes that
are synchronized, how attributes and DNs are
mapped, and how source and destination entries
are correlated. A source entry is in one Sync Class
and is determined by a base DN and LDAP filters.
A Sync Class can reference zero or more Attribute
Maps and DN Maps, respectively. Within a Sync
Pipe, a Sync Class is defined for each type of entry
that needs to be treated differently. For example,
entries that define attribute mappings, or entries
that should not be synchronized at all. A Sync Pipe
must have at least one Sync Class but can refer to
multiple Sync Class objects.

DN Map Defines mappings for use when destination DNs
differ from source DNs. These mappings allow
the use of wild cards for DN transformations.
A single wild card ("*") matches a single RDN
component and can be used any number of times.
The double wild card ("**") matches zero or more
RDN components and can be used only once.
The wild card values can be used in the to-dn-
pattern attribute using {1} and their original
index position in the pattern, or {attr} to match an
attribute value. For example:

**,dc=myexample,dc=com-
>{1},o=example

Regular expressions and attributes from the user
entry can also be used. For example, the following
mapping constructs a value for the uid attribute,
which is the RDN, out of the initials (first letter of
givenname and sn) and the employee ID (eid
attribute).

uid={givenname:/^(.)(.*)/$1/s}{sn:/
^(.)(.*)/$1/s}{eid},{2},o=example

The following illustrates a how a nested DIT can be
mapped to a flattened structure.

PingDirectory | Introduction | 15

Attribute Map and Attribute Mappings Defines a mapping for use when destination
attributes differ from source attributes. A Sync Class
can reference multiple attribute maps. Multiple Sync
Classes can share the same attribute map. There
are three types of attribute mappings:

• Direct Mapping – Attributes are directly mapped
to another attribute: For example:

employeenumber->employeeid

• Constructed Mapping – Destination attribute
values are derived from source attribute values
and static text. For example:

{givenname}.{sn}@example.com->mail

• DN Mapping – Attributes are mapped for DN
attributes. The same DN mappings that map
entry DNs can be referenced. For example:

uid=jdoe,ou=People,dc=example,dc=com.

Sync flow examples
PingDataSync Server processes changes by fetching the most up-to-date, full entries from both sides and
then compares them. This process flow is called standard synchronization mode. The processing flow
differs depending on the type of PingDataSync Server change (ADD, MODIFY, DELETE, MODDN) that is
requested. The following examples show the control flow diagrams for the sync operations, especially for
those cases when a MODIFY or a DELETE operation is dropped. The sync log records all completed and
failed operations.

PingDirectory | Introduction | 16

Modify operation example

About this task

Steps

1. Detect change from the change log table on the source.

2. Fetch the entry or table rows from affected tables on the source.

3. Perform any mappings and compute the equivalent destination entry by constructing an equivalent
LDAP entry or equivalent table row.

4. Fetch the entry or table rows from affected tables on the destination.

5. Diff the computed destination entry and actual destination entry.

6. Apply the changes to the destination.

Add operation example

About this task

Steps

1. Detect change from the change log table on the source.

2. Fetch the entry or table rows from affected tables on the source.

3. Perform any mappings and compute the equivalent destination entry by constructing an equivalent
LDAP entry or equivalent table row.

4. Fetch the entry or table rows from affected tables on the destination.

5. The entry or table row does not exist on the destination.

6. Create the entry or table row.

PingDirectory | Introduction | 17

Delete operation example

About this task

Steps

1. Detect delete from the change log table on the source.

2. Fetch the entry or table rows from affected tables on the source.

3. Perform any mappings and compute the equivalent destination entry by constructing an equivalent
LDAP entry or equivalent table row.

4. Fetch the entry or table rows from affected tables on the destination.

5. The entry or table row exists on the destination.

6. Apply the delete on the destination.

Delete after source entry is re-added

About this task

Steps

1. Detect delete from the change log table on the source.

2. Fetch the entry or table rows from affected tables on the source.

3. The entry or table row exists on the source.

4. Delete request is dropped.

PingDirectory | Introduction | 18

Standard modify after source entry is deleted

About this task

Steps

1. Detect change from the change log table on the source.

2. Fetch the entry or table rows from affected tables on the source.

3. The entry does not exist.

4. Change request is dropped because the source entry no longer exists.

Notification add, modify, modifyDN, and delete

About this task

Steps

1. Detect change from the change log table on the source.

2. Perform any mappings and compute the equivalent destination entry by constructing an equivalent
LDAP entry or equivalent table row.

3. Reconstruct changed entries.

4. Push notification with change details to the destination.

Sample synchronization
The following is a synchronization migration example from a Sun Directory Server Enterprise Edition
(DSEE) topology to the PingData PingDirectory Server topology, including a change in the DIT structure
to a flattened directory structure. The Sync Pipe connects the Sun Directory Server topology as the Sync
Source and the PingDirectory Server topology as the Sync Destination. Each endpoint is defined with
three external servers in their respective topology. The Sync Pipe destination has its base DN set to
o=example, which is used when performing LDAP searches for entries.

Two Sync Classes are defined: one for Subscribers, and one for Accounts. Each Sync Class uses a
single "Sun DS to PingData Attribute Map" that has four attribute mappings defined. Each Sync Class

PingDirectory | Install PingDataSync Server | 19

also defines its own DN maps. For example, the Accounts Sync Class uses a DN map, called PingData
Account Map, that is used to flatten a hierarchical DIT, so that the Account entries appear directly under
ou=accountsas follows:

*,**,o=example ->{1},ou=accounts,o=example

With this mapping, if an entry DN has uid=jsmith,ou=people,o=example, then "*"
matches uid=jsmith, "**" matches ou=people, and {1} matches uid=jsmith. Therefore,
uid=jsmith,ou=people,o=examplegets mapped to uid=jsmith,ou=accounts,o=example. A
similar map is configured for the Subscribers Sync Class.

Install PingDataSync Server

This section describes how to install and run PingDataSync Server. It includes pre- installation
requirements and considerations.

Topics include:

System requirements on page 20

Install the JDK on page 21

Optimize the Linux operating system on page 21

Ping license keys on page 24

Installing PingDataSync Server on page 24

Log on to the Administrative Console on page 26

Server folders and files on page 26

Start and stop the server on page 27

Run the server as a Microsoft Windows service on page 28

Uninstall the server on page 29

Update servers in a topology on page 29

Revert an update on page 31

Install a failover server on page 32

Administrative accounts on page 33

PingDirectory | Install PingDataSync Server | 20

System requirements
Ping Identity® has qualified the configurations in this section and has certified that they are compatible with
the product. Differences in operating system versions, service packs, and other platform variations are
supported until the platform or other required software is suspected of causing an issue.

Platforms

• Windows Server 2019
• Windows Server 2016
• Red Hat Enterprise Linux ES 7.6
• Red Hat Enterprise Linux ES 7.5
• Red Hat Enterprise Linux ES 6.10
• Red Hat Enterprise Linux ES 6.9
• CentOS 7.6
• CentOS 7.5
• CentOS 6.10
• CentOS 6.9
• SUSE Linux Enterprise 15
• SUSE Linux Enterprise 12 SP3
• Ubuntu 18.04 LTS
• Ubuntu 16.04 LTS
• Amazon Linux 2
• Amazon Linux

Note: This product has been tested with the default configurations of all operating system components. If
your organization has customized implementations or has installed third-party plugins, the deployment of
this product might be affected.

Docker

Version: Docker 18.09.0

Host operating system: Ubuntu 18.04 LTS

Kernel: 4.4.0-1052-aws 7.3

Note: Ping Identity accepts no responsibility for the performance of any specific virtualization software and
in no way guarantees the performance or interoperability of any virtualization software with its products.

Java Runtime Environment

• Amazon Corretto 8
• OpenJDK 11
• OpenJDK 8
• Oracle Java SE Development Kit 11 LTS
• Oracle Java SE Development Kit 8

Browsers

Administration Console

• Chrome
• Firefox
• Internet Explorer 11 and later

End users

PingDirectory | Install PingDataSync Server | 21

• Chrome
• Edge
• Firefox
• Internet Explorer 11 and later
• Safari

Install the JDK
The Java 64-bit JDK is required on the server. Even if Java is already installed, create a separate Java
installation for use by the server to ensure that updates to the system- wide Java installation do not
inadvertently impact the installation.

Optimize the Linux operating system
Configure the Linux file system by making the following changes.

Note:

The server explicitly overrides environment variables like PATH, LD_LIBRARY_PATH, and LD_PRELOAD
to ensure that settings used to start the server do not inadvertently impact its behavior. If these variables
must be edited, set values by editing the set_environment_vars function of the lib/_script-
util.sh script. Stop and restart the server for the change to take effect.

Setting the file descriptor limit

About this task

The server allows for an unlimited number of connections by default, but is restricted by the file descriptor
limit on the operating system. If needed, increase the file descriptor limit on the operating system with the
following procedure.

Note:

If the operating system relies on systemd, refer to the Linux operating system documentation for
instructions on setting the file descriptor limit.

Steps

1. Display the current hard limit of the system. The hard limit is the maximum server limit that can be set
without tuning the kernel parameters in the proc file system.

ulimit -aH

2. Edit the /etc/sysctl.conf file. If the fs.file-max property is defined in the file, make sure its
value is set to at least 65535. If the line does not exist, add the following to the end of the file:

fs.file-max = 65535

3. Edit the /etc/security/limits.conf file. If the file has lines that set the soft and hard limits for the
number of file descriptors, make sure the values are set to 65535. If the lines are not present, add the
following lines to the end of the file (before #End of file). Insert a tab between the columns.

* soft nofile 65535

* hard nofile 65535

PingDirectory | Install PingDataSync Server | 22

4. Reboot the system, and then use the ulimit command to verify that the file descriptor limit is set to
65535 with the following command:

ulimit -n

Next steps

Once the operating system limit is set, the number of file descriptors that the server will use can be
configured by either using a NUM_FILE_DESCRIPTORS environment variable, or by creating a config/
num-file-descriptors file with a single line such as, NUM_FILE_ DESCRIPTORS=12345. If these are
not set, the default of 65535 is used. This is strictly optional if wanting to ensure that the server shuts down
safely prior to reaching the file descriptor limit.

Note:

For RedHat 7 or later, modify the 20-nproc.conf file to set both the open files and max user processes
limits:

/etc/security/limits.d/20-nproc.conf

Add or edit the following lines if they do not already exist:
* soft nproc 65536
* soft nofile 65536
* hard nproc 65536
* hard nofile 65536
root soft nproc unlimited

Set the file system flushes

Linux systems running the ext3 file system only flush data to disk every five seconds. If the server is on a
Linux system, edit the mount options to include the following:

commit=1

This variable changes the flush frequency from five seconds to one. Also, set the flush frequency in the /
etc/fstab file to make sure the configuration remains after reboot.

Install sysstat and pstack on Red Hat

The server troubleshooting tool collect-support-data relies on the iostat, mpstat, and pstack
utilities to collect monitoring, performance statistics, and stack trace information on the server’s processes.
For Red Hat systems, make sure that these packages are installed, for example:

$ sudo yum install sysstat gdb dstat -y

Install the dstat utility

The dstat utility is used by the collect-support-data tool.

Disable file system swapping

It is recommended that any performance tuning services like tuned be disabled. As root, change the
current value in the operating system and by adding a line vm.swappiness = 0 to /etc/sysctl.conf
to ensure that the correct setting is applied when the system restarts.

If performance tuning is required, vm.swappiness can be set by cloning the existing performance
profile then adding vm.swappiness = 0 to the new profile's tuned.conf file in /usr/lib/tuned/
profile-name/tuned.conf. The updated profile is then selected by running tuned-adm profile
customized_profile.

PingDirectory | Install PingDataSync Server | 23

Manage system entropy

Entropy is used to calculate random data that is used by the system in cryptographic operations.
Some environments with low entropy may have intermittent performance issues with SSL-based
communication. This is more typical on virtual machines, but can occur in physical instances as well.
Monitor the kernel.random.entropy_avail in sysctl value for best results.

If necessary, update $JAVA_HOME/jre/lib/security/java.security to use file:/dev/./
urandom for the securerandom.source property.

Set file system event monitoring (inotify)

An event monitoring tool such as inotify can be configured for notifying processes about file system events
(including file creation, deletion, and updates). The Linux system puts a limit on the number of inotify
watches assigned to each user. To increase the limit, edit etc/sysctl.conf to add a line:

fs.inotify.max_user_watches =524288

Run the command:

$ sudo sysctl -wfs.inotify.max_user_watches=524288

Tune IO scheduler

Using the correct IO scheduler can increase performance and reduce the possibility of database timeouts
when the system is under extreme write load. For file systems running on an SSD, or in a virtualized
environment, the noop scheduler is recommended. For all other systems, the deadline scheduler is
recommended. To determine which scheduler is configured on your system, run this command:

$ cat /sys/block/<block-device>/queue/scheduler

For example:

$ cat /sys/block/sda/queue/scheduler

Changing the scheduler on a running system can be done with the following command:

$ echo 'deadline' > /sys/block/sda/queue/scheduler

The change will take effect after the system is restarted. The procedure for configuring a scheduler to use
at startup depends on the version of Linux. See the Linux documentation for your specific version for the
correct way to configure this setting.

Enable the server to listen on privileged ports

Linux provides 'capabilities' used to grant specific commands the ability to do things that are normally only
allowed for a root account. Instead of granting the ability to a specific user, capabilities are granted to a
specific command. It may be convenient to enable the server to listen on privileged ports while running as
a non-root user.

The setcap command is used to assign capabilities to an application. The cap_net_bind_service
capability enables a service to bind a socket to privileged ports (port numbers less than 1024). If Java
is installed in /ds/java (and the Java command to run the server is /ds/java/bin/java), the Java
binary can be granted the cap_net_bind_service capability with the following command:

$ sudo setcap cap_net_bind_service=+eip /ds/java/bin/java

PingDirectory | Install PingDataSync Server | 24

The java binary needs an additional shared library (libjli.so) as part of the Java installation. More strict
limitations are imposed on where the operating system will look for shared libraries to load for commands
that have capabilities assigned. So it is also necessary to tell the operating system where to look for this
library. This can be done by creating the file /etc/ld.so.conf.d/libjli.conf with the path to
the directory that contains the libjli.so file. For example, if the Java installation is in /ds/java, the
contents of that file should be:

/ds/java/lib/amd64/jli

Run the following command for the change to take effect:

$ sudo ldconfig -v

Ping license keys
License keys are required to install all Ping products. Obtain licenses through Salesforce or from https://
www.pingidentity.com/en/account/request-license-key.html.

• A license is always required for setting up a new single server instance and can be used site-wide for
all servers in an environment. When cloning a server instance with a valid license, no new license is
needed.

• A new license must be obtained when updating a server to a new major version, for example from 6.2
to 7.0. Licenses with no expiration date are valid until the server is upgraded to the next major version.
A prompt for a new license is displayed during the update process.

• A license may expire on particular date. If a license does expire, obtain a new license and install it using
dsconfig or the Administrative Console. The server will provide a notification as the expiration date
approaches. License details are available using the server's status tool.

When installing the server, specify the license key file in one of the following ways:

• Copy the license key file to the server root directory before running setup. The interactive setup tool
will discover the file and not require input. If the file is not in the server root, the setup tool will prompt for
its location.

• If the license key is not in the server root directory, specify the --licenseKeyFile option for non-
interactive setup, and the path to the file.

Installing PingDataSync Server

About this task

Use the setup tool to install the server. The server needs to be started and stopped by the user who
installed it.

Note:

A Windows installation requires that the Visual Studio 2010 runtime patch be installed prior to running the
setup command.

Steps

1. Log in as a user, other than root.

2. Obtain the latest zip release bundle from Ping Identity and unpack it in a directory owned by this user.

$ unzip PingDataSync-<version>.zip

https://www.pingidentity.com/en/account/request-license-key.html
https://www.pingidentity.com/en/account/request-license-key.html

PingDirectory | Install PingDataSync Server | 25

3. Change to the server root directory.

$ cd PingDataSync

4. Run the setup command.

$./setup

5. Type yes to accept the End-User License Agreement and press Enter to continue.

6. If adding this server to an existing PingDataSync Server topology, type yes, or press Enter to accept
the default (no).

7. Enter the fully qualified host name or IP address of the local host.

8. Create the initial root user DN for PingDataSync Server, or press Enter to accept the default
(cn=Directory Manager).

9. Enter and confirm a password for this account.

10.Press Enter to enable server services and the Administrative Console.

11.Enter the port on which PingDataSync Server will accept connections from HTTPS clients, or press
Enter to accept the default.

12.Enter the port on which PingDataSync Server will accept connections from LDAP clients, or press Enter
to accept the default.

13.Press Enter to enable LDAPS, or enter no.

14.Press Enter to enable StartTLS, or enter no.

15.Select the certificate option for this server.

16.Choose the desired encryption for the directory data, backups, and log files from the choices provided:

• Encrypt data with a key generated from an interactively provided passphrase. Using a passphrase
(obtained interactively or read from a file) is the recommended approach for new deployments, and
you should use the same encryption passphrase when setting up each server in the topology.

• Encrypt data with a key generated from a passphrase read from a file.
• Encrypt data with a randomly generated key. This option is primarily intended for testing purposes,

especially when only testing with a single instance, or if you intend to import the resulting encryption
settings definition into other instances in the topology.

• Encrypt data with an imported encryption settings definition. This option is recommended if you are
adding a new instance to an existing topology that has older server instances with data encryption
enabled.

• Do not encrypt server data.

17.Choose the option for the amount of memory that should be allocated to the server.

18.To start the server when the configuration is complete, press Enter for (yes).

19.A Setup Summary is displayed. choose the option to setup the server with the listed parameters,
change the parameters, or cancel the setup.

Next steps

After the server configuration is complete, the create-sync-pipe-config tool can be run to configure
the synchronization environment.

The PingDataSync Server Administrative Console enables browser-based server management, the
dsconfig tool enables command line management, and the Configuration API enables management by
third-party interfaces.

PingDirectory | Install PingDataSync Server | 26

Log on to the Administrative Console
After the server is installed, access the Administrative Console, https://<host>/console/login,
to verify the configuration and manage the server. The root user DN or the common name of a root user
DN is required to log into the Administrative Console. For example, if the DN created when the server was
installed is cn=Directory Manager, directory managercan be used to log into the Administrative
Console.

If the Administrative Console needs to run in an external container, such as Tomcat, a separate package
can be installed according to that container's documentation. Contact Ping Identity Customer Support for
the package location and instructions.

Server folders and files
After the distribution file is unzipped, the following folders and command-line utilities are available:

Directories/Files/Tools Description

ldif Stores any LDIF files that you may have created or imported.

import-tmp Stores temporary imported items.

classes Stores any external classes for server extensions.

bak Stores the physical backup files used with the backup command-line tool.

velocity Stores Velocity templates that define the server's application pages.

update.bat, and update The update tool for UNIX/Linux systems and Windows systems.

uninstall.bat, and uninstall The uninstall tool for UNIX/Linux systems and Windows systems.

ping_logo.png The image file for the Ping Identity logo.

setup.bat, and setup The setup tool for UNIX/Linux systems and Windows systems.

revert-update.bat, and revert-
update

The revert-update tool for UNIX/Linux systems and Windows systems.

README README file that describes the steps to set up and start the server.

License.txt Licensing agreement for the product.

legal-notices Stores any legal notices for dependent software used with the product.

docs Provides the release notes, Configuration Reference (HTML), API
Reference, and all other product documentation.

metrics Stores the metrics that can be gathered for this server and surfaced in the
PingDataMetrics Server.

bin Stores UNIX/Linux-based command-line tools.

bat Stores Windows-based command-line tools.

lib Stores any scripts, jar files, and library files needed for the server and its
extensions.

collector Used by the server to make monitored statistics available to the
PingDataMetrics Server.

locks Stores any lock files in the backends.

tmp Stores temporary files.

PingDirectory | Install PingDataSync Server | 27

Directories/Files/Tools Description

resource Stores the MIB files for SNMP and can include ldif files, make-ldif
templates, schema files, dsconfig batch files, and other items for
configuring or managing the server.

config Stores the configuration files for the backends (admin, config) as well as
the directories for messages, schema, tools, and updates.

logs Stores log files.

AD-Password-Sync-Agent.zip The Active Directory Sync Agent package.

Start and stop the server
To start PingDataSync Server, run the bin/start-sync-server command on UNIX or Linux systems
(the bat folder on Microsoft Windows systems).

Start the server as a background process

Navigate to the server root directory, and run the following command:

$ bin/start-server

For Windows systems:

$ bat/start-server

Start the server at boot time

About this task

By default, the server does not start automatically when the system is booted. To configure the server to
start automatically, use the create-rc-script tool to create a run control script as follows:

Steps

1. Create the startup script. In this example ds is the user.

$ bin/create-rc-script \
 --outputFile Ping-Identity-Sync.sh \
 --userName ds

2. Log in as root, move the generated Ping-Identity-Sync.sh script into the /etc/init.d directory,
and create symlinks to it from the /etc/rc3.d (starting with an "S" to start the server) and /etc/
rc0.d directory(starting with a "K" to stop the server).

mv Ping-Identity-Sync.sh /etc/init.d/
ln -s /etc/init.d/Ping-Identity-Sync.sh /etc/rc3.d/S50-Ping-
IdentitySync.sh
ln -s /etc/init.d/Ping-Identity-Sync.sh /etc/rc0.d/K50-Ping-
IdentitySync.sh

Stop the server

If PingDataSync Server has been configured to use a large amount of memory, it can take several seconds
for the operating system to fully release the memory. Trying to start the server too quickly after shut down
can fail because the system does not yet have enough free memory. On UNIX systems, run the vmstat

PingDirectory | Install PingDataSync Server | 28

command and watch the values in the "free" column increase until all memory held by PingDataSync
Server is released back to the system.

A configuration option can also be set that specifies the maximum shutdown time a process can take.

To stop the server, navigate to the server root directory and run the following command:

$ bin/stop-server

Restart the server

Restart the server using the bin/stop-server command with the --restart or -R option. Running the
command is equivalent to shutting down the server, exiting the JVM session, and then starting up again.

$ bin/stop-server --restart

Run the server as a Microsoft Windows service
The server can run as a Windows service on Windows Server 2012 R2 and Windows Server 2016. This
enables log out of a machine without the server being stopped.

Register the service

About this task

Perform the following steps to register the server as a service:

Steps

1. Stop the server with bin/stop-server. A server cannot be registered while it is running.

2. Register the server as a service. From a Windows command prompt, run bat/register-windows-
service.bat.

3. After a server is registered, start the server from the Windows Services Control Panel or with the bat/
start-server.bat command.

Note:

Command-line arguments for the start-server.bat and stop-server.bat scripts are not
supported while the server is registered to run as a Windows service. Using a task to stop the server is
also not supported.

Run multiple service instances

Only one instance of a particular service can run at one time. Services are distinguished by the
wrapper.name property in the <server-root>/config/wrapper-product.conf file. To
run additional service instances, change the wrapper.name property on each additional instance.
Descriptions of the services can also be added or changed in the wrapper-product.conf file.

Deregister and uninstall

While a server is registered as a service, it cannot run as a non-service process or be uninstalled. Use the
bat/deregister-windows-service.bat file to remove the service from the Windows registry. The
server can then be uninstalled with the uninstall.bat script.

PingDirectory | Install PingDataSync Server | 29

Log files

The log files are stored in <server-root>/logs, and file names bergin with windows-service-
wrapper. They are configured to rotate each time the wrapper starts or due to file size. Only the last
three log files are retained. These configurations can be changed in the <server-root>/config/
wrapper.conf file.

Uninstall the server

About this task

Use the uninstall command-line utility to uninstall the server using either interactive or non- interactive
modes. Interactive mode provides options, progress, and a list of the files and directories that must be
manually deleted if necessary.

Non-interactive mode, invoked with the --no-prompt option, suppresses progress information, except for
fatal errors. All options for the uninstall command are listed with the --help option.

The uninstall command must be run as either the root user or the user account that installed the
server.

Perform the following steps to uninstall in interactive mode:

Steps

1. Navigate to the server root directory.

$ cd PingData<server>

2. Start the uninstall command:

$./uninstall

3. Select the components to be removed, or press Enter to remove all components.

4. If the server is running, press Enter to shutdown the server before continuing.

5. Manually remove any remaining files or directories, if required.

Update servers in a topology
An update to the current release includes significant changes, and the introduction of a topology registry,
which will store information previously stored in the admin backend (server instances, instance and secret
keys, server groups, and administrator user accounts). For the admin backend to be migrated, the update
tool must be provided LDAP authentication options to the peer servers of the server being updated.

The LDAP connection security options requested (either plain, TLS, StartTLS, or SASL) must be
configured on every server in the topology. The LDAP credentials must be present on every server in the
topology, and must have permissions to read from the admin backend and the config backend of every
server in the topology. For example, a root DN user with the inherit-default-privileges set to true
(such as the cn=Directory Manager user) that exists on every server can be used.

After enabling or fixing the configuration of the LDAP connection handler(s) to support the desired
connection security mechanism on each server, run the following dsframework command on the server
being updated so that its admin backend has the most up-to-date information:

$ bin/dsframework set-server-properties \
 --serverID serverID \
 --set ldapport:port \
 --set ldapsport:port \

PingDirectory | Install PingDataSync Server | 30

 --set startTLSEnabled:true

The update tool will verify that the following conditions are satisfied on every server in the topology before
allowing the update:

• When the first server is being updated, all other servers in the topology must be online. When updating
additional servers, all topology information will be obtained from one of the servers that has already
been updated. The update tool will connect to the peer servers of the server being updated to obtain
the necessary information to populate the topology registry. The provided LDAP credentials must have
read permissions to the config and admin backends of the peer servers.

• The instance name is set on every server, and is unique across all servers in the topology. The instance
name is a server’s identifier in the topology. After all servers in the topology have been updated, each
server will be uniquely identified by its instance name. Once set, the name cannot be changed. If
needed, the following command can be used to set the instance name of a server prior to the update:

$ bin/dsconfig set-global-configuration-prop \
 --set instance-name:uniqueName

• The cluster-wide configuration is synchronized on all servers in the topology. Older versions have
some topology configuration under cn=cluster,cn=config. (JSON attribute and field constraints).
These items did not support mirrored cluster-wide configuration data. An update should avoid custom
configuration changes on a server being overwritten with the configuration on the mirrored subtree
master. To synchronize the cluster-wide configuration data across all servers in the topology, run the
config- diff tool on each pair of servers to determine the differences, and use dsconfig to update
each instance using the config-diff output. For example:

$ bin/config-diff --sourceHost hostName \
 --sourcePort port \
 --sourceBindDN bindDN \
 --sourceBindPassword password \
 --targetHost hostName \
 --targetPort port \
 --targetBindDN bindDN \
 --targetBindPassword password

If any of these conditions are not satisfied, the update tool will list all of the errors encountered for each
server, and provide instructions on how to fix them.

Update the server

About this task

This procedure assumes that an existing version of the server is stored at PingData-server-old. Make
sure a complete, readable backup of the existing system is available before upgrading the server. Also,
make sure there is a clear backout plan and schedule.

Steps

1. Download the latest version of the server software and unzip the file. For this example, the new server
is located in the PingData-server-new directory.

2. Use the update tool of the newly unzipped build to update the server. Make sure to specify the server
instance that is being upgrading with the --serverRoot option. The server must be stopped for the
update to be applied.

Reverting an update

If necessary, a server can be reverted to the previous version using the revert-update tool. The tool
accesses a log of file actions taken by the update tool to put the file system back to its prior state. If

PingDirectory | Install PingDataSync Server | 31

multiple updates have been run, the revert-update tool can be used multiple times to revert to each
prior update sequentially. For example, the revert-update command can be run to revert to the server's
previous state, then run again to return to its original state. The server is stopped during the revert-update
process.

Note:

Reverting an update is not supported for upgrades to version 7.0, due to the topology backend changes.

Use the revert-update tool in the server root directory revert back to the most recent version of the
server:

$ PingData-server-old/revert-update

Revert an update
Once the server has been updated, you can revert to the most recent version (one level back) using the
revert-update tool. The revert-update tool accesses a log of file actions taken by the updater to put the file
system back to its prior state. If you have run multiple updates, you can run the revert-update tool multiple
times to revert to each prior update sequentially. You can only revert back one level. For example, if you
have run the update twice since first installing the server, you can run the revert-update command to revert
to its previous state, then run the revert-update command again to return to its original state.

Revert from version 7.x to a version earlier than 7.0

Reverting from version 7.0 or later to a pre-7.0 version can be done using the revert-update command
with some extra steps. This is also the case when updating or reverting from a pre-6.2.0.2 to 6.2.0.2 or
later. These steps are listed when the update and revert-update tool are run as well. You may need to
perform one or more of the following tasks, depending on your installation and configuration:

• When updating or reverting from 6.2.0.2 or later to a pre-6.2.0.2 version, indexes may need to be
rebuilt. Older versions of the server use an incompatible format for Local DB Composite Indexes. To
update a server with composite indexes in the previous format, delete these indexes and re-run the
update. After the update is complete, recreate the indexes and use the rebuild-index tool to rebuild
the indexes. The command for recreating an index will be in the "Undo" portion of the logs/config-
audit.log file. If you wish to later revert to an older version, delete and recreate those composite
indexes again after the revert has completed.

• When updating to 7.x for the first time, instance names will need to be set for each server in the
topology if they were not previously set. This is done with the following dsconfig command:

$ bin/dsconfig --bindDN "cn=Directory Manager" \
 --bindPassword secret \
 --no-prompt set-global-configuration-prop \
 --set instance-name:<name>

• Topology information such as server instances, instance and secret keys, server groups, and
administrator users have moved to the topology portion of the configuration from the admin backend.
As long as new servers are not added to the topology after this update, the revert-update command
can be used to return to the previous version.

However, if new servers are added, then the restored admin backend of this server will not contain
information about the new servers, and the local server will not be able to communicate with any other
servers in the topology. New servers should not be added to the topology if reverting this update is a
possibility.

• If new servers were added to the topology after the update, the new servers must be temporarily
removed from the topology until all servers have been reverted to the previous version.

• When a server is reverted to a pre-7.x version, any servers in the topology using the topology portion
of the configuration (rather than the admin backend) will needto know that the reverted server was

PingDirectory | Install PingDataSync Server | 32

downgraded to the admin backend. This is done by running the following dsconfig command on one
of the servers that has not been reverted:

$ bin/dsconfig set-server-instance-prop \
 --instance-name <Reverted server instance name> \
 --set server-version:<Version to which server is reverted>

• If the topology does not have a master server when this command is run, it will not succeed. In this
case, one of the remaining updated servers in the topology must be made master with the following
command. This will enable the chosen instance to run the first command successfully.

$ bin/dsconfig set-global-configuration-prop \
 --set force-as-master-for-mirrored-data:true

• The 7.x server version includes database changes that are not compatible with previous server versions
(6.x or older). If you wish to later revert to an older version, the data must be exported to LDIF before
performing the reversion. Re-import the data after the revert process has completed. In addition, the
changelogDb/ and db/changelog/ directories in the reverted server root must be deleted after the
revert has completed.

When starting up the server for the first time after a revert has been run, and the necessary extra steps
have been completed, the server will display warnings about "offline configuration changes," but they are
not critical and will not appear on subsequent startups.

To revert to the most recent server version

Use revert-update in the server root directory revert back to the most recent version of the server.

$ <PingServer>-old/revert-update

Install a failover server

About this task

Ping Identity supports redundant failover servers that automatically become active when the primary server
is not available. Multiple servers can be present in the topology in a configurable prioritized order.

Before installing a failover server, have a primary server already installed and configured. When installing
the redundant server, the installer will copy the first server’s configuration.

The primary and secondary server configuration remain identical. Both servers should be registered to the
allservers group and all dsconfig changes need to be applied to the server group allservers.

Note:

If the primary server has extensions defined, they should also be installed on any cloned or redundant
servers. If extensions are missing from a secondary server, the following message is displayed during the
installation:

Extension class <com.server.directory.sync.MissingSyncExtension> was not
found. Run manage-extension --install to install your extensions. Re-run
 setup to continue.

To remove a failover server, use the uninstall command.

PingDirectory | Install PingDataSync Server | 33

Steps

1. Unpack the Ping Identity server zip build. Name the unpacked directory something other than the first
server instance directory.

$ unzip PingData<server>-<version>.zip -d <server2>

2. Navigate to the server root directory.

3. Use the setup tool in interactive mode in Install the Server, or in non-interactive mode as follows:

$./setup --localHostName <server2>.example.com --ldapPort 7389 \
 --masterHostName <server1>.example.com --masterPort 8389 \
 --masterUseNoSecurity \
 --acceptLicense \
 --rootUserPassword password \
 --no-prompt

The secondary server is now ready to take over as a primary server in the event of a failover. No
realtime-sync invocations are needed for this server.

4. Verify the configuration by using the bin/status tool. Each server instance is given a priority index.
The server with the lowest priority index number has the highest priority.

$ bin/status --bindPassword secret

...(status output)...
 --- Sync Topology ---
Host:Port :Status :Priority
---------------------------------------:-------------:---------------
<server>.example.com:389 (this server) : Active : 1
<server>.example.com:389 : Unavailable : 2

5. Obtain the name of a particular server, run the dsconfig tool with the list-external-servers
option.

$ bin/dsconfig list-external-servers

6. To change the priority index of the server, use the bin/dsconfig tool:

$ bin/dsconfig set-external-server-prop \
 --server-name <server2>.example.com:389 \
 --set <server>-priority-index:1

Administrative accounts
Users that authenticate to the Configuration API or the Administrative Console are stored in
cn=RootDNs,cn=config. The setup tool automatically creates one administrative account when
performing an installation. Accounts can be added or changed with the dsconfig tool.

Change the administrative password

About this task
Root users are governed by the Root Password Policy and by default, their passwords never expire.
However, if a root user's password must be changed, use the ldappasswordmodify tool.

PingDirectory | Configure PingDataSync Server | 34

Steps

1. Open a text editor and create a text file containing the new password. In this example, name the file
rootuser.txt.

$ echo password > rootuser.txt

2. Use ldappasswordmodify to change the root user’s password.

$ bin/ldappasswordmodify --port 1389 --bindDN "cn=Directory Manager" \
--bindPassword secret --newPasswordFile rootuser.txt

3. Remove the text file.

$ rm rootuser.txt

Configure PingDataSync Server

PingDataSync Server provides a suite of tools to configure a single server instance or server groups.
All configuration changes to the server are recorded in the config-audit.log. Before configuring
PingDataSync Server, review Sync Configuration Components.

Topics include:

Configuration checklist on page 35

Sync user account on page 37

Configure PingDataSync Server in Standard mode on page 38

Use the Configuration API on page 42

Configuration with the dsconfig tool on page 55

Topology configuration on page 57

Domain Name Service (DNS) caching on page 67

IP address reverse name lookups on page 67

Configure the synchronization environment with dsconfig on page 68

Prepare external server communication on page 68

HTTP connection handlers on page 69

Resync tool on page 75

Realtime-sync tool on page 79

Configure the PingDirectory Server backend for synchronizing deletes on page 82

Configure DN maps on page 83

Configure synchronization with JSON attribute values on page 84

Configure fractional replication on page 89

Configure failover behavior on page 91

Configure traffic through a load balancer on page 96

Configure authentication with a SASL external certificate on page 96

Configure an LDAPv3 Sync Source on page 97

PingDirectory | Configure PingDataSync Server | 35

Server SDK extensions on page 98

Configuration checklist
Prior to any deployment, determine the configuration parameters necessary for the Synchronization
topology. Gather the following:

External servers

External Server Type Determine the type of external servers included
in the synchronization topology. See Overview of
PingDataSync Server on page 8 for a list of
supported servers.

LDAP Connection Settings Determine the host, port, bind DN, and bind
password for each external server instance(s)
included in the synchronization topology.

Security and Authentication Settings Determine the secure connection types for each
external server (SSL or StartTLS). Determine
authentication methods for external servers such
as simple, or external (SASL mechanisms). If
synchronizing passwords, encoded or especially
for clear-text, the connection should be secure.
If synchronizing to or from a Microsoft Active
Directory system, establish an SSL or StartTLS
connection to PingDataSync Server. Configure
password encryption on page 107 should also be
enabled for synchronization from Active Directory,
or when synchronizing clear-text passwords.

Sync pipes

A Sync Pipe defines a single synchronization path between the source and destination targets. One Sync
Pipe is needed for each point-to-point synchronization path defined for a topology.

Sync Source Determine which external server is the Sync Source
for the synchronization topology. A prioritized list
of external servers can be defined for failover
purposes.

Sync Destination Determine which external server is the Sync
Destination for the synchronization topology. A
prioritized list of external servers can be defined for
failover purposes.

Sync classes

A Sync Class defines how attributes and DNs are mapped and how Source and Destination entries are
correlated. For each Sync Pipe defined, define one or more Sync Classes with the following information:

Evaluation Order If defining more than one Sync Class, the
evaluation order of each Sync Class must be
determined with the evaluation-order-index
property. If there is an overlap between criteria used
to identify a Sync Class, the Sync Class with the
most specific criteria is used first.

PingDirectory | Configure PingDataSync Server | 36

Base DNs Determine which base DNs contain entries needed
in the Sync Class.

Include Filters Determine the filters to be used to search for entries
in the Sync Source.

Synchronized Entry Operations Determine the types of operations that should
be synchronized: creates, modifications, and/or
deletes.

DNs Determine the differences between the DNs from
the Sync Source topology to the Sync Destination
topology. Are there structural differences in each
Directory Information Tree (DIT)? For example,
does the Sync Source use a nested DIT and the
Sync Destination use a flattened DIT?

Destination Correlation Attributes Determine the correlation attributes that are used
to associate a source entry to a destination entry
during the synchronization process. During the
configuration setup, one or more comma-separated
lists of destination correlation attributes are defined
and used to search for corresponding source
entries. PingDataSync Server maps all attributes
in a detected change from source to destination
attributes using the attribute maps defined in the
Sync Class.

The correlation attributes are flexible enough so
that several destination searches with different
combinations of attributes can be performed until
an entry matches. For LDAP server endpoints,
use the distinguished name (DN) to correlate
entries. For example, specify the attribute
lists dn,uid, uid,employeeNumber and
cn,employeeNumber to correlate entries in LDAP
deployments. PingDataSync Server will search for a
corresponding entry that has the same dn and uid
values. If the search fails, it then searches for uid
and employeeNumber.

Again if the search fails, it searches for cn and
employeeNumber. If none of these searches are
successful, the synchronization change would be
aborted and a message logged.

To prevent incorrect matches, the most restrictive
attribute lists (those that will never match the
wrong entry) should be first in the list, followed by
less restrictive attribute lists, which will be used
when the earlier lists fail. For LDAP-to-LDAP
deployments, use the DN with a combination of
other unique identifiers in the entry to guarantee
correlation. For other non- LDAP deployments,
determine the attributes that can be synchronized
across the network.

Attributes Determine the differences between the attributes
from the Sync Source to the Sync Destination,
including the following:

PingDirectory | Configure PingDataSync Server | 37

• Attribute Mappings – How are attributes mapped
from the Sync Source to the Sync Destination?
Are they mapped directly, mapped based on
attribute values, or mapped based on attributes
that store DN values?

• Automatically Mapped Source Attributes –
Are there attributes that can be automatically
synchronized with the same name at the Sync
Source to Sync Destination? For example,
can direct mappings be set for cn, uid,
telephoneNumber, or for all attributes?

• Non-Auto Mapped Source Attributes – Are
there attributes that should not be automatically
mapped? For example, the Sync Source
may have an attribute, employee, while the
Sync Destination may have a corresponding
attribute, employeeNumber. If an attribute is not
automatically mapped, a map must be provided
if it is to be synchronized.

• Conditional Value Mapping – Should some
mappings only be applied some of the
time as a function of the source attributes?
Conditional value mappings can be used
with the conditional-value-pattern
property, which conditionalizes the attribute
mapping based on the subtype of the entry,
or on the value of the attribute. For example,
this might apply if the adminName attribute on
the destination should be a copy of the name
attribute on the source, but only if the isAdmin
attribute on the source is set to true. Conditional
mappings are multi-valued. Each value is
evaluated until one is matched (the condition is
true). If none of the conditional mappings are
matched, the ordinary mappings is used. If there
is not an ordinary mapping, the attribute will not
be created on the destination.

Sync user account
PingDataSync Server creates a Sync User account DN on each external server. The account (by default,
cn=Sync User) is used exclusively by PingDataSync Server to communicate with external servers. The
entry is important in that it contains the credentials (DN and password) used by PingDataSync Server to
access the source and target servers. The Sync User account resides in different entries depending on the
targeted system:

• For the Ping Identity PingDirectory Server, Ping Identity PingDirectoryProxy Server, Nokia 8661
Directory Server, Nokia 8661 Directory Proxy Server, the Sync User account resides in the
configuration entry (cn=Sync User, cn=RootDNs,cn=config).

• For Sun Directory Server, Sun DSEE, OpenDJ, Oracle Unified Directory, and generic LDAP
directory topologies, the Sync User account resides under the base DN in the userRoot backend
(cn=SyncUser,dc=example,dc=com).The Sync User account should not reside in the cn=config
branch for Sun Directory Server and DSEE machines.

PingDirectory | Configure PingDataSync Server | 38

• For Microsoft Active Directory servers, the Sync User account resides in the Users container (cn=Sync
User,cn=Users,DC=adsync,DC=unboundid,DC=com).

• For Oracle and Microsoft SQL Servers, the Sync User account is a login account (SyncUser)with the
sufficient privileges to access the tables to be synchronized.

In most cases, modifications to this account are rare. Make sure that the entry is not synchronized
by setting up an optional Sync Class if the account resides in the userRoot backend (Sun Directory
Server or Sun DSEE) or Users container (Microsoft Active Directory). For example, a Sync Class can be
configured to have all CREATE, MODIFY, and DELETE operations set to false.

Configure PingDataSync Server in Standard mode
The create-sync-pipe-config tool is used to configure Sync Pipes and Sync Classes. For
bidirectional deployments, configure two Sync Pipes, one for each directional path.

Use the create-sync-pipe tool to configure synchronization on page 38 illustrates a bidirectional
synchronization deployment in standard mode. The example assumes that two replicated topologies are
configured:

• The first endpoint topology consists of two Sun LDAP servers: the main server and one failover. Both
servers have Retro change logs enabled and contain the full DIT that will be synchronized to the
second endpoint.

• The second endpoint topology consists of two PingDirectory Servers: the main server and one failover.
Both servers have change logs enabled and contain entries similar to the first endpoint servers, except
that they use a mail attribute, instead of an email attribute.

A specific mail to email mapping must also be created to exclude the source attribute on the Sync Pipe
going the other direction.

Note:

If the source attribute is not excluded, PingDataSync Server will attempt to create an email attribute on
the second endpoint, which could fail if the attribute is not present in the destination server’s schema.

Then, two Sync Classes are defined:

• One to handle the customized email to mail attribute mapping.
• Another to handle all other cases (the default Sync Class).

The dsconfig command is used to create the specific attribute mappings. The resync command is used
to test the mappings. Synchronization can start using the realtime-sync command.

Use the create-sync-pipe tool to configure synchronization

About this task

Use the create-sync-pipe-config utility to configure a Sync Pipe. Once the configuration is
completed, settings can be adjusted using the dsconfig tool.

Note:

If servers have no base entries or data, the cn=Sync User,cn=Root DNs,cn=config account needed
to communicate cannot be created. Make sure that base entries are created on the destination servers.

If synchronizing pre-encoded passwords to a Ping PingDirectory Server destination, allow pre- encoded
passwords in the default password policy. Configure password encryption on page 107 must also be
configured on the destination. Be sure that the password encryption algorithm is supported by both source
and destination servers with the following command:

$ bin/dsconfig set-password-policy-prop \
 --policy-name "Default Password Policy" \

PingDirectory | Configure PingDataSync Server | 39

 --set allow-pre-encoded-passwords:true

Encrypted and clear-text passwords can be synchronized by configuring the Sync Destination password-
synchronization-format, and require-secure-connection-for-clear-text-passwords
properties.

Note:

The require-secure-connection-for-clear-text-passwords property can be set to false when
working in a test environment. If the password-synchronization-format property is set to clear-
text, and require-secure-connection-for-clear-text-passwords property is set to true, the
connection must be secure. If a secure connection is not available, an error is generated and the password
is not synchronized.

Perform the following steps to configure PingDataSync Server by using create-sync-pipe-config:

Steps

1. Start PingDataSync Server.

$ <server-root>/bin/start-server

2. From the bin directory,run the create-sync-pipe-config tool.

$bin/create-sync-pipe-config

3. On the Initial Synchronization Configuration Tool menu, press Enter (yes) to continue the configuration.

4. On the Synchronization Mode menu, press Enter to select Standard Mode.

5. On the Synchronization Directory menu, select oneway(1) or bidirectional(2) for the synchronization
topology. This example assumes bidirectional synchronization.

6. On the Source Endpoint Type menu, select the directory or database server for the first endpoint.

7. On the Source Endpoint Name menu, type a name for the endpoint server, or press Enter to accept the
default.

8. On the Base DNs menu, type the base DN on the first endpoint topology where the entries will be
searched. In this example, (dc=example,dc=com) is used.

9. Select an option for the server security.

10.Type the host name and listener port number for the source server, or accept the default. Make sure
that the endpoint servers are online and running.

11.Enter another server host and port, or press Enter to continue.

12.Enter the SyncUser account DN for the endpoint servers, or press Enter to accept the default (cn=Sync
User,cn=RootDNs,cn=config).

13.Enter and confirm a password for this account.

14.The servers in the destination endpoint topology can now be configured. Repeat steps 6– 13 to
configure the second server.

15.Define the maximum age of changelog log entries, or press Enter to accept the default.

16.After the source and destination topologies are configured, PingDataSync Server will "prepare" each
external server by testing the connection to each server. This step determines if each account has
the necessary privileges (root privileges are required) to communicate with and transfer data to each
endpoint during synchronization.

17.Create a name for the Sync Pipe on the Sync Pipe Name menu, or press Enter to accept the default.
Because this configuration is bidirectional, the following step is setting up a Sync Pipe path from
the source endpoint to the destination endpoint. A later step will define another Sync Pipe from the
PingDirectory Server to another server.

PingDirectory | Configure PingDataSync Server | 40

18.On the SyncClass Definitions menu, type Yes to create a custom Sync Class. A Sync Class defines the
operation types (creates, modifies, or deletes), attributes that are synchronized, how attributes and DNs
are mapped, and how source and destination entries are correlated.

19.Enter a name for the new Sync Class, such as "server1_to_server2."

20.On the Base DNs for Sync Class menu, enter one or more base DNs to synchronize specific subtrees
of a DIT. Entries outside of the specified base DNs are excluded from synchronization. Make sure the
base DNs do not overlap.

21.On the Filters for Sync Class menu, define one or more LDAP search filters to restrict specific entries
for synchronization, or press Enter to accept the default (no). Entries that do not match the filters will be
excluded from synchronization.

22.On the Synchronized Attributes for Sync Class menu, specify which attributes will be automatically
mapped from one system to another. This example will exclude the source attribute (email) from being
auto-mapped to the target servers.

23.On the Operations for Sync Class menu, select the operations that will be synchronized for the Sync
Class, or press Enter to accept the default (1,2,3).

24.Define a default Sync Class that specifies how the other entries are processed, or press Enter to create
a Sync Class called "Default Sync Class."

25.On the Default Sync Class Operations menu, specify the operations that the default Sync Class will
handle during synchronization, or press Enter to accept the default.

26.Define a Sync Pipe going from the PingDirectory Server to the Sun Directory Server and exclude the
mail attribute from being synchronized to the other endpoint servers.

27.Review the Sync Pipe Configuration Summary, and press Enter to accept the default (write
configuration), which records the commands in a batch file (<server- root>/sync-pipe-
cfg.txt). The batch file can be re-used to set up other topologies.

Next steps
Apply the configuration changes to the local PingDataSync Server instance by using a dsconfig batch
file. Any Server SDK extensions, should be saved to the <server-root>/lib/extensions directory.

The next step will be to configure the attribute mappings using the dsconfig command.

Configuring attribute mapping

About this task

The following procedure defines an attribute map from the email attribute in the source servers to a mail
attribute in the target servers. Both attributes must be valid in the target servers and must be present in
their respective schemas.

Note:

The following can also be done with dsconfig in interactive mode. Attribute mapping options are
available from the PingDataSync Server main menu.

Steps

1. On PingDataSync Server, run the dsconfig command to create an attribute map for the "SunDS>DS"
Sync Class for the "Sun DS to Ping Identity DS" Sync Pipe, and then run the second dsconfig
command to apply the new attribute map to the Sync Pipe and Sync Class.

$ bin/dsconfig --no-prompt create-attribute-map \
 --map-name "SunDS>DS Attr Map" \
 --set "description:Attribute Map for SunDS>Ping Identity Sync Class" \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \

PingDirectory | Configure PingDataSync Server | 41

 --bindPassword secret

$ bin/dsconfig --no-prompt set-sync-class-prop \
 --pipe-name "Sun DS to DS" \
 --class-name "SunDS>DS" \
 --set "attribute-map:SunDS>DS Attr Map" \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

2. Create an attribute mapping (from email to mail) for the new attribute map.

$ bin/dsconfig --no-prompt create-attribute-mapping \
 --map-name "SunDS>DS Attr Map" \
 --mapping-name mail --type direct \
 --set "description:Email>Mail Mapping" \
 --set from-attribute:email \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

3. For a bidirectional deployment, repeat steps 1–2 to create an attribute map for the DS>SunDS Sync
Class for the Ping Identity DS to Sun DS Sync Pipe, and create an attribute mapping that maps mail to
email.

$ bin/dsconfig --no-prompt create-attribute-map \
 --map-name "DS>SunDS Attr Map" \
 --set "description:Attribute Map for DS>SunDS Sync Class" \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

$ bin/dsconfig --no-prompt set-sync-class-prop \
 --pipe-name "Ping Identity DS to Sun DS" \
 --class-name "DS>SunDS" \
 --set "attribute-map:DS>SunDS Attr Map" \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

$ bin/dsconfig --no-prompt create-attribute-mapping \
 --map-name "DS>SunDS Attr Map" \
 --mapping-name email \
 --type direct \
 --set "description:Mail>Email Mapping" \
 --set from-attribute:mail \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

Configure server locations

About this task

PingDataSync Server supports endpoint failover, which is configurable using the location property on
the external servers. By default, the server prefers to connect to, and failover to, endpoints in the same
location as itself. If there are no location settings configured, PingDataSync Server will iterate through the
configured list of external servers on the Sync Source and Sync Destination when failing over.

Note:

PingDirectory | Configure PingDataSync Server | 42

Location-based failover is only applicable for LDAP endpoint servers.

Steps

1. On PingDataSync Server, run the dsconfig command to set the location for each external server in
the Sync Source and Sync Destination. For example, the following command sets the location for six
servers in two data centers, austin and dallas.

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:1389 \
 --set location:austin

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:2389 \
 --set location:austin

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:3389 \
 --set location:austin

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:4389 \
 --set location:dallas

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:5389 \
 --set location:dallas

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:6389 \
 --set location:dallas

2. Run dsconfig to set the location on the Global Configuration. This is the location of PingDataSync
Server itself. In this example, set the location to "austin."

$ bin/dsconfig set-global-configuration-prop \
 --set location:austin

Use the Configuration API
PingData servers provide a Configuration API, which may be useful in situations where using LDAP to
update the server configuration is not possible. The API is consistent with the System for Cross-domain
Identity Management (SCIM) 2.0 protocol and uses JSON as a text exchange format, so all request
headers should allow the application/json content type.

The server includes a servlet extension that provides read and write access to the server’s configuration
over HTTP. The extension is enabled by default for new installations, and can be enabled for existing
deployments by simply adding the extension to one of the server’s HTTP Connection Handlers, as follows:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --add http-servlet-extension:Configuration

The API is made available on the HTTPS Connection handler’s host:port in the /config context. Due
to the potentially sensitive nature of the server’s configuration, the HTTPS Connection Handler should be
used, for hosting the Configuration extension.

PingDirectory | Configure PingDataSync Server | 43

Authentication and authorization

Clients must use HTTP Basic authentication to authenticate to the Configuration API. If the user name
value is not a DN, then it will be resolved to a DN value using the identity mapper associated with the
Configuration servlet. By default, the Configuration API uses an identity mapper that allows an entry’s UID
value to be used as a user name. To customize this behavior, either customize the default identity mapper,
or specify a different identity mapper using the Configuration servlet’s identity-mapper property. For
example:

$ bin/dsconfig set-http-servlet-extension-prop \
 --extension-name Configuration \
 --set "identity-mapper:Alternative Identity Mapper”

To access configuration information, users must have the appropriate privileges:

• To access the cn=config backend, users must have the bypass-acl privilege or be allowed access
to the configuration using an ACI.

• To read configuration information, users must have the config-read privilege.
• To update the configuration, users must have the config-write privilege.

Relationship between the Configuration API and the dsconfig tool

The Configuration API is designed to mirror the dsconfig tool, using the same names for properties
and object types. Property names are presented as hyphen case in dsconfig and as camel-case
attributes in the API. In API requests that specify property names, case is not important. Therefore,
baseDN is the same as baseDn. Object types are represented in hyphen case. API paths mirror
what is in dsconfig. For example, the dsconfig list-connection-handlers command is
analogous to the API's /config/connection-handlers path. Object types that appear in the
schema URNs adhere to a type:subtype syntax. For example, a Local DB Backend's schema URN is
urn:unboundid:schemas:configuration:2.0:backend:local-db. Like the dsconfig tool, all
configuration updates made through the API are recorded in logs/config-audit.log.

The API includes the filter, sort, and pagination query parameters described by the SCIM specification.
Specific attributes may be requested using the attributes query parameter, whose value must be a
comma-delimited list of properties to be returned, for example attributes=baseDN,description.
Likewise, attributes may be excluded from responses by specifying the excludedAttributes
parameter. See Sorting and filtering configuration objects on page 51 for more information on query
parameters.

Operations supported by the API are those typically found in REST APIs:

HTTP Method Description Related dsconfig Example

GET Lists the attributes of an
object when used with a
path representing an object,
such as /config/global-
configuration or /config/
backends/userRoot. Can also
list objects when used with a path
representing a parent relation,
such as /config/backends.

get-backend-prop

list-backends

get-global-configuration-
prop

POST Creates a new instance of an
object when used with a relation
parent path, such as config/
backends.

create-backend

PingDirectory | Configure PingDataSync Server | 44

HTTP Method Description Related dsconfig Example

PUT Replaces the existing attributes
of an object. A PUT operation is
similar to a PATCH operation,
except that the PATCH is
determined by determining the
difference between an existing
target object and a supplied
source object. Only those
attributes in the source object are
modified in the target object. The
target object is specified using a
path, such as

/config/backends/
userRoot.

set-backend-prop

set-global-configuration-
prop

PATCH Updates the attributes of an
existing object when used with
a path representing an object,
such as /config/backends/
userRoot. See PATCH Example
on page 47.

set-backend-prop

set-global-configuration-
prop

DELETE Deletes an existing object when
used with a path representing
an object, such as /config/
backends/userRoot.

delete-backend

The OPTIONS method can also be used to determine the operations permitted for a particular path.

Object names, such as userRoot in the Description column, must be URL-encoded in the path segment
of a URL. For example, %20 must be used in place of spaces, and %25 is used in place of the percent (%)
character. So the URL for accessing the HTTP Connection Handler object is:

/config/connection-handlers/http%20connection%20handler

GET Example

The following is a sample GET request for information about the userRoot backend:

GET /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json

The response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://localhost:5033/config/backends/userRoot"
 },
 "backendID": "userRoot2",
 "backgroundPrime": "false",

PingDirectory | Configure PingDataSync Server | 45

 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example2,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "10",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "1 m",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "0",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "0",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "enabled": "false",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "false",
 "id2childrenIndexEntryLimit": "66",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "jeProperty": [
 "je.cleaner.adjustUtilization=false",
 "je.nodeMaxEntries=32"
],
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",

PingDirectory | Configure PingDataSync Server | 46

 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "5000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled"
}

GET list example

The following is a sample GET request for all local backends:

GET /config/backends
Host: example.com:5033
Accept: application/scim+json

The response (which has been shortened):

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
 "totalResults": 24,
 "Resources": [
 {
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:ldif"
],
 "id": "adminRoot",
 "meta": {
 "resourceType": "LDIF Backend",
 "location": "http://localhost:5033/config/backends/adminRoot"
 },
 "backendID": "adminRoot",
 "backupFilePermissions": "700",
 "baseDN": [
 "cn=admin data"
],
 "enabled": "true",
 "isPrivateBackend": "true",
 "javaClass": "com.unboundid.directory.server.backends.LDIFBackend",
 "ldifFile": "config/admin-backend.ldif",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertWhenDisabled": "false",
 "writabilityMode": "enabled"
 },
 {
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:trust-store"
],
 "id": "ads-truststore",
 "meta": {
 "resourceType": "Trust Store Backend",
 "location": "http://localhost:5033/config/backends/ads-truststore"
 },
 "backendID": "ads-truststore",
 "backupFilePermissions": "700",
 "baseDN": [
 "cn=ads-truststore"
],

PingDirectory | Configure PingDataSync Server | 47

 "enabled": "true",
 "javaClass":
"com.unboundid.directory.server.backends.TrustStoreBackend",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertWhenDisabled": "true",
 "trustStoreFile": "config/server.keystore",
 "trustStorePin": "********",
 "trustStoreType": "JKS",
 "writabilityMode": "enabled"
 },
 {
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:alarm"
],
 "id": "alarms",
 "meta": {
 "resourceType": "Alarm Backend",
 "location": "http://localhost:5033/config/backends/alarms"
 },
 ...

PATCH Example

Configuration can be modified using the HTTP PATCH method. The PATCH request body is a JSON
object formatted according to the SCIM patch request. The Configuration API supports a subset of possible
values for the path attribute, used to indicate the configuration attribute to modify.

The configuration object's attributes can be modified in the following ways. These operations are
analogous to the dsconfig modify-[object] options.

• An operation to set the single-valued description attribute to a new value:

{
 "op" : "replace",
 "path" : "description",
 "value" : "A new backend."
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --set "description:A new backend"

• An operation to add a new value to the multi-valued jeProperty attribute:

{
 "op" : "add",
 "path" : "jeProperty",
 "value" : "je.env.backgroundReadLimit=0"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --add je-property:je.env.backgroundReadLimit=0

• An operation to remove a value from a multi-valued property. In this case, path specifies a SCIM filter
identifying the value to remove:

{
 "op" : "remove",
 "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"

PingDirectory | Configure PingDataSync Server | 48

}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --remove je-property:je.cleaner.adjustUtilization=false

• A second operation to remove a value from a multi-valued property, where the path specifies both an
attribute to modify, and a SCIM filter whose attribute is value:

{
 "op" : "remove",
 "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --remove je-property:je.nodeMaxEntries=32

• An option to remove one or more values of a multi-valued attribute. This has the effect of restoring the
attribute's value to its default value:

{
 "op" : "remove",
 "path" : "id2childrenIndexEntryLimit"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --reset id2childrenIndexEntryLimit

The following is the full example request. The API responds with the entire modified configuration object,
which may include a SCIM extension attribute urn:unboundid:schemas:configuration:messages
containing additional instructions:

Example request:

PATCH /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json
{
 "schemas" : ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations" : [{
 "op" : "replace",
 "path" : "description",
 "value" : "A new backend."
 }, {
 "op" : "add",
 "path" : "jeProperty",
 "value" : "je.env.backgroundReadLimit=0"
 }, {
 "op" : "remove",
 "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"
 }, {
 "op" : "remove",
 "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
 }, {
 "op" : "remove",
 "path" : "id2childrenIndexEntryLimit"
 }]

PingDirectory | Configure PingDataSync Server | 49

}

Example response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot2",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://example.com:5033/config/backends/userRoot2"
 },
 "backendID": "userRoot2",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example2,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "10",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "1 m",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "0",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "0",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "description": "123",
 "enabled": "false",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "false",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",

PingDirectory | Configure PingDataSync Server | 50

 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "jeProperty": [
 "\"je.env.backgroundReadLimit=0\""
],
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "5000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled",
 "urn:unboundid:schemas:configuration:messages:2.0": {
 "requiredActions": [
 {
 "property": "jeProperty",
 "type": "componentRestart",
 "synopsis": "In order for this modification to take effect,
 the component must be restarted, either by disabling and
 re-enabling it, or by restarting the server"
 },
 {
 "property": "id2childrenIndexEntryLimit",
 "type": "other",
 "synopsis": "If this limit is increased, then the contents
 of the backend must be exported to LDIF and re-imported to
 allow the new limit to be used for any id2children keys
 that had already hit the previous limit."
 }
]
 }
}

API paths

The Configuration API is available under the /config path. A full listing of root sub-paths can be obtained
from the /config/ResourceTypes endpoint:

GET /config/ResourceTypes
Host: example.com:5033
Accept: application/scim+json

Sample response (abbreviated):

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
 "totalResults": 520,
 "Resources": [
 {

PingDirectory | Configure PingDataSync Server | 51

 "schemas": [
 "urn:ietf:params:scim:schemas:core:2.0:ResourceType"
],
 "id": "dsee-compat-access-control-handler",
 "name": "DSEE Compat Access Control Handler",
 "description": "The DSEE Compat Access Control
 Handler provides an implementation that uses syntax
 compatible with the Sun Java System Directory Server
 Enterprise Edition access control handler.",
 "endpoint": "/access-control-handler",
 "meta": {
 "resourceType": "ResourceType",
 "location": "http://example.com:5033/config/ResourceTypes/dsee-
compat-
access-control-handler"
 }
 },
 {
 "schemas": [
 "urn:ietf:params:scim:schemas:core:2.0:ResourceType"
],
 "id": "access-control-handler",
 "name": "Access Control Handler",
 "description": "Access Control Handlers manage the
 application-wide access control. The server's access
 control handler is defined through an extensible
 interface, so that alternate implementations can be created.
 Only one access control handler may be active in the server
 at any given time.",
 "endpoint": "/access-control-handler",
 "meta": {
 "resourceType": "ResourceType",
 "location": "http://example.com:5033/config/ResourceTypes/access-
control-handler"
 }
 },
 {
 ...

The response's endpoint elements enumerate all available sub-paths. The path /config/access-
control-handler in the example can be used to get a list of existing access control handlers, and
create new ones. A path containing an object name like /config/backends/{backendName}, where
{backendName} corresponds to an existing backend (such as userRoot) can be used to obtain an
object’s properties, update the properties, or delete the object.

Some paths reflect hierarchical relationships between objects. For example, properties of a local DB
VLV index for the userRoot backend are available using a path like /config/backends/userRoot/
local-db-indexes/uid. Some paths represent singleton objects, which have properties but cannot
be deleted nor created. These paths can be differentiated from others by their singular, rather than plural,
relation name (for example global-configuration).

Sorting and filtering configuration objects

The Configuration API supports SCIM parameters for filter, sorting, and pagination. Search operations can
specify a SCIM filter used to narrow the number of elements returned. See the SCIM specification for the
full set of operations for SCIM filters. Clients may also specify sort parameters, or paging parameters. As
previously mentioned, clients may specify attributes to include or exclude in both get and list operations.

PingDirectory | Configure PingDataSync Server | 52

Table 1: GET Parameters for Sorting and Filtering

GET Parameter Description

filter Values can be simple SCIM filters such
as id eq "userRoot" or compound
filters like meta.resourceType eq
"Local DB Backend" and baseDn
co"dc=example,dc=com".

sortBy Specifies a property value by which to sort.

sortOrder Specifies either ascending or descending
alphabetical order.

startIndex 1-based index of the first result to return.

count Indicates the number of results per page.

Update properties

The Configuration API supports the HTTP PUT method as an alternative to modifying objects with HTTP
PATCH. With PUT, the server computes the differences between the object in the request with the current
version in the server, and performs modifications where necessary. The server will never remove attributes
that are not specified in the request. The API responds with the entire modified object.

Request:

PUT /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json
{
 "description" : "A new description."
}

Response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://example.com:5033/config/backends/userRoot"
 },
 "backendID": "userRoot",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "25",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "30 s",

PingDirectory | Configure PingDataSync Server | 53

 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "5",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "1",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "description": "abc",
 "enabled": "true",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "true",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "100000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled"
}

Administrative actions

Updating a property may require an administrative action before the change can take
effect. If so, the server will return 200 Success, and any actions are returned in the
urn:unboundid:schemas:configuration:messages:2.0 section of the JSON response that
represents the entire object that was created or modified.

PingDirectory | Configure PingDataSync Server | 54

For example, changing the jeProperty of a backend will result in the following:

"urn:unboundid:schemas:configuration:messages:2.0": {
 "requiredActions": [
 {
 "property": "baseContextPath",
 "type": "componentRestart",
 "synopsis": "In order for this modification to
 take effect, the component must be restarted,
 either by disabling and re-enabling it, or by
 restarting the server"
 },
 {
 "property": "id2childrenIndexEntryLimit",
 "type": "other",
 "synopsis": "If this limit is increased, then the
 contents of the backend must be exported to LDIF
 and re-imported to allow the new limit to be used
 for any id2children keys that had already hit the
 previous limit."
 }
]
}
...

Update servers and server groups

Servers can be configured as part of a server group, so that configuration changes that are applied to
a single server, are then applied to all servers in a group. When managing a server that is a member of
a server group, creating or updating objects using the Configuration API requires the applyChangeTo
query parameter. The behavior and acceptable values for this parameter are identical to the dsconfig
parameter of the same name. A value of singleServer or serverGroup can be specified. For example:

https://example.com:5033/config/Backends/userRoot?applyChangeTo=singleServer

Note:

This does not apply to mirrored subtree objects, which include Topology and Cluster level objects.
Changes made to mirrored objects are applied to all objects in the subtree.

Configuration API responses

Clients of the API should examine the HTTP response code in order to determine the success or failure of
a request. The following are response codes and their meanings:

Table 2:

Response Code Description Response Body

200 Success The requested operation succeeded, with the response body
being the configuration object that was created or modified.
If further actions are required, they are included in the
urn:unboundid:schemas:configuration:messages:2.0
object.

List of objects, or
object properties,
administrative
actions.

204 No Content The requested operation succeeded and no further
information has been provided, such as in the case of a
DELETE operation.

None.

PingDirectory | Configure PingDataSync Server | 55

Response Code Description Response Body

400 Bad Request The request contents are incorrectly formatted or a request is
made for an invalid API version.

Error summary and
optional message.

401 Unauthorized User authentication is required. Some user agents such as
browsers may respond by prompting for credentials. If the
request had specified credentials in an Authorization header,
they are invalid.

None.

403 Forbidden The requested operation is forbidden either because the user
does not have sufficient privileges or some other constraint
such as an object is edit-only and cannot be deleted.

None.

404 Not Found The requested path does not refer to an existing object or
object relation.

Error summary and
optional message.

409 Conflict The requested operation could not be performed due to the
current state of the configuration. For example, an attempt
was made to create an object that already exists or an attempt
was made to delete an object that is referred to by another
object.

Error summary and
optional message.

415 Unsupported
Media Type

The request is such that the Accept header does not indicate
that JSON is an acceptable format for a response.

None.

500 Server Error The server encountered an unexpected error. Please report
server errors to customer support.

Error Summary and
optional message.

An application that uses the Configuration API should limit dependencies on particular text appearing
in error message content. These messages may change, and their presence may depend on server
configuration. Use the HTTP return code and the context of the request to create a client error message.
The following is an example encoded error message:

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:Error"
],
 "status": 404,
 "scimType": null,
 "detail": "The Local DB Index does not exist."
}

Configuration with the dsconfig tool
The Ping Identity servers provide several command-line tools for management and administration. The
command-line tools are available in the bin directory for UNIX or Linux systems and bat directory for
Microsoft Windows systems.

The dsconfig tool is the text-based management tool used to configure the underlying server
configuration. The tool has three operational modes:

• Interactive Mode
• Non-interactive mode
• Batch mode

The dsconfig tool also offers an offline mode using the --offline option, in which the server does
not have to be running to interact with the configuration. In most cases, the configuration should be

PingDirectory | Configure PingDataSync Server | 56

accessed with the server running in order for the server to give the user feedback about the validity of the
configuration.

Each command-line utility provides a description of the subcommands, arguments, and usage examples
needed to run the tool. View detailed argument options and examples by typing -- help with the
command.

$ bin/dsconfig --help

To list the subcommands for each command:

$ bin/dsconfig --help-subcommands

To list more detailed subcommand information:

$ bin/dsconfig list-log-publishers --help

Use dsconfig in interactive mode

Running dsconfig in interactive command-line mode provides a menu-driven interface for accessing
and configuring the PingData server. To start dsconfig in interactive mode, run the tool without any
arguments:

$ bin/dsconfig

Running the tool requires server connection and authentication information. After connection information is
confirmed, a menu of the available operation types is displayed.

Use dsconfig in non-interactive mode

Non-interactive command-line mode provides a simple way to make arbitrary changes to the server, and to
use administrative scripts to automate configuration changes. To make changes to multiple configuration
objects at the same time, use batch mode.

The general format for the non-interactive command line is:

$ bin/dsconfig --no-prompt {globalArgs} {subcommand} {subcommandArgs}

The --no-prompt argument specifies non-interactive mode. The {globalArgs} argument provides
a set of arguments that specify how to connect and authenticate to the server. Global arguments can be
standard LDAP connection parameters or SASL connection parameters depending on the implementation.
The {subcommand} specifies which general action to perform. The following uses standard LDAP
connections:

$ bin/dsconfig --no-prompt list-backends \
 --hostname server.example.com \
 --port 389 \
 --bindDN uid=admin,dc=example,dc=com \
 --bindPassword password

The following uses SASL GSSAPI (Kerberos) parameters:

$ bin/dsconfig --no-prompt list-backends \
 --saslOption mech=GSSAPI \
 --saslOption authid=admin@example.com \
 --saslOption ticketcache=/tmp/krb5cc_1313 \
 --saslOption useticketcache=true

PingDirectory | Configure PingDataSync Server | 57

The {subcommandArgs} argument contains a set of arguments specific to the particular task. To always
display the advanced properties, use the --advanced command-line option.

Note:

Global arguments can appear anywhere on the command line. The subcommand-specific arguments can
appear anywhere after the subcommand.

Use dsconfig batch mode

The dsconfig tool provides a batching mechanism that reads multiple invocations from a file and
executes them sequentially. The batch file provides advantages over standard scripting by minimizing
LDAP connections and JVM invocations that normally occur with each dsconfig call. Batch mode is the
best method to use with setup scripts when moving from a development environment to test environment,
or from a test environment to a production environment. The --no-prompt option is required with
dsconfig in batch mode.

$ bin/dsconfig --no-prompt \
 --hostname host1 \
 --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --batch-file /path/to/sync-pipe-config.txt

If a dsconfig command has a missing or incorrect argument, the command will fail and stop the batch
process without applying any changes to the server. A --batch-continue-on-erroroption is
available, which instructs dsconfig to apply all changes and skip any errors.

View the logs/config-audit.log file to review the configuration changes made to the server, and use
them in the batch file. The batch file can have blank lines for spacing, and lines starting with a pound sign
(#) for comments. The batch file also supports a "\" line continuation character for long commands that
require multiple lines.

PingDataSync Server also provides a docs/sun-ds-compatibility.dsconfig file for migrations
from Sun/Oracle to Ping Identity PingDataSync Server machines.

Topology configuration
Topology configuration enables grouping servers and mirroring configuration changes automatically. It
uses a master/slave architecture for mirroring shared data across the topology. All writes and updates are
forwarded to the master, which forwards them to all other servers. Reads can be served by any server in
the group.

Note:

To remove a server from the topology, it must be uninstalled with the uninstall tool.

Topology master requirements and selection

A topology master server receives any configuration change from other servers in the topology, verifies
the change, then makes the change available to all connected servers when they poll the master. The
master always sends a digest of its subtree contents on each update. If the node has a different digest
than the master, it knows it's not synchronized. The servers will pull the entire subtree from the master
if they detect that they are not synchronized. A server may detect it is not synchronized with the master
under the following conditions:

• At the end of its periodic polling interval, if a server's subtree digest differs from that of its master, then it
knows it's not synchronized.

• If one or more servers have been added to or removed from the topology, the servers will not be
synchronized.

PingDirectory | Configure PingDataSync Server | 58

The master of the topology is selected by prioritizing servers by minimum supported product version, most
available, newest server version, earliest start time, and startup UUID (a smaller UUID is preferred).

After determining a master, the topology data is reviewed from all available servers (every five seconds
by default) to determine if any new information makes a server better suited to being the master. If a new
server can be the master, it will communicate that to the other servers, if no other server has advertised
that it should be the master. This ensures that all servers accept the same master at approximately the
same time (within a few milliseconds of each other). If there is no better master, the initial master maintains
the role.

After the best master has been selected for the given interval, the following conditions are confirmed:

• A majority of servers is reachable from that master. (The master server itself is considered while
determining this majority.)

• There is only a single master in the entire topology.

If either of these conditions is not met, the topology is without a master and the peer polling frequency
is reduced to 100 milliseconds to find a new master as quickly as possible. If there is no master in the
topology for more than one minute, a mirrored-subtree-manager-no-master-found alarm is
raised. If one of the servers in the topology is forced as master with the force-as-master-for-
mirrored-data option in the Global Configuration configuration object, a mirrored-subtree-
manager-forced-as-master-warning warning alarm is raised. If multiple servers have been forced
as masters, then a mirrored-subtree-manager-forced-as-master-error critical alarm will be
raised.

Topology components

When a server is installed, it can be added to an existing topology, which will clone the server's. Topology
settings are designed to operate without additional configuration. If required, some settings can be
adjusted to fit the needs of the environment.

Server configuration settings

Configuration settings for the topology are configured in the Global Configuration and in the Config File
Handler Backend. Though they are topology settings, they are unique to each server and are not mirrored.
Settings must be kept the same on all servers.

The Global Configuration object contains a single topology setting, force-as-master-for-mirrored-
data. This should be set to true on only one of the servers in the topology, and is used only if a situation
occurs where the topology cannot determine a master because a majority of servers is not available.
A server with this setting enabled will be assigned the role of master, if no suitable master can be
determined. See Topology master requirements and selection on page 57 for details about how a
master is selected for a topology.

The Config File Handler Backend defines three topology (mirrored-subtree) settings:

• mirrored-subtree-peer-polling-interval – Specifies the frequency at which the server polls
its topology peers to determine if there are any changes that may warrant a new master selection.
A lower value will ensure a faster failover, but it will also cause more traffic among the peers. The
default value is five seconds. If no suitable master is found, the polling frequency is adjusted to 100
milliseconds until a new master is selected.

• mirrored-subtree-entry-update-timeout – Specifies the maximum length of time to wait for an
update operation (add, delete, modify or modify-dn) on an entry to be applied by the master on all of the
servers in the topology. The default is 10 seconds. In reality, updates can take up to twice as much time
as this timeout value if master selection is in progress at the time the update operation was received.

• mirrored-subtree-search-timeout – Specifies the maximum length of time in milliseconds to
wait for search operations to complete. The default is 10 seconds.

PingDirectory | Configure PingDataSync Server | 59

Topology settings

Topology meta-data is stored under the cn=topology,cn=config subtree and cluster data is stored
under the cn=cluster,cn=config subtree. The only setting that can be changed is the cluster name.

Monitor data for the topology

Each server has a monitor that exposes that server's view of the topology in its monitor backend, so that
peer servers can periodically read this information to determine if there are changes in the topology.
Topology data includes the following:

• The server ID of the current master, if the master is not known.
• The instance name of the current master, or if a master is not set, a description stating why a master is

not set.
• A flag indicating if this server thinks that it should be the master.
• A flag indicating if this server is the current master.
• A flag indicating if this server was forced as master.
• The total number of configured peers in the topology group.
• The peers connected to this server.
• The current availability of this server.
• A flag indicating whether or not this server is not synchronized with its master, or another node in the

topology if the master is unknown.
• The amount of time in milliseconds where multiple masters were detected by this server.
• The amount of time in milliseconds where no suitable server is found to act as master.
• A SHA-256 digest encoded as a base-64 string for the current subtree contents.

The following metrics are included if this server has processed any operations as master:

• The number of operations processed by this server as master.
• The number of operations processed by this server as master that were successful.
• The number of operations processed by this server as master that failed to validate.
• The number of operations processed by this server as master that failed to apply.
• The average amount of time taken (in milliseconds) by this server to process operations as the master.
• The maximum amount of time taken (in milliseconds) by this server to process an operation as the

master.

Certificates

Depending on the circumstances, PingDirectory Server uses one of the following certificates:

• Inter-server certificate – Used for internal purposes, like the following examples:

• Replication authentication
• Inter-server authentication in the topology registry
• Reversible password encryption
• Encrypted backups and LDIF exports

• Server certificate – Presented by the server when a client uses a protocol like LDAPS or HTTPS to
initiate a secure connection. A client must trust the server's certificate to obtain a secure connection to
it.

The following sections describe these certificates in more detail.

Inter-server certificate

Generated during installation, the inter-server certificate is stored under the alias ads-certificate in a
file named ads-truststore, which resides in the server’s /config directory. This certificate contains
the key pair for the local server as well as for the certificates of all trusted servers, and has a lifetime of 20
years before expiring.

PingDirectory | Configure PingDataSync Server | 60

The local server's public key is signed by its own private key, making it a self-signed certificate. The alias
is hard-coded to ads-certificate, and the keystore file is hard-coded to ads-truststore. This
behavior cannot be modified during setup.

Warning:

• Although some customers feel uncomfortable with the self-signed nature of the inter-server
certificate, we recommend that you do not replace it with a CA-signed certificate for the following
reasons:

• If the inter-server certificate is replaced incorrectly, serious problems can occur during
topology authentication.

• The inter-server certificate is used for internal purposes only.
• If the server's access logs contain authentication (bind) errors, the inter-server certificate is

most likely configured inappropriately. In the topology registry, this certificate is persisted in the
inter-server-certificate property of a server instance.

Replace the inter-server certificate

About this task

Because the inter-server certificate is also stored in the topology registry, it can be replaced on one server
and mirrored to all other servers in the topology. Changes are mirrored automatically to the other servers in
the topology.

Important: Before attempting to replace the inter-server certificate, ensure that all servers in the topology
are updated to version 7.0 or later.

The inter-server certificate is stored in human-readable, PEM-encoded format and can be updated by
using the dsconfig tool. While the certificate is being replaced, existing authenticated connections
continue to work. If the server is restarted, or if a topology change requires a reset of peer connections, the
server continues authenticating with its peers, all of whom trust the new certificate.

To replace the inter-server certificate with no downtime, complete the following tasks:

Steps

1. Prepare a new keystore with the replacement key pair.

2. Import the earlier trusted certificates into the new keystore.

3. Update the server configuration to use the new certificate by adding it to the server’s list of certificates
in the topology registry.
After this step is performed, other servers will trust the certificate.

4. Replace the server’s ads-truststore file with the new one.

5. Retire the previous certificate by removing it from the topology registry.

Next steps
The following sections describe these tasks in more detail.
Prepare a new keystore with the replacement key pair

The self-signed certificate can be replaced with an existing key pair. As an alternative, the certificate that is
associated with the original key pair can be used.

Use an existing key pair

If a private key and certificate in PEM-encoded format already exist, both the original private key and the
self-signed certificate can be replaced in ads-truststore by using the manage-certificates tool.
Depending on your operating system, the manage-certificates tool is located in the server's bin or
bat directory.

Important: If the existing key pair is not in PEM-encoded format, convert it to a format that is compatible
with the server’s ads-truststore keystore file format before proceeding.

PingDirectory | Configure PingDataSync Server | 61

If you replace the entire key pair instead of only the certificate that is associated with the original private
key, your existing backups and LDIF exports might be rendered invalid. To avoid this scenario, perform
this step immediately after setup, or at least before the key pair is used. After the first use, change only the
certificate associated with the private key to extend its validity period, or to replace it with a certificate that
is signed by a different CA.

The following command imports existing certificates into a new keystore file named ads-
truststore.new:

manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --private-key-file existing.key \
 --certificate-file existing.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Order the certificates that use the --certificate-file option in such a manner that each subsequent
certificate functions as the issuer for the previous one. The server certificate is listed first, any intermediate
certificates are listed next, and the root CA certificate is listed last. Because some deployments do not
feature an intermediate issuer, you might need to import only the server certificate and a single issuer.

Replace the certificate associated with the original key pair

About this task

Alternatively, to replace the certificate that is associated with the original server-generated, ads-
certificate private key, perform the following steps:

Steps

1. Create a CSR for the ads-certificate, as follows:

manage-certificates generate-certificate-signing-request \
 --keystore ads-truststore \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --use-existing-key-pair \
 --subject-dn "CN=ldap.example.com,O=Example Corporation,C=US" \
 --output-file ads.csr

2. Submit ads.csr to a CA for signing.

3. Export the server’s private key into ads.key, as follows:

manage-certificates export-private-key \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --output-file ads.key

4. Import the certificates obtained from the CA – including the CA-signed server certificate, the root CA
certificate, and any intermediate certificates – into ads-truststore.new, as follows:

manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \

PingDirectory | Configure PingDataSync Server | 62

 --private-key-file ads.key \
 --certificate-file new-ads.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Import earlier trusted certificates into the new keystore

About this task

The new ads-truststore file, ads-truststore.new, contains only the server’s new key pair. You
must import the currently trusted certificates of other servers in the topology.

To export trusted certificates from ads-truststore and import them into ads-truststore.new,
perform the following steps for each trusted certificate:

Steps

1. Locate the currently trusted certificates, as follows:

manage-certificates list-certificates \
 --keystore ads-truststore

2. For each alias other than ads-certificate, or whose fingerprint does not match ads-
certificate, perform the following steps:

a) Export the trusted certificate from ads-truststore, as follows:

manage-certificates export-certificate \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias <trusted-cert-alias> \
 --export-certificate-chain \
 --output-file <trust-cert-alias>.crt

b) Import the trusted certificate into ads-truststore.new, as follows:

manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias <trusted-cert-alias> \
 --certificate-file <trusted-cert-alias>.crt

Update the server configuration to use the new certificate

About this task

Before updating the server to use the appropriate key pair, update the inter-server-certificate
property for the server instance in the topology registry. To support the transition from an existing
certificate to a new one, earlier and newer certificates might appear within their own beginning and ending
headers in the inter-server-certificate property.

To update the server configuration to use the new certificate, perform the following steps:

Steps

1. Export the server’s previous ads-certificate into old-ads.crt, as follows:

manage-certificates export-certificate \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \

PingDirectory | Configure PingDataSync Server | 63

 --output-file old-ads.crt

2. Concatenate the previous and new certificate into one file.

On Windows, use a text editor like Notepad. On Unix, use the following command:

cat old-ads.crt new-ads.crt > old-new-ads.crt

3. Use dsconfig to update the inter-server-certificate property for the server instance in the
topology registry, as follows:

$ bin/dsconfig -n set-server-instance-prop \
 --instance-name <instance-name> \
 --set "inter-server-certificate<old-new-ads.crt"

Replace the previous ads-truststore file with the new one

Because the server still uses the previous ads-certificate, you must replace the previous ads-
truststore file with ads-truststore.new in the server’s config directory when you want the new
ads-certificate to go into effect:

$ mv ads-truststore.new ads-truststore

Retire the previous certificate

Retire the previous certificate by removing it from the topology registry after it expires, as follows:

$ dsconfig -n set-server-instance-prop \
 --instance-name <instance-name> \
 --set "inter-server-certificate<chain.crt"

Existing encrypted backups and LDIF exports remain unaffected. Because the public key is the same in the
previous and new server certificates, the private key can decrypt them.

Server certificate

During setup, administrators have the option of using self-signed certificates or CA-signed certificates
for the server certificate. Where possible, we encourage the use of CA-signed certificates. Self-signed
certificates are recommended only for demonstration and proof-of-concept environments.

If you specify the option --generateSelfSignedCertificate during setup, the server certificate is
generated automatically with the alias server-cert. The key pair consists of the private key and the
self-signed certificate, and is stored in a file named keystore, which resides in the server's /config
directory. The certificates for all the servers that the server trusts are stored in the truststore file, which
is also located under the server’s /config directory.

To override the server certificate alias and the files that store the key pair and certificates, use the following
arguments during setup:

• --certNickname

• --use*Keystore

• --use*Truststore

For more information about these arguments, refer to the setup tool’s Help and the Installation Guide.

Important: If the server's access logs contain authentication (bind) errors, the inter-server certificate
is most likely configured inappropriately. In the topology registry, this certificate is persisted in a Server
Instance Listener’s listener-certificate property.

PingDirectory | Configure PingDataSync Server | 64

Replace the server certificate

About this task

Regardless of whether the server was set up with self-signed or CA-signed certificates, the steps to
replace the server certificate are nearly identical.

This task makes the following assumptions:

• You are replacing the self-signed server certificate.
• The certificate alias is server-cert.
• The private key is stored in keystore.
• The trusted certificates are stored in truststore.
• The keystore and truststore use the JKS keystore format.

If a PKCS#12 keystore format was used for the keystore and truststore files during setup, change
the --keystore-type argument in the manage-certificate commands to PKCS12 in the relevant
steps.

Important: Before attempting to replace the inter-server certificate, ensure that all servers in the topology
are updated to version 7.0 or later.

While the certificate is being replaced, existing secure connections continue to work. If the server is
restarted, or if a topology change requires a reset of peer connections, the server continues authenticating
with its peers, all of whom trust the new certificate.

To replace the server certificate with no downtime, complete the following tasks:

Steps

1. Prepare a new keystore with the replacement key pair.

2. Import the earlier trusted certificates into the new truststore file.

3. Update the server configuration to use the new certificate by adding it to the server’s list of listener
certificates in the topology registry.
After this step is performed, other servers will trust the certificate.

4. Replace the server’s keystore and truststore files with the new ones.

5. Retire the previous certificate by removing it from the topology registry.

Next steps
The following sections describe these tasks in more detail.
Prepare a new keystore with the replacement key pair

The self-signed certificate can be replaced with an existing key pair. As an alternative, the certificate that is
associated with the original key pair can be used.

Use an existing key pair

If a private key and certificate already exist in PEM-encoded format, they can replace both the original
private key and the self-signed certificate in keystore (instead of replacing the self-signed certificate
associated with the original server-generated private key). Use the manage-certificates tool that,
depending on your operating system, is located in the server's bin or bat directory.

The following command imports existing certificates into a new keystore file named keystore.new:

manage-certificates import-certificate \
 --keystore keystore.new \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --private-key-file existing.key \
 --certificate-file existing.crt \

PingDirectory | Configure PingDataSync Server | 65

 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Order the certificates that use the --certificate-file option in such a manner that each subsequent
certificate functions as the issuer for the previous one. The server certificate is listed first, any intermediate
certificates are listed next, and the root CA certificate is listed last. Because some deployments do not
feature an intermediate issuer, you might need to import only the server certificate and a single issuer.

Replace the certificate associated with the original key pair

About this task

If the certificate that is associated with the original server-generated private key (server-cert) has
expired or must be replaced with a certificate from a different CA, perform the following steps to replace it:

Steps

1. Create a CSR file for the server-cert, as follows:

manage-certificates generate-certificate-signing-request \
 --keystore keystore \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --use-existing-key-pair \
 --subject-dn "CN=ldap.example.com,O=Example Corporation,C=US" \
 --output-file server-cert.csr

2. Submit server-cert.csr to a CA for signing.

3. Export the server’s private key into server-cert.key, as follows:

manage-certificates export-private-key \
 --keystore keystore \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --output-file server-cert.key

4. Import the certificates obtained from the CA – including the CA-signed server certificate, the root CA
certificate, and any intermediate certificates – into keystore.new, as follows:

manage-certificates import-certificate \
 --keystore keystore.new \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --private-key-file server-cert.key \
 --certificate-file server-cert.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Import earlier trusted certificates into the new keystore

About this task

The trusted certificates of other servers in the topology must be imported into the new truststore file.
To export trusted certificates from truststore and import them into truststore.new, perform the
following steps for each trusted certificate:

PingDirectory | Configure PingDataSync Server | 66

Steps

1. Locate the currently trusted certificates, as follows:

manage-certificates list-certificates \
 --keystore truststore

2. For each alias other than server-cert, or whose fingerprint does not match server-cert, perform
the following steps:

a) Export the trusted certificate from truststore, as follows:

manage-certificates export-certificate \
 --keystore truststore \
 --keystore-password-file tuststore.pin \
 --alias <trusted-cert-alias> \
 --export-certificate-chain \
 --output-file trusted-cert-alias.crt

b) Import the trusted certificate into truststore.new, as follows:

manage-certificates import-certificate \
 --keystore truststore.new \
 --keystore-type JKS \
 --keystore-password-file truststore.pin \
 --alias <trusted-cert-alias> \
 --certificate-file trusted-cert-alias.crt

Update the server configuration to use the new certificate

About this task

Before updating the server to use the appropriate key pair, update the listener-certificate property
for the server instance's LDAP listener in the topology registry. To support the transition from an existing
certificate to a new one, earlier and newer certificates might appear within their own beginning and ending
headers in the listener-certificate property.

To update the server configuration to use the new certificate, perform the following steps:

Steps

1. Export the server’s previous server-cert into old-server-cert.crt, as follows:

manage-certificates export-certificate \
 --keystore keystore \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --output-file old-server-cert.crt

2. Concatenate the previous and new certificate into one file.

On Windows, use a text editor like Notepad. On Unix, use the following command:

cat old-server-cert.crt new-server-cert.crt > old-new-server-cert.crt

3. Use dsconfig to update the listener-certificate property for the server instance's LDAP
listener in the topology registry, as follows:

$ bin/dsconfig -n set-server-instance-listener-prop \
 --instance-name instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set "listener-certificate<old-new-server-cert.crt"

PingDirectory | Configure PingDataSync Server | 67

Replace the keystore and truststore files with the new ones

Because the server still uses the previous server-cert, you must replace the earlier keystore and
truststore files with the new ones in the server’s config directory when you want the new server-
cert to take effect.

$ mv keystore.new keystore
 mv truststore.new truststore

Retire the previous certificate

Retire the previous certificate by removing it from the topology registry after it expires, as follows:

$ dsconfig -n set-server-instance-listener-prop \
 --instance-name <instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set "listener-certificate<new-server-cert.crt"

Domain Name Service (DNS) caching
If needed, two global configuration properties can be used to control the caching of host name-to-numeric
IP address (DNS lookup) results returned from the name resolution services of the underlying operating
system. Use the dsconfig tool to configure these properties.

network-address-cache-ttl Sets the Java system property
networkaddress.cache.ttl, and controls
the length of time in seconds that a host name-to-
IP address mapping can be cached. The default
behavior is to keep resolution results for one hour
(3600 seconds). This setting applies to the server
and all extensions loaded by the server.

network-address-outage-cache-enabled Caches host name-to-IP address results in the
event of a DNS outage. This is set to true by
default, meaning name resolution results are
cached. Unexpected service interruptions may
occur during planned or unplanned maintenance,
network outages or an infrastructure attack. This
cache may allow the server to function during a
DNS outage with minimal impact. This cache is not
available to server extensions.

IP address reverse name lookups
Ping Identity servers do not explicitly perform numeric IP address-to-host name lookups. However, address
masks configured in Access Control Lists (ACIs), Connection Handlers, Connection Criteria, and Certificate
handshake processing may trigger implicit reverse name lookups. For more information about how address
masks are configured in the server, review the following information for each server:

• ACI dns: bind rules under Managing Access Control (PingDirectory Server and PingDirectoryProxy
Servers)

• ds-auth-allowed-address: Adding Operational Attributes that Restrict Authentication
(PingDirectory Server)

• Connection Criteria: Restricting Server Access Based on Client IP Address (PingDirectory Server and
PingDirectoryProxy Servers)

PingDirectory | Configure PingDataSync Server | 68

• Connection Handlers: Restrict Server Access Using Connection Handlers (Configuration Reference
Guide for all PingData servers)

Configure the synchronization environment with dsconfig
The dsconfig tool can be used to configure any part of PingDataSync Server, but will likely be used for
more fine-grained adjustments. If configuring a Sync Pipe for the first time, use the bin/create-sync-
pipe-config tool to guide through the necessary Sync Pipes creation steps.

Configure server groups with dsconfig interactive

In a typical deployment, one PingDataSync Server and one or more redundant failover servers are
configured. Primary and secondary servers must have the same configuration settings to ensure proper
operation. To enable this, assign all servers to a server group using the dsconfig tool. Any change to one
server will automatically be applied to the other servers in the group.

Run the dsconfig command and set the global configuration property for server groups to all-
servers. On the primary PingDataSync Server, perform the following steps:

$ bin/dsconfig set-global-configuration-prop \
 --set configuration-server-group:all-servers

Updates to servers in the group are made using the --applyChangeToservergroup option of the
dsconfig command. To apply the change to one server in the group, use the --applyChangeTo
single-server option. If additional servers are added to the topology, the setup tool will copy the
configuration from the primary server to the new server(s).

Start the Global Sync configuration with dsconfig interactive

About this task

After the Synchronization topology is configured, perform the following steps to start the Global Sync
configuration, which will use only those Sync Pipes that have been started:

Steps

1. On the dsconfig main menu, type the number corresponding to the Global Sync Configuration.

2. On the Global Sync Configuration menu, type the number corresponding to view and edit the
configuration.

3. On the GlobalSync Configuration Properties menu, type the number corresponding to setting the
started property, and then follow the prompts to set the value to TRUE.

4. On the GlobalSync Configuration Properties menu, type f to save and apply the changes.

Prepare external server communication

About this task

The prepare-endpoint-server tool sets up any communication variances that may occur between
PingDataSync Server and the external servers. Typically, directory servers can have different security
settings, privileges, and passwords configured on the Sync Source that might reject the import of entries in
the Sync Destination.

The prepare-endpoint-server tool also creates a Sync User Account and its privileges on all
of the external servers (see Sync user account on page 37 for more detailed information). The
prepare-endpoint-server tool verifies that the account has the proper privileges to access the

PingDirectory | Configure PingDataSync Server | 69

firstChangeNumber and lastChangeNumber attributes in the root DSE entry so that it can access
the latest changes. If the Sync User does not have the proper privileges, PingDataSync Server displays a
warning message, which is saved in the logs/prepare- endpoint-server.log file.

Note:

If the synchronization topology was created using the create-sync-pipe-config tool, this command
does not need to be run. It is already part of the create-sync-pipe-config process.

Perform the following steps to prepare PingDataSync Server for external server communication:

Steps

1. Use the prepare-endpoint-server tool to prepare the directory server instances on the remote
host for synchronization as a data source for the subtree, dc=example,dc=com. If the user account is
not present on the external server, it will be created if a parent entry exists.

$ bin/prepare-endpoint-server \
 --hostname sun-ds1.example.com \
 --port 21389 \
 --syncServerBindDN "cn=Sync User,dc=example,dc=com" \
 --syncServerBindPassword secret \
 --baseDN "dc=example,dc=com" \
 --isSource

2. When prompted,enter the bind DN and password to create the user account. This step enables the
change log database and sets the changelog-maximum-age property.

3. Repeat steps 1–2 for any other external source servers.

4. For the destination servers, repeat steps 2–3 and include the --isDestination option. If destination
servers do not have any entries, a "Denied" message will display when creating the cn=Sync User
entry.

$ bin/prepare-endpoint-server \
 --hostname PingIdentity-ds1.example.com \
 --port 33389 \
 --syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \
 --syncServerBindPassword sync \
 --baseDN "dc=example,dc=com" \
 --isDestination

5. Repeat step 4 for any other destination servers.

HTTP connection handlers
HTTP Connection Handlers are responsible for managing the communication with HTTP clients and
invoking servlets to process requests from those clients. They can also be used to host web applications
on the server. Each HTTP connection handler must be configured with one or more HTTP servlet
extensions and zero or more HTTP operation log publishers.

If the HTTP Connection Handler cannot be started (for example, if its associated HTTP Servlet Extension
fails to initialize), then this will not prevent the entire Directory Proxy Server from starting. The server's
start-server tool will output any errors to the error log. This allows the server to continue serving LDAP
requests even with a bad servlet extension.

The configuration properties available for use with a HTTP connection handler include:

listen-address Specifies the address on which the connection
handler will listen for requests from clients. If not

PingDirectory | Configure PingDataSync Server | 70

specified, then requests will be accepted on all
addresses bound to the system.

listen-port Specifies the port on which the connection handler
will listen for requests from clients. Required.

use-ssl Indicates whether the connection handler will use
SSL/TLS to secure communications with clients
(whether it uses HTTPS rather than HTTP). If SSL
is enabled, then key-manager-provider and
trust-manager-provider values must also be
specified.

http-servlet-extension Specifies the set of servlet extensions that will
be enabled for use with the connection handler.
You can have multiple HTTP connection handlers
(listening on different address/port combinations)
with identical or different sets of servlet extensions.
At least one servlet extension must be configured.

http-operation-log-publisher Specifies the set of HTTP operation log publishers
that should be used with the connection handler. By
default, no HTTP operation log publishers will be
used.

key-manager-provider Specifies the key manager provider that will be
used to obtain the certificate presented to clients if
SSL is enabled.

trust-manager-provider Specifies the trust manager provider that will be
used to determine whether to accept any client
certificates presented to the server.

num-request-handlers Specifies the number of threads that should be
used to process requests from HTTP clients. These
threads are separate from the worker threads used
to process other kinds of requests. The default
value of zero means the number of threads will
be automatically selected based on the number of
CPUs available to the JVM.

web-application-extension Specifies the Web applications to be hosted by the
server.

Configure an HTTP connection handler

About this task

A HTTP connection handler has two dependent configuration objects: one or more HTTP servlet
extensions and optionally, a HTTP log publisher. The HTTP servlet extension and log publisher must be
configured prior to configuring the HTTP connection handler. The log publisher is optional but in most
cases, you want to configure one or more logs to troubleshoot any issues with your HTTP connection.

Steps

1. The first step is to configure your HTTP servlet extensions. The following example uses the
ExampleHTTPServletExtension in the Server SDK.

$ bin/dsconfig create-http-servlet-extension \
 --extension-name "Hello World Servlet" \

PingDirectory | Configure PingDataSync Server | 71

 --type third-party \
 --set
"extensionclass:com.unboundid.directory.sdk.examples.ExampleHTTPServletEx
tension" \
 --set "extension-argument:path=/" \
 --set "extension-argument:name=example-servlet"

2. Next, configure one or more HTTP log publishers. The following example configures two log publishers:
one for common access; the other, detailed access. Both log publishers use the default configuration
settings for log rotation and retention.

$ bin/dsconfig create-log-publisher \
 --publisher-name "HTTP Common Access Logger" \
 --type common-log-file-http-operation \
 --set enabled:true \
 --set log-file:logs/http-common-access \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set "retention-policy:Free Disk Space Retention Policy"

$ bin/dsconfig create-log-publisher \
 --publisher-name "HTTP Detailed Access Logger" \
 --type detailed-http-operation \
 --set enabled:true \
 --set log-file:logs/http-detailed-access \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set "retention-policy:Free Disk Space Retention Policy"

3. Configure the HTTP connection handler by specifying the HTTP servlet extension and log publishers.
Note that some configuration properties can be later updated on the fly while others, like listen-port,
require that the HTTP Connection Handler be disabled, then re-enabled for the change to take effect.

$ bin/dsconfig create-connection-handler \
 --handler-name "Hello World HTTP Connection Handler" \
 --type http \
 --set enabled:true \
 --set listen-port:8443 \
 --set use-ssl:true \
 --set "http-servlet-extension:Hello World Servlet" \
 --set "http-operation-log-publisher:HTTP Common Access Logger" \
 --set "http-operation-log-publisher:HTTP Detailed Access Logger" \
 --set "key-manager-provider:JKS" \
 --set "trust-manager-provider:JKS"

4. By default, the HTTP Connection Handler has an advanced monitor entry property, keep- stats, that
is set to TRUE by default. You can monitor the connection handler using the ldapsearch tool.

$ bin/ldapsearch --baseDN "cn=monitor" \
 "(objectClass=ds-http-connection-handler-statistics-monitor-entry)"

HTTP correlation IDs

A typical request to a software system is handled by multiple subsystems, many of which may be distinct
servers residing on distinct hosts and locations. Tracing the request flow on distributed systems can be
challenging, as log messages are scattered across various systems and intermingled with messages for
other requests. To make this easier, a correlation ID can be assigned to a request, which is then added
to every associated operation as the request flows through the larger system. The correlation ID allows

PingDirectory | Configure PingDataSync Server | 72

related log messages to be easily located and grouped. The server supports correlation IDs for all HTTP
requests received through its HTTP(S) Connection Handler.

When a HTTP request is received, it is automatically assigned a correlation ID. This ID can be used to
correlate HTTP responses with messages recorded to the HTTP Detailed Operation log and the trace log.
For specific web APIs, the correlation ID may also be passed to the LDAP subsystem. For the SCIM 1,
Delegated Admin, Consent, and Directory REST APIs, the correlation ID will also appear with associated
requests in LDAP logs in the correlationID key. The correlation ID is also used as the default client
request ID value in Intermediate Client Request Controls used by the SCIM 2, Consent, and Directory
REST APIs. Values related to the Intermediate Client Request Control appear in the LDAP logs in the via
key, and are forwarded to downstream LDAP servers when received by the PingDirectoryProxy server.
The correlation ID header is also added to requests forwarded by the PingDataGovernance gateway.

For Server SDK extensions that have access to the current HttpServletRequest, the
current correlation ID can be retrieved as a string through the HttpServletRequest's
com.pingidentity.pingdata.correlation_id attribute. For example:

(String) request.getAttribute("com.pingidentity.pingdata.correlation_id");

Configure HTTP Correlation ID Support

Correlation ID support is enabled by default for each HTTP Connection Handler.

• To enable correlation ID support for the HTTPS Connection Handler:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set use-correlation-id-header:true

• To disable correlation ID support for the HTTPS Connection Handler:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set use-correlation-id-header:false

Configuring the correlation ID response header

• The server will generate a correlation ID for every HTTP request and send it in the response through
the Correlation-Id response header. This response header name can be customized. The following
example changes the correlation-id-response-header property to"X-Request-Id."

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set correlation-id-response-header:X-Request-Id

Accepting an incoming correlation ID from the request

• By default, the server generates a new, unique correlation ID for each HTTP request, and ignores any
correlation ID that may be set on the request. This can be changed by designating the names of one
or more HTTP request headers that contain an existing correlation ID value. This enables the server to
integrate with a larger system consisting of every servers using correlation IDs.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set correlation-id-request-header:X-Request-Id \
 --set correlation-id-request-header:X-Correlation-Id \
 --set correlation-id-request-header:Correlation-Id \
 --set correlation-id-request-header:X-Amzn-Trace-Id

PingDirectory | Configure PingDataSync Server | 73

HTTP Correlation ID Example Use

In this example, a request to the Directory REST API is made and the correlation ID enables finding
HTTP-specific log messages with LDAP-specific log messages. The response to the API call includes a
Correlation-Id header with the value a54aee33-c6c6-4467-be25-efd1db7a8b76.

GET /directory/v1/me?includeAttributes=mail HTTP/1.1
 Accept: */*
 Accept-Encoding: gzip, deflate
 Authorization: Bearer ...
 Connection: keep-alive
 Host: localhost:1443
 User-Agent: HTTPie/0.9.9
 HTTP/1.1 200 OK
 Content-Length: 266
 Content-Type: application/hal+json
 Correlation-Id: ee919049-6710-4594-9c66-28b4ada4b127
 Date: Fri, 02 Nov 2018 15:16:50 GMT
 Request-Id: 369
 {
 "_dn": "uid=user.86,ou=People,dc=example,dc=com",
 "_links": {
 "schemas": [
 {
 "href": "https://localhost:1443/directory/v1/schemas/
 inetOrgPerson"
 }
],
 "self": {
 "href": "https://localhost:1443/directory/v1/
 uid=user.86,ou=People,dc=example,dc=com"
 }
 },
 "mail": [
 "user.86@example.com"
]
 }

This correlation ID can be used to search the HTTP trace log for matching log records, as follows:

$ grep 'correlationID="ee919049-6710-4594-9c66-28b4ada4b127"'
 PingDirectory/logs/debug-trace
 [02/Nov/2018:10:16:50.294 -0500] HTTP REQUEST
 requestID=369
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 product="Ping Identity
 Directory Server" instanceName="ds1"
 startupID="W9ikqA==" threadID=52358 from=
 [0:0:0:0:0:0:0:1]:58918 method=GET
 url="https://0:0:0:0:0:0:0:1:1443/directory/v1/me?
includeAttributes=mail"
 [02/Nov/2018:10:16:50.526 -0500] DEBUG ACCESS-TOKEN-
VALIDATOR-PROCESSING
 requestID=369
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 msg="Identity Mapper with DN 'cn=User ID Identity
 Mapper,cn=Identity
 Mappers,cn=config' mapped ID 'user.86' to entry DN
 'uid=user.86,ou=people,dc=example,dc=com'"
 [02/Nov/2018:10:16:50.526 -0500] DEBUG ACCESS-TOKEN-
VALIDATOR-PROCESSING
 requestID=369
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"

PingDirectory | Configure PingDataSync Server | 74

 accessTokenId="201811020831" msg="Token Validator
 'Mock Access Token
 Validator' validated access token with active =
 'true', sub = 'user.86', owner
 = 'uid=user.86,ou=people,dc=example,dc=com',
 clientId = 'client1', scopes =
 'ds', expiration = 'none', not-used-before = 'none',
 current time = 'Nov 2,
 2018 10:16:50 AM CDT' "
 [02/Nov/2018:10:16:50.531 -0500] HTTP RESPONSE
 requestID=369
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 accessTokenId="201811020831" product="Ping Identity
 Directory Server"
 instanceName="ds1" startupID="W9ikqA=="
 threadID=52358 statusCode=200
 etime=236.932 responseContentLength=266
 [02/Nov/2018:10:16:50.531 -0500] DEBUG HTTP-FULL-
REQUEST-AND-RESPONSE
 requestID=369
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 accessTokenId="201811020831" product="Ping Identity
 Directory Server"
 instanceName="ds1" startupID="W9ikqA=="
 threadID=52358 from=
 [0:0:0:0:0:0:0:1]:58918 method=GET
 url="https://0:0:0:0:0:0:0:1:1443/directory/v1/me?
includeAttributes=mail"
 statusCode=200 etime=236.932
 responseContentLength=266 msg="

The LDAP log messages associated with this request can also be located:

$ grep 'correlationID="ee919049-6710-4594-9c66-28b4ada4b127"'
 PingDirectory/logs/access
 [02/Nov/2018:10:16:50.529 -0500] SEARCH
 RESULT instanceName="ds1"
 threadID=52358 conn=-371045 op=1657393
 msgID=1657394 origin="Directory REST
 API" httpRequestID="369"
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"

 authDN="uid=user.86,ou=people,dc=example,dc=com" requesterIP="internal"

 requesterDN="uid=user.86,ou=People,dc=example,dc=com"
 requestControls="1.3.6.1.4.1.30221.2.5.2"
 via="app='PingDirectoryds1'
 clientIP='0:0:0:0:0:0:0:1'
 sessionID='201811020831' requestID='ee919049-6710-
 4594-9c66-28b4ada4b127'"
 base="uid=user.86,ou=people,dc=example,dc=com"
 scope=0 filter="(&)"
 attrs="mail,objectClass" resultCode=0
 resultCodeName="Success" etime=0.684
 entriesReturned=1
 [02/Nov/2018:10:16:50.530 -0500] EXTENDED
 RESULT instanceName="ds1"
 threadID=52358 conn=-371046 op=1657394
 msgID=1657395 origin="Directory REST
 API" httpRequestID="369"
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 authDN="cn=Internal
 Client,cn=Internal,cn=Root DNs,cn=config"

PingDirectory | Configure PingDataSync Server | 75

 requesterIP="internal"
 requesterDN="cn=Internal Client,cn=Internal,cn=Root
 DNs,cn=config"
 requestControls="1.3.6.1.4.1.30221.2.5.2"
 via="app='PingDirectory-ds1'
 clientIP='0:0:0:0:0:0:0:1'
 sessionID='201811020831'
 requestID='ee919049-6710-4594-9c66-28b4ada4b127'"
 requestOID="1.3.6.1.4.1.30221.1.6.1"
 requestType="Password Policy State"
 resultCode=0 resultCodeName="Success"
 etime=0.542 usedPrivileges="bypassacl,password-reset"
 responseOID="1.3.6.1.4.1.30221.1.6.1"
 responseType="Password Policy State"
 dn="uid=user.86,ou=People,dc=example,dc=com"
 [02/Nov/2018:10:16:50.530 -0500] SEARCH
 RESULT instanceName="ds1"
 threadID=52358 conn=-371048 op=1657397
 msgID=1657398 origin="Directory REST
 API" httpRequestID="369"
 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
 authDN="cn=Internal
 Client,cn=Internal,cn=Root DNs,cn=config"
 requesterIP="internal"
 requesterDN="cn=Internal Client,cn=Internal,cn=Root
 DNs,cn=config"
 requestControls="1.3.6.1.4.1.30221.2.5.2"
 via="app='PingDirectoryds1'
 clientIP='0:0:0:0:0:0:0:1'
 sessionID='201811020831'
 requestID='ee919049-6710-4594-9c66-28b4ada4b127'"
 base="cn=Default Password Policy,cn=Password
 Policies,cn=config" scope=0
 filter="(&)" attrs="dscfg- password-
attribute" resultCode=0
 resultCodeName="Success" etime=0.065
 preAuthZUsedPrivileges="bypassacl,config-read" entriesReturned=1

Resync tool
The resync tool provides bulk synchronization that can be used to verify the synchronization setup.
The tool operates on a single Sync Pipe at a time, retrieves entries from the Sync Source in bulk, and
compares the source entries with the corresponding destination entries. If destination entries are missing
or attributes are changed, they are updated.

The command provides a --dry-run option that can be used to test the matches between the Sync
Source and Destination, without committing any changes to the target topology. The resync tool also
provides options to write debugging output to a log.

Note:

The resync tool should be used for relatively small datasets. For large deployments, export entries from
the Sync Source into an LDIF file, run the bin/translate-ldif tool to translate and filter the entries
into the destination format, and then import the result LDIF file into the Sync Destination.

Use the resync--help command for more information and examples. Logging is located in logs/
tools/resync.log and logs/tools/resync-errors.log. If necessary, the logging location can be
changed with the --logFilePath option.

PingDirectory | Configure PingDataSync Server | 76

Test attribute and DN maps

The resync tool can be used to test how attribute maps and DN maps are configured by synchronizing a
single entry. If the --logFilePath and --logLevel options are specified, the resync tool generates a
log file with details.

Use the--dry-run option and specify a single entry, such as uid=user.0. Any logging performed
during the operation appears in logs/tools/resync.log.

$ bin/resync --pipe-name sun-to-ds-sync-pipe \
 --sourceSearchFilter "(uid=user.0)" \
 --dry-run \
 --logLevel debug

Verify the synchronization configuration

The most common use for the resync tool is to test that the Sync Pipe configuration has been set up
correctly. For example, the following procedure assumes that the configuration was set up with the Sync
Source topology (two replicated Sun Directory servers) with 2003 entries; the Sync Destination topology
(two replicated PingData PingDirectory Server) has only the base entry and the cn=Sync User entry.
Both source and destination topologies have their LDAP Change Logs enabled. Because both topologies
are not actively being updated, the resync tool can be run with one pass through the entries.

Useresync with the --dry-run option to check the synchronization configuration. The output displays a
timestamp that can be tracked in the logs.

$ bin/resync --pipe-name sun-to-ds-sync-pipe \
 --numPasses 1 \
 --dry-run
Starting Pass 1
Status after completing all passes[20/Mar/2010:10:20:07 -0500]

Source entries retrieved 2003
Entries missing 2002
Entries out-of-sync 1
Duration (seconds) 4
Resync completed in 4 s.
0 entries were in-sync, 0 entries were modified, 0 entries were created,
1 entries are still out-of-sync, 2002 entries are still missing, and
0 entries could not be processed due to an error

Populate an empty sync destination topology

About this task

The following procedure uses the resync tool to populate an empty Sync Destination topology for small
datasets. For large deployments, use the bin/translate-ldif.

In this example, assume that the Sync Destination topology has only the base entry
(dc=example,dc=com) and the cn=Sync User entry. Perform the following steps to populate an empty
Sync Destination:

Steps

1. Run the resync command with the log file path and with the log level debug. Logging is located in
logs/tools/resync.log and logs/tools/resync-errors.log.

$ bin/resync --pipe-name sun-to-ds-sync-pipe \
 --numPasses 1 \

PingDirectory | Configure PingDataSync Server | 77

 --logLevel debug

2. Open the logs/resync-failed-DNs.log file in a text editor to locate the error and fix it. An entry
cannot be created because the parent entry does not exist.

Entry '(see below)' was dropped because there was a failure at the
resource:
Failed to create entry uid=mlott,ou=People,dc=example,dc=com. Cause:
LDAPException(resultCode=no such object, errorMessage='Entry
uid=user.38,ou=People,dc=example,dc=com cannot be added because its parent
entry ou=People,dc=example,dc=com does not exist in the server',
matchedDN='dc=example,dc=com')
(id=1893859385ResourceOperationFailedException.java:126 Build
revision=4881)
dn: uid=user.38,ou=People,dc=example,dc=com

3. Rerun the resync command. The command creates the entries in the Sync Destination topology that
are present in the Sync Source topology.

$ bin/resync --pipe-name sun-to-ds-sync-pipe

...(output from each pass)...
Status after completing all passes[20/Mar/2016:14:23:33 -0500]

Source entries retrieved 160
Entries in-sync 156
Entries created 4
Duration (seconds) 11

Resync completed in 12 s.

156 entries were in-sync, 0 entries were modified, 4 entries were created,
0 entries are still out-of-sync, 0 entries are still missing, and 0
entries could not be processed due to an error

Note:

If importing a large amount of data into a PingData PingDirectory Server, run export-ldif and
import-ldif on the newly populated backend for most efficient disk space use. If needed, run
dsreplication initialize to propagate the efficient layout to additional replicas.

Set the synchronization rate

About this task

The resync command has a --ratePerSecondFile option that enables a specific synchronization rate.
The option can be used to adjust the rate during off-peak hours, or adjust the rate based on measured
loads for very long operations.

Note:

The resync command also has a --ratePerSecond option. If this option is not provided, the tool
operates at the maximum rate.

Run the resync tool first at 100 operations per second, measure the impact on the source servers, then
adjust as desired. The file must contain a single positive integer number surrounded by white space. If the
file is updated with an invalid number, the rate is not updated.

PingDirectory | Configure PingDataSync Server | 78

Steps

1. Create a text file containing the rate. The number must be a positive integer surrounded by white space.

$ echo ’100 ’ >rate.txt

2. Run the resync command with the --ratePerSecondFile option.

$ bin/resync --pipe-name "sun-to-ds-sync-pipe" \
 --ratePerSecondPath rate.txt

Synchronize a specific list of DNs

About this task

The resync command enables synchronizing a specific set of DNs that are read from a file using the
--sourceInputFile option. This option is useful for large datasets that require faster processing by
targeting individual base-level searches for each source DN in the file. If any DN fails (parsing, search, or
process errors), the command creates an output file of the skipped entries (resync-failed-DNs.log),
which can be run again.

The file must contain only a list of DNs in LDIF format with dn: or dn::. The file can include comment
lines. All DNs can be wrapped and are assumed to be wrapped on any lines that begin with a space
followed by text. Empty lines are ignored.

Small files can be created manually. For large files, use ldapsearch to create an LDIF file, as follows:

Steps

1. Run an ldapsearch command using the special OID "1.1" extension, which only returns the DNs in
the DIT. For example, on the Sync Source directory server, run the following command:

$ bin/ldapsearch --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com \
 --baseDN dc=example,dc=com \
 --searchScope sub "(objectclass=*)" "1.1" > dn.ldif

2. Run the resync command with the file.

$ bin/resync --pipe-name "sun-to-ds-pipe" \
 --sourceInputFile dn.ldif

Starting pass 1
[20/Mar/2016:10:32:11 -0500]

Resync pass 1
Source entries retrieved 1999
Entries created 981
Current pass, entries processed 981
Duration (seconds) 10
Average ops/second 98
Status after completing all passes[20/Mar/2016:10:32:18 -0500]

Source entries retrieved 2003
Entries created 2003
Duration (seconds) 16
Average ops/second 98
Resync completed in 16 s.
0 entries were in-sync, 0 entries were modified, 2003 entries were
created, 0 entries are still out-of-sync, 0 entries are still missing, and

PingDirectory | Configure PingDataSync Server | 79

0 entries could not be processed due to an error

3. View the logs/tools/resync-failed-DNs.log to determine skipped DNs. Correct the source
DNs file, and rerun the resync command.

Realtime-sync tool
The bin/realtime-sync tool controls starting and stopping synchronization globally or for individual
Sync Pipes. The tool also provides features to set a specific starting point for real-time synchronization.

To see the current status of real-time synchronization, view the monitor properties: num-sync-ops-in-
flight, num-ops-in-queue, and source-unretrieved-changes. For example, use ldapsearchto
view a specific Sync Pipe’s monitor information:

$ bin/ldapsearch --baseDN cn=monitor \
--searchScope sub "(cn=Sync PipeMonitor: PIPE_NAME)"

The Stats Logger can also be used to view status. See the PingIdentityPingDirectory Server Administration
Guide for details.

Start real-time synchronization globally

About this task

The realtime-sync tool assumes that the synchronization topology is configured correctly.

Perform the following steps to start real time synchronization globally:

Steps

1. Run the tool from the <server-root>/bin directory. This example assumes that a single Sync Pipe
called "dsee-to-ds-sync-pipe" exists.

$ bin/realtime-sync start --pipe-name "dsee-to-ds-sync-pipe" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

2. If more than one Sync Pipe is configured, specify each using the --pipe-name option. The following
example starts synchronization for a bidirectional synchronization topology.

$ bin/realtime-sync start --pipe-name "Sun DS to DS" \
 --pipe-name "DS to Sun DS" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

Start or Pause synchronization

Pause or start synchronization by using the start and stop subcommands. If synchronization is stopped
and then restarted, changes made at the Sync Source while synchronization was stopped will still be
detected and applied. Synchronization for individual Sync Pipes can be started or stopped using the
--pipe-name argument. If the --pipe-name argument is omitted, then synchronization is started or
stopped globally.

The following command stops all Sync Pipes:

$ bin/realtime-sync stop --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \

PingDirectory | Configure PingDataSync Server | 80

 --bindPassword secret \
 --no-prompt

If a topology has two Sync Pipes, Sync Pipe1 and Sync Pipe2, the following command stops Sync Pipe1.

$ bin/realtime-sync stop --pipe-name "Sync Pipe1" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret --no-prompt

Set startpoints

About this task

Startpoints instruct the Sync Pipe to ignore all changes made prior to the current time. Once
synchronization is started, only changes made after this command is run will be detected at the Sync
Source and applied at the Sync Destination.

The set-startpoint subcommand is often run during the initial setup prior to starting real-time
synchronization. It should be run prior to initializing the data in the Sync Destination.

The set-startpoint subcommand can start synchronization at a specific change log number, or back
at a state that occurred at a specific time. For example, synchronization can start 10 minutes prior to the
current time.

Perform the following steps to set a synchronization startpoint:

Steps

1. If started, stop the synchronization topology globally with the following command:

$ bin/realtime-sync stop --pipe-name "Sync Pipe1" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --no-prompt

2. Set the startpoint for the synchronization topology. Any changes made before setting this command will
be ignored.

$ bin/realtime-sync set-startpoint --pipe-name "Sync Pipe1" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \

 --no-prompt \
 --beginning-of-changelog

Set StartPoint task 2011072109564107 scheduled to start immediately
[21/Jul/2016:09:56:41 -0500] severity="INFORMATION" msgCount=0
msgID=1889535170
message="The startpoint has been set for Sync Pipe 'Sync Pipe1'.
Synchronization will resume from the last change number in the Sync
Source"
Set StartPoint task 2011072109564107 has been successfully completed

PingDirectory | Configure PingDataSync Server | 81

Restart synchronization at a specific change log event

About this task

Perform the following steps to restart synchronization at a specific event:

Steps

1. Search for a specific change log event from which to restart the synchronization state. On one of the
endpoint servers, run ldapsearch to search the change log.

$ bin/ldapsearch -p 1389
--bindDN "uid=admin,dc=example,dc=com" \
--bindPassword secret \
--baseDN cn=changelog \
--dontWrap

"(objectclass=*)"
dn: cn=changelog
objectClass: top
objectClass: untypedObject
cn: changelog
dn: changeNumber=1,cn=changelog
objectClass: changeLogEntry
objectClass: top
targetDN: uid=user.13,ou=People,dc=example,dc=com
changeType: modify
changes::
cmVwbGFjZTogcm9vbU51bWJlcgpyb29tTnVtYmVyOiAwMTM4Ci0KcmVwbGFjZTogbW9kaW
ZpZXJzTmFtZQptb2RpZmllcnNOYW1lOiBjbj1EaXJlY3RvcnkgTWFuYWdlcixjbj1Sb290
IEROcyxjbj1jb25maWcKLQpyZXBsYWNlOiBkcy11cGRhdGUtdGltZQpkcy11cGRhdGUtdG
ltZTo6IEFBQUJKZ25OWlUwPQotCgA=
changenumber: 1
 ... (more output)
dn: changeNumber=2329,cn=changelog
objectClass: changeLogEntry
objectClass: top
targetDN: uid=user.49,ou=People,dc=example,dc=com
changeType: modify
changes::
cmVwbGFjZTogcm9vbU51bWJlcgpyb29tTnVtYmVyOiAwNDMzCi0KcmVwbGFjZTogbW9kaW
ZpZXJzTmFtZQptb2RpZmllcnNOYW1lOiBjbj1EaXJlY3RvcnkgTWFuYWdlcixjbj1Sb290
IEROcyxjbj1jb25maWcKLQpyZXBsYWNlOiBkcy11cGRhdGUtdGltZQpkcy11cGRhdGUtdG
ltZTo6IEFBQUJKZ25OMC84PQotCgA=
changenumber: 2329

2. Restart synchronization from change number 2329 using the realtime-sync tool. Any event before
this change number will not be synchronized to the target endpoint.

$ bin/realtime-sync set-startpoint \
 --change-number 2329 \
 --pipe-name "Sync Pipe 1" \
 --bindPassword secret \
 --no-prompt

Change the synchronization state by a specific time duration

The following command will start synchronizing data at the state that occurred 2 hours and 30 minutes
prior to the current time on External Server 1 for Sync Pipe 1. Any changes made before this time will not
be synchronized. Specify days (d), hours (h), minutes (m), seconds (s), or milliseconds (ms).

PingDirectory | Configure PingDataSync Server | 82

Use realtime-sync with the --startpoint-rewind option to set the synchronization state and begin
synchronizing at the specified time.

$ bin/realtime-sync set-startpoint \
 --startpoint-rewind 2h30m \
 --pipe-name "Sync Pipe 1" \
 --bindPassword secret \
 --no-prompt

Schedule a real-time sync as a task

About this task

The realtime-sync tool features both an offline mode of operation as well as the ability to schedule
an operation to run within PingDataSync Server's process. To schedule an operation, supply LDAP
connection options that allow this tool to communicate with the server through its task interface. Tasks
can be scheduled to run immediately or at a later time. Once scheduled, tasks can be managed using the
manage-tasks tool.

Perform the following steps to schedule a synchronization task:

Steps

1. Use the --start option with the realtime-sync command to schedule a start for the
synchronization topology. The following command will set the start time at July 21, 2016 at 12:01:00
AM. The scheduled task can be stopped with the --stop subcommand.

$ bin/realtime-sync set-startpoint \
 --pipe-name "sun-to-ds-sync-pipe" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --start 20150721000100 \
 --no-prompt

Set StartPoint task 2009072016103807 scheduled to start Jul 21, 2016
12:01:00 AM CDT

2. Run the manage-tasks tool to manage or cancel the task.

$ bin/manage-tasks --port 7389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

Configure the PingDirectory Server backend for synchronizing deletes

About this task

The PingDirectory Server’s change log backend's changelog-deleted-entry-include-attribute
property specifies which attributes should be recorded in the change log entry during a DELETE operation.
Normally, PingDataSync Server cannot correlate a deleted entry to the entry on the destination. If a
Sync Class is configured with a filter, such as "include-filter: objectClass=person," the
objectClass attribute must be recorded in the change log entry. Special correlation attributes (other than
DN), will also need to be recorded on the change log entry to be properly synchronized at the endpoint
server.

PingDirectory | Configure PingDataSync Server | 83

On each PingDirectory Server backend, use the dsconfig command to set the property.

$ bin/dsconfig set-backend-prop --backend-name changelog \
 --set changelog-deleted-entry-include-attribute:objectClass

If the destination endpoint is an Oracle/Sun DSEE (or Sun DS) server, the Sun DSEE server does not
store the value of the user deleting the entry, specified in the modifiers name attribute. It only stores the
value of the user who last modified the entry while it still existed.

To set up a Sun DSEE destination endpoint to record the user who deleted the entry, use the Ping Identity
Server SDK to create a plugin, as follows:

Steps

1. Update the Sun DSEE schema to include a deleted-by-syncauxiliary objectclass. It will only be
used as a marker objectclass, and not require or allow additional attributes to be present on an entry.

2. Update the Sun DSEE Retro Change Log plugin to include the deleted-by-sync auxiliary
objectclass as a value for the deletedEntryAttrs attribute.

3. Write an LDAPSyncDestinationPlugin script that in the preDelete() method modifies the entry
that is being deleted to include the deleted-by-sync objectclass.

4. Update the Sync Class filter that is excluding changes by the Sync User to also include (!
(objectclass=deleted-by-sync)).

Configure DN maps
Similar to attribute maps, DN maps define mappings when destination DNs differ from source DNs. These
differences must be resolved using DN maps in order for synchronization to successfully take place. For
example, the Sync Source could have a DN in the following format:

uid=jdoe,ou=People,dc=example,dc=com

While the Sync Destination could have the standard X.500 DN format.

DN mappings allow the use of wild cards for DN transformations. A single wild card (*) matches a single
RDN component and can be used any number of times. The double wild card (**) matches zero or more
RDN components and can be used only once.

Note:

If a literal '*' is required in a DN then it must be escaped as '\2A'.

The wild card values can be used in the to-dn-pattern attribute using {1} to replace their original index
position in the pattern, or {attr} to match an attribute value. For example:

*,**,dc=com->{1},ou=012,o=example,c=us

For example, using the DN, uid=johndoe,ou=People,dc=example,dc=com, and mapping to the
target DN, uid=johndoe,ou=012,o=example,c=us:

• "*" matches one RDN component, uid=johndoe
• "**" matches zero or more RDN components, ou=People,dc=example
• "dc=com" matches dc=com in the DN.

The DN is mapped to the {1},ou=012,o=example,c=us. "{1}" substitutes the first wildcard element
"uid=johndoe", so that the DN is successfully mapped to:

uid=johndoe,ou=012,o=example,c=us

PingDirectory | Configure PingDataSync Server | 84

Regular expressions and attributes from the user entry can also be used in the to-dn-pattern attribute.
For example, the following expression constructs a value for the uid attribute, which is the RDN, out of the
initials (first letter of given name and sn) and the employee ID (the eid attribute) of a user.

uid={givenname:/^(.)(.*)/$1/s}{sn:/^(.)(.*)/$1/s}{eid},{2},o=example

Note:

PingDataSync Server automatically validates any DN mapping prior to applying the configuration.

Configure a DN map by using dsconfig

About this task

A DN map can be configured using dsconfig, either with the interactive DN Map menu, or from the
command line.

Perform the following to configure a DN map:

Steps

1. Use dsconfig to create a DN map for PingDataSync Server.

$ bin/dsconfig --no-prompt create-dn-map \
 --map-name nested-to-flattened \
 --set "from-dn-pattern:*,*,dc=example,dc=com" \
 --set "to-dn-pattern:uid={givenname:/^(.)(.*)/\$1/s}{sn:/^(.)(.*)/\$1/s}
(eid},{2},o=example" \
 --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

2. After DN mappings are configured, add the new DN map to a new Sync Class or modify an existing
Sync Class.

$ bin/dsconfig --no-prompt set-sync-class-prop \
 --pipe-name test-sync-pipe \
 --class-name test-sync-class \
 --set dn-map:test-dn-map \
 --port 389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

Configure synchronization with JSON attribute values
PingDataSync Server supports synchronization of attributes that hold JSON objects. The following
scenarios are supported:

• Synchronizing a JSON attribute to another JSON attribute - A subset of fields can be synchronized,
optionally retaining fields that appear at the destination but not at the source.

• Synchronizing a JSON attribute to a non-JSON attribute - A single field of the JSON value can be
extracted with a constructed attribute mapping.

• Synchronizing a non-JSON attribute to a JSON attribute - The source value can be escaped so that
it ensures the JSON value is properly formatted.

• Attribute correlation - A JSON field can be used when correlating a destination entry with a source
entry.

PingDirectory | Configure PingDataSync Server | 85

The following examples show configuration scenarios based on the LDAP ubidEmailJSON attribute,
which has fields of value, type, primary, and verified:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home",
 "primary" : true,
 "verified" : true}

Synchronize ubidEmailJSON fully

If a source JSON attribute value should be synchronized fully to a destination JSON attribute value, no
special configuration is required.

Synchronize a subset of fields from the source attribute

For example, the following configuration can be used to synchronize the value and type fields of
ubidEmailJSON from the source to a destination. To synchronize this source value:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home",
 "primary" : true}

to this value at the destination:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home"}

A JSON Attribute configuration object must be created and associated with the Sync Class. This can be
done by either explicitly including the fields to synchronize:

$ bin/dsconfig create-json-attribute --pipe-name "A to B" \
 --class-name Users \
 --attribute-name ubidEmailJSON \
 --set include-field:type \
 --set include-field:value

Or by excluding the fields that should not be synchronized:

$ bin/dsconfig create-json-attribute \
 --pipe-name "A to B" \
 --class-name Users \
 --attribute-name ubidEmailJSON \
 --set exclude-field:preferred \
 --set exclude-field:verified

If the destination is prepared to only handle a specific subset of fields, then list the fields to include.
However, if only a small, known subset of fields from the source should be excluded, then exclude-
field could be used. In this example, the destination data for the ubidEmailJSON attribute will always
be a subset of the full data.

Note:

A Sync Class can be configured to exclude certain attributes from synchronization. Creating a regular
attribute mapping will override this setting, and the attribute will be synchronized. Creating a JSON attribute
mapping does not override this setting, and the JSON attribute will not be synchronized. A JSON attribute
is not a traditional attribute mapping. It only includes information on the destination attribute name. To work
around this, the attribute either needs to be mapped from a source attribute, or have its value constructed.

The following scenario illustrates how the destination can include additional fields that are not present at
the source.

PingDirectory | Configure PingDataSync Server | 86

Retain destination-only fields

To synchronize changes to the source fields while preserving the value of the verified field of the
ubidEmailJSON attribute at the destination, configure the JSON Attribute as follows:

$ bin/dsconfig create-json-attribute \
 --pipe-name "A to B" \
 --class-name Users \
 --attribute-name ubidEmailJSON \
 --set id-field:value \
 --set exclude-field:verified

The verified field is excluded and value is chosen to correlate destination values with source values.
For example, given that the source and destination value fields match, if the source initially contained:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home"}

and the destination contained:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home",
 "verified" : true},

if the source changed to:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "other"}

then the destination would change to:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "other",
 "verified" : true}

However, if the source changed to:

ubidEmailJSON: {"value" : "john.smith@example.com",
 "type" : "home"}

then the destination would be updated to:

ubidEmailJSON: {"value" : "john.smith@example.com",
 "type" : "home"}

The verified field has been dropped because this logically represents a new JSON object rather than an
update of an existing one.

Synchronize a field of a JSON attribute into a non-JSON attribute

If the source stores:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home"}

but the destination stores:

mail: jsmith@example.com

PingDirectory | Configure PingDataSync Server | 87

To synchronize changes between these systems, a constructed attribute mapping must be configured:

$ bin/dsconfig create-attribute-mapping \
 --map-name "Attribute Map" \
 --mapping-name mail \
 --type constructed \
 --set "value-pattern:{ubidEmailJSON.value}"

The value-pattern syntax allows attributes to be referenced by placing them in {}. JSON fields within
the attribute can be referenced by using the syntax {attribute.field}. See this property in the
Configuration Reference guide, or dsconfig tool command help for more information.

After the “Attribute Map” is created, it can be referenced from the Sync Class:

$ bin/dsconfig set-sync-class-prop
 --pipe-name "A to B" \
 --class-name Users \
 --set "attribute-map:Attribute Map"

Note:

While LDAP attribute names are not case sensitive, the JSON field names are. By default, errors related to
attribute mapping are not logged. To enable error logging, configure the Debug Logger with the following:

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true

$ bin/dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name com.unboundid.directory.sync.mapping \
 --set debug-level:warning

Synchronize a non-JSON attribute into a field of a JSON attribute

This scenario provides a reversal of the previous example. The source stores the following information:

mail: jsmith@example.com

but the destination stores the following information:

ubidEmailJSON: {"value" : "jsmith@example.com"}

To construct an attribute value that functions as a JSON object, use JSON attribute mapping and JSON
attribute mapping field configuration objects. The following code provides an example:

bin/dsconfig create-attribute-mapping --map-name "Attr Map" \
 --mapping-name ubidEmailJSON \
 --type json

bin/dsconfig create-json-attribute-mapping-field --map-name "Attr Map" \
 --mapping-name ubidEmailJSON \
 --field-name "value" \
 --from-attribute mail

For more information about these configuration object types, refer to the configuration reference guide.

PingDirectory | Configure PingDataSync Server | 88

You can also use a constructed attribute mapping to construct a JSON attribute value as a raw string, as
follows:

$ bin/dsconfig create-attribute-mapping \
 --map-name "Attr Map" \
 --mapping-name ubidEmailJSON \
 --type constructed \
 --set 'value-pattern:{{"value" : "{mail:jsonEscape}"}}'

When constructing a value, be aware of the following points:

• Double curly brackets ({{ }}) are necessary to represent a single curly bracket ({ }) in the output.
These brackets are typically used to reference attribute values.

• Use the :jsonEscape modifier to escape attribute values that appear within a JSON attribute. This
step prevents values that include quotes like '"John Smith" <jsmith@example.com>' from
producing invalid JSON.

In the following example, a JSON Attribute object must be created because the destination value is likely to
be augmented with additional information:

$ bin/dsconfig create-json-attribute \
 --pipe-name "A to B" \
 --class-name Users \
 --attribute-name ubidEmailJSON \
 --set id-field:value \
 --set include-field:value

Synchronize multiple non-JSON attributes into fields of a JSON attribute

Multiple JSON fields can be defined within a single JSON attribute. For any source attribute that does not
exist, the corresponding JSON field is omitted from the JSON attribute. The following code demonstrates
the mapping of a standard LDAP schema into the standard PingOne user schema.

dsconfig create-attribute-map \
 --map-name PingDirectory_to_PingOne_User_Map

...

dsconfig create-attribute-mapping \
 --map-name PingDirectory_to_PingOne_User_Map \
 -mapping-name name \
 --type json

dsconfig create-json-attribute-mapping-field \
 --map-name PingDirectory_to_PingOne_User_Map \
 --mapping-name name \
 --field-name formatted \
 --set from-attribute:cn \
 --json-type string

dsconfig create-json-attribute-mapping-field \
 --map-name PingDirectory_to_PingOne_User_Map \
 --mapping-name name \
 --field-name given \
 --set from-attribute:givenName \
 --json-type string

dsconfig create-json-attribute-mapping-field \
 --map-name PingDirectory_to_PingOne_User_Map \
 --mapping-name name \
 --field-name family \

PingDirectory | Configure PingDataSync Server | 89

 --set from-attribute:sn \
 --json-type string

Correlating attributes based on JSON fields

When the destination of a Sync Pipe is a Ping Directory Server or PingDirectoryProxy Server, source
and destination entries can be correlated by referencing a field within a JSON attribute. In the following
example, source entries will be matched with destination entries that have the same value field within the
ubidEmailJSON value.

$ bin/dsconfig set-sync-class-prop \
 --pipe-name "A to B" \
 --class-name Users \
 --set destination-correlation-attributes:ubidEmailJSON.value

This could also be used with the previous example, which does not store ubidEmailJSON.value at the
source but maps into it before correlating at the destination.

Configure fractional replication

About this task

PingDataSync Server supports fractional replication to any server type. For example, if a replica only
performs user authentications, PingDataSync Server can be configured to propagate only the uid and
userpassword password policy attributes, reducing the database size at the replica and the network
traffic needed to keep this servers synchronized.

The following example configures a fractional replication, where the uid and userPassword attributes
of all entries in the source topology are synchronized to the destination topology. Because the uid and
userPassword attributes are present, the objectclass attribute must also be synchronized. The
example assumes that PingDataSync Server and the external servers are configured and a Sync Pipe and
Sync Class are defined, but real-time synchronization or bulk resync have not been performed.

Perform the following steps to configure fractional replication from the dsconfig interactive menu:

Steps

1. On the main menu, type the number corresponding to Sync Classes.

2. On the Sync Class menu, type the number corresponding to viewing and editing an existing Sync
Class. Assume that only one Sync Class has been defined.

3. Verify that the Sync Pipe and Sync Class exist.

4. On the SyncClass Properties menu, type the number specifying the source LDAP filter (include-
filter property) that defines which source entries are to be included in the Sync Class.

5. On the Include-Filter Property menu, type the number corresponding to adding a filter value. For this
example, type (objectclass=person). When prompted, enter another filter. Press Enter to continue.
On the menu, enter 1 to use the value when specifying it.

6. On the SyncClass Properties menu, type the number corresponding to the auto-mapped-source-
attribute property. Change the value from "-all-" to a specific attribute, so that only the specified
attribute is automatically mapped from the source topology to the destination topology.

7. On the Auto-Mapped-Source-Attribute Property menu, type the number corresponding to adding the
source attributes that will be automatically mapped to the destination attributes of the same name.
When prompted, enter each attribute, and then press Enter.

Enter another value for the 'auto-mapped-source-attribute' property
[continue]: uid

PingDirectory | Configure PingDataSync Server | 90

Enter another value for the 'auto-mapped-source-attribute' property
[continue]: userPassword
Enter another value for the 'auto-mapped-source-attribute' property
[continue]: objectclass
Enter another value for the 'auto-mapped-source-attribute' property
[continue]:

8. On the Auto-Mapped-Source-Attribute Property menu, type the number corresponding to removing one
or more values. In this example, remove the "-all-" value, so that only the objectclass, uid, and
userPassword attributes are only synchronized.

9. On the Auto-Mapped-Source-Attribute Property menu, press Enter to accept the values.

10.On the Sync Class Properties menu, type the number corresponding to excluding some attributes
from the synchronization process. When using the objectclass=person filter, the cn, givenName,
and sn attributes must be excluded. Enter the option to add one or more attributes, and then add
each attribute to exclude on the excluded-auto-mapped-source-attributes Property
menu. For this example, exclude the cn, and sn attributes, which are required attributes of the
Person objectclass. Also exclude the givenName attribute,which is an optional attribute of the
inetOrgPerson objectclass.

Enter another value for the 'excluded-auto-mapped-source-attributes'
property
[continue]: givenName
Enter another value for the 'excluded-auto-mapped-source-attributes'
property
[continue]: sn
Enter another value for the 'excluded-auto-mapped-source-attributes'
property
[continue]:

11.On the Excluded-Auto-Mapped-Source-Attributes Property menu, press Enter to accept the changes.

Note:

If using entryUUID as a correlation attribute, some attribute uniqueness errors may occur
while using the resync tool. Either set the excluded-auto-mapped-source-attributes
property value to entryUUID on the Sync Class configuration menu, or run resync with the --
excludeDestinationAttr entryUUID argument.

12.On the Sync Class Properties menu, review the configuration and accept the changes.

13.On the server instances in the destination topology, turn off schema checking to avoid a schema error
that occurs when the required attributes in the Person objectclass are not present. Make sure that
the global configuration property for the server-group is set to all-servers. Use the following
command to turn off schema checking on all of the servers in the group.

$ bin/dsconfig --no-prompt set-global-configuration-prop \
 --set check-schema:false \
 --applyChangeTo server-group \
 --port 3389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

14.Run bin/resync to load the filtered data from the source endpoint to the target endpoint.

$ bin/resync --pipe-name "test-sync-pipe" \
 --numPasses 3

15.Run bin/realtime-sync to start synchronization.

$ bin/realtime-sync start --pipe-name "test-sync-pipe" \
 --port 7389 \
 --bindDN "uid=admin,dc=example,dc=com" \

PingDirectory | Configure PingDataSync Server | 91

 --bindPassword secret \
 --no-prompt

Configure failover behavior
The following illustrates a simplified synchronization topology with a single failover server on the source,
destination, and PingDataSync Server, respectively. The gray lines represent possible failover connections
in the event the server is down. The external servers are prioritized so that src1 has higher priority than
src2; dest1 has higher priority than dest2.

The main PingDataSync Server and its redundant failover instance communicate with each other over
LDAP and bind using cn=IntraSync User,cn=Root DNs,cn=config. The servers run periodic
health checks on each other and share information on all changes that have been processed. Whenever
the failover server loses connection to the main server, it assumes that the main server is down and begins
processing changes from the last known change. Control reverts back to the main server once it is back
online.

Unlike the PingDataSync Servers, the external servers and their corresponding failover server(s) do not
run periodic health checks. If an external server goes offline, the failover server will receive transactions
and remain connected to PingDataSync Server until the Sync Pipe is restarted, regardless of if the main
external server comes back online.

Conditions that trigger immediate failover

Immediate failover occurs when PingDataSync Server receives one of the following error codes from an
external server:

• BUSY (51)
• UNAVAILABLE (52)
• SERVER CONNECTION CLOSED (81)
• CONNECT ERROR (91)

If PingDataSync Server attempts a write operation to a target server that returns one of these error codes,
PingDataSync Server will automatically fail over to the next highest prioritized server instance in the target
topology, issue an alert, and then reissue the retry attempt. If the operation is unsuccessful for any reason,
the server logs an error.

PingDirectory | Configure PingDataSync Server | 92

Failover server preference

PingDataSync Server supports endpoint failover, which is configurable using the location property
on the external servers. By default, PingDataSync Server prefers to connect to and failover to endpoint
servers in the same location as itself. If no location settings are configured, PingDataSync Server will
iterate through the configured list of external servers on the Sync Source and Sync Destination when failing
over.

PingDataSync Server does not perform periodic health checks of external servers, and does not failover
automatically to a preferred external server. Due to the cost of sync failover, PingDataSync Server remains
connected to a given server until the server stops responding or until the Sync Pipe is restarted. When
a failover occurs, PingDataSync Server returns to the most preferred server, optionally using location
settings to identify it, and works its way down the list. The following provides an example configuration of
external servers:

austin1.server.com:1389
london1.server.com:2389
boston1.server.com:3389
austin2.server.com:4389
boston2.server.com:5389
london2.server.com:6389

If the austin1 server were to become unavailable, PingDataSync Server will automatically pick up changes
on the next server on the list, london1. If london1 is also down, then the next server, boston1 will be picked
up. After PingDataSync Server iterates through the list, it returns to the top of the list. If PingDataSync
Server is connected to london2 and it goes down, it will fail over to austin1.

To minimize WAN traffic, configure the location property for each external server using the dsconfig
command on PingDataSync Server. Assume that PingDataSync Server has its own location property
(set in the Global Configuration) set to "austin."

austin1.server.com:1389 location=austin
london1.server.com:2389 location=london
boston1.server.com:3389 location=boston
austin2.server.com:4389 location=austin
boston2.server.com:5389 location=boston
london2.server.com:6389 location=london

With the location property set for each server, PingDataSync Server gets its changes from server
austin1. If austin1 goes down, PingDataSync Server will pick up changes from austin2. If austin2 goes
down, the server will iterate through the rest of the list in the order it is configured.

The location property has another sub-property, preferred-failover-location that specifies a
set of alternate locations if no servers in this location are available. If multiple values are provided, servers
are tried in the order in which the locations are listed. The preferred-failover-location property
provides more control over the failover process and allows the failover process to jump to a specified
location. Care must be used so that circular failover reference does not take place. Here is an example
configuration:

austin1.server.com:1389 location=austin preferred-failover-location=boston
london1.server.com:2389 location=london preferred-failover-location=austin
boston1.server.com:3389 location=boston preferred-failover-location=london
austin2.server.com:4389 location=austin preferred-failover-location=boston
boston2.server.com:5389 location=boston preferred-failover-location=austin
london2.server.com:6389 location=london preferred-failover-location=london

PingDataSync Server will respect the preferred-failover-location if it cannot find any external
servers in the same location as itself, it will look for any external servers in its own preferred-
failover-location. In this example, when austin1 becomes unavailable, it will fail over to austin2
because they are in the same location. If austin2 is unavailable, it will fail over to boston1, which is in the

PingDirectory | Configure PingDataSync Server | 93

preferred-failover-location of PingDataSync Server. If boston1 is unavailable, PingDataSync
Server will fail over to boston2, and finally, it will try the london1 and london2 servers.

Configuration properties that control failover behavior

There are four important advanced properties to fine tune the failover mechanism:

• max-operation-attempts (Sync Pipe)
• response-timeout (source and destination endpoints)
• max-failover-error-code-frequency (source and destination endpoints)
• max-backtrack-replication-latency (source endpoints only)

These properties apply to the following LDAP error codes:

Table 3: LDAP Error Codes

Error Code Description

ADMIN_LIMIT_EXCEEDED(11) Indicates that processing on the requested
operation could not continue, because an
administrative limit was exceeded.

ALIAS_DEREFERENCING_PROBLEM (36) Indicates that a problem was encountered while
attempting to dereference an alias for a search
operation.

CANCELED(118) Indicates that a cancel request was successful, or
that the specified operation was canceled.

CLIENT_SIDE_LOCAL_ERROR(82) Indicates that a local (client-side) error occurred.

CLIENT_SIDE_ENCODING_ERROR(83) Indicates that an error occurred while encoding a
request.

CLIENT_SIDE_DECODING_ERROR(84) Indicates that an error occurred while decoding a
request.

CLIENT_SIDE_TIMEOUT(85) Indicates that a client-side timeout occurred.

CLIENT_SIDE_USER_CANCELLED(88) Indicates that a user canceled a client-side
operation.

CLIENT_SIDE_NO_MEMORY(90) Indicates that the client could not obtain enough
memory to perform the requested operation.

CLIENT_SIDE_CLIENT_LOOP(96) Indicates that a referral loop is detected.

CLIENT_SIDE_REFERRAL_LIMIT_EXCEEDED
(97)

Indicates that the referral hop limit was exceeded.

DECODING_ERROR(84) Indicates that an error occurred while decoding a
response.

ENCODING_ERROR(83) Indicates that an error occurred while encoding a
response.

INTERACTIVE_TRANSACTION_ ABORTED
(30221001)

Indicates that an interactive transaction was
aborted.

LOCAL_ERROR(82) Indicates that a local error occurred.

PingDirectory | Configure PingDataSync Server | 94

Error Code Description

LOOP_DETECT(54) Indicates that a referral or chaining loop was
detected while processing a request.

NO_MEMORY(90) Indicates that not enough memory could be
obtained to perform the requested operation.

OPERATIONS_ERROR(1) Indicates that an internal error prevented the
operation from being processed properly.

OTHER (80) Indicates that an error occurred that does not fall
into any of the other categories.

PROTOCOL_ERROR(2) Indicates that the client sent a malformed or illegal
request to the server.

TIME_LIMIT_EXCEEDED(3) Indicates that a time limit was exceeded while
attempting to process the request.

TIMEOUT(85) Indicates that a timeout occurred.

UNWILLING_TO_PERFORM(53) Indicates that the server is unwilling to perform the
requested operation.

The max-operation-attempts property

The max-operation-attempts property (part of the Sync Pipe configuration) specifies the maximum
number of times to retry a synchronization operation that fails for reasons other than the Sync Destination
being busy, unavailable, server connection closed, or connect error.

To change the default number of retries, use dsconfig in non-interactive mode to change the max-
operation-attempts value on the Sync Pipe object. The following command changes the number of
maximum attempts from five (default) to four.

$ bin/dsconfig set-sync-pipe-prop \
 --pipe-name "Test Sync Pipe" \
 --set max-operation-attempts:4

The response-timeout property

The response-timeout property specifies how long PingDataSync Server should wait for a response
from a search request to a source server before failing with LDAP result code 85 (client-side timeout).
When a client-side timeout occurs, the Sync Source will retry the request according to the max-
failover-error-code-frequency property before failing over to a different source server and
performing the retry. The total number of retries will not exceed the max-operation-attempts property
defined in the Sync Pipe configuration. A value of zero indicates that there should be no client-side timeout.
The default value is one minute.

Assuming a bidirectional topology, the property can be set with dsconfig on the Sync Source and Sync
Destination, respectively.

$ bin/dsconfig set-sync-source-prop \
 --source-name src \
 --set "response-timeout:8 s"

$ bin/dsconfig set-sync-destination-prop \
 --destination-name U4389 \
 --set "responsetimeout:9 s"

PingDirectory | Configure PingDataSync Server | 95

The max-failover-error-code-frequency property

The max-failover-error-code-frequency property (part of the Sync Source configuration) specifies
the maximum time period that an error code can re-appear until it fails over to another server instance.
This property allows the retry logic to be tuned, so that retries can be performed once on the same server
before giving up and trying another server. The value can be set to zero if there is no acceptable error code
frequency and failover should happen immediately. It can also be set to a very small value (such as 10 ms)
if a high frequency of error codes is tolerable. The default value is three minutes.

To change the max-failover-error-code-frequency property, use dsconfig in non- interactive
mode to change the property on the Sync Source object. The following command changes the frequency
from three minutes to two minutes.

$ bin/dsconfig set-sync-source-prop \
 --source-name source1 \
 --set "max-failover-error-code-frequency:2 m"

The max-backtrack-replication-latency property

The max-backtrack-replication-latency property (part of the Sync Source configuration) sets
the time period that PingDataSync Server will look for missed changes in the change log due to replication
delays. The property should be set to a conservative upper-bound of the maximum replication delay
between two servers in the topology. A value of zero implies that there is no limit on the replication latency.
The default value is two hours. PingDataSync Server stops looking in the change log once it finds a
change that is older than the maximum replication latency than the last change it processed on the failed
server.

For example, after failing over to another server, PingDataSync Server must look through the new server’s
change log to find the equivalent place to begin synchronizing changes.

Normally, PingDataSync Server can successfully backtrack with only a few queries of the directory, but in
some situations, it might have to look further back through the change log to make sure that no changes
were missed. Because the changes can come from a variety of sources (replication, synchronization, and
over LDAP), the replicated changes between directory servers are interleaved in each change log. When
PingDataSync Server fails over between servers, it has to backtrack to figure out where synchronization
can safely pick up the latest changes.

Backtracking occurs until the following:

• The server determines that there is no previous change log state available for any source servers, so it
must start at the beginning of the change log.

• The server finds the last processed replication change sequence number (CSN) from the last time it
was connected to that replica, if at all. This process is similar to the set- startpoint functionality on
the realtime-sync tool.

• The server finds the last processed replication CSN from every replica that has produced a change
so far, and it determines that each change entry in the next oldest batch of changes has already been
processed.

• The server finds a change that is separated by more than a certain duration (specified by the max-
backtrack-replication-latency property) from the most recently processed change.

The following command changes the maximum backtracking from two hours to three hours.

$ bin/dsconfig set-sync-source-prop \
 --source-name source1 \
 --set "max-backtrack-replication-latency:3 h"

PingDirectory | Configure PingDataSync Server | 96

Configure traffic through a load balancer
If a PingData server is sitting behind an intermediate HTTP server, such as a load balancer, a reverse
proxy, or a cache, it will log incoming requests as originating with the intermediate HTTP server instead of
the client that actually sent the request. If the actual client's IP address should be recorded to the trace log,
enable X-Forwarded-* handling in both the intermediate HTTP server and the PingData server. See the
product documentation for the device type. For PingData servers:

• Edit the appropriate Connection Handler object (HTTPS or HTTP) and set use-forwarded-headers
to true.

• When use-forwarded-headers is set to true, the server will use the client IP address and port
information in the X-Forwarded-* headers instead of the address and port of the entity that's actually
sending the request, the load balancer. This client address information will show up in logs where
one would normally expect it to show up, such as in the from field of the HTTP REQUEST and HTTP
RESPONSE messages.

Configure authentication with a SASL external certificate

About this task

By default, PingDataSync Server authenticates to the PingDirectory Server using LDAP simple
authentication (with a bind DN and a password). However, PingDataSync Server can be configured to use
SASL EXTERNAL to authenticate to the PingDirectory Server with a client certificate.

Note:

This procedure assumes that PingDataSync Server instances are installed and configured to communicate
with the backend PingDirectory Server instances using either SSL or StartTLS.

After the servers are configured, perform the following steps to configure SASL EXTERNAL authentication:

Steps

1. Create a JKS keystore that includes a public and private key pair for a certificate that the PingDataSync
Server instance(s) will use to authenticate to the PingDirectory Server instance(s). Run the following
command in the instance root of one of the PingDataSync Server instances. When prompted for a
keystore password, enter a strong password to protect the certificate. When prompted for the key
password, press ENTER to use the keystore password to protect the private key:

$ keytool -genkeypair \
 -keystore config/sync-user-keystore \
 -storetype JKS \
 -keyalg RSA \
 -keysize 2048 \
 -alias sync-user-cert \
 -dname "cn=Sync User,cn=Root DNs,cn=config" \
 -validity 7300

2. Create a config/sync-user-keystore.pin file that contains a single line that is the keystore
password provided in the previous step.

3. If there are other PingDataSync Server instances in the topology, copy the sync-user-keystore and
sync-user-keystore.pin files into the config directory for all instances.

4. Use the following command to export the public component of the user certificate to a text file:

$ keytool -export \
 -keystore config/sync-user-keystore \
 -alias sync-user-cert \

PingDirectory | Configure PingDataSync Server | 97

 -file config/sync-user-cert.txt

5. Copy the sync-user-cert.txt file into the config directory of all PingDirectory Server instances.
Import that certificate into each server's primary trust store by running the following command from the
server root. When prompted for the keystore password, enter the password contained in the config/
truststore.pin file. When prompted to trust the certificate, enter yes.

$ keytool -import \
 -keystore config/truststore \
 -alias sync-user-cert \
 -file config/sync-user-cert.txt

6. Update the configuration for each PingDataSync Server instance to create a new key manager
provider that will obtain its certificate from the config/sync-user-keystore file. Run the following
dsconfig command from the server root:

$ dsconfig create-key-manager-provider \
 --provider-name "Sync User Certificate" \
 --type file-based \
 --set enabled:true \
 --set key-store-file:config/sync-user-keystore \
 --set key-store-type:JKS \
 --set key-store-pin-file:config/sync-user-keystore.pin

7. Update the configuration for each LDAP external server in each PingDataSync Server instance to use
the newly-created key manager provider, and also to use SASL EXTERNAL authentication instead of
LDAP simple authentication. Run the following dsconfig command:

$ dsconfig set-external-server-prop \
 --server-name ds1.example.com:636 \
 --set authentication-method:external \
 --set "key-manager-provider:Sync User Certificate"

Next steps

After these changes, PingDataSync Server should re-establish connections to the LDAP external server
and authenticate with SASL EXTERNAL. Verify that PingDataSync Server is still able to communicate
with all backend servers by running the bin/status command. All of the servers listed in the "--- LDAP
External Servers ---" section should have a status of Available. Review the PingDirectory Server access
log can to make sure that the BIND RESULT log messages used to authenticate the connections from
PingDataSync Server include authType="SASL", saslMechanism="EXTERNAL", resultCode=0,
and authDN="cn=Sync User,cn=RootDNs,cn=config".

Configure an LDAPv3 Sync Source
Synchronization can be performed with an LDAP V3-compliant source, such as IBM SDS (Tivoli Directory
Server), Oracle Unified Directory, DSEE, or OpenDJ, by configuring a Generic LDAP Sync Source.
PingDataSync Server relies on the source server having a cn=changelog implementation. If the server
does not have a cn=changelog implementation, a Server SDK Change Detector extension can be
configured to define the change detection criteria that PingDataSync Server should use.

If multiple Generic LDAP Sync Source instances are defined, the order in which they are added is
used as a priority order for failover. If server locations are defined, PingDataSync Server will always fail
over to servers that are in the same location. If there are multiple Sync Sources in the same location
as PingDataSync Server, then PingDataSync Server will fail over to the first local server in the list and
proceed down the list.

PingDirectory | Synchronize with PingOne for Customers | 98

During synchronization, when a change is detected by PingDataSync Server, the changed entry is
fetched from the source. Initially, the DN of the entry is used to search for the entry. If that search fails
then a second search is performed using the unique-id-attribute if it is defined. This is typically an
operational attribute that is automatically generated by the server, such as entryUUID.

Server SDK extensions
Custom server extensions can be created with the Server SDK. Extension bundles are installed from a .zip
archive or a file system directory. Use the manage-extension tool to install or update any extension
that is packaged using the extension bundle format. It opens and loads the extension bundle, confirms the
correct extension to install, stops the server if necessary, copies the bundle to the server install root, and
then restarts the server.

Note:

The manage-extension tool must be used with Java extensions packaged using the extension bundle
format. For more information, see the "Building and Deploying Java-Based Extensions" section of the
Server SDK documentation.

The Server SDK enables creating extensions for all PingData servers. Cross-product extensions include:

• Access loggers
• Alert handlers
• Error loggers
• Key Manager providers
• Monitor providers
• Trust Manager providers
• OAuth token handlers
• Manage extension plugins

Synchronize with PingOne for Customers

PingDataSync Server supports PingOne for Customers as a synchronization destination and source for
newly created or modified accounts with native password changes between directory servers, relational
databases, or other PingOne for Customers systems.

This chapter presents configuration procedures for synchronization between PingDirectory Server, Nokia
8661 Directory Server, or other LDAP source servers or targets with PingOne for Customers.

Prerequisites
Before attempting to synchronize changes to or from a PingOne for Customers environment, make certain
the prerequisites in this section are satisfied.

Worker application

A Worker application is an administrator application that can have the same roles as human administrators.
You can use Worker applications to create a userless service app that can perform administrator functions.
Role assignments determine the functions that the app can perform.

Required grant type

By default, Worker applications are configured with the required Client Credentials grant type. They can
also be configured to support additional grant/response types, similar to the other app types.

PingDirectory | Synchronize with PingOne for Customers | 99

The Worker application can also perform administrator functions with the role of its user. To accomplish
this task, give the app one or more additional grant types, which are used instead of the role assignments.

Required roles

A role is a collection of permissions that can be assigned to a user. Of the many roles that PingOne for
Customers includes by default, only the Identity Data Admin role, which manages identities and identity
data, is required for the Worker app that you need to create. Permissions center around managing user
identities and include functions like creating users, resetting a user's password, and creating, editing, and
deleting populations.

Create a Worker application

Before you create a Worker application, make certain you have the following information ready:

• The app name and description
• Redirect URLs for authentication (required for interactive applications only)

Perform the following steps to create a Worker app:

1. At the top of the Administrator Console, click Connections.
2. Click Applications, and then click + Application.
3. From the list of application types, select Worker.
4. Click Configure to view the Create App Profile page.
5. Specify the following information:

• Application name – Unique identifier for the app.
• Optional: Description – Brief characterization of the app.
• Optional: Icon – Pictorial representation of the app. Use a file up to 1MB in JPG, JPEG, GIF, or PNG

format.
6. Click Save and Close.

The app is displayed on the Applications page.
7. Make note of the OAuth client ID, which appears directly below the name of the app.

This value is required when creating a PingOne for Customers sync destination or source.
8. From the drop-down list to the right of the app, select Edit (Pencil).
9. Click Configuration.
10.In the Basic Configuration section, make a note of the client secret.

This value is required when creating a PingOne for Customers sync destination or source.
11.In the Advanced Configuration section, make the following selections:

• For grant type, select Client Credentials.
• For a token endpoint authentication method, select Client Secret Post.

12.Click Save.
13.In the upper-left corner, click To Application List.
14.Enable the app by toggling the corresponding on/off switch.

The switch appears green when the app is enabled.
15.At the top of the Administrator Console, click Settings.
16.In the navigation panel to the left, click Environment > > > Properties.
17.Make note of the environment ID.

This value is required when creating a PingOne for Customers sync destination or source.

For more information, refer to PingOne for Customers Administration Guide.

https://documentation.pingidentity.com/pingone/p14cAdminGuide/index.shtml

PingDirectory | Synchronize with PingOne for Customers | 100

PingOne user resource model

A user resource is a unique identity within PingOne that interacts with the applications and services in the
environment to which the user is assigned. Users are associated with an environment and a population,
and the service implements directory functions to create, read, update, delete, and search for user
resources. For more information, refer to the Users data model or to the PingOne for Customers API
Guide.

The username field is required with the PingOne user resource model. This field is a string that specifies
the user name, which must be unique within an environment. Limited to 128 characters in length, the
username must be a well-formed email address or a string of any Unicode letter, mark (like an accent or
umlaut), dot, underscore, or hyphen.

Synchronize changes to a PingOne for Customers environment
This section describes the configuration that is necessary to synchronize changes to a PingOne for
Customers environment. To view an example configuration, refer to the file reference-ping-one-
sync-destination-configuration.dsconfig, which is located in the folder named resources.

Create a PingOne for Customers sync destination

Before you create a PingOne for Customers sync destination, make certain you have the following
information ready:

• Environment ID (environment-id)
• OAuth client ID (oauth-client-id)
• OAuth client secret (oauth-client-secret)

For information about obtaining these values, see "Create a worker application" in Worker application.

The following sample creates a PingOne for Customers sync destination.

dsconfig create-sync-destination \
 --destination-name PingOne \
 --type ping-one-customer \
 --set api-url:https://api.pingone.com/v1 \
 --set auth-url:https://auth.pingone.com/[PING_ONE_ENV_ID]/as/token \
 --set environment-id:[PING_ONE_ENV_ID] \
 --set oauth-client-id:[PING_ONE_OAUTH_CLIENT_ID] \
 --set oauth-client-secret:[PING_ONE_OAUTH_CLIENT_SECRET]

Configure attribute mapping

The PingOne User model contains simple JSON attributes like "title": "Director" as well as
complex JSON objects like {"name": {"given": "Jane", "family": “Doe”}}. To ensure
accurate processing when you construct attribute mappings that interact with complex objects, construct
valid JSON strings and use the command jsonEscape, as the following example shows.

dsconfig create-attribute-mapping \
 --map-name PingDirectory_to_PingOne_User_Map \
 --mapping-name name \
 --type constructed \
 --set 'value-pattern:{{"given":"{givenname:jsonEscape}","family":"
{sn:jsonEscape}"}}'

Some attributes in the User resource are operational and cannot be modified by synchronizing data. For
more information, refer to the PingOne for Customers API Guide.

https://apidocs.pingidentity.com/pingone/customer/v1/api/man/p1_Users/
https://apidocs.pingidentity.com/pingone/customer/v1/api/guide/index.html
https://apidocs.pingidentity.com/pingone/customer/v1/api/guide/index.html
https://apidocs.pingidentity.com/pingone/customer/v1/api/guide/index.html

PingDirectory | Synchronize with PingOne for Customers | 101

Correlating entries

The PingOne User Resource model provides an attribute named externalId. To ensure that users
correlate to the appropriate entry in PingDirectory, map entryUUID to this value and configure
externalId as a destination-correlation-attribute on the Sync class.

Considerations and limitations

This section describes limitations and other constraints to consider when synchronizing changes to a
PingOne for Customers environment.

Populations

All PingOne user resources must exist within a population. The PingOne Customers synchronization
destination provides the following methods for managing a user's population:

• If a single population is in use, set the configuration attribute default-population-id on the sync
destination.

• If multiple populations are in use, use a constructed attribute mapping.

The following syntax provides an example.

dsconfig create-attribute-mapping \
 --map-name PingDirectory_to_PingOne_User_Map \
 --mapping-name population \
 --type constructed \
 --set 'value-pattern:{{"id":"[DEFAULT_POPULATION_ID]"}}'

To set the population properly, make certain to construct a valid JSON object.

Synchronize changes from a PingOne for Customers environment
This section describes the configuration that is necessary to synchronize changes from a PingOne for
Customers environment. To view an example configuration, refer to the file reference-ping-one-
sync-source-configuration.dsconfig, which is located in the folder named resources.

Create a PingOne for Customers sync source

Before you create a PingOne for Customers sync source, make certain you have the following information
ready:

• Environment ID (environment-id)
• OAuth client ID (oauth-client-id)
• OAuth client secret (oauth-client-secret)

For information about obtaining these values, see "Create a worker application" in Worker application.

The following sample creates a PingOne for Customers sync source.

dsconfig create-sync-source \
 --source-name PingOne \
 --type ping-one-customer \
 --set api-url:https://api.pingone.com/v1 \
 --set auth-url:https://auth.pingone.com/[PING_ONE_ENV_ID]/as/token \
 --set environment-id:[PING_ONE_ENV_ID] \
 --set oauth-client-id:[PING_ONE_OAUTH_CLIENT_ID] \
 --set oauth-client-secret:[PING_ONE_OAUTH_CLIENT_SECRET]

PingDirectory | Synchronize with Active Directory systems | 102

Configure attribute mapping

The process of synchronizing data utilizes the concepts and structures associated with LDAP entries. Ping
Identity recommends that you conceptualize the PingOne User Resource model as an LDAP entry when
configuring attribute mappings. Additionally, you might need to use JSON pathing when selecting a value
for complex JSON attributes within the user.

dsconfig create-attribute-mapping \
 --map-name PingOne_to_PingDirectory_User_Map \
 --mapping-name givenname \
 --type constructed \
 --set "value-pattern:{name.given}"

Correlating entries

To ensure that users correlate to the appropriate entry in PingDirectory, map the id attribute from the user
resource to entryUUID in PingDirectory.

Considerations and limitations

This section describes limitations and other constraints to consider when synchronizing changes from a
PingOne for Customers environment.

Bidirectional synchronization

If you plan on configuring bidirectional synchronization between PingOne for Customers and PingDirectory,
make certain that you satisfy the following conditions:

• Use separate worker apps for the source and destination.
• To prevent the unnecessary duplication of changes, add the client ID of the destination worker app to

the actor-id-to-ignore configuration attribute of the source.
• To ensure that no attribute mappings are mismatched, modify the reference dsconfig batch files.

Password synchronization

PingDataSync Server does not support the synchronizing of passwords from PingOne.

Population management

If your PingOne for Customers environment features a large number of populations, or if you want to limit
synchronized users to a specific set of populations, provide one or more population-to-synchronize
configuration attributes to the source. The name or ID of the population can be used.

Synchronization delay

PingDataSync Server propagates changes throughout PingOne for Customers nearly in real time.
However, a delay might occur between the time a change occurs in PingOne and the time it becomes
available for PingDataSync Server to synchronize. To help ensure that no changes are missed, a default
delay of 5 seconds has been configured within the sync source. For environments of sufficient size or with
high rates of change, use the configuration attribute realtime-sync-polling-offset on the sync
source to increase the delay.

Synchronize with Active Directory systems

PingDataSync Server supports full synchronization for newly created or modified accounts with native
password changes between directory server, relational databases, and Microsoft Active Directory systems.

PingDirectory | Synchronize with Active Directory systems | 103

This chapter presents configuration procedures for synchronization between PingDirectory Server, Nokia
8661 Directory Server, or other LDAP source servers or targets with Microsoft Active Directory systems.

Overview of configuration tasks
To configure synchronization with Active Directory systems, the following tasks are performed:

Enable SSL connections If synchronizing passwords between systems,
synchronization with Microsoft Active Directory
systems requires that SSL be enabled on the Active
Directory domain controller, so that PingDataSync
Server can securely propagate the cn=Sync User
account password and other user passwords to the
target.

Run the create-sync-pipe-config tool On the Ping Data Sync Server, use the create-
sync-pipe-config tool to configure the Sync
Pipes to communicate with the Active Directory
source or target.

Configure outbound password synchronization
on an PingDirectory Server Sync Source

After running the create-sync-pipe-
config tool, determine if outbound password
synchronization from an PingDirectory Server Sync
Source is required. If so, enable the Password
Encryption component on all PingDirectory Server
sources that receive password modifications.
The PingDirectory Server uses the Password
Encryption component, analogous to the Password
Sync Agent component, to intercept password
modifications and add an encrypted attribute,
ds-changelog-encrypted-password, to
the changelog entry. The component enables
passwords to be synchronized securely to the
Active Directory system, which uses a different
password storage scheme. The encrypted attribute
appears in the change log and is synchronized
to the other servers, but does not appear in the
entries.

Configure outbound password synchronization
on an Active Directory Sync Source

After running the create-sync-pipe-
config tool, determine if outbound password
synchronization from an Active Directory Sync
Source is required. If so, install the Password
Sync Agent (PSA) after configuring PingDataSync
Server.

Run the realtime-sync set-startpoint tool The realtime-sync set-startpoint
command may take several minutes to run,
because it must issue repeated searches of the
Active Directory domain controller until it has paged
through all the changes and receives a cookie that
is up-to-date.

PingDirectory | Synchronize with Active Directory systems | 104

Configuring synchronization with Active Directory

About this task
The following procedure configures a one-way Sync Pipe with the Active Directory topology as the Sync
Source and a PingDirectory Server topology as the Sync Destination.

Steps

1. From the server-root directory, start PingDataSync Server.

$ <server-root>/bin/start-server

2. Run the create-sync-pipe-config tool to set up the initial synchronization topology.

$ bin/create-sync-pipe-config

3. On the Initial Synchronization Configuration Tool menu, press Enter to continue the configuration.

4. On the Synchronization Mode menu, press Enter to select Standard mode.

5. On the Synchronization Directory menu, select the option for one-way (1) or bidirectional (2) for the
synchronization topology.

6. On the Source Endpoint Type menu, enter the option for Microsoft Active Directory.

7. On the Source Endpoint Name menu, type a name for the source server, or accept the default.

8. On the Server Security menu, select the security connection type for the source server.

9. On the Servers menu, enter the host name and listener port for the Source Server, or press Enter to
accept the default (port 636). The server will attempt a connection to the server. After adding the first
server, add additional servers for the source endpoints, which will be prioritized below the first server.

10.On the Synchronization User Account DN menu, enter the User Account DN for the source servers.
The account will be used exclusively by PingDataSync Server to communicate with the source external
servers. Enter a User Account DN and password. The User Account DN password must meet the
minimum password requirements for Active Directory domains.

11.Set up the Destination Endpoint servers.

Active Directory sync user account
The Sync User created for Active Directory is added to the cn=Administrators branch and is given
most of a root user's permissions. If this account cannot be secured and there is a need to configure the
permissions required by the Sync User, the following are required to perform synchronization tasks.

As a Sync Source, these permissions are needed:

• List contents
• Read all properties
• Read permissions

Deleted items are a special case. For the Sync Server to see deleted entries, the user account must have
sufficient access to cn=Deleted Objects,<domain name>. Giving access to that DN requires using
the dsacls tool, such as:

Take ownership may be required to make the needed changes.
dsacls "CN=Deleted Objects,DC=example,DC=com" /takeOwnership

Give the Sync User generic read permission to the domain.

PingDirectory | Synchronize with Active Directory systems | 105

dsacls "CN=Deleted Objects,DC=example,DC=com" /G "example\SyncUser":GR

List the permission for the domain.
dsacls "CN=Deleted Objects,DC=example,DC=com"

To revoke all permissions from the Sync User, run the following dsacls command:

dsacls "CN=Deleted Objects,DC=example,DC=com" /R "example\SyncUser"

If Active Directory is used as a destination for synchronization, the Sync User account should not be
changed.

Prepare external servers

About this task
Perform the following steps to prepare external servers:

Steps

1. After configuring the source and destination endpoints, PingDataSync Server prompts to "prepare" each
external server. The process requires trusting the certificate presented to the server, and then testing
the connection. If this step is not performed, the process can be completed after configuring the Sync
Pipes using the prepare-endpoint-server tool.

2. Configuring this server for synchronization requires manager access. Enter the DN and password of an
account capable of managing the external directory server.

3. Enter the maximum age of change log entries. The value is formatted as [number][time- unit],
where the time unit format resembles ("8h" for eight hours, "3d" for three days, "1w" for one week).
Setting this value caps how long the PingDataSync Server can be offline. A smaller value limits how
many changes are stored and is necessary to limit excessive changelog growth in high-modification
environments.

4. To prepare another server in the topology, follow the prompts. The previously entered manager
credentials can be reused to access additional servers. Repeat the process for each server configured
in the system.

Configure sync pipes and sync classes

About this task
Perform the following steps to configure Sync Pipes and Sync Classes:

Steps

1. On the Sync Pipe Name menu, type a unique name to identify the Sync Pipe, or accept the default.

2. On the Pre-Configured Sync Class Configuration for Active Directory Sync Source menu, enter yes to
synchronize user CREATE operations, and enter the object class for the user entries at the destination
server, or accept the default (user). To synchronize user MODIFY and DELETE operations from Active
Directory, enter yes.

3. To synchronize passwords from Active Directory, press Enter to accept the default (yes). If
synchronizing passwords from Active Directory, install the Ping Identity Password Sync Agent
component on each domain controller.

4. To create a DN map for the user entries in the Sync Pipe, enter the base DN for the user entries
at the Microsoft Active Directory Sync Source, then enter the base DN for the user entries at the
PingDataSync Server Destination.

PingDirectory | Synchronize with Active Directory systems | 106

5. A list of basic attribute mappings from the Microsoft Active Directory Source to the PingDirectory
Server destination is displayed. More complex attribute mappings involving constructed or DN attribute
mappings must be configured with the dsconfig tool. The following is a sample mapping.

Below is a list of the basic mappings that have been set up for user
entries synchronized from Microsoft Active Directory -> PingDirectory
Server. You can add to or modify this list with any direct attribute
mappings. To set up more complex mappings (such as constructed or DN
attribute mappings), use the 'dsconfig' tool.
1) cn -> cn
2) sn -> sn
3) givenName -> givenName
4) description -> description
5) sAMAccountName -> uid
6) unicodePwd -> userPassword

6. Enter the option to add a new attribute mapping. Enter the source attribute, and then enter the
destination attribute. The following example maps the telephoneNumber attribute (Active Directory) to
the otherTelephone attribute (PingDirectory Server).

Select an attribute mapping to remove, or choose 'n' to add a new one
[Press ENTER to continue]: n
Enter the name of the source attribute: telephoneNumber
Enter the name of the destination attribute: otherTelephone

7. If synchronizing group CREATE, MODIFY, and DELETE operations from Active Directory, enter yes.

8. Review the basic user group mappings.

9. On the Sync Pipe Sync Class Definitions menu, enter another name for a new Sync Class if required.
Repeat steps 2–7 to define this new Sync Class. If no additional Sync Class definitions are required,
press Enter to continue.

10.Review the Sync Pipe Configuration Summary, and accept the default ("write configuration"), which
records the commands in a batch file (sync-pipe-cfg.txt). The batch file can be used to set up
other topologies. The following summary shows two Sync Pipes and its associated Sync Classes.

>>>> Configuration Summary
 Sync Pipe: AD to PingDirectory Server
 Source: Microsoft Active Directory
 Type: Microsoft Active Directory
 Access Account: cn=Sync
User,cn=Users,DC=adsync,DC=PingIdentity,DC=com
 Base DN: DC=adsync,DC=PingIdentity,DC=com
 Servers: 10.5.1.149:636
 Destination: PingDirectory Server
 Type: PingDirectory Server
 Access Account: cn=Sync User,cn=Root DNs,cn=config
 Base DN: dc=example,dc=com
 Servers: localhost:389
 Sync Classes:
 Microsoft Active Directory Users Sync Class
 Base DN: DC=adsync,DC=PingIdentity,DC=com
 Filters: (objectClass=user)
 DN Map: **,CN=Users,DC=adsync,DC=PingIdentity,DC=com ->{1},ou=users,
 dc=example,dc=com
 Synchronized Attributes: Custom set of mappings are defined
 Operations: Creates,Deletes,Modifies
 Sync Pipe: PingDirectory Server to AD
 Source: PingDirectory Server
 Type: PingDirectory Server
 Access Account: cn=Sync User,cn=Root DNs,cn=config
 Base DN: dc=example,dc=com
 Servers: localhost:389

PingDirectory | Synchronize with Active Directory systems | 107

 Destination: Microsoft Active Directory
 Type: Microsoft Active Directory
 Access Account: cn=Sync
User,cn=Users,DC=adsync,DC=PingIdentity,DC=com
 Base DN: DC=adsync,DC=PingIdentity,DC=com
 Servers: 10.5.1.149:636
 Sync Classes:
 PingDirectory Server Users Sync Class
 Base DN: dc=example,dc=com
 Filters: (objectClass=inetOrgPerson)
 DN Map: **,ou=users,dc=example,dc=com ->{1},CN=Users,DC=adsync,
 DC=PingIdentity,DC=com
 Synchronized Attributes: Custom set of mappings are defined
 Operations: Creates,Deletes,Modifies

11.To apply the configuration to the local Ping Data Sync Server instance, type yes. The configuration is
recorded at <server-root>/logs/tools/createsync-pipe-config.log.

Configure password encryption

About this task
This procedure is required if synchronizing passwords from a PingDirectory Server to Active Directory, or if
synchronizing clear text passwords. These steps are not required if synchronizing from Active Directory to
a PingData PingDirectory Server, or if not synchronizing passwords.

Steps

1. On the Ping Directory Server that will receive the password modifications, enable the Change Log
Password Encryption component. The component intercepts password modifications, encrypts
the password and adds an encrypted attribute, ds-changelog- encrypted-password, to the
change log entry. The encryption key can be copied from the output if displayed, or accessed from the
<serverroot>/bin/sync-pipe-cfg.txt file.

$ bin/dsconfig set-plugin-prop --plugin-name "Changelog Password
Encryption" \
 --set enabled:true \
 --set changelog-password-encryption-key:<key>

2. On PingDataSync Server, set the decryption key used to decrypt the user password value in the
change log entries. The key allows the user password to be synchronized to other servers that do not
use the same password storage scheme.

$ bin/dsconfig set-global-sync-configuration-prop \
 --set changelog-password-decryption-key:ej5u9e39pqo68

Next steps
Test the configuration or populate data in the destination servers using bulk resync mode. See Using the
resync Tool on the Identity Sync Server. Then, use realtime-sync to start synchronizing the data. See
Using the realtime-sync Tool for more information. If synchronizing passwords, install the Password Sync
Agent (PSA) on all of the domain controllers in the topology.

Password sync agent
When synchronizing passwords with Active Directory systems, PingDataSync Server requires that the Ping
Identity Password Sync Agent (PSA) be installed on all domain controllers in the synchronization topology.

PingDirectory | Synchronize with Active Directory systems | 108

This component provides real-time outbound password synchronization from Microsoft Active Directory to
any supported Sync Destinations.

The PSA component provides password synchronization between directories that support differing
password storage schemes. The PSA immediately hashes the password with a 160-bit salted secure
hash algorithm and erases the memory where the clear-text password was stored. The component only
transmits data over a secure (SSL) connection, and follows Microsoft's security guidelines when handling
clear-text passwords. The PSA also uses Microsoft Windows password filters, which are part of the local
security authority (LSA) process. The password filters enable implementing password policy validation and
change notification mechanisms. For more information, see Microsoft's product documentation.

Note:

For outbound password synchronization from a PingDirectory Server to Active Directory, enable the
Password Encryption component. See Configure password encryption on page 107 for more information.

The PSA supports failover between servers. It caches the hashed password changes in a local database
until it can be guaranteed that all PingDataSync Servers in the topology have received them. The failover
features enable any or all of the PingDataSync Servers to be taken offline without losing any password
changes from Active Directory.

The PSA is safe to leave running on a domain controller indefinitely. To stop synchronizing passwords,
remove the userPassword attribute mapping in PingDataSync Server, or stop the server. The PSA will
not allow its local cache of password changes to grow out of control; it automatically cleans out records
from its local database as soon as they have been acknowledged. It also purges changes that have been
in the database for more than a week.

Before installing the PSA, consider the following:

• Make sure that the Active Directory domain controller has SSL enabled and running.
• Make sure the PingDataSync Servers are configured to accept SSL connections when communicating

with the Active Directory host.
• At least one Active Directory Sync Source (ADSyncSource) needs to be configured on PingDataSync

Server and should point to the domain controller(s) on which the PSA will reside.
• At the time of installation, all PingDataSync Servers in the sync topology must be online and available.
• The PSA component is for outbound-only password synchronization from the Active Directory Systems.

It is not necessary if performing a one-way password synchronization from the PingDirectory Server to
the Active Directory server.

PingDirectory | Synchronize with Active Directory systems | 109

Install the password sync agent

About this task
The PingDirectory Server distributes the PSA in zip file format with each PingDataSync Server package.
The initial installation of the PSA requires a system restart. Perform the following steps to install the PSA:

Steps

1. On the domain controller, double-click the setup.exe file to start the installation.

2. Select a folder for the PSA binaries, local database, and log files.

3. Enter the host names (or IP addresses) and SSL ports of the PingDataSync Servers, such as
sync.host.com:636. Do not add any prefixes to the host names.

4. Enter the Directory Manager DN and password. This creates an ADSync user on PingDataSync Server.

5. Enter a password (secret key) for the ADSync user that will be used by the PSA when connecting to the
PingDataSync Server instances.

6. Click Next to begin the installation. All of the specified PingDataSync Servers are contacted, and any
failures will roll back the installation. If everything succeeds, a message displays indicating that a restart
is required. The PSA will start when the computer restarts, and the LSA process is loaded into memory.
The LSA process cannot be restarted at runtime.

7. If synchronizing pre-encoded passwords from Active Directory to a Ping Identity system, allow pre-
encoded passwords in the default password policy.

$ bin/dsconfig set-password-policy-prop \
--policy-name "Default Password Policy" \
--set allow-pre-encoded-passwords:true

Upgrade or uninstall the password agent

PingDataSync Server provides the update tool for upgrades to the server code, including the PSA. The
upgrade does not require a restart, because the core password filter is already running under LSA. The
upgrade replaces the implementation binaries, which are encapsulated from the password filter DLL.

To uninstall the PSA on the Active Directory system, use Add/Remove Programs on the Windows Control
Panel. The implementation DLL will be unloaded, and the database and log files are deleted. Only the
binaries remain.

The core password filter will still be running under the LSA process. It imposes zero overhead on the
domain controller, because the implementation DLL has been unloaded. To remove the password filter
itself (located at C:\WINDOWS\System32\ubidPassFilt.dll), restart the computer. On restart, the
password filter and implementation binaries (in the install folder) can be deleted.

Note:

The PSA cannot be reinstalled without another reboot.

Manually configure the password sync agent

Configuration settings for the Password Sync Service are stored in the Windows registry in HKLM
\SOFTWARE\UnboundID\PasswordSync. Configuration values under this registry key can be modified
during runtime. The agent automatically reloads and refreshes its settings from the registry. Verify that the
agent is working by checking the current log file, located in <server- root>\logs\password-sync-
current.log.

PingDirectory | Synchronize with relational databases | 110

Synchronize with relational databases

PingDataSync Server supports high-scale, highly-available data synchronization between the directory
servers and relational database management systems (RDBMS). Any database with a JDBC 3.0 or later
driver can be used.

Use the server SDK
Synchronizing LDAP data to or from a relational database requires creating a JDBC Sync Source or
Destination extension to act as an interface between PingDataSync Server and the relational database.
The Server SDK provides APIs to develop plugins and third-party extensions to the server using Java or
Groovy. The Server SDK’s documentation is delivered with the Server SDK build in zip format.

Note:

Server SDK support is provided with Premium Support for each product. Ping Identity does not provide
support for the third party extensions developed using the Server SDK. Contact a Ping Identity support
representative for assistance.

Server SDK support is provided with Premium Support for the each product. Ping Identity does not provide
support for the third party extensions developed using the Server SDK. Contact a Ping Identity support
representative for assistance.

The Server SDK contains two abstract classes that correspond to how the database is used:

com.unboundid.directory.sdk.sync.api.JDBCSyncSource

com.unboundid.directory.sdk.sync.api.JDBCSyncDestination

The remainder of the SDK contains helper classes and utility functions to facilitate the script
implementation. The SDK can use any change tracking mechanism to detect changes in the database.
Examples are provided in the <server-root>/config/jdbc/samples directory for Oracle Database
and Microsoft SQL Server.

PingDataSync Server uses a scripted adapter layer to convert any database change to an equivalent
LDAP entry. The Sync Pipe then processes the data through inclusive (or exclusive) filtering using attribute
and DN maps defined in the Sync Classes to update the endpoint servers. For example, a script using
Java can be configured by setting the extension-class property on a ThirdPartyJDBCSyncSource
or ThirdPartyJDBCSyncDestination configuration object within PingDataSync Server. The following
is a sample architecture.

PingDirectory | Synchronize with relational databases | 111

RDBMS synchronization process
PingDataSync Server synchronizes data between a directory server and an RDBMS system with a Server
SDK extension. PingDataSync Server provides multiple configuration options, such as advanced filtering
(fractional and subtree), attribute and DN mappings, transformations, correlations, and configurable
logging.

To support synchronizing changes, the database must be configured with a change tracking mechanism.
An approach involving triggers, (one trigger per table) to record all changes to a change log table, is
recommended. The database change log table Ping Identity should record the type of change (INSERT,
UPDATE, DELETE), the specific table name, the unique identifier for the changed row, the database entry
type, the changed columns (from the source table), the modifier’s name, and the changetimestamp.

PingDataSync Server delegates the physical interaction with the database to a user- defined extension,
which has full control of the SQL queries. The extension layer provides flexibility in how the mapping
semantics between the LDAP environment and the relational database environment are defined. The
connection management, pooling, retry logic, and other boilerplate code are handled internally by
PingDataSync Server.

The RDBMS Synchronization (DBSync) implementation does not support failover between different
physical database servers. Most enterprise databases have a built-in failover layer from which
PingDataSync Server can point to a single virtual address and port and still be highly available. A single
RDBMS node can scale to multiple directory server endpoints.

DBSync example
PingDataSync Server provides a DBSync example between two endpoints consisting of a Ping Identity
PingDirectory Server source and a RDBMS system, which will be used in this chapter.

The entity-relational diagram for the normalized database schema is available in <server-root>/
config/jdbc/samples/oracle-db/ComplexSchema.jpg, and is illustrated here:

Five tables are represented with their primary keys in bold. The entity relations and foreign keys
are marked by the relationship lines. The illustration shows mapping to a custom object class
on the directory server, while the "groups" table maps to a standard LDAP group entry with
objectclass:groupOfUniqueNames.

PingDirectory | Synchronize with relational databases | 112

Example directory server entries

The following example assumes that the directory server’s schema is configured to handle the mapped
attributes. If configuring a database-to-directory Sync Pipe with a newly installed directory server, make
sure that the schema has the correct attributeType and objectClass definitions in place. The
definitions can be added in a custom 99-user.ldif file in the config/schema folder of the directory
server, if necessary.

The following are the LDAP entries that are used in the synchronization example:

dn: accountid=0,ou=People,dc=example,dc=com
objectClass: site-user
firstName: John
lastName: Smith
accountID: 1234
email: jsmith@example.com
phone: +1 556 805 4454
address: 17121 Green Street
numLogins: 4
lastLogin: 20070408182813.196Z
enabled: true

dn: cn=Group 1,ou=Groups,dc=example,dc=com
objectClass: groupOfUniqueNames
description: This is Group 1
uniqueMember: accountID=0,ou=People,dc=example,dc=com
uniqueMember: accountID=1,ou=People,dc=example,dc=com

Configure DBSync

About this task
Configuring a DBSync system includes extra tasks to create the extensions and to configure the database.
The overall configuration process is as follows:

Steps

1. Download the appropriate JDBC driver to PingDataSync Server's /PingDataSync/lib directory, and
restart the server for the driver to load into the runtime.

2. Open the java.properties file with a text editor and add the jdbc.drivers argument. Save the
file.

3. Run the dsjavaproperties command to apply the change. For example, enter the following for start-
sync-server:

start-sync-server.java-args=-d64 -server -Xmx256m -Xms256m -
XX:+UseConcMarkSweepGC -
Djdbc.drivers=foo.bah.Driver:wombat.sql.Driver:com.example.OurDriver ...
etc.

4. Create one or more JDBC extensions based on the Server SDK. If configuring for bidirectional
synchronization, two scripts are needed: one for the JDBC Sync Source; the other for the JDBC Sync
Destination. Place the compiled extensions in the /lib/extensions directory.

5. Configure the database change log table and triggers (presented later). The vendor’s native change
tracking mechanism can be used, but a change log table should also be configured. Each table requires
one database trigger to detect the changes and loads them into the change log table.

6. Configure the Sync Pipes, Sync Classes, external servers, DN and attribute maps for one direction.

7. Run the resync --dry-run command to test the configuration settings.

PingDirectory | Synchronize with relational databases | 113

8. Run realtime-sync set-startpoint to initialize the starting point for synchronization.

9. Run the resync command to populate data on the destination endpoint.

10.Start the Sync Pipes using the realtime-sync start command.

11.Monitor PingDataSync Server using the status commands and logs.

12.For bidirectional synchronization, configure another Sync Pipe, and repeat steps 4–8 to test the system.

Create the JDBC extension
The JDBC extension implementation must be written in Java, or the Groovy scripting language. Consult the
Server SDK documentation for details on how to build and deploy extensions. The examples in this guide
use Java. Java extensions are more strict and will catch programming errors during compile time rather
than at runtime. Groovy is more flexible and can accomplish more with less lines of code.

Groovy scripts must reside in the /lib/groovy-scripted-extensions directory (Java
implementations reside in /lib/extensions), which may also contain other plugins built using the
Server SDK. If a script declares a package name, it must live under the corresponding folder hierarchy,
just like a Java class. For example, to use a script class called ComplexJDBCSyncSource whose
package is com.unboundid.examples.oracle, place it in /lib/groovy-scripted-extensions/
com/unboundid/examples/oracleand set the script- class property on the Sync Source
to com.unboundid.examples.oracle.ComplexJDBCSyncSource. There are a few reference
implementations provided in the config/jdbc/samples directory. Use the manage-extension tool
in the bin directory, or bat (Windows) to install or update the extension. See the Server SDK extensions
section for more information.

Note:

Any changes to an existing script require a manual Sync Pipe restart. Any configuration change
automatically restarts the affected Sync Pipe.

The default libraries available on the classpath to the script implementation include:

• Groovy
• LDAP SDK for Java
• JRE

Logging from within a script can be done with the Server SDK’s ServerContext abstract class. Some
of the ServerContext methods are not available when the resync tool runs, because it runs outside of
the PingDataSync Server process. Any logging during a resync operation is saved to the logs/tools/
resync.log file.

Implement a JDBC sync source

The JDBCSyncSource abstract class must be implemented to synchronize data from a relational
database. Because PingDataSync Server is LDAP-centric, this class enables database content to be
converted into LDAP entries. For more detailed information on the class, see the Server SDK Javadoc.

The extension imports classes from the Java API, LDAP SDK for Java API, and the Server SDK.
Depending on the data, implement the following methods:

• initializeJDBCSyncSource – Called when a Sync Pipe first starts, or when the resync process
starts. Any initialization should be performed here, such as creating internal data structures and setting
up variables.

• finalizeJDBCSyncSource – Called when a Sync Pipe stops, or when the resync process stops.
Any clean up should be performed here, and all internal resources should be freed.

• setStartpoint – Sets the starting point for synchronization by identifying the starting point in
the change log. This method should cause all changes previous to the specified start point to be
disregarded and only changes after that point to be returned by the getNextBatchOfChanges
method. There are several different startpoint types (see SetStartpointOptions in the Server SDK), and

PingDirectory | Synchronize with relational databases | 114

this implementation is not required to support them all. If the specified startpoint type is unsupported,
this method throws an exception (IllegalArgumentException). This method can be called from
two different contexts: when the realtime-syncset-startpoint command is used (the Sync Pipe
is required to be stopped) or immediately after a connection is established to the source server.

Note:

The RESUME_AT_SERIALIZABLE startpoint type must be supported. This method is used when a Sync
Pipe first starts and loads its state from disk.

• getStartpoint – Gets the current value of the startpoint for change detection.
• fetchEntry – Returns a full source entry (in LDAP form) from the database, corresponding to the

DatabaseChangeRecord object that is passed. The resync command also uses this class to retrieve
entries.

• acknowledgeCompletedOps– Provides a means for PingDataSync Server to acknowledge to the
database which operations have completed processing.

Note:

The internal value for the startpoint should only be updated after a synchronization operation
is acknowledged in to this script (through this method). If not, changes could be missed when
PingDataSync Server is restarted.

• getNextBatchOfChanges – Retrieves the next set of changes for processing. The method also
provides a generic means to limit the size of the result set.

• listAllEntries – Used by the resync command to get a listing of all entries.
• cleanupChangelog – In general, we recommend implementing a cleanupChangelog method, so

that PingDataSync Server can purge old records from the change log table, based on a configurable
age.

See the config/jdbc/samples directory for example script implementations and the Server SDK
Javadoc for more detailed information on each method.

Implement a JDBC sync destination

The JDBCSyncDestination abstract class must be implemented to synchronize data into a relational
database. The class enables converting LDAP content to database content. The extension imports
classes from the Java API, LDAP SDK for Java API, and the Server SDK, depending on the database
configuration.

Implement the following methods in the script:

• initializeJDBCSyncDestination – Called when a Sync Pipe starts, or when the resync process
starts. Any initialization should be performed here, such as creating internal data structures and setting
up variables.

• finalizeJDBCSyncDestination – Called when a Sync Pipe stops, or when the resync process
stops. Any clean up should be performed here, and all internal resources should be freed.

• createEntry – Creates a full database entry (or row), corresponding to the LDAP entry that is passed
in.

• modifyEntry – Modifies a database entry, corresponding to the LDAP entry that is passed in.
• fetchEntry – Returns a full destination database entry (in LDAP form), corresponding to the source

entry that is passed in.
• deleteEntry – Deletes a full entry from the database, corresponding to the LDAP entry that is passed

in.

For more detailed information on the abstract class, consult the Server SDK Javadoc.

PingDirectory | Synchronize with relational databases | 115

Configure the database for synchronization

About this task
Configuring the database for synchronization includes defining:

• A database SyncUser account
• The change tracking mechanism
• The database triggers (one per table) for the application

The following procedure uses the example setup script in /config/jdbc/samples/oracle- db/
OracleSyncSetup.sql. Items in brackets are user-named labels.

Note:

Database change tracking necessary if synchronizing FROM the database. If synchronizing TO a
database, configure the Sync User account and the correct privileges.

Steps

1. Create an Oracle login (SyncUser) for PingDataSync Server, so that it can access the database
server. Grant sufficient privileges to the SyncUser for any tables to be synchronized, and change the
default password.

CREATE USER SyncUser IDENTIFIED BY password
DEFAULT TABLESPACE users TEMPORARY TABLESPACE temp;
GRANT "RESOURCE" TO SyncUser;
GRANT "CONNECT" TO SyncUser;

2. Create change log tables on the database as follows:

CREATE TABLE ubid_changelog (
 --This is the unique number for the change change_number Number NOT NULL
PRIMARY KEY,
 --This is the type of change (insert, update, delete). NOTE: This should
represent
 --the actual type of change that needs to happen on the destination(for
example a
 --database delete might translate to a LDAPmodify, etc.)
 change_type VARCHAR2(10) NOT NULL,
 --This is the name of the table that was changed table_name VARCHAR(50)
NOT NULL,
 --This is the unique identifier for the row that was changed. It is up
to
 --the trigger code to construct this, but it should follow a DN-like
format
 --(e.g. accountID={accountID}) where at least the primary key(s) are
 --present. If multiple primary keys are required, they should be
delimited
 --with a unique string, such as '%%' (e.g. accountID={accountID}%%
 --groupID={groupID})
 identifier VARCHAR2(100) NOT NULL,
 --This is the database entry type. The allowable values for this must be
 --set on the JDBC Sync Source configuration within the Synchronization
 --Server.
 entry_type VARCHAR2(50) NOT NULL,
 --This is a comma-separated list of columns from the source table that
were updated as part of
 --this change.
 changed_columns VARCHAR2(1000) NULL,
 --This is the name of the database user who made the change
 modifiers_name VARCHAR2(50) NOT NULL,

PingDirectory | Synchronize with relational databases | 116

 --This is the timestamp of the change
 change_time TIMESTAMP(3) NOT NULL, CONSTRAINT chk_change_type
 CHECK (change_type IN ('insert','update','delete'))) ORGANIZATION
INDEX;

3. Create an Oracle function to get the SyncUser name. This is a convenience function for the triggers.

CREATE OR REPLACE FUNCTION get_sync_user RETURN VARCHAR2
IS
BEGIN
 RETURN 'SyncUser';
END get_sync_user;

4. Create an Oracle sequence object for the change-number column in the change log table.

CREATE SEQUENCE ubid_changelog_seq MINVALUE 1 START WITH 1
NOMAXVALUE INCREMENT BY 1 CACHE 100 NOCYCLE;

5. Create a database trigger for each table that will participate in synchronization. An example, located in
/config/jdbc/samples/oracle-db/OracleSyncSetup.sql, shows a trigger for the Accounts
table that tracks all changed columns after any INSERT, UPDATE, and DELETE operation. The code
generates a list of changed items and then inserts them into the change log table.

Considerations for synchronizing to database destination
When configuring a directory-to-database Sync Pipe, the following are recommended:

Identify the Object Classes

Create a Sync Class per object class, so that they can easily be distinguished and have different mappings
and synchronization rules.

For each Sync Class, set the following items in the configuration menus using the dsconfig tool.

Set the Include-Filter Property Make sure the include-filter property is set
on the Sync Class configuration menu to something
that will uniquely identify the source entries, such as
objectClass=customer.

Create Specific Attribute Mappings Create an attribute mapping for every LDAP
attribute to be synchronized to a database column,
add these to a single attribute map, and set it on the
Sync Class. With this configured, the script does
not need to know about the schema on the directory
side. A constructed attribute mapping that maps a
literal value to the objectClass attribute can be
added to the script to determine the database entry
type. For example, "account" -> objectClass
can be added, which would result in the constructed
destination LDAP entry always containing an
objectClass of "account". If needed, a mulit-
valued conditional-value-pattern property
can be used to conditionalize the attribute mapping
based on the subtype of the entry or on the value
of the attribute. See Conditional Value Mapping for
additional information.

Create Specific DN Maps (optional) If necessary, create a DN map that recognizes the
DN's of the source entries and maps them to a

PingDirectory | Synchronize with relational databases | 117

desired destination DN. In most cases, the script
will use the attributes rather than the DN to figure
out which database entry needs to be changed.

Set auto-mapped-source-attribute to "-none-" Remove the default value of "-all-" from the auto-
mapped-source-attribute on the Sync Class
configuration menu, and replace it with "-none-."

Configure Create-Only Attributes

Any attributes that should be included when created, but never modified (such as objectclass) should
be specified on the Sync Pipe as a create-only attribute. If PingDataSync Server ever computes a
difference in that attribute between the source and destination, it will not try to modify it at the destination.
To avoid bidirectional loop-back, set the ignore-changes-by-[user|dn] property on both Sync
Sources when configuring for bidirectional synchronization.

Synchronizing DELETE Operations

On PingDirectory Server and Nokia 8661 Directory Server systems, configure the changelog-deleted-
entry-include-attribute property on the changelog backend menu using the dsconfig tool.
This property allows for the proper synchronization of DELETE operations. For more information, see
Configuring the PingDirectory Server Backend for Synchronizing Deletes .

Attribute-Synchronization-Mode for DBSync

For MODIFY operations, PingDataSync Server detects any change on the source change log, fetches the
source entry, applies mappings, computes the equivalent destination entry, fetches the actual destination
entry, and then runs a diff between the two entries to determine the minimal set of changes to synchronize.
By default, changes on the destination entry are made only for those attributes that were detected in the
original change log entry. This is configurable using the attribute-synchronization-mode property,
which sets the type of diff operation that is performed between the source and destination entries.

If the source endpoint is a database server, set the attribute-synchronization-mode property
to all-attributes on the Sync Class configuration menu. The diff operation will consider all source
attributes. Any that have changed will be updated on the destination, even if the change was not originally
detected in the change log. This mode is useful when a list of changed columns in the database may
not be available. If both endpoints are directory servers, use the default configuration of modified-
attributes-only to avoid possible replication conflicts.

Handling MODDN Operations

The concept of renaming an entry (modifyDN) does not have a direct equivalent for relational databases.
The JDBCSyncDestination API does not handle changes of this type. Instead, the modifyEntry()
method is called as if it is a normal change. The extension can verify if the entry was renamed by
looking at the SyncOperation that is passed in (syncOperation.isModifyDN()). If true, the
fetchedDestEntry parameter will have the old DN. The new DN can be obtained by calling
syncOperation.getDestinationEntryAfterChange().

Configure a directory-to-database sync pipe
The following configures a one-way Sync Pipe with a PingDirectory Server as the Sync Source and an
RDBMS (Oracle) system as the Sync Destination with the create-sync-pipe-config tool. Sync Pipes
can be configured later using dsconfig.

PingDirectory | Synchronize with relational databases | 118

Create the sync pipe

The following procedures configure the Sync Pipe, external servers, and Sync Classes. The examples
are based on the Complex JDBC sample in the config/jdbc/samples/oracle-db directory. The
create-sync-pipe-config tool can be run with the server offline and the configuration can later be
imported.

1. Run the create-sync-pipe-config tool.

$bin/create-sync-pipe-config

2. At the Initial Synchronization Configuration Tool prompt, press Enter to continue.
3. On the Synchronization Mode menu, select Standard Mode or Notification Mode.
4. On the Synchronization Directory menu, choose one-way or bidirectional synchronization.

Configure the sync source

1. On the Source Endpoint Type menu, enter the number for the sync source corresponding to the type
of source external server.

2. Enter a name for the Source Endpoint.
3. Enter the base DN for the directory server, which is used as the base for LDAP searches. For example,

enter dc=example,dc=com, and then press Enter again to return to the menu. If entering more than
one base DN, make sure the DNs do not overlap.

4. On the Server Security menu, select the type of communication that PingDataSync Server will use with
the endpoint servers.

5. Enter the host and port of the source endpoint server. The Sync Source can specify a single server or
multiple servers in a replicated topology. The server tests that a connection can be established.

6. Enter the DN of the Sync User account and create a password for this account. The Sync User account
enables PingDataSync Server to access the source endpoint server. By default, the Sync User account
is stored as cn=SyncUser,cn=RootDNs,cn=config.

Configure the destination endpoint server

1. On the Destination Endpoint Type menu, select the type of datastore on the endpoint server. This
example is configuring an Oracle Database.

2. Enter a name for the Destination Endpoint.
3. On the JDBC Endpoint Connection Parameters menu, enter the fully-qualified host name or IP

address for the Oracle database server.
4. Enter the listener port for the database server, or press Enter to accept the default (1521).
5. Enter a database name such as dbsync-test.
6. The server attempts to locate the JDBC driver in the lib directory. If the file is found, a success

message is displayed.

Successfully found and loaded JDBC driver for:
jdbc:oracle:thin:@//dbsync-w2k8-vm-2:1521/dbsync-test

If the server cannot find the JDBC driver, add it later, or quit the create-sync-pipe-config tool and
add the file to the lib directory.

7. Add any additional JDBC connection properties for the database server, or press Enter to accept the
default (no). Consult the JDBC driver’s vendor documentation for supported properties.

8. Enter a name for the database user account with which PingDataSync Server will communicate, or
press Enter to accept the default (SyncUser). Enter the password for the account.

9. On the Standard Setup menu, enter the number for the language (Java or Groovy) that was used to
write the server extension.

PingDirectory | Synchronize with relational databases | 119

10.Enter the fully qualified name of the Server SDK extension class that implements the
JDBCSyncDestination API.

Enter the fully qualified name of the Java class that will implement
com.unboundid.directory.sdk.sync.api.JDBCSyncDestination:
com.unboundid.examples.oracle.ComplexJDBCSyncDestination

11.Configure any user-defined arguments needed by the server extension. These are defined in the
extension itself and the values are specified in the server configuration. If there are user-defined
arguments, enter yes.

12.To prepare the Source Endpoint server, which tests the connection to the server with the Sync User
account, press Enterto accept the default (yes). For the Sync User account, it will return "Denied" as
the account has not been written yet to the Directory Server at this time.

Testing connection to server1.example.com:1389 Done
Testing 'cn=Sync User,cn=Root DNs,cn=config' access Denied

13.To configure the Sync User account on the directory server, press Enter to accept the default (yes).
Enter the bind DN (cn=DirectoryManager) and the bind DN password of the directory server so that
you can configure the cn=Sync User account. PingDataSync Server creates the Sync User account,
tests the base DN, and enables the change log.

Created 'cn=Sync User,cn=Root DNs,cn=config'
Verifying base DN 'dc=example,dc=com' Done
Enabling cn=changelog

14.Enter the maximum age of the change log entries, or press Enter to accept the default.

Configure the sync pipe and sync classes

The following procedures define a Sync Pipe and two Sync Classes. The first Sync Class is used to match
the accounts objects. The second Sync Class matches the group objects.

1. Continuing from the previous session, enter a name for the Sync Pipe.
2. When prompted to define one or more Sync Classes, enter yes.

Configure the accounts Sync Class

1. Enter a name for the Sync Class. For example, type accounts_sync_class.
2. If restricting entries to specific subtrees, enter one or more base DNs. If not, press Enter to accept the

default (no).
3. To set an LDAP search filter, type yes and enter the filter "(accountid=*)". Press Enter again to

continue. This property sets the LDAP filters and returns all entries that match the search criteria to
be included in the Sync Class. In this example, specify that any entry with an accountID attribute be
included in the Sync Class. If the entry does not contain any of these values, it will not be synchronized
to the target server.

4. Choose to synchronize all attributes, specific attributes, or exclude specific attributes from
synchronization, or press Enter to accept the default (all).

5. Specify the operations that will be synchronized for the Sync Class, or press Enter to accept the default.

Configure the groups Sync Class

For this example, configure another Sync Class to handle the groups object class. The procedures are
similar to that of the configuration steps for the account_sync_class Sync Class.

1. On the Sync Class menu, enter a name for a new sync class, such as groups_sync_class.
2. To restrict entries to specific subtrees, enter one or more base DNs.
3. Set an LDAP search filter. Type yes to set up a filter and enter the filter

"(objectClass=groupOfUniqueNames)". This property sets the LDAP filters and returns all

PingDirectory | Synchronize with relational databases | 120

entries that match the groupOfUniqueNames attribute to be included in the Sync Class. If the entry
does not contain any of these values, it will not be synchronized to the target server.

4. Choose to synchronize all attributes, specific attributes, or exclude specific attributes from
synchronization, or press Enter to accept the default (all).

5. Specify the operations that will be synchronized for the Sync Class, or press Enter to accept the default.
6. At the prompt to enter the name of another Sync Class, press Enter to continue.
7. On the Default Sync Class Operations menu, press Enter to accept the default. The Default Sync

Class determines how all entries that do not match any other Sync Class are handled.
8. Review the configuration, and press Enter to write the configuration to the server.

Use the dsconfig tool to make changes to this configuration. See Configuring PingDataSync Server for
configuration options and details.

Considerations for synchronizing from a database source
When synchronizing from a database to a directory or RDBMS server, the following are recommended:

Identify Database Entry Types

Identify the database entry types that will be synchronized, and:

• Set the database-entry-type property on the JDBC Sync Source (this is required), and make sure
the entry types are what the triggers are inserting into the change tracking mechanism.

• Create a Sync Class per entry type, and set different mappings and rules for each one.

For each Sync Class, do the following:

• Make sure the include-filter property is set to match the entry type.
• Create a specific attribute mapping for every database column to be synchronized to an LDAP attribute

and set it on the Sync Class. If this is done, the script will not have to know about the schema on the
directory side.

• Create a DN map that recognizes the DNs generated by the script and maps them to the correct
location at the destination.

• Remove the default value of "-all-" from the auto-mapped-source-attribute property on the Sync
Class, and replace it with the value objectClass. The object class for the fetched source entry is
determined by the scripted layer. Values from the database should not be automatically mapped to
an attribute with the same name, except the objectclass attribute, which should map directly for
CREATE operations. If this is not done, an error is generated.

• Change the destination-correlation-attributes property to contain the attributes that uniquely represent
the database entries on the directory server destination.

Avoid Bidirectional Loopback

Set the ignore-changes-by-[user|dn] property on both Sync Sources when configuring for
bidirectional synchronization, to make sure that changes are not looped back by PingDataSync Server.

See Use the create-sync-pipe tool to configure synchronization for details about creating the Sync Pipe.

Synchronize a specific list of database elements

About this task
The resync command enables synchronizing a specific set of database keys that are read from a JDBC
Sync Source file using the --sourceInputFile option. The contents of the file are passed line-by-line into the
listAllEntries() method of the JDBCSyncSource extension, which is used for the Sync Pipe. The

PingDirectory | Synchronize with Apache Kafka | 121

method processes the input and returns DatabaseChangeRecord instances based on the input from the
file.

Perform the following steps to synchronize a specific list of database elements using the resync tool:

Steps

1. Create a file of JDBC Sync Source elements. There is no set format for the file, but it typically contains
a list of primary keys or SQL queries. For example, create a file containing a list of primary keys and
save it as sourceSQL.txt.

user.0
user.1
user.2
user.3

2. Run the resync command with the --sourceInputFile option to run on individual primary keys in the file.

$ bin/resync --pipe-name "dbsync-pipe" \
--sourceInputFile sourceSQL.txt

3. If searching for a specific type of database entry, use the --entryType option that matches one of the
configured entry types in the JDBCSyncSource.

$ bin/resync --pipe-name "dbsync-pipe" \
--entryType account \
--sourceInputFile sourceSQL.txt

Synchronize with Apache Kafka

Apache Kafka is an open-source streaming platform that communicates state changes in a distributed
environment. Changes to a datastore are sent to a Kafka topic, which lets customers update other
datastores that contain the same information. Although Kafka persists, orders, and transmits changes, it
neither detects changes nor applies them to other datastores.

PingDataSync Server supports Kafka as a sync destination with a Ping Identity sync source, such as
PingDirectory Server. In this scenario, the Kafka sync destination publishes changes in PingDirectory
Server to a Kafka topic, and displays the entry in JSON format both before and after each change. This
level of indirection enables other systems and services to react to changes in PingDirectory Server by
consuming messages from the topic.

Endpoints that use the Server SDK do not require custom sync destinations.

Restrictions
The following restrictions affect the manner in which a Kafka sync destination is used:

• The sync source must be a Ping Identity sync source.
• The changelog backend must be enabled on all instances of PingDirectory Server.
• To ensure the availability of an entry's attributes from before and after a change, the configuration

property changelog-include-key-attribute must include '*'.
• The Sync Pipe must be configured in Notification mode (synchronization-mode:notification)

because a Kafka sync destination cannot retrieve the current version of a destination entry.

PingDirectory | Synchronize with Apache Kafka | 122

Configure a Kafka sync destination
Use the dsconfig command or the Administration Console to synchronize changes to an Apache Kafka
environment. You can reuse existing Ping Identity sync sources that were created for other Sync Pipes.

The following objects are required to configure a Kafka sync destination:

• Kafka cluster external server – Defines the procedure for connecting to a Kafka cluster. The Kafka
cluster external server can be referenced from multiple Kafka sync destination configuration objects.
The only required property is bootstrap-server, which identifies some of the Kafka brokers in the
environment.

When use-ssl is set to true, the following configuration changes are made:

• A trust-manager-provider is configured to validate the Kafka broker's SSL certificate.
• A key-manager-provider is configured to let the Kafka broker authenticate the PingDataSync

Kafka producer.
• Kafka sync destination – References the Kafka cluster external server. The Kafka sync destination must

specify the name of the topic to use for publishing messages.

To adjust Kafka messages beyond the mapping, attribute filtering, and other configuration changes
that PingDataSync Server makes, reference one or more of the KafkaSyncDestinationPlugin
extension points that are implemented by using the Server SDK.

Run the prepare-endpoint-server command for the PingDirectory sync source.

SSL configuration

The following table identifies the trust-manager-provider and key-manager-provider properties
of the Kafka cluster external server configuration object, as well as the Kafka configuration properties to
which they map.

Configuration Object Type Configuration Property Kafka Configuration Property

File-based Trust Manager
Provider

trust-store-file ssl.truststore.location

File-based Trust Manager
Provider

trust-store-pin, trust-
store-pin-property, trust-
store-pin-environment-
variable, or trust-store-
pin-file

ssl.truststore.password

File-based Key Manager Provider key-store-file ssl.keystore.location

File-based Key Manager Provider key-store-pin, key-store-
pin-property, key-store-
pin-environment-variable,
or key-store-pin-file

ssl.keystore.password

File-based Key Manager Provider private-key-pin, private-
key-pin-property, private-
key-pin-environment-
variable, or private-key-
pin-file

ssl.key.password

PingDirectory | Synchronize with Apache Kafka | 123

Message format
The DN of a changed entry represents the default key for published messages. This value can be
overridden in either of the following ways:

• With the message-key-attribute property of the Kafka sync destination configuration object
• With a KafkaSyncDestinationPlugin extension point

The value of the of the message is a JSON object that includes the following fields:

• type – Type of change, such as ADD, MODIFY, DELETE, or RESYNC.
• dn – DN of the changed entry.
• changeID – Unique identifier for the change.
• modifiedAttributes – List of modified attributes. This field is available only when the type is

MODIFY.
• current – Entry after the change in JSON format. This field is unavailable when the type is DELETE.

The JSON format of a current entry is compatible with the PingDirectory Directory REST API.
• previous – Entry before the change in JSON format. This field is unavailable if the type is RESYNC or

CREATE.

The JSON format of a previous entry is compatible with the PingDirectory Directory REST API.

Example ADD

The following code provides an example of an addition:

{
 "type": "ADD",
 "dn" : "uid=jsmith,ou=people,dc=example,dc=com",
 "changeID": "changeNumber=1",
 "current": {
 "objectClass": [
 "top",
 "person",
 "organizationalPerson",
 "iNetOrgPerson"
],
 "sn": [
 "Smith"
],
 "cn": [
 "John Smith"
],
 "telephoneNumber": [
 "+1 123 123 1234"
],
 "uid": [
 "jsmith"
]
 }
}

Example MODIFY

The following code provides an example of a modification:

{
 "type": "MODIFY",
 "dn" : "uid=jsmith,ou=people,dc=example,dc=com",

PingDirectory | Synchronize with Apache Kafka | 124

 "changeID": "changeNumber=2",
 "modifiedAttributes": [
 "telephoneNumber"
],
 "previous": {
 "telephoneNumber": [
 "+1 123 123 1234"
],
 "objectClass": [
 "top",
 "person",
 "organizationalPerson",
 "iNetOrgPerson"
],
 "sn": [
 "Smith"
],
 "cn": [
 "John Smith"
],
 "uid": [
 "jsmith"
]
 },
 "current": {
 "telephoneNumber": [
 "+1 321 321 3210"
],
 "objectClass": [
 "top",
 "person",
 "organizationalPerson",
 "iNetOrgPerson"
],
 "sn": [
 "Smith"
],
 "cn": [
 "John Smith"
],
 "uid": [
 "jsmith"
]
 }
}

Example DELETE

The following code provides an example of a deletion:

{
 "type": "DELETE",
 "dn" : "uid=jsmith,ou=people,dc=example,dc=com",
 "changeID": "changeNumber=3",
 "previous": {
 "telephoneNumber": [
 "+1 321 321 3210"
],
 "objectClass": [
 "top",
 "person",
 "organizationalPerson",
 "iNetOrgPerson"

PingDirectory | Synchronize through PingDirectoryProxy servers | 125

],
 "sn": [
 "Smith"
],
 "cn": [
 "John Smith"
],
 "uid": [
 "jsmith"
]
 }
}

Message customization

After PingDataSync Server maps the attributes and filters the results, any entries that are changed will
utilize the fields of a Kafka message. To restrict the information that is published to a topic, exclude the
unwanted attributes from mapping, or include only the attributes that you want to publish.

By using the KafkaSyncDestinationPlugin extension point within the Server SDK, you can fully
change the message key or value. For more information, including examples, refer to the documentation
that is included with the Server SDK packaging.

Synchronize through PingDirectoryProxy servers

Because most data centers deploy directory servers in a proxied environment, PingDataSync Server can
also synchronize data through a proxy server in both load-balanced and entry-balancing deployments. The
following proxy endpoints are supported:

• Ping Identity PingDirectoryProxy Servers
• Nokia 8661 Directory Proxy Servers

This chapter details a Sync-through-Proxy deployment and provides background information on how
it works. Before setting up PingDataSync Server, review the Ping Identity PingDirectoryProxy Server
Administration Guide for information about the PingDirectoryProxy Server.

Synchronization through a Proxy Server overview
To handle data synchronization through a proxy server, PingData servers have a cn=changelog state
management system that supports a token-based API.

In a standard, non-proxied configuration, PingDataSync Server polls the source server for changes,
determines if a change is necessary, and fetches the full entry from the source. Then, it finds the
corresponding entry in the destination endpoint using correlation rules and applies the minimal set of
changes. The server fetches and compares the full entries to make sure it does not synchronize any stale
data from the change log.

In a proxied environment, PingDataSync Server passes the request through a proxy server to the backend
set of directory servers. PingDataSync Server uses the highest priority proxy server designated in its
endpoint server configuration and can use others in the event of a failover.

The following figure illustrates a deployment with two endpoints consisting of a proxy server deployment in
front of the backend set of directory servers.

PingDirectory | Synchronize through PingDirectoryProxy servers | 126

Change log operations

When PingDataSync Server runs a poll for any changes, it sends a get change log batch extended request
to the cn=changelog backend. The batch request looks for entries in the change log and asks for the
server ID, change number, and replica state for each change.

The PingDirectoryProxy Server routes the request to a directory server instance, which then returns a
changed entry plus a token identifying the server ID, change number and replica state for each change.
The PingDirectoryProxy Server then sends a get change log batch response back to PingDataSync Server
with this information. For entry-balancing deployments, the PingDirectoryProxy Server must "re-package"
the directory server tokens into its own proxy token to identify the specific data set.

The first time that PingDataSync Server issues the batch request, it also issues a get server ID request
to identify the specific server ID that is processing the extended request. The PingDirectoryProxy Server
routes the request to the directory server instance, and then returns a server ID in the response. With the
next request, PingDataSync Server sends a 'route to server' request that specifies the server instance to
access again in this batch session. It also issues a server ID request in the event that the particular server
is down. This method avoids round-robin server selection and provides more efficient overall change
processing.

PingDirectory Server and PingDirectoryProxy Server tokens

The PingDirectory Server maintains a change log database index to determine when to resume sending
changes (for ADD, MODIFY, or DELETE operations) in its change log. While a simple stand-alone
directory server can track its resume point by the last change number sent, replicated servers or servers
deployed in entry balancing environments have a different change number ordering in its change log
because updates can come from a variety of sources.

The following figure illustrates two change logs in two replicated directory servers, server A and B. "A"
represents the replica identifier for a replicated subtree in Server A, and "B" represents the replica identifier
for the same replicated subtree in server B. The replica identifiers with a hyphen ("-") mark any local, non-
replicated but different changes. While the two replicas record all of the changes, the two change logs have
two different change number orderings because updates come in at different times.

PingDirectory | Synchronize through PingDirectoryProxy servers | 127

To track the change log resume position, the PingDirectory Server uses a change log database index to
identify the latest change number position corresponding to the highest replication CSN number for a given
replica. This information is encapsulated in a directory server token and returned in the get change log
batch response to the PingDirectoryProxy Server. The token has the following format:

Directory Server Token: server ID, changeNumber,replicaState

For example, if the PingDirectoryProxy Server sends a request for any changed entries, and the directory
servers return the change number 1003 from server A and change number 2005 from server B, then each
directory server token would contain the following information:

Directory Server Token A:
 serverID A, changeNumber 1003, replicaState {15(A)}

Directory Server Token B:
 serverID B, changeNumber 2005, replicaState {12(B), 15(A)}

Change log tracking in entry balancing deployments

Change log tracking can become more complex in that a shared area of data can exist above the entry-
balancing base DN in addition to each backend set having its own set of changes and tokens.

In the following figure, Server A belongs to an entry-balancing set 1, and server B belonging to an entry-
balancing set 2. Shared areas that exist above the entry-balancing base DN are assumed to be replicated
to all servers. "SA" represents the replica identifier for that shared area on Server A and "SB" represents
the replica identifier for the same area on Server B.

The PingDirectoryProxy Server cannot pass a directory server token from the client to the directory server
and back again. In an entry-balancing deployment, the PingDirectoryProxy Server must maintain its own
token mechanism that associates a directory server token (changeNumber, replicaIdentifier,
replicaState) to a particular backend set.

Proxy Token:
backendSetID 1: ds-token 1 (changeNumber, replicaIdentifier, replicaState)

PingDirectory | Synchronize through PingDirectoryProxy servers | 128

backendSetID 2: ds-token 2 (changeNumber, replicaIdentifier, replicaState)

For example, if the PingDirectoryProxy Server returned change 1002 from Server A and change 2002 from
Server B, then the Proxy token would contain the following:

Proxy Token:
backendSetID 1: ds-token-1 {serverID A, changeNumber 1002, replicaState (5
(SA), 15(A)}
backendSetID 2: ds-token-2 {serverID B, changeNumber 2002, replicaState (10
(SB), 20(B)}

For each change entry returned by a backend, the PingDirectoryProxy Server must also decide whether
it is a duplicate of a change made to the backend set above the entry-balancing base. If the change is a
duplicate, then it is discarded. Otherwise, any new change is returned with a new value of the proxy token.

Example configuration
This example configures synchronization through a proxy and uses two endpoints consisting of a
PingDirectoryProxy Server with a backend set of PingDirectory Servers: both sets are replicated.

The PingDirectoryProxy Server uses an entry-balancing environment for the DN
ou=People,dc=example,dc=com and provides a subtree view for dc=example,dc=com in its client
connection policy. For this example, communication is over standard LDAP and failover servers are not
installed or designated in PingDataSync Server.

Configure the source PingDirectory Server

About this task
The following procedure configures a backend set of directory servers. The procedure is the same for the
source servers and the destination servers in a synchronization topology. For directory server installation
and configuration details, see the Ping Identity PingDirectory Server Administration Guide.

Steps

1. On each backend Directory Server that will participate in synchronization, enable the change log
database, either from the command line or by using a dsconfig batch file.

$ dsconfig --no-prompt set-backend-prop \
 --backend-name changelog \

PingDirectory | Synchronize through PingDirectoryProxy servers | 129

 --set enabled:true

2. Stop the server if it is running, and import the dataset for the first backend set into the first server in the
backend set prior to the import.

$ bin/stop-server
$ bin/import-ldif --backendID userRoot --ldifFile ../dataset.ldif
$ bin/start-server

3. On the first server instance in the first backend set, configure replication between this server and the
second server in the same backend set.

$ bin/dsreplication enable --host1 ldap-west-01.example.com \
 --port1 389 \
 --bindDN1 "cn=Directory Manager" \
 --bindPassword1 password \
 --replicationPort1 8989 \
 --host2 ldap-west-02.example.com \
 --port2 389 \
 --bindDN2 "cn=Directory Manager" \
 --bindPassword2 password \
 --replicationPort2 9989 \
 --adminUID admin \
 --adminPassword admin \
 --baseDN dc=example,dc=com \
 --no-prompt

4. Initialize the second server in the backend set with data from the first server in the backend set. This
command can be run from either instance.

$ bin/dsreplication initialize \
 --hostSource ldap-west-01.example.com \
 --portSource 389 \
 --hostDestination ldap-west-02.example.com \
 --portDestination 389 \
 --baseDN "dc=example,dc=com" \
 --adminUID admin \
 --adminPassword admin \
 --no-prompt

5. Run the following command to check replica status.

$ bin/dsreplication status \
 --hostname ldap-west-01.example.com \
 --port 389 \
 --adminPassword admin \
 --no-prompt

6. Repeat steps 3 through 6 (import, enable replication, initialize replication, check status) for the second
backend set.

Configure a proxy server

About this task
The following procedure configures a proxy server, including defining the external servers and configuring
the client-connection policy. The procedure is the same for the source servers and the destination servers
in a synchronization topology.

For additional changes, use the dsconfig tool. For proxy installation and configuration details, see the
Ping Identity PingDirectoryProxy Server Administration Guide.

PingDirectory | Synchronize through PingDirectoryProxy servers | 130

Steps

1. From the PingDirectoryProxy Server root directory, run the prepare-external-server command to
set up the cn=Proxy User account for access to the backend directory servers. The server tests the
connection and creates the cn=Proxy User account.

$ bin/prepare-external-server --no-prompt \
 --hostname ldap-west-01.example.com \
 --port 389 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --proxyBindDN "cn=Proxy User,cn=Root DNs,cn=config" \
 --proxyBindPassword pass \
 --baseDN "dc=example,dc=com"

2. Repeat step 1 for any other directory server instances.

3. Run the dsconfig command to define the external servers and their types. For this example, round-
robin load balancing algorithms are defined, which do not require health checks or locations to be
specified.

$ bin/dsconfig --no-prompt create-external-server \
 --server-name ldap-west-01 \
 --type "ping-identity-ds" \
 --set "server-host-name:ldap-west-01.example.com" \
 --set "server-port:389" \
 --set "bind-dn:cn=Proxy User" \
 --set "password:password" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-external-server \
 --server-name ldap-west-02 \
 --type "ping-identity-ds" \
 --set "server-host-name:ldap-west-02.example.com" \
 --set "server-port:389" \
 --set "bind-dn:cn=Proxy User" \
 --set "password:password" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-external-server \
 --server-name ldap-west-03 \
 --type "ping-identity-ds" \
 --set "server-host-name:ldap-west-03.example.com" \
 --set "server-port:389" \
 --set "bind-dn:cn=Proxy User" \
 --set "password:password" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-external-server
 --server-name ldap-west-04 \
 --type "ping-identity-ds" \
 --set "server-host-name:ldap-west-04.example.com" \
 --set "server-port:389" \
 --set "bind-dn:cn=Proxy User" \
 --set "password:password" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

PingDirectory | Synchronize through PingDirectoryProxy servers | 131

4. Create a load-balancing algorithm for each backend set.

$ bin/dsconfig --no-prompt create-load-balancing-algorithm \
 --algorithm-name "test-lba-1" \
 --type "round-robin" --set "enabled:true" \
 --set "backend-server:ldap-west-01" \
 --set "backend-server:ldap-west-02" \
 --set "use-location:false" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-load-balancing-algorithm \
 --algorithm-name "test-lba-2" \
 --type "round-robin" --set "enabled:true" \
 --set "backend-server:ldap-west-03"
 --set "backend-server:ldap-west-04"
 --set "use-location:false" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

5. Configure the proxying request processors, one for each load-balanced directory server set. A request
processor provides the logic to either process the operation directly, forward the request to another
server, or hand off the request to another request processor.

$ bin/dsconfig --no-prompt create-request-processor \
 --processor-name "proxying-processor-1" --type "proxying" \
 --set "load-balancing-algorithm:test-lba-1" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-request-processor \
 --processor-name "proxying-processor-2" --type "proxying" \
 --set "load-balancing-algorithm:test-lba-2" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

6. Define an entry-balancing request processor. This request processor is used to distribute entries
under a common parent entry among multiple backend sets. A backend set is a collection of replicated
directory servers that contain identical portions of the data. Multiple proxying request processors are
used to process operations.

Next, define the placement algorithm, which selects the server set to use for new add operations to
create new entries. In this example, a round-robin placement algorithm forwards LDAP add requests to
backend sets.

$ bin/dsconfig --no-prompt create-placement-algorithm \
 --processor-name "entry-balancing-processor" \
 --algorithm-name "round-robin-placement" \
 --set "enabled:true" \
 --type "round-robin" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

7. Define the subtree view that specifies the base DN for the entire deployment.

$ bin/dsconfig --no-prompt create-subtree-view \
 --view-name "test-view" \
 --set "base-dn:dc=example,dc=com" \
 --set "request-processor: entry-balancing-processor" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

PingDirectory | Synchronize through PingDirectoryProxy servers | 132

8. Finally, define a client connection policy that specifies how the client connects to the proxy server.

$ bin/dsconfig --no-prompt set-client-connection-policy-prop \
 --policy-name "default" \
 --add "subtree-view:test-view" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

Configure PingDataSync Server

About this task
Configure PingDataSync Server after the PingDirectoryProxy Server and its backend set of PingDirectory
Server instances are configured and fully functional for each endpoint, which are labeled as ldap-west
and ldap-east in this example.

For information about installing and configuring PingDataSync Server, see Installing the PingDataSync
Server.

Steps

1. From the PingDataSync Server root directory, run the create-sync-pipe-config tool.

$ bin/create-sync-pipe-config

2. At the Initial Synchronization Configuration Tool prompt, press Enter to continue.

3. On the Synchronization Mode menu, press Enter to select Standard mode.

4. On the Synchronization Directory menu, choose the option for one-way or bidirectional synchronization.

5. On the First Endpoint Type menu, enter the number for the type of backend data store for the first
endpoint. In this example, type the number corresponding to the PingDirectoryProxy Server.

>>>> First Endpoint Type
Enter the type of datastore for the first endpoint:
1) Ping Identity Directory Server
2) Ping Identity Directory Proxy Server
3) Alcatel-Lucent Directory Server
4) Alcatel-Lucent Proxy Server
5) Sun Directory Server
6) Microsoft Active Directory
7) Microsoft SQL Server
8) Oracle Database
9) Custom JDBC

b) back
q) quit
Enter choice [1]: 2

6. Enter a descriptive name for the first endpoint.

7. Enter the base DN where PingDataSync Server can search for the entries on the first endpoint server.

8. Specify the type of security when communicating with the endpoint server.

9. Enter the host name and port of the endpoint server. PingDataSync Server tests the connection.
Repeat this step if configuring another server for failover.

10.Enter the Sync User account that will be used to access the endpoint server, or press Enter to accept
the default cn=Sync User,cn=Root DNs,cn=config. Enter a password for the account.

11.The first endpoint deployment is defined using the PingDirectoryProxy Server (ldap-west). Repeat
steps 5-10 to define the second proxy deployment (ldap-east) on PingDataSync Server.

PingDirectory | Synchronize through PingDirectoryProxy servers | 133

12.Prepare the endpoint servers in the topology. This step confirms that the Sync User account is present
on each server and can communicate between PingDataSync Server and the PingDirectoryProxy
Servers. In addition to preparing the PingDirectoryProxy Server, PingDataSync Server prepares the
backend set of directory servers as the proxy server passes through the authorization to access these
servers.

13.Repeat the previous step to prepare the second endpoint server. If other servers have not been
prepared, make sure that they are prior to synchronization.

14.Define the Sync Pipe from proxy 1 to proxy 2. In this example, accept the default "Ping Identity Proxy 1
to Ping Identity Proxy 2."

15.To customize on a per-entry basis how attributes get synchronized, define one or more Sync Classes.
Create a Sync Class for the special cases, and use the default Sync Class for all other mappings.

16.For the default Sync Class Operations, specify the operations that will be synchronized.

17.Review the configuration settings, and write the configuration to PingDataSync Server in the sync-
pipe-cfg.txt file.

Test the configuration

About this task

If the create-sync-pipe-config tool was not used to create the synchronization configuration, two
properties must be verified on each endpoint: proxy-server and use-changelog-batch-request.
The proxy-server property should specify the name of the proxy server. The use-changelog-batch-
request property should be set to true on the Sync Source only. The use-changelog-batch-
request property is not available on the destination endpoint.

The PingDataSync Server connection parameters (hostname, port, bind DN, and bind password) are
required.

Steps

1. The following commands check the properties on a Sync Source.

On the Sync Source:

$ bin/dsconfig --no-prompt \
 get-sync-source-prop \
 --source-name "Ping Identity Proxy 1" \
 --property "proxy-server" \
 --property "use-changelog-batch-request"

On the Sync Destination:

$ bin/dsconfig --no-prompt \
 get-sync-source-prop \
 --source-name "Ping Identity Proxy 2" \
 --property "proxy-server"

2. From the server root directory, run the dsconfig command to set a flag indicating that the endpoints
are PingDirectoryProxy Servers:

$ bin/dsconfig --no-prompt \
 set-sync-source-prop \
 --source-name "Ping Identity Proxy 1" \
 --set proxy-server:ldap-west-01 \
 --set use-changelog-batch-request:true

$ bin/dsconfig --no-prompt \

PingDirectory | Synchronize through PingDirectoryProxy servers | 134

 set-sync-source-prop \
 --source-name "Ping Identity Proxy 2" \
 --set proxy-server:ldap-east-01

3. Run the resync --dry-run command to test the configuration settings for each Sync Pipe and
debug any issues.

$ bin/resync --pipe-name "Ping Identity Proxy 1 to Ping Identity Proxy 2"
--dry-run

4. Run realtime-sync set-startpoint to initialize the starting point for synchronization.

$ realtime-sync set-startpoint --end-of-changelog \
 --pipe-name "Ping Identity Proxy 1 to Ping Identity Proxy 2" \
 --port 389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password

Note:

For synchronization through proxy deployments, the --change-number option cannot be used with
the realtime-sync set-startpoint command, because PingDataSync Server cannot retrieve
specific change numbers from the backend directory servers. Use --change-sequence-number, --end-
of-changelog, or other options available for the tool.

5. Run the resync command to populate data on the endpoint destination server if necessary.

$ bin/resync --pipe-name "Ping Identity Proxy 1 to Ping Identity Proxy 2"
\
 --numPasses 3

6. Start the Sync Pipe using the realtime-sync start command.

$ bin/realtime-sync start \
 --pipe-name "Ping Identity Proxy 1 to Ping Identity Proxy 2"

7. Monitor PingDataSync Server using the status commands and logs.

Index the LDAP changelog

About this task
The PingData PingDirectory Server and the Nokia 8661 Directory Server (3.0 or later) both support
attribute indexing in the changelog backend to enable get changelog batch requests to filter results
that include only changes of specific attributes. For example, in an entry balanced proxy deployment,
PingDataSync Server sends a get changelog batch request to the Proxy Server, which will send out
individual requests to each backend server.

Each directory server that receives a request must iterate over the whole range of changelog entries,
and then match entries based on search criteria for inclusion in the batch. The majority of this processing
involves determining whether a changelog entry includes changes to a particular attribute or set of
attributes, or not. Changelog indexing can dramatically speed up throughput when targeting specific
attributes.

Attribute indexing is configured using the index-include-attribute and index-exclude-
attribute properties on the changelog backend. The properties can accept the specific attribute name
or special LDAP values "*" to specify all user attributes or "+" to specify all operational attributes.

Perform the following steps to configure changelog indexing:

PingDirectory | Synchronize through PingDirectoryProxy servers | 135

Steps

1. On all source directory servers, enable changelog indexing for the attributes that will be synchronized.
Use the index-include-attribute and index-exclude-attribute properties. The following example specifies
that all user attributes (index-include- attribute:*) be indexed in the changelog, except the description
and location attributes (index-exclude-attribute:description and index-exclude-attribute:location).

$ bin/dsconfig set-backend-prop --backend-name changelog \
 --set "index-include-attribute:*" \
 --set "index-exclude-attribute:description \
 --set "index-exclude-attribute:location

Note:

There is little performance and disk consumption penalty when using index-include-attribute:* with a
combination of index-exclude-attribute properties, instead of explicitly defining each attribute
using index-include-attribute. The only cautionary note about using index-include-
attribute:* is to be careful that unnecessary attributes get indexed.

2. On PingDataSync Server, configure the auto-map-source-attributes property to specify the
mappings for the attributes that need to be synchronized.

Results
PingDataSync Server will write a NOTICE message to the error log when the Sync Pipe first starts,
indicating whether the server is using changelog indexing or not.

[30/Mar/2016:13:21:36.781 -0500] category=SYNC severity=NOTICE
msgID=1894187256 msg="Sync Pipe 'TestPipe' is not using changelog indexing
 on
the source server"

Changelog synchronization considerations
If the Sync Source is configured with use-changelog-batch-request=true, PingDataSync Server
will use the get changelog batch request to retrieve changes from the LDAP changelog. This extended
request can contain an optional set of selection criteria, which specifies changelog entries for a specific set
of attributes.

PingDataSync Server takes the union of the source attributes from DN mappings, attribute mappings, and
the auto-mapped-source-attributes property on the Sync Class to create the selection criteria.
However, if it encounters the value "-all-" in the auto-mapped-source-attributes property, it cannot
make use of selection criteria because the Sync Pipe is interested in all possible source attributes.

When the PingDirectory Server receives a get changelog request that contains selection criteria, it returns
changelog entries for one or more of the attributes that meet the criteria.

• For ADD and MODIFY changelog entries, the changes must include at least one attribute from the
selection criteria.

• For MODDN changelog entries, one of the RDN attributes must match the selection criteria.
• For DELETE changelog entries, one of the deletedEntryAttrs much match the selection criteria.

If auto-mapped is not set to all source attributes, at least one should be configured to show up in the
deletedEntryAttrs (with the changelog-deleted-entry-include-attribute property on the
changelog backend).

Another way to do this is to set use-reversible-form to true on the changelog backend. This
includes all attributes in the deletedEntryAttrs.

PingDirectory | Synchronize in Notification Mode | 136

Synchronize in Notification Mode

PingDataSync Server supports a notification synchronization mode that transmits change notifications on a
source endpoint to third-party destination applications.

As with standard mode, notifications can be filtered based on the type of entry that was changed, the
specific attributes that were changed, and the type of change (ADD, MODIFY, DELETE). PingDataSync
Server can send a notification to arbitrary endpoints by using a custom server extension.

Notification mode overview
PingDataSync Server supports standard and notification synchronization modes. Notification Mode polls
the directory server’s LDAP change log for changes on any entry but skips the fetch and compare phases
of processing of Standard Mode. Instead, the Sync Destination is notified of the change regardless of the
current state of that entry at the source or destination. PingDataSync Server accesses state information
on the change log to reconstruct the before-and-after values of any modified attribute (for example, for
MODIFY change operation types). It passes in the change information to a custom server extension based
on the Server SDK.

Third-party libraries can be employed to customize the notification message to an output format required
by the client application or service. For example, the server extension can use a third-party XML parsing
library to convert the change notifications to a SOAP XML format.

Notification mode can only be used with an PingDirectory Server, Nokia 8661 Directory Server,
PingDirectoryProxy Server, or Nokia 8661 Directory Proxy Server as the source endpoint.

PingDataSync Server can use notification mode with any type of endpoint; therefore, it is not an absolute
requirement to have a custom server extension in your system. For example, it is possible to set up a
notification Sync Pipe between two LDAP server endpoints.

Implementation considerations

Before implementing and configuring a Sync Pipe in notification mode, answer the following questions:

• What is the interface to client applications?
• What type of connection logic is required?

PingDirectory | Synchronize in Notification Mode | 137

• How will the custom server extension handle timeouts and connection failures?
• What are the failover scenarios?
• What data needs to be included in the change log?
• How long do the change log entries need to be available?
• What are the scalability requirements for the system?
• What attributes should be used for correlation?
• What should happen with each type of change?
• What mappings must be implemented?

Use the server SDK and LDAP SDK

To support notification mode, the Server SDK provides a SyncDestination extension to synchronize
with any client application. The PingDataSync Server engine processes the notification and makes it
available to the extension, which can be written in Java or Groovy. This generic extension type can also be
used for standard synchronization mode.

Similar to database synchronization, the custom server extension is stored in the <server-root>/lib/
groovy-scripted-extensions folder (for Groovy-based extensions) or the jar file in the <server-
root>/lib/extensions folder (for Java-based extensions) prior to configuring PingDataSync Server for
notification mode. Groovy scripts are compiled and loaded at runtime.

The Server SDK's SyncOperation interface represents a single synchronized change from the Sync
Source to the Sync Destination. The same SyncOperation object exists from the time a change is
detected, through when the change is applied at the destination.

The LDAP SDK's UnboundIDChangelogEntry class (in the
com.unboundid.ldap.sdk.unboundidds package) has high-level methods to work with the ds-
changelog-before-value, ds-changelogafter-values, and ds-changelog-entry-key-
attr-values attributes. The class is part of the commercial edition of the LDAP SDK for Java and is
installed automatically with PingDataSync Server. For detailed information and examples, see the LDAP
SDK Javadoc.

Notification mode architecture
Notification mode, a configuration setting on the Sync Pipe, requires a one-way directional Sync Pipe from
a source endpoint topology to a target client application.

PingDataSync Server detects the changes in the PingDirectory Server’s LDAP change log, filters the
results specified in the Sync Classes, applies any DN and attribute mappings, then reconstructs the
change information from the change log attributes. A server extension picks up the notification arguments
from the SyncOperation interface (part of the Server SDK) and converts the data to the desired output
format. The server extension establishes the connections and protocol logic to push the notification
information to the client applications or services. All of the operations, administration, and management
functions available in standard mode, such as monitoring, (LDAP, JMX, SNMP), alerts (JMX, SNMP,
SMTP), and logging features are the same for notification mode.

Note:

The Server SDK includes documentation and examples on how to create a directory server extension to
support notification mode.

For a given entry, PingDataSync Server sends notifications in the order that the changes occurred in the
change log even if a modified attribute has been overwritten by a later change. For example, if an entry’s
telephoneNumber attribute is changed three times, three notifications will be sent in the order they
appeared in the change log.

PingDirectory | Synchronize in Notification Mode | 138

Sync source requirements

A separate Sync Pipe is required for each client application that should receive a notification. The
Sync sources must consist of one or more instances of the following directory or proxy servers with
PingDataSync Server:

• Ping Identity PingDirectory Server and PingDirectoryProxy Server (version 3.0.5 or later)
• Nokia 8661 Directory Server
• The Sync Destination can be of any type

Note:

While the PingDirectoryProxy Server and Nokia 8661 Directory Proxy Server can front other vendor’s
directory servers, such as Active Directory and Sun DSEE, for processing LDAP operations, PingDataSync
Server cannot synchronize changes from these sources through a proxy server. Synchronizing changes
directly from Active Directory and Sun DSEE cannot be done with notification mode.

Failover capabilities

For sync source failovers, configure replication between the Directory Servers to ensure data consistency
between the servers. A PingDirectoryProxy Server can also front the backend PingDirectory Server set
to redirect traffic, if connection to the primary server fails. A PingDirectoryProxy Server must be used
for synchronizing changes in an entry-balancing environment. Once the primary PingDirectory Server
is online, it assumes control with no information loss as its state information is kept across the backend
PingDirectory Servers.

For sync destination failovers, connection retry logic must be implemented in the server extension, which
will use the Sync Pipe’s advanced property settings to retry failed operations. There is a difference
between a connection retry and an operation retry. An extension should not retry operations because
PingDataSync Server does this automatically. However, the server extension is responsible for re-
establishing connections to a destination that has gone down, or failing over to an alternate server. The
server extension can also be designed to trigger its own error- handling code during a failed operation.

For PingDataSync Server failovers, the secondary PingDataSync Servers will be at or slightly behind the
state where the primary server initiated a failover. Both primary and secondary PingDataSync Servers
track the last failed acknowledgement, so once the primary server fails over to a secondary server, the
secondary server will not miss a change.

Note:

If failover is a concern between PingDataSync Servers, change the sync-failover-polling-
interval property from 7500 ms to a smaller value. This will result in a quicker failover, but will
marginally increase traffic between the two PingDataSync Servers. The sync-failover-connection-

PingDirectory | Synchronize in Notification Mode | 139

timeout and sync-failover-response-timeout properties may also be updated to use different
failover timeout durations. Use dsconfig to access the property on the Global Sync Configuration menu.

Notification sync pipe change flow

Multi-threaded Sync Pipes allow PingDataSync Server to process multiple notifications in parallel in
the same manner as synchronizing changes in standard mode, which increases throughput and offsets
network latency. A single change-detection thread pulls in batches of change log entries and queues them
internally. To guarantee consistency, PingDataSync Server’s internal locking mechanisms ensure the
following properties:

• Changes to the same entry will be processed in the same order that they appear in the change log.
• Changes to parent entries will be processed before changes to its children.
• Changes to entries with the same RDN value are handled sequentially.

The number of concurrent threads is configurable on the Sync Pipe using the num-worker-threads
property. In general, single-threading should be avoided.

Configure notification mode
PingDataSync Server supports notification mode with the following components.

Use the create-sync-pipe-config tool

The create-sync-pipe-config tool supports the configuration of notification mode. Any pre-existing
Sync Sources can be read from the local configuration (in the config.ldif file).

No resync command functionality

The resync function is disabled on a Sync Pipe in notification mode as its functionality is not supported in
this implementation. Notification mode views the directory server’s change log as a rolling set of data that
pushes out change notifications to its target application.

LDAP change log features required for notifications

The PingDirectory Server and the Nokia 8661 Directory Server require the following advanced global
change log properties: changelog-max-before-after-values and changelog-include-key-
attribute.

PingDirectory | Synchronize in Notification Mode | 140

These properties are enabled and configured during the create-sync-pipe-config configuration
process on PingDataSync Server. The properties can also be enabled on the directory servers by using the
dsconfig advanced properties setting on the Backend Changelog menu.

changelog-include-key-attribute

The changelog-include-key-attribute property specifies one or more attributes that should
always be included in the change log entry. These are attributes needed to correlate entries between the
source and destination, such as uid, employeeNumber, or mail. These properties are also needed for
evaluating any filters in the Sync Class. For example, if notifications are only sent for user entries, and the
Sync Class included the filter (objectclass=people), the objectclass attribute must be configured
as a changelog-include-key-attribute so that the Sync Pipe can evaluate the inclusion criteria
when processing the change. In standard mode, values needed in the filter are read from the entry itself
after it is fetched instead of from the changelog entry. These attributes are always included in a change log
entry, also called a change record, regardless if they have changed or not.

The changelog-include-key-attribute property causes the current (after-change) value of the
specified attributes to be recorded in the ds-changelog-entry-key-attr-values attribute on the
change log entry. This applies for all change types. During a delete operation, the values are from the entry
before it was deleted. The key values are recorded on every change and override any settings configured
in the changelog-include-attribute, changelog-exclude-attribute, changelog-deleted-
entry-include-attribute, or changelog-deleted-entry- exclude-attribute properties
in the directory server changelog (see the Ping Identity PingDirectoryServer Configuration Reference for
more information).

Normal LDAP to LDAP synchronization topologies typically use dn as a correlation attribute. If dn is used
as a correlation attribute only, the changelog-include-key-attribute property does not need to
be set. However, if another attribute is used for correlation, this property must be set during the Sync Pipe
configuration.

The LDAP change log attribute, ds-changelog-entry-key-attr-values, stores the attribute that
is always included in a change log entry on every change for correlation purposes. In addition to regular
attributes, virtual and operational attributes can be specified as entry keys.

To view an example, see the Ping Identity PingDirectory Server Administration Guide.

changelog-max-before-after-values

The changelog-max-before-after-values property specifies the maximum number of "before
and after" values (default 200) that should be stored for any changed attribute in the change log. Also,
when enabled, it will add the ds-changelog-before-values and ds-changelog-after-values
attributes to any change record that contains changes (for Modify and ModifyDN).

The main purpose of the changelog-max-before-after-values property is to ensure that an
excessively large number of changes is not stored for multi-valued attributes. In most cases, the directory
server’s schema defines a multi-valued attribute to be unlimited in an entry. For example, if a group entry
whose member attribute references 10000 entries, the desire may be to not have all of the attributes if a
new member added.

If either the ds-changelog-before-values or the ds-changelog-after-values attributes exceed
the count set in the changelog-max-before-after-values property, the attribute values are no
longer stored in a change record but its attribute name and number is stored in the ds-changelog-
attr-exceeded-max-values-count attribute, which appears in the change record.

In addition to this property, set the use-reversible-form property to TRUE. This guarantees that
sufficient information is stored in the change log for all operation types to be able to replay the operations
at the destination. The create-sync-pipe-config tool configures these properties when it prepares
the servers.

The changelog-max-before-after-values property configures the following change log attributes:

PingDirectory | Synchronize in Notification Mode | 141

• ds-changelog-before-values – Captures all "before" values of a changed attribute. It will store up
to the specified value in the changelog-max-before-after-values property (default 200).

• ds-changelog-after-values – Captures all "after" values of a changed attribute. It will store up to
the specified value in the changelog-max-before-after-values property (default 200).

• ds-changelog-attr-exceeded-max-values-count – Stores the attribute names and number
of before and after values on the change log entry after the maximum number of values (set by the
changelog-max-before-after-values property) has been exceeded. This is a multi-valued
attribute with the following format:

attr=attributeName,beforeCount=200,afterCount=201

where attributeName is the name of the attribute and the beforeCount and afterCount are the
total number of values for that attribute before and after the change, respectively. In either case (before
or after the change), if the number of values is exceeding the maximum, those values will not be stored.

LDAP change log for Notification and Standard Mode

Both Notification and Standard mode Sync Pipes can consume the same LDAP Change Log without
affecting the other. Standard mode polls the change record in the change log for any modifications,
fetches the full entries on the source and the destination, and then compares them for the specific
changes. Notification mode gets the before and after values of a changed attribute to reconstruct an entry,
and bypasses the fetch-and-compare phase. Both can consume the same LDAP Change Log with no
performance loss or conflicts.

Note:

If the configuration obtains the change log through a PingDirectoryProxy Server, the contents of the
change log will not change as it is being read from the change logs on the directory server backend.

Implementing the server extension
Notification mode relies heavily on the server extension code to process and transmit the change using the
required protocol and data formats needed for the client applications.

Create the extension using the Server SDK, which provides the APIs to develop code for any destination
endpoint type. The Server SDK’s documentation (Javadoc and examples) is delivered with the Server
SDK built-in zip format. The SDK provides all of the necessary classes to extend the functionality of
PingDataSync Server without code changes to the core product. Once the server extension is in place, use
other third-party libraries to transform the notification to any desired output format.

Consider the following when implementing the extension:

Use the manage-extension tool Use the manage-extension tool in the bin directory
or bat directory (Windows) to install or update
the extension. See Managing Extensions for more
information.

Review the Server SDK package Review Server SDK documentation and examples
before building and deploy a Java or Groovy
extension.

Connection and protocol logic The Server SDK extension must manage the
notification connection and protocol logic to the
client applications.

Implementing extensions Test the create methods, the delete methods, and
the modify methods for each entry type. Update
the configuration as needed. Finally, package the

PingDirectory | Synchronize in Notification Mode | 142

extensions for deployment. Logging levels can be
increased to include more details.

Use the SyncOperation type The SyncOperation class encapsulates
everything to do with a given change. Objects of
this type are used in all of the synchronization SDK
extensions. See the Server SDK Javadoc for the
SyncOperation class for information on the full
set of methods.

Use the EndpointException type The Sync Destination type offers an exception type
called EndpointException to extend a standard
Java exception and provide custom exceptions.
There is also logic to handle LDAP exceptions,
using the LDAP SDK.

About the PostStep result codes The EndpointException class uses PostStep
result codes that are returned in the server
extension:

• retry_operation_limited – Retry a
failed attempt up to the limit set by max_
operation_attempts.

• retry_operation_unlimited –
Retry the operation an unlimited number
of times until a success, abort, or
retried_operation_limited.This should
only be used when the destination endpoint is
unavailable.

• abort_operation – Abort the current
operation without any additional processing.

Use the ServerContext class for logging The ServerContext class provides several
logging methods which can be used to generate
log messages and/or alerts from the scripted
layer: logMessage(), sendAlert(),
debugCaught(), debugError(), debugInfo(),
debugThrown(), debugVerbose(), and
debugWarning(). These are described in
the Server SDK API Javadocs. Logging related
to an individual SyncOperation should be
done with the SyncOperation#logInfo and
SyncOperation#logError methods.

Diagnosing script errors When a Groovy extension does not behave as
expected, first look in the error log for stack traces.
If classLoader errors are present, the script could
be in the wrong location or may not have the correct
package. Groovy checks for errors at runtime.
Business logic errors must be systematically found
by testing each operation. Make sure logger levels
are set high enough to debug.

PingDirectory | Synchronize in Notification Mode | 143

Configure the Notification sync pipe
The following procedure configures a one-way Sync Pipe with a PingDirectory Server as the Sync Source
and a generic sync destination. The procedure uses the create-sync-pipe-config tool in interactive
command-line mode and highlights the differences for configuring a Sync Pipe in notification mode.

Considerations for configuring sync classes

When configuring a Sync Class for a Sync Pipe in notification mode, consider the following:

• Exclude any operational attributes from synchronizing to the destination so that its before and
after values are not recorded in the change log. For example, the following attributes can be
excluded: creatorsName, createTimeStamp, ds-entry-unique-id, modifiersName, and
modifyTimeStamp. Filter the changes at the change log level instead of making the changes in the
Sync Class to avoid extra configuration settings with the following:

• Use the directory server’s changelog-exclude-attribute property with (+) to exclude all
operational attributes (change-log-exclude-attribute:+).

• Configure a Sync Class that sets the excluded-auto-mapped-source-attributes property to
each operational attribute to exclude from the synchronization process.

• Use the directory server’s changelog-exclude-attribute property to specify each operational
attribute to exclude in the synchronization process. Set the configuration using the dsconfig tool
on the directory server Change Log Backend menu. For example, setchangelog-exclude-
attribute:modifiersName.

• Use the destination-create-only-attribute advanced property on the Sync Class. This
property sets the attributes to include on CREATE operations only.

• Use the replace-all-attr-values advanced property on the Sync Class. This property specifies
whether to use the ADD and DELETE modification types (reversible), or the REPLACE modification
type (non-reversible) for modifications to destination entries. If set to true, REPLACE is used.

• If targeting specific attributes that require higher performance throughput, consider implementing
change log indexing. See Synchronize through PingDirectoryProxy servers for more information.

Create the sync pipe

About this task

The initial configuration steps show how to set up a single Sync Pipe from a directory server instance to a
generic Sync Destination.

Before starting:

• Place any third-party libraries in the <server-root>/lib/extensions folder.
• Implement a server extension for any custom endpoints and place it in the appropriate directory.

Steps

1. If necessary, start PingDataSync Server:

$ bin/start-server

2. Run the create-sync-pipe-config tool.

$ bin/create-sync-pipe-config

3. At the Initial Synchronization Configuration Tool prompt, press Enter to continue.

4. On the Synchronization Mode menu, select the option for notification mode.

PingDirectory | Synchronize in Notification Mode | 144

5. On the Synchronization Directory menu, enter the option to create a one-way Sync Pipe in notification
mode from directory to a generic client application.

Configure the sync source

About this task

Steps

1. On the Source Endpoint Type menu, enter the option for the Sync Source type.

2. Choose a pre-existing Sync Source, or create a new sync source.

3. Enter a name for the Source Endpoint and a name for the Sync Source.

4. Enter the base DN for the directory server used for LDAP searches, such as dc=example,dc=com,
and press Enter to return to the menu. If entering more than one base DN, make sure they do not
overlap.

5. On the Server Security menu, select the type of communication that PingDataSync Server will use with
endpoint servers.

6. Enter the host and port of the first Source Endpoint server. The Sync Source can specify a single
server or multiple servers in a replicated topology. PingDataSync Server contacts this first server if it is
available, then contacts the next highest priority server if the first server is unavailable. The server tests
the connection.

7. On the Sync User Account menu, enter the DN of the sync user account and password, or press Enter
to accept the default, cn=Sync User,cn=Root DNs,cn=config. This account allows PingDataSync
Server to access the source endpoint server.

Configure the destination endpoint server

About this task

Steps

1. On the Destination Endpoint Type menu, select the type of datastore on the endpoint server. In this
example, select the option for Custom.

2. Enter a name for the Destination Endpoint and a name for the Sync Destination.

3. On the Notifications Setup menu, select the language (Java or Groovy) used to write the server
extension.

4. Enter the fully qualified name of the Server SDK extension that implements the abstract class. A Java,
extension should reside in the /lib/extensions directory. A Groovy script should reside in the /
lib/groovy-scripted-extensions directory.

5. Configure any user-defined arguments needed by the server extension. Typically, these are connection
arguments, which are defined by the extension itself. The values are then entered here and stored in
the server configuration.

6. Configure the maximum number of before and after values for all changed attributes. Notification
mode requires this. Set the cap to something well above the maximum number of values that any
synchronized attribute will have. If this cap is exceeded, PingDataSync Server issues an alert. For this
example, we accept the default value of 200.

Enter a value for the max changelog before/after values,
or -1 for no limit [200]:

7. Configure any key attributes in the change log that must be included in every notification. These
attributes can be used to find the destination entry corresponding to the source entry, and are present

PingDirectory | Synchronize in Notification Mode | 145

regardless of whether the attributes changed. Later, any attributes used in a Sync Class include-filter
must also be configured as key attributes in the Sync Class.

8. In both standard and notification modes, the Sync Pipe processes the changes concurrently with
multiple threads. If changes must be applied strictly in order, the number of Sync Pipe worker threads
will be reduced to 1. This will limit the maximum throughput of the Sync Pipe.

Next steps
The rest of the configuration steps follow the same process as a standard synchronization mode Sync
Pipe. See The Sync User account for more information.

Access control filtering on the sync pipe
PingDataSync Server provides an advanced Sync Pipe configuration property, filter-changes-by-
user, which performs access control filtering on a changelog entry for a specific user.

Since the changelog entry contains data from the target entry, the access controls filter out attributes that
the user does not have the privileges to see before it is returned. For example, values in the changes, ds-
changelog-before-values, ds-changelog-after-values, ds-changelog-entry-key-attr-
values, and deletedEntryAttrs are filtered out through access control instructions.

Note:

This property is only available for notification mode and can be configured using the create-sync-
pipe-config or the dsconfig tool.

The source server must be an Ping Identity PingDirectory Server or Nokia 8661 Directory Server, or an
Ping Identity PingDirectoryProxy Server or Nokia 8661 Directory Proxy Server that points to an Ping
Identity PingDirectory Server or Nokia 8661 Directory Server.

Considerations for access control filtering

• The directory server will not return the changelog entry if the user is not allowed to see the target entry.
• The directory server strips out any attributes that the user is not allowed to see.
• If no changes are left in the entry, no changelog entry will be returned.
• If only some attributes are stripped out, the changelog entry will be returned.
• Access control filtering on a specific attribute value is not supported. Either all attribute values are

returned or none.
• If a sensitive attribute policy is used to filter attributes when a client normally accesses the directory

server, this policy will not be taken into consideration during notifications since the Sync User is always
connecting using the same method. Configure access controls to filter out attributes, not based on
the type of connection made to the server, but based on who is accessing the data. The filter-
changes-by-user property will be able to evaluate if that person should have access to these
attributes.

Configure the sync pipe to filter changes by access control instructions

About this task

Steps

1. Set the filter-changes-by-user property to filter changes based on access controls for a specific user.

$ bin/dsconfig set-sync-pipe-prop \
 --pipe-name "Notifications Sync Pipe" \
 --set "filter-changes-by-user:uid=admin,dc=example,dc=com"

PingDirectory | Configure synchronization with SCIM | 146

2. On the source directory server, set the report-excluded-changelog-attributes property to
include the names of users that have been removed through access control filtering. This will allow
PingDataSync Server to warn about attributes that were supposed to be synchronized but were filtered
out. This step is recommended but not required.

$ bin/dsconfig set-backend-prop \
--backend-name "changelog" \
 --set "report-excluded-changelog-attributes:attribute-names"

Note:

PingDataSync Server only uses the attribute-names setting for the PingDirectory Server’s
report-excluded-changelog-attributes property. It does not use the attribute-counts
setting for the property.

Configure synchronization with SCIM

PingDataSync Server provides data synchronization between directory servers or proxy servers and
System for Cross-domain Identity Management (SCIM) applications over HTTP. Synchronization can be
done with custom SCIM applications, or with the PingData PingDirectory Server and PingDirectoryProxy
Server configured as SCIM servers using the SCIM extension.

Synchronize with a SCIM sync destination overview
The SCIM protocol is designed to make managing user identity in cloud-based applications and services
easier. SCIM enables provisioning identities, groups, and passwords to, from, and between clouds.
PingDataSync Server can be configured to synchronize with SCIM service providers.

Note:

Both he Ping Identity PingDirectory Server and PingDirectoryProxy Server can be configured to be SCIM
servers using the SCIM HTTP Servlet Extension.

PingDataSync Server is LDAP-centric and operates on LDAP attributes. The SCIM sync destination
server component acts as a translation layer between a SCIM service provider’s schema and an LDAP
representation of the entries. While PingDataSync Server is LDAP-centric and typically at least one
endpoint is an LDAP Directory Server, this is not a strict requirement. For example, a JDBC to SCIM sync
pipe can be configured.

PingDataSync Server contains sync classes that define how source and destination entries are correlated.
The SCIM sync destination contains its own mapping layer, based on scimresources.xml that maps
LDAP schema to and from SCIM.

Note:

PingDataSync Server can use SCIM only as a sync destination. There is no mechanism in the SCIM
protocol for detecting changes, so it cannot be used as a Sync Source.

PingDirectory | Configure synchronization with SCIM | 147

SCIM destination configuration objects

The SCIMSyncDestination object defines a SCIM service provider Sync Pipe destination that is
accessible over HTTP through the SCIM protocol. It is configured with the following properties:

• server – Specifies the names of the SCIM External Servers that are used as the destination of
synchronization.

• resource-mapping-file – Specifies the path to the scim-resources.xml file, a configuration
file that defines the SCIM schema and maps it to the LDAP schema. This file is located in <server
root>/config/scim-resources.xml by default. This file can be customized to define and expose
deployment-specific resources.

• rename-policy – Specifies how to handle the rename of a SCIM resource.

The SCIM Sync Destination object is based on the SCIM SDK. Before configuring a SCIM destination,
review the following documents on the Simple Cloud web site:

• SCIM Core Schema
• SCIM REST API

Considerations for synchronizing to a SCIM destination

When configuring an LDAP to SCIM Sync Pipe, consider the following:

Use scim-resources.xml for attribute and DN
mappings

There are two layers of mapping: once at the Sync
Class level and again at the SCIM Sync Destination
level in the scim-resources.xml file. To reduce
complexity, do all possible mappings in the scim-
resources.xml file.

Avoid groups unless the SCIM ID is DN based Group synchronization is supported if the SCIM ID
is based on the DN. If the SCIM ID is not the DN
itself, it must be one of the components of the RDN,
meaning that the DNs of group members must
contain the necessary attribute.

SCIM modifies entries using PUT The SCIM Sync Destination modifies entries using
the full HTTP PUT method. For every modify, SCIM
replaces the entire resource with the updated
resource. For information about the implications
of this on password updates, see Password
considerations with SCIM.

Rename a SCIM resource

The SCIM protocol does not support changes that require the SCIM resource to be renamed, such as a
MODDN operation. Instead, when a change is detected to an attribute value that is used as part of the
SCIM ID attribute, PingDataSync Server handles it in one of the following ways:

• Deletes the specified SCIM resource and then adds the new resource with the new SCIM ID.
• Adds the new resource with the new SCIM ID and then deletes the old resource.
• Skips the rename portion of the change. If renames are expected on the source endpoint, a careful set

of destination-correlation attributes should be chosen so that the destination can still be found after it is
renamed on the source.

Configure this by setting the rename-policy property of the SCIM sync destination.

Password considerations with SCIM

Because the SCIM sync destination modifies entries using a full PUT method, special considerations need
to be made for password attributes.

PingDirectory | Configure synchronization with SCIM | 148

A Ping Identity SCIM Server allows password attributes to be omitted from a change when they have not
been modified by an operation. This prevents passwords from inadvertently being overwritten during the
PUT operation, which does not include the password attribute. Ideally, other SCIM service providers will
not wipe a password because a PUT request does not contain it. Check with the SCIM vendor to confirm
this behavior before starting a SCIM sync pipe.

Configure synchronization with SCIM
Configure synchronization with SCIM using the create-sync-pipe-config utility and the dsconfig
command. Configuring synchronization between an LDAP server and a SCIM service provider includes the
following:

• Configure one external server for every physical endpoint.
• Configure the Sync Source server and designate the external servers that correspond to the source

server.
• Configure the Sync Destination server and designate the external servers that correspond to the SCIM

sync destination.
• Configure the LDAP to SCIM Sync Pipe.
• Configure the Sync Classes. Each Sync Class represents a type of entry that needs to be

synchronized. When specifying a Sync Class for synchronization with a SCIM service provider,
avoid including attribute and DN mappings. Instead use the Sync Class to specify the operations to
synchronize and which correlation attributes to use.

• Set the evaluation order for the Sync Classes to define the processing precedence for each class.
• Configure the scim-resources.xml file. If possible, change the <resourceIDMapping> element(s)

to use whatever the SCIM Service Provider uses as the SCIM ID.
• Set Up Communication for each External Server. Run prepare-endpoint-server once for every

LDAP external server that is part of the Sync Source.
• Use realtime-sync to start the Sync Pipe.

Configure the external servers

About this task

Perform the following to configure an external server for each host in the deployment:

Steps

1. Configure a PingDirectory Server as an external server, which will later be configured as a Sync
Source. On PingDataSync Server, run the following dsconfig command:

$ bin/dsconfig create-external-server \
 --server-name source-ds \
 --type ping-identity-ds \
 --set server-host-name:ds1.example.com \
 --set server-port:636 \
 --set "bind-dn:cn=Directory Manager" \
 --set password:secret \
 --set connection-security:ssl \
 --set key-manager-provider:Null \
 --set trust-manager-provider:JKS

2. Configure the SCIM server as an external server, which will later be configured as a Sync Destination.
The scim-service-url property specifies the complete URL used to access the SCIM service
provider. The user-name property specifies the account used to connect to the SCIM service provider.

PingDirectory | Configure synchronization with SCIM | 149

By default, the value is cn=Sync User,cn=Root DNs,cn=config. Some SCIM service providers
may not have the user name in DN format.

$ bin/dsconfig create-external-server \
 --server-name scim \
 --type scim \
 --set scim-service-url:https://scim1.example.com:8443 \
 --set "user-name:cn=Sync User,cn=Root DNs,cn=config" \
 --set password:secret \
 --set connection-security:ssl \
 --set hostname-verification-method:strict \
 --set trust-manager-provider:JKS

Configure the PingDirectory Server sync source

About this task

Configure the Sync source for the synchronization network. More than one external server can be
configured to act as the Sync source for failover purposes. If the source is a PingDirectory Server, also
configure the following items:

• Enable the changelog password encryption plugin on any directory server that will receive password
modifications. This plugin intercepts password modifications, encrypts the password, and adds an
encrypted attribute to the change log entry.

• Configure the changelog-deleted-entry-include-attribute property on the changelog
backend, so that PingDataSync Server can record which attributes were removed during a DELETE
operation.

Perform the following steps to configure the Sync source:

Steps

1. Run dsconfig to configure the external server as the Sync source. Based on the previous example
where the PingDirectory Server was configured as source-ds, run the following command:

$ bin/dsconfig create-sync-source --source-name source \
 --type ping-identity \
 --set base-dn:dc=example,dc=com \
 --set server:source-ds \
 --set use-changelog-batch-request:true

2. Enable the change log password encryption plugin on any server that receives password modifications.
The encryption key can be copied from the output, if displayed, or accessed from the <server-
root>/bin/sync-pipe-cfg.txt file, if the create-sync-pipe-config tool was used to create
the sync pipe.

$ bin/dsconfig set-plugin-prop \
 --plugin-name "Changelog Password Encryption" \
 --set enabled:true \
 --set changelog-password-encryption-key:<key>

3. On PingDataSync Server, set the decryption key used to decrypt the user password value in the
change log entries. The key allows the user password to be synchronized to other servers that do not
use the same password storage scheme.

$ bin/dsconfig set-global-sync-configuration-prop \
 --set changelog-password-decryption-key:ej5u9e39pq-68

PingDirectory | Configure synchronization with SCIM | 150

4. Configure the changelog-deleted-entry-include-attribute property on the changelog
backend.

$ bin/dsconfig set-backend-prop --backend-name changelog \
 --set changelog-deleted-entry-include-attribute:objectClass

Configure the SCIM sync destination

Configure the SCIM sync destination to synchronize data with a SCIM service provider. Run the dsconfig
command:

$ bin/dsconfig create-sync-destination \
 --destination-name scim \
 --type scim \
 --set server:scim

Configure the sync pipe, sync classes, and evaluation order

About this task

Configure a Sync Pipe for LDAP to SCIM synchronization, create Sync classes for the Sync Pipe, and set
the evaluation order index for the Sync classes.

Note:

The Synchronization mode must be set to Standard. Notification Mode cannot be used with SCIM.

Steps

1. Once the source and destination endpoints are configured, configure the Sync Pipe for LDAP to SCIM
synchronization. Run the dsconfig command to configure an LDAP-to-SCIM Sync Pipe:

$ bin/dsconfig create-sync-pipe \
 --pipe-name ldap-to-scim \
 --set sync-source:source \
 --set sync-destination:scim

2. The next set of steps define three Sync Classes. The first Sync Class is used to match user entries in
the Sync Source. The second class is used to match group entries. The third class is a DEFAULT class
that is used to match all other entries.

Run the dsconfig command to create the first Sync Class and set the Sync Pipe Name and Sync
Class name:

$ bin/dsconfig create-sync-class \
 --pipe-name ldap-to-scim \
 --class-name user

3. Use dsconfig to set the base DN and filter for this Sync class. The include-base-dn property
specifies the base DN in the source, which is ou=people,dc=example,dc=com by default. This
Sync Class is invoked only for changes at the ou=people level. The include-filter property specifies
an LDAP filter that tells PingDataSync Server to include inetOrgPerson entries as user entries.
The destination-correlation-attributes specifies LDAP attributes that allow PingDataSync
Server to find the destination resource on the SCIM server. The value of this property will vary. See
Identify a SCIM resource at the destination for details.

$ bin/dsconfig set-sync-class-prop \
 --pipe-name ldap-to-scim \
 --class-name user \
 --add include-base-dn:ou=people,dc=example,dc=com \

PingDirectory | Configure synchronization with SCIM | 151

 --add "include-filter:(objectClass=inetOrgPerson)" \
 --set destination-correlation-attributes:externalId

4. Create a second Sync class, which is used to match group entries:

$ bin/dsconfig create-sync-class \
 --pipe-name ldap-to-scim \
 --class-name group

5. For the second Sync class, set the base DN and the filters to match the group entries.

$ bin/dsconfig set-sync-class-prop \
 --pipe-name ldap-to-scim \
 --class-name group \
 --add include-base-dn:ou=groups,dc=example,dc=com \
 --add "include-filter:(|(objectClass=groupOfEntries)\
 (objectClass=groupOfNames)(objectClass=groupOfUniqueNames)\
 (objectClass=groupOfURLs))"

6. For the third Sync class, create a DEFAULT Sync class that is used to match all other entries. To
synchronize changes from only user and group entries, set synchronize-creates, synchronize-
modifies, and synchronize-delete to false.

$ bin/dsconfig create-sync-class \
 --pipe-name ldap-to-scim \
 --class-name DEFAULT \
 --set evaluation-order-index:99999 \
 --set synchronize-creates:false \
 --set synchronize-modifies:false \
 --set synchronize-deletes:false

7. After all of the Sync classes needed by the Sync Pipe are configured, set the evaluation order index for
each Sync class. Classes with a lower number are evaluated first. Run dsconfig to set the evaluation
order index for the Sync class. The actual number depends on the deployment.

$ bin/dsconfig set-sync-class-prop \
 --pipe-name ldap-to-scim \
 --class-name user \
 --set evaluation-order-index:100

Configure communication with the source server

Configure communication between PingDataSync Server and the LDAP source servers with the
prepare-endpoint-server tool. If user accounts do not exist, this tool creates the appropriate user
account and its privileges. Also, because the source is an PingDirectory Server, this tool enables the
changelog.

Note:

The prepare-endpoint-server tool can only be used on LDAP directory servers. For the SCIM
Server, manually create a sync user entry.

Run the prepare-endpoint-server command to setup communication between PingDataSync Server
and the source server(s). The tool will prompt for the bind DN and password to create the user account and
enable the change log.

$ bin/prepare-endpoint-server \
 --hostname ds1.example.com \
 --port 636 \
 --useSSL \
 --trustAll \
 --syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \

PingDirectory | Configure synchronization with SCIM | 152

 --syncServerBindPassword "password" \
 --baseDN "dc=example,dc=com" \
 --isSource

Start the sync pipe

About this task
The realtime-sync tool sets a specific starting point for real-time synchronization, so that changes
made before the current time are ignored.

Steps

1. Run the realtime-sync tool to set the startpoint for the Sync source.

$ bin/realtime-sync set-startpoint \
 --end-of-changelog \
 --pipe-name ldap-to-scim

2. When ready to start synchronization, run the following command:

$ bin/realtime-sync start \
 --pipe-name ldap-to-scim \
 --no-prompt

Map LDAP schema to SCIM resource schema
The resources configuration file is used to define the SCIM resource schema and its mapping to
LDAP schema. The default configuration of the scim-resources.xml file provides definitions for
standard SCIM Users and Groups resources, and mappings to standard LDAP inetOrgPerson and
groupOfUniqueNames object classes. It is installed with the PingDirectory Server. This file can be
customized by adding extension attributes to the Users and Groups resources, or by adding new extension
resources. The resources file is composed of a single <resources> element, containing one or more
<resource> elements.

The default configuration maps the SCIM resource ID to the LDAP entryUUID attribute. In all cases,
this must be changed to match the attribute that the destination SCIM service provider is using for its
SCIM resource ID. For example, if the destination uses the value of the uid attribute, modify the scim-
resources.xml file to change the resourceIDMapping as follows:

<resourceIDMapping ldapAttribute="uid"/>

Ideally, this would be an attribute that exists on the source LDAP entry. If not, PingDataSync Server can
construct it using a Constructed Attribute Mapping. For example, the SCIM service provider used the first
and last initials of the user, concatenated with the employee ID (given by the eidattribute)as the SCIM
resource ID. In this case, an attribute mapping would be constructed as follows:

$ dsconfig create-attribute-mapping \
 --map-name MyAttrMap \
 --mapping-name scimID \
 --type constructed \
 --set 'value-pattern:{givenname:/^(.)(.*)/$1/s}{sn:/^(.)(.*)/$1/s}{eid}'

PingDirectory | Configure synchronization with SCIM | 153

This creates an attribute called scimID on the mapped entry when processed by the Sync engine.
For example, if the user's name was John Smith, with employee ID 12345, then the scimID would be
js12345. Once this is done, configure the scim-resources.xml file as follows:

<resourceIDMapping ldapAttribute="scimID" />

This will cause it to pull out the constructed scimIDvalue from the entry and use that at the SCIM resource
ID when making requests to the service provider.

Note:

Constructed attribute mappings support multivalued source attributes for conditional (using the
conditional-value-pattern property) and non-conditional (using the value-pattern property)
value patterns. Only one of the source attributes that contribute to a given value pattern can be
multivalued.

For any given SCIM resource endpoint, only one <LDAPAdd> template can be defined, and only one
<LDAPSearch> element can be referenced. If entries of the same object class can be located under
different subtrees or base DNs of the PingDirectory Server, then a distinct SCIM resource must be defined
for each unique entry location in the Directory Information Tree. If using the SCIM HTTP Servlet Extension
for the PingDirectory Server, this can be implemented in many ways, such as:

• Create multiple SCIM servlets, each with a unique resources.xml configuration, and each running
under a unique HTTP connection handler.

• Create multiple SCIM servlets, each with a unique resources.xml configuration, each running under
a single, shared HTTP connection handler, but each with a unique context path.

LDAP attributes are allowed to contain characters that are invalid in XML (because not all valid UTF-8
characters are valid XML characters). Make sure that any attributes that contain binary data are declared
using dataType=binary in the scim-resources.xml file. When using the Identity Access API, make
sure that the underlying LDAP schema uses the Binary or Octet String attribute syntax for attributes that
contain binary data. This instructs the server to base64-encode the data before returning it to clients.

If attributes that are not declared as binary in the schema and contain binary data (or just data that is
invalid in XML), the server will check for this before returning them to the client. If the client has set the
content-type to XML, then the server may choose to base64-encode any values that include invalid XML
characters. When this is done, a special attribute is added to the XML element to alert the client that the
value is base64-encoded. For example:

<scim:value base64Encoded="true">AAABPB0EBZc=</scim:value>

The remainder of this section describes the mapping elements available in the scimresources.xml file.

<resource> element

A resource element has the following XML attributes:

• schema: a required attribute specifying the SCIM schema URN for the resource. Standard SCIM
resources already have URNs assigned for them, such as urn:scim:schemas:core:1.0. A new
URN must be obtained for custom resources using any of the standard URN assignment methods.

• name: a required attribute specifying the name of the resource used to access it through the SCIM
REST API.

• mapping: a custom Java class that provides the logic for the resource mapper. This class must extend
the com.unboundid.scim.ldap.ResourceMapper class.

A resource element contains the following XML elements in sequence:

• description: a required element describing the resource.
• endpoint: a required element specifying the endpoint to access the resource using the SCIM REST

API.

PingDirectory | Configure synchronization with SCIM | 154

• LDAPSearchRef: a mandatory element that points to an LDAPSearch element. The
LDAPSearchelement allows a SCIM query for the resource to be handled by an LDAP service and also
specifies how the SCIM resource ID is mapped to the LDAP server.

• LDAPAdd: an optional element specifying information to allow a new SCIM resource to be added
through an LDAP service. If the element is not provided then new resources cannot be created through
the SCIM service.

• attribute: one or more elements specifying the SCIM attributes for the resource.

<attribute> element

An attribute element has the following XML attributes:

• schema: a required attribute specifying the schema URN for the SCIM attribute. If omitted, the schema
URN is assumed to be the same as that of the enclosing resource, so this only needs to be provided for
SCIM extension attributes. Standard SCIM attributes already have URNs assigned for them, such as
urn:scim:schemas:core:1.0. A new URN must be obtained for custom SCIM attributes using any
of the standard URN assignment methods.

• name: a required attribute specifying the name of the SCIM attribute.
• readOnly: an optional attribute indicating whether the SCIM sub-attribute is not allowed to be updated

by the SCIM service consumer. The default value is false.
• required: an optional attribute indicating whether the SCIM attribute is required to be present in the

resource. The default value is false.

An attribute element contains the following XML elements in sequence:

• description: a required element describing the attribute. Then just one of the following elements:
• simple: specifies a simple, singular SCIM attribute.
• complex: specifies a complex, singular SCIM attribute.
• simpleMultiValued: specifies a simple, multi-valued SCIM attribute.
• complexMultiValued: specifies a complex, multi-valued SCIM attribute.

<simple> element

A simple element has the following XML attributes:

• dataType: a required attribute specifying the simple data type for the SCIM attribute. The following
values are permitted: binary, boolean, dateTime, decimal, integer, and string.

• caseExact: an optional attribute that is only applicable for string data types. It indicates whether
comparisons between two string values use a case-exact match or a case- ignore match. The default
value is false.

A simple element contains the following XML element in sequence:

• mapping: an optional element specifying a mapping between the SCIM attribute and an LDAP attribute.
If this element is omitted, the SCIM attribute has no mapping and the SCIM service ignores any values
provided for the SCIM attribute.

<complex> element

The complex element does not have any XML attributes. It contains the following XML element:

• subAttribute: one or more elements specifying the sub-attributes of the complex SCIM attribute, and
an optional mapping to LDAP. The standard type, primary, and display sub-attributes do not need to be
specified.

<simpleMultiValued> element

A simpleMultiValued element has the following XML attributes:

PingDirectory | Configure synchronization with SCIM | 155

• childName: a required attribute specifying the name of the tag that is used to encode values of the
SCIM attribute in XML in the REST API protocol. For example, the tag for the standard emails SCIM
attribute is email.

• dataType: a required attribute specifying the simple data type for the plural SCIM attribute (i.e.
the data type for the value sub-attribute). The following values are permitted: binary, boolean,
dateTime, integer, and string.

• caseExact: an optional attribute that is only applicable for string data types. It indicates whether
comparisons between two string values use a case-exact match or a case- ignore match. The default
value is false.

A simpleMultiValued element contains the following XML elements in sequence:

• canonicalValue: specifies the values of the type sub-attribute that is used to label each individual
value, and an optional mapping to LDAP.

• mapping: an optional element specifying a default mapping between the SCIM attribute and an LDAP
attribute.

<complexMultiValued> element

A complexMultiValued element has the following XML attributes:

• tag: a required attribute specifying the name of the tag that is used to encode values of the SCIM
attribute in XML in the REST API protocol. For example, the tag for the standard addresses SCIM
attribute is address.

A complexMultiValued element contains the following XML elements in sequence:

• subAttribute: one or more elements specifying the sub-attributes of the complex SCIM attribute. The
standard type, primary, and display sub-attributes do not need to be specified.

canonicalValue: specifies the values of the type sub-attribute that is used to label each individual value,
and an optional mapping to LDAP.

<subAttribute> element

A subAttribute element has the following XML attributes:

• name: a required element specifying the name of the sub-attribute.
• readOnly: an optional attribute indicating whether the SCIM sub-attribute is not allowed to be updated

by the SCIM service consumer. The default value is false.
• required: an optional attribute indicating whether the SCIM sub-attribute is required to be present in

the SCIM attribute. The default value is false.
• dataType: a required attribute specifying the simple data type for the SCIM sub-attribute. The following

values are permitted: binary, boolean, dateTime, integer, and string.
• caseExact:an optional attribute that is only applicable for string data types. It indicates whether

comparisons between two string values use a case-exact match or a case- ignore match. The default
value is false.

A subAttribute element contains the following XML elements in sequence:

• description: a required element describing the sub-attribute.
• mapping: an optional element specifying a mapping between the SCIM sub-attribute and an LDAP

attribute. This element is not applicable within the complexMultiValued element.

<canonicalValue> element

A canonicalValue element has the following XML attributes:

• name: specifies the value of the type sub-attribute. For example, work is the value for emails, phone
numbers and addresses intended for business purposes.

PingDirectory | Configure synchronization with SCIM | 156

A canonicalValue element contains the following XML element in sequence:

• subMapping: an optional element specifying mappings for one or more of the sub-attributes. Any sub-
attributes that have no mappings will be ignored by the mapping service.

<mapping> element

A mapping element has the following XML attributes:

• ldapAttribute: a required element specifying the name of the LDAP attribute to which the SCIM
attribute or sub-attribute map.

• transform: an optional element specifying a transformation to apply when mapping an attribute value
from SCIM to LDAP, and LDAP to SCIM. The available transformations are described in Map LDAP
schema to SCIM resource schema.

<subMapping> element

A subMapping element has the following XML attributes:

• name: a required element specifying the name of the sub-attribute that is mapped.
• ldapAttribute: a required element specifying the name of the LDAP attribute to which the SCIM

sub-attribute maps.
• transform: an optional element specifying a transformation to apply when mapping an attribute

value from SCIM to LDAP and vice-versa. The available transformations are described later. Available
transformations are described in Map LDAP schema to SCIM resource schema.

<LDAPSearch> element

A LDAPSearch element has the following XML attributes:

• baseDN: a required element specifying the LDAP search base DN to be used when querying for the
SCIM resource.

• filter: a required element specifying an LDAP filter that matches entries representing the SCIM
resource. This filter is typically an equality filter on the LDAP object class.

• resourceIDMapping: an optional element specifying a mapping from the SCIM resource ID to an
LDAP attribute. When the element is omitted, the resource ID maps to the LDAP entry DN.

Note:

The LDAPSearch element can be added as a top-level element outside of any <Resource> elements,
and then referenced within them with an ID attribute.

<resourceIDMapping> element

A resourceIDMapping element has the following XML attributes:

• ldapAttribute: a required element specifying the name of the LDAP attribute to which the SCIM
resource ID maps.

• createdBy: a required element specifying the source of the resource ID value when a new resource
is created by the SCIM consumer using a POST operation. Allowable values for this element include
<scim-consumer>, meaning that a value must be present in the initial resource content provided by
the SCIM consumer, or directory, (as would be the case if the mapped LDAP attribute is entryUUID).

If the LDAP attribute value is not listed as destination correlation attribute, this setting is not used by
PingDataSync Server.

The following example illustrates an LDAPSearch element that contains a resourceIDMapping element:

<LDAPSearch id="userSearchParams">
 <baseDN>ou=people,dc=example,dc=com</baseDN>
 <filter>(objectClass=inetOrgPerson)</filter>

PingDirectory | Configure synchronization with SCIM | 157

 <resourceIDMapping ldapAttribute="entryUUID" createdBy="directory"/>
</LDAPSearch>

<LDAPAdd> element

A LDAPAdd element has the following XML attributes:

• DNTemplate: a required element specifying a template that is used to construct the DN of an entry
representing a SCIM resource when it is created. The template may reference values of the entry after
it has been mapped using {ldapAttr}, where ldapAttr is the name of an LDAP attribute.

• fixedAttribute: zero or more elements specifying fixed LDAP values to be inserted into the entry
after it has been mapped from the SCIM resource.

<fixedAttribute> element

A fixedAttribute element has the following XML attributes:

• ldapAttribute: a required attribute specifying the name of the LDAP attribute for the fixed values.
• onConflict: an optional attribute specifying the behavior when the LDAP entry already contains the

specified LDAP attribute. The default value merge indicates that the fixed values should be merged
with the existing values. The value overwrite indicates that the existing values are to be overwritten
by the fixed values. The value preserve indicates that no changes should be made.

A fixedAttributeelement contains the following XML element:

• fixedValue: one or more elements specifying the fixed LDAP values.

Identify a SCIM resource at the destination
When a SCIM Sync Destination needs to synchronize a change to a SCIM resource on the destination
SCIM server, it must first fetch the destination resource. If the destination resource ID is known, the
resource will be retrieved by its ID. If not, a search is performed using the mapped destination correlation
attributes. Configuring this requires coordination between the Sync Class and the scim-resources.xml
mapping file.

The scim-resources.xml mapping file treats the value of the <resourceIDMapping> element's
ldapAttribute attribute as the SCIM ID of the source entry. If this value is also listed as a value of the
Sync Class's destination-correlation-attributes property, then the value of this LDAP attribute
is used as the SCIM ID of the destination resource.

If no value of destination-correlation-attributes matches the <resourceIDMapping>
element's ldapAttribute attribute, the SCIM ID of the destination resource is considered unknown. In
this case, the SCIM Sync Destination treats the values of destination- correlation-attributes
as search terms, using them to construct a filter for finding the destination resource. Each value of
destination-correlation-attributes will be mapped to a corresponding SCIM attribute name,
and equality matches will be used in the resulting filter.

If the ldapAttribute value is not listed as a destination correlation attribute, this setting is not used by
PingDataSync Server.

The following table illustrates an LDAPSearch element that contains a resourceIDMapping element:

PingDirectory | Manage logging, alerts, and alarms | 158

Table 4: Identifying a SCIM resource

Method for
retrieving
SCIM
resource

Condition Example condition Example request

Retrieve
resource
directly

Used if a
destination-
correlation-
attribute value
matches the
<resourceIDMappin
g>ldapAttribute
value.

destination-
correlation-
attribute=mail,uid;<resourceIDMapping

ldapAttribute="mail"
createdBy=
"directory"/>

GET scim/Users/
person@example.com

Retrieve
resource
using search

Used if no
destination-
correlation-
attributevalue
matches the
<resourceIDMappin
g>ldapAttribute
value.

destination-
correlation-
attribute=mail,uid;<resourceIDMapping
ldapAttribute="entryUUID"
createdBy =
"directory"/>

GET /scim/Users?
filter=emails+eq
+"person@example.com" and
+userName+eq"person"

The unique ID of a destination SCIM resource will most likely be unknown, and the search method will
need to be used. However, not all SCIM service providers support the use of filters. Therefore, not all SCIM
service providers may be usable as SCIM Sync Destinations.

Manage logging, alerts, and alarms

Each PingData server supports extensive logging features to track all aspects of the PingData topology.

Logs and log publishers
PingData servers support different types of log publishers that can be used to provide the monitoring
information for operations, access, debug, and error messages that occur during normal server processing.
The server provides a standard set of default log files as well as mechanisms to configure custom log
publishers with their own log rotation and retention policies.

Types of log publishers

Several types of log publishers can be used to log processing information about the server, including:

Audit loggers Provide information about actions that occur within
the server. Specifically, this type of log records
all changes applied, detected or failed; dropped
operations that were not completed; changes
dropped due to being out of scope, or no changes
needed for an operation. The log also shows the
entries that were involved in a process.

PingDirectory | Manage logging, alerts, and alarms | 159

Error loggers Provide information about warnings, errors, or
significant events that occur within the server.

Debug loggers Provide detailed information about processing
performed by the server, including any exceptions
caught during processing, detailed information
about data read from or written to clients, and
accesses to the underlying database.

Access loggers Provide information about LDAP operations
processed within the server. This log only applies
to operations performed in the server. This includes
configuration changes, searches of monitor
data, and bind operations for authenticating
administrators using the command-line tools and
the Administrative Console.

View the list of log publishers

View the list of log publishers on each server using the dsconfig tool:

$ bin/dsconfig list-log-publishers
Log Publisher : Type : enabled
-----------------------------------:-------------------:--------
Debug ACI Logger : debug-access : false
Expensive Operations Access Logger : file-based-access : false
Failed Operations Access Logger
File-Based Access Logger
File-Based Audit Logger
: file-based-access : true
: file-based-access : true
: file-based-audit : false
File-Based Debug Logger
File-Based Error Logger
Replication Repair Logger
: file-based-debug : false
: file-based-error : true
: file-based-error : true

Log compression

PingData servers support the ability to compress log files as they are written. Because of the inherent
problems with mixing compressed and uncompressed data, compression can only be enabled when the
logger is created. Compression cannot be turned on or off once the logger is configured. If the server
encounters an existing log file at startup, it will rotate that file and begin a new one rather than attempting
to append it to the previous file.

Compression is performed using the standard gzip algorithm. Because it can be useful to have an
amount of uncompressed log data for troubleshooting, having a second logger defined that does not use
compression may be desired.

Configure compression by setting the compression-mechanism property to have the value of gzip
when creating a new logger. See Create a new log publisher on page 162 for details.

Configure log file encryption

About this task

The server supports the ability to encrypt log files as they are written. The encrypt-log configuration
property controls whether encryption will be enabled for the logger. Enabling encryption causes the log file

PingDirectory | Manage logging, alerts, and alarms | 160

to have an .encrypted extension (and if both encryption and compression are enabled, the extension will
be .gz.encrypted). Any change that affects the name used for the log file could prevent older files from
getting properly cleaned up.

Like compression, encryption can only be enabled when the logger is created. Encryption cannot be
turned on or off once the logger is configured. For any log file that is encrypted, enabling compression
is also recommended to reduce the amount of data that needs to be encrypted. This will also reduce
the overall size of the log file. The encrypt-file tool (or custom code, using the LDAP SDK's
com.unboundid.util.PassphraseEncryptedInputStream) is used to access the encrypted data.

To enable encryption, at least one encryption settings definition must be defined in the server. Use the
one created during setup, or create a new one with the encryption-settings create command.
By default, the encryption will be performed with the server's preferred encryption settings definition.
To explicitly specify which definition should be used for the encryption, the encryption-settings-
definition-id property can be set with the ID of that definition. It is recommended that the encryption
settings definition is created from a passphrase so that the file can be decrypted by providing that
passphrase, even if the original encryption settings definition is no longer available. A randomly generated
encryption settings definition can also be created, but the log file can only be decrypted using a server
instance that has that encryption settings definition.

When using encrypted logging, a small amount of data may remain in an in-memory buffer until the log file
is closed. The encryption is performed using a block cipher, and it cannot write an incomplete block of data
until the file is closed. This is not an issue for any log file that is not being actively written. To examine the
contents of a log file that is being actively written, use the rotate-log tool to force the file to be rotated
before attempting to examine it.

The following commands can be used to set log file encryption:

Steps

1. Use dsconfig to enable encryption for a Log Publisher. In this example, the File-basedAccess Log
Publisher "Encrypted Access" is created, compression is set, and rotation and retention policies are set.

$ bin/dsconfig create-log-publisher-prop --publisher-name "Encrypted
Access" \
 --type file-based-access \
 --set enabled:true \
 --set compression-mechanism:gzip \
 --set encryption-settings-definition-
id:332C846EF0DCD1D5187C1592E4C74CAD33FC1E5FC20B726CD301CDD2B3FFBC2B \
 --set encrypt-log:true \
 --set log-file:logs/encrypted-access \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set "retention-policy:Free Disk Space Retention Policy" \
 --set "retention-policy:Size Limit Retention Policy"

2. To decrypt and decompress the file:

$ bin/encrypt-file --decrypt \
 --decompress-input \
 --input-file logs/encrypted-access.20180216040332Z.gz.encrypted \
 --output-file decrypted-access
Initializing the server's encryption framework...DoneWriting decrypted
data to file '/ds/PingDirectory/decrypted-access' using a key generated
from encryption settings definition
'332c846ef0dcd1d5187c1592e4c74cad33fc1e5fc20b726cd301cdd2b3ffbc2b'Success
fully wrote 123,456,789 bytes of decrypted data

PingDirectory | Manage logging, alerts, and alarms | 161

Synchronization logs and messages
TPingDataSync Server provides a standard set of default log files to monitor the server activity. View this
set of logs in the <server-root>/logs directory. The following default log files are available.

Table 5: PingDataSync Server logs

Log file Description

access File-based Access Log that records LDAP operations processed by PingDataSync
Server. Access log records can be used to provide information about problems
during operation processing and provide information about the time required to
process each operation.

config-audit.log Records information about changes made to the server configuration in a format that
can be replayed using the dsconfig tool.

errors File-based Error Log that provides information about warnings, errors, and significant
events that are not errors but occur during server processing.

server.out Records anything written to standard output or standard error, which includes startup
messages. If garbage collection debugging is enabled, then the information will be
written to server.out.

server.pid Stores the server’s processID.

server.status Stores the timestamp, a status code, and an optional message that provides
additional information about the server status.

setup.log Records messages that occur during the initial server configuration with the setup
command.

sync File-based Sync Log that records synchronization operations processed by the
server. Specifically, the log records all changes applied, detected or failed; dropped
operations that were not synchronized; changes dropped due to being out of scope,
or no changes needed for synchronization.

sync-pipe-cfg.txt Records the configuration changes used with the bin/create-sync-pipe-
config tool. The file is placed wherever the tool is run. Typically, this is in
<server-root> or in the bin directory.

tools Holds logs for long running utilities. Current and previous copies of the log are
present in the directory.

update.log Records messages that occur during a server upgrade.

Sync log message types
PingDataSync Server logs certain types of log messages with the sync log. Message types can be
included or excluded from the logger, or added to a custom log publisher.

PingDirectory | Manage logging, alerts, and alarms | 162

Table 6: Sync log message types

Message type Description

change-applied Default summary message. Logged each time a change is applied successfully.

change-detected Default summary message. Logged each time a change is detected.

change-failed-detailed Default detail message. Logged when a change cannot be applied. It includes
the reason for the failure and details about the change that can be used to
manually repair the failure.

dropped-op-type-not-
synchronized

Default summary message. Logged when a change is dropped because the
operation type (for example, ADD) is not synchronized for the matching Sync
Class.

dropped-out-of-scope Default summary message. Logged when a change is dropped because it does
not match any Sync Class.

no-change-needed Default summary message. Logged each time a change is dropped because the
modified source entry is already synchronized with the destination entry.

change-detected-
detailed

Optional detail message. Logged each time a change is detected. It includes
attribute values for added and modified entries. This information is useful for
diagnosing problems, but it causes log files to grow faster, which impacts
performance.

entry-mapping-details Optional detail message. Logged each time a source entry (attributes and DN)
are mapped to a destination entry. This information is useful for diagnosing
problems, but it causes log files to grow faster, which impacts performance.

change-applied-
detailed

Optional detail message. Logged each time a change is applied. It includes
attribute values for added and modified entries. This information is useful for
diagnosing problems, but it causes log files to grow faster, which impacts
performance.

change-failed Optional summary message. Logged when a change cannot be applied. It
includes the reason for the failure but not enough information to manually repair
the failure.

intermediate-failure Optional summary message. Logged each time an attempt to apply a change
fails. Note that a subsequent retry of applying the change might succeed.

Create a new log publisher

About this task

PingData servers provide customization options to create log publishers with the dsconfig command.
After creating a new log publisher, configure the log retention and rotation policies. For more information,
see Configure log retention and log rotation policies.

PingDirectory | Manage logging, alerts, and alarms | 163

Steps

1. Use the dsconfig command to create and configure the new log publisher. (If using dsconfig
in interactive mode, log publishers are created and managed under the Log Publisher menu.) The
following example shows how to create a logger that only logs disconnect operations.

$ bin/dsconfig create-log-publisher \
 --type file-based-access --publisher-name "Disconnect Logger" \
 --set enabled:true \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set log-connects:false \
 --set log-requests:false --set log-results:false \
 --set log-file:logs/disconnect.log

To configure compression on the logger, add the following option to the previous command:

--set compression-mechanism: gzip

Compression cannot be disabled or turned off once configured for the logger. Determine logging
requirements before configuring this option.

2. View log publishers with the following command:

$ bin/dsconfig list-log-publishers

Configure log signing

About this task
PingData servers support the ability to cryptographically sign a log to ensure that it has not been modified.
For example, financial institutions require tamper-proof audit logs files to ensure that transactions can be
properly validated and ensure that they have not been modified by a third-party entity or internally by an
unauthorized person.

When enabling signing for a logger that already exists, the first log file will not be completely verifiable
because it still contains unsigned content from before signing was enabled. Only log files whose entire
content was written with signing enabled will be considered completely valid. For the same reason, if a log
file is still open for writing, then signature validation will not indicate that the log is completely valid because
the log will not include the necessary "end signed content" indicator at the end of the file.

To validate log file signatures, use the validate-file-signature tool provided in the bin directory of
the server (or the bat directory on Windows systems). Once this property is enabled, disable and then re-
enable the log publisher for the changes to take effect.

Perform the following steps to configure log signing:

Steps

1. Use dsconfig to enable log signing for a Log Publisher. In this example, set the sign-log property
on the File-based Audit Log Publisher.

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Audit Logger" \
 --set sign-log:true

2. Disable and then re-enable the Log Publisher for the changes to take effect.

$ bin/dsconfig set-log-publisher-prop \

PingDirectory | Manage logging, alerts, and alarms | 164

 --publisher-name "File-Based Audit Logger" \
 --set enabled:false

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Audit Logger" \
 --set enabled:true

3. To validate a signed file, use the validate-file-signature tool to check if a signed file has been
altered.

$ bin/validate-file-signature --file logs/audit

All signature information in file 'logs/audit' is valid

If any validation errors occur, a message displays that is similar to this:

One or more signature validation errors were encountered while validating
the contents of file 'logs/audit':
* The end of the input stream was encountered without encountering the end
of an active signature block. The contents of this signed block cannot be
trusted because the signature cannot be verified

Configure log retention and log rotation policies
PingData servers enable configuring log rotation and log retention policies.

Log retention

When any retention limit is reached, the server removes the oldest archived log prior to creating a new log.
Log retention is only effective if a log rotation policy is in place.

A new log publisher must have at least one log retention policy configured. The following policies are
available:

File Count Retention policy Sets the number of log files for the server to retain.
The default file count is 10 logs. If the file count is
set to 1, the log will continue to grow indefinitely
without being rotated.

Free Disk Space Retention policy Sets the minimum amount of free disk space. The
default free disk space is 500 MB.

Size Limit Retention policy Sets the maximum size of the combined archived
logs. The default size limit is 500 MB.

Custom Retention policy Create a new retention policy that meets the
server’s requirements. This will require developing
custom code to implement the desired log retention
policy.

Never Delete Retention policy Used in a rare event that does not require log
deletion.

Log rotation

When a rotation limit is reached, the server rotates the current log and starts a new log. A new log
publisher must have at least one log rotation policy configured. The following policies are available:

PingDirectory | Manage logging, alerts, and alarms | 165

Time Limit Rotation policy Rotates the log based on the length of time since
the last rotation. Default implementations are
provided for rotation every 24 hours and every
seven days.

Fixed Time Rotation policy Rotates the logs every day at a specified time
(based on 24-hour). The default time is 2359.

Size Limit Rotation policy Rotates the logs when the file reaches the
maximum size. The default size limit is 100 MB.

Never Rotate policy Used in a rare event that does not require log
rotation.

Configure the log rotation policy

Use dsconfig to modify the log rotation policy for the access logger:

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Access Logger" \
 --remove "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --add "rotation-policy:7 Days Time Limit Rotation Policy"

Configure the log retention policy

Use dsconfig to modify the log retention policy for the access logger:

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Access Logger" \
 --set "retention-policy:Free Disk Space Retention Policy"

Configure log listeners
The server provides two log file rotation listeners: the copy log file rotation listener and the summarize log
file rotation listener, which can be enabled with a log publisher. Log file rotation listeners allow the server to
perform a task on a log file as soon as it has been rotated out of service. Custom log file listeners can be
created with the Server SDK.

The copy log file rotation listener can be used to compress and copy a recently-rotated log file to an
alternate location for long-term storage. The original rotated log file will be subject to deletion by a log file
retention policy, but the copy will not be automatically removed.

Use the following command to create a new copy log file rotation listener:

$ dsconfig create-log-file-rotation-listener \
 --listener-name "Copy on Rotate" \
 --type copy \
 --set enabled:true \
 --set copy-to-directory:/path/to/archive/directory \
 --set compress-on-copy:true</screen>

The path specified by the copy-to-directory property must exist, and the file system containing
that directory must have enough space to hold all of the log files that will be written there. The server will
automatically monitor free disk space on the target file system and will generate administrative alerts if the
amount of free space gets too low.

The summarize log file rotation listener invokes the summarize-access-log tool on a recently rotated
log file and writes its output to a file in a specified location.

PingDirectory | Manage logging, alerts, and alarms | 166

This provides information about the number and types of operations processed by the server, processing
rates and response times, and other useful metrics. Use this with access loggers that log in a format
that is compatible with the summarize-access-log tool, including the file-based-access and
operation-timing-access logger types. Use the following command to create a new summarize log
file rotation listener:

$ dsconfig create-log-file-rotation-listener \
 --listener-name "Summarize on Rotate" \
 --type summarize \
 --set enabled:true \
 --set output-directory:/path/to/summary/directory

The summary output files have the same name as the rotated log file, with an extension of .summary.
If the output-directory property is specified, the summary files are written to that directory. If not
specified, files are placed in the directory in which the log files are written.

As with the copy log file rotation listener, summary files are not automatically be deleted. Though files are
generally small in comparison to the log files themselves, make sure that there is enough space available
in the specified storage directory. The server automatically monitors free disk space on the file system to
which the summary files are written.

System alarms, alerts, and gauges
An alarm represents a stateful condition of the server or a resource that may indicate a problem, such
as low disk space or external server unavailability. A gauge defines a set of threshold values with a
specified severity that, when crossed, cause the server to enter or exit an alarm state. Gauges are used
for monitoring continuous values like CPU load or free disk space (Numeric Gauge), or an enumerated
set of values such as 'server available' or ‘server unavailable’ (Indicator Gauge). Gauges generate alarms,
when the gauge’s severity changes due to changes in the monitored value. Like alerts, alarms have
severity (NORMAL, WARNING, MINOR, MAJOR, CRITICAL), name, and message. Alarms will always
have a Condition property, and may have a Specific Problem or Resource property. If surfaced through
SNMP, a ProbableCause property and AlarmType property are also listed. Alarms can be configured to
generate alerts when the alarm's severity changes.

There are two alert types supported by the server - standard and alarm-specific. The server constantly
monitors for conditions that may need attention by administrators, such as low disk space. For this
condition, the standard alert is low-disk-space-warning, and the alarm-specific alert is alarm-
warning. The server can be configured to generate alarm-specific alerts instead of, or in addition to,
standard alerts. By default, standard alerts are generated for conditions internally monitored by the server.
However, gauges can only generate alarm-alerts.

The server installs a set of gauges that are specific to the product and that can be cloned or configured
through the dsconfig tool. Existing gauges can be tailored to fit each environment by adjusting the
update interval and threshold values. Configuration of system gauges determines the criteria by which
alarms are triggered. The Stats Logger can be used to view historical information about the value and
severity of all system gauges.

PingData servers are compliant with the International Telecommunication Union CCITT Recommendation
X.733 (1992) standard for generating and clearing alarms. If configured, entering or exiting an alarm
state can result in one or more alerts. An alarm state is exited when the condition no longer applies. An
alarm_cleared alert type is generated by the system when an alarm's severity changes from a non-
normal severity to any other severity. An alarm_cleared alert will correlate to a previous alarm when
Condition and Resource property are the same. The Alarm Manager, which governs the actions performed
when an alarm state is entered, is configurable through the dsconfig tool and Administrative Console.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores information
within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over time that can change in
severity and be cleared when a monitored value returns to normal. Alarms can be viewed with the status

PingDirectory | Manage logging, alerts, and alarms | 167

tool. As with other alert types, alert handlers can be configured to manage the alerts generated by alarms.
A complete listing of system alerts, alarms, and their severity is available in <server-root>/docs/
admin-alerts-list.csv.

Alert handlers

Alert notifications can be sent to administrators when significant problems or events occur during
processing, such as problems during server startup or shutdown. The server provides a number of alert
handler implementations configured with the confined tool, including:

Error Log Alert Handler Sends administrative alerts to the configured server
error logger(s).

JMX Alert Handler Sends administrative alerts to clients using the
Java Management Extensions (JMX) protocol. The
server uses JMX for monitoring entries and requires
that the JMX connection handler be enabled.

SNMP Alert Handler Sends administrative alerts to clients using the
Simple Network Monitoring Protocol (SNMP).
The server must have an SNMP agent capable of
communicating via SNMP 2c.

If needed, the Server SDK can be used to implement additional, third-party alert handlers.

Configure alert handlers

Alert handlers can be configured with the dsconfig tool. PingData servers support JMX, SMTP, and
SNMP. Use the --help option for a list of configuration options. The following is a sample command to
create and enable an SMTP Alert handler from the command line:

$ bin/dsconfig create-alert-handler \
 --handler-name "SMTP Alert Handler" \
 --type smtp \
 --set enabled:true \
 --set "sender-address:alerts@example.com" \
 --set "recipient-address:administrators@example.com" \
 --set "message-subject:Directory Admin Alert \%\%alert-type\%\%" \
 --set "message-body:Administrative alert:\\n\%\%alert-message\%\%"

Test alerts and alarms

About this task

After alarms and alert handlers are configured, verify that the server takes the appropriate action when an
alarm state changes by manually increasing the severity of a gauge. Alarms and alerts can be verified with
the status tool.

Steps

1. Configure a gauge with dsconfig and set the override-severity property to critical. The following
example uses the CPU Usage (Percent) gauge.

$ dsconfig set-gauge-prop \
 --gauge-name "CPU Usage (Percent)" \
 --set override-severity:critical

PingDirectory | Manage logging, alerts, and alarms | 168

2. Run the status tool to verify that an alarm was generated with corresponding alerts. The status tool
provides a summary of the server’s current state with key metrics and a list of recent alerts and alarms.
The sample output has been shortened to show just the alarms and alerts information.

$ bin/status

 --- Administrative Alerts ---
Severity : Time : Message
---------:----------------:---
Error : 11/Aug/2016 : Alarm [CPU Usage (Percent). Gauge CPU Usage
(Percent)
 : 15:41:00 -0500 : for Host System has
 : : a current value of '18.583333333333332'.
 : : The severity is currently OVERRIDDEN in the
 : : Gauge's configuration to 'CRITICAL'.
 : : The actual severity is: The severity is
 : : currently 'NORMAL', having assumed this
severity
 : : Mon Aug 11 15:41:00 CDT 2016. If CPU use is
high,
 : : check the server's current workload and make
any
 : : needed adjustments. Reducing the load on the
system
 : : will lead to better response times.
 : : Resource='Host System']
 : : raised with critical severity
Shown are alerts of severity [Info,Warning,Error,Fatal] from the past 48
hours
Use the --maxAlerts and/or --alertSeverity options to filter this list

--- Alarms ---
Severity : Severity : Condition : Resource : Details
 : Start Time : : :
---------:------------:-----------:-------------:-------------------------
Critical : 11/Aug/2016: CPU Usage : Host System : Gauge CPU Usage
(Percent) for
 : 15:41:00 : (Percent) : : Host System
 : -0500 : : : has a current value of
 : : : : '18.785714285714285'.
 : : : : The severity is
currently
 : : : : 'CRITICAL', having
assumed
 : : : : this severity Mon Aug 11
 : : : : 15:49:00 CDT 2016. If
CPU use
 : : : : is high, check the
server's
 : : : : current workload and
make any
 : : : : needed adjustments.
Reducing
 : : : : the load on the system
will
 : : : : lead to better response
times
Shown are alarms of severity [Warning,Minor,Major,Critical
Use the --alarmSeverity option to filter this list

PingDirectory | Manage logging, alerts, and alarms | 169

Use the status tool
PingData servers provides the status tool, which outputs the health of the server. The status tool
polls the current health of the server and displays summary information about the number of operations
processed in the network. The tool provides the following information:

Table 7: Status tool sections

Status section Description

Server Status Displays the server start time, operation status, number of connections (open,
max, and total).

Server Details Displays the server details including host name, administrative users, install path,
server version, and Java version.

Connection Handlers Displays the state of the connection handlers including address, port, protocol
and current state.

Admin Alerts Displays the 15 administrative alerts that were generated over the last 48-hour
period. Limit the number of displayed alerts using the --maxAlerts option. For
example, status --maxAlerts 0 suppresses all alerts.

Synchronization-specific status
The status tool displays the following information for PingDataSync Server.

Table 8: PingDataSync Server status information

Status section Description

Sync Topology Displays information about the connected Sync topology and any standby
PingDataSync Server instances.

Summary for Sync
Pipe

Displays the health status for each Sync Pipe configured on the topology. Status
for each Sync Pipe includes the following:

• Started – Indicates whether the Sync Pipe has started.
• Current Ops Per Second – Lists the current throughput rate in operations per

second.
• Percent Busy – Lists the number of current operations currently divided by the

number of worker threads.
• Changes Detected – Lists the total number of changes detected.
• Ops Completed Total – Lists the total number of changes detected and

completed.
• Num Ops In Flight – Lists the number of operations that are in flight.
• Num Ops In Queue – Lists the number of operations that are on the input

queue waiting to be synchronized.
• Source Unretrieved Changes – Lists how many outstanding changes are still

in the source change log that have not yet been retrieved by PingDataSync
Server. If this is greater than zero, it indicates a backlog, because the internal
queue is too full to include these changes.

• Failed Op Attempts – Lists the number of failed operation attempts.
• Poll For Source Changes Count – Lists the number of times that the source

has been polled for changes.

PingDirectory | Manage logging, alerts, and alarms | 170

Status section Description

Operations
completed for the
Sync Pipe

Displays the completed operation statistics for the sync pipe, including the
following:

• Success – Lists the number of changes that completed successfully.
• Out Of Scope – Lists the number of changes that were included in the Sync

Pipe, but were dropped because they did not match criteria in a Sync Class.
• Op Type Not Synced – Lists the number of changes that completed because

the operation type is not synchronized.
• No Change Needed – Lists the number of changes that completed because no

change was needed.
• Entry Already Exists – Lists the number of changes that completed

unsuccessfully because the entry already existed for a Create operation.
• No Match Found – Lists the number of changes that completed unsuccessfully

because no match for an operation (such as Modify) was found.
• Multiple Matches Found – Lists the number of changes that completed

unsuccessfully because multiple matches for a source entry were found at the
destination.

• Failed During Mapping – Lists the number of changes that completed
unsuccessfully because there was a failure during attribute or DN mapping.

• Failed At Resource – Lists the number of changes that completed
unsuccessfully because they failed at the source.

• Unexpected Exception – Lists the number of changes that completed
unsuccessfully because there was an unexpected exception during
processing.

• Total – Lists the number of operations completed.

Sync Pipe source
stats

Displays the source statistics for the external server, including the following:

• Is Connected – Indicates whether the Sync Source is connected or not.
• Connected Server – Indicates the host name and port number of the

connected server.
• Successful Connect Attempts – Indicates the number of successful connection

attempts.
• Failed Connect Attempts – Indicates the number of failed connection attempts.
• Forced Disconnects – Indicates the number of forced disconnects.
• Root DSE Polls – Indicates the number of polling attempts of the root DSE.
• Unretrieved Changes – Indicates the number of unretrieved changes.
• Entries Fetched – Indicates the number of entries fetched from the source.
• Failed To Decode Changelog Entry – Indicates the operations that failed to

decode changelog entries.
• Ops Excluded By Modifiers Name – Indicates the number of operations

excluded by modifier’s name.
• Num Backtrack Batches Retrieved – Indicates the number of backtrack

batches retrieved.

PingDirectory | Manage logging, alerts, and alarms | 171

Status section Description

Sync Pipe destination
stats

Displays the destination statistics for the external server, including the following:

• Is Connected – Indicates whether the Sync Source is connected or not.
• Connected Server – Indicates the connection URL of the connected server.
• Successful Connect Attempts – Indicates the number of successful connection

attempts.
• Failed Connect Attempts – Indicates the number of failed connection attempts.
• Forced Disconnects – Indicates the number of forced disconnects.
• Entries Fetched – Indicates the number of entries fetched.
• Entries Created – Indicates the number of entries created.
• Entries Modified – Indicates the number of entries modified.
• Entries Deleted – Indicates the number of entries deleted.

Monitor PingDataSync Server
PingDataSync Server exposes its monitoring information under the cn=monitor entry. Various tools
can be used to surface the server’s information including the PingDataMetrics Server, the Administrative
Console, JConsole, LDAP command-line tools, or SNMP. The following information is collected for
PingDataSync Server. To configure the PingData PingDataMetrics Server to display PingDataSync Server
data, see the Ping Identity PingDataMetrics Server Administration Guide.

Table 9: PingDataSync Server monitoring component

Component Description

Active Operations Provides information about the operations currently being processed by the
server including the number of operations, information about the operation, and
the number of active persistent searches.

Backend Provides general information about the state of the server backend, including
the backend ID, base DN(s), entry counts, entry count for the cn=admin data,
writability mode, and whether it is a private backend. The following backend
monitors are provided:

• adminRoot
• ads-truststore
• alerts
• backup
• config
• monitor
• schema
• tasks
• userRoot

Berkeley DB JE
Environment

Provides information about the state of the Oracle Berkeley DB Java Edition
database used by the PingDataSync Server backend.

Client Connections Provides information about all client connections to the server.

PingDirectory | Manage logging, alerts, and alarms | 172

Component Description

Disk Space Usage Provides information about the disk space available to various components
of the server. The disk space usage monitor evaluates the free space at
locations registered through the DiskSpaceConsumer interface. Disk space
monitoring excludes disk locations that do not have server components
registered. However, other disk locations may still impact server performance,
such as the operating system disk, if it becomes full. When relevant to
the server, these locations include the server root, the location of the
config directory, the location of every log file, all JE backend directories,
the location of the changelog, the location of the replication environment
database, and the location of any server extension that registers itself with the
DiskSpaceConsumer interface.

Connection Handler Provides information about the available connection handlers on the server,
which include the LDAP and LDIF connection handlers. These handlers are
used to accept client connections.

General Provides general information about the server, including product name and
server version.

JVM Stack Trace Provides a stack trace of all threads processing within the JVM.

LDAP Connection
Handler Statistics

Provides statistics about the interaction that the associated LDAP connection
handler has had with its clients, including the number of connections
established and closed, bytes read and written, LDAP messages, and
operations handled.

Processing Time
Histogram

Categorizes operation processing times into a number of user-defined buckets
of information, including the total number of operations processed, overall
average response time, and number of processing times between 0ms and
1ms.

System Information Provides general information about the system and the JVM on which the
server is running, including host name, operating system, JVM architecture,
Java home, and Java version.

Version Provides information about the product version, including build ID and revision
number.

Work Queue Provides information about the state of the PingDataSync Server work queue,
which holds requests until they can be processed by a worker thread. The work
queue configuration has a monitor-queue-time property set to true by
default. This logs messages for new operations with a qtimeattribute included
in the log messages. Its value is expressed in milliseconds and represents the
length of time that operations are held in the work queue.

A dedicated thread pool can be used for processing administrative operations.
This thread pool enables diagnosis and corrective action if all other worker
threads are processing operations. To request that operations be processed
using the administrative thread pool, the requester must have the use-
admin-sessionprivilege (included for root users). By default, eight
threads are available for this purpose. This can be changed with the num-
administrative-session-worker-threads property in the work queue
configuration.

PingDirectory | Troubleshooting | 173

Troubleshooting

There are several ways to troubleshoot issues with PingDataSync Server.

Synchronization troubleshooting
The majority of synchronization problems involve the connection state of the external servers and the
synchronization of the data between the two endpoints. Make sure PingDataSync Server can properly fail
over to another endpoint or server instance if the connection fails on the highest priority external server.

Another factor in troubleshooting synchronization is determining if the DN and attribute mappings were
properly configured and if the information is properly being synchronized across the network. Typical
scenarios include checking for any entry failures and mapping issues.

Note:

Use the resync tool to validate Sync Classes and data mappings from one endpoint to another. The tool
provides a dry-run option that verifies data operations without actually affecting the data.

The following log files are specific to PingDataSync Server, and contain details about the synchronization
processes:

Sync Log Provides information about the synchronization
operations that occur within the server. Specifically,
the Sync Log records all changes applied, detected
or failed; dropped operations that were not
synchronized; changes dropped due to being out of
scope, or no changes needed for synchronization.
The log also shows the entries that were involved in
the synchronization process.

Sync Failed Operations Log Provides a list of synchronization operations that
have failed.

Resync Log Provides summaries or details of synchronized
entries and any missing entries in the Sync
Destination.

Resync Error Log Provides error information for resync operations.

Management tools
Each PingData server provides command-line tools to manage, monitor, and diagnose server operations.
Each tool provides a description of the subcommands, arguments, and usage examples needed to run the
tool.

Note:

For detailed information and examples of the command-line tools, see the Configuration Reference Guide
in the <server-root>/docs directory, or linked from the Administrative Console.

To view detailed argument options and examples, use --help with the each tool:

$ bin/dsconfig --help

PingDirectory | Troubleshooting | 174

For those utilities that support additional subcommands (such as dsconfig), list the subcommands with
the following:

$ bin/dsconfig --help-subcommands

View more detailed subcommand information by using --help with the specific subcommand:

$ bin/dsconfig list-log-publishers --help

Troubleshooting tools
PingData provides utilities to troubleshoot the state of each server and to determine the cause of any
issues. The following tools are available for diagnosing any problems and are located in the <server-
root>/bin directory, or the <server-root>/bat directory on Windows systems:

Table 10: Troubleshooting tools

Tool Description

status Provides a high-level view of the current operational state of the server and displays
any recent alerts that have occurred in past 24 hours.

ldap-diff Used to compare one or more entries across two server endpoints to determine data
issues.

ldapsearch Retrieves the full entries from two different servers to determine the exact content of
an entry from each server.

logs The logs directory provides important logs that should be used to troubleshoot or
monitor any issue with the server. Logs include server-specific operations and the
following general logs:

• Error Log – Provides information about warnings, errors, or significant events that
occur within the server.

• Debug Log – Provides detailed information, if enabled, about processing
performed by the server, including any exceptions caught during processing,
detailed information about data read from or written to clients, and accesses to
the underlying database.

• Access loggers – Provide information about LDAP operations processed
within the server. This log only applies to operations performed in the server.
This includes configuration changes, searches of monitor data, and bind
operations for authenticating administrators using the command-line tools and
the Administrative Console.

collect-support-
data

Used to aggregate the results of various support tools data for the Ping Identity
Support team to diagnose. For more information, see Use the collect-support-data
tool.

config-diff Generate a summary of the configuration changes in a local or remote server
instance. The tool can be used to compare configuration settings when
troubleshooting issues, or when verifying configuration settings on new servers.

PingDirectory | Troubleshooting | 175

Use the status tool
PingData servers provides the status tool,which outputs the health of the server. The status tool
polls the current health of the server and displays summary information about the number of operations
processed in the network. The tool provides the following information:

Table 11: Status tool sections

Status section Description

Server Status Displays the server start time, operation status, number of connections (open, max,
and total).

Server Details Displays the server details including host name, administrative users, install path,
server version, and Java version.

Connection
Handlers

Displays the state of the connection handlers including address, port, protocol and
current state.

Admin Alerts Displays the 15 administrative alerts that were generated over the last 48-hour
period. Limit the number of displayed alerts using the --maxAlerts option. For
example, status -- maxAlerts 0 suppresses all alerts.

Use the collect-support-data tool

About this task

PingData servers provide information about their current state and any problems encountered. If a problem
occurs, run the collect-support-data tool in the /bin directory. The tool aggregates all relevant
support files into a zip file that can be sent to a support provider for analysis. The tool also runs data
collector utilities, such as jps, jstack, and jstat plus other diagnostic tools for the operating system.

The tool may only archive portions of certain log files to conserve space, so that the resulting support
archive does not exceed the typical size limits associated with e-mail attachments.

The data collected by the collect-support-data tool may vary between systems. The data collected
includes the configuration directory, summaries and snippets from the logs directory, an LDIF of the
monitor and RootDSE entries, and a list of all files in the server root.

Steps

1. Navigate to the server root directory.

2. Run the collect-support-data tool. Include the host, port number, bind DN, and bind password.

$ bin/collect-support-data \
--hostname 100.0.0.1 --port 389 \
--bindDN "cn=Directory Manager"
--bindPassword secret \
--serverRoot /opt/PingData<server> \
--pid 1234

3. Email the zip file to a support provider.

PingDirectory | Troubleshooting | 176

Use the Sync log
The Sync log, located in the logs directory (<server-root>/logs/sync), provides useful
troubleshooting information on the type of operation that was processed or completed. Most log entries
provide the following common elements in their messages:

Table 12: Sync log elements

Sync log element Description

category Indicates the type of operation, which will always by SYNC.

severity Indicates the severity type of the message: INFORMATION, MILD_WARNING,
SEVERE_WARNING, MILD_ERROR, SEVERE_ ERROR, FATAL_ERROR,
DEBUG, or NOTICE.

msgID Specifies the unique ID number assigned to the message.

op Specifies the operation number specific to PingDataSync Server.

changeNumber Specifies the change number from the source server assigned to the modification.

replicationCSN Specifies the replication change sequence number from the source server.

replicaID Specifies the replica ID from the source server if there are multiple backend
databases.

pipe Specifies the Sync Pipe that was used for this operation.

msg Displays the result of this operation.

Sync log example 1

The following example displays an informational message that a modification to an entry was detected on
the source server.

$ tail -f logs/sync
[17/May/2015:15:46:19 -0500] category=SYNC severity=INFORMATION
msgID=1893728293
op=14 changeNumber=15 replicationCSN=00000128A7E3C7D31E960000000F
replicaID=7830
pipe="DS1 to DS2" msg="Detected MODIFY of uid=user.993,ou=People,dc=example,
dc=com at ldap://server1.example.com:1389"

Sync log example 2

The next example shows a successful synchronization operation that resulted from a MODIFY operation
on the source server and synchronized to the destination server.

[18/May/2015:13:54:04 -0500] category=SYNC severity=INFORMATION
msgID=1893728306 op=701
changeNumber=514663 replicationCSN=00000128ACC249A31E960007DA67
 replicaID=7830
pipe="DS1 to DS2" class="DEFAULT" msg="Synchronized MODIFY of
uid=user.698,ou=People,
dc=example,dc=com at ldap://server1.example.com:1389 by modifying entry
uid=user.698,
ou=People,dc=example,dc=com at ldap://server3.example.com:3389"

PingDirectory | Troubleshooting | 177

Sync log example 3

The next example shows a failed synchronization operation on a MODIFY operation from the source
server that could not be synchronized on the destination server. The log displays the LDIF-formatted
modification that failed, which came from a schema violation that resulted from an incorrect attribute
mapping (telephoneNumber -> telephone) from the source to destination server.

[18/May/2015:11:29:49 -0500] category=SYNC severity=SEVERE_WARNING
msgID=1893859389
op=71831 changeNumber=485590 replicationCSN=00000128AC3DE8D51E96000768D6
replicaID=7830 pipe="DS1 to DS2" class="DEFAULT" msg="Detected MODIFY of
uid=user.941,ou=People,dc=example,dc=com at ldap://server1.example.com:1389,
but
failed to apply this change because: Failed to modify entry uid=user.941,
ou=People,dc=example,dc=com on destination 'server3.example.com:3389'.
Cause: LDAPException(resultCode=65(object class violation), errorMessage='
Entry uid=user.941,ou=People,dc=example,dc=com cannot be modified because
 the
resulting entry would have violated the server schema: Entry
uid=user.941,ou=People,
dc=example,dc=com violates the Directory Server schema configuration because
it
includes attribute telephone which is not allowed by any of theobjectclasses
defined in that entry') (id=1893859386
ResourceOperationFailedException.java:125
Build revision=6226). Details: Source change detail:
dn: uid=user.941,ou=People,dc=example,dc=com
changetype: modify
replace: telephoneNumber
telephoneNumber: 027167170433915
-
replace: modifiersName
modifiersName: cn=Directory Manager,cn=Root DNs,cn=config
-
replace: modifyTimestamp
modifyTimestamp: 20131010020345.546Z
Equivalent destination changes:
dn: uid=user.941,ou=People,dc=example,dc=com
changetype: modify
replace: telephone
telephone: 818002279103216
Full source entry:
dn: uid=user.941,ou=People,dc=example,dc=com
objectClass: person
... (more output)
Mapped destination entry:
dn: uid=user.941,ou=People,dc=example,dc=com
telephone: 818002279103216
objectClass: person
objectClass: inetOrgPerson
... (more output) ...

Troubleshoot synchronization failures
While many PingDataSync Server issues are deployment-related and are directly affected by the
hardware, software, and network structure used in the synchronization topology, most failures usually fall
into one of the following categories:

PingDirectory | Troubleshooting | 178

Entry Already Exists When an add operation was attempted on the
destination server, an entry with the same DN
already exists.

No Match Found A match was not found at the destination based on
the current Sync Classes and correlation rules (DN
and attribute mapping). When this value has a high
count, correlation rule problems are likely.

Failure at Resource Indicates that some other error happened during
the synchronization process that does not fall into
the first two categories. Typically, these errors
are communication problems with a source or
destination server.

Statistics for these and other types of errors are kept in the cn=monitor branch and can be viewed
directly using the status command.

Troubleshoot "Entry Already Exists" failures

About this task

If there is a count for the EntryAlready Exists statistic using the status tool, verify the problem in
the sync log. For example, the status tool displays the following information:

 --- Ops Completed for 'DS1 to DS2' Sync Pipe ---
Op Result : Count
-----------------------:------
Success : 0
Out Of Scope : 0
Op Type Not Synced : 0
No Change Needed : 0
Entry Already Exists : 1
No Match Found : 1
Multiple Matches Found : 0
Failed During Mapping : 0
Failed At Resource : 0
Unexpected Exception : 0
Total : 2

Verify the change by viewing the <server-root>/logs/sync file to see the specific operation, which
could be due to someone manually adding the entry on the target server:

op=2 changeNumber=529277 replicationCSN=00000128AD0D9BA01E960008137D
replicaID=7830
pipe="DS1 to DS2" class="DEFAULT" msg="Detected ADD of
uid=user.1001,ou=People,
dc=example,dc=com at ldap://server1.example.com:1389, but cannot create this
entry at the destination because an equivalent entry already exists at
ldap://server3.
example.com:3389. Details: Search using [search-criteria dn:
uid=user.1001,ou=People,
dc=example,dc=com attrsToGet: [*, dn]] returned results;
[uid=user.1001,ou=People,
dc=example,dc=com]. "

Perform the following steps to troubleshoot this type of problem:

PingDirectory | Troubleshooting | 179

Steps

1. Assuming that a possible DN mapping is ill-formed, first run the ldap-diff utility to compare the
entries on the source and destination servers. Then look at the ldap-diff results with the mapping
rules to determine shy the original search did not find a match.

$ bin/ldap-diff \
 --outputLDIF config-difference.ldif \
 --baseDN "dc=example,dc=com" \
 --sourceHost server1.example.com \
 --targetHost server2.example.com \
 --sourcePort 1389 \
 --targetPort 3389 \
 --sourceBindDN "cn=Directory Manager" \
 --sourceBindPassword password \
 --searchFilter "(uid=1234)"

2. Review the destination server access logs to verify the search and filters used to find the entry.
Typically, the key correlation attributes are not synchronized.

3. If the mapping rule attributes are not synchronized, review the Sync Classes and mapping rules, and
use the information from the ldap-diff results to determine why a specific attribute may not be
getting updated. Some questions to answer are as follows:

• Is there more than one Sync Class that the operation could match?
• If using an include-base-dn or include-filter in the mapping rules, does this exclude this

operation by mistake?
• If using an attribute map, are the mappings correct? Usually, the cause of this error is in the

destination mapping attribute settings. For example, if a set of correlation attributes is defined
as: dn, mobile, accountNumber, and the accountNumber changes for some reason, future
operations on this entry will fail. To resolve this, either remove accountNumber from the rule, or
add a second rule as: dn,mobile. The second rule is used only if the search using the first set of
attributes fails. In this case, the entry is found and the accountNumber information is updated.

4. If deletes are being synchronized, check to see if there was a previous delete of this entry that was not
synchronized properly. In some cases, simpler logic should be used for deletes due to the available
attributes in the change logs. This scenario could cause an entry to not be deleted for some reason,
which would cause an issue when a new entry with the same DN is added later. Use this information for
mapping rules to see why the original search did not find a match.

5. Look at the destination directory server access logs to verify the search and filters it used to find the
entry. Typically, the key attribute mappings are not synchronized.

Troubleshoot "No Match Found" failures

About this task

If there is a count for the No Match Found statistic using the status tool,verify the problem in the sync log.
For example, if the status tool displays the following:

 --- Ops Completed for 'DS1 to DS2' Sync Pipe ---
Op Result : Count
-----------------------:------
Success : 0
Out Of Scope : 0
Op Type Not Synced : 0
No Change Needed : 0
Entry Already Exists : 1
No Match Found : 1
Multiple Matches Found : 0
Failed During Mapping : 0
Failed At Resource : 0

PingDirectory | Troubleshooting | 180

Unexpected Exception : 0
Total : 2

Verify the change in the <server-root>/logs/sync file to see the specific operation:

[12/May/2016:10:30:45 -0500] category=SYNC severity=MILD_WARNING
msgID=1893793952
op=4159648 changeNumber=6648922 replicationCSN=4beadaf4002f21150000
replicaID=8469-
ou=test,dc=example,dc=com pipe="DS1 to DS2" class="Others" msg="Detected
DELETE of
'uid=1234,ou=test,dc=example,dc=com' at ldap://server1.example.com:389, but
cannot
DELETE this entry at the destination because no matching entries were found
 at
ldap://
server2.example.com:389. Details: Search using [search-criteria dn:
uid=1234,ou=test,dc=alu,dc=com filter:
 (nsUniqueId=3a324c60-5ddb11df-80ffe681-
717b93af) attrsToGet: [*, accountNumber, dn, entryuuid, mobile, nsUniqueId,
object-
Class]] returned no results."

Perform the following steps to fix the issue:

Steps

1. Test the search using the filter in the error message, if displayed. For example, if the sync log specifies
filter: (nsUniqueId=3a324c60-5ddb11df-80ffe681-717b93af), use the ldapsearch tool
to test the filter. If it is successful, is there anything in the attribute mappings that would exclude this
from working properly?

2. Test the search using the full DN as the base. For example, use ldapsearch with the full DN
(uid=1234,ou=People,dc=example,dc=com). If it is successful, does the entry contain the
attribute used in the mapping rule? If the attribute is not in the entry, determine if there is a reason
why this value was not synchronized. Look at the attribute mappings and the filters used in the Sync
Classes.

Troubleshoot "Failed at Resource" failures

About this task

If there is a count for the "Failed at Resource" statistic using the status tool, verify the problem in the
sync log. For example, if the status tool displays the following information:

 --- Ops Completed for 'DS1 to DS2' Sync Pipe ---
Op Result : Count
-----------------------:------
Success : 0
Out Of Scope : 0
Op Type Not Synced : 0
No Change Needed : 0
Entry Already Exists : 0
No Match Found : 0
Multiple Matches Found : 0
Failed During Mapping : 0
Failed At Resource : 1
Unexpected Exception : 0
Total :1

This will register after a change is detected at the source in any of the following cases:

PingDirectory | Troubleshooting | 181

• If the fetch of the full source entry fails. The entry exists but there is a connection failure, server down,
timeout, or something similar.

• If the fetch of the destination entry fails or if the modification to the destination fails for an exceptional
reason (but not for "Entry Already Exists," "Multiple Matches Found," or "No Match Found" issues).

Verify the change by viewing the <server-root>/logs/sync file to see the specific operation. If any of
the following result codes are listed , the server is experiencing timeout errors:

• resultCode=timeout: errorMessage=A client-side timeout was encountered while
waiting 60000ms for a search response from server server1.example.com:1389

• resultCode=timeout: errorMessage=An I/O error occurred while trying to read
the response from the server

• resultCode=server down: errorMessage=An I/O error occurred while trying to
read the response from the server

• resultCode=server down: errorMessage=The connection to server
server1.example.com:1389 was closed while waiting for a response to search
request SearchRequest

• resultCode=object class violation: errorMessage='Entry
device=1234,dc=example,dc=com violates the Directory Server schema
configuration because it contains undefined object class

With these "Failure at Destination" timeout errors, look at the following settings in the PingDirectory Server
to determine if adjustments are needed:

Steps

1. For External Server Properties, check the connect-timeout property. This property specifies the
maximum length of time to wait for a connection to be established before giving up and considering the
server unavailable.

2. For the Sync Destination/Sync Source Properties, check the response-timeout property. This
property specifies the maximum length of time that an operation should be allowed to be blocked while
waiting for a response from the server. A value of zero indicates that there should be no client-side
timeout. In this case, the server’s default will be used.

$ bin/dsconfig --no-prompt --port 389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password list-external-servers \
 --property connect-timeout

External Server : Type : connect-timeout : response-
 timeout
------------------------:------------------:-----------------:-----------
server1.example.com:389 : sundsee-ds : 10 s : -
server2.example.com:389 : sundsee-ds : 10 s : -
server3.example.com:389 : ping-identity-ds : 10 s : -
server4.example.com:389 : ping-identity-ds : 10 s : -

3. For Sync Pipe Properties, check the max-operation-attempts, retry-backoff-initialwait,
retry-backoff-max-wait, retry-backoff-increase-by, retry-backoff-percentage-
increase. These Sync Pipe properties provide tuning parameters that are used in conjunction with the
timeout settings. When a Sync Pipe experiences an error, it will use these settings to determine how
often and quickly it will retry the operation.

$ bin/dsconfig --no-prompt list-sync-pipes \
 --property max-operation-attempts --property retry-backoff-initial-wait
\
 --property retry-backoff-max-wait --property retry-backoff-increase-by \
 --property retry-backoff-percentage-increase \
 --port 389 --bindDN "cn=Directory Manager" \

PingDirectory | Troubleshooting | 182

 --bindPassword password

Installation and maintenance issues
The following are common installation and maintenance issues and possible solutions.

The setup program will not run

If the setup tool does not run properly, some of the most common reasons include the following:

A Java environment is not available

The server requires that Java be installed on the system prior to running the setup tool.

If there are multiple instances of Java on the server, run the setup tool with an explicitly defined value for
the JAVA_HOME environment variable that specifies the path to the Java installation. For example:

$ env JAVA_HOME=/ds/java ./setup

Another issue may be that the value specified in the provided JAVA_HOME environment variable can be
overridden by another environment variable. If that occurs, use the following command to override any
other environment variables:

$ env UNBOUNDID_JAVA_HOME="/ds/java" UNBOUNDID_JAVA_BIN="" ./setup

Unexpected arguments provided to the JVM

If the setup tool attempts to launch the java command with an invalid set of arguments, it may prevent the
JVM from starting. By default, no special options are provided to the JVM when running setup, but this
might not be the case if either the JAVA_ARGS or UNBOUNDID_JAVA_ARGS environment variable is set.
If the setup tool displays an error message that indicates that the Java environment could not be started
with the provided set of arguments, run the following command:

$ unset JAVA_ARGS UNBOUNDID_JAVA_ARGS

The server has already been configured or started

The setup tool is only intended to provide the initial configuration for the server. It will not run if it detects
that it has already been run.

A previous installation should be removed before installing a new one. However, if there is nothing of value
in the existing installation, the following steps can be used to run the setup program:

• Remove the config/config.ldiffile and replace it with the config/update/config.ldif.
{revision} file containing the initial configuration.

• If there are any files or subdirectories in the db directory, then remove them.
• If a config/java.properties file exists, then remove it.
• If a lib/setup-java-home script (or lib\set-java-home.bat file on Microsoft Windows) exists,

then remove it.

The server will not start

If the server does not start, then there are a number of potential causes.

PingDirectory | Troubleshooting | 183

The server or other administrative tool is already running

Only a single instance of the server can run at any time from the same installation root. Other
administrative operations can prevent the server from being started. In such cases, the attempt to start the
server should fail with a message like:

The <server> could not acquire an exclusive lock on file
/ds/PingData<server>/locks/server.lock:
The exclusive lock requested for file
/ds/PingData<server>/locks/ server.lock
was not granted, which indicates that another
process already holds a shared or exclusive lock on
that file. This generally means that another instance
of this server is already running.

If the server is not running (and is not in the process of starting up or shutting down), and there are no
other tools running that could prevent the server from being started, it is possible that a previously held lock
was not properly released. Try removing all of the files in the locks directory before attempting to start the
server.

There is not enough memory available

When the server is started, the JVM attempts to allocate all memory that it has been configured to use.
If there is not enough free memory available on the system, the server generates an error message
indicating that it could not be started.

There are a number of potential causes for this:

• If the amount of memory in the underlying system has changed, the server might need to be re-
configured to use a smaller amount of memory.

• Another process on the system is consuming memory and there is not enough memory to start the
server. Either terminate the other process, or reconfigure the server to use a smaller amount of
memory.

• The server just shut down and an attempt was made to immediately restart it. If the server is configured
to use a significant amount of memory, it can take a few seconds for all of the memory to be released
back to the operating system. Run the vmstat Installation and maintenance issues command and wait
until the amount of free memory stops growing before restarting the server.

• If the system is configured with one or more memory-backed file systems (such as /tmp), determine if
any large files are consuming a significant amount of memory. If so, remove them or relocate them to a
disk-based file system.

An invalid Java environment or JVM option was used

If an attempt to start the server fails with 'no valid Java environment could be found,' or 'the Java
environment could not be started,' and memory is not the cause, other causes may include the following:

• The Java installation that was previously used to run the server no longer exists. Update the config/
java.properties file to reference the new Java installation and run the bin/dsjavaproperties
command to apply that change.

• The Java installation has been updated, and one or more of the options that had worked with the
previous Java version no longer work. Re-configure the server to use the previous Java version, and
investigate which options should be used with the new installation.

• If an UNBOUNDID_JAVA_HOME or UNBOUNDID_JAVA_BIN environment variable is set, its value
may override the path to the Java installation used to run the server (defined in the config/
java.properties file). Similarly, if an UNBOUNDID_JAVA_ARGS environment variable is set, then
its value might override the arguments provided to the JVM. If this is the case, explicitly unset the
UNBOUNDID_JAVA_HOME, UNBOUNDID_JAVA_BIN, and UNBOUNDID_JAVA_ARGSenvironment
variables before starting the server.

PingDirectory | Troubleshooting | 184

Any time the config/java.properties file is updated, the bin/dsjavaproperties tool must be
run to apply the new configuration. If a problem with the previous Java configuration prevents the bin/
dsjavaproperties tool from running properly, remove the lib/set-java-home script (or lib\set-
java-home.bat file on Microsoft Windows) and invoke the bin/dsjavaproperties tool with an
explicitly-defined path to the Java environment, such as:

$ env UNBOUNDID_JAVA_HOME=/ds/java bin/dsjavaproperties

An invalid command-line option was used

There are a small number of arguments that can be provided when running the bin/start-server
command. If arguments were provided and are not valid, the server displays an error message. Correct or
remove the invalid argument and try to start the server again.

The server has an invalid configuration

If a change is made to the server configuration using dsconfig or the Administrative Console, the server
will validate the change before applying it. However, it is possible that a configuration change can appear
to be valid, but does not work as expected when the server is restarted.

In most cases, the server displays (and writes to the error log) a message that explains the problem.
If the message does not provide enough information to identify the problem, the logs/config-
audit.logfile provides recent configuration changes, or the config/archived-configs directory
contains configuration changes not made through a supported configuration interface. The server can be
started with the last valid configuration using the -- useLastKnownGoodConfig option:

$ bin/start-server --useLastKnownGoodConfig

To determine the set of configuration changes made to the server since the installation, use the config-
difftool with the arguments --sourceLocal --targetLocal --sourceBaseline. The dsconfig --offline
command can be used to make configuration changes.

Proper permissions are missing

The server should only be started by the user or role used to initially install the server. However, if the
server was initially installed as a non-root user and then started by the root account, the server can no
longer be started as a non-root user. Any new files that are created are owned by root.

If the user account used to run the server needs to change, change ownership of all files in the installation
to that new user. For example, if the server should be run as the "ds" user in the "other" group, run the
following command as root:

$ chown -R ds:other /ds/PingData<server>

The server has shutdown

Check the current server state by using the bin/server-state command. If the server was previously
running but is no longer active, potential reasons may include:

• Shut down by an administrator – Unless the server was forcefully terminated, then messages are
written to the error and server logs stating the reason.

• Shut down when the underlying system crashed or was rebooted – Run the uptime command on the
underlying system to determine what was recently started or stopped.

• Process terminated by the underlying operating system – If this happens, a message is written to the
system error log.

• Shut down in response to a serious problem – This can occur if the server has detected that the amount
of usable disk space is critically low, or if errors have been encountered during processing that left

PingDirectory | Troubleshooting | 185

the server without worker threads. Messages are written to the error and server logs (if disk space is
available).

• JVM has crashed – If this happens, then the JVM should provide a fatal error log (a
hs_err_pid<processID>.log file), and potentially a core file.

The server will not accept client connections

Check the current server state by using the bin/server-state command. If the server does not appear
to be accepting connections from clients, reasons can include the following:

• The server is not running.
• The underlying system on which the server is installed is not running.
• The server is running, but is not reachable as a result of a network or firewall configuration problem. If

that is the case, connection attempts should time out rather than be rejected.
• If the server is configured to allow secure communication through SSL or StartTLS, a problem with the

key manager or trust manager configuration can cause connection rejections. Messages are written to
the server access log for each failed connection attempt.

• The server may have reached its maximum number of allowed connections. Messages should be
written to the server access log for each rejected connection attempt.

• If the server is configured to restrict access based on the address of the client, messages should be
written to the server access log for each rejected connection attempt.

• If a connection handler encounters a significant error, it can stop listening for new requests. A message
should be written to the server error log with information about the problem. Restarting the server can
also solve the issue. Another option is to create an LDIF file that disables and then re-enables the
connection handler, create the config/auto-process-ldif directory if it does not already exist,
and then copy the LDIF file into it.

The server is unresponsive

Check the current server state by using the bin/server-state command. If the server process is
running and appears to be accepting connections but does not respond to requests received on those
connections, potential reasons for this include:

• If all worker threads are busy processing other client requests, new requests are forced to wait until a
worker thread becomes available. A stack trace can be obtained using the jstack command to show
the state of the worker threads and the waiting requests.

If all worker threads are processing the same requests for a long time, the server sends an alert that it
might be deadlocked. All threads might be tied up processing unindexed searches.

• If a request handler is busy with a client connection, other requests sent through that request handler
are forced to wait until it is able to read data. If there is only one request handler, all connections are
impacted. Stack traces obtained using the jstack command will show that a request handler thread is
continuously blocked.

• If the JVM in which the server is running is not properly configured, it can spend too much time
performing garbage collection. The effect on the server is similar to that of a network or firewall
configuration problem. A stack trace obtained with the pstack utility will show that most threads are
idle except the one performing garbage collection. It is also likely that a small number of CPUs is 100%
busy while all other CPUs are idle. The server will also issue an alert after detecting a long JVM pause
that will include details.

• If the JVM in which the server is running has hung, the pstack utility should show that one or more
threads are blocked and unable to make progress. In such cases, the system CPUs should be mostly
idle.

• If a there is a network or firewall configuration problem, communication attempts with the server will fail.
A network sniffer will show that packets sent to the system are not receiving TCP acknowledgment.

• If the host system is hung or lost power with a graceful shutdown, the server will be unresponsive.

PingDirectory | Troubleshooting | 186

Problems with the Administrative Console

If a problem occurs when trying to use the Administrative Console, reasons may include one of the
following:

• The web application container that hosts the console is not running. If an error occurs while trying to
start it, consult the logs for the web application container.

• If a problem occurs while trying to authenticate, make sure that the target server is online. If it is, the
access log may provide information about the authentication failure.

• If a problem occurs while interacting with the server instance using the Administrative Console, the
access and error logs for that instance may provide additional information.

Problems with SSL communication
Enable TLS debugging in the server to troubleshoot SSL communication issues:

$ dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name
com.unboundid.directory.server.extensions.TLSConnectionSecurityProvider \
 --set debug-level:verbose \
 --set include-throwable-cause:true

$ dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true \
 --set default-debug-level:disabled

In the java.properties file, add -Djavax.net.debug=ssl to the start-ds line, and run bin/
dsjavaproperties to make the option take effect on a scheduled server restart.

Conditions for automatic server shutdown
All PingData servers will shutdown in an out of memory condition, a low disk space error state, or for
running out of file descriptors. The PingDirectory Server will enter lockdown mode on unrecoverable
database environment errors, but can be configured to shutdown instead with this setting:

$ dsconfig set-global-configuration-prop \
 --set unrecoverable-database-error-mode:initiate-server-shutdown

Insufficient memory errors
If the server shuts down due to insufficient memory errors, it is possible that the allocated heap size is not
enough for the amount of data being returned. Consider increasing the heap size, or reducing the number
of request handler threads using the following dsconfig command:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTP Connection Handler" \
 --set num-request-handlers:<num-of-threads>

PingDirectory | PingDataSync Server 7.3.0.3 Release Notes | 187

Enable JVM debugging

About this task

Enable the JVM debugging options to track garbage collection data for the system. These options can
impact JVM performance, but provide valuable data to tune the server. While the jstat utility with the -
gc option can be used to obtain some information about garbage collection activity, there are additional
arguments that can be added to provide additional detail, such as:

-XX:+PrintGCDetails
-XX:+PrintTenuringDistribution
-XX:+PrintGCApplicationConcurrentTime
-XX:+PrintGCApplicationStoppedTime
-XX:+PrintGCDateStamps

Steps

1. On the server, navigate to the config/java.properties file.

2. Edit the config/java.properties file. Add any additional arguments to the end of the line that
begins with start-<server>.java-args.

3. Save the file.

4. Run the following command for the new arguments to take effect the next time the server is started:

$ bin/dsjavaproperties

PingDataSync Server 7.3.0.3 Release Notes

Resolved Issues

The following issues have been resolved with this release of PingDataSync Server:

Ticket ID Description

PDSTAGING-840 Fixed an issue that could cause the server to leak
a small amount of memory each time it failed to
establish an LDAP connection to another server.

PingDataSync Server Release Notes archive

Release Notes for earlier versions of PingDataSync Server are included for reference.

PingDataSync Server 7.3.0.1 Release Notes

Resolved Issues

The following issues have been resolved with this release of PingDataSync Server:

PingDirectory | PingDataSync Server Release Notes archive | 188

Ticket ID Description

DS-17278 Added a cn=Server Status
Timeline,cn=monitor monitor entry to track a
history of the local server's last 100 status changes
and their timestamps.

Updated the LDAP external server monitor to
include attributes that track health-check state
changes for external servers. The new attributes
include the following information:

• Number of times a health-check transition has
occurred

• Timestamps of the most recent transitions
• Messages associated with the most recent

transitions

DS-39176, DS-39308 Updated the Groovy scripting language version to
2.5.7. For a list of changes, visit groovy-lang.org
and view the Groovy 2.5 Release Notes.

As of this release, only the core Groovy runtime
and the groovy-json module are bundled with
the server. To deploy a Groovy-scripted Server
SDK extension that requires a Groovy module not
bundled with the server, such as groovy-xml or
groovy-sql, download the appropriate JAR file
from groovy-lang.org and place it in the server's
lib/extensions directory.

PingDataSync Server 7.3.0.0 Release Notes

What's New

These are new features for this release of PingDataSync Server:

• New features for data encryption in transit and at rest: added support for TLS 1.3, ability to encrypt and
automatically decrypt sensitive files such as tools.properties and keystore pin files using the server data
encryption keys, and the ability to more easily and securely separate master keys from data encryption
keys by protecting the server encryption settings database using either Amazon Key Management
Service (AWS KMS) or HashiCorp Vault.

• Added support for Amazon Corretto JDK 8, Windows Server 2019, Red Hat Enterprise Linux 7.6,
CentOS 7.6, Amazon Linux 2, and Docker 18.09.0 on Ubuntu 18.04 LTS.

• More configuration flexibility. Brand new JSON Attribute Mapping provides a more natural way to
construct JSON-based attributes rather than using Constructed Attribute Mapping. Base64 encoding
and decoding options are added to allow for synchronizing binary data. LDAP extensible match and
approximate match filters can be used to better select changes that require synchronization. Rate
limiting has been added per sync pipe using the max-rate-per-second setting.

• Publish changes to Kafka. Sync pipes in notification mode can now be configured to publish changes
in PingDirectory to topics in Kafka. Messages are published to Kafka for additions, deletions,
modifications, and for resynchronization. Each message contains the JSON-serialized format of the
mapped attributes per LDAP object, before and after modification, if applicable.

http://www.groovy-lang.org/
http://www.groovy-lang.org/

PingDirectory | PingDataSync Server Release Notes archive | 189

Resolved Issues

The following issues have been resolved with this release of the Data Sync Server:

Ticket ID Description

PDSTAGING-570,DS-38334 The following enhancements were made to the
topology manager to make it easier to diagnose the
connection errors described in PDSTAGING-570:

- Added monitoring information for all the failed
outbound connections (including the time since it's
been failing and the last error message seen when
the failure occurred) from a server to one of its
configured peers and the number of failed outbound
connections.

- Added alarms/alerts for when a server fails to
connect to a peer server within a configured grace
period.

PDSTAGING-570,DS-38344 The topology manager will now raise a mirrored-
subtree-manager-connection-asymmetry alarm
when a server is able to establish outbound
connections to its peer servers, but those peer
servers are unable to establish connections back
to the server within the configured grace period.
The alarm is cleared as soon as there is connection
symmetry.

PDSTAGING-570,DS-38335 The dsreplication tool has been fixed to work
when the node being used to enable replication is
currently out-of-sync with the topology master.

DS-15734 Added a cipher stream provider that can be
used to protect the contents of the encryption
settings database with a key from the Amazon Key
Management Service.

PingDirectory | PingDataSync Server Release Notes archive | 190

Ticket ID Description

DS-18060 Added an HTTP servlet extension that can be
used to retrieve the server's current availability
state. It accepts any GET, POST, or HEAD request
sent to a specified endpoint and returns a minimal
response whose HTTP status code may be used to
determine whether the server considers itself to be
AVAILABLE, DEGRADED, or UNAVAILABLE. The
status code for each of these states is configurable,
and the response may optionally include a JSON
object with an "availability-state" field with the name
of the current state.

Two instances of this servlet extension are now
available in the default configuration. A request sent
to /available-state will return an HTTP status code
of 200 (OK) if the server has a state of AVAILABLE,
and 503 (Service Unavailable) if the server has
a state of DEGRADED or UNAVAILABLE. A
request sent to the /available-or-degraded-state will
return an HTTP status code of 200 for a state of
AVAILABLE or DEGRADED, and 503 for a state of
UNAVAILABLE. The former may be useful for load
balancers that you only want to have route requests
to servers that are fully available. The latter may be
useful for orchestration frameworks if you wish to
destroy and replace any instance that is completely
unavailable.

DS-36269 Added support for using Population names both as
a default when configuring the PingOne Customer
Sync Destination and in attribute mapping.

DS-36474 Updated the ldapdelete command-line tool to
improve robustness and add features. Some of the
new features include support for client-side subtree
delete, deleting entries that match search filters,
following referrals, writing failures to a rejects file,
rate limiting, and support for a variety of additional
controls.

DS-37617 HTTP Connection Handlers now accept client-
provided correlation IDs by default. To adjust the
set of HTTP request headers that may include a
correlation ID value, change the HTTP Connection
Handler's correlation-id-request-header property.

DS-37839 Make Fingerprint Certificate Mapper and Subject
DN to User Attribute Certificate Mapper disabled
by default on fresh installations. This will not affect
upgrades from installations where these mappers
are enabled.

PingDirectory | PingDataSync Server Release Notes archive | 191

Ticket ID Description

DS-37959 Added support for insignificant configuration archive
attributes.

The configuration archive is a collection of the
configurations that have been used by the server
at some time. It is updated whenever a change
is made to data in the server configuration, and
it is very useful for auditing and troubleshooting.
However, because the entries that define root
users and topology administrators reside in the
configuration, changes to those entries will also
cause a new addition to the configuration archive.
This is true even for changes that affect metadata
for those entries, like updates to the password
policy state information for one of those users. For
example, if last login time tracking is enabled for
one of those users, especially with high-precision
timestamps, a new configuration may be generated
and added to the configuration archive every time
that user authenticates to the server. While it is
important for this information to be persisted, it
is not as important for it to be part of the server's
configuration history.

This update can help avoid the configuration
archive from storing information about updates
that only affect this kind of account metadata. If
a configuration change only modifies an existing
entry, and if the only changes to that entry affect
insignificant configuration archive attributes, then
that change may not be persisted in the server's
configuration archive.

By default, the following attributes are now
considered insignificant for the purpose of the
configuration archive:

* ds-auth-delivered-otp * ds-auth-password-
reset-token * ds-auth-single-use-token * ds-
auth-totp-last-password-used * ds-last-access-
time * ds-pwp-auth-failure * ds-pwp-last-login-
ip-address * ds-pwp-last-login-time * ds-pwp-
password-changed-by-required-time * ds-pwp-
reset-time * ds-pwp-retired-password * ds-pwp-
warned-time * modifiersName * modifyTimestamp
* pwdAccountLockedTime * pwdChangedTime *
pwdFailureTime * pwdGraceUseTime * pwdHistory
* pwdReset

PingDirectory | PingDataSync Server Release Notes archive | 192

Ticket ID Description

DS-38050 Updated the server to support encrypting the
contents of the PIN files needed to unlock certificate
key and trust stores. If data encryption is enabled
during setup, then the default PIN files will
automatically be encrypted.

Also, updated the command-line tool framework
so that the tools.properties file (which can provide
default values for arguments not provided on the
command line), and passphrase files (for example,
used to hold the bind password) can be encrypted.

DS-38072 Updated the server to enable TLSv1.3 by default on
JVMs that support it (Java 11 and higher).

DS-38085 Fixed an issue in the installer where the
Administrative Console's trust store type would be
incorrectly set if it differed from the key store type.

DS-38090,DS-38564,DS-38567 The response header used for correlation IDs
may now be set at the HTTP Servlet Extension
level using the correlation-id-response-header
configuration property. If set, this property overrides
the HTTP Connection Handler's correlation-id-
response-header property.

DS-38098 Added a max-rate-per-second configuration
property to the Sync Pipe, which can be used to
throttle the rate that changes are applied to the
destination.

DS-38100 Added a Kafka Sync Destination, which can be
used to publish changes from PingDirectory Sync
Sources to Kafka topics. Changes are represented
as the entry contents before and the entry contents
after the change in JSON format.

DS-38109 Added the --skipHostnameCheck command line
option to the setup script, which bypasses validation
of the provided host name for the server.

DS-38253 Added the PingOne for Customers Sync Source to
Ping Data Sync. Identities can now be synchronized
from PingOne for Customers to on premises identity
stores.

DS-38403 Fixed an issue that could prevent certain types of
initialization failures from appearing in the server
error log by default.

DS-38460 Added 'base64-encode-value' and 'base64-decode-
value' properties to direct attribute mappings to
facilitate synchronizing binary data.

PingDirectory | PingDataSync Server Release Notes archive | 193

Ticket ID Description

DS-38495 Updated the PingDataSync Server to support LDAP
filters in Sync Classes that include extensible match
or approximate match components. The Data Sync
Server supports the same matching rules as the
PingDirectory Server.

DS-38512 Added a cipher stream provider that can be used
to protect the contents of the encryption settings
database with a secret passphrase obtained from a
HashiCorp Vault instance.

DS-38550 Fixed an issue in which backups of the encryption
settings database could be encrypted with a key
from the encryption settings database.

DS-38582 Added attribute-comparison-method configuration
option to SyncClass to allow syncing with a syntax-
based comparison (default mode) or a byte-for-byte
comparison method.

DS-38670 Fixed a bug where the startIndex value for
SCIM requests would be incorrect if the used
LDAPSearch element had more than one baseDN
defined in the scim-resources XML file.

DS-38737 Fixed an issue where inter-server bind requests
would fail if the cipher used reported a maximum
unencrypted block size of 0.

DS-38833 Added JSON Attribute Mapping and JSON Attribute
Mapping Field configuration objects that simplify
constructing destination JSON attribute values from
source attributes. Compared to using a Constructed
Attribute Mapping to build up JSON, using these
configuration objects does not requiring providing
the JSON structure (braces, colons, and quotes),
does not require escaping string values, and
automatically omits fields whose values cannot be
constructed.

DS-38849 Added an indent-ldap-filter tool that can make it
easier to visualize the structure and components of
a complex search filter.

DS-38864 Changed the default value of the HTTP
Configuration property include-stack-traces-in-error-
pages from 'true' to 'false'. Disabling this property
prevents information about exceptions thrown by
servlet or web application extensions from being
revealed in HTTP error responses.

PingDirectory | PingDataSync Server Release Notes archive | 194

Ticket ID Description

DS-38897,DS-38908 Fixed two issues in which the server could have
exposed some clear-text passwords in files on the
server file system.

* When creating an encrypted backup of the alarms,
alerts, configuration, encryption settings, schema,
tasks, or trust store backends, the password
used to generate the encryption key (which may
have been obtained from an encryption settings
definition) could have been inadvertently written
into the backup descriptor. This problem does not
affect local DB backends (like userRoot), the LDAP
changelog backend, or the replication database.

* When running certain command-line tools with an
argument instructing the tool to read a password
from a file, the password contained in that file could
have been written into the server's tool invocation
log instead of the path to that file. Affected tools
include backup, create-initial-config, create-initial-
proxy-config, dsreplication, enter-lockdown-mode,
export-ldif, import-ldif, ldappasswordmodify, leave-
lockdown-mode, manage-tasks, manage-topology,
migrate-ldap-schema, parallel-update, prepare-
endpoint-server, prepare-external-server, realtime-
sync, rebuild-index, re-encode-entries, reload-
http-connection-handler-certificates, reload-index,
remove-defunct-server, restore, rotate-log, and
stop-server. Other tools are not affected. Also note
that this only includes passwords contained in files
that were provided as command-line arguments;
passwords included in the tools.properties file, or
in a file referenced from tools.properties, would not
have been exposed.

In each of these cases, the files would have been
written with permissions that make their contents
only accessible to the system account used to run
the server. Further, while administrative passwords
may have been exposed in the tool invocation log,
neither the passwords for regular users, nor any
other data from their entries, should have been
affected. We have introduced new automated tests
to help ensure that such incidents do not occur in
the future.

We recommend changing any administrative
passwords you fear may have been compromised
as a result of this issue. If you are concerned that
the passphrase for an encryption settings definition
may have been exposed, then we recommend
creating a new encryption settings definition that is
preferred for all subsequent encryption operations,
exporting your data to LDIF, and re-importing so
that it will be encrypted with the new key. You also
may wish to re-encrypt or destroy any existing
backups, LDIF exports, or other data encrypted with
a compromised key, and you may wish to sanitize
or destroy any existing tool invocation log files that
may contain clear-text passwords.

PingDirectory | PingDataSync Server Release Notes archive | 195

Ticket ID Description

DS-38913 Added a set of message types to Trace Log
Publishers that records events related to access
token validation.

DS-38957 Fixed an issue that would throw an exception
when trying to delete an entry containing uncached
attributes if the LDAP changelog was enabled and
using reversible form.

DS-39014 Addressed an issue in DataSync where LDAP
operational attributes (such as isMemberOf) used in
a SyncClass include-filter would not be requested
from the source LDAP server if the LDAP filter was
a nested filter.

DS-39086 Removed the version information page from the
docs/build-info.txt endpoint. This information is now
available in build-info.txt, which is located in the root
directory.

DS-39174 Addressed an issue where a resync command
could fail with a SEVERE_ERROR condition when
run with multiple passes and the Sync Source was
either Active Directory or PingOne for Customers.

DS-39177 Addressed an issue where a resync operation might
not synchronize all users if a PingOne Customer
Sync Source was configured with a value for
population-to-synchronize.

PingDirectory | Index | 196

Index

D

document copyright 8

	Contents
	Introduction
	Overview of PingDataSync Server
	Data synchronization process
	Synchronization architecture
	Change tracking, monitoring, and logging

	Synchronization modes
	Standard synchronization
	Notification synchronization

	PingDataSync Server operations
	Real-time synchronization
	Data transformations
	Bulk resync
	The sync retry mechanism

	Configuration components
	Sync flow examples
	Modify operation example
	Add operation example
	Delete operation example
	Delete after source entry is re-added
	Standard modify after source entry is deleted
	Notification add, modify, modifyDN, and delete

	Sample synchronization

	Install PingDataSync Server
	System requirements
	Platforms
	Docker
	Java Runtime Environment
	Browsers

	Install the JDK
	Optimize the Linux operating system
	Setting the file descriptor limit
	Set the file system flushes
	Install sysstat and pstack on Red Hat
	Install the dstat utility
	Disable file system swapping
	Manage system entropy
	Set file system event monitoring (inotify)
	Tune IO scheduler
	Enable the server to listen on privileged ports

	Ping license keys
	Installing PingDataSync Server
	Log on to the Administrative Console
	Server folders and files
	Start and stop the server
	Start the server as a background process
	Start the server at boot time
	Stop the server
	Restart the server

	Run the server as a Microsoft Windows service
	Register the service
	Run multiple service instances
	Deregister and uninstall
	Log files

	Uninstall the server
	Update servers in a topology
	Update the server
	Reverting an update

	Revert an update
	Revert from version 7.x to a version earlier than 7.0
	To revert to the most recent server version

	Install a failover server
	Administrative accounts
	Change the administrative password

	Configure PingDataSync Server
	Configuration checklist
	External servers
	Sync pipes
	Sync classes

	Sync user account
	Configure PingDataSync Server in Standard mode
	Use the create-sync-pipe tool to configure synchronization
	Configuring attribute mapping
	Configure server locations

	Use the Configuration API
	Authentication and authorization
	Relationship between the Configuration API and the dsconfig tool
	API paths
	Sorting and filtering configuration objects
	Update properties
	Administrative actions
	Update servers and server groups
	Configuration API responses

	Configuration with the dsconfig tool
	Use dsconfig in interactive mode
	Use dsconfig in non-interactive mode
	Use dsconfig batch mode

	Topology configuration
	Topology master requirements and selection
	Topology components
	Monitor data for the topology
	Certificates
	Inter-server certificate
	Replace the inter-server certificate
	Prepare a new keystore with the replacement key pair
	Use an existing key pair
	Replace the certificate associated with the original key pair

	Import earlier trusted certificates into the new keystore
	Update the server configuration to use the new certificate
	Replace the previous ads-truststore file with the new one
	Retire the previous certificate

	Server certificate
	Replace the server certificate
	Prepare a new keystore with the replacement key pair
	Use an existing key pair
	Replace the certificate associated with the original key pair

	Import earlier trusted certificates into the new keystore
	Update the server configuration to use the new certificate
	Replace the keystore and truststore files with the new ones
	Retire the previous certificate

	Domain Name Service (DNS) caching
	IP address reverse name lookups
	Configure the synchronization environment with dsconfig
	Configure server groups with dsconfig interactive
	Start the Global Sync configuration with dsconfig interactive

	Prepare external server communication
	HTTP connection handlers
	Configure an HTTP connection handler
	HTTP correlation IDs
	Configure HTTP Correlation ID Support
	HTTP Correlation ID Example Use

	Resync tool
	Test attribute and DN maps
	Verify the synchronization configuration
	Populate an empty sync destination topology
	Set the synchronization rate
	Synchronize a specific list of DNs

	Realtime-sync tool
	Start real-time synchronization globally
	Start or Pause synchronization
	Set startpoints
	Restart synchronization at a specific change log event
	Change the synchronization state by a specific time duration
	Schedule a real-time sync as a task

	Configure the PingDirectory Server backend for synchronizing deletes
	Configure DN maps
	Configure a DN map by using dsconfig

	Configure synchronization with JSON attribute values
	Synchronize ubidEmailJSON fully
	Synchronize a subset of fields from the source attribute
	Retain destination-only fields
	Synchronize a field of a JSON attribute into a non-JSON attribute
	Synchronize a non-JSON attribute into a field of a JSON attribute
	Synchronize multiple non-JSON attributes into fields of a JSON attribute
	Correlating attributes based on JSON fields

	Configure fractional replication
	Configure failover behavior
	Conditions that trigger immediate failover
	Failover server preference
	Configuration properties that control failover behavior
	The max-operation-attempts property
	The response-timeout property
	The max-failover-error-code-frequency property
	The max-backtrack-replication-latency property

	Configure traffic through a load balancer
	Configure authentication with a SASL external certificate
	Configure an LDAPv3 Sync Source
	Server SDK extensions

	Synchronize with PingOne for Customers
	Prerequisites
	Worker application
	PingOne user resource model

	Synchronize changes to a PingOne for Customers environment
	Create a PingOne for Customers sync destination
	Configure attribute mapping
	Considerations and limitations

	Synchronize changes from a PingOne for Customers environment
	Create a PingOne for Customers sync source
	Configure attribute mapping
	Considerations and limitations

	Synchronize with Active Directory systems
	Overview of configuration tasks
	Configuring synchronization with Active Directory
	Active Directory sync user account
	Prepare external servers
	Configure sync pipes and sync classes
	Configure password encryption
	Password sync agent
	Install the password sync agent
	Upgrade or uninstall the password agent
	Manually configure the password sync agent

	Synchronize with relational databases
	Use the server SDK
	RDBMS synchronization process
	DBSync example
	Example directory server entries

	Configure DBSync
	Create the JDBC extension
	Implement a JDBC sync source
	Implement a JDBC sync destination

	Configure the database for synchronization
	Considerations for synchronizing to database destination
	Configure a directory-to-database sync pipe
	Create the sync pipe
	Configure the sync pipe and sync classes

	Considerations for synchronizing from a database source
	Synchronize a specific list of database elements

	Synchronize with Apache Kafka
	Restrictions
	Configure a Kafka sync destination
	SSL configuration

	Message format
	Example ADD
	Example MODIFY
	Example DELETE
	Message customization

	Synchronize through PingDirectoryProxy servers
	Synchronization through a Proxy Server overview
	Change log operations
	PingDirectory Server and PingDirectoryProxy Server tokens
	Change log tracking in entry balancing deployments

	Example configuration
	Configure the source PingDirectory Server
	Configure a proxy server
	Configure PingDataSync Server
	Test the configuration
	Index the LDAP changelog
	Changelog synchronization considerations

	Synchronize in Notification Mode
	Notification mode overview
	Implementation considerations
	Use the server SDK and LDAP SDK

	Notification mode architecture
	Sync source requirements
	Failover capabilities
	Notification sync pipe change flow

	Configure notification mode
	Use the create-sync-pipe-config tool
	No resync command functionality
	LDAP change log features required for notifications
	LDAP change log for Notification and Standard Mode

	Implementing the server extension
	Configure the Notification sync pipe
	Considerations for configuring sync classes
	Create the sync pipe
	Configure the sync source
	Configure the destination endpoint server

	Access control filtering on the sync pipe
	Considerations for access control filtering
	Configure the sync pipe to filter changes by access control instructions

	Configure synchronization with SCIM
	Synchronize with a SCIM sync destination overview
	SCIM destination configuration objects
	Considerations for synchronizing to a SCIM destination
	Rename a SCIM resource
	Password considerations with SCIM

	Configure synchronization with SCIM
	Configure the external servers
	Configure the PingDirectory Server sync source
	Configure the SCIM sync destination
	Configure the sync pipe, sync classes, and evaluation order
	Configure communication with the source server
	Start the sync pipe

	Map LDAP schema to SCIM resource schema
	<resource> element
	<attribute> element
	<simple> element
	<complex> element
	<simpleMultiValued> element
	<complexMultiValued> element
	<subAttribute> element
	<canonicalValue> element
	<mapping> element
	<subMapping> element
	<LDAPSearch> element
	<resourceIDMapping> element
	<LDAPAdd> element
	<fixedAttribute> element

	Identify a SCIM resource at the destination

	Manage logging, alerts, and alarms
	Logs and log publishers
	Types of log publishers
	View the list of log publishers
	Log compression
	Configure log file encryption

	Synchronization logs and messages
	Sync log message types
	Create a new log publisher
	Configure log signing
	Configure log retention and log rotation policies
	Configure the log rotation policy
	Configure the log retention policy

	Configure log listeners
	System alarms, alerts, and gauges
	Alert handlers
	Configure alert handlers

	Test alerts and alarms
	Use the status tool
	Synchronization-specific status
	Monitor PingDataSync Server

	Troubleshooting
	Synchronization troubleshooting
	Management tools
	Troubleshooting tools
	Use the status tool
	Use the collect-support-data tool
	Use the Sync log
	Sync log example 1
	Sync log example 2
	Sync log example 3

	Troubleshoot synchronization failures
	Troubleshoot "Entry Already Exists" failures
	Troubleshoot "No Match Found" failures
	Troubleshoot "Failed at Resource" failures

	Installation and maintenance issues
	The setup program will not run
	The server will not start
	The server has shutdown
	The server will not accept client connections
	The server is unresponsive
	Problems with the Administrative Console

	Problems with SSL communication
	Conditions for automatic server shutdown
	Insufficient memory errors
	Enable JVM debugging

	PingDataSync Server 7.3.0.3 Release Notes
	PingDataSync Server Release Notes archive
	PingDataSync Server 7.3.0.1 Release Notes
	PingDataSync Server 7.3.0.0 Release Notes

	Index

