
ion

Release 7.2.1.0

PingDataSync Server™ Product
Documentation
© Copyright 2004-2019 Ping Identity® Corporation. All rights reserved.

Trademarks

Ping Identity, the Ping Identity logo, PingFederate, PingAccess, and PingOne are registered

trademarks of Ping Identity Corporation ("Ping Identity"). All other trademarks or registered

trademarks are the property of their respective owners.

Disclaimer

The information provided in these documents is provided "as is" without warranty of any kind.

Ping Identity disclaims all warranties, either express or implied, including the warranties of

merchantability and fitness for a particular purpose. In no event shall Ping Identity or its

suppliers be liable for any damages whatsoever including direct, indirect, incidental,

consequential, loss of business profits or special damages, even if Ping Identity or its suppliers

have been advised of the possibility of such damages. Some states do not allow the exclusion

or limitation of liability for consequential or incidental damages so the foregoing limitation may

not apply.

Support

https://support.pingidentity.com/

- i -

- ii -

Table of Contents
Chapter 1: Introduction 1

Overview of the PingDataSync Server 2

Data synchronization process 2

Synchronization architecture 3

Change tracking, monitoring, and logging 4

Synchronization Modes 5

Standard Synchronization 5

Notification Synchronization 5

PingDataSync Server Operations 6

Real-Time Synchronization 6

Data Transformations 6

Bulk Resync 7

The Sync Retry Mechanism 7

Configuration Components 8

Sync Flow Examples 10

Modify Operation Example 11

Add Operation Example 11

Delete Operation Example 11

Delete After Source Entry is Re-Added 12

Standard Modify After Source Entry is Deleted 12

Notification Add, Modify, ModifyDN, and Delete 12

Sample Synchronization 12

Chapter 2: Install the PingDataSync Server 14

Supported Platforms 15

Install the JDK 15

- iii -

Table of Contents

Optimize the Linux Operating System 16

Set the file descriptor limit 16

Set the filesystem flushes 17

Install sysstat and pstack on Red Hat 17

Install the dstat utility 17

Disable filesystem swapping 18

Manage system entropy 18

Set Filesystem Event Monitoring (inotify) 18

Tune IO scheduler 18

Enable the server to listen on privileged ports 19

Ping license keys 20

Install the PingDataSync Server 20

Log into the Administrative Console 22

Server folders and files 22

Start and stop the server 24

Start the Server as a Background Process 24

Start the server at boot time 24

Stop the Server 24

Restart the server 25

Run the server as a Microsoft Windows service 25

Register the service 25

Run multiple service instances 25

Deregister and uninstall 26

Log files 26

Uninstall the server 26

- iv -

Update servers in a topology 27

Update the server 28

Reverting an Update 28

Revert an Update 29

Reverting from Version 7.x to a Version Prior to 7.0 29

To Revert to the Most Recent Server Version 31

Install a failover server 31

Administrative accounts 32

Change the administrative password 32

Chapter 3: Configure the PingDataSync Server 34

Configuration checklist 36

External servers 36

Sync Pipes 36

Sync Classes 37

The Sync User account 39

Configure the PingDataSync Server in Standard mode 39

Use the create-sync-pipe tool to configure synchronization 40

Configuring attribute mapping 43

Configure server locations 44

Use the Configuration API 45

Authentication and authorization 45

Relationship between the Configuration API and the dsconfig tool 46

API paths 54

Sorting and filtering configuration objects 56

Update properties 56

Administrative actions 58

- v -

Table of Contents

Update servers and server groups 59

Configuration API Responses 59

Configuration with the dsconfig tool 61

Use dsconfig in interactive mode 61

Use dsconfig in non-interactive mode 62

Use dsconfig batch mode 62

Topology configuration 63

Topology master requirements and selection 63

Topology components 64

Monitor data for the topology 65

Updating the server instance listener certificate 66

Remove the self-signed certificate 67

Use an existing key-pair 68

Use the certificate associated with the original key-pair 69

Domain Name Service (DNS) caching 70

IP address reverse name lookups 71

Configure the synchronization environment with dsconfig 71

Configure server groups with dsconfig interactive 72

Start the Global Sync Configuration with dsconfig interactive 72

Prepare external server communication 72

Configuration with the dsconfig tool 74

HTTP Connection Handlers 76

Configure an HTTP Connection Handler 77

HTTP Correlation IDs 79

Using the resync Tool 82

- vi -

Testing Attribute and DN Maps 83

Verifying the Synchronization Configuration 83

Populating an Empty Sync Destination Topology 84

Setting the Synchronization Rate 85

Synchronizing a Specific List of DNs 85

Using the realtime-sync Tool 87

Starting Real Time Synchronization Globally 87

Starting or Pausing Synchronization 87

Setting Startpoints 88

Restarting Synchronization at a Specific Change Log Event 89

Changing the Synchronization State by a Specific Time Duration 90

Scheduling a Realtime Sync as a Task 90

Configuring the PingDirectory Server Backend for Synchronizing Deletes 91

Configure DN maps 92

Configuring a DN Map Using dsconfig 93

Configure synchronization with JSON attribute values 93

Synchronize ubidEmailJSON fully 94

Synchronize a subset of fields from the source attribute 94

Retain destination-only fields 95

Synchronize a field of a JSON attribute into a non-JSON attribute 96

Synchronize a non-JSON attribute into a field of a JSON attribute 97

Correlating attributes based on JSON fields 97

Configure fractional replication 98

Configure failover behavior 100

Conditions that trigger immediate failover 101

Failover server preference 102

- vii -

Table of Contents

Configuration properties that control failover behavior 103

The max-operation-attempts property 105

The response-timeout property 105

The max-failover-error-code-frequency property 106

The max-backtrack-replication-latency property 106

Configure traffic through a load balancer 107

Configure authentication with a SASL external certificate 108

Configure an LDAPv3 Sync Source 110

Server SDK extensions 110

Chapter 4: Synchronize with PingOne for Customers 112

Prerequisites 113

Worker application 113

PingOne user resource model 115

Synchronize changes to a PingOne for Customers environment 115

Create a PingOne for Customers sync destination 115

Configure attribute mapping 116

Considerations and limitations 116

Synchronize changes from a PingOne for Customers environment 117

Create a PingOne for Customers sync source 117

Configure attribute mapping 118

Considerations and limitations 118

Chapter 5: Synchronize with Active Directory systems 120

Overview of configuration tasks 121

Configuring synchronization with Active Directory 121

The Active Directory Sync User account 122

Prepare external servers 123

- viii -

Configure Sync Pipes and Sync Classes 123

Configure password encryption 126

The Password Sync Agent 127

Install the Password Sync Agent 128

Upgrade or Uninstall the Password Agent 129

Manually Configure the Password Sync Agent 129

Chapter 6: Synchronize with relational databases 130

Use the Server SDK 131

The RDBMS synchronization process 132

DBSync example 133

Example directory server entries 133

Configure DBSync 134

Create the JDBC extension 135

Implement a JDBC Sync Source 136

Implement a JDBC Sync Destination 137

Configure the database for synchronization 138

Considerations for synchronizing to database destination 139

Configure a directory-to-database Sync Pipe 141

Create the Sync Pipe 141

Configure the Sync Pipe and Sync Classes 143

Considerations for synchronizing from a database source 145

Synchronize a specific list of database elements 146

Chapter 7: Synchronize through PingDirectoryProxy Servers 147

Synchronization through a Proxy Server overview 148

Change log operations 148

PingDirectory Server and PingDirectoryProxy Server tokens 149

Change log tracking in entry balancing deployments 150

- ix -

Table of Contents

Example configuration 151

Configure the source PingDirectory Server 152

Configure a Proxy Server 153

Configuring the PingDataSync Server 156

Test the configuration 157

Index the LDAP changelog 159

Changelog synchronization considerations 160

Chapter 8: Synchronize in Notification Mode 162

Notification mode overview 163

Implementation Considerations 164

Use the Server SDK and LDAP SDK 164

Notification mode architecture 165

Sync Source requirements 166

Failover Capabilities 166

Notification Sync Pipe change flow 167

Configure Notification mode 168

Use the create-sync-pipe-config tool 168

No resync command functionality 168

LDAP change log features required for notifications 168

LDAP change log for Notification and Standard Mode 171

Implementing the Server Extension 171

Configuring the Notification Sync Pipe 172

Considerations for Configuring Sync Classes 173

Creating the Sync Pipe 173

Configuring the Sync Source 174

- x -

Configure the Destination Endpoint Server 174

Access control filtering on the Sync Pipe 175

Considerations for access control filtering 176

Configure the Sync Pipe to filter changes by access control instructions 176

Chapter 9: Configure synchronization with SCIM 178

Synchronize with a SCIM Sync Destination overview 179

SCIM destination configuration objects 180

Considerations for synchronizing to a SCIM destination 180

Renaming a SCIM resource 181

Password considerations with SCIM 181

Configure synchronization with SCIM 181

Configure the external servers 182

Configure the PingDirectory Server Sync Source 183

Configure the SCIM Sync Destination 184

Configure the Sync Pipe, Sync Classes, and evaluation order 184

Configure communication with the source server(s) 185

Start the Sync Pipe 186

Map LDAP schema to SCIM resource schema 186

The <resource> element 188

The <attribute> element 189

The <simple> element 190

The <complex> element 190

The <simpleMultiValued> element 190

The <complexMultiValued> element 191

The <subAttribute> element 191

The <canonicalValue> element 192

- xi -

Table of Contents

The <mapping> element 192

The <subMapping> element 192

The <LDAPSearch> element 192

The <resourceIDMapping> element 193

The <LDAPAdd> element 193

The <fixedAttribute> element 194

Identify a SCIM resource at the destination 194

Chapter 10: Manage logging, alerts, and alarms 196

Logs and Log Publishers 197

Types of Log Publishers 197

View the list of log publishers 197

Log compression 198

Configure log file encryption 198

Synchronization logs and messages 200

Sync log message types 201

Create a new log publisher 202

Configuring log signing 202

Configure log retention and log rotation policies 203

Configure the log rotation policy 204

Configure the log retention policy 204

Configure log listeners 205

System alarms, alerts, and gauges 206

Alert handlers 207

Configure alert handlers 208

Test alerts and alarms 208

- xii -

Use the status tool 209

Synchronization-specific status 210

Monitor the PingDataSync Server 212

Chapter 11: Troubleshooting 215

Synchronization troubleshooting 216

Management tools 216

Troubleshooting tools 217

Use the status tool 218

Use the collect-support-data tool 218

Use the Sync log 219

Sync log example 1 220

Sync log example 2 220

Sync log example 3 220

Troubleshoot synchronization failures 221

Troubleshoot "Entry Already Exists" failures 222

Troubleshoot "No Match Found" failures 223

Troubleshoot "Failed at Resource" failures 225

Installation and maintenance issues 226

The setup program will not run 227

The server will not start 228

The server has shutdown 230

The server will not accept client connections 231

The server is unresponsive 231

Problems with the Administrative Console 232

Problems with SSL communication 233

Conditions for automatic server shutdown 233

- xiii -

Table of Contents

Insufficient memory errors 233

Enable JVM debugging 234

Index 235

- xiv -

Chapter 1: Introduction

The PingDataSync Server is a high-capacity, high-reliability data synchronization and transfer

pipe between source and destination topologies.

This chapter presents a general overview of the PingDataSync Server process and examples

for use.

Topics include:

Overview of the PingDataSync Server

Data synchronization process

Synchronization modes

PingDataSync Server operations

Configuration components

Synchronization flow examples

Sample synchronization

- 1 -

Chapter 1: Introduction

Overview of the PingDataSync Server
The PingDataSync Server is an efficient, Java-based server that provides high throughput, low-

latency, and bidirectional real-time synchronization between two endpoint topologies

consisting of PingDirectory Servers, PingDirectoryProxy Servers, PingOne, and/or Relational

Database Management Systems (RDBMS) systems. The PingDataSync Server uses a dataless

approach that synchronizes changes directly from the data sources in the background, so that

applications can continue to update their data sources directly. The PingDataSync Server does

not store any data from the endpoints themselves, thereby reducing hardware and

administration costs. The server's high-availability mechanisms also makes it easy to fail over

from the main PingDataSync Server to redundant instances.

Designed to run with little administrative maintenance, the PingDataSync Server includes the

following features:

l High performance and availability with built-in redundancy.

l Dataless virtual architecture for a small-memory footprint and easy maintenance.

l Hassle-free setup that enables mapping attribute names, values, and DNs between
endpoints. For directory server endpoints, this enables making schema and Directory
Information Tree (DIT) changes without custom coding and scripting.

l Multi-vendor directory server support including the PingDirectory Server,
PingDirectoryProxy Server, Nokia 8661 Directory Server, Nokia 8661 Directory Proxy
Server, Oracle/Sun Directory Server Enterprise Edition, Oracle/Sun Directory Server,
Oracle Unified Directory, OpenDJ, and Microsoft Active Directory, and generic LDAP
directories.

l RDBMS support including Oracle Database, and Microsoft SQL Server systems.

l Proxy Server support including the PingDirectoryProxy Server and the Nokia 8661
Directory Proxy Server.

l Notification support that allows real-time change notifications to be pushed to client
applications or services as they occur.

Data synchronization process
The PingDataSync Server performs point-to-point synchronization between a source endpoint

and a destination endpoint. An endpoint is defined as any source or destination topology of

- 2 -

Data synchronization process

directory or database servers.

The PingDataSync Server synchronizes data in one direction or bidirectionally between

endpoints. For example, in a migration phase from Sun Directory Server to a PingData

PingDirectory Server, synchronization can occur in one direction from the source server to a

staging server. With one-way synchronization, the source server is the authoritative endpoint

for changes in the system. Bidirectional synchronization allows for parallel active installations

between the source and the destination endpoints. With bidirectional synchronization, both

endpoints are authoritative for the same set of attributes or for different sets of data.

ThePingDataSync Server also contains no single point of failure, either for detecting changes or

for applying changes. PingDataSync Server instances themselves are redundant. There can be

multiple instances running at a time, but only the server with the highest priority is actively

synchronizing changes. The stand-by servers are constantly polling the active server instance

to update their persistent state. This state contains the minimum amount of information

needed to begin synchronization where the primary server left off, which logically is the last

processed change number for the source server. In the case of a network partition, multiple

servers can synchronize simultaneously without causing problems as they each verify the full

entry before making changes.

Synchronization architecture

The PingDataSync Server uses a virtualized, dataless approach that does not store directory

data locally. The log files, administrator entries, configuration, sync state information are

stored as flat files (LDIF format) within the system. No additional database is required.

- 3 -

Chapter 1: Introduction

Synchronization Architecture

Change tracking, monitoring, and logging

The PingDataSync Server tracks and manages processes and server health with the following

tools:

l Change Tracking – Each directory instance stores a separate entry under
cn=changelog for every modification made to the directory. The PingDataSync Server
provides full control over the synchronization process by determining which entries are
synchronized, how they are correlated to the entries at the destination endpoint, and how
they are transformed into the destination schema.

o For the PingData PingDirectory Server or Nokia 8661 Directory Server topologies,
the PingDataSync Server uses the servers’s LDAP Change Log for modification
detection.

o For Oracle/Sun Directory Server, OpenDJ, Oracle Unified Directory, and generic
LDAP directory topologies, the PingDataSync Server uses the server’s Retro
Change Log, which provides a detailed summary of each change.

o For Active Directory, the PingDataSync Server uses the DirSync control, which
polls for object attribute changes.

o For RDBMS systems, the PingDataSync Server uses an Ping Identity Server SDK
plug-in to interface with a customized RDBMS change log table. Database triggers

- 4 -

Synchronization Modes

on each table record all INSERT, UPDATE, and DELETE operations to the change log
table.

l Monitoring, Alerts, and Alarms – The PingDataSync Server supports several
industry-standard, administrative protocols for monitoring, alarms, and alerts. System
alarms and gauges can be configured to determine healthy performance thresholds and
the server actions taken when performance values are outside the threshold. All
administrative alarms are exposed over LDAP as entries under base DN cn=alarms. An
administrative alert framework sends warnings, errors, or other server events through
log messages, email, or JMX notifications. Administrative alerts are also exposed over
LDAP as entries below base DN cn=alerts. Typical alert events are startup or shutdown,
applied configuration changes, or synchronized resources unavailable.

l Logging – The PingDataSync Server provides standard logs (sync, access, error,
failed-operations, config-audit.log, debug). The server can also be configured for
multiple active sync logs. For example, each detected change, each dropped change,
each applied change, or each failed change can be logged.

Synchronization Modes
The PingDataSync Server runs as a standalone Java process with two synchronization modes:

standard and notification.

Standard Synchronization

In standard synchronization mode, thePingDataSync Server polls the directory server change

log for create, modify, and delete operations on any entry. The server fetches the full entries

from both the source and destination endpoints, and compares them to produce the minimal

set of changes required to synchronize the destination with the source.

The following shows the standard synchronization change flow between two servers. The

changes are processed in parallel, which increases throughput and offsets network latency.

Notification Synchronization

In notification synchronization mode, the PingDataSync Server skips the fetch and compare

phases of processing and simply notifies the destination that a change has happened and

provides the details of the change. Notification mode is currently available for the PingData

and Alcatel-Lucent 8661 directory and proxy servers only.

- 5 -

Chapter 1: Introduction

PingDataSync Server Operations
The PingDataSync Server provides seamless integration between disparate systems to

transform data using attribute and DN mappings. A bulk resynchronization operation can be

run verify mappings and test synchronization settings.

Real-Time Synchronization

Real-time synchronization is performed with the realtime-sync utility. The realtime-sync

utility polls the source server for changes and synchronizes the destination entries

immediately. Once the server determines that a change should be synchronized, it fetches the

full entry from the source. It then searches for the corresponding entry in the destination

endpoint using correlation rules and applies the minimum set of changes to synchronize the

attributes. The server fetches and compares the full entries to make sure it does not

synchronize any old data from the change log.

After a synchronization topology is configured, run resync to synchronize the endpoints, and

then run realtime-sync to start global synchronization.

The realtime-sync tool is used for the following tasks:

l Start or stop synchronization globally or for specific sync pipes only.

l Set a start point at which synchronization should begin such as the beginning or end of
the change log, at a specified change number, at a specified change sequence number,
or at a specified time frame in the change log.

Data Transformations

Data transformations alter the contents of synchronized entries between the source and

destination directory server to handle variances in attribute names, attribute values, or DN

structures. When entries are synchronized between a source and a destination server, the

contents of these entries can be changed using attribute and DN mappings, so that neither

server needs be aware of the transformations.

l Attribute Mapping – Any attribute in the entry can be renamed to fit the schema
definitions from the source endpoint to the destination endpoint. This mapping makes it
possible to synchronize information stored in one directory's attribute to an attribute
with a different name in another directory server, or to construct an attribute using
portions of the source attribute values.

- 6 -

PingDataSync Server Operations

l DN Mapping – Any DNs referenced in the entries can be transparently altered. This
mapping makes it possible to synchronize data from a topology that uses one DIT
structure to a system that uses a different DIT structure.

Bulk Resync

The resync tool performs a bulk comparison of entries on source topologies and destination

topologies. The PingDataSync Server streams entries from the source, and either updates the

corresponding destination entries or reports those that are different. The resync utility

resides in the /bin folder (UNIX or LINUX) or \bat folder (Windows), and can be used for the

following tasks:

l Verify that the two endpoints are synchronized after an initial configuration.

l Initially populate a newly configured target endpoint.

l Validate that the server is behaving as expected. The resync tool has a --dry-run
option that validates that synchronization is operating properly, without updating any
entries. This option also can be used to check attribute or DN mappings.

l Perform scheduled synchronization.

l Recover from a failover by resynchronizing entries that were modified since the last
backup was taken.

The resync tool also enables control over what can be synchronized, such as:

l Include or exclude any source and destination attributes.

l Apply an LDAP filter to only sync entries created since that last time the tool ran.

l Synchronize only creations or only modifications.

l Change the logging verbosity.

l Set a limit on resync operations (such as 2000 operations per second) to reduce impact
on endpoint servers.

The Sync Retry Mechanism

The PingDataSync Server is designed to quickly synchronize data and attempt a retry should an

operation fail for any reason. The retry mechanism involves two possible retry levels, which

are configurable on the Sync Pipe configuration using advanced Sync Pipe properties. For

detailed information, see the PingDataSync Server Reference Guide for the Sync Pipe

configuration parameters.

Retry involves two possible levels:

- 7 -

Chapter 1: Introduction

First Level Retry – If an operation fails to synchronize, the server will attempt a configurable

number of retries. The total number of retry attempts is set in the max-operation-attempts

property on the Sync Pipe. The property indicates how many times a worker thread should

retry the operation before putting the operation into the second level of retry, or failing the

operation altogether.

Second Level Retry – Once the max-operation-attempts property has been exceeded, the

retry is sent to the second level, called the delayed-retry queue. The delayed-retry queue uses

two advanced Sync Pipe properties to determine the number of times an operation should be

retried in the background after a specified delay.

Operations that make it to this level will be retried after the failed-op-background-retry-

delay property (default: 1 minute). Next, the PingDataSync Server checks the max-failed-

op-background-retries property to determine the number of times a failed operation should

be retried in the background. By default, this property is set to 0, which indicates that no

background retry should be attempted, and that the operation should be logged as failed.

Note
Background operations can hold up processing other changes, since the PingDataSync Server will only
process up to the next 5000 changes while waiting for a retried operation to complete.

Retry can be controlled by the custom endpoint based on the type of error exception. When

throwing an exception, the endpoint code can signal that a change should be aborted, retried a

limited number of times, or retried an unlimited number of times. Some errors, such as

endpoint server down, should be retried indefinitely.

If the max-failed-op-background-retries property has been exceeded, the retry is logged

as a failure and appears in the sync and the sync-failed-ops logs.

Configuration Components
The PingDataSync Server supports the following configuration parameters that determine how

synchronization takes place between directories or databases:

Sync Pipe – Defines a single synchronization path between the source and destination

topologies. Every Sync Pipe has one or more Sync Classes that control how and what is

synchronized. Multiple Sync Pipes can run in a single server instance.

- 8 -

Configuration Components

Sync Source – Defines the directory topology that is the source of the data to be

synchronized. A Sync Source can reference one or more supported external servers.

Sync Destination – Defines the topology of directory servers where changes detected at the

Sync Source are applied. A Sync Destination can reference one or more external servers.

External Server – Defines a single server in a topology of identical, replicated servers to be

synchronized. A single external server configuration object can be referenced by multiple Sync

Sources and Sync Destinations.

Sync Class – Defines the operation types and attributes that are synchronized, how attributes

and DNs are mapped, and how source and destination entries are correlated. A source entry is

in one Sync Class and is determined by a base DN and LDAP filters. A Sync Class can reference

zero or more Attribute Maps and DN Maps, respectively. Within a Sync Pipe, a Sync Class is

defined for each type of entry that needs to be treated differently. For example, entries that

define attribute mappings, or entries that should not be synchronized at all. A Sync Pipe must

have at least one Sync Class but can refer to multiple Sync Class objects.

DN Map – Defines mappings for use when destination DNs differ from source DNs. These

mappings allow the use of wild cards for DN transformations. A single wild card ("*") matches

a single RDN component and can be used any number of times. The double wild card ("**")

matches zero or more RDN components and can be used only once. The wild card values can

be used in the to-dn-pattern attribute using {1} and their original index position in the

pattern, or {attr} to match an attribute value. For example:

**,dc=myexample,dc=com->{1},o=example

Regular expressions and attributes from the user entry can also be used. For example, the

following mapping constructs a value for the uid attribute, which is the RDN, out of the initials

(first letter of givenname and sn) and the employee ID (eid attribute).

uid={givenname:/^(.)(.*)/$1/s}{sn:/^(.)(.*)/$1/s}{eid},{2},o=example

The following illustrates a how a nested DIT can be mapped to a flattened structure.

- 9 -

Chapter 1: Introduction

Nested DIT Mapping

Attribute Map and Attribute Mappings – Defines a mapping for use when destination

attributes differ from source attributes. A Sync Class can reference multiple attribute maps.

Multiple Sync Classes can share the same attribute map. There are three types of attribute

mappings:

l Direct Mapping – Attributes are directly mapped to another attribute: For example:

employeenumber->employeeid

l Constructed Mapping – Destination attribute values are derived from source attribute
values and static text. For example:

{givenname}.{sn}@example.com->mail

l DN Mapping – Attributes are mapped for DN attributes. The same DN mappings that map
entry DNs can be referenced. For example:

uid=jdoe,ou=People,dc=example,dc=com.

Sync Flow Examples
The PingDataSync Server processes changes by fetching the most up-to-date, full entries from

both sides and then compares them. This process flow is called standard synchronization

mode. The processing flow differs depending on the type of PingDataSync Serverchange (ADD,

MODIFY, DELETE, MODDN) that is requested. The following examples show the control flow

diagrams for the sync operations, especially for those cases when a MODIFY or a DELETE

operation is dropped. The sync log records all completed and failed operations.

- 10 -

Sync Flow Examples

Modify Operation Example

1. Detect change from the change log table on the source.

2. Fetch the entry or table rows from affected tables on the source.

3. Perform any mappings and compute the equivalent destination entry

by constructing an equivalent LDAP entry or equivalent table row.

4. Fetch the entry or table rows from affected tables on the destination.

5. Diff the computed destination entry and actual destination entry.

6. Apply the changes to the destination.

Add Operation Example

1. Detect change from the change log table on the source.

2. Fetch the entry or table rows from affected tables on the source.

3. Perform any mappings and compute the equivalent destination entry

by constructing an equivalent LDAP entry or equivalent table row.

4. Fetch the entry or table rows from affected tables on the destination.

5. The entry or table row does not exist on the destination.

6. Create the entry or table row.

Delete Operation Example

1. Detect delete from the change log table on the source.

2. Fetch the entry or table rows from affected tables on the source.

3. Perform any mappings and compute the equivalent destination entry

by constructing an equivalent LDAP entry or equivalent table row.

4. Fetch the entry or table rows from affected tables on the destination.

5. The entry or table row exists on the destination.

6. Apply the delete on the destination.

- 11 -

Chapter 1: Introduction

Delete After Source Entry is Re-Added

1. Detect delete from the change log table on the source.

2. Fetch the entry or table rows from affected tables on the source.

3. The entry or table row exists on the source.

4. Delete request is dropped.

Standard Modify After Source Entry is Deleted

1. Detect change from the change log table on the source.

2. Fetch the entry or table rows from affected tables on the source.

3. The entry does not exist.

4. Change request is dropped because the source entry no longer exists.

Notification Add, Modify, ModifyDN, and Delete

1. Detect change from the change log table on the source.

2. Perform any mappings and compute the equivalent destination
entry by constructing an equivalent LDAP entry or equivalent table
row.

3. Reconstruct changed entries.

4. Push notification with change details to the destination.

Sample Synchronization
The following is a synchronization migration example from a Sun Directory Server Enterprise

Edition (DSEE) topology to the PingData PingDirectory Server topology, including a change in

the DIT structure to a flattened directory structure. The Sync Pipe connects the Sun Directory

Server topology as the Sync Source and the PingDirectory Server topology as the Sync

Destination. Each endpoint is defined with three external servers in their respective topology.

- 12 -

Sample Synchronization

The Sync Pipe destination has its base DN set to o=example, which is used when performing

LDAP searches for entries.

Two Sync Classes are defined: one for Subscribers, and one for Accounts. Each Sync Class

uses a single "Sun DS to PingData Attribute Map" that has four attribute mappings defined.

Each Sync Class also defines its own DN maps. For example, the Accounts Sync Class uses a

DN map, called PingData Account Map, that is used to flatten a hierarchical DIT, so that the

Account entries appear directly under ou=accounts as follows:

*,**,o=example -> {1},ou=accounts,o=example

With this mapping, if an entry DN has uid=jsmith,ou=people,o=example, then "*" matches

uid=jsmith, "**" matches ou=people, and {1} matches uid=jsmith. Therefore,

uid=jsmith,ou=people,o=example gets mapped to uid=jsmith,ou=accounts,o=example. A

similar map is configured for the Subscribers Sync Class.

A Sample Synchronization Topology Configuration

- 13 -

Chapter 2: Install the PingDataSync
Server

This section describes how to install and run the PingDataSync Server. It includes pre-

installation requirements and considerations.

Topics include:

Supported Platforms

Installing Java

Optimize the Linux Operating System

Ping License Keys

Installing the Server

Logging into the Administrative Console

Server Folders and Files

Starting and Stopping the Server

Run the server as a Microsoft Windows service

Uninstalling the Server

Update Servers in a Topology

Revert an update

Install a Failover Server

Administrative Accounts

- 14 -

Chapter 2: Install the PingDataSync Server

Supported Platforms
The following platforms and versions are supported for this release.

Operating systems Virtualization platforms Java versions

RedHat 6.6

RedHat 6.8

RedHat 6.9

RedHat 7.4

RedHat 7.5

CentOS 6.8

CentOS 6.9

CentOS 7.4

CentOS 7.5

SUSE Enterprise 11 SP4

SUSE Enterprise 12 SP3

Ubuntu 16.04 LTS

Ubuntu 18.04 LTS

Amazon Linux

Windows Server 2012 R2

Windows Server 2016

VMWare vSphere & ESX 6.0

KVM

Amazon EC2

Microsoft Azure (Supported by

Professional Services)

OpenJDK 8.x 64-bit

OpenJDK 11.x 64-bit

Oracle JDK 8.x 64-bit

Oracle JDK 11.x 64-bit

Note
It is highly recommended that a Network Time Protocol (NTP) system be in place so that multi-server
environments are synchronized and timestamps are accurate.

Install the JDK
The Java 64-bit JDK is required on the server. Even if Java is already installed, create a

separate Java installation for use by the server to ensure that updates to the system- wide

Java installation do not inadvertently impact the installation.

- 15 -

Optimize the Linux Operating System

Optimize the Linux Operating System
Configure the Linux filesystem by making the following changes.

Note

The server explicitly overrides environment variables like PATH, LD_LIBRARY_PATH, and

LD_PRELOAD to ensure that settings used to start the server do not inadvertently impact its

behavior. If these variables must be edited, set values by editing the set_environment_

vars function of the lib/_script-util.sh script. Stop and restart the server for the

change to take effect.

Set the file descriptor limit

The server allows for an unlimited number of connections by default, but is restricted by the

file descriptor limit on the operating system. If needed, increase the file descriptor limit on the

operating system with the following procedure.

Note
If the operating system relies on systemd, refer to the Linux operating system documentation for
instructions on setting the file descriptor limit.

1. Display the current hard limit of the system. The hard limit is the maximum server limit
that can be set without tuning the kernel parameters in the proc filesystem.

ulimit -aH

2. Edit the /etc/sysctl.conf file. If the fs.file-max property is defined in the file, make
sure its value is set to at least 65535. If the line does not exist, add the following to the
end of the file:

fs.file-max = 65535

3. Edit the /etc/security/limits.conf file. If the file has lines that set the soft and hard
limits for the number of file descriptors, make sure the values are set to 65535. If the
lines are not present, add the following lines to the end of the file (before #End of

file). Insert a tab between the columns.

* soft nofile 65535
* hard nofile 65535

4. Reboot the system, and then use the ulimit command to verify that the file descriptor
limit is set to 65535 with the following command:

ulimit -n

- 16 -

Chapter 2: Install the PingDataSync Server

Once the operating system limit is set, the number of file descriptors that the server will use

can be configured by either using a NUM_FILE_DESCRIPTORS environment variable, or by

creating a config/num-file-descriptors file with a single line such as, NUM_FILE_

DESCRIPTORS=12345. If these are not set, the default of 65535 is used. This is strictly optional

if wanting to ensure that the server shuts down safely prior to reaching the file descriptor limit.

Note
For RedHat 7 or later, modify the 20-nproc.conf file to set both the open files andmax user
processes limits:

/etc/security/limits.d/20-nproc.conf

Add or edit the following lines if they do not already exist:
* soft nproc 65536
* soft nofile 65536
* hard nproc 65536
* hard nofile 65536
root soft nproc unlimited

Set the filesystem flushes

Linux systems running the ext3 filesystem only flush data to disk every five seconds. If the

server is on a Linux system, edit the mount options to include the following:

commit=1

This variable changes the flush frequency from five seconds to one. Also, set the flush

frequency in the /etc/fstab file to make sure the configuration remains after reboot.

Install sysstat and pstack on Red Hat

The server troubleshooting tool collect-support-data relies on the iostat, mpstat, and

pstack utilities to collect monitoring, performance statistics, and stack trace information on

the server’s processes. For Red Hat systems, make sure that these packages are installed, for

example:

$ sudo yum install sysstat gdb dstat -y

Install the dstat utility

The dstat utility is used by the collect-support-data tool.

- 17 -

Optimize the Linux Operating System

Disable filesystem swapping

It is recommended that any performance tuning services like tuned be disabled. As root,

change the current value in the operating system and by adding a line vm.swappiness = 0 to

/etc/sysctl.conf to ensure that the correct setting is applied when the system restarts.

If performance tuning is required, vm.swappiness can be set by cloning the existing

performance profile then adding vm.swappiness = 0 to the new profile's tuned.conf file in

/usr/lib/tuned/profile-name/tuned.conf. The updated profile is then selected by running

tuned-adm profile customized_profile.

Manage system entropy

Entropy is used to calculate random data that is used by the system in cryptographic

operations. Some environments with low entropy may have intermittent performance issues

with SSL-based communication. This is more typical on virtual machines, but can occur in

physical instances as well. Monitor the kernel.random.entropy_avail in sysctl value for

best results.

If necessary, update $JAVA_HOME/jre/lib/security/java.security to use

file:/dev/./urandom for the securerandom.source property.

Set Filesystem Event Monitoring (inotify)

An event monitoring tool such as inotify can be configured for notifying processes about

filesystem events (including file creation, deletion, and updates). The Linux system puts a limit

on the number of inotify watches assigned to each user. To increase the limit, edit

etc/sysctl.conf to add a line:

fs.inotify.max_user_watches = 524288

Run the command:

$ sudo sysctl -w fs.inotify.max_user_watches=524288

Tune IO scheduler

Using the correct IO scheduler can increase performance and reduce the possibility of

database timeouts when the system is under extreme write load. For file systems running on

an SSD, or in a virtualized environment, the noop scheduler is recommended. For all other

- 18 -

Chapter 2: Install the PingDataSync Server

systems, the deadline scheduler is recommended. To determine which scheduler is

configured on your system, run this command:

$ cat /sys/block/<block-device>/queue/scheduler

For example:

$ cat /sys/block/sda/queue/scheduler

Changing the scheduler on a running system can be done with the following command:

$ echo 'deadline' > /sys/block/sda/queue/scheduler

The change will take effect after the system is restarted. The procedure for configuring a

scheduler to use at startup depends on the version of Linux. See the Linux documentation for

your specific version for the correct way to configure this setting.

Enable the server to listen on privileged ports

Linux provides 'capabilities' used to grant specific commands the ability to do things that are

normally only allowed for a root account. Instead of granting the ability to a specific user,

capabilities are granted to a specific command. It may be convenient to enable the server to

listen on privileged ports while running as a non-root user.

The setcap command is used to assign capabilities to an application. The cap_net_bind_

service capability enables a service to bind a socket to privileged ports (port numbers less

than 1024). If Java is installed in /ds/java (and the Java command to run the server is

/ds/java/bin/java), the Java binary can be granted the cap_net_bind_service capability

with the following command:

$ sudo setcap cap_net_bind_service=+eip /ds/java/bin/java

The java binary needs an additional shared library (libjli.so) as part of the Java installation.

More strict limitations are imposed on where the operating system will look for shared libraries

to load for commands that have capabilities assigned. So it is also necessary to tell the

operating system where to look for this library. This can be done by creating the file

/etc/ld.so.conf.d/libjli.conf with the path to the directory that contains the libjli.so

file. For example, if the Java installation is in /ds/java, the contents of that file should be:

/ds/java/lib/amd64/jli

Run the following command for the change to take effect:

$ sudo ldconfig -v

- 19 -

Ping license keys

Ping license keys
License keys are required to install all Ping products. Obtain licenses through Salesforce or

from https://www.pingidentity.com/en/account/request-license-key.html.

l A license is always required for setting up a new single server instance and can be used
site-wide for all servers in an environment. When cloning a server instance with a valid
license, no new license is needed.

l A new license must be obtained when updating a server to a new major version, for
example from 6.2 to 7.0. Licenses with no expiration date are valid until the server is
upgraded to the next major version. A prompt for a new license is displayed during the
update process.

l A license may expire on particular date. If a license does expire, obtain a new license
and install it using dsconfig or the Administrative Console. The server will provide a
notification as the expiration date approaches. License details are available using the
server's status tool.

When installing the server, specify the license key file in one of the following ways:

l Copy the license key file to the server root directory before running setup. The
interactive setup tool will discover the file and not require input. If the file is not in the
server root, the setup tool will prompt for its location.

l If the license key is not in the server root directory, specify the --licenseKeyFile
option for non-interactive setup, and the path to the file.

Install the PingDataSync Server
Use the setup tool to install the server. The server needs to be started and stopped by the

user who installed it.

Note
A Windows installation requires that the Visual Studio 2010 runtime patch be installed prior to running the
setup command.

1. Log in as a user, other than root.

2. Obtain the latest zip release bundle from Ping Identity and unpack it in a directory owned
by this user.

$ unzip PingDataSync-<version>.zip

3. Change to the server root directory.

$ cd PingDataSync

- 20 -

https://www.pingidentity.com/en/account/request-license-key.html

Chapter 2: Install the PingDataSync Server

4. Run the setup command.

$./setup

5. Type yes to accept the End-User License Agreement and press Enter to continue.

6. If adding this server to an existing PingDataSync Server topology, type yes, or press
Enter to accept the default (no).

7. Enter the fully qualified host name or IP address of the local host.

8. Create the initial root user DN for the PingDataSync Server, or press Enter to accept the
default (cn=Directory Manager).

9. Enter and confirm a password for this account.

10. Press Enter to enable server services and the Administrative Console.

11. Enter the port on which the PingDataSync Server will accept connections from HTTPS
clients, or press Enter to accept the default.

12. Enter the port on which the PingDataSync Server will accept connections from LDAP
clients, or press Enter to accept the default.

13. Press Enter to enable LDAPS, or enter no.

14. Press Enter to enable StartTLS, or enter no.

15. Select the certificate option for this server.

16. Choose the desired encryption for the directory data, backups, and log files from the
choices provided:

l Encrypt data with a key generated from an interactively provided passphrase.
Using a passphrase (obtained interactively or read from a file) is the
recommended approach for new deployments, and you should use the same
encryption passphrase when setting up each server in the topology.

l Encrypt data with a key generated from a passphrase read from a file.

l Encrypt data with a randomly generated key. This option is primarily intended for
testing purposes, especially when only testing with a single instance, or if you
intend to import the resulting encryption settings definition into other instances in
the topology.

l Encrypt data with an imported encryption settings definition. This option is
recommended if you are adding a new instance to an existing topology that has
older server instances with data encryption enabled.

l Do not encrypt server data.

17. Choose the option for the amount of memory that should be allocated to the server.

18. To start the server when the configuration is complete, press Enter for (yes).

- 21 -

Log into the Administrative Console

19. A Setup Summary is displayed. choose the option to setup the server with the listed
parameters, change the parameters, or cancel the setup.

After the server configuration is complete, the create-sync-pipe-config tool can be run to

configure the synchronization environment.

The PingDataSync Server Administrative Console enables browser-based server management,

the dsconfig tool enables command line management, and the Configuration API enables

management by third-party interfaces.

Log into the Administrative Console
After the server is installed, access the Administrative Console,

https://<host>/console/login, to verify the configuration and manage the server. The root

user DN or the common name of a root user DN is required to log into the Administrative

Console. For example, if the DN created when the server was installed is cn=Directory

Manager, directory manager can be used to log into the Administrative Console.

If the Administrative Console needs to run in an external container, such as Tomcat, a separate

package can be installed according to that container's documentation. Contact Ping Identity

Customer Support for the package location and instructions.

Server folders and files
After the distribution file is unzipped, the following folders and command-line utilities are

available:

Directories/Files/Tools Description

ldif Stores any LDIF files that you may have created or imported.

import-tmp Stores temporary imported items.

classes Stores any external classes for server extensions.

bak Stores the physical backup files used with the backup command-line tool.

velocity Stores Velocity templates that define the server's application pages.

update.bat, and update The update tool for UNIX/Linux systems and Windows systems.

uninstall.bat, and uninstall The uninstall tool for UNIX/Linux systems and Windows systems.

- 22 -

Chapter 2: Install the PingDataSync Server

Directories/Files/Tools Description

ping_logo.png The image file for the Ping Identity logo.

setup.bat, and setup The setup tool for UNIX/Linux systems and Windows systems.

revert-update.bat, and revert-

update

The revert-update tool for UNIX/Linux systems and Windows systems.

README README file that describes the steps to set up and start the server.

License.txt Licensing agreement for the product.

legal-notices Stores any legal notices for dependent software used with the product.

docs Provides the release notes, Configuration Reference (HTML), API Reference, and

all other product documentation.

metrics Stores the metrics that can be gathered for this server and surfaced in the

PingDataMetrics Server.

bin Stores UNIX/Linux-based command-line tools.

bat Stores Windows-based command-line tools.

lib Stores any scripts, jar files, and library files needed for the server and its

extensions.

collector Used by the server to make monitored statistics available to the PingDataMetrics

Server.

locks Stores any lock files in the backends.

tmp Stores temporary files.

resource Stores the MIB files for SNMP and can include ldif files, make-ldif templates,

schema files, dsconfig batch files, and other items for configuring or managing the

server.

config Stores the configuration files for the backends (admin, config) as well as the

directories for messages, schema, tools, and updates.

logs Stores log files.

AD-Password-Sync-Agent.zip The Active Directory Sync Agent package.

- 23 -

Start and stop the server

Start and stop the server
To start the PingDataSync Server, run the bin/start-sync-server command on UNIX or

Linux systems (the bat folder on Microsoft Windows systems).

Start the Server as a Background Process

Navigate to the server root directory, and run the following command:

$ bin/start-server

For Windows systems:

$ bat/start-server

Start the server at boot time

By default, the server does not start automatically when the system is booted. To configure the

server to start automatically, use the create-rc-script tool to create a run control script as

follows:

1. Create the startup script. In this example ds is the user.

$ bin/create-rc-script \
 --outputFile Ping-Identity-Sync.sh \
 --userName ds

2. Log in as root, move the generated Ping-Identity-Sync.sh script into the /etc/init.d
directory, and create symlinks to it from the /etc/rc3.d (starting with an "S" to start
the server) and /etc/rc0.d directory (starting with a "K" to stop the server).

mv Ping-Identity-Sync.sh /etc/init.d/
ln -s /etc/init.d/Ping-Identity-Sync.sh /etc/rc3.d/S50-Ping-Identity-
Sync.sh
ln -s /etc/init.d/Ping-Identity-Sync.sh /etc/rc0.d/K50-Ping-Identity-
Sync.sh

Stop the Server

If the PingDataSync Server has been configured to use a large amount of memory, it can take

several seconds for the operating system to fully release the memory. Trying to start the

server too quickly after shut down can fail because the system does not yet have enough free

memory. On UNIX systems, run the vmstat command and watch the values in the "free"

column increase until all memory held by the PingDataSync Server is released back to the

system.

- 24 -

Chapter 2: Install the PingDataSync Server

A configuration option can also be set that specifies the maximum shutdown time a process can

take.

To stop the server, navigate to the server root directory and run the following command:

$ bin/stop-server

Restart the server

Restart the server using the bin/stop-server command with the --restart or -R option.

Running the command is equivalent to shutting down the server, exiting the JVM session, and

then starting up again.

$ bin/stop-server --restart

Run the server as a Microsoft Windows service
The server can run as a Windows service on Windows Server 2012 R2 and Windows Server

2016. This enables log out of a machine without the server being stopped.

Register the service

Perform the following steps to register the server as a service:

1. Stop the server with bin/stop-server. A server cannot be registered while it is
running.

2. Register the server as a service. From a Windows command prompt, run bat/register-
windows-service.bat.

3. After a server is registered, start the server from the Windows Services Control Panel or
with the bat/start-server.bat command.

Note
Command-line arguments for the start-server.bat and stop-server.bat scripts are not
supported while the server is registered to run as aWindows service. Using a task to stop the server is
also not supported.

Run multiple service instances

Only one instance of a particular service can run at one time. Services are distinguished by the

wrapper.name property in the <server-root>/config/wrapper-product.conf file. To run

additional service instances, change the wrapper.name property on each additional instance.

Descriptions of the services can also be added or changed in the wrapper-product.conf file.

- 25 -

Uninstall the server

Deregister and uninstall

While a server is registered as a service, it cannot run as a non-service process or be

uninstalled. Use the bat/deregister-windows-service.bat file to remove the service from

the Windows registry. The server can then be uninstalled with the uninstall.bat script.

Log files

The log files are stored in <server-root>/logs, and filenames start with windows-service-

wrapper. They are configured to rotate each time the wrapper starts or due to file size. Only

the last three log files are retained. These configurations can be changed in the <server-

root>/config/wrapper.conf file.

Uninstall the server
Use the uninstall command-line utility to uninstall the server using either interactive or non-

interactive modes. Interactive mode provides options, progress, and a list of the files and

directories that must be manually deleted if necessary.

Non-interactive mode, invoked with the --no-prompt option, suppresses progress

information, except for fatal errors. All options for the uninstall command are listed with the

--help option.

The uninstall command must be run as either the root user or the user account that installed

the server.

Perform the following steps to uninstall in interactive mode:

1. Navigate to the server root directory.

$ cd PingData<server>

2. Start the uninstall command:

$./uninstall

3. Select the components to be removed, or press Enter to remove all components.

4. If the server is running, press Enter to shutdown the server before continuing.

5. Manually remove any remaining files or directories, if required.

- 26 -

Chapter 2: Install the PingDataSync Server

Update servers in a topology
An update to the current release includes significant changes, and the introduction of a

topology registry, which will store information previously stored in the admin backend (server

instances, instance and secret keys, server groups, and administrator user accounts). For the

admin backend to be migrated, the update tool must be provided LDAP authentication options

to the peer servers of the server being updated.

The LDAP connection security options requested (either plain, TLS, StartTLS, or SASL) must be

configured on every server in the topology. The LDAP credentials must be present on every

server in the topology, and must have permissions to read from the admin backend and the

config backend of every server in thetopology. For example, a root DN user with the inherit-

default-privileges set to true (such as the cn=Directory Manager user) that exists on

every server can be used.

After enabling or fixing the configuration of the LDAP connection handler(s) to support the

desired connection security mechanism on each server, run the following dsframework

command on the server being updated so that its admin backend has the most up-to-date

information:

$ bin/dsframework set-server-properties \
 --serverID serverID \

--set ldapport:port \
--set ldapsport:port \

 --set startTLSEnabled:true

The update tool will verify that the following conditions are satisfied on every server in the

topology before allowing the update:

l When the first server is being updated, all other servers in the topology must be online.
When updating additional servers, all topology information will be obtained from one of
the servers that has already been updated. The update tool will connect to the peer
servers of the server being updated to obtain the necessary information to populate the
topology registry. The provided LDAP credentials must have read permissions to the
config and admin backends of the peer servers.

l The instance name is set on every server, and is unique across all servers in the
topology. The instance name is a server’s identifier in the topology. After all servers in
the topology have been updated, each server will be uniquely identified by its instance
name. Once set, the name cannot be changed. If needed, the following command can be
used to set the instance name of a server prior to the update:

- 27 -

Update servers in a topology

$ bin/dsconfig set-global-configuration-prop \
 --set instance-name:uniqueName

l The cluster-wide configuration is synchronized on all servers in the topology. Older
versions have some topology configuration under cn=cluster,cn=config (JSON
attribute and field constraints). These items did not support mirrored cluster-wide
configuration data. An update should avoid custom configuration changes on a server
being overwritten with the configuration on the mirrored subtree master. To synchronize
the cluster-wide configuration data across all servers in the topology, run the config-
diff tool on each pair of servers to determine the differences, and use dsconfig to
update each instance using the config-diff output. For example:

$ bin/config-diff --sourceHost hostName \
 --sourcePort port \
 --sourceBindDN bindDN \

--sourceBindPassword password \
 --targetHost hostName \

--targetPort port \
 --targetBindDN bindDN \
 --targetBindPassword password

If any of these conditions are not satisfied, the update tool will list all of the errors

encountered for each server, and provide instructions on how to fix them.

Update the server

This procedure assumes that an existing version of the server is stored at PingData-server-

old. Make sure a complete, readable backup of the existing system is available before

upgrading the server. Also, make sure there is a clear backout plan and schedule.

1. Download the latest version of the server software and unzip the file. For this example,
the new server is located in the PingData-server-new directory.

2. Use the update tool of the newly unzipped build to update the server. Make sure to
specify the server instance that is being upgrading with the --serverRoot option. The
server must be stopped for the update to be applied.

Reverting an Update

If necessary, a server can be reverted to the previous version using the revert-update tool.

The tool accesses a log of file actions taken by the update tool to put the filesystem back to its

prior state. If multiple updates have been run, the revert-update tool can be used multiple

times to revert to each prior update sequentially. For example, the revert-update command

- 28 -

Chapter 2: Install the PingDataSync Server

can be run to revert to the server's previous state, then run again to return to its original state.

The server is stopped during the revert-update process.

Note
Reverting an update is not supported for upgrades to version 7.0, due to the topology backend changes.

Use the revert-update tool in the server root directory revert back to the most recent version

of the server:

$ PingData-server-old/revert-update

Revert an Update
Once the server has been updated, you can revert to the most recent version (one level back)

using the revert-update tool. The revert-update tool accesses a log of file actions taken by the

updater to put the filesystem back to its prior state. If you have run multiple updates, you can

run the revert-update tool multiple times to revert to each prior update sequentially. You can

only revert back one level. For example, if you have run the update twice since first installing

the server, you can run the revert-update command to revert to its previous state, then run the

revert-update command again to return to its original state.

Reverting from Version 7.x to a Version Prior to 7.0

Reverting from version 7.0 or later to a pre-7.0 version can be done using the revert-update

command with some extra steps. This is also the case when updating or reverting from a pre-

6.2.0.2 version to 6.2.0.2 or later. These steps are listed when the update and revert-update

tool are run as well. You may need to perform one or more of the following tasks, depending

on your installation and configuration:

l When updating or reverting from 6.2.0.2 or later to a pre-6.2.0.2 version, indexes may
need to be rebuilt. Older versions of the server use an incompatible format for Local DB
Composite Indexes. To update a server with composite indexes in the previous format,
delete these indexes and re-run the update. After the update is complete, recreate the
indexes and use the rebuild-index tool to rebuild the indexes. The command for
recreating an index will be in the "Undo" portion of the logs/config-audit.log file. If
you wish to later revert to an older version, delete and recreate those composite indexes
again after the revert has completed.

- 29 -

Revert an Update

l When updating to 7.x for the first time, instance names will need to be set for each
server in the topology if they were not previously set. This is done with the following
dsconfig command:

$ bin/dsconfig --bindDN "cn=Directory Manager" \
 --bindPassword secret \
 --no-prompt set-global-configuration-prop \
 --set instance-name:<name>

l Topology information such as server instances, instance and secret keys, server groups,
and administrator users have moved to the topology portion of the configuration from
the admin backend. As long as new servers are not added to the topology after this
update, the revert-update command can be used to return to the previous version.
However, if new servers are added, then the restored admin backend of this server will
not contain information about the new servers, and the local server will not be able to
communicate with any other servers in the topology. New servers should not be added to
the topology if reverting this update is a possibility.

l If new servers were added to the topology after the update, the new servers must be
temporarily removed from the topology until all servers have been reverted to the
previous version.

l When a server is reverted to a pre-7.x version, any servers in the topology using the
topology portion of the configuration (rather than the admin backend) will need to know
that the reverted server was downgraded to the admin backend. This is done by running
the following dsconfig command on one of the servers that has not been reverted:

$ bin/dsconfig set-server-instance-prop \
--instance-name <Reverted server instance name> \

 --set server-version:<Version to which server is reverted>

l If the topology does not have a master server when this command is run, it will not
succeed. In this case, one of the remaining updated servers in the topology must be
made master with the following command. This will enable the chosen instance to run
the first command successfully.

$ bin/dsconfig set-global-configuration-prop \
 --set force-as-master-for-mirrored-data:true

l The 7.x server version includes database changes that are not compatible with previous
server versions (6.x or older). If you wish to later revert to an older version, the data
must be exported to LDIF before performing the reversion. Re-import the data after the
revert process has completed. In addition, the changelogDb/ and db/changelog/
directories in the reverted server root must be deleted after the revert has completed.

- 30 -

Chapter 2: Install the PingDataSync Server

When starting up the server for the first time after a revert has been run, and the necessary

extra steps have been completed, the server will display warnings about "offline configuration

changes," but they are not critical and will not appear on subsequent startups.

To Revert to the Most Recent Server Version

Use revert-update in the server root directory revert back to the most recent version of the

server.

$ <PingServer>-old/revert-update

Install a failover server
Ping Identity supports redundant failover servers that automatically become active when the

primary server is not available. Multiple servers can be present in the topology in a

configurable prioritized order.

Before installing a failover server, have a primary server already installed and configured.

When installing the redundant server, the installer will copy the first server’s configuration.

The primary and secondary server configuration remain identical. Both servers should be

registered to the all servers group and all dsconfig changes need to be applied to the

server group all servers.

Note
If the primary server has extensions defined, they should also be installed on any cloned or redundant
servers. If extensions aremissing from a secondary server, the followingmessage is displayed during the
installation:

Extension class <com.server.directory.sync.MissingSyncExtension> was not
found. Run manage-extension --install to install your extensions. Re-run
setup to continue.

To remove a failover server, use the uninstall command.

1. Unpack the Ping Identity server zip build. Name the unpacked directory something other
than the first server instance directory.

$ unzip PingData<server>-<version>.zip -d <server2>

2. Navigate to the server root directory.

3. Use the setup tool in interactive mode in Install the Server, or in non-interactive mode
as follows:

$./setup --localHostName <server2>.example.com --ldapPort 7389 \
 --masterHostName <server1>.example.com --masterPort 8389 \
 --masterUseNoSecurity \

- 31 -

Administrative accounts

 --acceptLicense \
 --rootUserPassword password \
 --no-prompt

The secondary server is now ready to take over as a primary server in the event of a

failover. No realtime-sync invocations are needed for this server.

4. Verify the configuration by using the bin/status tool. Each server instance is given a
priority index. The server with the lowest priority index number has the highest priority.

$ bin/status --bindPassword secret

...(status output)...
 --- Sync Topology ---
Host:Port :Status :Priority
---------------------------------------:-------------:---------------
<server>.example.com:389 (this server) : Active : 1
<server>.example.com:389 : Unavailable : 2

5. Obtain the name of a particular server, run the dsconfig tool with the list-external-
servers option.

$ bin/dsconfig list-external-servers

6. To change the priority index of the server, use the bin/dsconfig tool:

$ bin/dsconfig set-external-server-prop \
 --server-name <server2>.example.com:389 \
 --set <server>-priority-index:1

Administrative accounts
Users that authenticate to the Configuration API or the Administrative Console are stored in

cn=Root DNs,cn=config. The setup tool automatically creates one administrative account

when performing an installation. Accounts can be added or changed with the dsconfig tool.

Change the administrative password

Root users are governed by the Root Password Policy and by default, their passwords never

expire. However, if a root user's password must be changed, use the ldappasswordmodify

tool.

1. Open a text editor and create a text file containing the new password. In this example,
name the file rootuser.txt.

$ echo password > rootuser.txt

2. Use ldappasswordmodify to change the root user’s password.

- 32 -

Chapter 2: Install the PingDataSync Server

$ bin/ldappasswordmodify --port 1389 --bindDN "cn=Directory Manager" \
--bindPassword secret --newPasswordFile rootuser.txt

3. Remove the text file.

$ rm rootuser.txt

- 33 -

Chapter 3: Configure the PingDataSync
Server

The PingDataSync Server provides a suite of tools to configure a single server instance or

server groups. All configuration changes to the server are recorded in the config-audit.log.

Before configuring the PingDataSync Server, review Sync Configuration Components.

Topics include:

Configuration checklist

The Sync User account

Configure the PingDataSync Server in Standard mode

Topology Configuration

Use the Configuration API

Use the dsconfig tool

Topology configuration

Domain Name Service (DNS) caching

IP address reverse name lookup

Configure the synchronization environment with dsconfig

Prepare external server communication

Configure HTTP Connection Handlers

The resync tool

The realtime-sync tool

Configure the Directory Server backend for synchronization deletes

Configure DN maps

Configure synchronization with JSON attribute values

- 34 -

Chapter 3: Configure the PingDataSync Server

Configure fractional replication

Configure failover behavior

Configure traffic through a load balancer

Configure authentication with a SASL external certificate

Configure a generic LDAP Sync Source

Server SDK extensions

- 35 -

Configuration checklist

Configuration checklist
Prior to any deployment, determine the configuration parameters necessary for the

Synchronization topology. Gather the following:

External servers

External Server Type – Determine the type of external servers included in the

synchronization topology. See Overview of the PingDataSync Server for a list of supported

servers.

LDAP Connection Settings – Determine the host, port, bind DN, and bind password for each

external server instance(s) included in the synchronization topology.

Security and Authentication Settings – Determine the secure connection types for each

external server (SSL or StartTLS). Determine authentication methods for external servers such

as simple, or external (SASL mechanisms). If synchronizing passwords, encoded or especially

for clear-text, the connection should be secure. If synchronizing to or from a Microsoft Active

Directory system, establish an SSL or StartTLS connection to the PingDataSync Server.

Password encryption should also be enabled for synchronization from Active Directory, or

when synchronizing clear-text passwords.

Sync Pipes

A Sync Pipe defines a single synchronization path between the source and destination targets.

One Sync Pipe is needed for each point-to-point synchronization path defined for a topology.

Sync Source – Determine which external server is the Sync Source for the synchronization

topology. A prioritized list of external servers can be defined for failover purposes.

Sync Destination – Determine which external server is the Sync Destination for the

synchronization topology. A prioritized list of external servers can be defined for failover

purposes.

- 36 -

Chapter 3: Configure the PingDataSync Server

Sync Classes

A Sync Class defines how attributes and DNs are mapped and how Source and Destination

entries are correlated. For each Sync Pipe defined, define one or more Sync Classes with the

following information:

Evaluation Order – If defining more than one Sync Class, the evaluation order of each Sync

Class must be determined with the evaluation-order-index property. If there is an overlap

between criteria used to identify a Sync Class, the Sync Class with the most specific criteria is

used first.

Base DNs – Determine which base DNs contain entries needed in the Sync Class.

Include Filters – Determine the filters to be used to search for entries in the Sync Source.

Synchronized Entry Operations – Determine the types of operations that should be

synchronized: creates, modifications, and/or deletes.

DNs – Determine the differences between the DNs from the Sync Source topology to the Sync

Destination topology. Are there structural differences in each Directory Information Tree

(DIT)? For example, does the Sync Source use a nested DIT and the Sync Destination use a

flattened DIT?

Destination Correlation Attributes – Determine the correlation attributes that are used to

associate a source entry to a destination entry during the synchronization process. During the

configuration setup, one or more comma-separated lists of destination correlation attributes

are defined and used to search for corresponding source entries. The PingDataSync Server

maps all attributes in a detected change from source to destination attributes using the

attribute maps defined in the Sync Class.

The correlation attributes are flexible enough so that several destination searches with

different combinations of attributes can be performed until an entry matches. For LDAP server

endpoints, use the distinguished name (DN) to correlate entries. For example, specify the

attribute lists dn,uid, uid,employeeNumber and cn,employeeNumber to correlate entries in

LDAP deployments. The PingDataSync Server will search for a corresponding entry that has the

same dn and uid values. If the search fails, it then searches for uid and employeeNumber.

- 37 -

Configuration checklist

Again if the search fails, it searches for cn and employeeNumber. If none of these searches are

successful, the synchronization change would be aborted and a message logged.

To prevent incorrect matches, the most restrictive attribute lists (those that will never match

the wrong entry) should be first in the list, followed by less restrictive attribute lists, which will

be used when the earlier lists fail. For LDAP-to-LDAP deployments, use the DN with a

combination of other unique identifiers in the entry to guarantee correlation. For other non-

LDAP deployments, determine the attributes that can be synchronized across the network.

Attributes – Determine the differences between the attributes from the Sync Source to the

Sync Destination, including the following:

l Attribute Mappings – How are attributes mapped from the Sync Source to the Sync
Destination? Are they mapped directly, mapped based on attribute values, or mapped
based on attributes that store DN values?

l Automatically Mapped Source Attributes – Are there attributes that can be
automatically synchronized with the same name at the Sync Source to Sync Destination?
For example, can direct mappings be set for cn, uid, telephoneNumber, or for all
attributes?

l Non-Auto Mapped Source Attributes – Are there attributes that should not be
automatically mapped? For example, the Sync Source may have an attribute, employee,
while the Sync Destination may have a corresponding attribute, employeeNumber. If an
attribute is not automatically mapped, a map must be provided if it is to be
synchronized.

l Conditional Value Mapping – Should some mappings only be applied some of the time
as a function of the source attributes? Conditional value mappings can be used with the
conditional-value-pattern property, which conditionalizes the attribute mapping
based on the subtype of the entry, or on the value of the attribute. For example, this
might apply if the adminName attribute on the destination should be a copy of the name
attribute on the source, but only if the isAdmin attribute on the source is set to true.
Conditional mappings are multi-valued. Each value is evaluated until one is matched (the
condition is true). If none of the conditional mappings are matched, the ordinary
mappings is used. If there is not an ordinary mapping, the attribute will not be created
on the destination.

- 38 -

Chapter 3: Configure the PingDataSync Server

The Sync User account
The PingDataSync Server creates a Sync User account DN on each external server. The

account (by default, cn=Sync User) is used exclusively by the PingDataSync Server to

communicate with external servers. The entry is important in that it contains the credentials

(DN and password) used by the PingDataSync Server to access the source and target servers.

The Sync User account resides in different entries depending on the targeted system:

l For the Ping Identity PingDirectory Server, Ping Identity PingDirectoryProxy Server,
Nokia 8661 Directory Server, Nokia 8661 Directory Proxy Server, the Sync User account
resides in the configuration entry (cn=Sync User, cn=Root DNs,cn=config).

l For Sun Directory Server, Sun DSEE, OpenDJ, Oracle Unified Directory, and generic
LDAP directory topologies, the Sync User account resides under the base DN in the
userRoot backend (cn=Sync User,dc=example,dc=com). The Sync User account should
not reside in the cn=config branch for Sun Directory Server and DSEE machines.

l For Microsoft Active Directory servers, the Sync User account resides in the Users
container (cn=Sync User,cn=Users,DC=adsync,DC=unboundid,DC=com).

l For Oracle and Microsoft SQL Servers, the Sync User account is a login account
(SyncUser) with the sufficient privileges to access the tables to be synchronized.

In most cases, modifications to this account are rare. Make sure that the entry is not

synchronized by setting up an optional Sync Class if the account resides in the userRoot

backend (Sun Directory Server or Sun DSEE) or Users container (Microsoft Active Directory).

For example, a Sync Class can be configured to have all CREATE, MODIFY, and DELETE

operations set to false.

Configure the PingDataSync Server in Standard mode
The create-sync-pipe-config tool is used to configure Sync Pipes and Sync Classes. For

bidirectional deployments, configure two Sync Pipes, one for each directional path.

Using the create-sync-pipe Tool to Configure Synchronization illustrates a bidirectional

synchronization deployment in standard mode. The example assumes that two replicated

topologies are configured:

l The first endpoint topology consists of two Sun LDAP servers: the main server and one
failover. Both servers have Retro change logs enabled and contain the full DIT that will
be synchronized to the second endpoint.

- 39 -

Configure the PingDataSync Server in Standard mode

l The second endpoint topology consists of two PingDirectory Servers: the main server
and one failover. Both servers have change logs enabled and contain entries similar to
the first endpoint servers, except that they use a mail attribute, instead of an email
attribute.

A specific mail to email mapping must also be created to exclude the source attribute on the

Sync Pipe going the other direction.

Note
If the source attribute is not excluded, the PingDataSync Server will attempt to create an email attribute
on the second endpoint, which could fail if the attribute is not present in the destination server’s schema.

Then, two Sync Classes are defined:

l One to handle the customized email to mail attribute mapping.

l Another to handle all other cases (the default Sync Class).

The dsconfig command is used to create the specific attribute mappings. The resync

command is used to test the mappings. Synchronization can start using the realtime-sync

command.

Use the create-sync-pipe tool to configure synchronization

Use the create-sync-pipe-config utility to configure a Sync Pipe. Once the configuration is

completed, settings can be adjusted using the dsconfig tool.

Note
If servers have no base entries or data, the cn=Sync User,cn=Root DNs,cn=config account
needed to communicate cannot be created. Make sure that base entries are created on the destination
servers.

If synchronizing pre-encoded passwords to a Ping PingDirectory Server destination, allow pre-

encoded passwords in the default password policy. Password encryption must also be

configured on the destination. Be sure that the password encryption algorithm is supported by

both source and destination servers with the following command:

$ bin/dsconfig set-password-policy-prop \
 --policy-name "Default Password Policy" \
 --set allow-pre-encoded-passwords:true

Encrypted and clear-text passwords can be synchronized by configuring the Sync Destination

password-synchronization-format, and require-secure-connection-for-clear-text-

passwords properties.

Note
The require-secure-connection-for-clear-text-passwords property can be set to false

- 40 -

Chapter 3: Configure the PingDataSync Server

whenworking in a test environment. If the password-synchronization-format property is set to
clear-text, and require-secure-connection-for-clear-text-passwords property is set
to true, the connectionmust be secure. If a secure connection is not available, an error is generated and
the password is not synchronized.

Perform the following steps to configure the PingDataSync Server using create-sync-pipe-

config:

1. Start the PingDataSync Server.

$ <server-root>/bin/start-server

2. From the bin directory, run the create-sync-pipe-config tool.

$ bin/create-sync-pipe-config

3. On the Initial Synchronization Configuration Tool menu, press Enter (yes) to continue
the configuration.

4. On the Synchronization Mode menu, press Enter to select Standard Mode.

5. On the Synchronization Directory menu, select oneway (1) or bidirectional (2) for
the synchronization topology. This example assumes bidirectional synchronization.

6. On the Source Endpoint Type menu, select the directory or database server for the first
endpoint.

7. On the Source Endpoint Name menu, type a name for the endpoint server, or press
Enter accept the default.

8. On the Base DNs menu, type the base DN on the first endpoint topology where the
entries will be searched. In this example, (dc=example,dc=com) is used.

9. Select an option for the server security.

10. Type the host name and listener port number for the source server, or accept the
default. Make sure that the endpoint servers are online and running.

11. Enter another server host and port, or press Enter to continue.

12. Enter the Sync User account DN for the endpoint servers, or press Enter to accept the
default (cn=Sync User,cn=Root DNs,cn=config).

13. Enter and confirm a password for this account.

14. The servers in the destination endpoint topology can now be configured. Repeat steps 6–
13 to configure the second server.

15. Define the maximum age of changelog log entries, or press Enter to accept the default.

16. After the source and destination topologies are configured, the PingDataSync Server will
"prepare" each external server by testing the connection to each server. This step
determines if each account has the necessary privileges (root privileges are required) to
communicate with and transfer data to each endpoint during synchronization.

- 41 -

Configure the PingDataSync Server in Standard mode

17. Create a name for the Sync Pipe on the Sync Pipe Name menu, or press Enter to accept
the default. Because this configuration is bidirectional, the following step is setting up a
Sync Pipe path from the source endpoint to the destination endpoint. A later step will
define another Sync Pipe from the PingDirectory Server to another server.

18. On the Sync Class Definitions menu, type Yes to create a custom Sync Class. A Sync
Class defines the operation types (creates, modifies, or deletes), attributes that are
synchronized, how attributes and DNs are mapped, and how source and destination
entries are correlated.

19. Enter a name for the new Sync Class, such as "server1_to_server2."

20. On the Base DNs for Sync Class menu, enter one or more base DNs to synchronize
specific subtrees of a DIT. Entries outside of the specified base DNs are excluded from
synchronization. Make sure the base DNs do not overlap.

21. On the Filters for Sync Class menu, define one or more LDAP search filters to restrict
specific entries for synchronization, or press Enter to accept the default (no). Entries
that do not match the filters will be excluded from synchronization.

22. On the Synchronized Attributes for Sync Class menu, specify which attributes will be
automatically mapped from one system to another. This example will exclude the source
attribute (email) from being auto-mapped to the target servers.

23. On the Operations for Sync Class menu, select the operations that will be synchronized
for the Sync Class, or press Enter to accept the default (1, 2, 3).

24. Define a default Sync Class that specifies how the other entries are processed, or press
Enter to create a Sync Class called "Default Sync Class."

25. On the Default Sync Class Operations menu, specify the operations that the default Sync
Class will handle during synchronization, or press Enter to accept the default.

26. Define a Sync Pipe going from the PingDirectory Server to the Sun Directory Server and
exclude the mail attribute from being synchronized to the other endpoint servers.

27. Review the Sync Pipe Configuration Summary, and press Enter to accept the default
(write configuration), which records the commands in a batch file (<server-
root>/sync-pipe-cfg.txt). The batch file can be re-used to set up other topologies.

Apply the configuration changes to the local PingDataSync Server instance using a dsconfig

batch file. Any Server SDK extensions, should be saved to the <server-

root>/lib/extensions directory.

The next step will be to configure the attribute mappings using the dsconfig command.

- 42 -

Chapter 3: Configure the PingDataSync Server

Configuring attribute mapping

The following procedure defines an attribute map from the email attribute in the source

servers to a mail attribute in the target servers. Both attributes must be valid in the target

servers and must be present in their respective schemas.

Note
The following can also be done with dsconfig in interactivemode. Attributemapping options are
available from the PingDataSync Server mainmenu.

1. On the PingDataSync Server, run the dsconfig command to create an attribute map for
the "SunDS>DS" Sync Class for the "Sun DS to Ping Identity DS" Sync Pipe, and then run
the second dsconfig command to apply the new attribute map to the Sync Pipe and
Sync Class.

$ bin/dsconfig --no-prompt create-attribute-map \
 --map-name "SunDS>DS Attr Map" \
 --set "description:Attribute Map for SunDS>Ping Identity Sync Class" \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

$ bin/dsconfig --no-prompt set-sync-class-prop \
 --pipe-name "Sun DS to DS" \
 --class-name "SunDS>DS" \
 --set "attribute-map:SunDS>DS Attr Map" \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

2. Create an attribute mapping (from email to mail) for the new attribute map.

$ bin/dsconfig --no-prompt create-attribute-mapping \
 --map-name "SunDS>DS Attr Map" \
 --mapping-name mail --type direct \
 --set "description:Email>Mail Mapping" \
 --set from-attribute:email \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

3. For a bidirectional deployment, repeat steps 1–2 to create an attribute map for the
DS>SunDS Sync Class for the Ping Identity DS to Sun DS Sync Pipe, and create an
attribute mapping that maps mail to email.

$ bin/dsconfig --no-prompt create-attribute-map \
 --map-name "DS>SunDS Attr Map" \
 --set "description:Attribute Map for DS>SunDS Sync Class" \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

$ bin/dsconfig --no-prompt set-sync-class-prop \
 --pipe-name "Ping Identity DS to Sun DS" \

- 43 -

Configure the PingDataSync Server in Standard mode

 --class-name "DS>SunDS" \
 --set "attribute-map:DS>SunDS Attr Map" \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

$ bin/dsconfig --no-prompt create-attribute-mapping \
 --map-name "DS>SunDS Attr Map" \
 --mapping-name email \
 --type direct \
 --set "description:Mail>Email Mapping" \
 --set from-attribute:mail \
 --port 7389 \
 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

Configure server locations

The PingDataSync Server supports endpoint failover, which is configurable using the location

property on the external servers. By default, the server prefers to connect to, and failover to,

endpoints in the same location as itself. If there are no location settings configured, the

PingDataSync Server will iterate through the configured list of external servers on the Sync

Source and Sync Destination when failing over.

Note
Location-based failover is only applicable for LDAP endpoint servers.

1. On the PingDataSync Server, run the dsconfig command to set the location for each
external server in the Sync Source and Sync Destination. For example, the following
command sets the location for six servers in two data centers, austin and dallas.

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:1389 \
 --set location:austin

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:2389 \
 --set location:austin

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:3389 \
 --set location:austin

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:4389 \
 --set location:dallas

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:5389 \
 --set location:dallas

$ bin/dsconfig set-external-server-prop \
 --server-name example.com:6389 \
 --set location:dallas

- 44 -

Chapter 3: Configure the PingDataSync Server

2. Run dsconfig to set the location on the Global Configuration. This is the location of the
PingDataSync Server itself. In this example, set the location to "austin."

$ bin/dsconfig set-global-configuration-prop \
 --set location:austin

Use the Configuration API
PingData servers provide a Configuration API, which may be useful in situations where using

LDAP to update the server configuration is not possible. The API is consistent with the System

for Cross-domain Identity Management (SCIM) 2.0 protocol and uses JSON as a text exchange

format, so all request headers should allow the application/json content type.

The server includes a servlet extension that provides read and write access to the server’s

configuration over HTTP. The extension is enabled by default for new installations, and can be

enabled for existing deployments by simply adding the extension to one of the server’s HTTP

Connection Handlers, as follows:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --add http-servlet-extension:Configuration

The API is made available on the HTTPS Connection handler’s host:port in the /config

context. Due to the potentially sensitive nature of the server’s configuration, the HTTPS

Connection Handler should be used, for hosting the Configuration extension.

Authentication and authorization

Clients must use HTTP Basic authentication to authenticate to the Configuration API. If the

username value is not a DN, then it will be resolved to a DN value using the identity mapper

associated with the Configuration servlet. By default, the Configuration API uses an identity

mapper that allows an entry’s UID value to be used as a username. To customize this

behavior, either customize the default identity mapper, or specify a different identity mapper

using the Configuration servlet’s identity-mapper property. For example:

$ bin/dsconfig set-http-servlet-extension-prop \
 --extension-name Configuration \
 --set "identity-mapper:Alternative Identity Mapper”

To access configuration information, users must have the appropriate privileges:

- 45 -

Use the Configuration API

l To access the cn=config backend, users must have the bypass-acl privilege or be
allowed access to the configuration using an ACI.

l To read configuration information, users must have the config-read privilege.

l To update the configuration, users must have the config-write privilege.

Relationship between the Configuration API and the dsconfig tool

The Configuration API is designed to mirror the dsconfig tool, using the same names for

properties and object types. Property names are presented as hyphen case in dsconfig and

as camel-case attributes in the API. In API requests that specify property names, case is not

important. Therefore, baseDN is the same as baseDn. Object types are represented in hyphen

case. API paths mirror what is in dsconfig. For example, the dsconfig list-connection-

handlers command is analogous to the API's /config/connection-handlers path. Object

types that appear in the schema URNs adhere to a type:subtype syntax. For example, a Local

DB Backend's schema URN is urn:unboundid:schemas:configuration:2.0:backend:local-

db. Like the dsconfig tool, all configuration updates made through the API are recorded in

logs/config-audit.log.

The API includes the filter, sort, and pagination query parameters described by the SCIM

specification. Specific attributes may be requested using the attributes query parameter,

whose value must be a comma-delimited list of properties to be returned, for example

attributes=baseDN,description. Likewise, attributes may be excluded from responses by

specifying the excludedAttributes parameter. See Sorting and Filtering with the

Configuration API for more information on query parameters.

Operations supported by the API are those typically found in REST APIs:

HTTP Method Description Related dsconfig
Example

GET Lists the attributes of an object when used with a path

representing an object, such as /config/global-

configuration or /config/backends/userRoot. Can

also list objects when used with a path representing a parent

relation, such as /config/backends.

get-backend-prop

list-backends

get-global-
configuration-
prop

POST Creates a new instance of an object when used with a relation

parent path, such as config/backends.

create-backend

- 46 -

Chapter 3: Configure the PingDataSync Server

HTTP Method Description Related dsconfig
Example

PUT Replaces the existing attributes of an object. A PUT operation is

similar to a PATCH operation, except that the PATCH is

determined by determining the difference between an existing

target object and a supplied source object. Only those attributes in

the source object are modified in the target object. The target

object is specified using a path, such as

/config/backends/userRoot.

set-backend-prop

set-global-
configuration-
prop

PATCH Updates the attributes of an existing object when used with a path

representing an object, such as /config/backends/userRoot.

See PATCH Example.

set-backend-prop

set-global-
configuration-
prop

DELETE Deletes an existing object when used with a path representing an

object, such as /config/backends/userRoot.

delete-backend

The OPTIONS method can also be used to determine the operations permitted for a particular

path.

Object names, such as userRoot in the Description column, must be URL-encoded in the path

segment of a URL. For example, %20 must be used in place of spaces, and %25 is used in place

of the percent (%) character. So the URL for accessing the HTTP Connection Handler object is:

/config/connection-handlers/http%20connection%20handler

GET Example

The following is a sample GET request for information about the userRoot backend:

GET /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json

The response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://localhost:5033/config/backends/userRoot"
 },
 "backendID": "userRoot2",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",

- 47 -

Use the Configuration API

 "baseDN": [
 "dc=example2,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "10",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "1 m",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "0",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "0",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "enabled": "false",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "false",
 "id2childrenIndexEntryLimit": "66",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "jeProperty": [
 "je.cleaner.adjustUtilization=false",
 "je.nodeMaxEntries=32"
],
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",

- 48 -

Chapter 3: Configure the PingDataSync Server

 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "5000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled"
}

GET list example

The following is a sample GET request for all local backends:

GET /config/backends
Host: example.com:5033
Accept: application/scim+json

The response (which has been shortened):

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
 "totalResults": 24,
 "Resources": [

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:ldif"
],
 "id": "adminRoot",
 "meta": {
 "resourceType": "LDIF Backend",
 "location": "http://localhost:5033/config/backends/adminRoot"
 },
 "backendID": "adminRoot",
 "backupFilePermissions": "700",
 "baseDN": [
 "cn=admin data"
],
 "enabled": "true",
 "isPrivateBackend": "true",
 "javaClass": "com.unboundid.directory.server.backends.LDIFBackend",
 "ldifFile": "config/admin-backend.ldif",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertWhenDisabled": "false",
 "writabilityMode": "enabled"
 },

- 49 -

Use the Configuration API

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:trust-store"
],
 "id": "ads-truststore",
 "meta": {
 "resourceType": "Trust Store Backend",
 "location": "http://localhost:5033/config/backends/ads-truststore"
 },
 "backendID": "ads-truststore",
 "backupFilePermissions": "700",
 "baseDN": [
 "cn=ads-truststore"
],
 "enabled": "true",
 "javaClass":
"com.unboundid.directory.server.backends.TrustStoreBackend",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertWhenDisabled": "true",
 "trustStoreFile": "config/server.keystore",
 "trustStorePin": "********",
 "trustStoreType": "JKS",
 "writabilityMode": "enabled"
 },

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:alarm"
],
 "id": "alarms",
 "meta": {
 "resourceType": "Alarm Backend",
 "location": "http://localhost:5033/config/backends/alarms"
 },
 ...

PATCH example

Configuration can be modified using the HTTP PATCH method. The PATCH request body is a

JSON object formatted according to the SCIM patch request. The Configuration API, supports a

subset of possible values for the path attribute, used to indicate the configuration attribute to

modify.

The configuration object's attributes can be modified in the following ways. These operations

are analogous to the dsconfig modify-[object] options.

l An operation to set the single-valued description attribute to a new value:

{
 "op" : "replace",
 "path" : "description",

- 50 -

Chapter 3: Configure the PingDataSync Server

 "value" : "A new backend."
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --set "description:A new backend"

l An operation to add a new value to the multi-valued jeProperty attribute:

{
 "op" : "add",
 "path" : "jeProperty",
 "value" : "je.env.backgroundReadLimit=0"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --add je-property:je.env.backgroundReadLimit=0

l An operation to remove a value from a multi-valued property. In this case, path
specifies a SCIM filter identifying the value to remove:

{
 "op" : "remove",
 "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --remove je-property:je.cleaner.adjustUtilization=false

l A second operation to remove a value from a multi-valued property, where the path
specifies both an attribute to modify, and a SCIM filter whose attribute is value:

{
 "op" : "remove",
 "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --remove je-property:je.nodeMaxEntries=32

l An option to remove one or more values of a multi-valued attribute. This has the effect
of restoring the attribute's value to its default value:

{
 "op" : "remove",
 "path" : "id2childrenIndexEntryLimit"
}

is analogous to:

- 51 -

Use the Configuration API

$ dsconfig set-backend-prop --backend-name userRoot \
 --reset id2childrenIndexEntryLimit

The following is the full example request. The API responds with the entire modified

configuration object, which may include a SCIM extension attribute

urn:unboundid:schemas:configuration:messages containing additional instructions:

Example request:

PATCH /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json

{
 "schemas" : ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations" : [{
 "op" : "replace",
 "path" : "description",
 "value" : "A new backend."
 }, {
 "op" : "add",
 "path" : "jeProperty",
 "value" : "je.env.backgroundReadLimit=0"
 }, {
 "op" : "remove",
 "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"
 }, {
 "op" : "remove",
 "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
 }, {
 "op" : "remove",
 "path" : "id2childrenIndexEntryLimit"
 }]
}

Example response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot2",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://example.com:5033/config/backends/userRoot2"
 },
 "backendID": "userRoot2",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example2,dc=com"
],
 "checkpointOnCloseCount": "2",

- 52 -

Chapter 3: Configure the PingDataSync Server

 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "10",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "1 m",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "0",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "0",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "description": "123",
 "enabled": "false",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "false",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "jeProperty": [
 "\"je.env.backgroundReadLimit=0\""
],
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [

- 53 -

Use the Configuration API

 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "5000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled",
 "urn:unboundid:schemas:configuration:messages:2.0": {
 "requiredActions": [

{
 "property": "jeProperty",
 "type": "componentRestart",
 "synopsis": "In order for this modification to take effect,
 the component must be restarted, either by disabling and
 re-enabling it, or by restarting the server"
 },

{
 "property": "id2childrenIndexEntryLimit",
 "type": "other",
 "synopsis": "If this limit is increased, then the contents
 of the backend must be exported to LDIF and re-imported to
 allow the new limit to be used for any id2children keys
 that had already hit the previous limit."
 }
]
 }
}

API paths

The Configuration API is available under the /config path. A full listing of root sub-paths can

be obtained from the /config/ResourceTypes endpoint:

GET /config/ResourceTypes
Host: example.com:5033
Accept: application/scim+json

Sample response (abbreviated):

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
 "totalResults": 520,
 "Resources": [

{

- 54 -

Chapter 3: Configure the PingDataSync Server

 "schemas": [
 "urn:ietf:params:scim:schemas:core:2.0:ResourceType"
],
 "id": "dsee-compat-access-control-handler",
 "name": "DSEE Compat Access Control Handler",
 "description": "The DSEE Compat Access Control
 Handler provides an implementation that uses syntax

compatible with the Sun Java System Directory Server
 Enterprise Edition access control handler.",
 "endpoint": "/access-control-handler",
 "meta": {
 "resourceType": "ResourceType",
 "location": "http://example.com:5033/config/ResourceTypes/dsee-compat-
access-control-handler"
 }
 },

{
 "schemas": [
 "urn:ietf:params:scim:schemas:core:2.0:ResourceType"
],
 "id": "access-control-handler",
 "name": "Access Control Handler",
 "description": "Access Control Handlers manage the
 application-wide access control. The server's access
 control handler is defined through an extensible
 interface, so that alternate implementations can be created.
 Only one access control handler may be active in the server
 at any given time.",
 "endpoint": "/access-control-handler",
 "meta": {
 "resourceType": "ResourceType",
 "location": "http://example.com:5033/config/ResourceTypes/access-
control-handler"
 }
 },

{
...

The response's endpoint elements enumerate all available sub-paths. The path

/config/access-control-handler in the example can be used to get a list of existing access

control handlers, and create new ones. A path containing an object name like

/config/backends/{backendName}, where {backendName} corresponds to an existing

backend (such as userRoot) can be used to obtain an object’s properties, update the

properties, or delete the object.

Some paths reflect hierarchical relationships between objects. For example, properties of a

local DB VLV index for the userRoot backend are available using a path like

/config/backends/userRoot/local-db-indexes/uid. Some paths represent singleton

- 55 -

Use the Configuration API

objects, which have properties but cannot be deleted nor created. These paths can be

differentiated from others by their singular, rather than plural, relation name (for example

global-configuration).

Sorting and filtering configuration objects

The Configuration API supports SCIM parameters for filter, sorting, and pagination. Search

operations can specify a SCIM filter used to narrow the number of elements returned. See the

SCIM specification for the full set of operations for SCIM filters. Clients may also specify sort

parameters, or paging parameters. As previously mentioned, clients may specify attributes to

include or exclude in both get and list operations.

GET Parameter Description

filter Values can be simple SCIM filters such as id eq "userRoot" or

compound filters like meta.resourceType eq "Local DB Backend"

and baseDn co "dc=exmple,dc=com".

sortBy Specifies a property value by which to sort.

sortOrder Specifies either ascending or descending alphabetical order.

startIndex 1-based index of the first result to return.

count Indicates the number of results per page.

GET Parameters for Sorting and Filtering

Update properties

The Configuration API supports the HTTP PUT method as an alternative to modifying objects

with HTTP PATCH. With PUT, the server computes the differences between the object in the

request with the current version in the server, and performs modifications where necessary.

The server will never remove attributes that are not specified in the request. The API responds

with the entire modified object.

Request:

PUT /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json
{
 "description" : "A new description."
}

- 56 -

Chapter 3: Configure the PingDataSync Server

Response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://example.com:5033/config/backends/userRoot"
 },
 "backendID": "userRoot",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "25",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "30 s",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "5",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "1",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "description": "abc",
 "enabled": "true",
 "explodedIndexEntryThreshold": "4000",

- 57 -

Use the Configuration API

 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "true",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "100000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled"
}

Administrative actions

Updating a property may require an administrative action before the change can take effect. If

so, the server will return 200 Success, and any actions are returned in the

urn:unboundid:schemas:configuration:messages:2.0 section of the JSON response that

represents the entire object that was created or modified.

For example, changing the jeProperty of a backend will result in the following:

"urn:unboundid:schemas:configuration:messages:2.0": {
 "requiredActions": [

{
 "property": "baseContextPath",
 "type": "componentRestart",
 "synopsis": "In order for this modification to
 take effect, the component must be restarted,
 either by disabling and re-enabling it, or by
 restarting the server"
 },

{
 "property": "id2childrenIndexEntryLimit",

- 58 -

Chapter 3: Configure the PingDataSync Server

 "type": "other",
 "synopsis": "If this limit is increased, then the
 contents of the backend must be exported to LDIF
 and re-imported to allow the new limit to be used
 for any id2children keys that had already hit the
 previous limit."
 }
]
}
...

Update servers and server groups

Servers can be configured as part of a server group, so that configuration changes that are

applied to a single server, are then applied to all servers in a group. When managing a server

that is a member of a server group, creating or updating objects using the Configuration API

requires the applyChangeTo query parameter. The behavior and acceptable values for this

parameter are identical to the dsconfig parameter of the same name. A value of

singleServer or serverGroup can be specified. For example:

https://example.com:5033/config/Backends/userRoot?applyChangeTo=singleServer

Note
This does not apply to mirrored subtree objects, which include Topology and Cluster level objects.
Changes made tomirrored objects are applied to all objects in the subtree.

Configuration API Responses

Clients of the API should examine the HTTP response code in order to determine the success or

failure of a request. The following are response codes and their meanings:

Response Code Description Response
Body

200 Success The requested operation succeeded, with the response body being the

configuration object that was created or modified. If further actions are

required, they are included in the

urn:unboundid:schemas:configuration:messages:2.0

object.

List of objects,

or object

properties,

administrative

actions.

204 No Content The requested operation succeeded and no further information has

been provided, such as in the case of a DELETE operation.

None.

400 Bad Request The request contents are incorrectly formatted or a request is made for

an invalid API version.

Error summary

and optional

message.

- 59 -

Use the Configuration API

Response Code Description Response
Body

401 Unauthorized User authentication is required. Some user agents such as browsers

may respond by prompting for credentials. If the request had specified

credentials in an Authorization header, they are invalid.

None.

403 Forbidden The requested operation is forbidden either because the user does not

have sufficient privileges or some other constraint such as an object is

edit-only and cannot be deleted.

None.

404 Not Found The requested path does not refer to an existing object or object

relation.

Error summary

and optional

message.

409 Conflict The requested operation could not be performed due to the current

state of the configuration. For example, an attempt was made to create

an object that already exists or an attempt was made to delete an object

that is referred to by another object.

Error summary

and optional

message.

415 Unsupported

Media Type

The request is such that the Accept header does not indicate that JSON

is an acceptable format for a response.

None.

500 Server Error The server encountered an unexpected error. Please report server

errors to customer support.

Error summary

and optional

message.

An application that uses the Configuration API should limit dependencies on particular text

appearing in error message content. These messages may change, and their presence may

depend on server configuration. Use the HTTP return code and the context of the request to

create a client error message. The following is an example encoded error message:

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:Error"
],
 "status": 404,
 "scimType": null,
 "detail": "The Local DB Index does not exist."
}

- 60 -

Chapter 3: Configure the PingDataSync Server

Configuration with the dsconfig tool
The Ping Identity servers provide several command-line tools for management and

administration. The command-line tools are available in the bin directory for UNIX or Linux

systems and bat directory for Microsoft Windows systems.

The dsconfig tool is the text-based management tool used to configure the underlying server

configuration. The tool has three operational modes:

l Interactive mode

l Non-interactive mode

l Batch mode

The dsconfig tool also offers an offline mode using the --offline option, in which the server

does not have to be running to interact with the configuration. In most cases, the configuration

should be accessed with the server running in order for the server to give the user feedback

about the validity of the configuration.

Each command-line utility provides a description of the subcommands, arguments, and usage

examples needed to run the tool. View detailed argument options and examples by typing --

help with the command.

$ bin/dsconfig --help

To list the subcommands for each command:

$ bin/dsconfig --help-subcommands

To list more detailed subcommand information:

$ bin/dsconfig list-log-publishers --help

Use dsconfig in interactive mode

Running dsconfig in interactive command-line mode provides a menu-driven interface for

accessing and configuring the PingData server. To start dsconfig in interactive mode, run the

tool without any arguments:

$ bin/dsconfig

Running the tool requires server connection and authentication information. After connection

information is confirmed, a menu of the available operation types is displayed.

- 61 -

Configuration with the dsconfig tool

Use dsconfig in non-interactive mode

Non-interactive command-line mode provides a simple way to make arbitrary changes to the

server, and to use administrative scripts to automate configuration changes. To make changes

to multiple configuration objects at the same time, use batch mode.

The general format for the non-interactive command line is:

$ bin/dsconfig --no-prompt {globalArgs} {subcommand} {subcommandArgs}

The --no-prompt argument specifies non-interactive mode. The {globalArgs} argument

provides a set of arguments that specify how to connect and authenticate to the server. Global

arguments can be standard LDAP connection parameters or SASL connection parameters

depending on the implementation. The {subcommand} specifies which general action to

perform. The following uses standard LDAP connections:

$ bin/dsconfig --no-prompt list-backends \
 --hostname server.example.com \
 --port 389 \
 --bindDN uid=admin,dc=example,dc=com \
 --bindPassword password

The following uses SASL GSSAPI (Kerberos) parameters:

$ bin/dsconfig --no-prompt list-backends \
 --saslOption mech=GSSAPI \
 --saslOption authid=admin@example.com \
 --saslOption ticketcache=/tmp/krb5cc_1313 \
 --saslOption useticketcache=true

The {subcommandArgs} argument contains a set of arguments specific to the particular task.

To always display the advanced properties, use the --advanced command-line option.

Note
Global arguments can appear anywhere on the command line. The subcommand-specific arguments can
appear anywhere after the subcommand.

Use dsconfig batch mode

The dsconfig tool provides a batching mechanism that reads multiple invocations from a file

and executes them sequentially. The batch file provides advantages over standard scripting by

minimizing LDAP connections and JVM invocations that normally occur with each dsconfig

call. Batch mode is the best method to use with setup scripts when moving from a development

environment to test environment, or from a test environment to a production environment. The

--no-prompt option is required with dsconfig in batch mode.

- 62 -

Chapter 3: Configure the PingDataSync Server

$ bin/dsconfig --no-prompt \
 --hostname host1 \
 --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --batch-file /path/to/sync-pipe-config.txt

If a dsconfig command has a missing or incorrect argument, the command will fail and stop

the batch process without applying any changes to the server. A --batch-continue-on-error

option is available, which instructs dsconfig to apply all changes and skip any errors.

View the logs/config-audit.log file to review the configuration changes made to the server,

and use them in the batch file. The batch file can have blank lines for spacing, and lines

starting with a pound sign (#) for comments. The batch file also supports a "\" line continuation

character for long commands that require multiple lines.

The PingDataSync Server also provides a docs/sun-ds-compatibility.dsconfig file for

migrations from Sun/Oracle to Ping Identity PingDataSync Server machines.

Topology configuration
Topology configuration enables grouping servers and mirroring configuration changes

automatically. It uses a master/slave architecture for mirroring shared data across the

topology. All writes and updates are forwarded to the master, which forwards them to all other

servers. Reads can be served by any server in the group.

Note
To remove a server from the topology, it must be uninstalled with the uninstall tool.

Topology master requirements and selection

A topology master server receives any configuration change from other servers in the

topology, verifies the change, then makes the change available to all connected servers when

they poll the master. The master always sends a digest of its subtree contents on each update.

If the node has a different digest than the master, it knows it's not synchronized. The servers

will pull the entire subtree from the master if they detect that they are not synchronized. A

server may detect it is not synchronized with the master under the following conditions:

l At the end of its periodic polling interval, if a server's subtree digest differs from that of
its master, then it knows it's not synchronized.

- 63 -

Topology configuration

l If one or more servers have been added to or removed from the topology, the servers
will not synchronized.

The master of the topology is selected by prioritizing servers by minimum supported product

version, most available, newest server version, earliest start time, and startup UUID (a

smaller UUID is preferred).

After determining a master, the topology data is reviewed from all available servers (every

five seconds by default) to determine if any new information makes a server better suited to

being the master. If a new server can be the master, it will communicate that to the other

servers, if no other server has advertised that it should be the master. This ensures that all

servers accept the same master at approximately the same time (within a few milliseconds of

each other). If there is no better master, the initial master maintains the role.

After the best master has been selected for the given interval, the following conditions are

confirmed:

l A majority of servers is reachable from that master. (The master server itself is
considered while determining this majority.)

l There is only a single master in the entire topology.

If either of these conditions is not met, the topology is without a master and the peer polling

frequency is reduced to 100 milliseconds to find a new master as quickly as possible. If there is

no master in the topology for more than one minute, a mirrored-subtree-manager-no-

master-found alarm is raised. If one of the servers in the topology is forced as master with

the force-as-master-for-mirrored-data option in the Global Configuration configuration

object, a mirrored-subtree-manager-forced-as-master-warning warning alarm is raised.

If multiple servers have been forced as masters, then a mirrored-subtree-manager-forced-

as-master-error critical alarm will be raised.

Topology components

When a server is installed, it can be added to an existing topology, which will clone the server's

. Topology settings are designed to operate without additional configuration. If required, some

settings can be adjusted to fit the needs of the environment.

- 64 -

Chapter 3: Configure the PingDataSync Server

Server configuration settings

Configuration settings for the topology are configured in the Global Configuration and in the

Config File Handler Backend. Though they are topology settings, they are unique to each server

and are not mirrored. Settings must be kept the same on all servers.

The Global Configuration object contains a single topology setting, force-as-master-for-

mirrored-data. This should be set to true on only one of the servers in the topology, and is

used only if a situation occurs where the topology cannot determine a master because a

majority of servers is not available. A server with this setting enabled will be assigned the role

of master, if no suitable master can be determined. See Topology master requirements and

selection for details about how a master is selected for a topology.

The Config File Handler Backend defines three topology (mirrored-subtree) settings:

l mirrored-subtree-peer-polling-interval – Specifies the frequency at which the
server polls its topology peers to determine if there are any changes that may warrant a
new master selection. A lower value will ensure a faster failover, but it will also cause
more traffic among the peers. The default value is five seconds. If no suitable master is
found, the polling frequency is adjusted to 100 milliseconds until a new master is
selected.

l mirrored-subtree-entry-update-timeout – Specifies the maximum length of time to
wait for an update operation (add, delete, modify or modify-dn) on an entry to be applied
by the master on all of the servers in the topology. The default is 10 seconds. In reality,
updates can take up to twice as much time as this timeout value if master selection is in
progress at the time the update operation was received.

l mirrored-subtree-search-timeout – Specifies the maximum length of time in
milliseconds to wait for search operations to complete. The default is 10 seconds.

Topology settings

Topology meta-data is stored under the cn=topology,cn=config subtree and cluster data is

stored under the cn=cluster,cn=config subtree. The only setting that can be changed is the

cluster name.

Monitor data for the topology

Each server has a monitor that exposes that server's view of the topology in its monitor

backend, so that peer servers can periodically read this information to determine if there are

changes in the topology. Topology data includes the following:

- 65 -

Topology configuration

l The server ID of the current master, if the master is not known.

l The instance name of the current master, or if a master is not set, a description stating
why a master is not set.

l A flag indicating if this server thinks that it should be the master.

l A flag indicating if this server is the current master.

l A flag indicating if this server was forced as master.

l The total number of configured peers in the topology group.

l The peers connected to this server.

l The current availability of this server

l A flag indicating whether or not this server is not synchronized with its master, or
another node in the topology if the master is unknown.

l The amount of time in milliseconds where multiple masters were detected by this server.

l The amount of time in milliseconds where no suitable server is found to act as master.

l A SHA-256 digest encoded as a base-64 string for the current subtree contents.

The following metrics are included if this server has processed any operations as master:

l The number of operations processed by this server as master.

l The number of operations processed by this server as master that were successful.

l The number of operations processed by this server as master that failed to validate.

l The number of operations processed by this server as master that failed to apply.

l The average amount of time taken (in milliseconds) by this server to process operations
as the master.

l The maximum amount of time taken (in milliseconds) by this server to process an
operation as the master.

Updating the server instance listener certificate

To change the SSL certificate for the server, update the keystore and truststore files with the

new certificate. The certificate file must have the new certificate in PEM-encoded format, such

as:

-----BEGIN CERTIFICATE-----

MIIDKTCCAhGgAwIBAgIEacgGrDANBgkqhkiG9w0BAQsFADBFMR4wHAYDVQQKExVVbmJvdW5kSUQgQ2
VydGlmaWNhdGUxIzAhBgNVBAMTGnZtLW1lZGl1bS03My51bmJvdW5kaWQubGFiMB4XDTE1MTAxMjE1
MzU0OFoXDTM1MTAwNzE1MzU0OFowRTEeMBwGA1UEChMVVW5ib3VuZElEIENlcnRpZmljYXRlMSMwIQ
YDVQQDExp2bS1tZWRpdW0tNzMudW5ib3VuZGlkLmxhYjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCC

- 66 -

Chapter 3: Configure the PingDataSync Server

AQoCggEBAKN4tAN3o9Yw6Cr9hivwVDxJqF6+aEi9Ir3WGFYLSrggRNXsiAOfWkSMWdIC5vyF5OJ9Dl
IgvHL4OuqP/YNEGzKDkgr6MwtUeVSK14+dCixygJGC0nY7k+f0WSCjtIHzrmc4WWdrZXmgb+qv9Lup
S30JG0FXtcbGkYpjaKXIEqMg4ekz3B5cAvE0SQUFyXEdN4rWOn96nVFkb2CstbiPzAgne2tu7paJ6S
GFOW0UF7v018XY1m2WHBIoD0WC8nOVLTG9zFUavaOxtlt1TlhClkI4HRMNg8n2EtSTdQRizKuw9DdT
XJBb6Kfvnp/nI73VHRyt47wUVueehEDfLtDP8pMCAwEAAaMhMB8wHQYDVR0OBBYEFMrwjWxl2K+yd9
+Y65oKn0g5jITgMA0GCSqGSIb3DQEBCwUAA4IBAQBpsBYodblUGew+HewqtO2i8Wt+vAbt31zM5/kR
vo6/+iPEASTvZdCzIBcgletxKGKeCQ0GPeHr42+erakiwmGDlUTYrU3LU5pTGTDLuR2IllTT5xlEhC
WJGWipW4q3Pl3cX/9m2ffY/JLYDfTJaoJvnXrh7Sg719skkHjWZQgOHXlkPLx5TxFGhAovE1D4qLVR
WGohdpWDrIgFh0DVfoyAn1Ws9ICCXdRayajFI4Lc6K1m6SA5+25Y9nno8BhVPf4q5OW6+UDc8MsLbB
sxpwvR6RJ5cv3ypfOriTehJsG+9ZDo7YeqVsTVGwAlW3PiSd9bYP/8yu9Cy+0MfcWcSeAE
-----END CERTIFICATE-----

If clients that already have a secure connection established with this server need to be

maintained, information about both certificates can reside in the same file (each with their own

begin and end headers and footers). If the listener certificate needs to be updated, it may be

temporarily necessary for this property to have information about the old and new certificates.

This can be done by including information about both certificates in the same file, each with

their own begin and end headers and footers. Blank lines, and lines that start with the #

character will be ignored.

After the keystore and truststore files are updated, run the following dsconfig command to

update the server's certificate in the topology registry:

$ bin/dsconfig set-server-instance-listener-prop \
 --instance-name <server-instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set listener-certificate<path-to-new-certificate-file

The listener-certificate in the topology registry is like a trust store. The public certificates

that it has are automatically trusted by the local server. When the local server attempts a

secure LDAP connection to a peer, and the peer presents it with its certificate, the local server

will check the listener-certificate property for that server in the topology registry. If the

property contains the peer server's certificate, the local server will trust the peer.

Remove the self-signed certificate

The server is installed with a self-signed certificate and key (ads-certificate), which are

used for internal purposes such as replication authentication, inter-server authentication in the

topology registry, reversible password encryption, and encrypted backup/LDIF export. The

ads-certificate lives in the keystore file called ads-truststore under the server’s /config

directory. If your deployment requires removing the self-signed certificate, it can be replaced.

- 67 -

Topology configuration

The certificate is stored in the topology registry, which enables replacing it on one server and

having it mirrored to all other servers in the topology. Any change is automatically mirrored on

other servers in the topology. It is stored in human-readable PEM-encoded format and can be

updated with dsconfig. The following general steps are required to replace the self-signed

certificate:

1. Prepare a new keystore with the replacement key-pair.

2. Update the server configuration to use the new certificate by adding it to the server’s list
of certificates in the topology registry so that it is trusted by other servers.

3. Update the server’s ads-truststore file to use the new key-pair.

4. Retire the old certificate by removing it from the topology registry.

Note
Replacing the entire key-pair instead of just the certificate associated with the original private key can
make existing backups and LDIF exports invalid. This should be performed immediately after setup or
before the key-pair is used. After the first time, only the certificate associated with the private key should
have to be changed, for example, to extend its validity period or replace it with a certificate signed by a
different CA.

Prepare a new keystore with the replacement key-pair

The self-signed certificate can be replaced with an existing key-pair, or the certificate

associated with the original key-pair can be used.

Use an existing key-pair

If a private key and certificate(s) in PEM-encoded format already exist, both the original

private key and self-signed certificate can be replaced in ads-truststore with the manage-

certificates tool. The following command imports existing certificates into a new keystore

file, ads-truststore.new:

$ bin/manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --private-key-file existing.key \
 --certificate-file existing.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

The certificates listed using the --certificate-file options must be ordered so that each

subsequent certificate is the issuer for the previous one. So the server certificate comes first,

the intermediate certificates next (if any), and the root CA certificate last.

- 68 -

Chapter 3: Configure the PingDataSync Server

Use the certificate associated with the original key-pair

The certificate associated with the original server-generated private key can be replaced with

the following commands:

1. Create a CSR for the ads-certificate:

$ bin/manage-certificates generate-certificate-signing-request \
 --keystore ads-truststore \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --use-existing-key-pair \
 --subject-dn "CN=ldap.example.com,O=Example Corporation,C=US" \
 --output-file ads.csr

2. Submit ads.csr to a CA for signing.

3. Export the server’s private key into ads.key:

$ bin/manage-certificates export-private-key \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --output-file ads.key

4. Import the certificates obtained from the CA (the CA-signed server certificate, any
intermediate certificates, and root CA certificate) into ads-truststore.new:

$ bin/manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --private-key-file ads.key \
 --certificate-file new-ads.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Update the server configuration to use the new certificate

To update the server to use the desired key-pair, the inter-server-certificate property

for the server instance must first be updated in the topology registry. The old and the new

certificates may appear within their own begin and end headers in the inter-server-

certificate property to support transitioning from the old certificate to the new one.

1. Export the server’s old ads-certificate into old-ads.crt:

$ bin/manage-certificates export-certificate \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \

- 69 -

Domain Name Service (DNS) caching

 --export-certificate-chain \
 --output-file old-ads.crt

2. Concatenate the old, new certificate, and issuer certificates into one file. On Windows, an
editor like notepad can be used. On Unix platforms, use the following command:

$ cat old-ads.crt new-ads.crt intermediate.crt root-ca.crt > chain.crt

3. Update the inter-server-certificate property for the server instance in the topology
registry using dsconfig:

$ bin/dsconfig -n set-server-instance-prop \
 --instance-name <instance-name> \
 --set “inter-server-certificate<chain.crt”

Update the ads-truststore file to use the new key-pair

The server will still use the old ads-certificate. When the new ads-certificate needs to

go into effect, the old ads-truststore file must be replaced with ads-truststore.new in the

server’s config directory.

$ mv ads-truststore.new ads-truststore

Retire the old certificate

The old certificate is retired by removing it from the topology registry when it has expired. All

existing encrypted backups and LDIF exports are not affected because the public key in the old

and new server certificates are the same, and the private key will be able to decrypt them.

$ cat new-ads.crt intermediate.crt root-ca.crt > chain.crt

$ bin/dsconfig -n set-server-instance-prop \
 --instance-name <instance-name> \
 --set “inter-server-certificate<chain.crt”

Domain Name Service (DNS) caching
If needed, two global configuration properties can be used to control the caching of hostname-

to-numeric IP address (DNS lookup) results returned from the name resolution services of the

underlying operating system. Use the dsconfig tool to configure these properties.

network-address-cache-ttl– Sets the Java system property networkaddress.cache.ttl,

and controls the length of time in seconds that a hostname-to-IP address mapping can be

cached. The default behavior is to keep resolution results for one hour (3600 seconds). This

setting applies to the server and all extensions loaded by the server.

- 70 -

Chapter 3: Configure the PingDataSync Server

network-address-outage-cache-enabled – Caches hostname-to-IP address results in the

event of a DNS outage. This is set to true by default, meaning name resolution results are

cached. Unexpected service interruptions may occur during planned or unplanned

maintenance, network outages or an infrastructure attack. This cache may allow the server to

function during a DNS outage with minimal impact. This cache is not available to server

extensions.

IP address reverse name lookups
Ping Identity servers do not explicitly perform numeric IP address-to-hostname lookups.

However, address masks configured in Access Control Lists (ACIs), Connection Handlers,

Connection Criteria, and Certificate handshake processing may trigger implicit reverse name

lookups. For more information about how address masks are configured in the server, review

the following information for each server:

l ACI dns: bind rules under Managing Access Control (PingDirectory Server and
PingDirectoryProxy Servers)

l ds-auth-allowed-address: Adding Operational Attributes that Restrict Authentication
(PingDirectory Server)

l Connection Criteria: Restricting Server Access Based on Client IP Address (PingDirectory
Server and PingDirectoryProxy Servers)

l Connection Handlers: restrict server access using Connection Handlers (Configuration
Reference Guide for all PingData servers)

Configure the synchronization environment with
dsconfig
The dsconfig tool can be used to configure any part of the PingDataSync Server, but will

likely be used for more fine-grained adjustments. If configuring a Sync Pipe for the first time,

use the bin/create-sync-pipe-config tool to guide through the necessary Sync Pipes

creation steps.

- 71 -

Prepare external server communication

Configure server groups with dsconfig interactive

In a typical deployment, onePingDataSync Server and one or more redundant failover servers

are configured. Primary and secondary servers must have the same configuration settings to

ensure proper operation. To enable this, assign all servers to a server group using the

dsconfig tool. Any change to one server will automatically be applied to the other servers in

the group.

Run the dsconfig command and set the global configuration property for server groups to

all-servers. On the primary PingDataSync Server, do the following:

$ bin/dsconfig set-global-configuration-prop \
 --set configuration-server-group:all-servers

Updates to servers in the group are made using the --applyChangeTo servergroup option of

the dsconfig command. To apply the change to one server in the group, use the --

applyChangeTo single-server option. If additional servers are added to the topology, the

setup tool will copy the configuration from the primary server to the new server(s).

Start the Global Sync Configuration with dsconfig interactive

After the Synchronization topology is configured, perform the following steps to start the

Global Sync Configuration, which will use only those Sync Pipes that have been started:

1. On the dsconfig main menu, type the number corresponding to the Global Sync

Configuration.

2. On the Global Sync Configuration menu, type the number corresponding to view and edit the

configuration.

3. On the Global Sync Configuration Properties menu, type the number corresponding to setting

the started property, and then follow the prompts to set the value to TRUE.

4. On the Global Sync Configuration Properties menu, type f to save and apply the changes.

Prepare external server communication
The prepare-endpoint-server tool sets up any communication variances that may occur

between the PingDataSync Server and the external servers. Typically, directory servers can

- 72 -

Chapter 3: Configure the PingDataSync Server

have different security settings, privileges, and passwords configured on the Sync Source that

might reject the import of entries in the Sync Destination.

The prepare-endpoint-server tool also creates a Sync User Account and its privileges on all

of the external servers (see About the Sync User Account for more detailed information). The

prepare-endpoint-server tool verifies that the account has the proper privileges to access

the firstChangeNumber and lastChangeNumber attributes in the root DSE entry so that it can

access the latest changes. If the Sync User does not have the proper privileges, the

PingDataSync Server displays a warning message, which is saved in the logs/prepare-

endpoint-server.log file.

Note
If the synchronization topology was created using the create-sync-pipe-config tool, this command
does not need to be run. It is already part of the create-sync-pipe-config process.

Perform the following steps to prepare thePingDataSync Server for external server

communication:

1. Use the prepare-endpoint-server tool to prepare the directory server instances on the
remote host for synchronization as a data source for the subtree, dc=example,dc=com. If
the user account is not present on the external server, it will be created if a parent entry
exists.

$ bin/prepare-endpoint-server \
 --hostname sun-ds1.example.com \
 --port 21389 \
 --syncServerBindDN "cn=Sync User,dc=example,dc=com" \
 --syncServerBindPassword secret \
 --baseDN "dc=example,dc=com" \
 --isSource

2. When prompted, enter the bind DN and password to create the user account. This step
enables the change log database and sets the changelog-maximum-age property.

3. Repeat steps 1–2 for any other external source servers.

4. For the destination servers, repeat steps 2–3 and include the --isDestination option. If
destination servers do not have any entries, a "Denied" message will display when
creating the cn=Sync User entry.

$ bin/prepare-endpoint-server \
 --hostname PingIdentity-ds1.example.com \
 --port 33389 \
 --syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \

--syncServerBindPassword sync \
 --baseDN "dc=example,dc=com" \
 --isDestination

- 73 -

Prepare external server communication

5. Repeat step 4 for any other destination servers.

Configuration with the dsconfig tool

The Ping Identity servers provide several command-line tools for management and

administration. The command-line tools are available in the bin directory for UNIX or Linux

systems and bat directory for Microsoft Windows systems.

The dsconfig tool is the text-based management tool used to configure the underlying server

configuration. The tool has three operational modes:

l Interactive mode

l Non-interactive mode

l Batch mode

The dsconfig tool also offers an offline mode using the --offline option, in which the server

does not have to be running to interact with the configuration. In most cases, the configuration

should be accessed with the server running in order for the server to give the user feedback

about the validity of the configuration.

Each command-line utility provides a description of the subcommands, arguments, and usage

examples needed to run the tool. View detailed argument options and examples by typing --

help with the command.

$ bin/dsconfig --help

To list the subcommands for each command:

$ bin/dsconfig --help-subcommands

To list more detailed subcommand information:

$ bin/dsconfig list-log-publishers --help

Use dsconfig in interactive mode

Running dsconfig in interactive command-line mode provides a menu-driven interface for

accessing and configuring the PingData server. To start dsconfig in interactive mode, run the

tool without any arguments:

$ bin/dsconfig

- 74 -

Chapter 3: Configure the PingDataSync Server

Running the tool requires server connection and authentication information. After connection

information is confirmed, a menu of the available operation types is displayed.

Use dsconfig in non-interactive mode

Non-interactive command-line mode provides a simple way to make arbitrary changes to the

server, and to use administrative scripts to automate configuration changes. To make changes

to multiple configuration objects at the same time, use batch mode.

The general format for the non-interactive command line is:

$ bin/dsconfig --no-prompt {globalArgs} {subcommand} {subcommandArgs}

The --no-prompt argument specifies non-interactive mode. The {globalArgs} argument

provides a set of arguments that specify how to connect and authenticate to the server. Global

arguments can be standard LDAP connection parameters or SASL connection parameters

depending on the implementation. The {subcommand} specifies which general action to

perform. The following uses standard LDAP connections:

$ bin/dsconfig --no-prompt list-backends \
 --hostname server.example.com \
 --port 389 \
 --bindDN uid=admin,dc=example,dc=com \
 --bindPassword password

The following uses SASL GSSAPI (Kerberos) parameters:

$ bin/dsconfig --no-prompt list-backends \
 --saslOption mech=GSSAPI \
 --saslOption authid=admin@example.com \
 --saslOption ticketcache=/tmp/krb5cc_1313 \
 --saslOption useticketcache=true

The {subcommandArgs} argument contains a set of arguments specific to the particular task.

To always display the advanced properties, use the --advanced command-line option.

Note
Global arguments can appear anywhere on the command line. The subcommand-specific arguments can
appear anywhere after the subcommand.

Use dsconfig batch mode

The dsconfig tool provides a batching mechanism that reads multiple invocations from a file

and executes them sequentially. The batch file provides advantages over standard scripting by

minimizing LDAP connections and JVM invocations that normally occur with each dsconfig

- 75 -

HTTP Connection Handlers

call. Batch mode is the best method to use with setup scripts when moving from a development

environment to test environment, or from a test environment to a production environment. The

--no-prompt option is required with dsconfig in batch mode.

$ bin/dsconfig --no-prompt \
 --hostname host1 \
 --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --batch-file /path/to/sync-pipe-config.txt

If a dsconfig command has a missing or incorrect argument, the command will fail and stop

the batch process without applying any changes to the server. A --batch-continue-on-error

option is available, which instructs dsconfig to apply all changes and skip any errors.

View the logs/config-audit.log file to review the configuration changes made to the server,

and use them in the batch file. The batch file can have blank lines for spacing, and lines

starting with a pound sign (#) for comments. The batch file also supports a "\" line continuation

character for long commands that require multiple lines.

The PingDataSync Server also provides a docs/sun-ds-compatibility.dsconfig file for

migrations from Sun/Oracle to Ping Identity PingDataSync Server machines.

HTTP Connection Handlers
HTTP Connection Handlers are responsible for managing the communication with HTTP clients

and invoking servlets to process requests from those clients. They can also be used to host

web applications on the server. Each HTTP connection handler must be configured with one or

more HTTP servlet extensions and zero or more HTTP operation log publishers.

If the HTTP Connection Handler cannot be started (for example, if its associated HTTP Servlet

Extension fails to initialize), then this will not prevent the entire Directory Proxy Server from

starting. The server's start-server tool will output any errors to the error log. This allows

the server to continue serving LDAP requests even with a bad servlet extension.

The configuration properties available for use with an HTTP connection handler include:

l listen-address. Specifies the address on which the connection handler will listen for
requests from clients. If not specified, then requests will be accepted on all addresses
bound to the system.

- 76 -

Chapter 3: Configure the PingDataSync Server

l listen-port. Specifies the port on which the connection handler will listen for requests
from clients. Required.

l use-ssl. Indicates whether the connection handler will use SSL/TLS to secure
communications with clients (whether it uses HTTPS rather than HTTP). If SSL is
enabled, then key-manager-provider and trust-manager-provider values must also
be specified.

l http-servlet-extension. Specifies the set of servlet extensions that will be enabled for
use with the connection handler. You can have multiple HTTP connection handlers
(listening on different address/port combinations) with identical or different sets of
servlet extensions. At least one servlet extension must be configured.

l http-operation-log-publisher. Specifies the set of HTTP operation log publishers that
should be used with the connection handler. By default, no HTTP operation log publishers
will be used.

l key-manager-provider. Specifies the key manager provider that will be used to obtain
the certificate presented to clients if SSL is enabled.

l trust-manager-provider. Specifies the trust manager provider that will be used to
determine whether to accept any client certificates presented to the server.

l num-request-handlers. Specifies the number of threads that should be used to process
requests from HTTP clients. These threads are separate from the worker threads used to
process other kinds of requests. The default value of zero means the number of threads
will be automatically selected based on the number of CPUs available to the JVM.

l web-application-extension. Specifies the Web applications to be hosted by the
server.

Configure an HTTP Connection Handler

An HTTP connection handler has two dependent configuration objects: one or more HTTP

servlet extensions and optionally, an HTTP log publisher. The HTTP servlet extension and log

publisher must be configured prior to configuring the HTTP connection handler. The log

publisher is optional but in most cases, you want to configure one or more logs to troubleshoot

any issues with your HTTP connection.

1. The first step is to configure your HTTP servlet extensions. The following example uses
the ExampleHTTPServletExtension in the Server SDK.

$ bin/dsconfig create-http-servlet-extension \
 --extension-name "Hello World Servlet" \
 --type third-party \
 --set

- 77 -

HTTP Connection Handlers

"extensionclass:com.unboundid.directory.sdk.examples.ExampleHTTPServletEx
tension" \
 --set "extension-argument:path=/" \
 --set "extension-argument:name=example-servlet"

2. Next, configure one or more HTTP log publishers. The following example configures two
log publishers: one for common access; the other, detailed access. Both log publishers
use the default configuration settings for log rotation and retention.

$ bin/dsconfig create-log-publisher \
 --publisher-name "HTTP Common Access Logger" \
 --type common-log-file-http-operation \
 --set enabled:true \
 --set log-file:logs/http-common-access \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set "retention-policy:Free Disk Space Retention Policy"

$ bin/dsconfig create-log-publisher \
 --publisher-name "HTTP Detailed Access Logger" \
 --type detailed-http-operation \
 --set enabled:true \
 --set log-file:logs/http-detailed-access \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set "retention-policy:Free Disk Space Retention Policy"

3. Configure the HTTP connection handler by specifying the HTTP servlet extension and log
publishers. Note that some configuration properties can be later updated on the fly while
others, like listen-port, require that the HTTP Connection Handler be disabled, then re-
enabled for the change to take effect.

$ bin/dsconfig create-connection-handler \
 --handler-name "Hello World HTTP Connection Handler" \
 --type http \
 --set enabled:true \
 --set listen-port:8443 \
 --set use-ssl:true \
 --set "http-servlet-extension:Hello World Servlet" \
 --set "http-operation-log-publisher:HTTP Common Access Logger" \
 --set "http-operation-log-publisher:HTTP Detailed Access Logger" \
 --set "key-manager-provider:JKS" \
 --set "trust-manager-provider:JKS"

4. By default, the HTTP Connection Handler has an advanced monitor entry property, keep-

stats, that is set to TRUE by default. You can monitor the connection handler using the

ldapsearch tool.

$ bin/ldapsearch --baseDN "cn=monitor" \
 "(objectClass=ds-http-connection-handler-statistics-monitor-entry)"

- 78 -

Chapter 3: Configure the PingDataSync Server

HTTP Correlation IDs

A typical request to a software system is handled by multiple subsystems, many of which may

be distinct servers residing on distinct hosts and locations. Tracing the request flow on

distributed systems can be challenging, as log messages are scattered across various systems

and intermingled with messages for other requests. To make this easier, a correlation ID can

be assigned to a request, which is then added to every associated operation as the request

flows through the larger system. The correlation ID allows related log messages to be easily

located and grouped. The server supports correlation IDs for all HTTP requests received

through its HTTP(S) Connection Handler.

When an HTTP request is received, it is automatically assigned a correlation ID. This ID can be

used to correlate HTTP responses with messages recorded to the HTTP Detailed Operation log

and the trace log. For specific web APIs, the correlation ID may also be passed to the LDAP

subsystem. For the SCIM 1, Delegated Admin, Consent, and Directory REST APIs, the

correlation ID will also appear with associated requests in LDAP logs in the correlationID

key. The correlation ID is also used as the default client request ID value in Intermediate

Client Request Controls used by the SCIM 2, Consent, and Directory REST APIs. Values related

to the Intermediate Client Request Control appear in the LDAP logs in the via key, and are

forwarded to downstream LDAP servers when received by the PingDirectoryProxy server. The

correlation ID header is also added to requests forwarded by the PingDataGovernance gateway

For Server SDK extensions that have access to the current HttpServletRequest, the current

correlation ID can be retrieved as a string through the HttpServletRequest's

com.pingidentity.pingdata.correlation_id attribute. For example:

(String) request.getAttribute("com.pingidentity.pingdata.correlation_id");

Configure HTTP Correlation ID Support

Correlation ID support is enabled by default for each HTTP Connection Handler.

l To enable correlation ID support for the HTTPS Connection Handler:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set use-correlation-id-header:true

l To disable correlation ID support for the HTTPS Connection Handler:

- 79 -

HTTP Connection Handlers

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set use-correlation-id-header:false

Configuring the correlation ID response header

l The server will generate a correlation ID for every HTTP request and send it in the
response through the Correlation-Id response header. This response header name can
be customized. The following example changes the correlation-id-response-header

property to "X-Request-Id."

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set correlation-id-response-header:X-Request-Id

Accepting an incoming correlation ID from the request

l By default, the server generates a new, unique correlation ID for each HTTP request, and
ignores any correlation ID that may be set on the request. This can be changed by
designating the names of one or more HTTP request headers that contain an existing
correlation ID value. This enables the server to integrate with a larger system consisting
of every servers using correlation IDs.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set correlation-id-request-header:X-Request-Id \
 --set correlation-id-request-header:X-Correlation-Id \
 --set correlation-id-request-header:Correlation-Id \
 --set correlation-id-request-header:X-Amzn-Trace-Id

HTTP Correlation ID Example Use

In this example, a request to the Directory REST API is made and the correlation ID enables

finding HTTP-specific log messages with LDAP-specific log messages. The response to the API

call includes a Correlation-Id header with the value a54aee33-c6c6-4467-be25-

efd1db7a8b76.

GET /directory/v1/me?includeAttributes=mail HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Bearer ...
Connection: keep-alive
Host: localhost:1443
User-Agent: HTTPie/0.9.9

HTTP/1.1 200 OK
Content-Length: 266
Content-Type: application/hal+json
Correlation-Id: ee919049-6710-4594-9c66-28b4ada4b127
Date: Fri, 02 Nov 2018 15:16:50 GMT
Request-Id: 369
{

- 80 -

Chapter 3: Configure the PingDataSync Server

 "_dn": "uid=user.86,ou=People,dc=example,dc=com",
 "_links": {
 "schemas": [

{
 "href": "https://localhost:1443/directory/v1/schemas/
inetOrgPerson"
 }
],
 "self": {
 "href": "https://localhost:1443/directory/v1/
uid=user.86,ou=People,dc=example,dc=com"
 }
 },
 "mail": [
 "user.86@example.com"
]
}

This correlation ID can be used to search the HTTP trace log for matching log records, as

follows:

$ grep 'correlationID="ee919049-6710-4594-9c66-28b4ada4b127"'
PingDirectory/logs/debug-trace
[02/Nov/2018:10:16:50.294 -0500] HTTP REQUEST requestID=369
correlationID="ee919049-6710-4594-9c66-28b4ada4b127" product="Ping Identity
Directory Server" instanceName="ds1" startupID="W9ikqA==" threadID=52358 from=
[0:0:0:0:0:0:0:1]:58918 method=GET
url="https://0:0:0:0:0:0:0:1:1443/directory/v1/me?includeAttributes=mail"
[02/Nov/2018:10:16:50.526 -0500] DEBUG ACCESS-TOKEN-VALIDATOR-PROCESSING
requestID=369 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
msg="Identity Mapper with DN 'cn=User ID Identity Mapper,cn=Identity
Mappers,cn=config' mapped ID 'user.86' to entry DN
'uid=user.86,ou=people,dc=example,dc=com'"
[02/Nov/2018:10:16:50.526 -0500] DEBUG ACCESS-TOKEN-VALIDATOR-PROCESSING
requestID=369 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
accessTokenId="201811020831" msg="Token Validator 'Mock Access Token
Validator' validated access token with active = 'true', sub = 'user.86', owner
= 'uid=user.86,ou=people,dc=example,dc=com', clientId = 'client1', scopes =
'ds', expiration = 'none', not-used-before = 'none', current time = 'Nov 2,
2018 10:16:50 AM CDT' "
[02/Nov/2018:10:16:50.531 -0500] HTTP RESPONSE requestID=369
correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
accessTokenId="201811020831" product="Ping Identity Directory Server"
instanceName="ds1" startupID="W9ikqA==" threadID=52358 statusCode=200
etime=236.932 responseContentLength=266
[02/Nov/2018:10:16:50.531 -0500] DEBUG HTTP-FULL-REQUEST-AND-RESPONSE
requestID=369 correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
accessTokenId="201811020831" product="Ping Identity Directory Server"
instanceName="ds1" startupID="W9ikqA==" threadID=52358 from=
[0:0:0:0:0:0:0:1]:58918 method=GET
url="https://0:0:0:0:0:0:0:1:1443/directory/v1/me?includeAttributes=mail"
statusCode=200 etime=236.932 responseContentLength=266 msg="

- 81 -

Using the resync Tool

The LDAP log messages associated with this request can also be located:

$ grep 'correlationID="ee919049-6710-4594-9c66-28b4ada4b127"'
PingDirectory/logs/access
[02/Nov/2018:10:16:50.529 -0500] SEARCH RESULT instanceName="ds1"
threadID=52358 conn=-371045 op=1657393 msgID=1657394 origin="Directory REST
API" httpRequestID="369" correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
authDN="uid=user.86,ou=people,dc=example,dc=com" requesterIP="internal"
requesterDN="uid=user.86,ou=People,dc=example,dc=com"
requestControls="1.3.6.1.4.1.30221.2.5.2" via="app='PingDirectoryds1'
clientIP='0:0:0:0:0:0:0:1' sessionID='201811020831' requestID='ee919049-6710-
4594-9c66-28b4ada4b127'" base="uid=user.86,ou=people,dc=example,dc=com"
scope=0 filter="(&)" attrs="mail,objectClass" resultCode=0
resultCodeName="Success" etime=0.684 entriesReturned=1
[02/Nov/2018:10:16:50.530 -0500] EXTENDED RESULT instanceName="ds1"
threadID=52358 conn=-371046 op=1657394 msgID=1657395 origin="Directory REST
API" httpRequestID="369" correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
authDN="cn=Internal Client,cn=Internal,cn=Root DNs,cn=config"
requesterIP="internal" requesterDN="cn=Internal Client,cn=Internal,cn=Root
DNs,cn=config" requestControls="1.3.6.1.4.1.30221.2.5.2"
via="app='PingDirectory-ds1' clientIP='0:0:0:0:0:0:0:1'
sessionID='201811020831' requestID='ee919049-6710-4594-9c66-28b4ada4b127'"
requestOID="1.3.6.1.4.1.30221.1.6.1" requestType="Password Policy State"
resultCode=0 resultCodeName="Success" etime=0.542 usedPrivileges="bypass-
acl,password-reset" responseOID="1.3.6.1.4.1.30221.1.6.1"
responseType="Password Policy State"
dn="uid=user.86,ou=People,dc=example,dc=com"
[02/Nov/2018:10:16:50.530 -0500] SEARCH RESULT instanceName="ds1"
threadID=52358 conn=-371048 op=1657397 msgID=1657398 origin="Directory REST
API" httpRequestID="369" correlationID="ee919049-6710-4594-9c66-28b4ada4b127"
authDN="cn=Internal Client,cn=Internal,cn=Root DNs,cn=config"
requesterIP="internal" requesterDN="cn=Internal Client,cn=Internal,cn=Root
DNs,cn=config" requestControls="1.3.6.1.4.1.30221.2.5.2"
via="app='PingDirectoryds1' clientIP='0:0:0:0:0:0:0:1'
sessionID='201811020831' requestID='ee919049-6710-4594-9c66-28b4ada4b127'"
base="cn=Default Password Policy,cn=Password Policies,cn=config" scope=0
filter="(&)" attrs="dscfg- password-attribute" resultCode=0
resultCodeName="Success" etime=0.065 preAuthZUsedPrivileges="bypass-
acl,config-read" entriesReturned=1

Using the resync Tool
The resync tool provides bulk synchronization that can be used to verify the synchronization

setup. The tool operates on a single Sync Pipe at a time, retrieves entries from the Sync

Source in bulk, and compares the source entries with the corresponding destination entries. If

destination entries are missing or attributes are changed, they are updated.

- 82 -

Chapter 3: Configure the PingDataSync Server

The command provides a --dry-run option that can be used to test the matches between the

Sync Source and Destination, without committing any changes to the target topology. The

resync tool also provides options to write debugging output to a log.

Note
The resync tool should be used for relatively small datasets. For large deployments, export entries from
the Sync Source into an LDIF file, run the bin/translate-ldif tool to translate and filter the entries
into the destination format, and then import the result LDIF file into the Sync Destination.

Use the resync --help command for more information and examples. Logging is located in

logs/tools/resync.log and logs/tools/resync-errors.log. If necessary, the logging

location can be changed with the --logFilePath option.

Testing Attribute and DN Maps

The resync tool can be used to test how attribute maps and DN maps are configured by

synchronizing a single entry. If the --logFilePath and --logLevel options are specified, the

resync tool generates a log file with details.

Use the--dry-run option and specify a single entry, such as uid=user.0. Any logging

performed during the operation appears in logs/tools/resync.log.

$ bin/resync --pipe-name sun-to-ds-sync-pipe \
 --sourceSearchFilter "(uid=user.0)" \
 --dry-run \
 --logLevel debug

Verifying the Synchronization Configuration

The most common use for the resync tool is to test that the Sync Pipe configuration has been

set up correctly. For example, the following procedure assumes that the configuration was set

up with the Sync Source topology (two replicated Sun Directory servers) with 2003 entries; the

Sync Destination topology (two replicated PingData PingDirectory Server) has only the base

entry and the cn=Sync User entry. Both source and destination topologies have their LDAP

Change Logs enabled. Because both topologies are not actively being updated, the resync tool

can be run with one pass through the entries.

Use resync with the --dry-run option to check the synchronization configuration. The output

displays a timestamp that can be tracked in the logs.

$ bin/resync --pipe-name sun-to-ds-sync-pipe \
 --numPasses 1 \
 --dry-run

- 83 -

Using the resync Tool

Starting Pass 1

Status after completing all passes[20/Mar/2010:10:20:07 -0500]

Source entries retrieved 2003
Entries missing 2002
Entries out-of-sync 1
Duration (seconds) 4

Resync completed in 4 s.

0 entries were in-sync, 0 entries were modified, 0 entries were created,
1 entries are still out-of-sync, 2002 entries are still missing, and
0 entries could not be processed due to an error

Populating an Empty Sync Destination Topology

The following procedure uses the resync tool to populate an empty Sync Destination topology

for small datasets. For large deployments, use the bin/translate-ldif.

In this example, assume that the Sync Destination topology has only the base entry

(dc=example,dc=com) and the cn=Sync User entry. Perform the following steps to populate an

empty Sync Destination:

1. Run the resync command with the log file path and with the log level debug. Logging is
located in logs/tools/resync.log and logs/tools/resync-errors.log.

$ bin/resync --pipe-name sun-to-ds-sync-pipe \
 --numPasses 1 \
 --logLevel debug

2. Open the logs/resync-failed-DNs.log file in a text editor to locate the error and fix it.
An entry cannot be created because the parent entry does not exist.

Entry '(see below)' was dropped because there was a failure at the
resource:
Failed to create entry uid=mlott,ou=People,dc=example,dc=com. Cause:
LDAPException(resultCode=no such object, errorMessage='Entry
uid=user.38,ou=People,dc=example,dc=com cannot be added because its parent
entry ou=People,dc=example,dc=com does not exist in the server',
matchedDN='dc=example,dc=com')
(id=1893859385ResourceOperationFailedException.java:126 Build
revision=4881)
dn: uid=user.38,ou=People,dc=example,dc=com

3. Rerun the resync command. The command creates the entries in the Sync Destination
topology that are present in the Sync Source topology.

$ bin/resync --pipe-name sun-to-ds-sync-pipe

...(output from each pass)...

- 84 -

Chapter 3: Configure the PingDataSync Server

Status after completing all passes[20/Mar/2016:14:23:33 -0500]

Source entries retrieved 160
Entries in-sync 156
Entries created 4
Duration (seconds) 11

Resync completed in 12 s.

156 entries were in-sync, 0 entries were modified, 4 entries were created,
0 entries are still out-of-sync, 0 entries are still missing, and 0
entries could not be processed due to an error

Note
If importing a large amount of data into an PingData PingDirectory Server, run export-ldif and
import-ldif on the newly populated backend for most efficient disk space use. If needed, run
dsreplication initialize to propagate the efficient layout to additional replicas.

Setting the Synchronization Rate

The resync command has a --ratePerSecondFile option that enables a specific

synchronization rate. The option can be used to adjust the rate during off-peak hours, or adjust

the rate based on measured loads for very long operations.

Note
The resync command also has a --ratePerSecond option. If this option is not provided, the tool
operates at themaximum rate.

Run the resync tool first at 100 operations per second, measure the impact on the source

servers, then adjust as desired. The file must contain a single positive integer number

surrounded by white space. If the file is updated with an invalid number, the rate is not

updated.

1. Create a text file containing the rate. The number must be a positive integer surrounded
by white space.

$ echo ’100 ’ > rate.txt

2. Run the resync command with the --ratePerSecondFile option.

$ bin/resync --pipe-name "sun-to-ds-sync-pipe" \
 --ratePerSecondPath rate.txt

Synchronizing a Specific List of DNs

The resync command enables synchronizing a specific set of DNs that are read from a file

using the --sourceInputFile option. This option is useful for large datasets that require

faster processing by targeting individual base-level searches for each source DN in the file. If

- 85 -

Using the resync Tool

any DN fails (parsing, search, or process errors), the command creates an output file of the

skipped entries (resync-failed-DNs.log), which can be run again.

The file must contain only a list of DNs in LDIF format with dn: or dn::. The file can include

comment lines. All DNs can be wrapped and are assumed to be wrapped on any lines that begin

with a space followed by text. Empty lines are ignored.

Small files can be created manually. For large files, use ldapsearch to create an LDIF file, as

follows:

1. Run an ldapsearch command using the special OID "1.1" extension, which only returns
the DNs in the DIT. For example, on the Sync Source directory server, run the following
command:

$ bin/ldapsearch --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com \
 --baseDN dc=example,dc=com \
 --searchScope sub "(objectclass=*)" "1.1" > dn.ldif

2. Run the resync command with the file.

$ bin/resync --pipe-name "sun-to-ds-pipe" \
 --sourceInputFile dn.ldif

Starting pass 1
[20/Mar/2016:10:32:11 -0500]

Resync pass 1
Source entries retrieved 1999
Entries created 981
Current pass, entries processed 981
Duration (seconds) 10
Average ops/second 98
Status after completing all passes[20/Mar/2016:10:32:18 -0500]

Source entries retrieved 2003
Entries created 2003
Duration (seconds) 16
Average ops/second 98
Resync completed in 16 s.
0 entries were in-sync, 0 entries were modified, 2003 entries were
created, 0 entries are still out-of-sync, 0 entries are still missing, and
0 entries could not be processed due to an error

3. View the logs/tools/resync-failed-DNs.log to determine skipped DNs. Correct the
source DNs file, and rerun the resync command.

- 86 -

Chapter 3: Configure the PingDataSync Server

Using the realtime-sync Tool
The bin/realtime-sync tool controls starting and stopping synchronization globally or for

individual Sync Pipes. The tool also provides features to set a specific starting point for real-

time synchronization.

To see the current status of real-time synchronization, view the monitor properties: num-sync-

ops-in-flight, num-ops-in-queue, and source-unretrieved-changes. For example, use

ldapsearch to view a specific Sync Pipe’s monitor information:

$ bin/ldapsearch --baseDN cn=monitor \
--searchScope sub "(cn=Sync PipeMonitor: PIPE_NAME)"

The Stats Logger can also be used to view status. See the Ping IdentityPingDirectory Server

Administration Guide for details.

Starting Real Time Synchronization Globally

The realtime-sync tool assumes that the synchronization topology is configured correctly.

Perform the following steps to start real time synchronization globally:

1. Run the tool from the <server-root>/bin directory. This example assumes that a single
Sync Pipe called "dsee-to-ds-sync-pipe" exists.

$ bin/realtime-sync start --pipe-name "dsee-to-ds-sync-pipe" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

2. If more than one Sync Pipe is configured, specify each using the --pipe-name option.
The following example starts synchronization for a bidirectional synchronization
topology.

$ bin/realtime-sync start --pipe-name "Sun DS to DS" \
 --pipe-name "DS to Sun DS" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

Starting or Pausing Synchronization

Pause or start synchronization by using the start and stop subcommands. If synchronization

is stopped and then restarted, changes made at the Sync Source while synchronization was

stopped will still be detected and applied. Synchronization for individual Sync Pipes can be

- 87 -

Using the realtime-sync Tool

started or stopped using the --pipe-name argument. If the --pipe-name argument is omitted,

then synchronization is started or stopped globally.

The following command stops all Sync Pipes:

$ bin/realtime-sync stop --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --no-prompt

If a topology has two Sync Pipes, Sync Pipe1 and Sync Pipe2, the following command stops

Sync Pipe1.

$ bin/realtime-sync stop --pipe-name "Sync Pipe1" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret --no-prompt

Setting Startpoints

Startpoints instruct the Sync Pipe to ignore all changes made prior to the current time. Once

synchronization is started, only changes made after this command is run will be detected at the

Sync Source and applied at the Sync Destination.

The set-startpoint subcommand is often run during the initial setup prior to starting

realtime synchronization. It should be run prior to initializing the data in the Sync Destination.

The set-startpoint subcommand can start synchronization at a specific change log number,

or back at a state that occurred at a specific time. For example, synchronization can start 10

minutes prior to the current time.

Perform the following steps to set a synchronization startpoint:

1. If started, stop the synchronization topology globally with the following command:

$ bin/realtime-sync stop --pipe-name "Sync Pipe1" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --no-prompt

2. Set the startpoint for the synchronization topology. Any changes made before setting this
command will be ignored.

$ bin/realtime-sync set-startpoint --pipe-name "Sync Pipe1" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \

- 88 -

Chapter 3: Configure the PingDataSync Server

 --no-prompt \
 --beginning-of-changelog

Set StartPoint task 2011072109564107 scheduled to start immediately
[21/Jul/2016:09:56:41 -0500] severity="INFORMATION" msgCount=0
msgID=1889535170
message="The startpoint has been set for Sync Pipe 'Sync Pipe1'.
Synchronization will resume from the last change number in the Sync
Source"
Set StartPoint task 2011072109564107 has been successfully completed

Restarting Synchronization at a Specific Change Log Event

Perform the following steps to restart synchronization at a specific event:

1. Search for a specific change log event from which to restart the synchronization state.
On one of the endpoint servers, run ldapsearch to search the change log.

$ bin/ldapsearch -p 1389
--bindDN "uid=admin,dc=example,dc=com" \
--bindPassword secret \
--baseDN cn=changelog \
--dontWrap

"(objectclass=*)"
dn: cn=changelog
objectClass: top
objectClass: untypedObject
cn: changelog

dn: changeNumber=1,cn=changelog
objectClass: changeLogEntry
objectClass: top
targetDN: uid=user.13,ou=People,dc=example,dc=com
changeType: modify
changes::
cmVwbGFjZTogcm9vbU51bWJlcgpyb29tTnVtYmVyOiAwMTM4Ci0KcmVwbGFjZTogbW9kaW
ZpZXJzTmFtZQptb2RpZmllcnNOYW1lOiBjbj1EaXJlY3RvcnkgTWFuYWdlcixjbj1Sb290
IEROcyxjbj1jb25maWcKLQpyZXBsYWNlOiBkcy11cGRhdGUtdGltZQpkcy11cGRhdGUtdG
ltZTo6IEFBQUJKZ25OWlUwPQotCgA=
changenumber: 1
 ... (more output)
dn: changeNumber=2329,cn=changelog
objectClass: changeLogEntry
objectClass: top
targetDN: uid=user.49,ou=People,dc=example,dc=com
changeType: modify
changes::
cmVwbGFjZTogcm9vbU51bWJlcgpyb29tTnVtYmVyOiAwNDMzCi0KcmVwbGFjZTogbW9kaW
ZpZXJzTmFtZQptb2RpZmllcnNOYW1lOiBjbj1EaXJlY3RvcnkgTWFuYWdlcixjbj1Sb290
IEROcyxjbj1jb25maWcKLQpyZXBsYWNlOiBkcy11cGRhdGUtdGltZQpkcy11cGRhdGUtdG
ltZTo6IEFBQUJKZ25OMC84PQotCgA=
changenumber: 2329

- 89 -

Using the realtime-sync Tool

2. Restart synchronization from change number 2329 using the realtime-sync tool. Any
event before this change number will not be synchronized to the target endpoint.

$ bin/realtime-sync set-startpoint \
 --change-number 2329 \
 --pipe-name "Sync Pipe 1" \
 --bindPassword secret \
 --no-prompt

Changing the Synchronization State by a Specific Time Duration

The following command will start synchronizing data at the state that occurred 2 hours and 30

minutes prior to the current time on External Server 1 for Sync Pipe 1. Any changes made

before this time will not be synchronized. Specify days (d), hours (h), minutes (m), seconds

(s), or milliseconds (ms).

Use realtime-sync with the --startpoint-rewind option to set the synchronization state and

begin synchronizing at the specified time.

$ bin/realtime-sync set-startpoint \
 --startpoint-rewind 2h30m \
 --pipe-name "Sync Pipe 1" \
 --bindPassword secret \
 --no-prompt

Scheduling a Realtime Sync as a Task

The realtime-sync tool features both an offline mode of operation as well as the ability to

schedule an operation to run within the PingDataSync Server's process. To schedule an

operation, supply LDAP connection options that allow this tool to communicate with the server

through its task interface. Tasks can be scheduled to run immediately or at a later time. Once

scheduled, tasks can be managed using the manage-tasks tool.

Perform the following steps to schedule a synchronization task:

1. Use the --start option with the realtime-sync command to schedule a start for the
synchronization topology. The following command will set the start time at July 21, 2016
at 12:01:00 AM. The scheduled task can be stopped with the --stop subcommand.

$ bin/realtime-sync set-startpoint \
 --pipe-name "sun-to-ds-sync-pipe" \
 --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --start 20150721000100 \
 --no-prompt

- 90 -

Chapter 3: Configure the PingDataSync Server

Set StartPoint task 2009072016103807 scheduled to start Jul 21, 2016
12:01:00 AM CDT

2. Run the manage-tasks tool to manage or cancel the task.

$ bin/manage-tasks --port 7389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

Configuring the PingDirectory Server Backend for
Synchronizing Deletes
The PingDirectory Server’s change log backend's changelog-deleted-entry-include-

attribute property specifies which attributes should be recorded in the change log entry

during a DELETE operation. Normally, the PingDataSync Server cannot correlate a deleted

entry to the entry on the destination. If a Sync Class is configured with a filter, such as

"include-filter: objectClass=person," the objectClass attribute must be recorded in

the change log entry. Special correlation attributes (other than DN), will also need to be

recorded on the change log entry to be properly synchronized at the endpoint server.

On each PingDirectory Server backend, use the dsconfig command to set the property.

$ bin/dsconfig set-backend-prop --backend-name changelog \
 --set changelog-deleted-entry-include-attribute:objectClass

If the destination endpoint is an Oracle/Sun DSEE (or Sun DS) server, the Sun DSEE server

does not store the value of the user deleting the entry, specified in the modifiers name

attribute. It only stores the value of the user who last modified the entry while it still existed.

To set up a Sun DSEE destination endpoint to record the user who deleted the entry, use the

Ping Identity Server SDK to create a plug-in as follows:

1. Update the Sun DSEE schema to include a deleted-by-sync auxiliary objectclass. It
will only be used as a marker objectclass, and not require or allow additional attributes
to be present on an entry.

2. Update the Sun DSEE Retro Change Log Plug-in to include the deleted-by-sync

auxiliary object class as a value for the deletedEntryAttrs attribute.

3. Write an LDAPSyncDestinationPlugin script that in the preDelete() method modifies
the entry that is being deleted to include the deleted-by-sync objectclass.

4. Update the Sync Class filter that is excluding changes by the Sync User to also include (!
(objectclass=deleted-by-sync)).

- 91 -

Configure DN maps

Configure DN maps
Similar to attribute maps, DN maps define mappings when destination DNs differ from source

DNs. These differences must be resolved using DN maps in order for synchronization to

successfully take place. For example, the Sync Source could have a DN in the following

format:

uid=jdoe,ou=People,dc=example,dc=com

While the Sync Destination could have the standard X.500 DN format.

DN mappings allow the use of wild cards for DN transformations. A single wild card (*)

matches a single RDN component and can be used any number of times. The double wild card

(**) matches zero or more RDN components and can be used only once.

Note
If a literal '*' is required in a DN then it must be escaped as '\2A'.

The wild card values can be used in the to-dn-pattern attribute using {1} to replace their

original index position in the pattern, or {attr} to match an attribute value. For example:

*,**,dc=com->{1},ou=012,o=example,c=us

For example, using the DN, uid=johndoe,ou=People,dc=example,dc=com, and mapping to

the target DN, uid=johndoe,ou=012,o=example,c=us:

l "*" matches one RDN component, uid=johndoe

l "**" matches zero or more RDN components, ou=People,dc=example

l "dc=com" matches dc=com in the DN.

The DN is mapped to the {1},ou=012,o=example,c=us. "{1}" substitutes the first wildcard

element "uid=johndoe", so that the DN is successfully mapped to:

uid=johndoe,ou=012,o=example,c=us

Regular expressions and attributes from the user entry can also be used in the to-dn-pattern

attribute. For example, the following expression constructs a value for the uid attribute,

which is the RDN, out of the initials (first letter of givenname and sn) and the employee ID (the

eid attribute) of a user.

uid={givenname:/^(.)(.*)/$1/s}{sn:/^(.)(.*)/$1/s}{eid},{2},o=example

Note
The PingDataSync Server automatically validates any DN mapping prior to applying the configuration.

- 92 -

Chapter 3: Configure the PingDataSync Server

Configuring a DN Map Using dsconfig

A DN map can be configured using dsconfig, either with the interactive DN Map menu, or from

the command line.

Perform the following to configure a DN map:

1. Use dsconfig to create a DN map for the PingDataSync Server.

$ bin/dsconfig --no-prompt create-dn-map \
 --map-name nested-to-flattened \
 --set "from-dn-pattern:*,*,dc=example,dc=com" \
 --set "to-dn-pattern:uid={givenname:/^(.)(.*)/\$1/s}{sn:/^(.)(.*)/\$1/s}
(eid},{2},o=example" \
 --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

2. After DN mappings are configured, add the new DN map to a new Sync Class or modify
an existing Sync Class.

$ bin/dsconfig --no-prompt set-sync-class-prop \
 --pipe-name test-sync-pipe \
 --class-name test-sync-class \
 --set dn-map:test-dn-map \
 --port 389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

Configure synchronization with JSON attribute values
The PingDataSync Server supports synchronization of attributes that hold JSON objects. The

following scenarios are supported:

l Synchronizing a JSON attribute to another JSON attribute - A subset of fields can
be synchronized, optionally retaining fields that appear at the destination but not at the
source.

l Synchronizing a JSON attribute to a non-JSON attribute - A single field of the
JSON value can be extracted with a constructed attribute mapping.

l Synchronizing a non-JSON attribute to a JSON attribute - The source value can be
escaped so that it ensures the JSON value is properly formatted.

l Attribute correlation - A JSON field can be used when correlating a destination entry
with a source entry.

The following examples show configuration scenarios based on the LDAP ubidEmailJSON

attribute, which has fields of value, type, primary, and verified:

- 93 -

Configure synchronization with JSON attribute values

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home",
 "primary" : true,
 "verified" : true}

Synchronize ubidEmailJSON fully

If a source JSON attribute value should be synchronized fully to a destination JSON attribute

value, no special configuration is required.

Synchronize a subset of fields from the source attribute

For example, the following configuration can be used to synchronize the value and type

fields of ubidEmailJSON from the source to a destination. To synchronize this source value:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home",
 "primary" : true}

to this value at the destination:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home"}

A JSON Attribute configuration object must be created and associated with the Sync Class. This

can be done by either explicitly including the fields to synchronize:

$ bin/dsconfig create-json-attribute --pipe-name "A to B" \
 --class-name Users \
 --attribute-name ubidEmailJSON \
 --set include-field:type \
 --set include-field:value

Or by excluding the fields that should not be synchronized:

$ bin/dsconfig create-json-attribute \
 --pipe-name "A to B" \
 --class-name Users \
 --attribute-name ubidEmailJSON \

--set exclude-field:preferred \
 --set exclude-field:verified

If the destination is prepared to only handle a specific subset of fields, then list the fields to

include. However, if only a small, known subset of fields from the source should be excluded,

then exclude-field could be used. In this example, the destination data for the

ubidEmailJSON attribute will always be a subset of the full data.

Note
A Sync Class can be configured to exclude certain attributes from synchronization. Creating a regular

- 94 -

Chapter 3: Configure the PingDataSync Server

attributemapping will override this setting, and the attribute will be synchronized. Creating a JSON
attributemapping does not override this setting, and the JSON attribute will not be synchronized. A JSON
attribute is not a traditional attributemapping. It only includes information on the destination attribute
name. To work around this, the attribute either needs to bemapped from a source attribute, or have its
value constructed.

The following scenario illustrates how the destination can include additional fields that are not

present at the source.

Retain destination-only fields

To synchronize changes to the source fields while preserving the value of the the verified

field of the ubidEmailJSON attribute at the destination, configure the JSON Attribute as

follows:

$ bin/dsconfig create-json-attribute \
 --pipe-name "A to B" \
 --class-name Users \
 --attribute-name ubidEmailJSON \
 --set id-field:value \
 --set exclude-field:verified

The verified field is excluded and value is chosen to correlate destination values with

source values. For example, given that the source and destination value fields match, if the

source initially contained:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home"}

and the destination contained:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home",
 "verified" : true},

if the source changed to:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "other"}

then the destination would change to:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "other",
 "verified" : true}

However, if the source changed to:

- 95 -

Configure synchronization with JSON attribute values

ubidEmailJSON: {"value" : "john.smith@example.com",
 "type" : "home"}

then the destination would be updated to:

ubidEmailJSON: {"value" : "john.smith@example.com",
 "type" : "home"}

The verified field has been dropped because this logically represents a new JSON object

rather than an update of an existing one.

Synchronize a field of a JSON attribute into a non-JSON attribute

If the source stores:

ubidEmailJSON: {"value" : "jsmith@example.com",
 "type" : "home"}

but the destination stores:

mail: jsmith@example.com

To synchronize changes between these systems, a constructed attribute mapping must be

configured:

$ bin/dsconfig create-attribute-mapping \
 --map-name "Attribute Map" \
 --mapping-name mail \
 --type constructed \
 --set "value-pattern:{ubidEmailJSON.value}"

The value-pattern syntax allows attributes to be referenced by placing them in {}. JSON

fields within the attribute can be referenced by using the syntax {attribute.field}. See this

property in the Configuration Refernce guide, or dsconfig tool command help for more

information.

After the “Attribute Map” is created, it can be referenced from the Sync Class:

$ bin/dsconfig set-sync-class-prop
 --pipe-name "A to B" \
 --class-name Users \
 --set "attribute-map:Attribute Map"

Note
While LDAP attribute names are not case sensitive, the JSON field names are. By default, errors related
to attributemapping are not logged. To enable error logging, configure the Debug Logger with the following:

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true

- 96 -

Chapter 3: Configure the PingDataSync Server

$ bin/dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name com.unboundid.directory.sync.mapping \
 --set debug-level:warning

Synchronize a non-JSON attribute into a field of a JSON attribute

This is the reverse of the previous example. Suppose the source stores:

mail: jsmith@example.com

but the destination stores:

ubidEmailJSON: {"value" : "jsmith@example.com"}

A constructed attribute mapping can be used in this case as well:

$ bin/dsconfig create-attribute-mapping \
 --map-name "Attr Map" \
 --mapping-name ubidEmailJSON \
 --type constructed \
 --set 'value-pattern:{{"value" : "{mail:jsonEscape}"}}'

When constructing the value, the following are important:

l Double curly brackets ({{ }}) are necessary to represent a single curly bracket ({ })
in the output. These brackets are typically used to reference attribute values.

l Attribute values that appear within a JSON attribute should be escaped using the
:jsonEscape modifier. This prevents values that include quotes like ‘“John Smith”

<jsmith@example.com>’ from producing invalid JSON.

In this example, a JSON Attribute object should be created since the destination value is likely

to be augmented with additional information:

$ bin/dsconfig create-json-attribute \
 --pipe-name "A to B" \
 --class-name Users \
 --attribute-name ubidEmailJSON \
 --set id-field:value \
 --set include-field:value

Correlating attributes based on JSON fields

When the destination of a Sync Pipe is a Ping Directory Server or PingDirectoryProxy Server,

source and destination entries can be correlated by referencing a field within a JSON attribute.

In the following example, source entries will be matched with destination entries that have the

same value field within the ubidEmailJSON value.

- 97 -

Configure fractional replication

$ bin/dsconfig set-sync-class-prop \
 --pipe-name "A to B" \
 --class-name Users \
 --set destination-correlation-attributes:ubidEmailJSON.value

This could also be used with the previous example, which does not store

ubidEmailJSON.value at the source but maps into it before correlating at the destination.

Configure fractional replication
The PingDataSync Server supports fractional replication to any server type. For example, if a

replica only performs user authentications, the PingDataSync Server can be configured to

propagate only the uid and userpassword password policy attributes, reducing the database

size at the replica and the network traffic needed to keep this servers synchronized.

The following example configures a fractional replication, where the uid and userPassword

attributes of all entries in the source topology are synchronized to the destination topology.

Because the uid and userPassword attributes are present, the objectclass attribute must

also be synchronized. The example assumes that a PingDataSync Server and external servers

are configured and a Sync Pipe and Sync Class are defined, but realtime synchronization or

bulk resync have not been performed.

Perform the following steps to configure fractional replication from the dsconfig interactive

menu:

1. On the main menu, type the number corresponding to Sync Classes.

2. On the Sync Class menu, type the number corresponding to viewing and editing an
existing Sync Class. Assume that only one Sync Class has been defined.

3. Verify that the Sync Pipe and Sync Class exist.

4. On the Sync Class Properties menu, type the number specifying the source LDAP filter
(include-filter property) that defines which source entries are to be included in the
Sync Class.

5. On the Include-Filter Property menu, type the number corresponding to adding a filter
value. For this example, type (objectclass=person). When prompted, enter another
filter. Press Enter to continue. On the menu, enter 1 to use the value when specifying it.

6. On the Sync Class Properties menu, type the number corresponding to the auto-mapped-
source-attribute property. Change the value from "-all-" to a specific attribute, so

- 98 -

Chapter 3: Configure the PingDataSync Server

that only the specified attribute is automatically mapped from the source topology to the
destination topology.

7. On the Auto-Mapped-Source-Attribute Property menu, type the number corresponding to
adding the source attributes that will be automatically mapped to the destination
attributes of the same name. When prompted, enter each attribute, and then press
Enter.

Enter another value for the 'auto-mapped-source-attribute' property
[continue]: uid
Enter another value for the 'auto-mapped-source-attribute' property
[continue]: userPassword
Enter another value for the 'auto-mapped-source-attribute' property
[continue]: objectclass
Enter another value for the 'auto-mapped-source-attribute' property
[continue]:

8. On the Auto-Mapped-Source-Attribute Property menu, type the number corresponding to
removing one or more values. In this example, remove the "-all-" value, so that only
the objectclass, uid, and userPassword attributes are only synchronized.

9. On the Auto-Mapped-Source-Attribute Property menu, press Enter to accept the values.

10. On the Sync Class Properties menu, type the number corresponding to excluding some
attributes from the synchronization process. When using the objectclass=person filter,
the cn, givenName, and sn attributes must be excluded. Enter the option to add one or
more attributes, and then add each attribute to exclude on the excluded-auto-mapped-
source-attributes Property menu. For this example, exclude the cn, and sn
attributes, which are required attributes of the Person objectclass. Also exclude the
givenName attribute, which is an optional attribute of the inetOrgPerson objectclass.

Enter another value for the 'excluded-auto-mapped-source-attributes'
property
[continue]: givenName
Enter another value for the 'excluded-auto-mapped-source-attributes'
property
[continue]: sn
Enter another value for the 'excluded-auto-mapped-source-attributes'
property
[continue]:

11. On the Excluded-Auto-Mapped-Source-Attributes Property menu, press Enter to accept
the changes.

Note
If using entryUUID as a correlation attribute, some attribute uniqueness errors may occur while using
the resync tool. Either set the excluded-auto-mapped-source-attributes property value to
entryUUID on the Sync Class configurationmenu, or run resync with the --
excludeDestinationAttr entryUUID argument.

- 99 -

Configure failover behavior

12. On the Sync Class Properties menu, review the configuration and accept the changes.

13. On the server instances in the destination topology, turn off schema checking to avoid a
schema error that occurs when the required attributes in the Person object class are not
present. Make sure that the global configuration property for the server-group is set to
all-servers. Use the following command to turn off schema checking on all of the
servers in the group.

$ bin/dsconfig --no-prompt set-global-configuration-prop \
 --set check-schema:false \
 --applyChangeTo server-group \
 --port 3389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

14. Run bin/resync to load the filtered data from the source endpoint to the target endpoint.

$ bin/resync --pipe-name "test-sync-pipe" \
 --numPasses 3

15. Run bin/realtime-sync to start synchronization.

$ bin/realtime-sync start --pipe-name "test-sync-pipe" \
 --port 7389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --no-prompt

Configure failover behavior
The following illustrates a simplified synchronization topology with a single failover server on

the source, destination, and PingDataSync Server, respectively. The gray lines represent

possible failover connections in the event the server is down. The external servers are

prioritized so that src1 has higher priority than src2; dest1 has higher priority than dest2.

The main PingDataSync Server and its redundant failover instance communicate with each

other over LDAP and bind using cn=IntraSync User,cn=Root DNs,cn=config. The servers

run periodic health checks on each other and share information on all changes that have been

processed. Whenever the failover server loses connection to the main server, it assumes that

the main server is down and begins processing changes from the last known change. Control

reverts back to the main server once it is back online.

Unlike the PingDataSync Server servers, the external servers and their corresponding failover

server(s) do not run periodic health checks. If an external server goes offline, the failover

- 100 -

Chapter 3: Configure the PingDataSync Server

server will receive transactions and remain connected to the PingDataSync Server until the

Sync Pipe is restarted, regardless of if the main external server comes back online.

The PingDataSync Server in a Simplified Setup

The PingDataSync Server Sample Failover

Conditions that trigger immediate failover

Immediate failover occurs when the PingDataSync Server receives one of the following error

codes from an external server:

l BUSY (51)

l UNAVAILABLE (52)

l SERVER CONNECTION CLOSED (81)

l CONNECT ERROR (91)

- 101 -

Configure failover behavior

If the PingDataSync Server attempts a write operation to a target server that returns one of

these error codes, the PingDataSync Server will automatically fail over to the next highest

prioritized server instance in the target topology, issue an alert, and then reissue the retry

attempt. If the operation is unsuccessful for any reason, the server logs an error.

Failover server preference

The PingDataSync Server supports endpoint failover, which is configurable using the location

property on the external servers. By default, the PingDataSync Server prefers to connect to

and failover to endpoint servers in the same location as itself. If no location settings are

configured, the PingDataSync Server will iterate through the configured list of external servers

on the Sync Source and Sync Destination when failing over.

The PingDataSync Server does not perform periodic health checks of external servers, and

does not failover automatically to a preferred external server. Due to the cost of sync failover,

PingDataSync Server remains connected to a given server until the server stops responding or

until the Sync Pipe is restarted. When a failover occurs, PingDataSync Server returns to the

most preferred server, optionally using location settings to identify it, and works its way down

the list. The following provides an example configuration of external servers:

austin1.server.com:1389
london1.server.com:2389
boston1.server.com:3389
austin2.server.com:4389
boston2.server.com:5389
london2.server.com:6389

If the austin1 server were to become unavailable, the PingDataSync Server will automatically

pick up changes on the next server on the list, london1. If london1 is also down, then the next

server, boston1 will be picked up. Once the PingDataSync Server iterates through the list, it

returns to the top of the list. So, if the PingDataSync Server is connected to london2 and it goes

down, it will fail over to austin1.

To minimize WAN traffic, configure the location property for each external server using the

dsconfig command on the PingDataSync Server. Assume that PingDataSync Server has its

own location property (set in the Global Configuration) set to "austin."

austin1.server.com:1389 location=austin
london1.server.com:2389 location=london
boston1.server.com:3389 location=boston
austin2.server.com:4389 location=austin

- 102 -

Chapter 3: Configure the PingDataSync Server

boston2.server.com:5389 location=boston
london2.server.com:6389 location=london

With the location property set for each server, the PingDataSync Server gets its changes

from server austin1. If austin1 goes down, the PingDataSync Server will pick up changes from

austin2. If austin2 goes down, the server will iterate through the rest of the list in the order it

is configured.

The location property has another sub-property, preferred-failover-location that

specifies a set of alternate locations if no servers in this location are available. If multiple

values are provided, servers are tried in the order in which the locations are listed. The

preferred-failover-location property provides more control over the failover process and

allows the failover process to jump to a specified location. Care must be used so that circular

failover reference does not take place. Here is an example configuration:

austin1.server.com:1389 location=austin preferred-failover-location=boston
london1.server.com:2389 location=london preferred-failover-location=austin
boston1.server.com:3389 location=boston preferred-failover-location=london
austin2.server.com:4389 location=austin preferred-failover-location=boston
boston2.server.com:5389 location=boston preferred-failover-location=austin
london2.server.com:6389 location=london preferred-failover-location=london

The PingDataSync Server will respect the preferred-failover-location if it cannot find any

external servers in the same location as itself, it will look for any external servers in its own

preferred-failover-location. In this example, when austin1 becomes unavailable, it will

fail over to austin2 because they are in the same location. If austin2 is unavailable, it will fail

over to boston1, which is in the preferred-failover-location of the PingDataSync Server.

If boston1 in unavailable, the PingDataSync Server will fail over to boston2, and finally, it will

try the london1 and london2 servers.

Configuration properties that control failover behavior

There are four important advanced properties to fine tune the failover mechanism:

l max-operation-attempts (Sync Pipe)

l response-timeout (source and destination endpoints)

l max-failover-error-code-frequency (source and destination endpoints)

l max-backtrack-replication-latency (source endpoints only)

These properties apply to the following LDAP error codes:

- 103 -

Configure failover behavior

Error Code Description

ADMIN_LIMIT_EXCEEDED (11) Indicates that processing on the requested operation

could not continue, because an administrative limit was

exceeded.

ALIAS_DEREFERENCING_ PROBLEM (36) Indicates that a problem was encountered while

attempting to dereference an alias for a search operation.

CANCELED (118) Indicates that a cancel request was successful, or that the

specified operation was canceled.

CLIENT_SIDE_LOCAL_ERROR (82) Indicates that a local (client-side) error occurred.

CLIENT_SIDE_ENCODING_ERROR (83) Indicates that an error occurred while encoding a

request.

CLIENT_SIDE_DECODING_ERROR (84) Indicates that an error occurred while decoding a

request.

CLIENT_SIDE_TIMEOUT (85) Indicates that a client-side timeout occurred.

CLIENT_SIDE_USER_CANCELLED (88) Indicates that a user canceled a client-side operation.

CLIENT_SIDE_NO_MEMORY (90) Indicates that the client could not obtain enough memory

to perform the requested operation.

CLIENT_SIDE_CLIENT_LOOP (96) Indicates that a referral loop is detected.

CLIENT_SIDE_REFERRAL_LIMIT_ EXCEEDED (97) Indicates that the referral hop limit was exceeded.

DECODING_ERROR (84) Indicates that an error occurred while decoding a

response.

ENCODING_ERROR (83) Indicates that an error occurred while encoding a

response.

INTERACTIVE_TRANSACTION_ ABORTED

(30221001)

Indicates that an interactive transaction was aborted.

LOCAL_ERROR (82) Indicates that a local error occurred.

LOOP_DETECT (54) Indicates that a referral or chaining loop was detected

while processing a request.

NO_MEMORY (90) Indicates that not enough memory could be obtained to

perform the requested operation.

OPERATIONS_ERROR (1) Indicates that an internal error prevented the operation

LDAP Error Codes

- 104 -

Chapter 3: Configure the PingDataSync Server

Error Code Description

from being processed properly.

OTHER (80) Indicates that an error occurred that does not fall into any

of the other categories.

PROTOCOL_ERROR (2) Indicates that the client sent a malformed or illegal

request to the server.

TIME_LIMIT_EXCEEDED (3) Indicates that a time limit was exceeded while attempting

to process the request.

TIMEOUT (85) Indicates that a timeout occurred.

UNWILLING_TO_PERFORM (53) Indicates that the server is unwilling to perform the

requested operation.

LDAP Error Codes

The max-operation-attempts property

The max-operation-attempts property (part of the Sync Pipe configuration) specifies the

maximum number of times to retry a synchronization operation that fails for reasons other

than the Sync Destination being busy, unavailable, server connection closed, or connect error.

To change the default number of retries, use dsconfig in non-interactive mode to change the

max-operation-attempts value on the Sync Pipe object. The following command changes the

number of maximum attempts from five (default) to four.

$ bin/dsconfig set-sync-pipe-prop \
 --pipe-name "Test Sync Pipe" \
 --set max-operation-attempts:4

The response-timeout property

The response-timeout property specifies how long the PingDataSync Server should wait for a

response from a search request to a source server before failing with LDAP result code 85

(client-side timeout). When a client-side timeout occurs, the Sync Source will retry the request

according to the max-failover-error-code-frequency property before failing over to a

different source server and performing the retry. The total number of retries will not exceed

the max-operation-attempts property defined in the Sync Pipe configuration. A value of zero

indicates that there should be no client-side timeout. The default value is one minute.

- 105 -

Configure failover behavior

Assuming a bidirectional topology, the property can be set with dsconfig on the Sync Source

and Sync Destination, respectively.

$ bin/dsconfig set-sync-source-prop \
 --source-name src \
 --set "response-timeout:8 s"

$ bin/dsconfig set-sync-destination-prop \
 --destination-name U4389 \
 --set "responsetimeout:9 s"

The max-failover-error-code-frequency property

The max-failover-error-code-frequency property (part of the Sync Source configuration)

specifies the maximum time period that an error code can re-appear until it fails over to

another server instance. This property allows the retry logic to be tuned, so that retries can be

performed once on the same server before giving up and trying another server. The value can

be set to zero if there is no acceptable error code frequency and failover should happen

immediately. It can also be set to a very small value (such as 10 ms) if a high frequency of

error codes is tolerable. The default value is three minutes.

To change the max-failover-error-code-frequency property, use dsconfig in non-

interactive mode to change the property on the Sync Source object. The following command

changes the frequency from three minutes to two minutes.

$ bin/dsconfig set-sync-source-prop \
 --source-name source1 \
 --set "max-failover-error-code-frequency:2 m"

The max-backtrack-replication-latency property

The max-backtrack-replication-latency property (part of the Sync Source configuration)

sets the time period that an PingDataSync Server will look for missed changes in the change

log due to replication delays. The property should be set to a conservative upper-bound of the

maximum replication delay between two servers in the topology. A value of zero implies that

there is no limit on the replication latency. The default value is two hours. ThePingDataSync

Server stops looking in the change log once it finds a change that is older than the maximum

replication latency than the last change it processed on the failed server.

For example, after failing over to another server, the PingDataSync Server must look through

the new server’s change log to find the equivalent place to begin synchronizing changes.

- 106 -

Chapter 3: Configure the PingDataSync Server

Normally, the PingDataSync Server can successfully backtrack with only a few queries of the

directory, but in some situations, it might have to look further back through the change log to

make sure that no changes were missed. Because the changes can come from a variety of

sources (replication, synchronization, and over LDAP), the replicated changes between

directory servers are interleaved in each change log. When the PingDataSync Server fails over

between servers, it has to backtrack to figure out where synchronization can safely pick up the

latest changes.

Backtracking occurs until the following:

l The server determines that there is no previous change log state available for any source
servers, so it must start at the beginning of the change log.

l The server finds the last processed replication change sequence number (CSN) from the
last time it was connected to that replica, if at all. This process is similar to the set-
startpoint functionality on the realtime-sync tool.

l The server finds the last processed replication CSN from every replica that has produced
a change so far, and it determines that each change entry in the next oldest batch of
changes has already been processed.

l The server finds a change that is separated by more than a certain duration (specified by
the max-backtrack-replication-latency property) from the most recently processed
change.

The following command changes the maximum backtracking from two hours to three hours.

$ bin/dsconfig set-sync-source-prop \
 --source-name source1 \
 --set "max-backtrack-replication-latency:3 h"

Configure traffic through a load balancer
If a PingData server is sitting behind an intermediate HTTP server, such as a load balancer, a

reverse proxy, or a cache, it will log incoming requests as originating with the intermediate

HTTP server instead of the client that actually sent the request. If the actual client's IP address

should be recorded to the trace log, enable X-Forwarded-* handling in both the intermediate

HTTP server and the PingData server. See the product documentation for the device type. For

PingData servers:

l Edit the appropriate Connection Handler object (HTTPS or HTTP) and set use-
forwarded-headers to true.

- 107 -

Configure authentication with a SASL external certificate

l When use-forwarded-headers is set to true, the server will use the client IP address
and port information in the X-Forwarded-* headers instead of the address and port of
the entity that's actually sending the request, the load balancer. This client address
information will show up in logs where one would normally expect it to show up, such as
in the from field of the HTTP REQUEST and HTTP RESPONSE messages.

Configure authentication with a SASL external
certificate
By default, the PingDataSync Server authenticates to the PingDirectory Server using LDAP

simple authentication (with a bind DN and a password). However, the PingDataSync Server can

be configured to use SASL EXTERNAL to authenticate to the PingDirectory Server with a client

certificate.

Note
This procedure assumes that PingDataSync Server instances are installed and configured to
communicate with the backend PingDirectory Server instances using either SSL or StartTLS.

After the servers are configured, perform the following steps to configure SASL EXTERNAL

authentication:

1. Create a JKS keystore that includes a public and private key pair for a certificate that the
PingDataSync Server instance(s) will use to authenticate to the PingDirectory Server
instance(s). Run the following command in the instance root of one of the PingDataSync
Server instances. When prompted for a keystore password, enter a strong password to
protect the certificate. When prompted for the key password, press ENTER to use the
keystore password to protect the private key:

$ keytool -genkeypair \
 -keystore config/sync-user-keystore \
 -storetype JKS \
 -keyalg RSA \
 -keysize 2048 \
 -alias sync-user-cert \
 -dname "cn=Sync User,cn=Root DNs,cn=config" \
 -validity 7300

2. Create a config/sync-user-keystore.pin file that contains a single line that is the
keystore password provided in the previous step.

3. If there are other PingDataSync Server instances in the topology, copy the sync-user-
keystore and sync-user-keystore.pin files into the config directory for all instances.

4. Use the following command to export the public component of the user certificate to a
text file:

- 108 -

Chapter 3: Configure the PingDataSync Server

$ keytool -export \
 -keystore config/sync-user-keystore \
 -alias sync-user-cert \
 -file config/sync-user-cert.txt

5. Copy the sync-user-cert.txt file into the config directory of all PingDirectory Server
instances. Import that certificate into each server's primary trust store by running the
following command from the server root. When prompted for the keystore password,
enter the password contained in the config/truststore.pin file. When prompted to
trust the certificate, enter yes.

$ keytool -import \
 -keystore config/truststore \
 -alias sync-user-cert \
 -file config/sync-user-cert.txt

6. Update the configuration for each PingDataSync Server instance to create a new key
manager provider that will obtain its certificate from the config/sync-user-keystore

file. Run the following dsconfig command from the server root:

$ dsconfig create-key-manager-provider \
 --provider-name "Sync User Certificate" \
 --type file-based \
 --set enabled:true \
 --set key-store-file:config/sync-user-keystore \
 --set key-store-type:JKS \
 --set key-store-pin-file:config/sync-user-keystore.pin

7. Update the configuration for each LDAP external server in each PingDataSync Server
instance to use the newly-created key manager provider, and also to use SASL
EXTERNAL authentication instead of LDAP simple authentication. Run the following
dsconfig command:

$ dsconfig set-external-server-prop \
 --server-name ds1.example.com:636 \
 --set authentication-method:external \
 --set "key-manager-provider:Sync User Certificate"

After these changes, the PingDataSync Server should re-establish connections to the LDAP

external server and authenticate with SASL EXTERNAL. Verify that the PingDataSync Server is

still able to communicate with all backend servers by running the bin/status command. All of

the servers listed in the "--- LDAP External Servers ---" section should have a status of

Available. Review the PingDirectory Server access log can to make sure that the BIND

RESULT log messages used to authenticate the connections from the PingDataSync Server

include authType="SASL", saslMechanism="EXTERNAL", resultCode=0, and

authDN="cn=Sync User,cn=Root DNs,cn=config".

- 109 -

Configure an LDAPv3 Sync Source

Configure an LDAPv3 Sync Source
Synchronization can be performed with an LDAP V3-compliant source, such as IBM SDS (Tivoli

Directory Server), Oracle Unified Directory, DSEE, or OpenDJ, by configuring a Generic LDAP

Sync Source. The PingDataSync Server relies on the source server having a cn=changelog

implementation. If the server does not have a cn=changelog implementation, a Server SDK

Change Detector extension can be configured to define the change detection criteria that the

PingDataSync Server should use.

If multiple Generic LDAP Sync Source instances are defined, the order in which they are added

is used as a priority order for failover. If server locations are defined, the PingDataSync

Server will always fail over to servers that are in the same location. If there are multiple Sync

Sources in the same location as the PingDataSync Server, then the PingDataSync Server will

fail over to the first local server in the list and proceed down the list.

During synchronization, when a change is detected by the PingDataSync Server, the changed

entry is fetched from the source. Initially, the DN of the entry is used to search for the entry. If

that search fails then a second search is performed using the unique-id-attribute if it is

defined. This is typically an operational attribute that is automatically generated by the server,

such as entryUUID.

Server SDK extensions
Custom server extensions can be created with the Server SDK. Extension bundles are installed

from a .zip archive or a file system directory. Use the manage-extension tool to install or

update any extension that is packaged using the extension bundle format. It opens and loads

the extension bundle, confirms the correct extension to install, stops the server if necessary,

copies the bundle to the server install root, and then restarts the server.

Note
The manage-extension tool must be used with Java extensions packaged using the extension bundle
format. For more information, see the "Building and Deploying Java-Based Extensions" section of the
Server SDK documentation.

The Server SDK enables creating extensions for all PingData servers. Cross-product extensions

include:

- 110 -

Chapter 3: Configure the PingDataSync Server

l Access Loggers

l Alert Handlers

l Error Loggers

l Key Manager Providers

l Monitor Providers

l Trust Manager Providers

l OAuth Token Handlers

l Manage Extension Plugins

- 111 -

Chapter 4: Synchronize with PingOne for
Customers

The PingDataSync Server supports PingOne for Customers as a synchronization destination

and source for newly created or modified accounts with native password changes between

directory servers, relational databases, or other PingOne for Customers systems.

This chapter presents configuration procedures for synchronization between PingDirectory

Server, Nokia 8661 Directory Server, or other LDAP source servers or targets with PingOne

for Customers.

Topics include:

Prerequisites

Synchronize changes to a PingOne for Customers environment

Synchronize changes from a PingOne for Customers environment

- 112 -

Chapter 4: Synchronize with PingOne for Customers

Prerequisites
Before attempting to synchronize changes to or from a PingOne for Customers environment,

make certain the prerequisites in this section are satisfied.

Worker application

AWorker application is an administrator application that can have the same roles as human

administrators. You can use Worker applications to create a userless service app that can

perform administrator functions. Role assignments determine the functions that the app can

perform.

Required grant type

By default, Worker applications are configured with the required Client Credentials grant type.

They can also be configured to support additional grant/response types, similar to the other

app types.

The Worker application can also perform administrator functions with the role of its user. To

accomplish this task, give the app one or more additional grant types, which are used instead

of the role assignments.

Required roles

A role is a collection of permissions that can be assigned to a user. Of the many roles that

PingOne for Customers includes by default, the following ones are required for the Worker app

that you need to create:

l Environment Admin – Manages environments. Permissions center around managing
environments and include functions like viewing populations and password policies,
assigning roles, and creating, editing, and deleting environments.

l Identity Data Admin – Manages identities and identity data. Permissions center around
managing user identities and include functions like creating users, resetting a user's
password, and creating, editing, and deleting populations.

- 113 -

Prerequisites

Create a Worker application

Before you create a Worker application, make certain you have the following information

ready:

l The app name and description

l Redirect URLs for authentication (required for interactive applications only)

Perform the following steps to create a Worker app:

1. At the top of the Administrator Console, click Connections.

2. Click Applications, and then click + Application.

3. From the list of application types, selectWorker.

4. Click Configure to view the Create App Profile page.

5. Specify the following information:
l Application name – Unique identifier for the app.

l Optional: Description – Brief characterization of the app.

l Optional: Icon – Pictorial representation of the app. Use a file up to 1MB in JPG,
JPEG, GIF, or PNG format.

6. Click Save and Close.

The app is displayed on the Applications page.

7. Make note of the OAuth client ID, which appears directly below the name of the app.

This value is required when creating a PingOne for Customers sync destination or source.

8. From the list box to the right of the app, select Edit (Pencil).

9. Click Configuration.

10. In the Basic Configuration section, make note of the client secret.

This value is required when creating a PingOne for Customers sync destination or source.

11. In the Advanced Configuration section, make the following selections:
l For a grant type, select Client Credentials.

l For a token endpoint authentication method, select Client Secret Post.

12. Click Save.

13. In the upper-left corner, click To Application List.

14. Enable the app by toggling the corresponding on/off switch.

The switch appears green when the app is enabled.

15. At the top of the Administrator Console, click Settings.

- 114 -

Chapter 4: Synchronize with PingOne for Customers

16. In the navigation panel to the left, click Environment > Properties.

17. Make note of the environment ID.

This value is required when creating a PingOne for Customers sync destination or source.

For more information, refer to PingOne for Customers Administration Guide.

PingOne user resource model

A user resource is a unique identity within PingOne that interacts with the applications and

services in the environment to which the user is assigned. Users are associated with an

environment and a population, and the service implements directory functions to create, read,

update, delete, and search for user resources. For more information, refer to the Users data

model or to the PingOne for Customers API Guide.

The username field is required with the PingOne user resource model. This field is a string that

specifies the user name, which must be unique within an environment. Limited to 128

characters in length, the username must be a well-formed email address or a string of any

Unicode letter, mark (like an accent or umlaut), dot, underscore, or hyphen.

Synchronize changes to a PingOne for Customers
environment
This section describes the configuration that is necessary to synchronize changes to a PingOne

for Customers environment. To view an example configuration, refer to the file reference-

ping-one-sync-destination-configuration.dsconfig, which is located in the folder

named resources.

Create a PingOne for Customers sync destination

Before you create a PingOne for Customers sync destination, make certain you have the

following information ready:

l Environment ID (environment-id)

l OAuth client ID (oauth-client-id)

l OAuth client secret (oauth-client-secret)

For information about obtaining these values, see "Create a worker application" in Worker

application.

- 115 -

https://documentation.pingidentity.com/pingone/p14cAdminGuide/index.shtml
https://apidocs.pingidentity.com/pingone/customer/v1/api/man/p1_Users/
https://apidocs.pingidentity.com/pingone/customer/v1/api/man/p1_Users/
https://apidocs.pingidentity.com/pingone/customer/v1/api/guide/index.html

Synchronize changes to a PingOne for Customers environment

The following sample creates a PingOne for Customers sync destination.

dsconfig create-sync-destination \
--destination-name PingOne \
--type ping-one-customer \
--set api-url:https://api.pingone.com/v1 \
--set auth-url:https://auth.pingone.com/[PING_ONE_ENV_ID]/as/token \
--set environment-id:[PING_ONE_ENV_ID] \
--set oauth-client-id:[PING_ONE_OAUTH_CLIENT_ID] \
--set oauth-client-secret:[PING_ONE_OAUTH_CLIENT_SECRET]

Configure attribute mapping

The PingOne User model contains simple JSON attributes like "title": "Director" as well as

complex JSON objects like {"name": {"given": "Jane", "family": “Doe”}}. To ensure

accurate processing when you construct attribute mappings that interact with complex objects,

construct valid JSON strings and use the command jsonEscape, as the following example

shows.

dsconfig create-attribute-mapping \
--map-name PingDirectory_to_PingOne_User_Map \
--mapping-name name \
--type constructed \
--set 'value-pattern:{{"given":"{givenname:jsonEscape}","family":"

{sn:jsonEscape}"}}'

Some attributes in the User resource are operational and cannot be modified by synchronizing

data. For more information, refer to the PingOne for Customers API Guide.

Correlating entries

The PingOne User Resource model provides an attribute named externalId. To ensure that

users correlate to the appropriate entry in PingDirectory, map entryUUID to this value and

configure externalId as a destination-correlation-attribute on the Sync class.

Considerations and limitations

This section describes limitations and other constraints to consider when synchronizing

changes to a PingOne for Customers environment.

Populations

All PingOne user resources must exist within a population. The PingOne Customers

synchronization destination provides the following methods for managing a user's population:

- 116 -

https://apidocs.pingidentity.com/pingone/customer/v1/api/guide/index.html

Chapter 4: Synchronize with PingOne for Customers

l If a single population is in use, set the configuration attribute default-population-id
on the sync destination.

l If multiple populations are in use, use a constructed attribute mapping.

The following syntax provides an example.

dsconfig create-attribute-mapping \
--map-name PingDirectory_to_PingOne_User_Map \
--mapping-name population \
--type constructed \
--set 'value-pattern:{{"id":"[DEFAULT_POPULATION_ID]"}}'

To set the population properly, make certain to construct a valid JSON object.

Synchronize changes from a PingOne for Customers
environment
This section describes the configuration that is necessary to synchronize changes from a

PingOne for Customers environment. To view an example configuration, refer to the file

reference-ping-one-sync-source-configuration.dsconfig, which is located in the folder

named resources.

Create a PingOne for Customers sync source

Before you create a PingOne for Customers sync source, make certain you have the following

information ready:

l Environment ID (environment-id)

l OAuth client ID (oauth-client-id)

l OAuth client secret (oauth-client-secret)

For information about obtaining these values, see "Create a worker application" in Worker

application.

The following sample creates a PingOne for Customers sync source.

dsconfig create-sync-source \
--source-name PingOne \
--type ping-one-customer \
--set api-url:https://api.pingone.com/v1 \
--set auth-url:https://auth.pingone.com/[PING_ONE_ENV_ID]/as/token \
--set environment-id:[PING_ONE_ENV_ID] \
--set oauth-client-id:[PING_ONE_OAUTH_CLIENT_ID] \
--set oauth-client-secret:[PING_ONE_OAUTH_CLIENT_SECRET]

- 117 -

Synchronize changes from a PingOne for Customers environment

Configure attribute mapping

The process of synchronizing data utilizes the concepts and structures associated with LDAP

entries. Ping Identity recommends that you conceptualize the PingOne User Resource model as

an LDAP entry when configuring atribute mappings. Additionally, you might need to use JSON

pathing when selecting a value for complex JSON attributes within the user.

dsconfig create-attribute-mapping \
--map-name PingOne_to_PingDirectory_User_Map \
--mapping-name givenname \
--type constructed \
--set "value-pattern:{name.given}"

Correlating entries

To ensure that users correlate to the appropriate entry in PingDirectory, map the id attribute

from the user resource to entryUUID in PingDirectory.

Considerations and limitations

This section describes limitations and other constraints to consider when synchronizing

changes from a PingOne for Customers environment.

Bidirectional synchronization

If you plan on configuring bidirectional synchronization between PingOne for Customers and

PingDirectory, make certain that you satisfy the following conditions:

l Use seperate worker apps for the source and destination.

l To prevent the unnecessary duplication of changes, add the client ID of the destination
worker app to the actor-id-to-ignore configuration attribute of the source.

l To ensure that no attribute mappings are mismatched, modify the reference dsconfig
batch files.

Password synchronization

PingDataSync does not support the synchronizing of passwords from PingOne.

- 118 -

Chapter 4: Synchronize with PingOne for Customers

Population management

If your PingOne for Customers environment features a large number of populations, or if you

want to limit synchronized users to a specific set of populations, provide one or more

population-to-synchronize configuration attributes to the source. The name or ID of the

population can be used.

Synchronization delay

PingDataSync propagates changes throughout PingOne for Customers nearly in real time.

However, a delay might occur between the time a change occurs in PingOne and the time it

becomes available for PingDataSync to synchronize. To help ensure that no changes are

missed, a default delay of 5 seconds has been configured within the sync source. For

environments of sufficient size or with high rates of change, use the configuration attribute

realtime-sync-polling-offset on the sync source to increase the delay.

- 119 -

Chapter 5: Synchronize with Active
Directory systems

The PingDataSync Server supports full synchronization for newly created or modified accounts

with native password changes between directory server, relational databases, and Microsoft

Active Directory systems.

This chapter presents configuration procedures for synchronization between PingDirectory

Server, Nokia 8661 Directory Server, or other LDAP source servers or targets with Microsoft

Active Directory systems.

Topics include:

Overview of configuration tasks

Configure synchronization with Active Directory

The Active Directory Sync User account

Prepare external servers

Configure Sync Pipes and Sync Classes

Configure password encryption

Use the Password Sync Agent

- 120 -

Chapter 5: Synchronize with Active Directory systems

Overview of configuration tasks
To configure synchronization with Active Directory systems, the following tasks are

performed:

l Enable SSL connections – If synchronizing passwords between systems,
synchronization with Microsoft Active Directory systems requires that SSL be enabled on
the Active Directory domain controller, so that the PingDataSync Server can securely
propagate the cn=Sync User account password and other user passwords to the target.

l Run the create-sync-pipe-config tool – On the PingDataSync Server, use the
create-sync-pipe-config tool to configure the Sync Pipes to communicate with the
Active Directory source or target.

l Configure outbound password synchronization on an PingDirectory Server
Sync Source – After running the create-sync-pipe-config tool, determine if
outbound password synchronization from an PingDirectory Server Sync Source is
required. If so, enable the Password Encryption component on all PingDirectory Server
sources that receive password modifications. The PingDirectory Server uses the
Password Encryption component, analogous to the Password Sync Agent component, to
intercept password modifications and add an encrypted attribute, ds-changelog-
encrypted-password, to the changelog entry. The component enables passwords to be
synchronized securely to the Active Directory system, which uses a different password
storage scheme. The encrypted attribute appears in the change log and is synchronized
to the other servers, but does not appear in the entries.

l Configure outbound password synchronization on an Active Directory Sync
Source – After running the create-sync-pipe-config tool, determine if outbound
password synchronization from an Active Directory Sync Source is required. If so, install
the Password Sync Agent (PSA) after configuring the PingDataSync Server.

l Run the realtime-sync set-startpoint tool – The realtime-sync set-startpoint

command may take several minutes to run, because it must issue repeated searches of
the Active Directory domain controller until it has paged through all the changes and
receives a cookie that is up-to-date.

Configuring synchronization with Active Directory
The following procedure configures a one-way Sync Pipe with the Active Directory topology as

the Sync Source and an PingDirectory Server topology as the Sync Destination.

1. From the server-root directory, start the PingDataSync Server.

- 121 -

The Active Directory Sync User account

$ <server-root>/bin/start-server

2. Run the create-sync-pipe-config tool to set up the initial synchronization topology.

$ bin/create-sync-pipe-config

3. On the Initial Synchronization Configuration Tool menu, press Enter to continue the
configuration.

4. On the Synchronization Mode menu, press Enter to select Standard mode.

5. On the Synchronization Directory menu, select the option for one-way (1) or bidirectional
(2) for the synchronization topology.

6. On the Source Endpoint Type menu, enter the option for Microsoft Active Directory.

7. On the Source Endpoint Name menu, type a name for the source server, or accept the
default.

8. On the Server Security menu, select the security connection type for the source server.

9. On the Servers menu, enter the host name and listener port for the Source Server, or
press Enter to accept the default (port 636). The server will attempt a connection to the
server. After adding the first server, add additional servers for the source endpoints,
which will be prioritized below the first server.

10. On the Synchronization User Account DN menu, enter the User Account DN for the source
servers. The account will be used exclusively by the PingDataSync Server to
communicate with the source external servers. Enter a User Account DN and password.
The User Account DN password must meet the minimum password requirements for
Active Directory domains.

11. Set up the Destination Endpoint servers.

The Active Directory Sync User account
The Sync User created for Active Directory is added to the cn=Administrators branch and is

given most of a root user's permissions. If this account cannot be secured and there is a need

to configure the permissions required by the Sync User, the following are required to perform

synchronization tasks:

As a Sync Source, these permissions are needed:

l List contents

l Read all properties

l Read permissions

- 122 -

Chapter 5: Synchronize with Active Directory systems

Deleted items are a special case. For the Sync Server to see deleted entries, the user account

must have sufficient access to cn=Deleted Objects,<domain name>. Giving access to that DN

requires using the dsacls tool, such as:

Take ownership may be required to make the needed changes.
dsacls "CN=Deleted Objects,DC=example,DC=com" /takeOwnership

Give the Sync User generic read permission to the domain.
dsacls "CN=Deleted Objects,DC=example,DC=com" /G "example\SyncUser":GR

List the permisison for the domain.
dsacls "CN=Deleted Objects,DC=example,DC=com"

To revoke all permissions from the Sync User, run the following dsacls command:

dsacls "CN=Deleted Objects,DC=example,DC=com" /R "example\SyncUser"

If Active Directory is used as a destination for synchronization, the Sync User account should

not be changed.

Prepare external servers
Perform the following steps to prepare external servers:

1. After configuring the source and destination endpoints, the PingDataSync Server prompts
to "prepare" each external server. The process requires trusting the certificate presented
to the server, and then testing the connection. If this step is not performed, the process
can be completed after configuring the Sync Pipes using the prepare-endpoint-server
tool.

2. Configuring this server for synchronization requires manager access. Enter the DN and
password of an account capable of managing the external directory server.

3. Enter the maximum age of changelog entries. The value is formatted as [number][time-
unit], where the time unit format resembles ("8h" for eight hours, "3d" for three days,
"1w" for one week). Setting this value caps how long the PingDataSync Server can be
offline. A smaller value limits how many changes are stored and is necessary to limit
excessive changelog growth in high-modification environments.

4. To prepare another server in the topology, follow the prompts. The previously entered
manager credentials can be reused to access additional servers. Repeat the process for
each server configured in the system.

Configure Sync Pipes and Sync Classes
Perform the following steps to configure Sync Pipes and Sync Classes:

- 123 -

Configure Sync Pipes and Sync Classes

1. On the Sync Pipe Name menu, type a unique name to identify the Sync Pipe, or accept
the default.

2. On the Pre-Configured Sync Class Configuration for Active Directory Sync Source menu,
enter yes to synchronize user CREATE operations, and enter the object class for the user
entries at the destination server, or accept the default (user). To synchronize user
MODIFY and DELETE operations from Active Directory, enter yes.

3. To synchronize passwords from Active Directory, press Enter to accept the default
(yes). If synchronizing passwords from Active Directory, install the Ping Identity
Password Sync Agent component on each domain controller.

4. To create a DN map for the user entries in the Sync Pipe, enter the base DN for the user
entries at the Microsoft Active Directory Sync Source, then enter the base DN for the
user entries at the PingDataSync Server Destination.

5. A list of basic attribute mappings from the Microsoft Active Directory Source to the
PingDirectory Server destination is displayed. More complex attribute mappings
involving constructed or DN attribute mappings must be configured with the dsconfig
tool. The following is a sample mapping.

Below is a list of the basic mappings that have been set up for user
entries synchronized from Microsoft Active Directory -> PingDirectory
Server. You can add to or modify this list with any direct attribute
mappings. To set up more complex mappings (such as constructed or DN
attribute mappings), use the 'dsconfig' tool.

1) cn -> cn
2) sn -> sn
3) givenName -> givenName
4) description -> description
5) sAMAccountName -> uid
6) unicodePwd -> userPassword

6. Enter the option to add a new attribute mapping. Enter the source attribute, and then
enter the destination attribute. The following example maps the telephoneNumber
attribute (Active Directory) to the otherTelephone attribute (PingDirectory Server).

Select an attribute mapping to remove, or choose 'n' to add a new one
[Press ENTER to continue]: n

Enter the name of the source attribute: telephoneNumber
Enter the name of the destination attribute: otherTelephone

7. If synchronizing group CREATE, MODIFY, and DELETE operations from Active Directory,
enter yes.

8. Review the basic user group mappings.

- 124 -

Chapter 5: Synchronize with Active Directory systems

9. On the Sync Pipe Sync Class Definitions menu, enter another name for a new Sync Class
if required. Repeat steps 2–7 to define this new Sync Class. If no additional Sync Class
definitions are required, press Enter to continue.

10. Review the Sync Pipe Configuration Summary, and accept the default ("write
configuration"), which records the commands in a batch file (sync-pipe-cfg.txt). The
batch file can be used to set up other topologies. The following summary shows two Sync
Pipes and its associated Sync Classes.

>>>> Configuration Summary

 Sync Pipe: AD to PingDirectory Server
 Source: Microsoft Active Directory
 Type: Microsoft Active Directory
 Access Account: cn=Sync
User,cn=Users,DC=adsync,DC=PingIdentity,DC=com
 Base DN: DC=adsync,DC=PingIdentity,DC=com
 Servers: 10.5.1.149:636

 Destination: PingDirectory Server
 Type: PingDirectory Server
 Access Account: cn=Sync User,cn=Root DNs,cn=config
 Base DN: dc=example,dc=com
 Servers: localhost:389

 Sync Classes:
 Microsoft Active Directory Users Sync Class
 Base DN: DC=adsync,DC=PingIdentity,DC=com
 Filters: (objectClass=user)
 DN Map: **,CN=Users,DC=adsync,DC=PingIdentity,DC=com ->{1},ou=users,
 dc=example,dc=com
 Synchronized Attributes: Custom set of mappings are defined
 Operations: Creates,Deletes,Modifies

 Sync Pipe: PingDirectory Server to AD
 Source: PingDirectory Server
 Type: PingDirectory Server
 Access Account: cn=Sync User,cn=Root DNs,cn=config
 Base DN: dc=example,dc=com
 Servers: localhost:389

 Destination: Microsoft Active Directory
 Type: Microsoft Active Directory
 Access Account: cn=Sync
User,cn=Users,DC=adsync,DC=PingIdentity,DC=com

Base DN: DC=adsync,DC=PingIdentity,DC=com
 Servers: 10.5.1.149:636

 Sync Classes:
PingDirectory Server Users Sync Class

 Base DN: dc=example,dc=com
 Filters: (objectClass=inetOrgPerson)
 DN Map: **,ou=users,dc=example,dc=com ->{1},CN=Users,DC=adsync,

- 125 -

Configure password encryption

 DC=PingIdentity,DC=com
 Synchronized Attributes: Custom set of mappings are defined
 Operations: Creates,Deletes,Modifies

11. To apply the configuration to the local PingDataSync Server instance, type yes. The
configuration is recorded at <server-root>/logs/tools/createsync-pipe-
config.log.

Configure password encryption
This procedure is required if synchronizing passwords from an PingDirectory Server to Active

Directory, or if synchronizing clear text passwords. These steps are not required if

synchronizing from Active Directory to an PingData PingDirectory Server, or if not

synchronizing passwords.

1. On the PingDirectory Server that will receive the password modifications, enable the
Change Log Password Encryption component. The component intercepts password
modifications, encrypts the password and adds an encrypted attribute, ds-changelog-
encrypted-password, to the change log entry. The encryption key can be copied from
the output if displayed, or accessed from the <serverroot>/bin/sync-pipe-cfg.txt
file.

$ bin/dsconfig set-plugin-prop --plugin-name "Changelog Password
Encryption" \
 --set enabled:true \
 --set changelog-password-encryption-key:<key>

2. On the PingDataSync Server, set the decryption key used to decrypt the user password
value in the change log entries. The key allows the user password to be synchronized to
other servers that do not use the same password storage scheme.

$ bin/dsconfig set-global-sync-configuration-prop \
 --set changelog-password-decryption-key:ej5u9e39pqo68

Test the configuration or populate data in the destination servers using bulk resync mode. See

Using the resync Tool on the Identity Sync Server. Then, use realtime-sync to start

synchronizing the data. See Using the realtime-sync Tool for more information. If

synchronizing passwords, install the Password Sync Agent (PSA) on all of the domain

controllers in the topology.

- 126 -

Chapter 5: Synchronize with Active Directory systems

The Password Sync Agent
When synchronizing passwords with Active Directory systems, the PingDataSync Server

requires that the Ping Identity Password Sync Agent (PSA) be installed on all domain

controllers in the synchronization topology. This component provides real-time outbound

password synchronization from Microsoft Active Directory to any supported Sync Destinations.

The PSA component provides password synchronization between directories that support

differing password storage schemes. The PSA immediately hashes the password with a 160-bit

salted secure hash algorithm and erases the memory where the clear-text password was

stored. The component only transmits data over a secure (SSL) connection, and follows

Microsoft's security guidelines when handling clear-text passwords. The PSA also uses

Microsoft Windows password filters, which are part of the local security authority (LSA)

process. The password filters enable implementing password policy validation and change

notification mechanisms. For more information, see Microsoft's product documentation.

Note
For outbound password synchronization from an PingDirectory Server to Active Directory, enable the
Password Encryption component. See Configuring the Password Encryption Component for more
information.

Password Synchronization with Microsoft Active Directory

The PSA supports failover between servers. It caches the hashed password changes in a local

database until it can be guaranteed that all PingDataSync Servers in the topology have

received them. The failover features enable any or all of the PingDataSync Servers to be taken

offline without losing any password changes from Active Directory.

- 127 -

The Password Sync Agent

The PSA is safe to leave running on a domain controller indefinitely. To stop synchronizing

passwords, remove the userPassword attribute mapping in the PingDataSync Server, or stop

the server. The PSA will not allow its local cache of password changes to grow out of control; it

automatically cleans out records from its local database as soon as they have been

acknowledged. It also purges changes that have been in the database for more than a week.

Before installing the PSA, consider the following:

l Make sure that the Active Directory domain controller has SSL enabled and running.

l Make sure the PingDataSync Servers are configured to accept SSL connections when
communicating with the Active Directory host.

l At least one Active Directory Sync Source (ADSyncSource) needs to be configured on the
PingDataSync Server and should point to the domain controller(s) on which the PSA will
reside.

l At the time of installation, all PingDataSync Servers in the sync topology must be online
and available.

l The PSA component is for outbound-only password synchronization from the Active
Directory Systems. It is not necessary if performing a one-way password
synchronization from the PingDirectory Server to the Active Directory server.

Install the Password Sync Agent

The PingDirectory Server distributes the PSA in zip file format with each PingDataSync Server

package. The initial installation of the PSA requires a system restart.

Perform the following steps to install the PSA

1. On the domain controller, double-click the setup.exe file to start the installation.

2. Select a folder for the PSA binaries, local database, and log files.

3. Enter the host names (or IP addresses) and SSL ports of the PingDataSync Servers, such
as sync.host.com:636. Do not add any prefixes to the hostnames.

4. Enter the Directory Manager DN and password. This creates an ADSync user on the
PingDataSync Server.

5. Enter a password (secret key) for the ADSync user that will be used by the PSA when
connecting to the PingDataSync Server instances.

6. Click Next to begin the installation. All of the specified PingDataSync Servers are
contacted, and any failures will roll back the installation. If everything succeeds, a
message displays indicating that a restart is required. The PSA will start when the

- 128 -

Chapter 5: Synchronize with Active Directory systems

computer restarts, and the LSA process is loaded into memory. The LSA process cannot
be restarted at runtime.

7. If synchronizing pre-encoded passwords from Active Directory to a Ping Identity system,
allow pre-encoded passwords in the default password policy.

$ bin/dsconfig set-password-policy-prop \
 --policy-name "Default Password Policy" \
 --set allow-pre-encoded-passwords:true

Upgrade or Uninstall the Password Agent

The PingDataSync Server provides the update tool for upgrades to the server code, including

the PSA. The upgrade does not require a restart, because the core password filter is already

running under LSA. The upgrade replaces the implementation binaries, which are encapsulated

from the password filter DLL.

To uninstall the PSA on the Active Directory system, use Add/Remove Programs on the

Windows Control Panel. The implementation DLL will be unloaded, and the database and log

files are deleted. Only the binaries remain.

The core password filter will still be running under the LSA process. It imposes zero overhead

on the domain controller, because the implementation DLL has been unloaded. To remove the

password filter itself (located at C:\WINDOWS\System32\ubidPassFilt.dll), restart the

computer. On restart, the password filter and implementation binaries (in the install folder)

can be deleted.

Note
The PSA cannot be reinstalled without another reboot.

Manually Configure the Password Sync Agent

Configuration settings for the Password Sync Service are stored in the Windows registry in

HKLM\SOFTWARE\UnboundID\PasswordSync. Configuration values under this registry key can

be modified during runtime. The agent automatically reloads and refresh its settings from the

registry. Verify that the agent is working by checking the current log file, located in <server-

root>\logs\password-sync-current.log.

- 129 -

Chapter 6: Synchronize with relational
databases

The PingDataSync Server supports high-scale, highly-available data synchronization between

the directory servers and relational database management systems (RDBMS). Any database

with a JDBC 3.0 or later driver can be used.

Topics include:

Use the Server SDK

The RDBMS synchronization process

DBSync example

Configure DBSync

Create the JDBC extension

Configure the database for synchronization

Considerations for synchronizing with a database destination

Configure the directory-to-database Sync Pipe

Considerations for synchronizing from a database source

Synchronize a specific list of database elements

- 130 -

Chapter 6: Synchronize with relational databases

Use the Server SDK
Synchronizing LDAP data to or from a relational database requires creating a JDBC Sync

Source or Destination extension to act as an interface between the PingDataSync Server and

the relational database. The Server SDK provides APIs to develop plug-ins and third-party

extensions to the server using Java or Groovy. The Server SDK’s documentation is delivered

with the Server SDK build in zip format.

Note
Server SDK support is provided with Premium Support for the each product. Ping Identity does not provide
support for the third party extensions developed using the Server SDK. Contact a Ping Identity support
representative for assistance.

The Server SDK contains two abstract classes that correspond to how the database is used:

l com.unboundid.directory.sdk.sync.api.JDBCSyncSource

l com.unboundid.directory.sdk.sync.api.JDBCSyncDestination

The remainder of the SDK contains helper classes and utility functions to facilitate the script

implementation. The SDK can use any change tracking mechanism to detect changes in the

database. Examples are provided in the <server-root>/config/jdbc/samples directory for

Oracle Database and Microsoft SQL Server.

The PingDataSync Server uses a scripted adapter layer to convert any database change to an

equivalent LDAP entry. The Sync Pipe then processes the data through inclusive (or exclusive)

filtering using attribute and DN maps defined in the Sync Classes to update the endpoint

servers. For example, a script using Java can be configured by setting the extension-class

property on a ThirdPartyJDBCSyncSource or ThirdPartyJDBCSyncDestination

configuration object within the PingDataSync Server. The following is a sample architecture.

- 131 -

The RDBMS synchronization process

Synchronizing with RDBMS Overview

The RDBMS synchronization process
The PingDataSync Server synchronizes data between a directory server and an RDBMS system

with a Server SDK extension. The PingDataSync Server provides multiple configuration

options, such as advanced filtering (fractional and subtree), attribute and DN mappings,

transformations, correlations, and configurable logging.

To support synchronizing changes, the database must be configured with a change tracking

mechanism. An approach involving triggers, (one trigger per table) to record all changes to a

change log table, is recommended. The database change log table Ping Identityshould record

the type of change (INSERT, UPDATE, DELETE), the specific table name, the unique identifier

for the changed row, the database entry type, the changed columns (from the source table),

the modifier’s name, and the change timestamp.

The PingDataSync Server delegates the physical interaction with the database to a user-

defined extension, which has full control of the SQL queries. The extension layer provides

flexibility in how the mapping semantics between the LDAP environment and the relational

database environment are defined. The connection management, pooling, retry logic, and

other boilerplate code are handled internally by the PingDataSync Server.

The RDBMS Synchronization (DBSync) implementation does not support failover between

different physical database servers. Most enterprise databases have a built-in failover layer

- 132 -

Chapter 6: Synchronize with relational databases

from which the PingDataSync Server can point to a single virtual address and port and still be

highly available. A single RDBMS node can scale to multiple directory server endpoints.

DBSync example
ThePingDataSync Server provides a DBSync example between two endpoints consisting of an

Ping Identity PingDirectory Server source and a RDBMS system, which will be used in this

chapter. The entity-relational diagram for the normalized database schema is available in

<server-root>/config/jdbc/samples/oracle-db/ComplexSchema.jpg, and is illustrated

here:

Entry Relation Diagrams for the Schema Tables

Five tables are represented with their primary keys in bold. The entity relations and foreign

keys are marked by the relationship lines. The illustration shows mapping to a custom object

class on the directory server, while the "groups" table maps to a standard LDAP group entry

with objectclass:groupOfUniqueNames.

Example directory server entries

The following example assumes that the directory server’s schema is configured to handle the

mapped attributes. If configuring a database-to-directory Sync Pipe with a newly installed

directory server, make sure that the schema has the correct attributeType and

objectClass definitions in place. The definitions can be added in a custom 99-user.ldif file

- 133 -

Configure DBSync

in the config/schema folder of the directory server, if necessary. The following are the LDAP

entries that are used in the synchronization example:

dn: accountid=0,ou=People,dc=example,dc=com
objectClass: site-user
firstName: John
lastName: Smith
accountID: 1234
email: jsmith@example.com
phone: +1 556 805 4454
address: 17121 Green Street
numLogins: 4
lastLogin: 20070408182813.196Z
enabled: true

dn: cn=Group 1,ou=Groups,dc=example,dc=com
objectClass: groupOfUniqueNames
description: This is Group 1
uniqueMember: accountID=0,ou=People,dc=example,dc=com
uniqueMember: accountID=1,ou=People,dc=example,dc=com

Configure DBSync
Configuring a DBSync system includes extra tasks to create the extensions and to configure the

database. The overall configuration process is as follows:

1. Download the appropriate JDBC driver to the PingDataSync Server’s /PingDataSync/lib
directory, and restart the server for the driver to load into the runtime.

2. Open the java.properties file with a text editor and add the jdbc.drivers argument.
Save the file.

3. Run the dsjavaproperties command to apply the change. For example, enter the
following for start-sync-server:

start-sync-server.java-args=-d64 -server -Xmx256m -Xms256m -
XX:+UseConcMarkSweepGC -
Djdbc.drivers=foo.bah.Driver:wombat.sql.Driver:com.example.OurDriver ...
etc.

4. Create one or more JDBC extensions based on the Server SDK. If configuring for
bidirectional synchronization, two scripts are needed: one for the JDBC Sync Source; the
other for the JDBC Sync Destination. Place the compiled extensions in the
/lib/extensions directory.

5. Configure the database change log table and triggers (presented later). The vendor’s
native change tracking mechanism can be used, but a change log table should also be

- 134 -

Chapter 6: Synchronize with relational databases

configured. Each table requires one database trigger to detect the changes and loads
them into the change log table.

6. Configure the Sync Pipes, Sync Classes, external servers, DN and attribute maps for one
direction.

7. Run the resync --dry-run command to test the configuration settings.

8. Run realtime-sync set-startpoint to initialize the starting point for synchronization.

9. Run the resync command to populate data on the destination endpoint.

10. Start the Sync Pipes using the realtime-sync start command.

11. Monitor the PingDataSync Server using the status commands and logs.

12. For bidirectional synchronization, configure another Sync Pipe, and repeat steps 4–8 to
test the system.

Create the JDBC extension
The JDBC extension implementation must be written in Java, or the Groovy scripting language.

Consult the Server SDK documentation for details on how to build and deploy extensions. The

examples in this guide use Java. Java extensions are more strict and will catch programming

errors during compile time rather than at runtime. Groovy is more flexible and can accomplish

more with less lines of code.

Groovy scripts must reside in the /lib/groovy-scripted-extensions directory (Java

implementations reside in /lib/extensions), which may also contain other plug-ins built

using the Server SDK. If a script declares a package name, it must live under the

corresponding folder hierarchy, just like a Java class. For example, to use a script class called

ComplexJDBCSyncSource whose package is com.unboundid.examples.oracle, place it in

/lib/groovy-scripted-extensions/com/unboundid/examples/oracle and set the script-

class property on the Sync Source to

com.unboundid.examples.oracle.ComplexJDBCSyncSource. There are a few reference

implementations provided in the config/jdbc/samples directory. Use the manage-extension

tool in the bin directory, or bat (Windows) to install or update the extension. See the Server

SDK Extensions section for more information.

Note
Any changes to an existing script require amanual Sync Pipe restart. Any configuration change
automatically restarts the affected Sync Pipe.

The default libraries available on the classpath to the script implementation include:

- 135 -

Create the JDBC extension

l Groovy

l LDAP SDK for Java

l JRE

Logging from within a script can be done with the Server SDK’s ServerContext abstract class.

Some of ServerContext methods are not available when the resync tool runs, because it runs

outside of the PingDataSync Server Server process. Any logging during a resync operation is

saved to the logs/tools/resync.log file.

Implement a JDBC Sync Source

The JDBCSyncSource abstract class must be implemented to synchronize data from a

relational database. Since the PingDataSync Server is LDAP-centric, this class enables

database content to be converted into LDAP entries. For more detailed information on the

class, see the Server SDK Javadoc.

The extension imports classes from the Java API, LDAP SDK for Java API, and the Server SDK.

Depending on the data, implement the following methods:

l initializeJDBCSyncSource – Called when a Sync Pipe first starts, or when the resync
process starts. Any initialization should be performed here, such as creating internal
data structures and setting up variables.

l finalizeJDBCSyncSource – Called when a Sync Pipe stops, or when the resync process
stops. Any clean up should be performed here, and all internal resources should be
freed.

l setStartpoint – Sets the starting point for synchronization by identifying the starting
point in the change log. This method should cause all changes previous to the specified
start point to be disregarded and only changes after that point to be returned by the
getNextBatchOfChanges method. There are several different startpoint types (see
SetStartpointOptions in the Server SDK), and this implementation is not required to
support them all. If the specified startpoint type is unsupported, this method throws an
exception (IllegalArgumentException). This method can be called from two different
contexts: when the realtime-sync set-startpoint command is used (the Sync Pipe is
required to be stopped) or immediately after a connection is established to the source
server.

Note
The RESUME_AT_SERIALIZABLE startpoint typemust be supported. This method is used when a Sync
Pipe first starts and loads its state from disk.

- 136 -

Chapter 6: Synchronize with relational databases

l getStartpoint – Gets the current value of the startpoint for change detection.

l fetchEntry – Returns a full source entry (in LDAP form) from the database,
corresponding to the DatabaseChangeRecord object that is passed. The resync
command also uses this class to retrieve entries.

l acknowledgeCompletedOps – Provides a means for the PingDataSync Server to
acknowledge to the database which operations have completed processing.

Note
The internal value for the startpoint should only be updated after a synchronization operation is
acknowledged in to this script (through this method). If not, changes could bemissed when the
PingDataSync Server is restarted.

l getNextBatchOfChanges – Retrieves the next set of changes for processing. The method
also provides a generic means to limit the size of the result set.

l listAllEntries – Used by the resync command to get a listing of all entries.

l cleanupChangelog – In general, we recommend implementing a cleanupChangelog
method, so that the PingDataSync Server can purge old records from the change log
table, based on a configurable age.

See the config/jdbc/samples directory for example script implementations and the Server

SDK Javadoc for more detailed information on each method.

Implement a JDBC Sync Destination

The JDBCSyncDestination abstract class must be implemented to synchronize data into a

relational database. The class enables converting LDAP content to database content. The

extension imports classes from the Java API, LDAP SDK for Java API, and the Server SDK,

depending on the database configuration. Implement the following methods in the script:

l initializeJDBCSyncDestination – Called when a Sync Pipe starts, or when the resync
process starts. Any initialization should be performed here, such as creating internal
data structures and setting up variables.

l finalizeJDBCSyncDestination – Called when a Sync Pipe stops, or when the resync
process stops. Any clean up should be performed here, and all internal resources should
be freed.

l createEntry – Creates a full database entry (or row), corresponding to the LDAP entry
that is passed in.

l modifyEntry – Modifies a database entry, corresponding to the LDAP entry that is
passed in.

- 137 -

Configure the database for synchronization

l fetchEntry – Returns a full destination database entry (in LDAP form), corresponding to
the source entry that is passed in.

l deleteEntry – Deletes a full entry from the database, corresponding to the LDAP entry
that is passed in.

For more detailed information on the abstract class, consult the Server SDK Javadoc.

Configure the database for synchronization
Configuring the database for synchronization includes defining:

l a database SyncUser account

l the change tracking mechanism

l the database triggers (one per table) for the application

The following procedure uses the example setup script in /config/jdbc/samples/oracle-

db/OracleSyncSetup.sql. Items in brackets are user-named labels.

Note
Database change tracking necessary if synchronizing FROM the database. If synchronizing TO a
database, configure the Sync User account and the correct privileges.

1. Create an Oracle login (SyncUser) for the PingDataSync Server, so that it can access the
database server. Grant sufficient privileges to the SyncUser for any tables to be
synchronized, and change the default password.

CREATE USER SyncUser IDENTIFIED BY password
DEFAULT TABLESPACE users TEMPORARY TABLESPACE temp;
GRANT "RESOURCE" TO SyncUser;
GRANT "CONNECT" TO SyncUser;

2. Create change log tables on the database as follows:

CREATE TABLE ubid_changelog (
 --This is the unique number for the change change_number Number NOT NULL
PRIMARY KEY,
 --This is the type of change (insert, update, delete). NOTE: This should
represent
 --the actual type of change that needs to happen on the destination(for
example a
 --database delete might translate to a LDAPmodify, etc.)
 change_type VARCHAR2(10) NOT NULL,

 --This is the name of the table that was changed table_name VARCHAR(50)
NOT NULL,
 --This is the unique identifier for the row that was changed. It is up
to
 --the trigger code to construct this, but it should follow a DN-like
format

- 138 -

Chapter 6: Synchronize with relational databases

 --(e.g. accountID={accountID}) where at least the primary key(s) are
 --present. If multiple primary keys are required, they should be
delimited
 --with a unique string, such as '%%' (e.g. accountID={accountID}%%
 --groupID={groupID})
 identifier VARCHAR2(100) NOT NULL,

 --This is the database entry type. The allowable values for this must be
 --set on the JDBC Sync Source configuration within the Synchronization
 --Server.
 entry_type VARCHAR2(50) NOT NULL,

 --This is a comma-separated list of columns from the source table that
were updated as part of
 --this change.
 changed_columns VARCHAR2(1000) NULL,

 --This is the name of the database user who made the change
 modifiers_name VARCHAR2(50) NOT NULL,

 --This is the timestamp of the change
 change_time TIMESTAMP(3) NOT NULL, CONSTRAINT chk_change_type
 CHECK (change_type IN ('insert','update','delete'))) ORGANIZATION
INDEX;

3. Create an Oracle function to get the SyncUser name. This is a convenience function for
the triggers.

CREATE OR REPLACE FUNCTION get_sync_user RETURN VARCHAR2
IS
BEGIN
 RETURN 'SyncUser';
END get_sync_user;

4. Create an Oracle sequence object for the change-number column in the change log table.

CREATE SEQUENCE ubid_changelog_seq MINVALUE 1 START WITH 1
NOMAXVALUE INCREMENT BY 1 CACHE 100 NOCYCLE;

5. Create a database trigger for each table that will participate in synchronization. An
example, located in /config/jdbc/samples/oracle-db/OracleSyncSetup.sql, shows
a trigger for the Accounts table that tracks all changed columns after any INSERT,
UPDATE, and DELETE operation. The code generates a list of changed items and then
inserts them into the change log table.

Considerations for synchronizing to database
destination
When configuring a directory-to-database Sync Pipe, the following are recommended:

- 139 -

Considerations for synchronizing to database destination

l Identify the Object Classes – Create a Sync Class per object class, so that they can
easily be distinguished and have different mappings and synchronization rules.

l For each Sync Class, set the following items in the configuration menus using the
dsconfig tool.

o Set the Include-Filter Property – Make sure the include-filter property is
set on the Sync Class configuration menu to something that will uniquely identify
the source entries, such as objectClass=customer.

o Create Specific Attribute Mappings – Create an attribute mapping for every
LDAP attribute to be synchronized to a database column, add these to a single
attribute map, and set it on the Sync Class. With this configured, the script does
not need to know about the schema on the directory side. A constructed attribute
mapping that maps a literal value to the objectClass attribute can be added to
the script to determine the database entry type. For example, "account" ->

objectClass can be added, which would result in the constructed destination LDAP
entry always containing an objectClass of "account." If needed, a mulit-valued
conditional-value-pattern property can be used to conditionalize the attribute
mapping based on the subtype of the entry or on the value of the attribute. See
Conditional Value Mapping for additional information.

o Create Specific DN Maps (optional) – If necessary, create a DN map that
recognizes the DN's of the source entries and maps them to a desired destination
DN. In most cases, the script will use the attributes rather than the DN to figure
out which database entry needs to be changed.

o Set auto-mapped-source-attribute to "-none-" – Remove the default value of
"-all-" from the auto-mapped-source-attribute on the Sync Class configuration
menu, and replace it with "-none-."

l Configure Create-Only Attributes – Any attributes that should be included when
created, but never modified (such as objectclass) should be specified on the Sync Pipe
as a create-only attribute. If the PingDataSync Server ever computes a difference in
that attribute between the source and destination, it will not try to modify it at the
destination. To avoid bidirectional loop-back, set the ignore-changes-by-[user|dn]
property on both Sync Sources when configuring for bidirectional synchronization.

l Synchronizing DELETE Operations – On PingDirectory Server and Nokia 8661
Directory Server systems, configure the changelog-deleted-entry-include-
attribute property on the changelog backend menu using the dsconfig tool. This
property allows for the proper synchronization of DELETE operations. For more
information, see Configuring the Directory Server Backend for Synchronizing Deletes.

l Attribute-Synchronization-Mode for DBSync – For MODIFY operations, the
PingDataSync Server detects any change on the source change log, fetches the source

- 140 -

Chapter 6: Synchronize with relational databases

entry, applies mappings, computes the equivalent destination entry, fetches the actual
destination entry, and then runs a diff between the two entries to determine the minimal
set of changes to synchronize. By default, changes on the destination entry are made
only for those attributes that were detected in the original change log entry. This is
configurable using the attribute-synchronization-mode property, which sets the type
of diff operation that is performed between the source and destination entries.

If the source endpoint is a database server, set the attribute-synchronization-mode

property to all-attributes on the Sync Class configuration menu. The diff operation

will consider all source attributes. Any that have changed will be updated on the

destination, even if the change was not originally detected in the change log. This mode

is useful when a list of changed columns in the database may not be available. If both

endpoints are directory servers, use the default configuration of modified-attributes-

only to avoid possible replication conflicts.

l Handling MODDN Operations – The concept of renaming an entry (modifyDN) does
not have a direct equivalent for relational databases. The JDBCSyncDestination API
does not handle changes of this type. Instead, the modifyEntry() method is called as if
it is a normal change. The extension can verify if the entry was renamed by looking at
the SyncOperation that is passed in (syncOperation.isModifyDN()). If true, the
fetchedDestEntry parameter will have the old DN. The new DN can be obtained by
calling syncOperation.getDestinationEntryAfterChange().

Configure a directory-to-database Sync Pipe
The following configures a one-way Sync Pipe with an PingDirectory Server as the Sync Source

and an RDBMS (Oracle) system as the Sync Destination with the create-sync-pipe-config

tool. Sync Pipes can be configured later using dsconfig.

Create the Sync Pipe

The following procedures configure the Sync Pipe, external servers, and Sync Classes. The

examples are based on the Complex JDBC sample in the config/jdbc/samples/oracle-db

directory.

The create-sync-pipe-config tool can be run with the server offline and the configuration

can later be imported.

1. Run the create-sync-pipe-config tool.

- 141 -

Configure a directory-to-database Sync Pipe

$ bin/create-sync-pipe-config

2. At the Initial Synchronization Configuration Tool prompt, press Enter to continue.

3. On the Synchronization Mode menu, select Standard Mode or Notification Mode.

4. On the Synchronization Directory menu, choose one-way or bidirectional
synchronization.

Configure the Sync Source

1. On the Source Endpoint Type menu, enter the number for the sync source corresponding
to the type of source external server.

2. Enter a name for the Source Endpoint.

3. Enter the base DN for the directory server, which is used as the base for LDAP searches.
For example, enter dc=example,dc=com, and then press Enter again to return to the
menu. If entering more than one base DN, make sure the DNs do not overlap.

4. On the Server Security menu, select the type of communication that the PingDataSync
Server will use with the endpoint servers.

5. Enter the host and port of the source endpoint server. The Sync Source can specify a
single server or multiple servers in a replicated topology. The server tests that a
connection can be established.

6. Enter the DN of the Sync User account and create a password for this account. The Sync
User account enables the PingDataSync Server to access the source endpoint server. By
default, the Sync User account is stored as cn=SyncUser,cn=Root DNs,cn=config.

Configure the destination endpoint server

1. On the Destination Endpoint Type menu, select the type of data store on the endpoint
server. This example is configuring an Oracle Database.

2. Enter a name for the Destination Endpoint.

3. On the JDBC Endpoint Connection Parameters menu, enter the fully-qualified host name
or IP address for the Oracle database server.

4. Enter the listener port for the database server, or press Enter to accept the default
(1521).

5. Enter a database name such as dbsync-test.

6. The server attempts to locate the JDBC driver in the lib directory. If the file is found, a
success message is displayed.

Successfully found and loaded JDBC driver for:
jdbc:oracle:thin:@//dbsync-w2k8-vm-2:1521/dbsync-test

- 142 -

Chapter 6: Synchronize with relational databases

If the server cannot find the JDBC driver, add it later, or quit the create-sync-pipe-

config tool and add the file to the lib directory.

7. Add any additional JDBC connection properties for the database server, or press Enter to
accept the default (no). Consult the JDBC driver’s vendor documentation for supported
properties.

8. Enter a name for the database user account with which the PingDataSync Server will
communicate, or press Enter to accept the default (SyncUser). Enter the password for
the account.

9. On the Standard Setup menu, enter the number for the language (Java or Groovy) that
was used to write the server extension.

10. Enter the fully qualified name of the Server SDK extension class that implements the
JDBCSyncDestination API.

Enter the fully qualified name of the Java class that will implement
com.unboundid.directory.sdk.sync.api.JDBCSyncDestination:
com.unboundid.examples.oracle.ComplexJDBCSyncDestination

11. Configure any user-defined arguments needed by the server extension. These are
defined in the extension itself and the values are specified in the server configuration. If
there are user-defined arguments, enter yes.

12. To prepare the Source Endpoint server, which tests the connection to the server with the
Sync User account, press Enter to accept the default (yes). For the Sync User account, it
will return "Denied" as the account has not been written yet to the Directory Server at
this time.

Testing connection to server1.example.com:1389 Done
Testing 'cn=Sync User,cn=Root DNs,cn=config' access Denied

13. To configure the Sync User account on the directory server, press Enter to accept the
default (yes). Enter the bind DN (cn=Directory Manager) and the bind DN password of
the directory server so that you can configure the cn=Sync User account. The
PingDataSync Server creates the Sync User account, tests the base DN, and enables the
change log.

Created 'cn=Sync User,cn=Root DNs,cn=config'
Verifying base DN 'dc=example,dc=com' Done
Enabling cn=changelog

14. Enter the maximum age of the change log entries, or press Enter to accept the default.

Configure the Sync Pipe and Sync Classes

The following procedures define a Sync Pipe and two Sync Classes. The first Sync Class is used

to match the accounts objects. The second Sync Class matches the group objects.

- 143 -

Configure a directory-to-database Sync Pipe

1. Continuing from the previous session, enter a name for the Sync Pipe.

2. When prompted to define one or more Sync Classes, enter yes.

Configure the accounts Sync Class

1. Enter a name for the Sync Class. For example, type accounts_sync_class.

2. If restricting entries to specific subtrees, enter one or more base DNs. If not, press
Enter to accept the default (no).

3. To set an LDAP search filter, type yes and enter the filter "(accountid=*)". Press
Enter again to continue. This property sets the LDAP filters and returns all entries that
match the search criteria to be included in the Sync Class. In this example, specify that
any entry with an accountID attribute be included in the Sync Class. If the entry does
not contain any of these values, it will not be synchronized to the target server.

4. Choose to synchronize all attributes, specific attributes, or exclude specific attributes
from synchronization, or press Enter to accept the default (all).

5. Specify the operations that will be synchronized for the Sync Class, or press Enter to
accept the default.

Configure the groups Sync Class

For this example, configure another Sync Class to handle the groups objectclass. The

procedures are similar to that of the configuration steps for the account_sync_class Sync

Class.

1. On the Sync Class menu, enter a name for a new sync class, such as groups_sync_
class.

2. To restrict entries to specific subtrees, enter one or more base DNs.

3. Set an LDAP search filter. Type yes to set up a filter and enter the filter "
(objectClass=groupOfUniqueNames)." This property sets the LDAP filters and returns
all entries that match the groupOfUniqueNames attribute to be included in the Sync
Class. If the entry does not contain any of these values, it will not be synchronized to the
target server.

4. Choose to synchronize all attributes, specific attributes, or exclude specific attributes
from synchronization, or press Enter to accept the default (all).

5. Specify the operations that will be synchronized for the Sync Class, or press Enter to
accept the default.

6. At the prompt to enter the name of another Sync Class, press Enter to continue.

- 144 -

Chapter 6: Synchronize with relational databases

7. On the Default Sync Class Operations menu, press Enter to accept the default. The
Default Sync Class determines how all entries that do not match any other Sync Class
are handled.

8. Review the configuration, and press Enter to write the configuration to the server.

Use the dsconfig tool to make changes to this configuration. See Configuring the

PingDataSync Server for configuration options and details.

Considerations for synchronizing from a database
source
When synchronizing from a database to a directory or RDBMS server, the following are

recommended:

l Identify Database Entry Types – Identify the database entry types that will be
synchronized, and:

o Set the database-entry-type property on the JDBC Sync Source (this is
required), and make sure the entry types are what the triggers are inserting into
the change tracking mechanism.

o Create a Sync Class per entry type, and set different mappings and rules for each
one.

l For each Sync Class, do the following:
o Make sure the include-filter property is set to match the entry type.

o Create a specific attribute mapping for every database column to be synchronized
to an LDAP attribute and set it on the Sync Class. If this is done, the script will not
have to know about the schema on the directory side.

o Create a DN map that recognizes the DNs generated by the script and maps them
to the correct location at the destination.

o Remove the default value of "-all-" from the auto-mapped-source-attribute
property on the Sync Class, and replace it with the value objectClass. The object
class for the fetched source entry is determined by the scripted layer. Values from
the database should not be automatically mapped to an attribute with the same
name, except the objectclass attribute, which should map directly for CREATE
operations. If this is not done, an error is generated.

o Change the destination-correlation-attributes property to contain the
attributes that uniquely represent the database entries on the directory server
destination.

- 145 -

Synchronize a specific list of database elements

l Avoid Bidirectional Loopback – Set the ignore-changes-by-[user|dn] property on
both Sync Sources when configuring for bidirectional synchronization, to make sure that
changes are not looped back by the PingDataSync Server.

See Use the create-sync-pipe tool to configure synchronization for details about creating the

Sync Pipe.

Synchronize a specific list of database elements
The resync command enables synchronizing a specific set of database keys that are read

from a JDBC Sync Source file using the --sourceInputFile option. The contents of the file are

passed line-by-line into the listAllEntries() method of the JDBCSyncSource extension,

which is used for the Sync Pipe. The method processes the input and returns

DatabaseChangeRecord instances based on the input from the file.

Perform the following steps to synchronize a specific list of database elements using the

resync tool:

1. Create a file of JDBC Sync Source elements. There is no set format for the file, but it
typically contains a list of primary keys or SQL queries. For example, create a file
containing a list of primary keys and save it as sourceSQL.txt.

user.0
user.1
user.2
user.3

2. Run the resync command with the --sourceInputFile option to run on individual
primary keys in the file.

$ bin/resync --pipe-name "dbsync-pipe" \
 --sourceInputFile sourceSQL.txt

3. If searching for a specific type of database entry, use the --entryType option that
matches one of the configured entry types in the JDBCSyncSource.

$ bin/resync --pipe-name "dbsync-pipe" \
 --entryType account \
 --sourceInputFile sourceSQL.txt

- 146 -

Chapter 7: Synchronize through
PingDirectoryProxy Servers

Because most data centers deploy directory servers in a proxied environment, the

PingDataSync Server can also synchronize data through a proxy server in both load-balanced

and entry-balancing deployments. The following proxy endpoints are supported:

l Ping Identity PingDirectoryProxy Servers

l Nokia 8661 Directory Proxy Servers

This chapter details a Sync-through-Proxy deployment and provides background information

on how it works. Before setting up the PingDataSync Server, review the Ping Identity

PingDirectoryProxy Server Administration Guide for information about the PingDirectoryProxy

Server.

Topics include:

Synchronization through a Proxy Server overview

Example configuration

Configure the PingDirectory Servers

Configure a PingDirectoryProxy Server

Configure the PingDataSync Server

Test the configuration

Index the LDAP changelog

Changelog synchronization considerations

- 147 -

Chapter 7: Synchronize through PingDirectoryProxy Servers

Synchronization through a Proxy Server overview
To handle data synchronization through a proxy server, PingData servers have a

cn=changelog state management system that supports a token-based API. In a standard, non-

proxied configuration, the PingDataSync Server polls the source server for changes,

determines if a change is necessary, and fetches the full entry from the source. Then, it finds

the corresponding entry in the destination endpoint using correlation rules and applies the

minimal set of changes. The server fetches and compares the full entries to make sure it does

not synchronize any stale data from the change log.

In a proxied environment, the PingDataSync Server passes the request through a proxy server

to the backend set of directory servers. The PingDataSync Server uses the highest priority

proxy server designated in its endpoint server configuration and can use others in the event of

a failover.

The following illustrates a deployment with two endpoints consisting of a proxy server

deployment in front of the backend set of directory servers.

Synchronization Through Proxy Example

Change log operations

When the PingDataSync Server runs a poll for any changes, it sends a get change log batch

extended request to the cn=changelog backend. The batch request looks for entries in the

change log and asks for the server ID, change number, and replica state for each change. The

- 148 -

Synchronization through a Proxy Server overview

PingDirectoryProxy Server routes the request to a directory server instance, which then

returns a changed entry plus a token identifying the server ID, change number and replica

state for each change. The PingDirectoryProxy Server then sends a get change log batch

response back to the PingDataSync Server with this information. For entry-balancing

deployments, the PingDirectoryProxy Server must "re-package" the directory server tokens

into its own proxy token to identify the specific data set.

The first time that the PingDataSync Server issues the batch request, it also issues a get server

ID request to identify the specific server ID that is processing the extended request. The

PingDirectoryProxy Server routes the request to the directory server instance, and then

returns a server ID in the response. With the next request, the PingDataSync Server sends a

'route to server' request that specifies the server instance to access again in this batch

session. It also issues a server ID request in the event that the particular server is down. This

method avoids round-robin server selection and provides more efficient overall change

processing.

PingDirectory Server and PingDirectoryProxy Server tokens

The PingDirectory Server maintains a change log database index to determine when to resume

sending changes (for ADD, MODIFY, or DELETE operations) in its change log. While a simple

stand-alone directory server can track its resume point by the last change number sent,

replicated servers or servers deployed in entry balancing environments have a different

change number ordering in its change log because updates can come from a variety of sources.

The following illustrates two change logs in two replicated directory servers, server A and B.

"A" represents the replica identifier for a replicated subtree in Server A, and "B" represents the

replica identifier for the same replicated subtree in server B. The replica identifiers with a

hyphen ("-") mark any local, non-replicated but different changes. While the two replicas

record all of the changes, the two change logs have two different change number orderings

because updates come in at different times.

- 149 -

Chapter 7: Synchronize through PingDirectoryProxy Servers

Different Change Number Order in Two Replicated Change Logs

To track the change log resume position, the PingDirectory Server uses a change log database

index to identify the latest change number position corresponding to the highest replication

CSN number for a given replica. This information is encapsulated in a directory server token

and returned in the get change log batch response to the PingDirectoryProxy Server. The token

has the following format:

Directory Server Token: server ID, changeNumber, replicaState

For example, if the PingDirectoryProxy Server sends a request for any changed entries, and

the directory servers return the change number 1003 from server A and change number 2005

from server B, then each directory server token would contain the following information:

Directory Server Token A:
 serverID A, changeNumber 1003, replicaState {15(A)}

Directory Server Token B:
 serverID B, changeNumber 2005, replicaState {12(B), 15(A)}

Change log tracking in entry balancing deployments

Change log tracking can become more complex in that a shared area of data can exist above

the entry-balancing base DN in addition to each backend set having its own set of changes and

tokens. In the following figure, Server A belongs to an entry-balancing set 1, and server B

belonging to an entry-balancing set 2. Shared areas that exist above the entry-balancing base

DN are assumed to be replicated to all servers. "SA" represents the replica identifier for that

shared area on Server A and "SB" represents the replica identifier for the same area on Server

B.

- 150 -

Example configuration

Different Change Number Order in Two Replicated Change Logs

The PingDirectoryProxy Server cannot pass a directory server token from the client to the

directory server and back again. In an entry-balancing deployment, the PingDirectoryProxy

Server must maintain its own token mechanism that associates a directory server token

(changeNumber, replicaIdentifier, replicaState) to a particular backend set.

Proxy Token:
backendSetID 1: ds-token 1 (changeNumber, replicaIdentifier, replicaState)
backendSetID 2: ds-token 2 (changeNumber, replicaIdentifier, replicaState)

For example, if the PingDirectoryProxy Server returned change 1002 from Server A and

change 2002 from Server B, then the Proxy token would contain the following:

Proxy Token:
backendSetID 1: ds-token-1 {serverID A, changeNumber 1002, replicaState (5
(SA), 15(A)}
backendSetID 2: ds-token-2 {serverID B, changeNumber 2002, replicaState (10
(SB), 20(B)}

For each change entry returned by a backend, the PingDirectoryProxy Server must also decide

whether it is a duplicate of a change made to the backend set above the entry-balancing base.

If the change is a duplicate, then it is discarded. Otherwise, any new change is returned with a

new value of the proxy token.

Example configuration
This following configures synchronization through a proxy and use two endpoints consisting of

a PingDirectoryProxy Server with a backend set of PingDirectory Servers: both sets are

replicated. The PingDirectoryProxy Server uses an entry-balancing environment for the DN

ou=People,dc=example,dc=com and provides a subtree view for dc=example,dc=com in its

- 151 -

Chapter 7: Synchronize through PingDirectoryProxy Servers

client connection policy. For this example, communication is over standard LDAP and failover

servers are not installed or designated in the PingDataSync Server.

Example Synchronization Through Proxy Configuration

Configure the source PingDirectory Server
The following procedures configure a backend set of directory servers. The procedure is the

same for the source servers and the destination servers in a synchronization topology. For

directory server installation and configuration details, see the Ping Identity PingDirectory

Server Administration Guide.

1. On each backend Directory Server that will participate in synchronization, enable the
change log database, either from the command line or by using a dsconfig batch file.

$ dsconfig --no-prompt set-backend-prop \
 --backend-name changelog \
 --set enabled:true

2. Stop the server if it is running, and import the dataset for the first backend set into the
first server in the backend set prior to the import.

$ bin/stop-server

$ bin/import-ldif --backendID userRoot --ldifFile ../dataset.ldif

$ bin/start-server

3. On the first server instance in the first backend set, configure replication between this
server and the second server in the same backend set.

- 152 -

Configure a Proxy Server

$ bin/dsreplication enable --host1 ldap-west-01.example.com \
 --port1 389 \
 --bindDN1 "cn=Directory Manager" \
 --bindPassword1 password \
 --replicationPort1 8989 \
 --host2 ldap-west-02.example.com \
 --port2 389 \
 --bindDN2 "cn=Directory Manager" \
 --bindPassword2 password \
 --replicationPort2 9989 \
 --adminUID admin \
 --adminPassword admin \
 --baseDN dc=example,dc=com \
 --no-prompt

4. Initialize the second server in the backend set with data from the first server in the
backend set. This command can be run from either instance.

$ bin/dsreplication initialize \
 --hostSource ldap-west-01.example.com \
 --portSource 389 \
 --hostDestination ldap-west-02.example.com \
 --portDestination 389 \
 --baseDN "dc=example,dc=com" \
 --adminUID admin \
 --adminPassword admin \
 --no-prompt

5. Run the following command to check replica status.

$ bin/dsreplication status \
 --hostname ldap-west-01.example.com \
 --port 389 \
 --adminPassword admin \
 --no-prompt

6. Repeat steps 3 through 6 (import, enable replication, initialize replication, check status)
for the second backend set.

Configure a Proxy Server
The following procedures configure a proxy server, including defining the external servers and

configuring the client-connection policy. The procedure is the same for the source servers and

the destination servers in a synchronization topology. For additional changes, use the

dsconfig tool. For proxy installation and configuration details, see the Ping Identity

PingDirectoryProxy Server Administration Guide.

1. From the PingDirectoryProxy Server root directory, run the prepare-external-server
command to set up the cn=Proxy User account for access to the backend directory

- 153 -

Chapter 7: Synchronize through PingDirectoryProxy Servers

servers. The server tests the connection and creates the cn=Proxy User account.

$ bin/prepare-external-server --no-prompt \
 --hostname ldap-west-01.example.com \
 --port 389 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --proxyBindDN "cn=Proxy User,cn=Root DNs,cn=config" \
 --proxyBindPassword pass \
 --baseDN "dc=example,dc=com"

2. Repeat step 1 for any other directory server instances.

3. Run the dsconfig command to define the external servers and their types. For this
example, round-robin load balancing algorithms are defined, which do not require health
checks or locations to be specified.

$ bin/dsconfig --no-prompt create-external-server \
 --server-name ldap-west-01 \
 --type "ping-identity-ds" \
 --set "server-host-name:ldap-west-01.example.com" \
 --set "server-port:389" \
 --set "bind-dn:cn=Proxy User" \
 --set "password:password" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-external-server \
 --server-name ldap-west-02 \
 --type "ping-identity-ds" \
 --set "server-host-name:ldap-west-02.example.com" \
 --set "server-port:389" \
 --set "bind-dn:cn=Proxy User" \
 --set "password:password" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-external-server \
 --server-name ldap-west-03 \
 --type "ping-identity-ds" \
 --set "server-host-name:ldap-west-03.example.com" \
 --set "server-port:389" \
 --set "bind-dn:cn=Proxy User" \
 --set "password:password" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-external-server
 --server-name ldap-west-04 \
 --type "ping-identity-ds" \
 --set "server-host-name:ldap-west-04.example.com" \
 --set "server-port:389" \
 --set "bind-dn:cn=Proxy User" \
 --set "password:password" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

- 154 -

Configure a Proxy Server

4. Create a load-balancing algorithm for each backend set.

$ bin/dsconfig --no-prompt create-load-balancing-algorithm \
 --algorithm-name "test-lba-1" \
 --type "round-robin" --set "enabled:true" \
 --set "backend-server:ldap-west-01" \
 --set "backend-server:ldap-west-02" \
 --set "use-location:false" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-load-balancing-algorithm \
 --algorithm-name "test-lba-2" \
 --type "round-robin" --set "enabled:true" \
 --set "backend-server:ldap-west-03"
 --set "backend-server:ldap-west-04"
 --set "use-location:false" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

5. Configure the proxying request processors, one for each load-balanced directory server
set. A request processor provides the logic to either process the operation directly,
forward the request to another server, or hand off the request to another request
processor.

$ bin/dsconfig --no-prompt create-request-processor \
 --processor-name "proxying-processor-1" --type "proxying" \
 --set "load-balancing-algorithm:test-lba-1" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-request-processor \
 --processor-name "proxying-processor-2" --type "proxying" \
 --set "load-balancing-algorithm:test-lba-2" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

6. Define an entry-balancing request processor. This request processor is used to distribute
entries under a common parent entry among multiple backend sets. A backend set is a
collection of replicated directory servers that contain identical portions of the data.
Multiple proxying request processors are used to process operations.

Next, define the placement algorithm, which selects the server set to use for new add

operations to create new entries. In this example, a round-robin placement algorithm

forwards LDAP add requests to backends sets.

$ bin/dsconfig --no-prompt create-placement-algorithm \
 --processor-name "entry-balancing-processor" \
 --algorithm-name "round-robin-placement" \
 --set "enabled:true" \
 --type "round-robin" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

- 155 -

Chapter 7: Synchronize through PingDirectoryProxy Servers

7. Define the subtree view that specifies the base DN for the entire deployment.

$ bin/dsconfig --no-prompt create-subtree-view \
 --view-name "test-view" \
 --set "base-dn:dc=example,dc=com" \
 --set "request-processor: entry-balancing-processor" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

8. Finally, define a client connection policy that specifies how the client connects to the
proxy server.

$ bin/dsconfig --no-prompt set-client-connection-policy-prop \
 --policy-name "default" \
 --add "subtree-view:test-view" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

Configuring the PingDataSync Server
Configure the PingDataSync Server once the PingDirectoryProxy Server and its backend set of

PingDirectory Server instances are configured and fully functional for each endpoint, which are

labeled as ldap-west and ldap-east in this example. For information on installing and

configuring the PingDataSync Server, see Installing the PingDataSync Server.

1. From the PingDataSync Server root directory, run the create-sync-pipe-config tool.

$ bin/create-sync-pipe-config

2. At the Initial Synchronization Configuration Tool prompt, press Enter to continue.

3. On the Synchronization Mode menu, press Enter to select Standard mode.

4. On the Synchronization Directory menu, choose the option for one-way or bidirectional
synchronization.

5. On the First Endpoint Type menu, enter the number for the type of backend data store for
the first endpoint. In this example, type the number corresponding to the
PingDirectoryProxy Server.

>>>> First Endpoint Type
Enter the type of data store for the first endpoint:
1) Ping Identity Directory Server
2) Ping Identity Directory Proxy Server
3) Alcatel-Lucent Directory Server
4) Alcatel-Lucent Proxy Server
5) Sun Directory Server
6) Microsoft Active Directory
7) Microsoft SQL Server
8) Oracle Database
9) Custom JDBC

- 156 -

Test the configuration

b) back
q) quit

Enter choice [1]: 2

6. Enter a descriptive name for the first endpoint.

7. Enter the base DN where the PingDataSync Server can search for the entries on the first
endpoint server.

8. Specify the type of security when communicating with the endpoint server.

9. Enter the hostname and port of the endpoint server. The PingDataSync Server tests the
connection. Repeat this step if configuring another server for failover.

10. Enter the Sync User account that will be used to access the endpoint server, or press
Enter to accept the default cn=Sync User,cn=Root DNs,cn=config. Enter a password
for the account.

11. The first endpoint deployment is defined using the PingDirectoryProxy Server (ldap-
west). Repeat steps 5-10 to define the second proxy deployment (ldap-east) on the
PingDataSync Server.

12. Prepare the endpoint servers in the topology. This step confirms that the Sync User
account is present on each server and can communicate between the PingDataSync
Server and the PingDirectoryProxy Servers. In addition to preparing the
PingDirectoryProxy Server, the PingDataSync Server prepares the backend set of
directory servers as the proxy server passes through the authorization to access these
servers.

13. Repeat the previous step to prepare the second endpoint server. If other servers have
not been prepared, make sure that they are prior to synchronization.

14. Define the Sync Pipe from proxy 1 to proxy 2. In this example, accept the default "Ping
Identity Proxy 1 to Ping Identity Proxy 2."

15. To customize on a per-entry basis how attributes get synchronized, define one or more
Sync Classes. Create a Sync Class for the special cases, and use the default Sync Class
for all other mappings.

16. For the default Sync Class Operations, specify the operations that will be synchronized.

17. Review the configuration settings, and write the configuration to the PingDataSync
Server in the sync-pipe-cfg.txt file.

Test the configuration
If the create-sync-pipe-config tool was not used to create the synchronization

configuration, two properties must be verified on each endpoint: proxy-server and use-

- 157 -

Chapter 7: Synchronize through PingDirectoryProxy Servers

changelog-batch-request. The proxy-server property should specify the name of the proxy

server. The use-changelog-batch-request should be set to true on the Sync Source only.

The use-changelog-batch-request is not available on the destination endpoint.

The PingDataSync Server connection parameters (hostname, port, bind DN, and bind

password) are required.

1. The following commands check the properties on a Sync Source.

On the Sync Source:

$ bin/dsconfig --no-prompt \
 get-sync-source-prop \
 --source-name "Ping Identity Proxy 1" \
 --property "proxy-server" \
 --property "use-changelog-batch-request"

On the Sync Destination:

$ bin/dsconfig --no-prompt \
 get-sync-source-prop \
 --source-name "Ping Identity Proxy 2" \
 --property "proxy-server"

2. From the server root directory, run the dsconfig command to set a flag indicating that
the endpoints are PingDirectoryProxy Servers:

$ bin/dsconfig --no-prompt \
 set-sync-source-prop \
 --source-name "Ping Identity Proxy 1" \
 --set proxy-server:ldap-west-01 \
 --set use-changelog-batch-request:true

$ bin/dsconfig --no-prompt \
 set-sync-source-prop \
 --source-name "Ping Identity Proxy 2" \
 --set proxy-server:ldap-east-01

3. Run the resync --dry-run command to test the configuration settings for each Sync
Pipe and debug any issues.

$ bin/resync --pipe-name "Ping Identity Proxy 1 to Ping Identity Proxy 2"
--dry-run

4. Run realtime-sync set-startpoint to initialize the starting point for synchronization.

$ realtime-sync set-startpoint --end-of-changelog \
 --pipe-name "Ping Identity Proxy 1 to Ping Identity Proxy 2" \
 --port 389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password

Note
For synchronization through proxy deployments, the --change-number option cannot be used with the

- 158 -

Index the LDAP changelog

realtime-sync set-startpoint command, because the PingDataSync Server cannot retrieve
specific change numbers from the backend directory servers. Use the --change-sequence-number,
--end-of-changelog, or other options available for the tool.

5. Run the resync command to populate data on the endpoint destination server if
necessary.

$ bin/resync --pipe-name "Ping Identity Proxy 1 to Ping Identity Proxy 2"
\
 --numPasses 3

6. Start the Sync Pipe using the realtime-sync start command.

$ bin/realtime-sync start \
 --pipe-name "Ping Identity Proxy 1 to Ping Identity Proxy 2"

7. Monitor the PingDataSync Server using the status commands and logs.

Index the LDAP changelog
The PingData PingDirectory Server and the Nokia 8661 Directory Server (3.0 or later) both

support attribute indexing in the changelog backend to enable get changelog batch requests to

filter results that include only changes of specific attributes. For example, in an entry balanced

proxy deployment, the PingDataSync Server sends a get changelog batch request to the Proxy

Server, which will send out individual requests to each backend server.

Each directory server that receives a request must iterate over the whole range of changelog

entries, and then match entries based on search criteria for inclusion in the batch. The majority

of this processing involves determining whether a changelog entry includes changes to a

particular attribute or set of attributes, or not. Changelog indexing can dramatically speed up

throughput when targeting specific attributes.

Attribute indexing is configured using the index-include-attribute and index-exclude-

attribute properties on the changelog backend. The properties can accept the specific

attribute name or special LDAP values "*" to specify all user attributes or "+" to specify all

operational attributes.

Perform the following steps to configure changelog indexing:

1. On all source directory servers, enable changelog indexing for the attributes that will be
synchronized. Use the index-include-attribute and index-exclude-attribute
properties. The following example specifies that all user attributes (index-include-
attribute:*) be indexed in the changelog, except the description and location attributes
(index-exclude-attribute:description and index-exclude-attribute:location).

- 159 -

Chapter 7: Synchronize through PingDirectoryProxy Servers

$ bin/dsconfig set-backend-prop --backend-name changelog \
 --set "index-include-attribute:*" \
 --set "index-exclude-attribute:description \
 --set "index-exclude-attribute:location

Note
There is little performance and disk consumption penalty when using index-include-attribute:*
with a combination of index-exclude-attribute properties, instead of explicitly defining each
attribute using index-include-attribute. The only cautionary note about using index-include-
attribute:* is to be careful that unnecessary attributes get indexed.

2. On the PingDataSync Server, configure the auto-map-source-attributes property to
specify the mappings for the attributes that need to be synchronized.

The PingDataSync Server will write a NOTICE message to the error log when the Sync Pipe first

starts, indicating whether the server is using changelog indexing or not.

[30/Mar/2016:13:21:36.781 -0500] category=SYNC severity=NOTICE
msgID=1894187256 msg="Sync Pipe 'TestPipe' is not using changelog indexing on
the source server"

Changelog synchronization considerations
If the Sync Source is configured with use-changelog-batch-request=true, the PingDataSync

Server will use the get changelog batch request to retrieve changes from the LDAP changelog.

This extended request can contain an optional set of selection criteria, which specifies

changelog entries for a specific set of attributes.

The PingDataSync Server takes the union of the source attributes from DN mappings, attribute

mappings, and the auto-mapped-source-attributes property on the Sync Class to create the

selection criteria. However, if it encounters the value "-all-" in the auto-mapped-source-

attributes property, it cannot make use of selection criteria because the Sync Pipe is

interested in all possible source attributes.

When the PingDirectory Server receives a get changelog request that contains selection

criteria, it returns changelog entries for one or more of the attributes that meet the criteria.

l For ADD and MODIFY changelog entries, the changes must include at least one attribute
from the selection criteria.

l For MODDN changelog entries, one of the RDN attributes must match the selection
criteria.

l For DELETE changelog entries, one of the deletedEntryAttrs much match the selection
criteria.

- 160 -

Changelog synchronization considerations

If auto-mapped is not set to all source attributes, at least one should be configured to show

up in the deletedEntryAttrs (with the changelog-deleted-entry-include-attribute

property on the changelog backend).

Another way to do this is to set use-reversible-form to true on the changelog backend. This

includes all attributes in the deletedEntryAttrs.

- 161 -

Chapter 8: Synchronize in Notification
Mode

The PingDataSync Server supports a notification synchronization mode that transmits change

notifications on a source endpoint to third-party destination applications. As with standard

mode, notifications can be filtered based on the type of entry that was changed, the specific

attributes that were changed, and the type of change (ADD, MODIFY, DELETE). The

PingDataSync Server can send a notification to arbitrary endpoints by using a custom server

extension.

Topics include:

Notification mode overview

Notification mode architecture

Configure Notification mode

Implement the server extension

Configure the Notification Sync Pipe

Access control filtering on the Sync Pipe

- 162 -

Chapter 8: Synchronize in Notification Mode

Notification mode overview
The PingDataSync Server supports standard and notification synchronization modes.

Notification Mode polls the directory server’s LDAP change log for changes on any entry but

skips the fetch and compare phases of processing of Standard Mode. Instead, the Sync

Destination is notified of the change regardless of the current state of that entry at the source

or destination. The PingDataSync Server accesses state information on the change log to

reconstruct the before-and-after values of any modified attribute (for example, for MODIFY

change operation types). It passes in the change information to a custom server extension

based on the Server SDK.

Third-party libraries can be employed to customize the notification message to an output

format required by the client application or service. For example, the server extension can use

a third-party XML parsing library to convert the change notifications to a SOAP XML format.

Notification mode can only be used with an PingDirectory Server, Nokia 8661 Directory Server,

PingDirectoryProxy Server, or Nokia 8661 Directory Proxy Server as the source endpoint.

Notification Mode Synchronization Change Flow

- 163 -

Notification mode overview

The PingDataSync Server can use notification mode with any type of endpoint; therefore, it is

not an absolute requirement to have a custom server extension in your system. For example,

it is possible to set up a notification Sync Pipe between two LDAP server endpoints.

Implementation Considerations

Before implementing and configuring a Sync Pipe in notification mode, answer the following

questions:

l What is the interface to client applications?

l What type of connection logic is required?

l How will the custom server extension handle timeouts and connection failures?

l What are the failover scenarios?

l What data needs to be included in the change log?

l How long do the change log entries need to be available?

l What are the scalability requirements for the system?

l What attributes should be used for correlation?

l What should happen with each type of change?

l What mappings must be implemented?

Use the Server SDK and LDAP SDK

To support notification mode, the Server SDK provides a SyncDestination extension to

synchronize with any client application. The PingDataSync Server engine processes the

notification and makes it available to the extension, which can be written in Java or Groovy.

This generic extension type can also be used for standard synchronization mode.

Similar to database synchronization, the custom server extension is stored in the <server-

root>/lib/groovy-scripted-extensions folder (for Groovy-based extensions) or the jar file

in the <server-root>/lib/extensions folder (for Java-based extensions) prior to configuring

the PingDataSync Server for notification mode. Groovy scripts are compiled and loaded at

runtime.

The Server SDK's SyncOperation interface represents a single synchronized change from the

Sync Source to the Sync Destination. The same SyncOperation object exists from the time a

change is detected, through when the change is applied at the destination.

- 164 -

Chapter 8: Synchronize in Notification Mode

The LDAP SDK's UnboundIDChangelogEntry class (in the

com.unboundid.ldap.sdk.unboundidds package) has high level methods to work with the

ds-changelog-before-value, ds-changelogafter-values, and ds-changelog-entry-key-

attr-values attributes. The class is part of the commercial edition of the LDAP SDK for Java

and is installed automatically with the PingDataSync Server. For detailed information and

examples, see the LDAP SDK Javadoc.

Notification mode architecture
Notification mode, a configuration setting on the Sync Pipe, requires a one-way directional

Sync Pipe from a source endpoint topology to a target client application. The PingDataSync

Server detects the changes in the PingDirectory Server’s LDAP change log, filters the results

specified in the Sync Classes, applies any DN and attribute mappings, then reconstructs the

change information from the change log attributes. A server extension picks up the notification

arguments from the SyncOperation interface (part of the Server SDK) and converts the data

to the desired output format. The server extension establishes the connections and protocol

logic to push the notification information to the client applications or services. All of the

operations, administration, and management functions available in standard mode, such as

monitoring, (LDAP, JMX, SNMP), alerts (JMX, SNMP, SMTP), and logging features are the same

for notification mode.

Note
The Server SDK includes documentation and examples on how to create a directory server extension to
support notificationmode.

For a given entry, the PingDataSync Server sends notifications in the order that the changes

occurred in the change log even if a modified attribute has been overwritten by a later change.

For example, if an entry’s telephoneNumber attribute is changed three times, three

notifications will be sent in the order they appeared in the change log.

- 165 -

Notification mode architecture

Notification Mode Architecture

Sync Source requirements

A separate Sync Pipe is required for each client application that should receive a notification.

The Sync Sources must consist of one or more instances of the following directory or proxy

servers with the PingDataSync Server:

l Ping IdentityPingDirectory Server and PingDirectoryProxy Server (version 3.0.5 or later)

l Nokia 8661 Directory Server

l The Sync Destination can be of any type

Note While the PingDirectoryProxy Server and Nokia 8661 Directory Proxy Server can front other
vendor’s directory servers, such as Active Directory and Sun DSEE, for processing LDAP operations, the
PingDataSync Server cannot synchronize changes from these sources through a proxy server.
Synchronizing changes directly from Active Directory and Sun DSEE cannot be done with notification
mode.

Failover Capabilities

For sync source failovers, configure replication between the Directory Servers to ensure data

consistency between the servers. A PingDirectoryProxy Server can also front the backend

PingDirectory Server set to redirect traffic, if connection to the primary server fails. A

PingDirectoryProxy Server must be used for synchronizing changes in an entry-balancing

- 166 -

Chapter 8: Synchronize in Notification Mode

environment. Once the primary PingDirectory Server is online, it assumes control with no

information loss as its state information is kept across the backend PingDirectory Servers.

For sync destination failovers, connection retry logic must be implemented in the server

extension, which will use the Sync Pipe’s advanced property settings to retry failed operations.

There is a difference between a connection retry and an operation retry. An extension should

not retry operations because the PingDataSync Server does this automatically. However, the

server extension is responsible for re-establishing connections to a destination that has gone

down, or failing over to an alternate server. The server extension can also be designed to

trigger its own error- handling code during a failed operation.

For PingDataSync Server failovers, the secondary PingDataSync Servers will be at or slightly

behind the state where the primary server initiated a failover. Both primary and secondary

PingDataSync Servers track the last failed acknowledgement, so once the primary server fails

over to a secondary server, the secondary server will not miss a change.

Note
If failover is a concern between PingDataSync Servers, change the sync-failover-polling-
interval property from 7500ms to a smaller value. This will result in a quicker failover, but will marginly
increase traffic between the two PingDataSync Servers. The sync-failover-connection-
timeout and sync-failover-response-timeout properties may also be updated to use different
failover timeout durations. Use dsconfig to access the property on the Global Sync Configuration
menu.

Notification Sync Pipe change flow

Multi-threaded Sync Pipes allow the PingDataSync Server to process multiple notifications in

parallel in the same manner as synchronizing changes in standard mode, which increases

throughput and offsets network latency. A single change-detection thread pulls in batches of

change log entries and queues them internally. To guarantee consistency, the PingDataSync

Server’s internal locking mechanisms ensure the following properties:

l Changes to the same entry will be processed in the same order that they appear in the
change log.

l Changes to parent entries will be processed before changes to its children.

l Changes to entries with the same RDN value are handled sequentially.

The number of concurrent threads is configurable on the Sync Pipe using the num-worker-

threads property. In general, single-threading should be avoided.

- 167 -

Configure Notification mode

Notification Sync Pipe Change Flow

Configure Notification mode
The PingDataSync Server supports notification mode with the following components:

Use the create-sync-pipe-config tool

The create-sync-pipe-config tool supports the configuration of notification mode. Any pre-

existing Sync Sources can be read from the local configuration (in the config.ldif file).

No resync command functionality

The resync function is disabled on a Sync Pipe in notification mode as its functionality is not

supported in this implementation. Notification mode views the directory server’s change log as

a rolling set of data that pushes out change notifications to its target application.

LDAP change log features required for notifications

The PingDirectory Server and the Nokia 8661 Directory Server require the following advanced

global change log properties: changelog-max-before-after-values and changelog-

include-key-attribute.

- 168 -

Chapter 8: Synchronize in Notification Mode

These properties are enabled and configured during the create-sync-pipe-config

configuration process on the PingDataSync Server. The properties can also be enabled on the

directory servers using the dsconfig advanced properties setting on the Backend Changelog

menu.

changelog-include-key-attribute

The changelog-include-key-attribute property specifies one or more attributes that should

always be included in the change log entry. These are attributes needed to correlate entries

between the source and destination, such as uid, employeeNumber, or mail. These properties

are also needed for evaluating any filters in the Sync Class. For example, if notifications are

only sent for user entries, and the Sync Class included the filter (objectclass=people), the

objectclass attribute must be configured as a changelog-include-key-attribute so that

the Sync Pipe can evaluate the inclusion criteria when processing the change. In standard

mode, values needed in the filter are read from the entry itself after it is fetched instead of

from the changelog entry. These attributes are always included in a change log entry, also

called a change record, regardless if they have changed or not.

The changelog-include-key-attribute property causes the current (after-change) value of

the specified attributes to be recorded in the ds-changelog-entry-key-attr-values attribute

on the change log entry. This applies for all change types. During a delete operation, the values

are from the entry before it was deleted. The key values are recorded on every change and

override any settings configured in the changelog-include-attribute, changelog-exclude-

attribute, changelog-deleted-entry-include-attribute, or changelog-deleted-entry-

exclude-attribute properties in the directory server changelog (see the Ping Identity

PingDirectory Server Configuration Reference for more information).

Normal LDAP to LDAP synchronization topologies typically use dn as a correlation attribute. If

dn is used as a correlation attribute only, the changelog-include-key-attribute property

does not need to be set. However, if another attribute is used for correlation, this property

must be set during the Sync Pipe configuration.

The LDAP change log attribute, ds-changelog-entry-key-attr-values, stores the attribute

that is always included in a change log entry on every change for correlation purposes. In

addition to regular attributes, virtual and operational attributes can be specified as entry keys.

To view an example, see the Ping Identity PingDirectory Server Administration Guide.

- 169 -

Configure Notification mode

changelog-max-before-after-values

The changelog-max-before-after-values property specifies the maximum number of

"before and after" values (default 200) that should be stored for any changed attribute in the

change log. Also, when enabled, it will add the ds-changelog-before-values and ds-

changelog-after-values attributes to any change record that contains changes (for Modify

and ModifyDN).

The main purpose of the changelog-max-before-after-values property is to ensure that an

excessively large number of changes is not stored for multi-valued attributes. In most cases,

the directory server’s schema defines a multi-valued attribute to be unlimited in an entry. For

example, if a group entry whose member attribute references 10000 entries, the desire may

be to not have all of the attributes if a new member added.

If either the ds-changelog-before-values or the ds-changelog-after-values attributes

exceed the count set in the changelog-max-before-after-values property, the attribute

values are no longer stored in a change record but its attribute name and number is stored in

the ds-changelog-attr-exceeded-max-values-count attribute, which appears in the change

record.

In addition to this property, set the use-reversible-form property to TRUE. This guarantees

that sufficient information is stored in the change log for all operation types to be able to

replay the operations at the destination. The create-sync-pipe-config tool configures these

properties when it prepares the servers.

The changelog-max-before-after-values property configures the following change log

attributes:

l ds-changelog-before-values – Captures all "before" values of a changed attribute. It
will store up to the specified value in the changelog-max-before-after-values
property (default 200).

l ds-changelog-after-values – Captures all "after" values of a changed attribute. It will
store up to the specified value in the changelog-max-before-after-values property
(default 200).

l ds-changelog-attr-exceeded-max-values-count – Stores the attribute names and
number of before and after values on the change log entry after the maximum number of
values (set by the changelog-max-before-after-values property) has been exceeded.
This is a multi-valued attribute with the following format:

attr=attributeName,beforeCount=200,afterCount=201

- 170 -

Chapter 8: Synchronize in Notification Mode

where attributeName is the name of the attribute and the beforeCount and

afterCount are the total number of values for that attribute before and after the

change, respectively. In either case (before or after the change), if the number of values

is exceeding the maximum, those values will not be stored.

LDAP change log for Notification and Standard Mode

Both Notification and Standard mode Sync Pipes can consume the same LDAP Change Log

without affecting the other. Standard mode polls the change record in the change log for any

modifications, fetches the full entries on the source and the destination, and then compares

them for the specific changes. Notification mode gets the before and after values of a changed

attribute to reconstruct an entry, and bypasses the fetch-and-compare phase. Both can

consume the same LDAP Change Log with no performance loss or conflicts.

Note
If the configuration obtains the change log through a PingDirectoryProxy Server, the contents of the
change log will not change as it is being read from the change logs on the directory server backend.

Implementing the Server Extension
Notification mode relies heavily on the server extension code to process and transmit the

change using the required protocol and data formats needed for the client applications. Create

the extension using the Server SDK, which provides the APIs to develop code for any

destination endpoint type. The Server SDK’s documentation (Javadoc and examples) is

delivered with the Server SDK built-in zip format. The SDK provides all of the necessary

classes to extend the functionality of the PingDataSync Server without code changes to the

core product. Once the server extension is in place, use other third-party libraries to transform

the notification to any desired output format.

Consider the following when implementing the extension:

l Use the manage-extension Tool – Use the manage-extension tool in the bin
directory or bat directory (Windows) to install or update the extension. See Managing
Extensions for more information.

l Review the Server SDK Package – Review Server SDK documentation and examples
before building and deploy a Java or Groovy extension.

l Connection and Protocol Logic – The Server SDK extension must manage the
notification connection and protocol logic to the client applications.

- 171 -

Configuring the Notification Sync Pipe

l Implementing Extensions – Test the create methods, the delete methods, and the
modify methods for each entry type. Update the configuration as needed. Finally,
package the extensions for deployment. Logging levels can be increased to include more
details.

l Use the SyncOperation Type – The SyncOperation class encapsulates everything to
do with a given change. Objects of this type are used in all of the synchronization SDK
extensions. See the Server SDK Javadoc for the SyncOperation class for information on
the full set of methods.

l Use the EndpointException Type – The Sync Destination type offers an exception
type called EndpointException to extend a standard Java exception and provide custom
exceptions. There is also logic to handle LDAP exceptions, using the LDAP SDK.

l About the PostStep result codes – The EndpointException class uses PostStep
result codes that are returned in the server extension:

o retry_operation_limited – Retry a failed attempt up to the limit set by max_
operation_attempts.

o retry_operation_unlimited – Retry the operation an unlimited number of times
until a success, abort, or retried_operation_limited. This should only be used
when the destination endpoint is unavailable.

o abort_operation – Abort the current operation without any additional processing.

l Use the ServerContext class for logging – The ServerContext class provides
several logging methods which can be used to generate log messages and/or alerts from
the scripted layer: logMessage(), sendAlert(), debugCaught(), debugError(),
debugInfo(), debugThrown(), debugVerbose(), and debugWarning(). These are
described in the Server SDK API Javadocs. Logging related to an individual
SyncOperation should be done with the SyncOperation#logInfo and
SyncOperation#logError methods.

l Diagnosing Script Errors – When a Groovy extension does not behave as expected,
first look in the error log for stack traces. If classLoader errors are present, the script
could be in the wrong location or may not have the correct package. Groovy checks for
errors at runtime. Business logic errors must be systematically found by testing each
operation. Make sure logger levels are set high enough to debug.

Configuring the Notification Sync Pipe
The following procedure configures a one-way Sync Pipe with a PingDirectory Server as the

Sync Source and a generic sync destination. The procedure uses the create-sync-pipe-

- 172 -

Chapter 8: Synchronize in Notification Mode

config tool in interactive command-line mode and highlights the differences for configuring a

Sync Pipe in notification mode.

Considerations for Configuring Sync Classes

When configuring a Sync Class for a Sync Pipe in notification mode, consider the following:

l Exclude any operational attributes from synchronizing to the destination so that its
before and after values are not recorded in the change log. For example, the following
attributes can be excluded: creatorsName, createTimeStamp, ds-entry-unique-id,
modifiersName, and modifyTimeStamp. Filter the changes at the change log level
instead of making the changes in the Sync Class to avoid extra configuration settings
with the following:

o Use the directory server’s changelog-exclude-attribute property with (+) to
exclude all operational attributes (change-log-exclude-attribute:+).

o Configure a Sync Class that sets the excluded-auto-mapped-source-attributes
property to each operational attribute to exclude from the synchronization process.

o Use the directory server’s changelog-exclude-attribute property to specify
each operational attribute to exclude in the synchronization process. Set the
configuration using the dsconfig tool on the directory server Change Log Backend
menu. For example, set changelog-exclude-attribute:modifiersName.

l Use the destination-create-only-attribute advanced property on the Sync Class.
This property sets the attributes to include on CREATE operations only.

l Use the replace-all-attr-values advanced property on the Sync Class. This property
specifies whether to use the ADD and DELETE modification types (reversible), or the
REPLACE modification type (non-reversible) for modifications to destination entries. If
set to true, REPLACE is used.

l If targeting specific attributes that require higher performance throughput, consider
implementing change log indexing. See Synchronizing Through Proxy Servers for more
information.

Creating the Sync Pipe

The initial configuration steps show how to set up a single Sync Pipe from a directory server

instance to a generic Sync Destination.

Before starting:

- 173 -

Configuring the Notification Sync Pipe

l Place any third-party libraries in the <server-root>/lib/extensions folder.

l Implement a server extension for any custom endpoints and place it in the appropriate
directory.

1. If necessary, start the PingDataSync Server:

$ bin/start-server

2. Run the create-sync-pipe-config tool.

$ bin/create-sync-pipe-config

3. At the Initial Synchronization Configuration Tool prompt, press Enter to continue.

4. On the Synchronization Mode menu, select the option for notification mode.

5. On the Synchronization Directory menu, enter the option to create a one-way Sync Pipe
in notification mode from directory to a generic client application.

Configuring the Sync Source
1. On the Source Endpoint Type menu, enter the option for the Sync Source type.

2. Choose a pre-existing Sync Source, or create a new sync source.

3. Enter a name for the Source Endpoint and a name for the Sync Source.

4. Enter the base DN for the directory server used for LDAP searches, such as
dc=example,dc=com, and press Enter to return to the menu. If entering more than one
base DN, make sure they do not overlap.

5. On the Server Security menu, select the type of communication that the PingDataSync
Server will use with endpoint servers.

6. Enter the host and port of the first Source Endpoint server. The Sync Source can specify
a single server or multiple servers in a replicated topology. The PingDataSync Server
contacts this first server if it is available, then contacts the next highest priority server if
the first server is unavailable. The server tests the connection.

7. On the Sync User Account menu, enter the DN of the sync user account and password, or
press Enter to accept the default, cn=Sync User,cn=Root DNs,cn=config. This
account allows the PingDataSync Server to access the source endpoint server.

Configure the Destination Endpoint Server
1. On the Destination Endpoint Type menu, select the type of data store on the endpoint

server. In this example, select the option for Custom.

2. Enter a name for the Destination Endpoint and a name for the Sync Destination.

- 174 -

Chapter 8: Synchronize in Notification Mode

3. On the Notifications Setup menu, select the language (Java or Groovy) used to write the
server extension.

4. Enter the fully qualified name of the Server SDK extension that implements the abstract
class. A Java, extension should reside in the /lib/extensions directory. A Groovy script
should reside in the /lib/groovy-scripted-extensions directory.

5. Configure any user-defined arguments needed by the server extension. Typically, these
are connection arguments, which are defined by the extension itself. The values are then
entered here and stored in the server configuration.

6. Configure the maximum number of before and after values for all changed attributes.
Notification mode requires this. Set the cap to something well above the maximum
number of values that any synchronized attribute will have. If this cap is exceeded, the
PingDataSync Server will issue an alert. For this example, we accept the default value of
200.

Enter a value for the max changelog before/after values,
or -1 for no limit [200]:

7. Configure any key attributes in the change log that should be included in every
notification. These attributes can be used to find the destination entry corresponding to
the source entry, and will be present whether or not the attributes changed. Later, any
attributes used in a Sync Class include-filter should also be configured as key attributes
in the Sync Class.

8. In both standard and notification modes, the Sync Pipe processes the changes
concurrently with multiple threads. If changes must be applied strictly in order, the
number of Sync Pipe worker threads will be reduced to 1. This will limit the maximum
throughput of the Sync Pipe.

The rest of the configuration steps follow the same process as a standard synchronization

mode Sync Pipe. See About the Sync User Account for more information.

Access control filtering on the Sync Pipe
The PingDataSync Server provides an advanced Sync Pipe configuration property, filter-

changes-by-user, that performs access control filtering on a changelog entry for a specific

user.

Since the changelog entry contains data from the target entry, the access controls filter out

attributes that the user does not have the privileges to see before it is returned. For example,

values in the changes, ds-changelog-before-values, ds-changelog-after-values, ds-

- 175 -

Access control filtering on the Sync Pipe

changelog-entry-key-attr-values, and deletedEntryAttrs are filtered out through

access control instructions.

Note
This property is only available for notificationmode and can be configured using the create-sync-
pipe-config or the dsconfig tool.

The source server must be an Ping Identity PingDirectory Server or Nokia 8661 Directory

Server, or an Ping Identity PingDirectoryProxy Server or Nokia 8661 Directory Proxy Server

that points to an Ping Identity PingDirectory Server or Nokia 8661 Directory Server.

Considerations for access control filtering
l The directory server will not return the changelog entry if the user is not allowed to see
the target entry.

l The directory server strips out any attributes that the user is not allowed to see.

l If no changes are left in the entry, no changelog entry will be returned.

l If only some attributes are stripped out, the changelog entry will be returned.

l Access control filtering on a specific attribute value is not supported. Either all attribute
values are returned or none.

l If a sensitive attribute policy is used to filter attributes when a client normally accesses
the directory server, this policy will not be taken into consideration during notifications
since the Sync User is always connecting using the same method. Configure access
controls to filter out attributes, not based on the type of connection made to the server,
but based on who is accessing the data. The filter-changes-by-user property will be
able to evaluate if that person should have access to these attributes.

Configure the Sync Pipe to filter changes by access control instructions
1. Set the filter-changes-by-user property to filter changes based on access controls for

a specific user.

$ bin/dsconfig set-sync-pipe-prop \
 --pipe-name "Notifications Sync Pipe" \
 --set "filter-changes-by-user:uid=admin,dc=example,dc=com"

2. On the source directory server, set the report-excluded-changelog-attributes
property to include the names of users that have been removed through access control
filtering. This will allow the PingDataSync Server to warn about attributes that were
supposed to be synchronized but were filtered out. This step is recommended but not
required.

- 176 -

Chapter 8: Synchronize in Notification Mode

$ bin/dsconfig set-backend-prop \
--backend-name "changelog" \
 --set "report-excluded-changelog-attributes:attribute-names"

Note
The PingDataSync Server only uses the attribute-names setting for the PingDirectory Server’s
report-excluded-changelog-attributes property. It does not use the attribute-counts
setting for the property.

- 177 -

Chapter 9: Configure synchronization
with SCIM

The PingDataSync Server provides data synchronization between directory servers or proxy

servers and System for Cross-domain Identity Management (SCIM) applications over HTTP.

Synchronization can be done with custom SCIM applications, or with the PingData

PingDirectory Server and PingDirectoryProxy Server configured as SCIM servers using the

SCIM extension.

Topics include:

Synchronize with a SCIM Sync Destination overview

Configure synchronization with SCIM

Map LDAP schema to SCIM resource schema

Identify a SCIM resource at the destination server

- 178 -

Chapter 9: Configure synchronization with SCIM

Synchronize with a SCIM Sync Destination overview
The SCIM protocol is designed to make managing user identity in cloud-based applications and

services easier. SCIM enables provisioning identities, groups, and passwords to, from, and

between clouds. The PingDataSync Server can be configured to synchronize with SCIM service

providers.

Note
Both the Ping Identity PingDirectory Server and PingDirectoryProxy Server can be configured to be SCIM
servers using the SCIM HTTP Servlet Extension.

The PingDataSync Server is LDAP-centric and operates on LDAP attributes. The SCIM Sync

Destination server component acts as a translation layer between a SCIM service provider’s

schema and an LDAP representation of the entries. While the PingDataSync Server is LDAP-

centric and typically at least one endpoint is an LDAP Directory Server, this is not a strict

requirement. For example, a JDBC to SCIM sync pipe can be configured.

The PingDataSync Server contains sync classes that define how source and destination entries

are correlated. The SCIM Sync Destination contains its own mapping layer, based on

scimresources.xml that maps LDAP schema to and from SCIM.

Synchronizing with a SCIM Sync Destination

Note
The PingDataSync Server can only use SCIM as a Sync Destination. There is nomechanism in the SCIM
protocol for detecting changes, so it cannot be used as a Sync Source.

- 179 -

Synchronize with a SCIM Sync Destination overview

SCIM destination configuration objects

The SCIMSyncDestination object defines a SCIM service provider Sync Pipe destination that

is accessible over HTTP through the SCIM protocol. It is configured with the following

properties:

l server – Specifies the names of the SCIM External Servers that are used as the
destination of synchronization.

l resource-mapping-file – Specifies the path to the scim-resources.xml file, a
configuration file that defines the SCIM schema and maps it to the LDAP schema. This file
is located in <server root>/config/scim-resources.xml by default. This file can be
customized to define and expose deployment-specific resources.

l rename-policy – Specifies how to handle the rename of a SCIM resource.

The SCIM Sync Destination object is based on the SCIM SDK. Before configuring a SCIM

destination, review the following documents on the Simple Cloud web site:

l SCIM Core Schema

l SCIM REST API

Considerations for synchronizing to a SCIM destination

When configuring an LDAP to SCIM Sync Pipe, consider the following:

l Use scim-resources.xml for Attribute and DN Mappings – There are two layers of
mapping: once at the Sync Class level and again at the SCIM Sync Destination level in
the scim-resources.xml file. To reduce complexity, do all possible mappings in the
scim-resources.xml file.

l Avoid Groups Unless the SCIM ID is DN Based – Group synchronization is
supported if the SCIM ID is based on the DN. If the SCIM ID is not the DN itself, it must
be one of the components of the RDN, meaning that the DNs of group members must
contain the necessary attribute.

l SCIM Modifies Entries Using PUT – The SCIM Sync Destination modifies entries
using the full HTTP PUT method. For every modify, SCIM replaces the entire resource
with the updated resource. For information about the implications of this on password
updates, see Password Considerations with SCIM.

- 180 -

Chapter 9: Configure synchronization with SCIM

Renaming a SCIM resource

The SCIM protocol does not support changes that require the SCIM resource to be renamed,

such as a MODDN operation. Instead, when a change is detected to an attribute value that is

used as part of the SCIM ID attribute, the PingDataSync Server handles it in one of the

following ways:

l Deletes the specified SCIM resource and then adds the new resource with the new SCIM
ID.

l Adds the new resource with the new SCIM ID and then deletes the old resource.

l Skips the rename portion of the change. If renames are expected on the source
endpoint, a careful set of destination-correlation attributes should be chosen so that the
destination can still be found after it is renamed on the source.

Configure this by setting the rename-policy property of the SCIM Sync Destination.

Password considerations with SCIM

Because the SCIM sync destination modifies entries using a full PUT method, special

considerations need to be made for password attributes. An Ping Identity SCIM Server allows

password attributes to be omitted from a change when they have not been modified by an

operation. This prevents passwords from inadvertently being overwritten during the PUT

operation, which does not include the password attribute. Ideally, other SCIM service

providers will not wipe a password because a PUT request does not contain it. Check with the

SCIM vendor to confirm this behavior before starting a SCIM sync pipe.

Configure synchronization with SCIM
Configure synchronization with SCIM using the create-sync-pipe-config utility and the

dsconfig command. Configuring synchronization between an LDAP server and a SCIM service

provider includes the following:

l Configure one external server for every physical endpoint.

l Configure the Sync Source server and designate the external servers that correspond to
the source server.

l Configure the Sync Destination server and designate the external servers that
correspond to the SCIM sync destination.

- 181 -

Configure synchronization with SCIM

l Configure the LDAP to SCIM Sync Pipe.

l Configure the Sync Classes. Each Sync Class represents a type of entry that needs to be
synchronized. When specifying a Sync Class for synchronization with a SCIM service
provider, avoid including attribute and DN mappings. Instead use the Sync Class to
specify the operations to synchronize and which correlation attributes to use.

l Set the evaluation order for the Sync Classes to define the processing precedence for
each class.

l Configure the scim-resources.xml file. If possible, change the <resourceIDMapping>
element(s) to use whatever the SCIM Service Provider uses as the SCIM ID.

l Set Up Communication for each External Server. Run prepare-endpoint-server once
for every LDAP external server that is part of the Sync Source.

l Use realtime-sync to start the Sync Pipe.

Configure the external servers

Perform the following to configure an external server for each host in the deployment:

1. Configure an PingDirectory Server as an external server, which will later be configured
as a Sync Source. On the PingDataSync Server, run the following dsconfig command:

$ bin/dsconfig create-external-server \
 --server-name source-ds \
 --type ping-identity-ds \
 --set server-host-name:ds1.example.com \
 --set server-port:636 \
 --set "bind-dn:cn=Directory Manager" \
 --set password:secret \
 --set connection-security:ssl \
 --set key-manager-provider:Null \
 --set trust-manager-provider:JKS

2. Configure the SCIM server as an external server, which will later be configured as a Sync
Destination. The scim-service-url property specifies the complete URL used to access
the SCIM service provider. The user-name property specifies the account used to
connect to the SCIM service provider. By default, the value is cn=Sync User,cn=Root

DNs,cn=config. Some SCIM service providers may not have the user name in DN
format.

$ bin/dsconfig create-external-server \
 --server-name scim \
 --type scim \
 --set scim-service-url:https://scim1.example.com:8443 \
 --set "user-name:cn=Sync User,cn=Root DNs,cn=config" \
 --set password:secret \
 --set connection-security:ssl \
 --set hostname-verification-method:strict \
 --set trust-manager-provider:JKS

- 182 -

Chapter 9: Configure synchronization with SCIM

Configure the PingDirectory Server Sync Source

Configure the Sync Source for the synchronization network. More than one external server can

be configured to act as the Sync Source for failover purposes. If the source is an PingDirectory

Server, also configure the following items:

l Enable the changelog password encryption plug-in on any directory server that will
receive password modifications. This plugin intercepts password modifications, encrypts
the password, and adds an encrypted attribute to the change log entry.

l Configure the changelog-deleted-entry-include-attribute property on the
changelog backend, so that the PingDataSync Server can record which attributes were
removed during a DELETE operation.

Perform the following steps to configure the Sync Source:

1. Run dsconfig to configure the external server as the Sync Source. Based on the
previous example where the PingDirectory Server was configured as source-ds, run the
following command:

$ bin/dsconfig create-sync-source --source-name source \
 --type ping-identity \
 --set base-dn:dc=example,dc=com \
 --set server:source-ds \
 --set use-changelog-batch-request:true

2. Enable the change log password encryption plug-in on any server that will receive
password modifications. The encryption key can be copied from the output, if displayed,
or accessed from the <server-root>/bin/sync-pipe-cfg.txt file, if the create-
sync-pipe-config tool was used to create the sync pipe.

$ bin/dsconfig set-plugin-prop \
 --plugin-name "Changelog Password Encryption" \
 --set enabled:true \
 --set changelog-password-encryption-key:<key>

3. On the PingDataSync Server, set the decryption key used to decrypt the user password
value in the change log entries. The key allows the user password to be synchronized to
other servers that do not use the same password storage scheme.

$ bin/dsconfig set-global-sync-configuration-prop \
 --set changelog-password-decryption-key:ej5u9e39pq-68

4. Configure the changelog-deleted-entry-include-attribute property on the
changelog backend.

$ bin/dsconfig set-backend-prop --backend-name changelog \
 --set changelog-deleted-entry-include-attribute:objectClass

- 183 -

Configure synchronization with SCIM

Configure the SCIM Sync Destination

Configure the SCIM Sync Destination to synchronize data with a SCIM service provider. Run the

dsconfig command:

$ bin/dsconfig create-sync-destination \
 --destination-name scim \
 --type scim \
 --set server:scim

Configure the Sync Pipe, Sync Classes, and evaluation order

Configure a Sync Pipe for LDAP to SCIM synchronization, create Sync Classes for the Sync

Pipe, and set the evaluation order index for the Sync Classes.

Note
The Synchronizationmodemust be set to Standard. NotificationMode cannot be used with SCIM.

1. Once the source and destination endpoints are configured, configure the Sync Pipe for
LDAP to SCIM synchronization. Run the dsconfig command to configure an LDAP-to-
SCIM Sync Pipe:

$ bin/dsconfig create-sync-pipe \
 --pipe-name ldap-to-scim \
 --set sync-source:source \
 --set sync-destination:scim

2. The next set of steps define three Sync Classes. The first Sync Class is used to match
user entries in the Sync Source. The second class is used to match group entries. The
third class is a DEFAULT class that is used to match all other entries.

Run the dsconfig command to create the first Sync Class and set the Sync Pipe Name

and Sync Class name:

$ bin/dsconfig create-sync-class \
 --pipe-name ldap-to-scim \
 --class-name user

3. Use dsconfig to set the base DN and filter for this Sync Class. The include-base-dn
property specifies the base DN in the source, which is ou=people,dc=example,dc=com
by default. This Sync Class is invoked only for changes at the ou=people level. The
include-filter property specifies an LDAP filter that tells the PingDataSync Server to
include inetOrgPerson entries as user entries. The destination-correlation-
attributes specifies LDAP attributes that allow the PingDataSync Server to find the
destination resource on the SCIM server. The value of this property will vary. See
Identifying a SCIM Resource at the Destination Server for details.

- 184 -

Chapter 9: Configure synchronization with SCIM

$ bin/dsconfig set-sync-class-prop \
 --pipe-name ldap-to-scim \
 --class-name user \
 --add include-base-dn:ou=people,dc=example,dc=com \
 --add "include-filter:(objectClass=inetOrgPerson)" \
 --set destination-correlation-attributes:externalId

4. Create the second Sync Class, which is used to match group entries.

$ bin/dsconfig create-sync-class \
 --pipe-name ldap-to-scim \
 --class-name group

5. For the second Sync Class, set the base DN and the filters to match the group entries.

$ bin/dsconfig set-sync-class-prop \
 --pipe-name ldap-to-scim \
 --class-name group \
 --add include-base-dn:ou=groups,dc=example,dc=com \
 --add "include-filter:(|(objectClass=groupOfEntries)\

(objectClass=groupOfNames)(objectClass=groupOfUniqueNames)\
(objectClass=groupOfURLs))"

6. For the third Sync Class, create a DEFAULT Sync Class that is used to match all other
entries. To synchronize changes from only user and group entries, set synchronize-
creates, synchronize-modifies, and synchronize-delete to false.

$ bin/dsconfig create-sync-class \
 --pipe-name ldap-to-scim \
 --class-name DEFAULT \
 --set evaluation-order-index:99999 \
 --set synchronize-creates:false \
 --set synchronize-modifies:false \
 --set synchronize-deletes:false

7. After all of the Sync Classes needed by the Sync Pipe are configured, set the evaluation
order index for each Sync Class. Classes with a lower number are evaluated first. Run
dsconfig to set the evaluation order index for the Sync Class. The actual number
depends on the deployment.

$ bin/dsconfig set-sync-class-prop \
 --pipe-name ldap-to-scim \
 --class-name user \
 --set evaluation-order-index:100

Configure communication with the source server(s)

Configure communication between the PingDataSync Server and the LDAP source servers with

the prepare-endpoint-server tool. If user accounts do not exist, this tool creates the

- 185 -

Map LDAP schema to SCIM resource schema

appropriate user account and its privileges. Also, because the source is an PingDirectory

Server, this tool enables the change log.

Note
The prepare-endpoint-server tool can only be used on LDAP directory servers. For the SCIM
Server, manually create a sync user entry.

Run the prepare-endpoint-server command to setup communication between the

PingDataSync Server and the source server(s). The tool will prompt for the bind DN and

password to create the user account and enable the change log.

$ bin/prepare-endpoint-server \
 --hostname ds1.example.com \
 --port 636 \
 --useSSL \
 --trustAll \
 --syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \
 --syncServerBindPassword "password" \
 --baseDN "dc=example,dc=com" \
 --isSource

Start the Sync Pipe

The realtime-sync tool sets a specific starting point for real-time synchronization, so that

changes made before the current time are ignored.

1. Run the realtime-sync tool to set the startpoint for the Sync Source.

$ bin/realtime-sync set-startpoint \
 --end-of-changelog \
 --pipe-name ldap-to-scim

2. When ready to start synchronization, run the following command:

$ bin/realtime-sync start \
 --pipe-name ldap-to-scim \
 --no-prompt

Map LDAP schema to SCIM resource schema
The resources configuration file is used to define the SCIM resource schema and its mapping to

LDAP schema. The default configuration of the scim-resources.xml file provides definitions

for standard SCIM Users and Groups resources, and mappings to standard LDAP

inetOrgPerson and groupOfUniqueNames object classes. It is installed with the PingDirectory

Server. This file can be customized by adding extension attributes to the Users and Groups

- 186 -

Chapter 9: Configure synchronization with SCIM

resources, or by adding new extension resources. The resources file is composed of a single

<resources> element, containing one or more <resource> elements.

The default configuration maps the SCIM resource ID to the LDAP entryUUID attribute. In all

cases, this must be changed to match the attribute that the destination SCIM service provider

is using for its SCIM resource ID. For example, if the destination uses the value of the uid

attribute, modify the scim-resources.xml file to change the resourceIDMapping as follows:

<resourceIDMapping ldapAttribute="uid" />

Ideally, this would be an attribute that exists on the source LDAP entry. If not, the

PingDataSync Server can construct it using a Constructed Attribute Mapping. For example, the

SCIM service provider used the first and last initials of the user, concatenated with the

employee ID (given by the eid attribute) as the SCIM resource ID. In this case, an attribute

mapping would be constructed as follows:

$ dsconfig create-attribute-mapping \
 --map-name MyAttrMap \
 --mapping-name scimID \
 --type constructed \
 --set 'value-pattern:{givenname:/^(.)(.*)/$1/s}{sn:/^(.)(.*)/$1/s}{eid}'

This creates an attribute called scimID on the mapped entry when processed by the Sync

engine. For example, if the user's name was John Smith, with employee ID 12345, then the

scimID would be js12345. Once this is done,configure the scim-resources.xml file as

follows:

<resourceIDMapping ldapAttribute="scimID" />

This will cause it to pull out the constructed scimID value from the entry and use that at the

SCIM resource ID when making requests to the service provider.

Note
Constructed attributemappings support multivalued source attributes for conditional (using the
conditional-value-pattern property) and non-conditional (using the value-pattern property)
value patterns. Only one of the source attributes that contribute to a given value pattern can be
multivalued.

For any given SCIM resource endpoint, only one <LDAPAdd> template can be defined, and only

one <LDAPSearch> element can be referenced. If entries of the same object class can be

located under different subtrees or base DNs of the PingDirectory Server, then a distinct SCIM

resource must be defined for each unique entry location in the Directory Information Tree. If

- 187 -

Map LDAP schema to SCIM resource schema

using the SCIM HTTP Servlet Extension for the PingDirectory Server, this can be implemented

in many ways, such as:

l Create multiple SCIM servlets, each with a unique resources.xml configuration, and
each running under a unique HTTP connection handler.

l Create multiple SCIM servlets, each with a unique resources.xml configuration, each
running under a single, shared HTTP connection handler, but each with a unique context
path.

LDAP attributes are allowed to contain characters that are invalid in XML (because not all valid

UTF-8 characters are valid XML characters). Make sure that any attributes that contain binary

data are declared using dataType=binary in the scim-resources.xml file. When using the

Identity Access API, make sure that the underlying LDAP schema uses the Binary or Octet

String attribute syntax for attributes that contain binary data. This instructs the server to

base64-encode the data before returning it to clients.

If attributes that are not declared as binary in the schema and contain binary data (or just data

that is invalid in XML), the server will check for this before returning them to the client. If the

client has set the content-type to XML, then the server may choose to base64-encode any

values that include invalid XML characters. When this is done, a special attribute is added to

the XML element to alert the client that the value is base64-encoded. For example:

<scim:value base64Encoded="true">AAABPB0EBZc=</scim:value>

The remainder of this section describes the mapping elements available in the

scimresources.xml file.

The <resource> element

A resource element has the following XML attributes:

l schema: a required attribute specifying the SCIM schema URN for the resource.
Standard SCIM resources already have URNs assigned for them, such as
urn:scim:schemas:core:1.0. A new URN must be obtained for custom resources using
any of the standard URN assignment methods.

l name: a required attribute specifying the name of the resource used to access it through
the SCIM REST API.

l mapping: a custom Java class that provides the logic for the resource mapper. This
class must extend the com.unboundid.scim.ldap.ResourceMapper class.

- 188 -

Chapter 9: Configure synchronization with SCIM

A resource element contains the following XML elements in sequence:

l description: a required element describing the resource.

l endpoint: a required element specifying the endpoint to access the resource using the
SCIM REST API.

l LDAPSearchRef: a mandatory element that points to an LDAPSearch element. The
LDAPSearch element allows a SCIM query for the resource to be handled by an LDAP
service and also specifies how the SCIM resource ID is mapped to the LDAP server.

l LDAPAdd: an optional element specifying information to allow a new SCIM resource to
be added through an LDAP service. If the element is not provided then new resources
cannot be created through the SCIM service.

l attribute: one or more elements specifying the SCIM attributes for the resource.

The <attribute> element

An attribute element has the following XML attributes:

l schema: a required attribute specifying the schema URN for the SCIM attribute. If
omitted, the schema URN is assumed to be the same as that of the enclosing resource,
so this only needs to be provided for SCIM extension attributes. Standard SCIM
attributes already have URNs assigned for them, such as urn:scim:schemas:core:1.0.
A new URN must be obtained for custom SCIM attributes using any of the standard URN
assignment methods.

l name: a required attribute specifying the name of the SCIM attribute.

l readOnly: an optional attribute indicating whether the SCIM sub-attribute is not allowed
to be updated by the SCIM service consumer. The default value is false.

l required: an optional attribute indicating whether the SCIM attribute is required to be
present in the resource. The default value is false.

An attribute element contains the following XML elements in sequence:

l description: a required element describing the attribute. Then just one of the following
elements:

l simple: specifies a simple, singular SCIM attribute.

l complex: specifies a complex, singular SCIM attribute.

l simpleMultiValued: specifies a simple, multi-valued SCIM attribute.

l complexMultiValued: specifies a complex, multi-valued SCIM attribute.

- 189 -

Map LDAP schema to SCIM resource schema

The <simple> element

A simple element has the following XML attributes:

l dataType: a required attribute specifying the simple data type for the SCIM attribute.
The following values are permitted: binary, boolean, dateTime, decimal, integer, and
string.

l caseExact: an optional attribute that is only applicable for string data types. It indicates
whether comparisons between two string values use a case-exact match or a case-
ignore match. The default value is false.

A simple element contains the following XML elements in sequence:

l mapping: an optional element specifying a mapping between the SCIM attribute and an
LDAP attribute. If this element is omitted, the SCIM attribute has no mapping and the
SCIM service ignores any values provided for the SCIM attribute.

The <complex> element

The complex element does not have any XML attributes. It contains the following XML

element:

l subAttribute: one or more elements specifying the sub-attributes of the complex SCIM
attribute, and an optional mapping to LDAP. The standard type, primary, and display sub-
attributes do not need to be specified.

The <simpleMultiValued> element

A simpleMultiValued element has the following XML attributes:

l childName: a required attribute specifying the name of the tag that is used to encode
values of the SCIM attribute in XML in the REST API protocol. For example, the tag for
the standard emails SCIM attribute is email.

l dataType: a required attribute specifying the simple data type for the plural SCIM
attribute (i.e. the data type for the value sub-attribute). The following values are
permitted: binary, boolean, dateTime, integer, and string.

l caseExact: an optional attribute that is only applicable for string data types. It indicates
whether comparisons between two string values use a case-exact match or a case-
ignore match. The default value is false.

A simpleMultiValued element contains the following XML elements in sequence:

- 190 -

Chapter 9: Configure synchronization with SCIM

l canonicalValue: specifies the values of the type sub-attribute that is used to label each
individual value, and an optional mapping to LDAP.

l mapping: an optional element specifying a default mapping between the SCIM attribute
and an LDAP attribute.

The <complexMultiValued> element

A complexMultiValued element has the following XML attributes:

l tag: a required attribute specifying the name of the tag that is used to encode values of
the SCIM attribute in XML in the REST API protocol. For example, the tag for the standard
addresses SCIM attribute is address.

A complexMultiValued element contains the following XML elements in sequence:

l subAttribute: one or more elements specifying the sub-attributes of the complex SCIM
attribute. The standard type, primary, and display sub-attributes do not need to be
specified.

l canonicalValue: specifies the values of the type sub-attribute that is used to label each
individual value, and an optional mapping to LDAP.

The <subAttribute> element

A subAttribute element has the following XML attributes:

l name: a required element specifying the name of the sub-attribute.

l readOnly: an optional attribute indicating whether the SCIM sub-attribute is not allowed
to be updated by the SCIM service consumer. The default value is false.

l required: an optional attribute indicating whether the SCIM sub-attribute is required to
be present in the SCIM attribute. The default value is false.

l dataType: a required attribute specifying the simple data type for the SCIM sub-
attribute. The following values are permitted: binary, boolean, dateTime, integer, and
string.

l caseExact: an optional attribute that is only applicable for string data types. It indicates
whether comparisons between two string values use a case-exact match or a case-
ignore match. The default value is false.

A subAttribute element contains the following XML elements in sequence:

l description: a required element describing the sub-attribute.

- 191 -

Map LDAP schema to SCIM resource schema

l mapping: an optional element specifying a mapping between the SCIM sub-attribute
and an LDAP attribute. This element is not applicable within the complexMultiValued
element.

The <canonicalValue> element

A canonicalValue element has the following XML attributes:

l name: specifies the value of the type sub-attribute. For example, work is the value for
emails, phone numbers and addresses intended for business purposes.

A canonicalValue element contains the following XML elements in sequence:

l subMapping: an optional element specifying mappings for one or more of the
subattributes. Any sub-attributes that have no mappings will be ignored by the mapping
service.

The <mapping> element

A mapping element has the following XML attributes:

l ldapAttribute: a required element specifying the name of the LDAP attribute to which
the SCIM attribute or sub-attribute map.

l transform: an optional element specifying a transformation to apply when mapping an
attribute value from SCIM to LDAP, and LDAP to SCIM. The available transformations are
described in Mapping LDAP Schema to SCIM Resource Schema.

The <subMapping> element

A subMapping element has the following XML attributes:

l name: a required element specifying the name of the sub-attribute that is mapped.

l ldapAttribute: a required element specifying the name of the LDAP attribute to which
the SCIM sub-attribute maps.

l transform: an optional element specifying a transformation to apply when mapping an
attribute value from SCIM to LDAP and vice-versa. The available transformations are
described later. Available transformations are described in Mapping LDAP Schema to
SCIM Resource Schema.

The <LDAPSearch> element

A LDAPSearch element has the following XML attributes:

- 192 -

Chapter 9: Configure synchronization with SCIM

l baseDN: a required element specifying the LDAP search base DN to be used when
querying for the SCIM resource.

l filter: a required element specifying an LDAP filter that matches entries representing
the SCIM resource. This filter is typically an equality filter on the LDAP object class.

l resourceIDMapping: an optional element specifying a mapping from the SCIM
resource ID to an LDAP attribute. When the element is omitted, the resource ID maps to
the LDAP entry DN.

Note
The LDAPSearch element can be added as a top-level element outside of any <Resource> elements,
and then referenced within them with an ID attribute.

The <resourceIDMapping> element

A resourceIDMapping element has the following XML attributes:

l ldapAttribute: a required element specifying the name of the LDAP attribute to which
the SCIM resource ID maps.

l createdBy: a required element specifying the source of the resource ID value when a
new resource is created by the SCIM consumer using a POST operation. Allowable values
for this element include <scim-consumer>, meaning that a value must be present in the
initial resource content provided by the SCIM consumer, or directory, (as would be the
case if the mapped LDAP attribute is entryUUID).

If the LDAP attribute value is not listed as destination correlation attribute, this setting is not

used by the PingDataSync Server.

The following example illustrates an LDAPSearch element that contains a resourceIDMapping

element:

<LDAPSearch id="userSearchParams">
 <baseDN>ou=people,dc=example,dc=com</baseDN>
 <filter>(objectClass=inetOrgPerson)</filter>
 <resourceIDMapping ldapAttribute="entryUUID" createdBy="directory"/>
</LDAPSearch>

The <LDAPAdd> element

A LDAPAdd element has the following XML attributes:

l DNTemplate: a required element specifying a template that is used to construct the DN
of an entry representing a SCIM resource when it is created. The template may
reference values of the entry after it has been mapped using {ldapAttr}, where
ldapAttr is the name of an LDAP attribute.

- 193 -

Identify a SCIM resource at the destination

l fixedAttribute: zero or more elements specifying fixed LDAP values to be inserted into
the entry after it has been mapped from the SCIM resource.

The <fixedAttribute> element

A fixedAttribute element has the following XML attributes:

l ldapAttribute: a required attribute specifying the name of the LDAP attribute for the
fixed values.

l onConflict: an optional attribute specifying the behavior when the LDAP entry already
contains the specified LDAP attribute. The default value merge indicates that the fixed
values should be merged with the existing values. The value overwrite indicates that
the existing values are to be overwritten by the fixed values. The value preserve
indicates that no changes should be made.

A fixedAttribute element contains the following XML element:

l fixedValue: one or more elements specifying the fixed LDAP values.

Identify a SCIM resource at the destination
When a SCIM Sync Destination needs to synchronize a change to a SCIM resource on the

destination SCIM server, it must first fetch the destination resource. If the destination resource

ID is known, the resource will be retrieved by its ID. If not, a search is performed using the

mapped destination correlation attributes. Configuring this requires coordination between the

Sync Class and the scim-resources.xml mapping file.

The scim-resources.xml mapping file treats the value of the <resourceIDMapping>

element's ldapAttribute attribute as the SCIM ID of the source entry. If this value is also

listed as a value of the Sync Class's destination-correlation-attributes property, then

the value of this LDAP attribute is used as the SCIM ID of the destination resource.

If no value of destination-correlation-attributes matches the <resourceIDMapping>

element's ldapAttribute attribute, the SCIM ID of the destination resource is considered

unknown. In this case, the SCIM Sync Destination treats the values of destination-

correlation-attributes as search terms, using them to construct a filter for finding the

destination resource. Each value of destination-correlation-attributes will be mapped to

a corresponding SCIM attribute name, and equality matches will be used in the resulting filter.

- 194 -

Chapter 9: Configure synchronization with SCIM

If the ldapAttribute value is not listed as a destination correlation attribute, this setting is

not used by the PingDataSync Server.

The following table illustrates an LDAPSearch element that contains a resourceIDMapping

element:

Method
for
Retrievin
g SCIM
Resource

Condition Example Condition Example Request

Retrieve

resource

directly

Used if a
destination-
correlation-
attribute value

matches the
<resourceIDMappin
g> ldapAttribute

value.

destination-correlation-
attribute=mail,uid;<resourceIDMapp
ing
ldapAttribute="mail" createdBy=
"directory"/>

GET scim/Users/
person@example.com

Retrieve

resource

using

search

Used if no
destination-
correlation-
attribute value

matches the
<resourceIDMappin
g> ldapAttribute

value.

destination-correlation-
attribute=mail,uid;<resourceIDMapp
ing
ldapAttribute="entryUUID"createdBy
=
"directory"/>

GET /scim/Users?
filter=emails+eq
+"person@example.co
m"
and+userName
+eq"person"

Identifying a SCIM Resource

The unique ID of a destination SCIM resource will most likely be unknown, and the search

method will need to be used. However, not all SCIM service providers support the use of

filters. Therefore, not all SCIM service providers may be usable as SCIM Sync Destinations.

- 195 -

Chapter 10: Manage logging, alerts, and
alarms

Each PingData server supports extensive logging features to track all aspects of the PingData

topology.

Topics include:

Logs and log publishers

Synchronization logs and messages

Create a new log publisher

Configure log signing

Configure log retention and rotation policies

Configure log listeners

System alarms, alerts, and gauges

Test alerts and alarms

The status tool

Sync-specific status

Monitor the PingDataSync Server

- 196 -

Chapter 10: Manage logging, alerts, and alarms

Logs and Log Publishers
PingData servers support different types of log publishers that can be used to provide the

monitoring information for operations, access, debug, and error messages that occur during

normal server processing. The server provides a standard set of default log files as well as

mechanisms to configure custom log publishers with their own log rotation and retention

policies.

Types of Log Publishers

Several types of log publishers can be used to log processing information about the server,

including:

l Audit loggers – provide information about actions that occur within the server.
Specifically, this type of log records all changes applied, detected or failed; dropped
operations that were not completed; changes dropped due to being out of scope, or no
changes needed for an operation. The log also shows the entries that were involved in a
process.

l Error loggers – provide information about warnings, errors, or significant events that
occur within the server.

l Debug loggers – provide detailed information about processing performed by the
server, including any exceptions caught during processing, detailed information about
data read from or written to clients, and accesses to the underlying database.

l Access loggers – provide information about LDAP operations processed within the
server. This log only applies to operations performed in the server. This includes
configuration changes, searches of monitor data, and bind operations for authenticating
administrators using the command-line tools and the Administrative Console.

View the list of log publishers

View the list of log publishers on each server using the dsconfig tool:

$ bin/dsconfig list-log-publishers

Log Publisher : Type : enabled
-----------------------------------:-------------------:--------
Debug ACI Logger : debug-access : false
Expensive Operations Access Logger : file-based-access : false
Failed Operations Access Logger : file-based-access : true
File-Based Access Logger : file-based-access : true
File-Based Audit Logger : file-based-audit : false

- 197 -

Logs and Log Publishers

File-Based Debug Logger : file-based-debug : false
File-Based Error Logger : file-based-error : true
Replication Repair Logger : file-based-error : true

Log compression

PingData servers support the ability to compress log files as they are written. Because of the

inherent problems with mixing compressed and uncompressed data, compression can only be

enabled when the logger is created. Compression cannot be turned on or off once the logger is

configured. If the server encounters an existing log file at startup, it will rotate that file and

begin a new one rather than attempting to append it to the previous file.

Compression is performed using the standard gzip algorithm. Because it can be useful to have

an amount of uncompressed log data for troubleshooting, having a second logger defined that

does not use compression may be desired.

Configure compression by setting the compression-mechanism property to have the value of

gzip when creating a new logger. See Creating a New Log Publisher for details.

Configure log file encryption

The server supports the ability to encrypt log files as they are written. The encrypt-log

configuration property controls whether encryption will be enabled for the logger. Enabling

encryption causes the log file to have an .encrypted extension (and if both encryption and

compression are enabled, the extension will be .gz.encrypted). Any change that affects the

name used for the log file could prevent older files from getting properly cleaned up.

Like compression, encryption can only be enabled when the logger is created. Encryption

cannot be turned on or off once the logger is configured. For any log file that is encrypted,

enabling compression is also recommended to reduce the amount of data that needs to be

encrypted. This will also reduce the overall size of the log file. The encrypt-file tool (or

custom code, using the LDAP SDK's

com.unboundid.util.PassphraseEncryptedInputStream) is used to access the encrypted

data.

To enable encryption, at least one encryption settings definition must be defined in the server.

Use the one created during setup, or create a new one with the encryption-settings create

command. By default, the encryption will be performed with the server's preferred encryption

- 198 -

Chapter 10: Manage logging, alerts, and alarms

settings definition. To explicitly specify which definition should be used for the encryption, the

encryption-settings-definition-id property can be set with the ID of that definition. It is

recommended that the encryption settings definition is created from a passphrase so that the

file can be decrypted by providing that passphrase, even if the original encryption settings

definition is no longer available. A randomly generated encryption settings definition can also

be created, but the log file can only be decrypted using a server instance that has that

encryption settings definition.

When using encrypted logging, a small amount of data may remain in an in-memory buffer

until the log file is closed. The encryption is performed using a block cipher, and it cannot write

an incomplete block of data until the file is closed. This is not an issue for any log file that is not

being actively written. To examine the contents of a log file that is being actively written, use

the rotate-log tool to force the file to be rotated before attempting to examine it.

The following commands can be used to set log file encryption:

1. Use dsconfig to enable encryption for a Log Publisher. In this example, the File-
basedAccess Log Publisher "Encrypted Access" is created, compression is set, and
rotation and retention policies are set.

$ bin/dsconfig create-log-publisher-prop --publisher-name "Encrypted
Access" \
 --type file-based-access \
 --set enabled:true \
 --set compression-mechanism:gzip \
 --set encryption-settings-definition-
id:332C846EF0DCD1D5187C1592E4C74CAD33FC1E5FC20B726CD301CDD2B3FFBC2B \
 --set encrypt-log:true \
 --set log-file:logs/encrypted-access \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \

--set "retention-policy:File Count Retention Policy" \
 --set "retention-policy:Free Disk Space Retention Policy" \

--set "retention-policy:Size Limit Retention Policy"

2. To decrypt and decompress the file:

$ bin/encrypt-file --decrypt \
 --decompress-input \
 --input-file logs/encrypted-access.20180216040332Z.gz.encrypted \
 --output-file decrypted-access
Initializing the server's encryption framework...DoneWriting decrypted
data to file '/ds/PingDirectory/decrypted-access' using akey generated
from encryption settings definition
'332c846ef0dcd1d5187c1592e4c74cad33fc1e5fc20b726cd301cdd2b3ffbc2b'Success
fully wrote 123,456,789 bytes of decrypted data

- 199 -

Synchronization logs and messages

Synchronization logs and messages
The PingDataSync Server provides a standard set of default log files to monitor the server

activity. View this set of logs in the <server-root>/logs directory. The following default log

files are available.

Log File Description

access File-based Access Log that records LDAP operations processed by the PingDataSync Server.

Access log records can be used to provide information about problems during operation

processing and provide information about the time required to process each operation.

config-audit.log Records information about changes made to the server configuration in a format that can be

replayed using the dsconfig tool.

errors File-based Error Log that provides information about warnings, errors, and significant events

that are not errors but occur during server processing.

server.out Records anything written to standard output or standard error, which includes startup

messages. If garbage collection debugging is enabled, then the information will be written to

server.out.

server.pid Stores the server’s process ID.

server.status Stores the timestamp, a status code, and an optional message providing additional information

on the server status.

setup.log Records messages that occur during the initial server configuration with the setup command.

sync File-based Sync Log that records synchronization operations processed by the server.

Specifically, the log records all changes applied, detected or failed; dropped operations that

were not synchronized; changes dropped due to being out of scope, or no changes needed for

synchronization.

sync-pipe-cfg.txt Records the configuration changes used with the bin/create-sync-pipe-config tool.

The file is placed wherever the tool is run. Typically, this is in <server-root> or in the bin

directory.

tools Holds logs for long running utilities. Current and previous copies of the log are present in the

directory.

update.log Records messages that occur during a server upgrade.

PingDataSync Server Logs

- 200 -

Chapter 10: Manage logging, alerts, and alarms

Sync log message types
The PingDataSync Server logs certain types of log messages with the sync log. Message types

can be included or excluded from the logger, or added to a custom log publisher.

Message Type Description

change-applied Default summary message. Logged each time a change is applied successfully.

change-detected Default summary message. Logged each time a change is detected.

change-failed-detailed Default detail message. Logged when a change cannot be applied. It includes the

reason for the failure and details about the change that can be used to manually

repair the failure.

dropped-op-type-not-

synchronized

Default summary message. Logged when a change is dropped because the

operation type (for example, ADD) is not synchronized for the matching Sync Class.

dropped-out-of-scope Default summary message. Logged when a change is dropped because it does not

match any Sync Class.

no-change-needed Default summary message. Logged each time a change is dropped because the

modified source entry is already synchronized with the destination entry.

change-detected-detailed Optional detail message. Logged each time a change is detected. It includes

attribute values for added and modified entries. This information is useful for

diagnosing problems, but it causes log files to grow faster, which impacts

performance.

entry-mapping-details Optional detail message. Logged each time a source entry (attributes and DN) are

mapped to a destination entry. This information is useful for diagnosing problems,

but it causes log files to grow faster, which impacts performance.

change-applied-detailed Optional detail message. Logged each time a change is applied. It includes attribute

values for added and modified entries. This information is useful for diagnosing

problems, but it causes log files to grow faster, which impacts performance.

change-failed Optional summary message. Logged when a change cannot be applied. It includes

the reason for the failure but not enough information to manually repair the failure.

intermediate-failure Optional summary message. Logged each time an attempt to apply a change fails.

Note that a subsequent retry of applying the change might succeed.

Sync Log Message Types

- 201 -

Create a new log publisher

Create a new log publisher
PingData servers provide customization options to create log publishers with the dsconfig

command.

After creating a new log publisher, configure the log retention and rotation policies. For more

information, see Configure log rotation and Configure log retention.

1. Use the dsconfig command to create and configure the new log publisher. (If using
dsconfig in interactive mode, log publishers are created and manged under the Log
Publisher menu.) The following example shows how to create a logger that only logs
disconnect operations.

$ bin/dsconfig create-log-publisher \
 --type file-based-access --publisher-name "Disconnect Logger" \
 --set enabled:true \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set log-connects:false \
 --set log-requests:false --set log-results:false \
 --set log-file:logs/disconnect.log

To configure compression on the logger, add the following option to the previous

command:

--set compression-mechanism: gzip

Compression cannot be disabled or turned off once configured for the logger. Determine

logging requirements before configuring this option.

2. View log publishers with the following command:

$ bin/dsconfig list-log-publishers

Configuring log signing
PingData servers support the ability to cryptographically sign a log to ensure that it has not

been modified. For example, financial institutions require tamper-proof audit logs files to

ensure that transactions can be properly validated and ensure that they have not been

modified by a third-party entity or internally by an unauthorized person.

When enabling signing for a logger that already exists, the first log file will not be completely

verifiable because it still contains unsigned content from before signing was enabled. Only log

files whose entire content was written with signing enabled will be considered completely

- 202 -

Chapter 10: Manage logging, alerts, and alarms

valid. For the same reason, if a log file is still open for writing, then signature validation will

not indicate that the log is completely valid because the log will not include the necessary "end

signed content" indicator at the end of the file.

To validate log file signatures, use the validate-file-signature tool provided in the bin

directory of the server (or the bat directory on Windows systems). Once this property is

enabled, disable and then re-enable the log publisher for the changes to take effect. Perform

the following steps to configure log signing:

1. Use dsconfig to enable log signing for a Log Publisher. In this example, set the sign-
log property on the File-based Audit Log Publisher.

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Audit Logger" \
 --set sign-log:true

2. Disable and then re-enable the Log Publisher for the change to take effect.

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Audit Logger" \
 --set enabled:false

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Audit Logger" \
 --set enabled:true

3. To validate a signed file, use the validate-file-signature tool to check if a signed file
has been altered.

$ bin/validate-file-signature --file logs/audit

All signature information in file 'logs/audit' is valid

If any validations errors occur, a message displays that is similar to this:

One or more signature validation errors were encountered while validating
the contents of file 'logs/audit':
* The end of the input stream was encountered without encountering the end
of an active signature block. The contents of this signed block cannot be
trusted because the signature cannot be verified

Configure log retention and log rotation policies
PingData servers enable configuring log rotation and log retention policies.

Log Retention – When any retention limit is reached, the server removes the oldest archived

log prior to creating a new log. Log retention is only effective if a log rotation policy is in place.

- 203 -

Configure log retention and log rotation policies

A new log publisher must have at least one log retention policy configured. The following

policies are available:

l File Count Retention Policy – Sets the number of log files for the server to retain. The
default file count is 10 logs. If the file count is set to 1, the log will continue to grow
indefinitely without being rotated.

l Free Disk Space Retention Policy – Sets the minimum amount of free disk space.
The default free disk space is 500 MB.

l Size Limit Retention Policy – Sets the maximum size of the combined archived logs.
The default size limit is 500 MB.

l Custom Retention Policy – Create a new retention policy that meets the server’s
requirements. This will require developing custom code to implement the desired log
retention policy.

l Never Delete Retention Policy – Used in a rare event that does not require log
deletion.

Log Rotation – When a rotation limit is reached, the server rotates the current log and starts

a new log. A new log publisher must have at least one log rotation policy configured. The

following policies are available:

l Time Limit Rotation Policy – Rotates the log based on the length of time since the last
rotation. Default implementations are provided for rotation every 24 hours and every
seven days.

l Fixed Time Rotation Policy – Rotates the logs every day at a specified time (based on
24-hour). The default time is 2359.

l Size Limit Rotation Policy – Rotates the logs when the file reaches the maximum
size. The default size limit is 100 MB.

l Never Rotate Policy – Used in a rare event that does not require log rotation.

Configure the log rotation policy

Use dsconfig to modify the log rotation policy for the access logger:

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Access Logger" \
 --remove "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --add "rotation-policy:7 Days Time Limit Rotation Policy"

Configure the log retention policy

Use dsconfig to modify the log retention policy for the access logger:

- 204 -

Chapter 10: Manage logging, alerts, and alarms

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Access Logger" \
 --set "retention-policy:Free Disk Space Retention Policy"

Configure log listeners
The server provides two log file rotation listeners: the copy log file rotation listener and the

summarize log file rotation listener, which can be enabled with a log publisher. Log file rotation

listeners allow the server to perform a task on a log file as soon as it has been rotated out of

service. Custom log file listeners can be created with the Server SDK.

The copy log file rotation listener can be used to compress and copy a recently-rotated log file

to an alternate location for long-term storage. The original rotated log file will be subject to

deletion by a log file retention policy, but the copy will not be automatically removed.

Use the following command to create a new copy log file rotation listener:

$ dsconfig create-log-file-rotation-listener \
 --listener-name "Copy on Rotate" \
 --type copy \
 --set enabled:true \
 --set copy-to-directory:/path/to/archive/directory \
 --set compress-on-copy:true</screen>

The path specified by the copy-to-directory property must exist, and the filesystem

containing that directory must have enough space to hold all of the log files that will be written

there. The server will automatically monitor free disk space on the target filesystem and will

generate administrative alerts if the amount of free space gets too low.

The summarize log file rotation listener invokes the summarize-access-log tool on a recently-

rotated log file and writes its output to a file in a specified location.

This provides information about the number and types of operations processed by the server,

processing rates and response times, and other useful metrics. Use this with access loggers

that log in a format that is compatible with the summarize-access-log tool, including the

file-based-access and operation-timing-access logger types. Use the following command

to create a new summarize log file rotation listener:

$ dsconfig create-log-file-rotation-listener \
 --listener-name "Summarize on Rotate" \
 --type summarize \
 --set enabled:true \
 --set output-directory:/path/to/summary/directory

- 205 -

System alarms, alerts, and gauges

The summary output files have the same name as the rotated log file, with an extension of

.summary. If the output-directory property is specified, the summary files are written to

that directory. If not specified, files are placed in the directory in which the log files are

written.

As with the copy log file rotation listener, summary files are not automatically be deleted.

Though files are generally small in comparison to the log files themselves, make sure that

there is enough space available in the specified storage directory. The server automatically

monitors free disk space on the filesystem to which the summary files are written.

System alarms, alerts, and gauges
An alarm represents a stateful condition of the server or a resource that may indicate a

problem, such as low disk space or external server unavailability. A gauge defines a set of

threshold values with a specified severity that, when crossed, cause the server to enter or exit

an alarm state. Gauges are used for monitoring continuous values like CPU load or free disk

space (Numeric Gauge), or an enumerated set of values such as 'server available' or ‘server

unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity changes

due to changes in the monitored value. Like alerts, alarms have severity (NORMAL, WARNING,

MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a Condition

property, and may have a Specific Problem or Resource property. If surfaced through SNMP, a

Probable Cause property and Alarm Type property are also listed. Alarms can be configured

to generate alerts when the alarm's severity changes.

There are two alert types supported by the server - standard and alarm-specific. The server

constantly monitors for conditions that may need attention by administrators, such as low disk

space. For this condition, the standard alert is low-disk-space-warning, and the alarm-

specific alert is alarm-warning. The server can be configured to generate alarm-specific alerts

instead of, or in addition to, standard alerts. By default, standard alerts are generated for

conditions internally monitored by the server. However, gauges can only generate alarm-

alerts.

The server installs a set of gauges that are specific to the product and that can be cloned or

configured through the dsconfig tool. Existing gauges can be tailored to fit each environment

by adjusting the update interval and threshold values. Configuration of system gauges

- 206 -

Chapter 10: Manage logging, alerts, and alarms

determines the criteria by which alarms are triggered. The Stats Logger can be used to view

historical information about the value and severity of all system gauges.

PingData servers are compliant with the International Telecommunication Union CCITT

Recommendation X.733 (1992) standard for generating and clearing alarms. If configured,

entering or exiting an alarm state can result in one or more alerts. An alarm state is exited

when the condition no longer applies. An alarm_cleared alert type is generated by the system

when an alarm's severity changes from a non-normal severity to any other severity. An

alarm_cleared alert will correlate to a previous alarm when Condition and Resource property

are the same. The Alarm Manager, which governs the actions performed when an alarm state

is entered, is configurable through the dsconfig tool and Administrative Console.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores

information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over

time that can change in severity and be cleared when a monitored value returns to normal.

Alarms can be viewed with the status tool. As with other alert types, alert handlers can be

configured to manage the alerts generated by alarms. A complete listing of system alerts,

alarms, and their severity is available in <server-root>/docs/admin-alerts-list.csv.

Alert handlers

Alert notifications can be sent to administrators when significant problems or events occur

during processing, such as problems during server startup or shutdown. The server provides a

number of alert handler implementations configured with the dsconfig tool, including:

l Error Log Alert Handler – Sends administrative alerts to the configured server error
logger(s).

l JMX Alert Handler – Sends administrative alerts to clients using the Java Management
Extensions (JMX) protocol. The server uses JMX for monitoring entries and requires that
the JMX connection handler be enabled.

l SNMP Alert Handler – Sends administrative alerts to clients using the Simple Network
Monitoring Protocol (SNMP). The server must have an SNMP agent capable of
communicating via SNMP 2c.

If needed, the Server SDK can be used to implement additional, third-party alert handlers.

- 207 -

Test alerts and alarms

Configure alert handlers

Alert handlers can be configured with the dsconfig tool. PingData servers support JMX, SMTP,

and SNMP. Use the --help option for a list of configuration options. The following is a sample

command to create and enable an SMTP Alert handler from the command line:

$ bin/dsconfig create-alert-handler \
 --handler-name "SMTP Alert Handler" \
 --type smtp \
 --set enabled:true \
 --set "sender-address:alerts@example.com" \
 --set "recipient-address:administrators@example.com" \
 --set "message-subject:Directory Admin Alert \%\%alert-type\%\%" \
 --set "message-body:Administrative alert:\\n\%\%alert-message\%\%"

Test alerts and alarms
After alarms and alert handlers are configured, verify that the server takes the appropriate

action when an alarm state changes by manually increasing the severity of a gauge. Alarms

and alerts can be verified with the status tool.

1. Configure a gauge with dsconfig and set the override-severity property to critical.
The following example uses the CPU Usage (Percent) gauge.

$ dsconfig set-gauge-prop \
 --gauge-name "CPU Usage (Percent)" \
 --set override-severity:critical

2. Run the status tool to verify that an alarm was generated with corresponding alerts.
The status tool provides a summary of the server’s current state with key metrics and
a list of recent alerts and alarms. The sample output has been shortened to show just the
alarms and alerts information.

$ bin/status

 --- Administrative Alerts ---
Severity : Time : Message
---------:----------------:---

Error : 11/Aug/2016 : Alarm [CPU Usage (Percent). Gauge CPU Usage
(Percent)
 : 15:41:00 -0500 : for Host System has
 : : a current value of '18.583333333333332'.
 : : The severity is currently OVERRIDDEN in the
 : : Gauge's configuration to 'CRITICAL'.
 : : The actual severity is: The severity is
 : : currently 'NORMAL', having assumed this
severity
 : : Mon Aug 11 15:41:00 CDT 2016. If CPU use is

- 208 -

Chapter 10: Manage logging, alerts, and alarms

high,
 : : check the server's current workload and make
any
 : : needed adjustments. Reducing the load on the
system
 : : will lead to better response times.
 : : Resource='Host System']
 : : raised with critical severity
Shown are alerts of severity [Info,Warning,Error,Fatal] from the past 48
hours
Use the --maxAlerts and/or --alertSeverity options to filter this list

 --- Alarms ---
Severity : Severity : Condition : Resource : Details
 : Start Time : : :
---------:------------:-----------:-------------:-------------------------
--
Critical : 11/Aug/2016: CPU Usage : Host System : Gauge CPU Usage
(Percent) for
 : 15:41:00 : (Percent) : : Host System
 : -0500 : : : has a current value of
 : : : : '18.785714285714285'.
 : : : : The severity is
currently
 : : : : 'CRITICAL', having
assumed
 : : : : this severity Mon Aug 11
 : : : : 15:49:00 CDT 2016. If
CPU use
 : : : : is high, check the
server's
 : : : : current workload and
make any
 : : : : needed adjustments.
Reducing
 : : : : the load on the system
will
 : : : : lead to better response
times
Shown are alarms of severity [Warning,Minor,Major,Critical
Use the --alarmSeverity option to filter this list

Use the status tool
PingData servers provides the status tool, which outputs the health of the server. The status

tool polls the current health of the server and displays summary information about the number

of operations processed in the network. The tool provides the following information:

- 209 -

Synchronization-specific status

Status Section Description

Server Status Displays the server start time, operation status, number of connections (open, max, and total).

Server Details Displays the server details including host name, administrative users, install path, server

version, and Java version.

Connection

Handlers

Displays the state of the connection handlers including address, port, protocol and current

state.

Admin Alerts Displays the 15 administrative alerts that were generated over the last 48-hour period. Limit

the number of displayed alerts using the --maxAlerts option. For example, status --

maxAlerts 0 suppresses all alerts.

Status Tool Sections

Synchronization-specific status
The status tool displays the following information for the PingDataSync Server.

Status Section Description

Sync Topology Displays information about the connected Sync topology and any standby PingDataSync

Server instances.

Summary for Sync

Pipe

Displays the health status for each Sync Pipe configured on the topology. Status for each Sync

Pipe includes the following:

l Started – Indicates whether the Sync Pipe has started.

l Current Ops Per Second – Lists the current throughput rate in operations per second.

l Percent Busy – Lists the number of current operations currently divided by the number

of worker threads.

l Changes Detected – Lists the total number of changes detected.

l Ops Completed Total – Lists the total number of changes detected and completed.

l Num Ops In Flight – Lists the number of operations that are in flight.

l Num Ops In Queue – Lists the number of operations that are on the input queue waiting

to be synchronized.

l Source Unretrieved Changes – Lists how many outstanding changes are still in the

source change log that have not yet been retrieved by the PingDataSync Server. If this

is greater than zero, it indicates a backlog, because the internal queue is too full to

include these changes.

l Failed Op Attempts – Lists the number of failed operation attempts.

PingDataSync Server Status Information

- 210 -

Chapter 10: Manage logging, alerts, and alarms

Status Section Description

l Poll For Source Changes Count – Lists the number of times that the source has been

polled for changes.

Operations

Completed for the

Sync Pipe

Displays the completed operation statistics for the sync pipe, including the following:

l Success – Lists the number of changes that completed successfully.

l Out Of Scope – Lists the number of changes that were included in the Sync Pipe, but

were dropped because they did not match criteria in a Sync Class.

l Op Type Not Synced – Lists the number of changes that completed because the

operation type is not synchronized.

l No Change Needed – Lists the number of changes that completed because no change

was needed.

l Entry Already Exists – Lists the number of changes that completed unsuccessfully

because the entry already existed for a Create operation.

l No Match Found – Lists the number of changes that completed unsuccessfully because

no match for an operation (such as Modify) was found.

l Multiple Matches Found – Lists the number of changes that completed unsuccessfully

because multiple matches for a source entry were found at the destination.

l Failed During Mapping – Lists the number of changes that completed unsuccessfully

because there was a failure during attribute or DN mapping.

l Failed At Resource – Lists the number of changes that completed unsuccessfully

because they failed at the source.

l Unexpected Exception – Lists the number of changes that completed unsuccessfully

because there was an unexpected exception during processing.

l Total – Lists the number of operations completed.

Sync Pipe Source

Stats

Displays the source statistics for the external server, including the following:

l Is Connected – Indicates whether the Sync Source is connected or not.

l Connected Server – Indicates the hostname and port number of the connected server.

l Successful Connect Attempts – Indicates the number of successful connection attempts.

l Failed Connect Attempts – Indicates the number of failed connection attempts.

l Forced Disconnects – Indicates the number of forced disconnects.

l Root DSE Polls – Indicates the number of polling attempts of the root DSE.

l Unretrieved Changes – Indicates the number of unretrieved changes.

l Entries Fetched – Indicates the number of entries fetched from the source.

l Failed To Decode Changelog Entry – Indicates the operations that failed to decode

- 211 -

Monitor the PingDataSync Server

Status Section Description

changelog entries.

l Ops Excluded By Modifiers Name – Indicates the number of operations excluded by

modifier’s name.

l Num Backtrack Batches Retrieved – Indicates the number of backtrack batches

retrieved.

Sync Pipe

Destination Stats

Displays the destination statistics for the external server, including the following:

l Is Connected – Indicates whether the Sync Source is connected or not.

l Connected Server – Indicates the connection URL of the connected server.

l Successful Connect Attempts – Indicates the number of successful connection attempts.

l Failed Connect Attempts – Indicates the number of failed connection attempts.

l Forced Disconnects – Indicates the number of forced disconnects.

l Entries Fetched – Indicates the number of entries fetched.

l Entries Created – Indicates the number of entries created.

l Entries Modified – Indicates the number of entries modified.

l Entries Deleted – Indicates the number of entries deleted.

Monitor the PingDataSync Server
The PingDataSync Server exposes its monitoring information under the cn=monitor entry.

Various tools can be used to surface the server’s information including the PingDataMetrics

Server, the Administrative Console, JConsole, LDAP command-line tools, or SNMP. The

following information is collected for the PingDataSync Server. To configure the PingData

PingDataMetrics Server to display PingDataSync Server data, see the Ping

IdentityPingDataMetrics Server Administration Guide.

Component Description

Active Operations Provides information about the operations currently being processed by the server

including the number of operations, information about the operation, and the

number of active persistent searches.

Backend Provides general information about the state of the server backend, including the

backend ID, base DN(s), entry counts, entry count for the cn=admin data,

writability mode, and whether it is a private backend. The following backend

PingDataSync Server Monitoring Component

- 212 -

Chapter 10: Manage logging, alerts, and alarms

Component Description

monitors are provided:

l adminRoot

l ads-truststore

l alerts

l backup

l config

l monitor

l schema

l tasks

l userRoot

Berkeley DB JE Environment Provides information about the state of the Oracle Berkeley DB Java Edition

database used by the PingDataSync Server backend.

Client Connections Provides information about all client connections to the server.

Disk Space Usage Provides information about the disk space available to various components of the

server. The disk space usage monitor evaluates the free space at locations

registered through the DiskSpaceConsumer interface. Disk space

monitoring excludes disk locations that do not have server components registered.

However, other disk locations may still impact server performance, such as the

operating system disk, if it becomes full. When relevant to the server, these

locations include the server root, the location of the config directory, the

location of every log file, all JE backend directories, the location of the changelog,

the location of the replication environment database, and the location of any

server extension that registers itself with the DiskSpaceConsumer interface.

Connection Handler Provides information about the available connection handlers on the server, which

includes the LDAP and LDIF connection handlers. These handlers are used to

accept client connections.

General Provides general information about the server, including product name and server

version.

JVM Stack Trace Provides a stack trace of all threads processing within the JVM.

LDAP Connection Handler

Statistics

Provides statistics about the interaction that the associated LDAP connection

handler has had with its clients, including the number of connections established

and closed, bytes read and written, LDAP messages, and operations handled.

- 213 -

Monitor the PingDataSync Server

Component Description

Processing Time Histogram Categorizes operation processing times into a number of user-defined buckets of

information, including the total number of operations processed, overall average

response time, and number of processing times between 0ms and 1ms.

System Information Provides general information about the system and the JVM on which the server is

running, including host name, operating system, JVM architecture, Java home,

and Java version.

Version Provides information about the product version, including build ID and revision

number.

Work Queue Provides information about the state of the PingDataSync Server work queue,

which holds requests until they can be processed by a worker thread. The work

queue configuration has a monitor-queue-time property set to true by

default. This logs messages for new operations with a qtime attribute included in

the log messages. Its value is expressed in milliseconds and represents the length

of time that operations are held in the work queue.

A dedicated thread pool can be used for processing administrative operations.

This thread pool enables diagnosis and corrective action if all other worker

threads are processing operations. To request that operations be processed using

the administrative thread pool, the requester must have the use-admin-

session privilege (included for root users). By default, eight threads are

available for this purpose. This can be changed with the num-

administrative-session-worker-threads property in the work queue

configuration.

- 214 -

Chapter 11: Troubleshooting

There are several ways to troubleshoot issues with the PingDataSync Server.

Topics include:

Synchronization Troubleshooting

Management Tools

Troubleshooting Tools

Use the status Tool

Use the collect-support-data Tool

Use the Sync Log

Troubleshoot synchronization failures

Installation and maintenance

Problems with SSL communication

Conditions for automatic server shutdown

Enable JVM debugging

Insufficient memory errors

- 215 -

Chapter 11: Troubleshooting

Synchronization troubleshooting
The majority of synchronization problems involve the connection state of the external servers

and the synchronization of the data between the two endpoints. Make sure the PingDataSync

Server can properly fail over to another endpoint or server instance if the connection fails on

the highest priority external server.

Another factor in troubleshooting synchronization is determining if the DN and attribute

mappings were properly configured and if the information is properly being synchronized

across the network. Typical scenarios include checking for any entry failures and mapping

issues.

Note
Use the resync tool to validate Sync Classes and datamappings from one endpoint to another. The tool
provides a dry-run option that verifies data operations without actually affecting the data.

The following log files are specific to the PingDataSync Server, and contain details about the

synchronization processes:

l Sync Log – provides information about the synchronization operations that occur within
the server. Specifically, the Sync Log records all changes applied, detected or failed;
dropped operations that were not synchronized; changes dropped due to being out of
scope, or no changes needed for synchronization. The log also shows the entries that
were involved in the synchronization process.

l Sync Failed Operations Log – provides a list of synchronization operations that have
failed.

l Resync Log – provides summaries or details of synchronized entries and any missing
entries in the Sync Destination.

l Resync Error Log – provides error information for resync operations.

Management tools
Each PingData server provides command-line tools to manage, monitor, and diagnose server

operations. Each tool provides a description of the subcommands, arguments, and usage

examples needed to run the tool.

Note
For detailed information and examples of the command-line tools, see the Configuration ReferenceGuide
in the <server-root>/docs directory, or linked from the Administrative Console.

- 216 -

Troubleshooting tools

To view detailed argument options and examples, use --help with the each tool:

$ bin/dsconfig --help

For those utilities that support additional subcommands (such as dsconfig), list the

subcommands with the following:

$ bin/dsconfig --help-subcommands

View more detailed subcommand information by using --help with the specific subcommand:

$ bin/dsconfig list-log-publishers --help

Troubleshooting tools
PingData provides utilities to troubleshoot the state of each server and to determine the cause

of any issues. The following tools are available for diagnosing any problems and are located in

the <server-root>/bin directory, or the <server-root>/bat directory on Windows systems:

Tool Description

status Provides a high-level view of the current operational state of the server and displays any recent

alerts that have occurred in past 24 hours.

ldap-diff Used to compare one or more entries across two server endpoints to determine data issues.

ldapsearch Retrieves the full entries from two different servers to determine the exact content of an entry from

each server.

logs The logs directory provides important logs that should be used to troubleshoot or monitor any

issue with the server. Logs include server-specific operations and the following general logs:

l Error Log – Provides information about warnings, errors, or significant events that occur

within the server.

l Debug Log – Provides detailed information, if enabled, about processing performed by

the server, including any exceptions caught during processing, detailed information about

data read from or written to clients, and accesses to the underlying database.

l Access loggers – Provide information about LDAP operations processed within the

server. This log only applies to operations performed in the server. This includes

configuration changes, searches of monitor data, and bind operations for authenticating

administrators using the command-line tools and the Administrative Console.

collect-
support-data

Used to aggregate the results of various support tools data for the Ping IdentitySupport team to

diagnose. For more information, see Using the collect-support-data Tool.

Troubleshooting Tools

- 217 -

Chapter 11: Troubleshooting

Tool Description

config-diff Generate a summary of the configuration changes in a local or remote server instance. The tool

can be used to compare configuration settings when troubleshooting issues, or when verifying

configuration settings on new servers.

Use the status tool
PingData servers provides the status tool, which outputs the health of the server. The status

tool polls the current health of the server and displays summary information about the number

of operations processed in the network. The tool provides the following information:

Status Section Description

Server Status Displays the server start time, operation status, number of connections (open, max, and total).

Server Details Displays the server details including host name, administrative users, install path, server

version, and Java version.

Connection

Handlers

Displays the state of the connection handlers including address, port, protocol and current

state.

Admin Alerts Displays the 15 administrative alerts that were generated over the last 48-hour period. Limit

the number of displayed alerts using the --maxAlerts option. For example, status --

maxAlerts 0 suppresses all alerts.

Status Tool Sections

Use the collect-support-data tool
PingData servers provide information about their current state and any problems encountered.

If a problem occurs, run the collect-support-data tool in the /bin directory. The tool

aggregates all relevant support files into a zip file that can be sent to a support provider for

analysis. The tool also runs data collector utilities, such as jps, jstack, and jstat plus other

diagnostic tools for the operating system.

The tool may only archive portions of certain log files to conserve space, so that the resulting

support archive does not exceed the typical size limits associated with e-mail attachments.

The data collected by the collect-support-data tool may vary between systems. The data

collected includes the configuration directory, summaries and snippets from the logs

directory, an LDIF of the monitor and RootDSE entries, and a list of all files in the server root.

- 218 -

Use the Sync log

Perform the following steps to run this tool:

1. Navigate to the server root directory.

2. Run the collect-support-data tool. Include the host, port number, bind DN, and bind
password.

$ bin/collect-support-data \
 --hostname 100.0.0.1 --port 389 \
 --bindDN "cn=Directory Manager"
 --bindPassword secret \
 --serverRoot /opt/PingData<server> \
 --pid 1234

3. Email the zip file to a support provider.

Use the Sync log
The Sync log, located in the logs directory (<server-root>/logs/sync), provides useful

troubleshooting information on the type of operation that was processed or completed. Most

log entries provide the following common elements in their messages:

Sync Log Element Description

category Indicates the type of operation, which will always by SYNC.

severity Indicates the severity type of the message: INFORMATION, MILD_

WARNING, SEVERE_WARNING, MILD_ERROR, SEVERE_

ERROR, FATAL_ERROR, DEBUG, or NOTICE.

msgID Specifies the unique ID number assigned to the message.

op Specifies the operation number specific to the PingDataSync

Server.

changeNumber Specifies the change number from the source server assigned to

the modification.

replicationCSN Specifies the replication change sequence number from the source

server.

replicaID Specifies the replica ID from the source server if there are multiple

backend databases.

pipe Specifies the Sync Pipe that was used for this operation.

msg Displays the result of this operation.

Sync Log Elements

- 219 -

Chapter 11: Troubleshooting

Sync log example 1

The following example displays an informational message that a modification to an entry was

detected on the source server.

$ tail -f logs/sync

[17/May/2015:15:46:19 -0500] category=SYNC severity=INFORMATION
msgID=1893728293
op=14 changeNumber=15 replicationCSN=00000128A7E3C7D31E960000000F
replicaID=7830
pipe="DS1 to DS2" msg="Detected MODIFY of uid=user.993,ou=People,dc=example,
dc=com at ldap://server1.example.com:1389"

Sync log example 2

The next example shows a successful synchronization operation that resulted from a MODIFY

operation on the source server and synchronized to the destination server.

[18/May/2015:13:54:04 -0500] category=SYNC severity=INFORMATION
msgID=1893728306 op=701
changeNumber=514663 replicationCSN=00000128ACC249A31E960007DA67 replicaID=7830
pipe="DS1 to DS2" class="DEFAULT" msg="Synchronized MODIFY of
uid=user.698,ou=People,
dc=example,dc=com at ldap://server1.example.com:1389 by modifying entry
uid=user.698,
ou=People,dc=example,dc=com at ldap://server3.example.com:3389"

Sync log example 3

The next example shows a failed synchronization operation on a MODIFY operation from the

source server that could not be synchronized on the destination server. The log displays the

LDIF-formatted modification that failed, which came from a schema violation that resulted

from an incorrect attribute mapping (telephoneNumber -> telephone) from the source to

destination server.

[18/May/2015:11:29:49 -0500] category=SYNC severity=SEVERE_WARNING
msgID=1893859389
op=71831 changeNumber=485590 replicationCSN=00000128AC3DE8D51E96000768D6
replicaID=7830 pipe="DS1 to DS2" class="DEFAULT" msg="Detected MODIFY of
uid=user.941,ou=People,dc=example,dc=com at ldap://server1.example.com:1389,
but
failed to apply this change because: Failed to modify entry uid=user.941,
ou=People,dc=example,dc=com on destination 'server3.example.com:3389'.
Cause: LDAPException(resultCode=65(object class violation), errorMessage='
Entry uid=user.941,ou=People,dc=example,dc=com cannot be modified because the
resulting entry would have violated the server schema: Entry

- 220 -

Troubleshoot synchronization failures

uid=user.941,ou=People,
dc=example,dc=com violates the Directory Server schema configuration because
it
includes attribute telephone which is not allowed by any of theobjectclasses
defined in that entry') (id=1893859386
ResourceOperationFailedException.java:125
Build revision=6226). Details: Source change detail:

dn: uid=user.941,ou=People,dc=example,dc=com
changetype: modify
replace: telephoneNumber
telephoneNumber: 027167170433915
-
replace: modifiersName
modifiersName: cn=Directory Manager,cn=Root DNs,cn=config
-
replace: modifyTimestamp
modifyTimestamp: 20131010020345.546Z
Equivalent destination changes:
dn: uid=user.941,ou=People,dc=example,dc=com
changetype: modify
replace: telephone
telephone: 818002279103216
Full source entry:
dn: uid=user.941,ou=People,dc=example,dc=com
objectClass: person
... (more output)
Mapped destination entry:
dn: uid=user.941,ou=People,dc=example,dc=com
telephone: 818002279103216
objectClass: person
objectClass: inetOrgPerson
... (more output) ...

Troubleshoot synchronization failures
While many PingDataSync Server issues are deployment-related and are directly affected by

the hardware, software, and network structure used in the synchronization topology, most

failures usually fall into one of the following categories:

l Entry Already Exists – When an add operation was attempted on the destination
server, an entry with the same DN already exists.

l No Match Found – A match was not found at the destination based on the current Sync
Classes and correlation rules (DN and attribute mapping). When this value has a high
count, correlation rule problems are likely.

- 221 -

Chapter 11: Troubleshooting

l Failure at Resource – Indicates that some other error happened during the
synchronization process that does not fall into the first two categories. Typically, these
errors are communication problems with a source or destination server.

Statistics for these and other types of errors are kept in the cn=monitor branch and can be

viewed directly using the status command.

Troubleshoot "Entry Already Exists" failures

If there is a count for the Entry Already Exists statistic using the status tool, verify the

problem in the sync log. For example, the status tool displays the following information:

 --- Ops Completed for 'DS1 to DS2' Sync Pipe ---
Op Result : Count
-----------------------:------
Success : 0
Out Of Scope : 0
Op Type Not Synced : 0
No Change Needed : 0
Entry Already Exists : 1
No Match Found : 1
Multiple Matches Found : 0
Failed During Mapping : 0
Failed At Resource : 0
Unexpected Exception : 0
Total : 2

Verify the change by viewing the <server-root>/logs/sync file to see the specific operation,

which could be due to someone manually adding the entry on the target server:

op=2 changeNumber=529277 replicationCSN=00000128AD0D9BA01E960008137D
replicaID=7830
pipe="DS1 to DS2" class="DEFAULT" msg="Detected ADD of
uid=user.1001,ou=People,
dc=example,dc=com at ldap://server1.example.com:1389, but cannot create this
entry
at the destination because an equivalent entry already exists at
ldap://server3.
example.com:3389. Details: Search using [search-criteria dn:
uid=user.1001,ou=People,
dc=example,dc=com attrsToGet: [*, dn]] returned results;
[uid=user.1001,ou=People,
dc=example,dc=com]. "

Perform the following steps to troubleshoot this type of problem:

1. Assuming that a possible DN mapping is ill-formed, first run the ldap-diff utility to
compare the entries on the source and destination servers. Then look at the ldap-diff

- 222 -

Troubleshoot synchronization failures

results with the mapping rules to determine why the original search did not find a match.

$ bin/ldap-diff \
 --outputLDIF config-difference.ldif \
 --baseDN "dc=example,dc=com" \
 --sourceHost server1.example.com \
 --targetHost server2.example.com \
 --sourcePort 1389 \
 --targetPort 3389 \
 --sourceBindDN "cn=Directory Manager" \
 --sourceBindPassword password \
 --searchFilter "(uid=1234)"

2. Review the destination server access logs to verify the search and filters used to find the
entry. Typically, the key correlation attributes are not synchronized.

3. If the mapping rule attributes are not synchronized, review the Sync Classes and
mapping rules, and use the information from the ldap-diff results to determine why a
specific attribute may not be getting updated. Some questions to answer are as follows:

o Is there more than one Sync Class that the operation could match?

o If using an include-base-dn or include-filter in the mapping rules, does this
exclude this operation by mistake?

o If using an attribute map, are the mappings correct? Usually, the cause of this
error is in the destination mapping attribute settings. For example, if a set of
correlation attributes is defined as: dn, mobile, accountNumber, and the
accountNumber changes for some reason, future operations on this entry will fail.
To resolve this, you either remove accountNumber from the rule, or add a second
rule as: dn, mobile. The second rule is used only if the search using the first set of
attributes fails. In this case, the entry is found and the accountNumber
information is updated.

4. If deletes are being synchronized, check to see if there was a previous delete of this
entry that was not synchronized properly. In some cases, simpler logic should be used
for deletes due to the available attributes in the change logs. This scenario could cause
an entry to not be deleted for some reason, which would cause an issue when a new
entry with the same DN is added later. Use this information for mapping rules to see why
the original search did not find a match.

5. Look at the destination directory server access logs to verify the search and filters it
used to find the entry. Typically, the key attribute mappings are not synchronized.

Troubleshoot "No Match Found" failures

If there is a count for the No Match Found statistic using the status tool, verify the problem in

the sync log. For example, if the status tool displays the following:

- 223 -

Chapter 11: Troubleshooting

 --- Ops Completed for 'DS1 to DS2' Sync Pipe ---
Op Result : Count
-----------------------:------
Success : 0
Out Of Scope : 0
Op Type Not Synced : 0
No Change Needed : 0
Entry Already Exists : 1
No Match Found : 1
Multiple Matches Found : 0
Failed During Mapping : 0
Failed At Resource : 0
Unexpected Exception : 0
Total : 2

Verify the change in the <server-root>/logs/sync file to see the specific operation:

[12/May/2016:10:30:45 -0500] category=SYNC severity=MILD_WARNING
msgID=1893793952
op=4159648 changeNumber=6648922 replicationCSN=4beadaf4002f21150000
replicaID=8469-
ou=test,dc=example,dc=com pipe="DS1 to DS2" class="Others" msg="Detected
DELETE of
'uid=1234,ou=test,dc=example,dc=com' at ldap://server1.example.com:389, but
cannot
DELETE this entry at the destination because no matching entries were found at
ldap://
server2.example.com:389. Details: Search using [search-criteria dn:
uid=1234,ou=test,dc=alu,dc=com filter: (nsUniqueId=3a324c60-5ddb11df-80ffe681-
717b93af) attrsToGet: [*, accountNumber, dn, entryuuid, mobile, nsUniqueId,
object-
Class]] returned no results."

Perform the following steps to fix the issue:

1. Test the search using the filter in the error message, if displayed. For example, if the
sync log specifies filter: (nsUniqueId=3a324c60-5ddb11df-80ffe681-717b93af),
use the ldapsearch tool to test the filter. If it is successful, is there anything in the
attribute mappings that would exclude this from working properly?

2. Test the search using the full DN as the base. For example, use ldapsearch with the full
DN (uid=1234,ou=People,dc=example,dc=com). If it is successful, does the entry
contain the attribute used in the mapping rule?

3. If the attribute is not in the entry, determine if there is a reason why this value was not
synchronized. Look at the attribute mappings and the filters used in the Sync Classes.

- 224 -

Troubleshoot synchronization failures

Troubleshoot "Failed at Resource" failures

If there is a count for the "Failed at Resource" statistic using the status tool, verify the

problem in the sync log. For example, if the status tool displays the following information:

 --- Ops Completed for 'DS1 to DS2' Sync Pipe ---
Op Result : Count
-----------------------:------
Success : 0
Out Of Scope : 0
Op Type Not Synced : 0
No Change Needed : 0
Entry Already Exists : 0
No Match Found : 0
Multiple Matches Found : 0
Failed During Mapping : 0
Failed At Resource : 1
Unexpected Exception : 0
Total : 1

This will register after a change is detected at the source in any of the following cases:

l If the fetch of the full source entry fails. The entry exists but there is a connection
failure, server down, timeout, or something similar.

l If the fetch of the destination entry fails or if the modification to the destination fails for
an exceptional reason (but not for "Entry Already Exists," "Multiple Matches Found," or
"No Match Found" issues).

Verify the change by viewing the <server-root>/logs/sync file to see the specific operation.

If any of the following result codes are listed , the server is experiencing timeout errors:

l resultCode=timeout: errorMessage=A client-side timeout was encountered

while waiting 60000ms for a search response from server

server1.example.com:1389

l resultCode=timeout: errorMessage=An I/O error occurred while trying to

read the response from the server

l resultCode=server down: errorMessage=An I/O error occurred while trying

to read the response from the server

l resultCode=server down: errorMessage=The connection to server

server1.example.com:1389 was closed while waiting for a response to

search request SearchRequest

l resultCode=object class violation: errorMessage='Entry

device=1234,dc=example,dc=com violates the Directory Server schema

configuration because it contains undefined object class

- 225 -

Chapter 11: Troubleshooting

With these "Failure at Destination" timeout errors, look at the following settings in the

PingDirectory Server to determine if adjustments are needed:

1. For External Server Properties, check the connect-timeout property. This property
specifies the maximum length of time to wait for a connection to be established before
giving up and considering the server unavailable.

2. For the Sync Destination/Sync Source Properties, check the response-timeout
property. This property specifies the maximum length of time that an operation should
be allowed to be blocked while waiting for a response from the server. A value of zero
indicates that there should be no client-side timeout. In this case, the server’s default
will be used.

$ bin/dsconfig --no-prompt --port 389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password list-external-servers \
 --property connect-timeout

External Server : Type : connect-timeout : response-
 timeout
------------------------:------------------:-----------------:-----------
server1.example.com:389 : sundsee-ds : 10 s : -
server2.example.com:389 : sundsee-ds : 10 s : -
server3.example.com:389 : ping-identity-ds : 10 s : -
server4.example.com:389 : ping-identity-ds : 10 s : -

3. For Sync Pipe Properties, check the max-operation-attempts, retry-backoff-

initialwait, retry-backoff-max-wait, retry-backoff-increase-by, retry-
backoff-percentage-increase. These Sync Pipe properties provide tuning parameters
that are used in conjunction with the timeout settings. When a Sync Pipe experiences an
error, it will use these settings to determine how often and quickly it will retry the
operation.

$ bin/dsconfig --no-prompt list-sync-pipes \
 --property max-operation-attempts --property retry-backoff-initial-wait
\
 --property retry-backoff-max-wait --property retry-backoff-increase-by \
 --property retry-backoff-percentage-increase \
 --port 389 --bindDN "cn=Directory Manager" \
 --bindPassword password

Installation and maintenance issues
The following are common installation and maintenance issues and possible solutions.

- 226 -

Installation and maintenance issues

The setup program will not run

If the setup tool does not run properly, some of the most common reasons include the

following:

A Java Environment Is Not Available – The server requires that Java be installed on the

system prior to running the setup tool.

If there are multiple instances of Java on the server, run the setup tool with an explicitly-

defined value for the JAVA_HOME environment variable that specifies the path to the Java

installation. For example:

$ env JAVA_HOME=/ds/java ./setup

Another issue may be that the value specified in the provided JAVA_HOME environment variable

can be overridden by another environment variable. If that occurs, use the following command

to override any other environment variables:

$ env UNBOUNDID_JAVA_HOME="/ds/java" UNBOUNDID_JAVA_BIN="" ./setup

Unexpected Arguments Provided to the JVM – If the setup tool attempts to launch the

java command with an invalid set of arguments, it may prevent the JVM from starting. By

default, no special options are provided to the JVM when running setup, but this might not be

the case if either the JAVA_ARGS or UNBOUNDID_JAVA_ARGS environment variable is set. If the

setup tool displays an error message that indicates that the Java environment could not be

started with the provided set of arguments, run the following command:

$ unset JAVA_ARGS UNBOUNDID_JAVA_ARGS

The Server Has Already Been Configured or Started – The setup tool is only intended to

provide the initial configuration for the server. It will not run if it detects that it has already

been run.

A previous installation should be removed before installing a new one. However, if there is

nothing of value in the existing installation, the following steps can be used to run the setup

program:

l Remove the config/config.ldif file and replace it with the
config/update/config.ldif.{revision} file containing the initial configuration.

l If there are any files or subdirectories in the db directory, then remove them.

l If a config/java.properties file exists, then remove it.

- 227 -

Chapter 11: Troubleshooting

l If a lib/setup-java-home script (or lib\set-java-home.bat file on Microsoft
Windows) exists, then remove it.

The server will not start

If the server does not start, then there are a number of potential causes.

The Server or Other Administrative Tool Is Already Running – Only a single instance of

the server can run at any time from the same installation root. Other administrative operations

can prevent the server from being started. In such cases, the attempt to start the server

should fail with a message like:

The <server> could not acquire an exclusive lock on file
/ds/PingData<server>/locks/server.lock:
The exclusive lock requested for file
/ds/PingData<server>/locks/ server.lock
was not granted, which indicates that another
process already holds a shared or exclusive lock on
that file. This generally means that another instance
of this server is already running.

If the server is not running (and is not in the process of starting up or shutting down), and

there are no other tools running that could prevent the server from being started, it is possible

that a previously-held lock was not properly released. Try removing all of the files in the locks

directory before attempting to start the server.

There Is Not Enough Memory Available – When the server is started, the JVM attempts to

allocate all memory that it has been configured to use. If there is not enough free memory

available on the system, the server generates an error message indicating that it could not be

started.

There are a number of potential causes for this:

l If the amount of memory in the underlying system has changed, the server might need
to be re-configured to use a smaller amount of memory.

l Another process on the system is consuming memory and there is not enough memory to
start the server. Either terminate the other process, or reconfigure the server to use a
smaller amount of memory.

l The server just shut down and an attempt was made to immediately restart it. If the
server is configured to use a significant amount of memory, it can take a few seconds for
all of the memory to be released back to the operating system. Run the vmstat

- 228 -

Installation and maintenance issues

command and wait until the amount of free memory stops growing before restarting the
server.

l If the system is configured with one or more memory-backed filesystems (such as
/tmp), determine if any large files are consuming a significant amount of memory. If so,
remove them or relocate them to a disk-based filesystem.

An Invalid Java Environment or JVM Option Was Used – If an attempt to start the

server fails with 'no valid Java environment could be found,' or 'the Java environment could

not be started,' and memory is not the cause, other causes may include the following:

l The Java installation that was previously used to run the server no longer exists. Update
the config/java.properties file to reference the new Java installation and run the
bin/dsjavaproperties command to apply that change.

l The Java installation has been updated, and one or more of the options that had worked
with the previous Java version no longer work. Re-configure the server to use the
previous Java version, and investigate which options should be used with the new
installation.

l If an UNBOUNDID_JAVA_HOME or UNBOUNDID_JAVA_BIN environment variable is set, its
value may override the path to the Java installation used to run the server (defined in the
config/java.properties file). Similarly, if an UNBOUNDID_JAVA_ARGS environment
variable is set, then its value might override the arguments provided to the JVM. If this is
the case, explicitly unset the UNBOUNDID_JAVA_HOME, UNBOUNDID_JAVA_BIN, and
UNBOUNDID_JAVA_ARGS environment variables before starting the server.

Any time the config/java.properties file is updated, the bin/dsjavaproperties tool must

be run to apply the new configuration. If a problem with the previous Java configuration

prevents the bin/dsjavaproperties tool from running properly, remove the lib/set-java-

home script (or lib\set-java-home.bat file on Microsoft Windows) and invoke the

bin/dsjavaproperties tool with an explicitly-defined path to the Java environment, such as:

$ env UNBOUNDID_JAVA_HOME=/ds/java bin/dsjavaproperties

An Invalid Command-Line Option was Used – There are a small number of arguments

that can be provided when running the bin/start-server command. If arguments were

provided and are not valid, the server displays an error message. Correct or remove the

invalid argument and try to start the server again.

The Server Has an Invalid Configuration – If a change is made to the server configuration

using dsconfig or the Administrative Console, the server will validate the change before

- 229 -

Chapter 11: Troubleshooting

applying it. However, it is possible that a configuration change can appear to be valid, but does

not work as expected when the server is restarted.

In most cases, the server displays (and writes to the error log) a message that explains the

problem. If the message does not provide enough information to identify the problem, the

logs/config-audit.log file provides recent configuration changes, or the config/archived-

configs directory contains configuration changes not made through a supported configuration

interface. The server can be started with the last valid configuration using the --

useLastKnownGoodConfig option:

$ bin/start-server --useLastKnownGoodConfig

To determine the set of configuration changes made to the server since the installation, use the

config-diff tool with the arguments --sourceLocal --targetLocal --sourceBaseline.

The dsconfig --offline command can be used to make configuration changes.

Proper Permissions are Missing – The server should only be started by the user or role

used to initially install the server. However, if the server was initially installed as a non-root

user and then started by the root account, the server can no longer be started as a non-root

user. Any new files that are created are owned by root.

If the user account used to run the server needs to change, change ownership of all files in the

installation to that new user. For example, if the server should be run as the "ds" user in the

"other" group, run the following command as root:

$ chown -R ds:other /ds/PingData<server>

The server has shutdown

Check the current server state by using the bin/server-state command. If the server was

previously running but is no longer active, potential reasons may include:

l Shut down by an administrator – Unless the server was forcefully terminated, then
messages are written to the error and server logs stating the reason.

l Shut down when the underlying system crashed or was rebooted – Run the uptime
command on the underlying system to determine what was recently started or stopped.

l Process terminated by the underlying operating system – If this happens, a message is
written to the system error log.

- 230 -

Installation and maintenance issues

l Shut down in response to a serious problem – This can occur if the server has detected
that the amount of usable disk space is critically low, or if errors have been encountered
during processing that left the server without worker threads. Messages are written to
the error and server logs (if disk space is available).

l JVM has crashed – If this happens, then the JVM should provide a fatal error log (a hs_

err_pid<processID>.log file), and potentially a core file.

The server will not accept client connections

Check the current server state by using the bin/server-state command. If the server does

not appear to be accepting connections from clients, reasons can include the following:

l The server is not running.

l The underlying system on which the server is installed is not running.

l The server is running, but is not reachable as a result of a network or firewall
configuration problem. If that is the case, connection attempts should time out rather
than be rejected.

l If the server is configured to allow secure communication through SSL or StartTLS, a
problem with the key manager or trust manager configuration can cause connection
rejections. Messages are written to the server access log for each failed connection
attempt.

l The server may have reached its maximum number of allowed connections. Messages
should be written to the server access log for each rejected connection attempt.

l If the server is configured to restrict access based on the address of the client, messages
should be written to the server access log for each rejected connection attempt.

l If a connection handler encounters a significant error, it can stop listening for new
requests. A message should be written to the server error log with information about the
problem. Restarting the server can also solve the issue. Another option is to create an
LDIF file that disables and then re-enables the connection handler, create the
config/auto-process-ldif directory if it does not already exist, and then copy the
LDIF file into it.

The server is unresponsive

Check the current server state by using the bin/server-state command. If the server

process is running and appears to be accepting connections but does not respond to requests

received on those connections, potential reasons for this include:

- 231 -

Chapter 11: Troubleshooting

l If all worker threads are busy processing other client requests, new requests are forced
to wait until a worker thread becomes available. A stack trace can be obtained using the
jstack command to show the state of the worker threads and the waiting requests.

If all worker threads are processing the same requests for a long time, the server sends

an alert that it might be deadlocked. All threads might be tied up processing unindexed

searches.

l If a request handler is busy with a client connection, other requests sent through that
request handler are forced to wait until it is able to read data. If there is only one request
handler, all connections are impacted. Stack traces obtained using the jstack command
will show that a request handler thread is continuously blocked.

l If the JVM in which the server is running is not properly configured, it can spend too
much time performing garbage collection. The effect on the server is similar to that of a
network or firewall configuration problem. A stack trace obtained with the pstack utility
will show that most threads are idle except the one performing garbage collection. It is
also likely that a small number of CPUs is 100% busy while all other CPUs are idle. The
server will also issue an alert after detecting a long JVM pause that will include details.

l If the JVM in which the server is running has hung, the pstack utility should show that
one or more threads are blocked and unable to make progress. In such cases, the
system CPUs should be mostly idle.

l If a there is a network or firewall configuration problem, communication attempts with
the server will fail. A network sniffer will show that packets sent to the system are not
receiving TCP acknowledgment.

l If the host system is hung or lost power with a graceful shutdown, the server will be
unresponsive.

If it appears that the problem is with the server software or the JVM, work with a support

provider to diagnose the problem and potential solutions.

Problems with the Administrative Console

If a problem occurs when trying to use the Administrate Console, reasons may include one of

the following:

l The web application container that hosts the console is not running. If an error occurs
while trying to start it, consult the logs for the web application container.

l If a problem occurs while trying to authenticate, make sure that the target server is
online. If it is, the access log may provide information about the authentication failure.

- 232 -

Problems with SSL communication

l If a problem occurs while interacting with the server instance using the Administrative
Console, the access and error logs for that instance may provide additional information.

Problems with SSL communication
Enable TLS debugging in the server to troubleshoot SSL communication issues:

$ dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name
com.unboundid.directory.server.extensions.TLSConnectionSecurityProvider \
 --set debug-level:verbose \
 --set include-throwable-cause:true

$ dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true \
 --set default-debug-level:disabled

In the java.properties file, add -Djavax.net.debug=ssl to the start-ds line, and run

bin/dsjavaproperties to make the option take effect on a scheduled server restart.

Conditions for automatic server shutdown
All PingData servers will shutdown in an out of memory condition, a low disk space error state,

or for running out of file descriptors. The PingDirectory Server will enter lockdown mode on

unrecoverable database environment errors, but can be configured to shutdown instead with

this setting:

$ dsconfig set-global-configuration-prop \
--set unrecoverable-database-error-mode:initiate-server-shutdown

Insufficient memory errors
If the server shuts down due to insufficient memory errors, it is possible that the allocated

heap size is not enough for the amount of data being returned. Consider increasing the heap

size, or reducing the number of request handler threads using the following dsconfig

command:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTP Connection Handler" \
 --set num-request-handlers:<num-of-threads>

- 233 -

Chapter 11: Troubleshooting

Enable JVM debugging
Enable the JVM debugging options to track garbage collection data for the system. These

options can impact JVM performance, but provide valuable data to tune the server. While the

jstat utility with the -gc option can be used to obtain some information about garbage

collection activity, there are additional arguments that can be added to provide additional

detail, such as:

-XX:+PrintGCDetails
-XX:+PrintTenuringDistribution
-XX:+PrintGCApplicationConcurrentTime
-XX:+PrintGCApplicationStoppedTime
-XX:+PrintGCDateStamps

Perform the following steps to enable these options for the server:

1. On the server, navigate to the config/java.properties file.

2. Edit the config/java.properties file. Add any additional arguments to the end of the
line that begins with start-<server>.java-args.

3. Save the file.

4. Run the following command for the new arguments to take effect the next time the
server is started:

$ bin/dsjavaproperties

- 234 -

Index

A

access control filtering 175

access logger 197, 217

Active Directory

configuration tasks 121

configure sync source 121

Sync User account permissions 122

use the Password Sync Agent 127

add operation example 11

administrative account

adding a root user account 32

Administrative Console

URL 22

administrative password 32

alarms 206

testing setup 208

alerts

alarm_cleared alert type 207

alert handlers 207

configure alert handlers 208

list of system alerts 207

overview 206

testing setup 208

architecture 3

attribute element 189

attribute mapping 6, 10

test with resync tool 83

attributes

conditional value mapping 38

configure mapping 43

destination and correlation 37

mapping 38

audit logger 197

authentication

server authentication with a SASL

External Certificate 108

C

canonicalValue element 192

Change Detector Server SDK

extension 110

change log operations 148

index the LDAP change log 159

number order in replicated change

logs 151

synchronization considerations 160

tracking in entry balancing

deployments 150

change tracking 4

Changelog password Encryption

- 235 -

Index: access control filtering – Changelog password Encryption component

Index: Changelog password Encryption component – gauges

component 126

clear-text passwords 36, 40

collect-support-data tool 17, 217-218

comples element 190

complexMultiValued element 191

config-diff tool 218

Config File Handler Backend 65

configuration checklist 36

constructed attribute mapping 187

create-sync-pipe-config utility 40

D

data transformations 6

DBSync

configure 134

example 133

overview 132

debug logger 197, 217

delete backend entries 91

delete operation example 11-12

directory server entries 133

DN 37

DN mapping 6, 9

configure maps 92

DNS caching 70

dsconfig

configure attribute mapping 43

dsconfig tool 61, 74

batch mode 62, 75

configure DN map 93

configure fractional replication 98

configuring synchronization 71

E

entry already exists failure 222

error logger 197, 217

external server settings 36

F

failed at resource failure 225

failover 100

conditions that trigger 101

configuration properties 103

notification mode 166

server preference 102

failover server 31

priority index 32

fixedAttribute element 194

fractional replication 98

G

gauges 206

testing related alarms and alerts 208

- 236 -

Index: generic LDAP Sync Source – logging

generic LDAP Sync Source 110

Global Configuration object 65

H

HTTP Correlation ID 79

I

IBM SDS (Tivoli Directory Server) 110

inter-server-certificate property 69

IO scheduler 18

IP address reverse name lookup 71

J

Java

installing the JDK 15

JDBC driver 134

create server extension 135

implement Sync Destination 137

implement Sync Source 136

JSON attribute values 93

jstat utility 234

JVM debugging 234

during setup 227

invalid options 229

JVM stack trace 213

L

LDAP

map to SCIM schema 186

LDAP change log for notification

mode 168, 171

LDAP error codes 104

LDAP search filters 42

LDAP V3-compliant source 110

LDAPAdd element 193

ldapsearch command 86, 89, 217

LDAPSearch element 192

license key 20

Linux configuration

filesystem swapping 18

filesystem variables 16

install dstat 17

install sysstat and pstack 17

set file descriptor limit 16

set filesystem flushes 17

load balancers 107

logging 4

available log publishers 197

configure log file listeners 205

configure log retention and

rotation 203

configure log signing 202

create log publisher 202

encrypt log files 198

log compression 198

- 237 -

Index: manage-certificates tool – proxy server

sync log message types 200

M

manage-certificates tool 68

manage-extension tool 110

manage-tasks tool 90

mapping attributes 38

mapping element 192

max-backtrack-replication-latency

property 106

max-failover-error-code-frequency

property 106

max-operation-attempts property 105

memory errors 233

Microsoft Active Directory 2

Microsoft SQL Server 2

modify operation example 11-12

monitoring 4

monitoring information 212

N

no match found failure 223

notification mode 5

access control filtering 175

architecture 165

configure 168

configure Sync Pipe 172

failover 166

implement server extension 171

implementation considerations 164

overview 163

sync pipe change flow 167

sync source requirements 166

use the server SDK 164

notification operation example 12

O

OpenDJ 2, 110

Oracle Unified Directory 2

Oracle/Sun Directory Server 2

overview 2

P

password encryption

configure 126

Password Sync Agent 126

install agent 128

upgrade 129

use with Active Directory 127

pre-encoded passwords 40

prepare-endpoint-server tool 72

priority index 32

proxy server

configure proxy server 153

configure source server 152

- 238 -

Index: pstack utility – server SDK

configure sync server 156

synchronization example 151

synchronization overview 148

test configuration 157

pstack utility 232

R

RDBMS synchronization 132

configure database 138

directory to database Sync Pipe

recommendations 139, 141, 145

synchronize specific database

elements 146

RDBMS tables 133

realtime-sync tool 6, 87

schedule a task 90

set startpoint 88

set state by time duration 90

start or pause synchronization 87

start synchronization at a changelog

event 90

resource element 188

resourceIDMapping element 193

response-timeout property 105

resync tool 7, 82

error log 216

populate destination 84

set synchronization rate 85

specify list of DNs 85

retry mechanism 7

root user DN 22

S

SCIM

configure synchronization 181

destination configuration objects 180

identify resource at destination 194

map LDAP schema to SCIM

resource 186

password considerations 181

synchronization overview 179

XML element descriptions 188

self-signed certificate

replacing 67

server backends 212

server communication

prepare server 72

server location settings 44

server management tools 216

server SDK 132

extension types 110

notification mode 171

record user who deleted an entry 91

- 239 -

Index: server shutdown – synchronization architecture

storing extensions 135

server shutdown 233

setup command

troubleshooting 227

setup tool 227

simple element 190

simpleMultiValued element 190

SSL certificate 66

standard mode

configuration 41

overview 39

standard synchronization mode 5

start server 24

status tool 209, 217-218, 222

stop server 24

subAttribute element 191

subMapping element 192

summarize-access-log tool 205

Sync Class 9, 37

Sync Classes

configuring for Active Directory 123

Sync Destination 9

sync log 216, 219

sync log messages 201

Sync Pipe 8, 36

notification mode 167

Sync Pipes

configuring for Active Directory 123

Sync Source 9

sync user account 39

set DN 41

synchronization

configure proxy server 153

directory server deletes 91

dry run option 83

logs and messages 200

populate a destination 84

schedule a task 90

set startpoints 88

set state by time duration 90

set synchronization rate 85

specify list of DNs 85

start at specific changelog event 89

start or pause 87

start with realtime-sync tool 87

status tool information 210

through a proxy server 148

troubleshooting 216

synchronization architecture 3

- 240 -

Index: synchronization operations – X-Forwarded values

synchronization operations 6

synchronization process 2

synchronization sample 12

system entropy 18

system information 214

T

tokens for server communication 149

topology

force master setting 65

inter-server-certificate property 69

master selection 63

monitor data 65

overview 63

replace self-signed certificate 69

server configuration settings 65

subtree polling interval 63

update servers 27

update SSL certificate 66

topology configuration

update SSL Certificate 67

troubleshooting 216

client connections 231

collect support data 218

command-line tools 217

console 232

installation 226

JVM debugging 234

memory errors 233

server shutdown 230, 233

server unresponsive 231

SSL 233

synchronization failures 221

U

uninstall server 26

update tool 27

W

Windows service

configuration 25

deregister and uninstall 26

log files 26

work queue 214

X

X-Forwarded values 107

- 241 -

- 242 -

	Chapter 1: Introduction
	Overview of the PingDataSync Server
	Data synchronization process
	Synchronization architecture
	Change tracking, monitoring, and logging

	Synchronization Modes
	Standard Synchronization
	Notification Synchronization

	PingDataSync Server Operations
	Real-Time Synchronization
	Data Transformations
	Bulk Resync
	The Sync Retry Mechanism

	Configuration Components
	Sync Flow Examples
	Modify Operation Example
	Add Operation Example
	Delete Operation Example
	Delete After Source Entry is Re-Added
	Standard Modify After Source Entry is Deleted
	Notification Add, Modify, ModifyDN, and Delete

	Sample Synchronization

	Chapter 2: Install the PingDataSync Server
	Supported Platforms
	Install the JDK
	Optimize the Linux Operating System
	Set the file descriptor limit
	Set the filesystem flushes
	Install sysstat and pstack on Red Hat
	Install the dstat utility
	Disable filesystem swapping
	Manage system entropy
	Set Filesystem Event Monitoring (inotify)
	Tune IO scheduler
	Enable the server to listen on privileged ports

	Ping license keys
	Install the PingDataSync Server
	Log into the Administrative Console
	Server folders and files
	Start and stop the server
	Start the Server as a Background Process
	Start the server at boot time
	Stop the Server
	Restart the server

	Run the server as a Microsoft Windows service
	Register the service
	Run multiple service instances
	Deregister and uninstall
	Log files

	Uninstall the server
	Update servers in a topology
	Update the server
	Reverting an Update

	Revert an Update
	Reverting from Version 7.x to a Version Prior to 7.0
	To Revert to the Most Recent Server Version

	Install a failover server
	Administrative accounts
	Change the administrative password

	Chapter 3: Configure the PingDataSync Server
	Configuration checklist
	External servers
	Sync Pipes
	Sync Classes

	The Sync User account
	Configure the PingDataSync Server in Standard mode
	Use the create-sync-pipe tool to configure synchronization
	Configuring attribute mapping
	Configure server locations

	Use the Configuration API
	Authentication and authorization
	Relationship between the Configuration API and the dsconfig tool
	API paths
	Sorting and filtering configuration objects
	Update properties
	Administrative actions
	Update servers and server groups
	Configuration API Responses

	Configuration with the dsconfig tool
	Use dsconfig in interactive mode
	Use dsconfig in non-interactive mode
	Use dsconfig batch mode

	Topology configuration
	Topology master requirements and selection
	Topology components
	Monitor data for the topology
	Updating the server instance listener certificate
	Remove the self-signed certificate
	Use an existing key-pair
	Use the certificate associated with the original key-pair

	Domain Name Service (DNS) caching
	IP address reverse name lookups
	Configure the synchronization environment with dsconfig
	Configure server groups with dsconfig interactive
	Start the Global Sync Configuration with dsconfig interactive

	Prepare external server communication
	Configuration with the dsconfig tool

	HTTP Connection Handlers
	Configure an HTTP Connection Handler
	HTTP Correlation IDs

	Using the resync Tool
	Testing Attribute and DN Maps
	Verifying the Synchronization Configuration
	Populating an Empty Sync Destination Topology
	Setting the Synchronization Rate
	Synchronizing a Specific List of DNs

	Using the realtime-sync Tool
	Starting Real Time Synchronization Globally
	Starting or Pausing Synchronization
	Setting Startpoints
	Restarting Synchronization at a Specific Change Log Event
	Changing the Synchronization State by a Specific Time Duration
	Scheduling a Realtime Sync as a Task

	Configuring the PingDirectory Server Backend for Synchronizing Deletes
	Configure DN maps
	Configuring a DN Map Using dsconfig

	Configure synchronization with JSON attribute values
	Synchronize ubidEmailJSON fully
	Synchronize a subset of fields from the source attribute
	Retain destination-only fields
	Synchronize a field of a JSON attribute into a non-JSON attribute
	Synchronize a non-JSON attribute into a field of a JSON attribute
	Correlating attributes based on JSON fields

	Configure fractional replication
	Configure failover behavior
	Conditions that trigger immediate failover
	Failover server preference
	Configuration properties that control failover behavior
	The max-operation-attempts property
	The response-timeout property
	The max-failover-error-code-frequency property
	The max-backtrack-replication-latency property

	Configure traffic through a load balancer
	Configure authentication with a SASL external certificate
	Configure an LDAPv3 Sync Source
	Server SDK extensions

	Chapter 4: Synchronize with PingOne for Customers
	Prerequisites
	Worker application
	PingOne user resource model

	Synchronize changes to a PingOne for Customers environment
	Create a PingOne for Customers sync destination
	Configure attribute mapping
	Considerations and limitations

	Synchronize changes from a PingOne for Customers environment
	Create a PingOne for Customers sync source
	Configure attribute mapping
	Considerations and limitations

	Chapter 5: Synchronize with Active Directory systems
	Overview of configuration tasks
	Configuring synchronization with Active Directory
	The Active Directory Sync User account
	Prepare external servers
	Configure Sync Pipes and Sync Classes
	Configure password encryption
	The Password Sync Agent
	Install the Password Sync Agent
	Upgrade or Uninstall the Password Agent
	Manually Configure the Password Sync Agent

	Chapter 6: Synchronize with relational databases
	Use the Server SDK
	The RDBMS synchronization process
	DBSync example
	Example directory server entries

	Configure DBSync
	Create the JDBC extension
	Implement a JDBC Sync Source
	Implement a JDBC Sync Destination

	Configure the database for synchronization
	Considerations for synchronizing to database destination
	Configure a directory-to-database Sync Pipe
	Create the Sync Pipe
	Configure the Sync Pipe and Sync Classes

	Considerations for synchronizing from a database source
	Synchronize a specific list of database elements

	Chapter 7: Synchronize through PingDirectoryProxy Servers
	Synchronization through a Proxy Server overview
	Change log operations
	PingDirectory Server and PingDirectoryProxy Server tokens
	Change log tracking in entry balancing deployments

	Example configuration
	Configure the source PingDirectory Server
	Configure a Proxy Server
	Configuring the PingDataSync Server
	Test the configuration
	Index the LDAP changelog
	Changelog synchronization considerations

	Chapter 8: Synchronize in Notification Mode
	Notification mode overview
	Implementation Considerations
	Use the Server SDK and LDAP SDK

	Notification mode architecture
	Sync Source requirements
	Failover Capabilities
	Notification Sync Pipe change flow

	Configure Notification mode
	Use the create-sync-pipe-config tool
	No resync command functionality
	LDAP change log features required for notifications
	LDAP change log for Notification and Standard Mode

	Implementing the Server Extension
	Configuring the Notification Sync Pipe
	Considerations for Configuring Sync Classes
	Creating the Sync Pipe
	Configuring the Sync Source
	Configure the Destination Endpoint Server

	Access control filtering on the Sync Pipe
	Considerations for access control filtering
	Configure the Sync Pipe to filter changes by access control instructions

	Chapter 9: Configure synchronization with SCIM
	Synchronize with a SCIM Sync Destination overview
	SCIM destination configuration objects
	Considerations for synchronizing to a SCIM destination
	Renaming a SCIM resource
	Password considerations with SCIM

	Configure synchronization with SCIM
	Configure the external servers
	Configure the PingDirectory Server Sync Source
	Configure the SCIM Sync Destination
	Configure the Sync Pipe, Sync Classes, and evaluation order
	Configure communication with the source server(s)
	Start the Sync Pipe

	Map LDAP schema to SCIM resource schema
	The <resource> element
	The <attribute> element
	The <simple> element
	The <complex> element
	The <simpleMultiValued> element
	The <complexMultiValued> element
	The <subAttribute> element
	The <canonicalValue> element
	The <mapping> element
	The <subMapping> element
	The <LDAPSearch> element
	The <resourceIDMapping> element
	The <LDAPAdd> element
	The <fixedAttribute> element

	Identify a SCIM resource at the destination

	Chapter 10: Manage logging, alerts, and alarms
	Logs and Log Publishers
	Types of Log Publishers
	View the list of log publishers
	Log compression
	Configure log file encryption

	Synchronization logs and messages
	Sync log message types
	Create a new log publisher
	Configuring log signing
	Configure log retention and log rotation policies
	Configure the log rotation policy
	Configure the log retention policy

	Configure log listeners
	System alarms, alerts, and gauges
	Alert handlers
	Configure alert handlers

	Test alerts and alarms
	Use the status tool
	Synchronization-specific status
	Monitor the PingDataSync Server

	Chapter 11: Troubleshooting
	Synchronization troubleshooting
	Management tools
	Troubleshooting tools
	Use the status tool
	Use the collect-support-data tool
	Use the Sync log
	Sync log example 1
	Sync log example 2
	Sync log example 3

	Troubleshoot synchronization failures
	Troubleshoot Entry Already Exists failures
	Troubleshoot No Match Found failures
	Troubleshoot Failed at Resource failures

	Installation and maintenance issues
	The setup program will not run
	The server will not start
	The server has shutdown
	The server will not accept client connections
	The server is unresponsive
	Problems with the Administrative Console

	Problems with SSL communication
	Conditions for automatic server shutdown
	Insufficient memory errors
	Enable JVM debugging

	Index

