
UnboundID® Identity Data Sync
Administration Guide

Version 4.7.0

UnboundID Corp
13809 Research Blvd, Suite 500

Austin, Texas, 78750
Tel: +1 512.600.7700

Email: support@unboundid.com

Copyright

This document constitutes an unpublished, copyrighted work and contains valuable trade secrets
and other confidential information belonging to UnboundID Corporation. None of the foregoing
material may be copied, duplicated, or disclosed to third parties without the express written
permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or through
such sites or resources. UnboundID will not be responsible or liable for any actual or alleged
damage or loss caused or alleged to be caused by or in connection with use of or reliance on any
such content, goods, or services that are available on or through such sites or resources.

“UnboundID” is a registered trademark of UnboundID Corporation. UNIX is a registered
trademark in the United States and other countries, licenses exclusively through The Open
Group. All other registered and unregistered trademarks in this document are the sole property
of their respective owners.

The contents of this publication are presented for information purposes only and is provided “as
is”. While every effort has been made to ensure the accuracy of the contents, the contents are
not to be construed as warranties or guarantees, expressed or implied, regarding the products or
services described herein or their use or applicability. We reserve the right to modify or improve
the design or specifications of such products at any time without notice.

Copyright 2014 UnboundID Corporation

All Rights Reserved

Published: 2014-09-30

Contents

i

Contents

Preface.. ix
Purpose of This Guide...ix
Audience...ix
Related Documentation..ix
Document Conventions...x

Chapter 1: Introduction.. 1

Overview of the Identity Data Sync.. 2
The Synchronization Problem.. 2
The UnboundID Advantage..3
Common Synchronization Use Cases.. 4

Use Case: Synchronization during Directory Server Migrations...4
Advanced Replication...5
Use Case: Synchronization with Active Directory.. 8
Use Case: Synchronizing Realistic Test Environments... 9
Use Case: Synchronizing with Relational Databases...9
Use Case: Synchronizing through Proxy Servers.. 9

Identity Data Sync: How It Works.. 10
Point-to-Point Bidirectional Synchronization...10
Synchronization Architecture... 11
Change Tracking...11
Monitoring and Alerts.. 12
Logging... 12

Synchronization Modes of Operation...13
Standard Synchronization Mode...13
Notification Synchronization Mode... 13

Sync Operations.. 14
Data Transformations..14
Resync... 14
Real-Time Synchronization.. 15
About the Sync Retry Mechanism... 15

Configuration Model...17
Sync Control Flow Scenarios...18
A Synchronization Example...20
Available Tools Summary.. 21
Summary... 22

Chapter 2: Installing the Identity Data Sync...23

Before You Begin...24
Tuning Considerations.. 24
Supported Operating Platforms.. 24
Software Requirements: Java... 24
Install dstat (SUSE Linux)... 25

About the RPM Package.. 25
To Install the RPM Package.. 25

About the Server Installation Modes... 26
Installing the UnboundID Identity Data Sync in Interactive Mode...26

To Install the Identity Data Sync in Interactive Mode.. 26

Contents

ii

Installing the UnboundID Identity Data Sync in Non-Interactive Mode...29
To Install the Identity Data Sync in Non-Interactive Mode.. 29

Installing the Identity Data Sync with a Truststore in Non-Interactive Mode...29
To Install the Identity Data Sync with a Truststore in Non-Interactive Mode.................................30

Running the Server... 30
To Start the Identity Data Sync... 30
To Start the Identity Data Sync with Global Sync Disabled... 30
To Run the Server as a Foreground Process..31
To Start the Server at Boot Time...31

Stopping the Identity Data Sync.. 31
To Stop the Server..32
To Schedule a Server Shutdown.. 32
To Restart the Server..32
To Restart the Identity Data Sync using an Internal Restart... 32

Uninstalling the Server... 33
To Uninstall the Server in Interactive Mode... 33
To Uninstall the Server in Non-Interactive Mode... 34
To Uninstall Selected Components in Non-Interactive Mode... 35
To Uninstall the RPM Build Package..35

Installing the Management Console... 35
To Install the Management Console Out of the Box...35
To Log into the Management Console.. 37
To Uninstall the Management Console..38
To Upgrade the Management Console...39

Updating the Identity Data Sync..39
To Update the Identity Proxy...40
To Upgrade the RPM Package...40
Reverting an Update... 41

Installing a Redundant Failover Server..41
To Install a Redundant Server..42

Removing a Redundant Server...43
To Remove a Redundant Server.. 43

Configuring SSL in the Identity Data Sync...43
To Configure SSL in the Identity Data Sync...43

Configuring StartTLS... 45
To Configure StartTLS...45

Chapter 3: Configuring the Identity Data Sync.. 47

Pre-Deployment Checklist.. 48
External Servers.. 48
Sync Pipes...48
Sync Classes..48

Creating Administrators..50
To Create an Administrator..50

About the Configuration Tools.. 50
About the Sync User Account..51
Configuring the Synchronzation Server in Standard Mode... 52

Assumptions.. 52
Configuring the Synchronization using create-sync-pipe-config... 53

Configuring the Identity Data Sync Using the Management Console...59
Configuring the External Servers Using the Management Console.. 59
Configuring the Sync Pipe Using the Management Console...63
Configuring the Sync Class Using the Management Console... 67
Starting the Global Sync Configuration Using the Management Console.......................................72

About dsconfig Configuration Tool... 73

Contents

iii

Using dsconfig in Interactive Command-Line Mode...73
Using dsconfig Interactive Mode: Viewing Object Menus..73
Using dsconfig in Non-Interactive Mode...74
Using dsconfig Batch Mode...76

Configuring the Identity Data Sync Using dsconfig..76
To Configure the Identity Data Sync Using dsconfig Interactive..76
Configuring Server Groups Using dsconfig Interactive...77
Configuring External Servers Using dsconfig Interactive... 78
Configuring the Sync Source Using dsconfig Interactive..78
Configuring the Sync Destination Using dsconfig Interactive...79
Configuring a Sync Pipe Using dsconfig Interactive...80
Configuring the Sync Class Using dsconfig Interactive.. 81
Starting the Global Sync Configuration Using dsconfig Interactive..82

Generating a Summary of Configuration Components..82
To Generate a Summary of Configuration Components... 82

Preparing the Identity Data Sync for External Server Communication...85
To Prepare the Identity Data Sync for External Server Communication...85

Preparing External Servers: If the Admin Does Not Have Root Access on DSEE External Servers........86
To Set Up the DSEE External Servers.. 86

Using Resync on the Identity Data Sync...88
Testing Attribute and DN Maps Using Resync... 90
Verifying the Synchronization Configuration Using Resync...90
Populating an Empty Sync Destination Topology Using Resync..91
Populating an Empty Sync Destination Topology Using translate-ldif... 92
Setting the Synchronization Rate Using Resync..92
Synchronizing a Specific List of DNs... 93

Controlling Real Time Synchronization...94
About the Realtime-Sync Tool...94
Starting Real Time Synchronization Globally... 95
Pausing Synchronization...95
Setting Startpoints...96
Scheduling a Realtime Sync as a Task.. 98

Configuring Attribute Maps... 98
Configuring an Attribute Map Using dsconfig Interactive.. 99
Configuring an Attribute Mapping Using dsconfig Interactive... 99
Configuring an Attribute Mapping Using dsconfig Non-Interactive... 100

Configuring the Directory Server Backend for Synchronizing Deletes...101
To Configure the Changelog-Deleted-Entry-Include-Attribute Property.......................................101
To Synchronize Deletes on Sun DSEE Endpoints...101

Configuring DN Maps..102
Configuring a DN Map Using dsconfig Interactive...102
Configuring a DN Map Using dsconfig Non-Interactive...103

Configuring Fractional Replication.. 104
To Configure Fractional Replication..104

Managing Failover Behavior.. 106
Conditions that Trigger Immediate Failover..107
Failover Server Preference... 107
Configuration Properties that Control Failover Behavior.. 109
max-operation-attempts...110
response-timeout... 110
max-failover-error-code-frequency... 111
max-backtrack-replication-latency..111

About the Server SDK... 112
To Run the Manage-Extension Tool..112

Contents

iv

Chapter 4: Syncing with Active Directory Systems...113

Before You Begin...114
Configuring Active Directory Synchronization... 114

To Configure Active Directory Synchronization... 115
To Prepare the External Servers...116
To Configure the Sync Pipes and its Sync Classes... 117
To Configure the Password Encryption Component..119

Installing the UnboundID Password Sync Agent.. 120
Supported Platforms..121
Before You Install the Password Sync Agent..121
To Install the Password Sync Agent.. 122
To Upgrade the Password Sync Agent (restart optional)...123
To Uninstall the Password Sync Agent... 123
Manual Configuration for Advanced Users... 123

Chapter 5: Syncing with Relational Databases..125

Overview... 126
About the Server SDK... 126
About the DBSync Process.. 127
About the DBSync Example.. 128

Example DS Entries... 128
About the Overall DBSync Configuration Process..129
Downloading the Software Packages... 130
Creating the JDBC Extension.. 130

About Groovy... 131
Implementing a JDBC Sync Source...131
Implementing a JDBC Sync Destination... 133

Configuring the Database for Synchronization..133
Pre-Configuration Checklist... 135
General Tips When Syncing to a Database Destination..136
Configuring the Directory-to-Database Sync Pipe...138

Step 1. Creating the Directory-to-Database Sync Pipe.. 138
Step 2. Configuring the Sync Pipe and Sync Classes..141
Step 3. Fine-Tuning the Sync Classes... 143
Step 4. Configuring the Attribute Mappings..147
Step 5. Run the Resync Tool to Test the Configuration..150
Step 6. Set the Startpoint in the Change Log.. 150
Step 7. Run the Resync Tool to Populate Data at the Destination Endpoint................................. 150
Step 8. Start the Sync Pipe.. 150
Step 9. Debugging the Configuration...151

General Tips When Syncing from a Database Source...153
Configuring the Database-to-Directory Sync Pipe...153

To Create the Database-to-Directory Sync Pipe.. 154
Synchronizing a Specific List of Database Elements Using Resync... 154

To Synchronize a Specific List of Database Elements Using Resync... 155

Chapter 6: Syncing Through Proxy Servers.. 157

Features... 158
How It Works... 158

About the Get Changelog Batch Request and Get Server ID Controls... 159
About the Directory Server and Directory Proxy Server Tokens.. 160

Contents

v

Change Log Tracking in Entry-Balancing Deployments... 161
About the Overall Sync-through-Proxy Configuration Process...162
About the Sync-Through-Proxy Configuration Example...162
Configuring the Example Source Proxy Deployment..163

Configuring the Directory Servers... 163
Configuring the Example Destination Proxy Deployment.. 167

To Configure the Identity Data Sync...169
To Confirm the Proxy Server and Use-Changelog-Batch-Request Properties...............................172
To Run Prepare-External-Server on the Backend Set of Directory Servers.................................. 172
To Test and Start the Configuration.. 173

Indexing the LDAP Changelog.. 173
To Configure Changelog Indexing...174

A Special Note about Syncing Changes using the Get Changelog Batch Request....................................175

Chapter 7: Configuring Notification Mode..177

About Notification Mode..178
Notification Mode Architecture..179
Sync Source Requirements...180
Failover Capabilities... 180
Standard Administration and Monitoring Capabilities...181
Notification Sync Pipe Change Flow...181

About the Notification Mode Configuration..182
Create-Sync-Pipe-Config.. 182
No Resync...182
LDAP Change Log Features Required for Notifications...183

About the Server SDK and LDAP SDK..185
Server SDK Updates...185
LDAP SDK Updates...186

Important Design Questions... 186
Implementing the Custom Server Extension..186

General Tips When Implementing Your Extension...187
Configuring the Notification Sync Pipe...188

General Tips When Configuring Your Sync Classes...188
Step 1. Creating the Notification Sync Pipe.. 189
Step 2. Configuring the Sync Pipe and Sync Classes..193
Step 3. Configure Attribute and DN Mappings... 194
Step 4. Configure Advanced Properties... 194
Step 5. Set the Startpoint in the Change Log.. 194
Step 6. Start the Sync Pipe.. 194
Step 7. Debugging the Configuration...194

Access Control Filtering on the Sync Pipe..196
Important Points about Access Control Filtering...196
To Configure the Sync Pipe to Filter Changes by Access Control Instructions............................ 197

Contact Your Support Provider..197

Chapter 8: Configuring Synchronization with SCIM..199

About Synchronizing with a SCIM Sync Destination... 200
Overview of SCIM Destination Configuration Objects...201
Tips for Syncing to a SCIM Destination... 201
Renaming a SCIM Resource.. 202
Password Considerations with SCIM...202

Configuring Synchronization with SCIM.. 202
Configuring the External Servers... 203

Contents

vi

Configuring the Directory Server Sync Source... 204
Configuring the SCIM Sync Destination... 205
Configuring the Sync Pipe, Sync Classes, and Evaluation Order..205
Setting Up Communication with the Source Server(s)..207
Starting the Sync Pipe.. 207

Mapping LDAP Schema to SCIM Resource Schema..208
About the <resource> Element...209
About the <attribute> Element...210
About the <simple> Element..210
About the <complex> Element.. 211
About the <simpleMultiValued> Element... 211
About the <complexMultiValued> Element.. 211
About the <subAttribute> Element.. 212
About the <canonicalValue> Element... 212
About the <mapping> Element.. 212
About the <subMapping> Element.. 213
About the <LDAPSearch> Element... 213
About the <resourceIDMapping> Element.. 213
About the <LDAPAdd> Element...214
About the <fixedAttribute> Element..214

Chapter 9: Managing Logging and Alerts.. 215

Working with Logs...216
Types of Log Publishers...216

Default Identity Data Sync Logs..217
Viewing the List of Log Publishers... 217

To View the List of Log Publishers.. 218
Sync Log Message Types...218
Creating New Log Publishers.. 219

To Create a New Log Publisher...219
To Create a Log Publisher Using dsconfig Interactive Command-Line Mode..............................220

About Log Compression...220
About Log Signing... 221

To Configure Log Signing... 221
To Validate a Signed File.. 221

Configuring Log Rotation.. 222
To Configure the Log Rotation Policy.. 222

Configuring Log Retention...222
To Configure the Log Retention Policy...223

Working with Alarms, Alerts, and Gauges..223
To View Information in the Alarms Backend... 224
To Test Alarms and Alerts...224

Working with Administrative Alert Handlers..226
Configuring the JMX Connection Handler and Alert Handler.. 226

Configuring the SNMP Subagent Alert Handler... 227
To Configure the SNMP Subagent Alert Handler... 227

Running the Status Tool...228
To Run the Status Tool.. 231
To Search for a Specific Status Monitor... 231

Monitoring the Identity Data Sync...232
Monitoring Using SNMP..233

SNMP Implementation... 233
Configuring SNMP... 234
Configuring SNMP on AIX... 237
MIBS... 237

Contents

vii

Chapter 10: Managing Security... 239

Summary of the UnboundID Identity Data Sync Security Features..240
Identity Data Sync SSL and StartTLS Support... 241

LDAP-over-SSL (LDAPS)... 242
StartTLS Support.. 242

Managing Certificates...242
Authentication Using Certificates...243
Creating Server Certificates using Keytool..243
Client Certificates... 247
Creating PKCS#12 Certificates.. 247
Working with PKCS#11 Tokens..248

Configuring the Key and Trust Manager Providers...248
Configuring the JKS Key and Trust Manager Provider...249
Configuring the PKCS#12 Key Manager Provider..250
Configuring the PKCS#11 Key Manager Provider..251
Configuring the Blind Trust Manager Provider...252

Configuring SSL in the Identity Data Sync...252
To Configure SSL in the Identity Data Sync...252

Configuring StartTLS... 254
To Configure StartTLS...254

Authentication Mechanisms..255
Simple Authentication.. 255

Working with SASL Authentication.. 255
Working with the SASL ANONYMOUS Mechanism.. 255
Working with the SASL PLAIN Mechanism.. 256
Working with the SASL CRAM-MD5 Mechanism...257
Working with the SASL DIGEST-MD5 Mechanism.. 259
Working with the SASL EXTERNAL Mechanism... 262
Working with the GSSAPI Mechanism... 263
Working with the UNBOUNDID-TOTP SASL Mechanism...267
Working with the UNBOUNDID-DELIVERED-OTP SASL... 269

Configuring Pass-Through Authentication...272
To Configure Pass-Through Authentication.. 272

Adding Operational Attributes that Restrict Authentication..273
Configuring Certificate Mappers..274

Configuring the Subject Equals DN Certificate Mapper... 275
Configuring the Fingerprint Certificate Mapper.. 275
Configuring the Subject Attribute to User Attribute Certificate Mapper.......................................276
Configuring the Subject DN to User Attribute Certificate Mapper... 277

Chapter 11: Troubleshooting the Identity Data Sync.. 279

About Synchronization Troubleshooting..280
About the Troubleshooting Tools.. 280
Troubleshooting Process Flow... 281
Using the Sync Log..281

Sync Log Example 1.. 282
Sync Log Example 2.. 282
Sync Log Example 3.. 282

Troubeshooting Sync Failures.. 283
Troubleshooting "Entry Already Exists" Failures..283
Troubleshooting "No Match Found" Failures.. 285
Troubleshooting "Failed at Resource" Failures..286

Contents

viii

Problems with the Management Console: JVM Memory Issues...287
Working with the Collect Support Data Tool..288

Server Commands Used in the Collect Support Data Tool... 288
JDK Commands Used in the Collect-Support-Data Tool.. 289
Linux Commands Used in the collect-support-data Tool.. 289
Solaris Commands Used in the collect-support-data Tool...289
AIX Commands Used in the collect-support-data Tool...290
MacOS Commands Used in the Collect Support Data Tool... 291
Available Tool Options.. 291
To Run the Collect Support Data Tool..292

Chapter 12: Command-Line Tools...293

Using the Help Option... 294
Available Command-Line Utilities...294
Managing the tools.properties File...296

Creating a Tools Properties File...297
Tool-Specific Properties... 297
Specifying Default Properties Files..298
Evaluation Order Summary.. 298
Evaluation Order Example... 298

Running Task-based Utilities... 299

Contents

ix

Preface

This guide presents the procedures and reference material necessary to install, administer
and troubleshoot the UnboundID Identity Data Sync in multi-client, high-load production
environments.

Purpose of This Guide

The purpose of this guide is to provide valuable procedures and concepts that can be used to
manage the UnboundID® Identity Data Sync in a multi-client environment. It also provides
information to monitor and set up the necessary logs needed to troubleshoot the server’s
performance.

Audience

The guide is intended for administrators responsible for installing, maintaining, and monitoring
servers in large-scale, high load production environments. It is assumed that the reader has the
following background knowledge:

➢ Identity Platforms and LDAPv3 concepts
➢ System administration principles and practices
➢ Understanding of Java VM optimization and garbage collection processes
➢ Application performance monitoring tools

Related Documentation

The following list shows the full documentation set that may help you manage your deployment:

➢ UnboundID® Identity Data Store Administration Guide
➢ UnboundID® Identity Data Store Reference Guide (HTML)
➢ UnboundID® Identity Proxy Administration Guide
➢ UnboundID® Identity Proxy Reference Guide (HTML)
➢ UnboundID® Identity Data Sync Administration Guide
➢ UnboundID® Identity Data Sync Reference Guide (HTML)
➢ UnboundID® Metrics Engine Administration Guide
➢ UnboundID® Identity Broker Administration Guide
➢ UnboundID Security Guide
➢ UnboundID® LDAP SDK
➢ UnboundID® Server SDK

Contents

x

Document Conventions

The following table shows the document convention used in this guide.

Convention Usage

Monospace Commands, filenames, directories, and file paths

Monospace Bold User interface elements, menu items and buttons

Italic Identifies file names, doc titles, terms, variable names, and
emphasized text

Introduction

1

Chapter

1 Introduction

The UnboundID® Identity Data Sync is a is a high-capacity, high-reliability data synchronization
and transfer pipe between source and destination topologies comprised of the following:

➢ UnboundID® Identity Data Store
➢ UnboundID® Identity Proxy (3.x or later)
➢ Alcatel-Lucent® 8661 Directory Server
➢ Alcatel-Lucent® 8661 Directory Proxy Server (3.x or later)
➢ Oracle® Directory Server Enterprise Edition (DSEE 6.x, 7.x)
➢ Oracle® Directory Server (5.2 patch 3 or higher)
➢ Microsoft® Active Directory®

➢ Oracle® Database (10g, 11g)
➢ Microsoft® SQL Server (2005, 2008) systems
➢ Endpoints compatible with the System for Cross-domain Identity Management (SCIM)
➢ Custom integration, using the Data Sync SDK

The Identity Data Sync has a low cost of ownership with minimal administrative and hardware
expenditures to provide a high performance synchronization solution. This chapter presents a
general overview of the Identity Data Sync:

Topics:

• Overview of the Identity Data Sync
• The Synchronization Problem
• The UnboundID Advantage
• Common Synchronization Use Cases
• Identity Data Sync: How It Works
• Synchronization Modes of Operation
• Sync Operations
• Configuration Model
• Sync Control Flow Scenarios
• A Synchronization Example
• Available Tools Summary
• Summary

Introduction

2

Overview of the Identity Data Sync

The UnboundID Identity Data Sync is an efficient, pure Java-based server that provides high-
throughput, low-latency, and bidirectional real-time synchronization between two endpoint
topologies consisting of directory servers, directory proxy servers, and/or Relational Database
Management Systems (RDBMS) systems. Designed to run on inexpensive hardware with little
administrative maintenance (i.e., backups are not required), the UnboundID Identity Data Sync
provides an effective cost-per-performance solution for synchronizing data between LDAP-to-
LDAP or LDAP-to-RDBMS directory topologies.

The Identity Data Sync includes the following key features:

• High performance and availability with built-in redundancy to help ensure no downtime.

• Dataless virtual architecture for a small-memory footprint and easy maintenance.

• Hassle-free setup that allows you to transform and map attribute names, values, and DNs
between endpoints. For directory server endpoints, this benefit allows you to make schema
and Directory Information Tree changes without the added costs of custom coding and
scripting.

• Data flexibility and security, allowing you to replicate data and use advanced replication
features in fractional, local data, filtered, or sub-tree replication scenarios.

• Multi-vendor directory server support including the UnboundID Identity Data Store,
UnboundID Identity Proxy (3.x), Alcatel-Lucent 8661 Directory Server, Alcatel-Lucent 8661
Directory Proxy Server (3.x), Oracle/Sun Directory Server Enterprise Edition (DSEE 6.x,
7.x), Oracle/Sun Directory Server (5.2 patch 3 or higher), and Microsoft Active Directory.

• Relational Database Management System (RDBMS) support including Oracle Database
(10g, 11g), and Microsoft SQL Server (2005, 2008) systems.

• Directory Proxy Server support including the UnboundID Identity Proxy (3.x) and the
Alcatel-Lucent Directory Proxy Server (3.x).

• Notification support that allows real-time change notifications to be pushed to client
applications or services as they occur.

The Synchronization Problem

Synchronization is the process of maintaining data consistency among applications, directories,
and data sources in a networked environment. System administrators who use a directory as
a writable user repository must ensure that the directory be exposed to all of its applications.
However, exposing the user repository becomes problematic when consolidating applications
and systems. Often the administrators find that many synchronization solutions lack features,
such as writable partial replicas, or the ability to synchronize data with other multi-vendor
directory servers and Relational Database Management System (RDBMS) systems.

Introduction

3

Most companies employ a meta-directory or a virtual directory synchronization strategy as
follows:

I. Meta-Directory (Datafull Approach). The meta-directory solution aggregates all data from
the various sources and makes it available for its applications in a centralized directory. The
centralized directory then can be updated with those changes pushed back out to the original
data sources.

While the meta-directory approach may appear to be an easy-to-manage solution, there are some
fundamental flaws that limit its ability for cost-effectiveness and performance:

• Scalability Limitations. To maintain a combined view of the data from its sources, the
centralized meta-directory is often a bottleneck for any updates that must go through a single
directory server instance when synchronizing from one endpoint to another.

• Functionality Limitations. The meta-directory solution must often integrate disparate
company directories into a single distributed enterprise directory. Integrating data
mismatches (e.g., schema variances, privilege differences, etc.) require additional solutions
that limit ease-of-use.

• Administrative and Hardware Cost Limitations. Because a meta-directory stores a
shadow copy of all of the source data that will be synchronized, it requires a large storage
and memory footprint. This hardware requirement leads to additional hardware costs and
increases the administrative burden of managing backups. The meta-directory solution also
has difficulty in providing instantaneous failover between redundant instances.

II. Virtual Directory (Dataless Approach). Virtual Directories provide a consolidated view
of the data without actually creating a physical centralized repository for directory information.
When an application requests data from the virtual directory, the directory assembles the data
and delivers it to the application in real time. However, to achieve synchronization between
two backend directory topologies, virtual directories require that all applications update data
through the virtual directory exclusively. This scenario prevents client applications from directly
modifying the backend directory instances.

The UnboundID Advantage

Synchronization can be a challenging problem when integrating multiple data sources.
UnboundID Corporation has a proven track record of successful deployments combined with
many years of extensive synchronization experience to solve the problem.

The UnboundID Identity Data Sync uses a dataless approach that synchronizes changes directly
from the data sources in the background, so that applications can continue to update their data
sources directly. The Identity Data Sync does not store any data from the endpoints themselves,
thereby reducing hardware and administration costs. The server's high-availability mechanisms
also make it easy to fail over from the main synchronization server to its redundant instances.

Introduction

4

Common Synchronization Use Cases

The UnboundID Identity Data Sync synchronizes data across independent directory topologies
using the following as source and destination endpoints:

➢ UnboundID Identity Data Store topologies
➢ UnboundID Identity Proxy (3.x) topologies
➢ Alcatel-Lucent 8661 Directory Server
➢ Alcatel-Lucent 8661 Directory Proxy Server (3.x) topologies
➢ Oracle Directory Server Enterprise Edition (DSEE 6.x, 7.x) topologies
➢ Oracle Directory Server (5.2 patch 3 or higher) topologies
➢ Microsoft Active Directory topologies
➢ Relational Database Management Systems (RDBMS) using Oracle (10g, 11g), Microsoft

SQL Server (2005, 2008)

The typical deployment scenarios that require synchronization services involve synchronizing
data during directory server migrations, replicating with advanced features during normal
operations, synchronizing with Active Directory systems, performing real-time testing by
obfuscating production data, synchronizing with database systems, and synchronizing through
proxy servers.

Use Case: Synchronization during Directory Server Migrations

Directory Server migrations from one system to another can be complicated due to the
mismatches in functionality from one system to another (for example, replication limitations,
schema mismatches and others). Additionally, if problems arise during a migration, reverting
the process can be especially difficult. The UnboundID Identity Data Sync solves the migration/
reversion problem by allowing you to leave the source deployment untouched, while a separate,
synchronized topology of targeted servers is installed and tested. Modifications generated
by an application in either topology are immediately synchronized to the other topology and
are available to all applications. Once all of the applications have been tested against the new
installation, the source directory servers can be phased out.

The general procedure for a migration (for example, from Sun Directory Server 5.x to
UnboundID Identity Data Store) is as follows:

1. Leave the Oracle/Sun Directory Server 5.x in place.
2. Set up synchronization from the Oracle/Sun Directory Server 5.x to the UnboundID

Directory Server and vice-versa.
3. Gradually migrate applications and data to the UnboundID Identity Data Store. You can

use the UnboundID Identity Proxy in front of the Oracle/Sun Directory Server 5.x and the
UnboundID Identity Data Store topologies to redirect some client applications to a particular
topology.

4. In the event of a rare migration failure, the migration can be reverted back to the Oracle/Sun
Directory Server 5.x if required.

Introduction

5

Advanced Replication

The UnboundID Identity Data Sync provides advanced features that extend the replication
capability of its directory servers. The Identity Data Sync can replicate parts of a Directory
Information Tree (DIT) or subsets of entries using either fractional replication, local data
replication, filtered replication, subtree replication, or a combination of these replication
schemes. Traditionally, replication creates exact replicas of servers, including the same DIT
structure, entries, and attributes. However, in many cases, replica servers need to store a subset
of entries, a subset of attributes, or in some case extra attributes, compared to the full DIT in
the primary master servers. Because all servers do not need full copies of the data, the extended
replication features of the Identity Data Sync improves the overall performance of the directory
service and reduces hardware costs.

To provide an example scenario, a large telecommunications company is managing data
replication between three divisions: billing, web, and network. The directory server for each
division contains the same subscriber information. While the billing division is the authoritative
source for the subscriber information, each division has its own unique directory structure.
Each division replicates data between its own local servers using replication agreements that
accommodate the division’s unique DIT and schema. The Identity Data Sync can address the
needs of each division by synchronizing data across division boundaries using its advanced
replication features.

Fractional Replication

Fractional replication is a form of partial replication that allows a subset of attributes to be
replicated. By including only the data that are needed, this feature often reduces replication
bandwidth. For example, if a replica only performs user authentications, then replication can
be configured to only propagate the uid and userpassword attributes for a password policy,
reducing the database size at the replica and the network traffic needed to keep the server in
sync to this server. Furthermore, changes due to password policy attributes, such as account
lockouts, can be replicated back to the main master servers. The UnboundID Identity Data Sync
supports fractional replication to any type of server.

Figure 1: Fractional Replication

Returning again to the telecom company example, a subscriber can change their email address in
a variety of ways:

➢ Calling the billing department

Introduction

6

➢ Going to a retail store
➢ Logging on to the web site
➢ Using IVR on their telephone

No matter where the email address is changed, it needs to be reflected everywhere. If a
subscriber changes his or her email address by calling the billing department, the Identity Data
Sync uses fractional replication to replicate only the updated email attribute of the subscriber’s
entry across the servers in other departments.

Local Data Replication

For fractional replication, application-specific repositories generally require directories that
contain less data than their primary master servers. For local data replication, replicas tend to
have more data than the primary master servers. For example, some applications need to store
large amounts of data in a user entry, such as an XML blob of preference information, a sound
file, or an image. Although the data could be required by only one application, the data itself can
impact the server performance for all applications. The Identity Data Sync can keep this local
data isolated to only a few servers dedicated to this application without burdening the master
corporate servers.

Returning to the large telecom company example, we can imagine that the web department
uses a portal server and web applications that are not used by the other departments. The user
preference information stored on the user entries in the web department’s directory server is not
replicated back to the other departments. Instead, this information is replicated only between the
servers in the web department.

Figure 2: Local Data Replication

Filtered Replication

Filtered replication is a form of partial replication, where a replica contains only selected entries
as determined by an LDAP filter. This feature allows directory instances to replicate only
specific subtrees of a DIT, determined by base DNs returned using inclusion or exclusion filters.
Applications that create an application-specific entry can be restricted to only those directories
used by the application and not to every replica in the topology.

Introduction

7

Figure 3: Filtered Replication

For example, the telecom example has an extranet directory server and a corporate directory
server. The extranet directory server is used by traveling Sales staff to authenticate and use their
email over the web. To access their email remotely, an employee must have a web-access-
enabled=true flag set on their entry. Using filtered replication, the Identity Data Sync can look
for entries that have this flag set to true and replicate their changes back to the other corporate
directories. If an employee changes their password in the extranet directory, this change will be
replicated back to the master corporate directory.

Subtree Replication

In subtree replication, a replica contains only the selected entries as determined by a directory
branch. This feature allows directory server instances to replicate only specific subtrees of a
DIT, which are determined by inclusion or exclusion filtering on the base DNs.

For example, the large telecom company acquires a media company. The telecom company adds
a subtree of data in its directory server for the media company, and the media company itself
has its own on-premise LDAP directory server. Using a subtree replication protocol, data can be
replicated between the media company’s directory server and the main telecom directory server.

Figure 4: Subtree Replication

Advanced Replication Combinations

The UnboundID Identity Data Sync can support various combinations of fractional and filtered
replication for those applications that require it. For example, imagine that the telecom company
operates in several countries in the European Union. The EU restricts the disclosure of anything
considered personal data; rules inside individual countries can further restrict the type of
data that can be transferred between country boundaries. While this data must remain in the

Introduction

8

individual country’s directory server, the corporate directory still needs to contain as much
information as possible. Using fractional replication, only the parts of the entry that can legally
cross country borders would be replicated back to the main corporate directory server.

Further, imagine that the main directory for the telecom company, dc=corp,dc=com contains
subdirectories for each of the European directories, such as ou=France, ou=Germany, and
ou=Italy. Locally, each country has its own unique directory data stored in its own DIT
structure, such as dc=corp-fr,dc=com for France. Using subtree replication in combination with
fractional replication, the Identity Data Sync can replicate changes between a country’s subtree
in the master directory and each country’s local directory, while adhering to local laws about the
transfer of personal information.

Figure 5: Advanced Replication Combinations

Use Case: Synchronization with Active Directory

The UnboundID Identity Data Sync provides a Microsoft Active Directory mechanism
that synchronizes ADD, MODIFY, and DELETE operations for user entries and individual
attributes using Active Directory’s DirSync control. For example, returning to the large tele-
communications company example, the company uses multi-vendor directories including an
Active Directory server in their respective data centers, some of which were acquired through
acquisitions. Data must be successfully synchronized across these different directory servers in
real-time, so that information can be up-to-date across these systems.

If real-time password synchronization is needed, the Identity Data Sync also requires that a
dedicated component, the UnboundID Password Sync Agent (PSA), be installed on all Active
Directory domain controllers. The agent receives password changes from the Local Security
Authority (LSA) and immediately hashes them with a secure 160-bit salted secure hash. The
agent then sends the hashes to each UnboundID Identity Data Sync instance in the topology over
a secure LDAPS connection. If the Identity Data Sync instance is down, the agent caches the
change and retries synchronization until at least one of the servers has received the updates.

The agent is highly optimized with a small memory footprint. It securely handles sensitive data
and uses a small, native DLL on the domain controller, which requires a single restart due to an
Active Directory requirement. Subsequent updates to the DLL do not require a restart.

Introduction

9

Figure 6: Active Directory Sync

Use Case: Synchronizing Realistic Test Environments

To secure sensitive user data, many companies have their own test environments that use
synthetic data that may not be compatible with actual production data. This discrepancy
can introduce problems when moving applications from a test environment to a production
environment. The UnboundID Identity Data Sync is capable of fully synchronizing test or stage
servers with production servers while also obfuscating sensitive customer information, such as
social security and phone numbers. The Identity Data Sync can sync in real-time or on a nightly
basis with little additional performance load on the production servers.

Use Case: Synchronizing with Relational Databases

In environments that store data on both directory servers and databases (Oracle 11g, 10g and
Microsoft SQL Server 2005, 2008), the UnboundID Identity Data Sync can synchronize data on
both systems. This solution is more flexible than having to sync through a virtual directory. You
can configure the UnboundID Identity Data Sync to establish the directory server or the database
as the authoritative data source.

Use Case: Synchronizing through Proxy Servers

Many data centers use proxy servers in front of a backend set of directory servers in load-
balanced and/or entry-balancing deployments. The UnboundID Identity Data Sync provides
the ability to synchronize data through such proxy deployments. For example, the large
telecommunications company deploys proxy servers in an entry-balancing deployment to
automatically spread entries below a common parent among multiple sets of directory servers
for improved scalability and performance. The proxy server fronts a backend set of directory
servers at one data center, while another proxy server at a different data center fronts another set
of directory servers. The Identity Data Sync can successfully synchronize data across these two
topologies.

Introduction

10

Identity Data Sync: How It Works

The UnboundID Identity Data Sync is a lightweight, standalone, 100% Java solution that
provides low-latency, highly-available, point-to-point synchronization. The Synchronization
Server shares many of the reliable components with the UnboundID Identity Data Store for easy
installation and configuration.

Point-to-Point Bidirectional Synchronization

The UnboundID Identity Data Sync performs point-to-point synchronization between a source
endpoint and a destination endpoint. An endpoint is defined as any Source or Destination
topology of directory or database servers comprised of any combination of either UnboundID
Directory Server, UnboundID Identity Proxy (3.x), Alcatel-Lucent 8661 Directory Server,
Alcatel-Lucent 8661 Directory Proxy Server (3.x), Sun Directory Server Enterprise Edition
(DSEE 6.x, 7.x), Sun Directory Server (5.2 patch 3 or higher), Microsoft Active Directory,
Oracle Database (10g, 11g), and Microsoft SQL Server (2005, 2008) systems.

The Identity Data Sync provides the ability to sync data in one direction or bidirectionally
between endpoints. For example, in a migration phase from Sun Directory Server to UnboundID
Identity Data Store, you can sync in one direction from the source server to a QA stage server
for testing purposes. For one-way synchronization, the source server is the authoritative
endpoint as it generates all of the changes in the system. Bidirectional synchronization
allows for parallel active installations between the source and the destination endpoints. In
a bidirectional synchronization configuration, both sets of endpoints (i.e., the source and the
destination) are authoritative for the same set of attributes or for different sets of data.

The Identity Data Sync also contains no single point of failure, either for detecting changes or
for applying changes. The Identity Data Sync instances themselves are redun- dant, so that you
can have multiple Identity Data Sync instances running at a time, but only the server with the
highest priority is actively syncing changes. Further, the stand-by servers are constantly polling
the active server instance to update their persistent state. This state contains the minimum
amount of information needed to begin synchronization where the primary server left off,
which logically is the last processed change number for the source server. In the case of a
network partition, multiple Identity Data Syncs can synchronize simultaneously without causing
problems as they each verify the full entry before making any changes.

Figure 7 shows a typical UnboundID Identity Data Sync deployment. The Synchronization
Server looks for any changes on the main source server on the left and applies those changes to
the destination server on the right. In the diagram, the bold lines indicate the primary (active)
connections within the synchronization network that show the directional path of the changes.
The Identity Data Syncs will communicate with these servers if they are up. The gray lines are
possible failover connections if any component is down.

Introduction

11

Figure 7: Synchronization Topology

Synchronization Architecture

The UnboundID Identity Data Sync uses a virtualized, dataless approach and never permanently
stores any directory data locally. This dataless approach eliminates the need for backups and
additional hardware components, such as large disk installations. The log files, administrator
entries, configuration, sync state information are stored as flat files (LDIF format) within the
system. No additional database is required.

Figure 8: Synchronization Architecture

Change Tracking

To track changes in each endpoint system, the UnboundID Identity Data Sync uses the change
log mechanism that is most efficient for each platform.

Introduction

12

• For UnboundID Identity Data Store or Alcatel-Lucent 8661 Directory Server topologies,
the UnboundID Identity Data Sync uses the servers’s LDAP Change Log for modification
detection.

• For Sun DSEE or Oracle/Sun Directory Server topologies, the UnboundID Synchronization
Server uses the server’s Retro Change Log, which provides a detailed summary of each
change applied to the directory.

• For Active Directory, the UnboundID Identity Data Sync uses the DirSync control, which
polls for object attribute changes.

• For RDBMS systems, the UnboundID Identity Data Sync uses an UnboundID Server SDK
plug-in to interface with a customized RDBMS change log table. Database triggers on each
table record all INSERT, UPDATE, and DELETE operations to the change log table.

Each directory instance stores a separate entry under cn=changelog for every modification
made to the directory. The UnboundID Identity Data Sync provides full control over the
synchronization process by determining which entries are synchronized, how they are correlated
to the entries at the destination endpoint, and how they are transformed into the destination
schema.

Monitoring and Alerts

The Identity Data Sync supports several industry-standard, administrative protocols for
monitoring and alerts:

➢ LDAP. Used for monitoring, configuration, server state, tasks.
➢ JMX. Used for monitoring and alerts.
➢ SMTP. Used for email alerts.

The UnboundID Identity Data Sync provides an administrative alert framework that can be
used to notify administrators of any significant warnings, errors, or other noteworthy events
that occur in the server. Existing alert handlers can notify administrators through log messages,
email, or JMX notifications. All administrative alerts are also exposed over LDAP as entries
below a base DN cn=alerts. You can use the persistent search operation to ensure that you are
automatically notified over LDAP of any new alerts generated by the server. The administrator
can select the admin action for each type of alert based on the severity level or the specific
type of alert. For example, it may be desirable to log information about all types of alerts, but
only generate email messages. Typical alert events are startup/shutdown, applied configuration
changes, or synchronized resources unavailable.

Logging

The UnboundID Identity Data Sync provides standard logs (sync, access, error, failed-
operations, config-audit.log, debug) to troubleshoot any issues. The server can also be
configured for multiple active sync logs. For example, you can log each detected change, each
dropped change, each applied change, or each failed change.

Introduction

13

Synchronization Modes of Operation

The UnboundID Identity Data Sync runs as a standalone Java process with two complementary
synchronization modes of operation: standard and notification mode.

Standard Synchronization Mode

In standard synchronization mode, the Identity Data Sync polls the directory server change log
for creates, modifies, and delete operations on any entry. The Synchronization Server fetches the
full entries from both the source and destination endpoints, and compares them to produce the
minimal set of changes to bring the destination in sync with the source.

Figure 9 shows the standard synchronization change flow that syncs data between two end-point
servers. The source or destination endpoint can be a directory server, a directory proxy server, or
a database server. Although not pictured, the changes are processed in parallel, which increases
throughput and offsets network latency.

Figure 9: Standard Synchronization Mode Change Flow

Notification Synchronization Mode

In notification synchronization mode, the Identity Data Sync skips the fetch and compare phases
of processing and simply notifies the destination that a change has happened and provides it
with the details of the change. Notification mode is currently available for the UnboundID and
Alcatel-Lucent 8661 brands of directory and proxy servers only.

For more information on notificaiton mode, see Configuring Notification Mode.

Introduction

14

Sync Operations

The UnboundID Identity Data Sync provides seamless integration between disparate systems
to transform data using attribute and DN mappings. To validate that the mappings are correct,
administrators can run a bulk resynchronization operation to test the synchronization settings.
Once the topology has been verified to work as planned, administrators can start real-time
synchronization globally or on specific sync pipes.

Data Transformations

Data transformations alter the contents of synchronized entries between the source and
destination directory server topologies to transparently handle variances in attribute names,
attribute values, or DN structures. When the UnboundID Identity Data Sync synchronizes
entries between a source and a destination server, it can be configured to change the contents
of these entries using attribute and DN mappings, so that neither server needs be aware of the
transformations.

• Attribute Mapping. The Identity Data Sync can transparently rename any attribute in the
entry to fit the schema definitions from the source endpoint to the destination endpoint. This
mapping makes it possible to synchronize information stored in one attribute in one directory
server topology to an attribute with a different name in another directory server topology, or
to construct an attribute using portions of the source attribute values.

• DN Mapping. The Identity Data Sync can transparently alter any DNs referenced in the
entries. This mapping makes it possible to synchronize data from a topology that uses one
DIT structure to a system that uses a different DIT structure.

Resync

In resync operations, the Identity Data Sync performs a bulk comparison of entries on source
topologies and destination topologies. It streams all entries (or those entries matching certain
criteria) from the source, and either updates the corresponding destination entries or reports
those that are out-of-sync. Administrators run a resync operation using the resync utility in the
bin folder (UNIX or LINUX) or bat folder (Windows).

Resync is used for any of the following tasks:

➢ Verify that the two endpoints are in-sync after an initial configuration.
➢ Initially populate a newly configured target endpoint.
➢ Validate that the server is behaving as expected. The resync tool has a --dry-run option that

validates that sync is operating properly without updating any entries. This option also can be
used to check attribute or DN mappings.

➢ Perform scheduled (for example, nightly) synchronization in place of real-time sync.
➢ Recover from a failover by resyncing entries that were modified since the last backup was

taken.

Introduction

15

Resync also allows for fine control over what can be synchronized. You can control the
following items:

➢ Include or exclude any source and destination attributes.
➢ Apply an LDAP filter to only sync entries created since that last time you ran the tool (for

example, createTimeStamp >= 2011333200-0600).
➢ Synchronize only creates or only modifications.
➢ Change the logging verbosity.
➢ Set a limit on how fast the resync runs (for example, only 2000 operations/second) to limit

the impact on endpoint servers.

Real-Time Synchronization

In real-time operations, the Identity Data Sync polls the source server for changes and
synchronizes the destination entries immediately. Once the Identity Data Sync determines that a
detected change should be synced, it fetches the full entry from the source. Then it searches for
the corresponding entry in the destination endpoint using flexible correlation rules and applies
the minimum set of changes to bring the attributes that were modified into sync. The server
fetches and compares the full entries to make sure it does not synchronize any old data from the
change log.

Administrators run real-time synchronization using the realtime-sync utility in the bin
folder (UNIX or LINUX) or bat folder (Windows). In most applications, after you configure a
synchronization topology, run resync to get the endpoints in-sync, and then run realtime-sync
to start global synchronization.

Realtime-sync is used for any of the following tasks:

• Start synchronization globally or for specific sync pipes only.

• Stop synchronization globally or for specific sync pipes only.

• Set a start point at which synchronization should begin syncing changes at the beginning or
end of the change log, at a specified change number, at a specified change sequence number,
or at a specified time frame that rewinds back to a certain point in the change log.

About the Sync Retry Mechanism

In both standard and notification mode, the Identity Data Sync is designed to quickly
synchronize data between two endpoints and attempt a retry should an operation fail for any
reason. The retry mechanism involves two possible retry levels, which are configurable on the
Sync Pipe configuration using advanced Sync Pipe properties. (For detailed information, see the
UnboundID Identity Data Sync Reference Guide for the Sync Pipe Configuration parameters.)

To summarize, retry involves two possible levels:

1. First Level Retry. If an operation fails to synchronize for any reason, the Identity Data Sync
will attempt a configurable number of retries immediately (with some backoff, i.e., delay).
The total number of retry attempts is set by the value set in the max-operation-attempts
property on the Sync Pipe. This property applies only to error that a limited amount of

Introduction

16

retries. The property indicates how many times a worker thread should retry the operation
before putting the operation into the second level of retry called the delayed-retry queue or
failing the operation altogether.

Note: The following additional advanced Sync Pipe properties are present
should you require more fine-tuning:

➢ retry-backoff-initial-wait. Specifies the initial amount of time to
wait before retrying an operation for the first time. Default is 100
milliseconds.

➢ retry-backoff-max-wait. Specifies the maximum amount of time to
wait between operation retry attempts. Default is 10 seconds.

One of the following two properties can be used to increase the amount of
time, either explicitly given in milliseconds or by a percentage between
consecutive retry attempts.

➢ retry-backoff-increase-by. Specifies the specific amount of time to
increase the backoff in between consecutive retry attempts. Default is 0
seconds.

➢ retry-backoff-percentage-increase. Specifies the percentage of time
to increase the backoff in between consecutive retry attempts. Default
is 100 percent, which will double the amount of time between each
consecutive retry attempt.

For more detailed information, see the UnboundID Synchronization Server
Reference Guide.

2. Second Level Retry. Once the max-operation-attempts property has been exceeded, the
retry is sent to the second level retry phrase called the delayed-retry queue. The delayed-retry
queue uses two advanced Sync Pipe properties to determine the number of times a failed
operation should be retried in the background after a specified delay.

Operations that make it to this level will be retried after the failed-op-background-retry-
delay property (default: 1 minute). Next, the Identity Data Sync checks the max-failed-
op-background-retries property to determine the number of times a failed operation
should be retried in the background. By default, this property is set to 0, which indicates that
no background retry should be attempted in the background, and that the operation should
be logged as a failed operation. However, if you set this property to a non-zero value, the
operation will be retried in the background up to that number of times. Having operations
retried in the background can hold up processing other changes since the Identity Data
Sync will only process up to the next 5000 changes while waiting for a retried operation to
complete (one way or the other).

Note: Retry can be controlled by the custom endpoint based on the type
of exception that is thrown on an error. When throwing an exception, the
endpoint code can signal that a change should be 1) aborted, 2) retried a
limited number of times, or 3) retried an unlimited number of times. Some
error, such as endpoint server down, should be retried indefinitely.

Introduction

17

3. If the max-failed-op-background-retries property has been exceeded, then the retry is
logged as a failure and appears in the sync and the sync-failed-ops logs. Note that the sync
log records the results of all operations, while the sync-failed-ops log records only failed
operations.

Configuration Model

The UnboundID Identity Data Sync supports a flexible configuration model that is designed for
easy installation and maintenance based on a comprehensive set of command-line tools and a
graphical console. The Identity Data Sync supports a defined set of configuration parameters
that determine how synchronization takes place between directories or databases. The server can
be configured remotely or locally with all configuration changes taking effect on-the-fly.

The configuration parameters are listed in Table 1 and the configuration model is summa- rized
in Figure 10.

Table 1: UnboundID Identity Data Sync Configuration Components

Component Description

Sync Pipe Defines a single synchronization path between the source and destination topologies. Every
Sync Pipe has one or more Sync Classes that controls how and what is synchronized.
Multiple Sync Pipes can run in a single UnboundID Synchronization Server instance.

Sync Source Defines the directory topology that is the source of the data to be synchronized. When data in
the Sync Source changes, it is synchronized to the Sync Destination topology. A Sync Source
can reference one or more external servers of the appropriate type (UnboundID Identity
Data Store, UnboundID Identity Proxy (3.x), Alcatel-Lucent 8661 Directory Server, Alcatel-
Lucent 8661 Directory Proxy Server (3.x), Oracle/Sun DSEE, Oracle/Sun Directory Server 5.x,
Microsoft Active Directory, Oracle, Microsoft SQL Server).

Sync Destination Defines the topology of directory servers where changes detected at the Sync Source are
applied. A Sync Destination can reference one or more external servers of the appropriate
type (UnboundID Identity Data Store, UnboundID Identity Proxy (3.x), Alcatel-Lucent 8661
Directory Server, Alcatel-Lucent 8661 Directory Proxy Server (3.x), Oracle/Sun DSEE, Oracle/
Sun Directory Server 5.x, Microsoft Active Directory, Oracle, Microsoft SQL Server).

External Server Defines a single server in a topology of identical, replicated servers to be synchronized. For
an LDAP server, you must define the host, port, SSL, bind DN, and bind password. A single
external server configuration object can be referenced by multiple Sync Sources and Sync
Destinations.

Sync Class Defines the operation types (e.g., creates, modifies, or deletes) and attributes that are
synchronized, how attributes and DNs are mapped, and how source and destination entries
are correlated. A source entry is in at most one Sync Class and is determined by a base DN
and LDAP filters. A Sync Class can reference zero or more Attribute Maps and DN Maps,
respectively. Within a Sync Pipe, a Sync Class is defined for each type of entry that needs
to be treated differently. For example, entries that define attribute mappings or entries that
should not be synchronized at all. A Sync Pipe must have at least one Sync Class but can
refer to multiple Sync Class objects.

DN Map Defines mappings for use when destination DNs differ from source DNs. These mappings
allow the use of wild cards for DN transformations. A single wild card ("*") matches a single
RDN component and can be used any number of times. The double wild card ("**") matches
zero or more RDN components and can be used only once. The wild card values can be used
in the to-dn-pattern attribute using {1} and their original index position in the pattern, or
{attr} to match an attribute value. For example:

**,dc=myexample,dc=com->{1},o=example

You can also use regular expressions and attributes from the user entry. For example, the
following mapping constructs a value for the uid attribute, which is the RDN, out of the initials
(first letter of givenname and sn) and the employee ID (the eid attribute).

uid={givenname:/^(.)(.*)/$1/s}{sn:/^(.)(.*)/$1/s}{eid},{2},o=example

Introduction

18

Component Description
The following diagram shows how a nested DIT can be mapped to a flattened structure:

A Sync Class can reference zero or more DN maps. Multiple Sync Classes can share the
same DN Map.

Attribute Map &
Attribute Mappings

Defines a mapping for use when destination attributes differ from source attributes. An
Attribute Map is a collection of Attribute Mappings. There are three types of Attribute
mappings:

• Direct Mapping. Attributes are directly mapped to another attribute: For example,
employeenumber->employeeid

• Constructed Mapping. Destination attribute values are derived from source attribute
values and static text. For example:

{givenname}.{sn}@example.com->mail

• DN Mapping. Attributes are mapped for attributes that store DNs. You can reference
the same DN mappings that map entry DNs. For example, you could have a manager
attribute that has the value uid=jdoe,ou=People,dc=example,dc=com.

A Sync Class can reference multiple Attribute Maps. Multiple Sync Classes can share the
same Attribute Map.

Figure 1-10 shows a summary of the configuration model and how the configuration objects can
be referenced.

Figure 10: Configuration Model Referenced Objects

Sync Control Flow Scenarios

The Identity Data Sync processes changes by fetching the most up-to-date, full entries from both
sides and then compares them. This process flow is called standard synchronization mode. The

Introduction

19

processing flow differs depending on the type of Identity Data Sync change (ADD, MODIFY,
DELETE, MODDN) that is requested. Table 1-2 to 1-6 shows the control flow diagrams for the
sync operations, especially for those cases when a MODIFY or a DELETE operation is dropped.
The sync log records all completed and failed operations.

Table 1-7 shows the control flow for notification synchronization mode, which does not use the
fetch-and-compare processes used in standard mode. For more information, see Configuring
Notification Mode on page 174.

Table 2: Standard Modify

1. Detect change from the change log table on the source.
2. Fetch the entry or table rows from affected tables on the source.
3. Perform any mappings and compute the equivalent destination

entry by constructing an equivalent LDAP entry or equivalent table
row.

4. Fetch the entry or table rows from affected tables on the
destination.

5. Diff the computed destination entry and actual destination entry.
6. Apply the minimal set of changes to the destination to bring it in

sync.

Table 3: Standard Add

1. Detect change from the change log table on the source.
2. Fetch the entry or table rows from affected tables on the source.
3. Perform any mappings and compute the equivalent destination

entry by constructing an equivalent LDAP entry or equivalent table
row.

4. Fetch the entry or table rows from affected tables on the
destination.

5. The entry or table row does not exist on the destination.
6. Create the entry or table row.

Table 4: Standard Delete

1. Detect delete from the change log table on the source.
2. Fetch the entry or table rows from affected tables on the source.
3. Perform any mappings and compute the equivalent destination

entry by constructing an equivalent LDAP entry or equivalent table
row.

4. Fetch the entry or table rows from affected tables on the
destination.

5. The entry or table row exists on the destination.
6. Apply the delete on the destination.

Table 5: Standard Delete After Source Entry Was Re-Added

1. Detect delete from the change log table on the source.

Introduction

20

2. Fetch the entry or table rows from affected tables on the source.
3. The entry or table row exists on the source.
4. Delete request is dropped.

Table 6: Standard Modify After Source Entry is Deleted

1. Detect change from the change log table on the source.
2. Fetch the entry or table rows from affected tables on the source.
3. The entry does not exist.
4. Change request is dropped as the source entry no longer exists.

Table 7: Notification Add, Modify, ModifyDN and Delete

1. Detect change from the change log table on the source.
2. Perform any mappings and compute the equivalent destination

entry by constructing an equivalent LDAP entry or equivalent table
row.

3. Reconstruct changed entries.
4. Push notification with change details to the destination.

A Synchronization Example

Figure 11 shows a synchronization migration example from a Sun Directory Server Enter- prise
Edition (DSEE) topology to the UnboundID Identity Data Store topology with a change in
the DIT structure to a flattened directory structure. The Sync Pipe connects the Sun Directory
Server topology as the Sync Source and the UnboundID Identity Data Store topology as the
Sync Destination. Each endpoint is defined with three external servers in their respective
topology. The sync pipe destination has its base DN set to o=example, which is used when
performing LDAP searches for entries.

Two sync classes are defined: one for Subscribers, and one for Accounts. Each Sync Class uses
a single "Sun DS to UnboundID Attribute Map" that has four attribute mappings defined. All
other attributes are mapped as is.

Introduction

21

Each sync class also defines its own DN Maps. For example, the Accounts Sync Class uses a
DN Map, called UnboundID Account Map, that is used to flatten a hierarchical DIT, so that the
Account entries appear directly under ou=accounts. The DN Map is as follows:

*,**,o=example -> {1},ou=accounts,o=example

With this mapping, if an entry DN has uid=jsmith,ou=people,o=example, then "*"
matches uid=jsmith, "**" matches ou=people, and {1} matches uid=jsmith. Thus,
uid=jsmith,ou=people,o=example gets mapped to uid=jsmith,ou=accounts,o=example. A
similar map is configured for the Subscribers Sync Class.

Figure 11: A Typical Synchronization Topology Configuration

Available Tools Summary

The UnboundID Identity Data Sync supports a flexible configuration framework that stores its
settings in a flat file for a small memory footprint and easy access. Administrators can access
the configuration using the UnboundID® Sync Management Console or using the full suite of
command-line tools in the bin directory for UNIX® or Linux® systems and the bat directory for
Microsoft® Windows® systems. For detailed information and examples of the command-line
utilities, see the UnboundID Identity Data Sync Command Line Tool Reference.

Introduction

22

Figure 12: UnboundID Identity Data Sync Configuration Framework

You can view the Help information for each command-line tool by typing --help with the
command (or type the short forms, -? and -H).

$ bin/resync -H

For those utilities that support additional subcommands (dsconfig, dsframework), you can also
get more detailed subcommand information by typing --help with the subcommand:

$ bin/dsconfig list-log-publishers --help

Summary

The UnboundID Identity Data Sync provides an excellent "total cost versus high perfor- mance"
solution for your synchronization requirements. The server provides point-to-point, bidirectional
synchronization with immediate failover and is ideal for large production environments that
depend on highly available performance. This parallel, high-throughput, 100% Java solution
requires little administrative cost and maintenance. UnboundID has leveraged its years of
directory and synchronization expertise in the Identity Management industry to provide the ideal
solution to meet your data center and enterprise synchronization needs.

Installing the Identity Data Sync

23

Chapter

2 Installing the Identity Data Sync

You can begin the setup process using one of the UnboundID Identity Data Sync's easy-to-use
installation modes. Then, you can configure the Identity Data Sync using the create-sync-
pipe-config tool, the dsconfig command-line tool, or the UnboundID Sync Management
Console if you prefer a graphical interface. Other instructions are provided to install redundant
failover servers.

This chapter presents the various installation options and procedures available to administrators:

Topics:

• Before You Begin
• About the RPM Package
• About the Server Installation Modes
• Installing the UnboundID Identity Data Sync in Interactive Mode
• Installing the UnboundID Identity Data Sync in Non-Interactive Mode
• Installing the Identity Data Sync with a Truststore in Non-Interactive Mode
• Running the Server
• Stopping the Identity Data Sync
• Uninstalling the Server
• Installing the Management Console
• Updating the Identity Data Sync
• Installing a Redundant Failover Server
• Removing a Redundant Server
• Configuring SSL in the Identity Data Sync
• Configuring StartTLS

Installing the Identity Data Sync

24

Before You Begin

To begin the installation process, obtain the latest zip release bundle for the Identity Data Sync
and the Management Console from UnboundID and unpack them in a folder of your choice.

Important:

Each Server Deployment Requires an Execution of Setup - Duplicating
a Server-root is not Supported. The installation of the server does not
write or require any data outside of the server-root directory. After executing
setup, copying the server-root to another location or system, in order to
duplicate the installation, is not a supported method of deployment. The
server-root can be moved to another host or disk location if a host or file
system change is needed.

Tuning Considerations

The general tuning considerations for the Identity Data Sync are as follows:

• Use a 64-bit JVM. The Identity Data Sync and its tools do not have any restrictions on the
heap size. If you use a 32-bit JVM, the physical limit of the virtual address space for the 32-
bit process model is 4 GB. If you require a bigger heap, use a 64-bit JVM.

• Scaling the heap size up may help if there a lot of Sync Pipes.

• The Identity Data Sync is more likely to be CPU-bound than memory-bound. The server has
no caches or large in-memory structures, so that it is not very memory-intensive.

Supported Operating Platforms

Multi-Platform Support. The UnboundID Identity Data Sync is a pure Java application. It is
intended to run within the Java Virtual Machine on any Java 6 or 7 Standard Edition (SE) or
Enterprise Edition (EE) certified platform. For the list of supported platforms and Java versions,
access your Customer Support Center portal or contact your authorized support provider.

Software Requirements: Java

For optimized performance, the UnboundID Identity Data Sync requires Java for 64-bit
architectures. You can view the minimum required Java version on your Customer Support
Center portal or contact your authorized support provider for the latest software versions
supported.

Even if your system already has Java installed, you may want to create a separate Java
installation for use by the UnboundID Identity Data Sync to ensure that updates to the system-

Installing the Identity Data Sync

25

wide Java installation do not inadvertently impact the Identity Data Sync. This setup requires
that the JDK, rather than the JRE, for the 64-bit version, be downloaded.

On Solaris systems, if you want to use the 64-bit version of Java, you need to install both
the 32-bit and 64-bit versions. The 64-bit version of Java on Solaris is not a full stand-alone
installation, but instead relies on a number of files provided by the 32-bit installation. Therefore,
the 32-bit version should be installed first, and then the 64-bit version installed in the same
location with the necessary additional files.

On other platforms (for example, Linux and Microsoft Windows), the 64-bit version of Java
contains a complete installation. If you only want to run the 64-bit version of Java, then it is not
necessary to install the 32-bit JDK. If you want to have both versions installed, then they should
be installed in separate directories, because the files cannot co-exist in the same directory as they
can on Solaris systems.

Install dstat (SUSE Linux)

The dstat utility is used by the collect-support-data tool and can be obtained from the
OpenSuSE project website. The following example shows how to install the dstat utility on
SuSE Enterprise Linux 11 SP2:

1. Login as Root.
2. Add the appropriate repository using the zypper tool.

$ zypper addrepo http://download.opensuse.org/repositories/server:/monitoring/
SLE_11_SP2 Monitoring

3. Install the dstat utility.

$ zypper install dstat

About the RPM Package

UnboundID supports the UnboundID Identity Data Sync release bundle in an RPM Package
Manager (RPM) package for customers who require it. By default, the RPM unpacks the code
at /opt/unboundid/sync, after which you can run the setup command to install the server at that
location.

If the RPM install fails for any reason, you can perform an RPM erase if the RPM database
entry was created and manually remove the target RPM install directory (e.g., “/opt/unboundid/
sync” by default). You can install the package again once the system is ready.

To Install the RPM Package

1. Download the latest RPM distribution of the Identity Data Sync software.

2. Unpack the build using the rpm command with the --install option. By default, the build
is unpacked to /opt/unboundid/sync. If you want to place the build at another location, use
the --prefix option and specify the file path of your choice.

Installing the Identity Data Sync

26

$ rpm --install unboundid-sync-<version>.rpm

3. From /opt/unboundid/sync/UnboundID-Sync, run the setup command to install the server on
the machine.

About the Server Installation Modes

One of the strengths of the UnboundID Identity Data Sync is the ease with which you can
install a server instance using the setup tool. The setup tool allows you to quickly install and
configure a stand-alone Identity Data Sync instance.

To install a server instance, run the setup tool in one of the following modes: interactive
command-line, or non-interactive command-line mode.

• Interactive Command-Line Mode. Interactive command-line mode prompts for
information during the installation process. To run the installation in this mode, use the
setup --cli command.

• Non-Interactive Command-Line Mode. Non-interactive command-line mode is designed
for setup scripts to automate installations or for command-line usage. To run the installation
in this mode, setup must be run with the --no-prompt option as well as the other arguments
required to define the appropriate initial configuration.

All installation and configuration steps should be performed while logged on to the system as
the user or role under which the Identity Data Sync will run.

Installing the UnboundID Identity Data Sync in Interactive
Mode

The setup tool provides an interactive text-based interface to install an Identity Data Sync
instance. You can install the Identity Data Sync by entering the required input as presented by
the prompts.

To Install the Identity Data Sync in Interactive Mode

1. Change to the server root directory.

$ cd UnboundID-Sync

2. Use the setup command to install the Identity Data Sync instance from the server root
directory.

$./setup

Installing the Identity Data Sync

27

Note: If your JAVA_HOME environment variable is set to an older
version of Java, you must explicitly specify the path to the Java
JDK installation during setup. You can either set the JAVA_HOME
environment variable with the Java JDK path or execute the setup
command in a modified Java environment using the env command.

$ env JAVA_HOME=/ds/java ./setup

3. Read the UnboundID End-User License Agreement. If you agree to its terms, type yes to
continue.

4. If you are adding this server to an existing Identity Data Sync topology, type yes. Otherwise,
press Enter to accept the default (no).

5. Enter the fully-qualified host name or IP address of the host machine.

6. Enter the root user DN, or press Enter to accept the default (cn=Directory Manager), and
then type and confirm the root user password.

7. Select how you would like to enable access through HTTP. If you plan to use SCIM, you
must select HTTP with SSL. Refer to the Managing the SCIM Servlet Extension chapter for
more information on SCIM.

How would you like to enable support for HTTP clients?

 1) Do not configure HTTP access at this time
 2) HTTP
 3) HTTP with SSL
 4) Both HTTP and HTTP with SSL

Enter choice [1]:

8. Enter the port to accept connections from HTTPS clients. For this example, press
Enter to accept the default (8443). Note that the HTTPS/SCIM URL will be https://
<hostname>:8443/.

9. Enter the LDAP port number of your Identity Data Sync, or press Enter to accept the default
port, which is 389.

On which port would you like the Identity Data Sync to accept connections from LDAP
 clients? [389]:

10.For enabling LDAPS, enter "yes", and then enter the port to accept connections from the
Identity Data Sync. For this example, press Enter to accept the default LDAPS port.

Do you want to enable SSL? (yes / no) [no]: yes
On which port would you like the Identity Data Sync to accept connections from LDAPS
 clients? [3636]:

11.For StartTLS, press Enter to accept the default (no).

12.For certificate options, select the certificate option for the server. For this example, press
Enter to accept the default (generate self-signed certificate). For actual deployments, you will
likely use an existing certificate.

Installing the Identity Data Sync

28

Certificate server options:

 1) Generate self-signed certificate (recommended for testing purposes only)
 2) Use an existing certificate located on a Java KeyStore (JKS)
 3) Use an existing certificate located on a PKCS#12 keystore
 4) Use an existing certificate on a PKCS#11 token

Enter choice [1]: 2
Java KeyStore (JKS) path: /path/to/keystore
KeyStore PIN:

13.By default, the Identity Data Sync listens on all available network interfaces for client
connections. If this is acceptable, you can skip this step. If you want to limit the client
connections to specific host names or IP addresses, type yes at the prompt, and then, enter
the host name or IP address. You will be prompted again to enter another host name or
IP address. Enter as many as applicable. When you are done, press Enter to continue.
Otherwise, accept the default of no.

By default the server listens on all available network
interfaces for client connections. Would you like to specify
particular addresses on which this server will listen for
client connections? (yes / no)(no):

14.If you want to configure an entry balanced Identity Proxy topology, enter yes. Otherwise,
accept the default of no.

15.Next, type yes if you want to allocate the amount of memory to the JVM heap for maximized
performance. This option should only be selected if the Identity Data Sync is the primary
application and no other processes consume a significant amount of memory.

Do you want to tune the JVM of this system such that
the memory dedicated to the server is maximized? Choosing 'yes'
will allow you to optionally specify the maximum amount of memory
to be allocated to the server and tools (yes / no) [no]:

16.If you choose to tune the JVM, enter the maximum amount of memory you want the Identity
Data Sync to allocate to the server and tool. In this example, the maximum allowed for the
server is 16 gigabytes.

The command line provides a dynamic value range based on the resources of the system on
which the installer is running.

Enter the maximum amount of memory to be allocated to the
server and tools. The format for this value is the same as the
-Xmx JVM option which is a number followed by a unit m or g. For example
'2g' means 2 gigabytes. The value must be between '64m' and '16g' [16g]:

17.To start the server after the configuration has completed, type yes, or press Enter to accept
the default. If you plan to configure additional settings or import data, you can type no to
keep the server in shutdown mode.

Do you want to start the server when the configuration is completed? (yes /no) [yes]:

18.On the Setup Summary page, confirm the configuration, and press Enter to set up the
server. The configuration is recorded in the /server-root/logs/tools/setup.log file.

Setup Summary
=============
Root User DN: cn=Directory Manager

Installing the Identity Data Sync

29

LDAP Listener Port: 389
HTTP Listener Port: disabled
Secure Access: Enable SSL on LDAP Port 3636
 Enable SSL on HTTP Port 8443
 Create a new self-signed certificate
 Generate default trust store
Start Server when the configuration is completed

What would you like to do?
 1) Set up the server with the parameters above
 2) Provide the setup parameters again
 3) Cancel the setup

Enter choice [1]:

19.At this point, you have the following options depending on your specific configuration:

a) Build a configuration if the command-line wizard was not employed.
b) Determine if a bulk import or resync is necessary.
c) Determine if a realtime-sync set-startpoint is necessary.
d) Enable syncing with realtime-sync start.

Installing the UnboundID Identity Data Sync in Non-
Interactive Mode

You can run the setup command in non-interactive mode to automate the installation process
using a script or to run the command directly from the command line. If there is a missing or
incorrect argument, the setup tool fails and aborts the process.

To Install the Identity Data Sync in Non-Interactive Mode

• Use setup with the --no-prompt option. The command uses the default root user DN
(cn=Director Manager) with the specified --rootUserPassword option. You must include
the --acceptLicense option or the setup tool will generate an error message.

$ env JAVA_HOME=/ds/java ./setup --no-prompt \
--rootUserDN "cn=Directory Manager" \
--rootUserPassword "password" --ldapPort 389 \
--acceptLicense

Installing the Identity Data Sync with a Truststore in Non-
Interactive Mode

If you have already configured a trust store, you can also use the setup tool to enable security.
The following example enables SSL security. It also specifies a JKS KeyStore and truststore that
define the server certificate and trusted CA. The passwords for the keystore files are defined in
the corresponding .pin files, where the password is written on the first line of the file. The values
in the .pin files will be copied to the server-root/config directory in the keystore.pin and
truststore.pin files.

Installing the Identity Data Sync

30

Note: The password to the private key within the keystore is expected to be
the same as the password to the keystore. If this is not the case, the private
key password can be defined within the Management Console or dsconfig
by editing the Key Manager Provider standard configuration object.

To Install the Identity Data Sync with a Truststore in Non-Interactive Mode

• Run the setup tool to install an Identity Data Sync with a truststore.

$ env JAVA_HOME=/ds/java ./setup --cli \
 --no-prompt --rootUserDN "cn=Directory Manager" \
 --rootUserPassword "password" \
 --ldapPort 389 --ldapsPort 636 \
 --useJavaKeystore /path/to/devkeystore.jks \
 --keyStorePasswordFile /path/to/devkeystore.pin \
 --certNickName server-cert \
 --useJavaTrustStore /path/to/devtruststore.jks \
 --acceptLicense

In order to update the trust store, the password must be provided

See 'prepare-external-server --help' for general overview

Testing connection to ds-east-01.example.com:1636 Done
Testing 'cn=Proxy User,cn=Root DNs,cn=config' access
Created 'cn=Proxy User,cn=Root DNs,cn=config'

Testing 'cn=Proxy User,cn=Root DNs,cn=config' access Done
Testing 'cn=Proxy User,cn=Root DNs,cn=config' privileges Done
Verifying backend 'dc=example,dc=com' Done

Running the Server

To start the Identity Data Sync, run the bin/start-sync-server command on UNIX or Linux
systems (an analogous command is in the bat folder on Microsoft Windows systems). The
bin/start-sync-server command starts the Identity Data Sync as a background process when no
options are specified. To run the Identity Data Sync as a foreground process, use the bin/start-
sync-server command with the --nodetach option.

To Start the Identity Data Sync

Use bin/start-sync-server to start the server.

$ bin/start-sync-server

To Start the Identity Data Sync with Global Sync Disabled

When restarting the Identity Data Sync, you may want to start the server but not have
synchronization begin right away.You can run the start-sync-server command with the --
globalSyncDisabled option to start the server without synchronization. Note that this option
does not modify the configuration, you must run the realtime-sync tool to restart the global
synchronization.

Installing the Identity Data Sync

31

To Run the Server as a Foreground Process

1. Enter bin/start-sync-server with the --nodetach option to launch the Identity Data Sync as a
foreground process.

$ bin/start-sync-server --nodetach

2. You can stop the Identity Data Sync by pressing CNTRL+C in the terminal window where the
server is running or by running the bin/stop-sync-server command from another window.

To Start the Server at Boot Time

By default, the UnboundID Identity Data Sync does not start automatically when the system
is booted. Instead, you must manually start it with the bin/start-sync-server command. To
configure the Identity Data Sync to start automatically when the system boots, use the create-
rc-script utility to create a run control (RC) script, or create the script manually.

1. Create the startup script.

$ bin/create-rc-script --outputFile UnboundID-Sync.sh --userName ds

2. As a root user, move the generated UnboundID-Sync.sh script into the /etc/init.d
directory and create symlinks to it from the /etc/rc3.d directory (staring with an “S” to
ensure that the server is started) and /etc/rc0.d directory (starting with a “K” to ensure that
the server is stopped).

mv UnboundID-Sync.sh /etc/init.d/
ln -s /etc/init.d/UnboundID-Sync.sh/etc/rc3.d/S50-boot-ds.sh
ln -s /etc/init.d/UnboundID-Sync.sh /etc/rc0.d/K50-boot-ds.sh

Some Linux implementations may not like the “-” in the scripts. If your scripts do not work,
try renaming the scripts without the dashes. You can also try symlinking the S50* file into
the /etc/rc3.d or the /etc/rc0.d directory or both, based on whatever runlevel the server
enters when it starts. Some Linux systems do not even use init.d-style startup scripts,
so depending on whatever flavor of Linux you are using you might have to put the script
somewhere else or use some other mechanism for having it launched at startup.

3. Log out as root, and re-assume the ds role if you are on a Solaris system.

Stopping the Identity Data Sync

The Identity Data Sync provides a simple shutdown script, bin/stop-sync-server, to stop the
server. You can run it manually from the command line or within a script.

If the Identity Data Sync has been configured to use a large amount of memory, then it can
take several seconds for the operating system to fully release the memory and make it available
again. If you try to start the server too quickly after shutting it down, then the server can fail
because the system does not yet have enough free memory. On UNIX systems, run the vmstat

Installing the Identity Data Sync

32

command and watch the values in the "free" column increase until all memory held by the
Identity Data Sync is released back to the system.

You can also set a configuration option that specifies the maximum shutdown time a process
may take.

To Stop the Server

• Use the bin/stop-sync-server tool to shut down the server.

$ bin/stop-sync-server

To Schedule a Server Shutdown

• Use the bin/stop-ds tool with the --stopTime YYYYMMDDhhmmss option to schedule a server
shutdown.

The Identity Data Sync schedules the shutdown and sends a notification to the server.out
log file. The following example sets up a shutdown task that is scheduled to be processed
on June 6, 2012 at 8:45 A.M. CDT. The server uses the UTC time format if the provided
timestamp includes a trailing “Z”, for example, 20120606134500Z. The command also uses
the --stopReason option that writes the reason for the shut down to the logs.

$ bin/stop-ds --stopTime 20120606134500Z --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret \
 --stopReason "Scheduled offline maintenance"

To Restart the Server

You can re-start the Identity Data Sync using the bin/stop-sync-server command with the --
restart or -R option. Running the command is equivalent to shutting down the server, exiting
the JVM session, and then starting up again. Shutting down and restarting the JVM requires a re-
priming of the JVM cache. To avoid destroying and re-creating the JVM, use an in-core restart,
which can be issued over LDAP. The in-core restart will keep the same Java process and avoid
any changes to the JVM options.

• Go to the server root directory. Using an in-core restart (via the loopback interface), run the
bin/stop-sync-server command with the -R or --restart options.

$ bin/stop-sync-server --restart --hostname 127.0.0.1 --port 1389 \
 --bindDN “uid=admin,dc=example,dc=com” --bindPassword secret

To Restart the Identity Data Sync using an Internal Restart

To avoid destroying and re-creating the JVM, use an internal restart, which can be issued over
LDAP. The internal restart will keep the same Java process and avoid any changes to the JVM
options.

• Go the server-root directory. Using a loop back interface, run the stop-sync-server
command with the -R or --restart options.

Installing the Identity Data Sync

33

$ bin/stop-sync-server --restart --hostname 127.0.0.1 --port 389 \
 --bindDN "cn=Directory Manager" --bindPassword secret

Uninstalling the Server

The Identity Data Sync provides an uninstall command-line utility for quick and easy removal
of the code base.

To uninstall a server instance, run the setup tool in one of the following modes: interactive
command-line, or non-interactive command-line mode.

• Interactive Command-Line Mode. Interactive command-line mode is a text-based interface
that prompts the user for input. You can start the command using the bin/uninstall
command with the --cli option. The utility prompts you for input if more data is required.

• Non-Interactive Command-Line Mode. Non-interactive mode suppresses progress
information from being written to standard output during processing, except for fatal errors.
This mode is convenient for scripting and is invoked using the bin/uninstall command
with the --no-prompt option.

Note: For stand-alone installations with a single Identity Data Sync
instance, you can also manually remove the Identity Data Sync by stopping
the server and recursively deleting the directory and subdirectories. For
example:

$ rm -rf /ds/UnboundID-Sync

To Uninstall the Server in Interactive Mode

Interactive mode uses a text-based, command-line interface to help you remove your instance.
If uninstall cannot remove all of the Identity Data Sync files, the uninstall tool generates
a message with a list of the files and directories that must be manually deleted. The uninstall
command must be run as either the root user or the same user (or role) that installed the Identity
Data Sync.

1. From the server root directory, run the uninstall command.

$./uninstall --cli

2. Select the components to be removed. If you want to remove all components, press Enter to
accept the default (remove all). Enter the option to specify the specific components that you
want to remove.

Do you want to remove all components or select the components to remove?

1) Remove all components
2) Select the components to be removed

q) quit

Installing the Identity Data Sync

34

Enter choice [1]:

3. For each type of server component, press Enter to remove them or type no to keep it.

Remove Server Libraries and Administrative Tools? (yes / no) [yes]:
Remove Database Contents? (yes / no) [yes]:
Remove Log Files? (yes / no) [yes]:
Remove Configuration and Schema Files? (yes / no) [yes]:
Remove Backup Files Contained in bak Directory? (yes / no) [yes]:
Remove LDIF Export Files Contained in ldif Directory? (yes / no) [yes]:

4. If the Identity Data Sync is part of a replication topology, type yes to provide your
authentication credentials (Global Administrator ID and password). If you are uninstalling a
stand-alone server, continue to step 7.

5. Type the Global Administrator ID and password to remove the references to this server in
other replicated servers. Then, type or verify the host name or IP address for the server that
you are uninstalling.

6. Next, select how you want to trust the server certificate if you have set up SSL or StartTLS.
For this example, press Enter to accept the default.

How do you want to trust the server certificate for the Identity Data Sync
on server.example.com:389?

1) Automatically trust
2) Use a trust store
3) Manually validate

Enter choice [3]:

7. If your Identity Data Sync is running, the server is shutdown before continuing the uninstall
process. The uninstall processes the removal requests and completes. View the logs for any
remaining files. Manually remove any remaining files or directories, if listed.

To Uninstall the Server in Non-Interactive Mode

The uninstall utility provides a non-interactive method to enter the command with the --
no-prompt option. Another useful argument is the --forceOnError option that continues the
uninstall process when an error is encountered. If an option is incorrectly entered or if a required
option is omitted and the --forceOnError option is not used, the command will fail and abort.

1. From the server root directory, run uninstall tool with the --remove-all option to remove
all of the Identity Data Sync’s libraries. The --quiet option suppresses output information
and is optional. The following command assumes that the Identity Data Sync is stand-alone
and not part of a replication topology.

$./uninstall --cli --remove-all --no-prompt --quiet --forceOnError

2. If any files or directories remain, manually remove them.

Installing the Identity Data Sync

35

To Uninstall Selected Components in Non-Interactive Mode

From the server root directory, run uninstall with the --backup-files option to remove
the Identity Data Sync’s backup files. Use the --help or -H option to view the other options
available to remove specific components.

$./uninstall --cli --backup-files --no-prompt --quiet --forceOnError

To Uninstall the RPM Build Package

1. From the server root directory, remove the RPM package use the --erase option with
the <rpm-id>. The <rpm-id> is unboundid-sync and removes the files at /opt/unboundid/
sync/UnboundID-Sync.

$ rpm --erase unboundid-sync

2. The rpm command specifies if any files or directories require manual deletion. Manually
remove any remaining directories or files using rm -rf <directory>.

Installing the Management Console

The UnboundID Identity Data Sync provides a graphical web application tool, the UnboundID
Management Console. The Management Console provides configuration and schema
management functionality in addition to monitoring and server information. Like the
dsconfig configuration tool, all changes made using the Management Console are recorded
in logs/config-audit.log. In addition, anytime a configuration is made to the system, the
configuration backend is automatically updated and saved as gzip-compressed files. You can
access the changes in the config/archived-configs folder.

The Management Console is a web application that must be deployed in a servlet container that
supports the servlet API 2.5 or later. An installation using Apache Tomcat is described below
for illustration purposes only.

Note: The Management Console supports JBoss 7.1.1 or later. Refer to
the JBoss Compatibility section in the WEB-INF/web.xml file for specific
configuration steps.

To Install the Management Console Out of the Box

1. Download and install the servlet container. For example, download apache-tomcat-
<version>.zip from http://tomcat.apache.org/, and then unzip this file in a location of your
choice.

Installing the Identity Data Sync

36

2. Set the appropriate Apache Tomcat environment variables. The setclasspath.sh and
catalina.sh files are in the tomcat bin directory.

$ echo "BASEDIR=/path/to/tomcat" >> setclasspath.sh
$ echo "CATALINA_HOME=/path/to/tomcat" >> catalina.sh

3. Download the Management Console ZIP file, UnboundID-Sync-web-console-4.7.0.1.zip
and unzip the file on your local host. You should see the following files:

3RD-PARTY-LICENSE.TXT
LICENSE.TXT
README
syncconsole.war

4. Create a syncconsole directory in apache-tomcat-<version>/webapps/syncconsole.
Then, copy the syncconsole.war file to apache-tomcat-<version>/webapps/syncconsole.
If the servlet is running and auto-deploy is enabled, copy the .war file to the /webapps
directory and it will install in the directory.

$ mkdir apache-tomcat-<version>/webapps/syncconsole
$ cp syncconsole.war apache-tomcat-<version>/webapps/syncconsole

5. Go to the apache-tomcat-<version>/webapps/syncconsole directory to extract the
contents of the console. The jar command is included with the JDK.

$ cd apache-tomcat-<version>/webapps/syncconsole
$ jar xvf syncconsole.war

6. Optional. Edit the WEB-INF/web.xml file to point to the correct Identity Data Sync instance.
Change the host and port to match your server. The parameters in the web.xml file appear
between <!-- and --> as comments. Uncomment the parameters you need to use. For
example, you can specify the server or servers that the console uses to authenticate using the
following parameters:

<context-param>
 <param-name>ldap-servers</param-name>
 <param-value>localhost:389</param-value>
</context-param>

Note: If the ldap-servers parameter is left as-is (i.e., undefined by
default), the web console displays a form field for the user to enter the
server host and port.

7. Optional. With the default configuration, Tomcat will time out sessions after 30 minutes of
inactivity, forcing the user to log back in again. This can be changed on a servlet container
wide basis by editing apache-tomcat-<version>/conf/web.xml, and updating the value of
this configuration parameter:

<session-config>
 <session-timeout>120</session-timeout>
</session-config>

The session expires after the specified number of minutes. Changing the value to 120, for
example, will extend the expiration to two hours. Changes to this setting might not take
effect until the servlet container is restarted, so consider changing the value before starting
the server for the first time.

Installing the Identity Data Sync

37

8. Start the Identity Data Sync if it is not already running, and then start the Management
Console using the apache-tomcat-<version>/bin/startup.sh script. Use shutdown.sh to
stop the servlet container. (On Microsoft Windows, use startup.bat and shutdown.bat.)
Note that the JAVA_HOME environment variable must be set to specify the location of the
Java installation to run the server.

$ env JAVA_HOME=/ds/java bin/startup.sh
Using CATALINA_BASE: /apache-tomcat-<version>
Using CATALINA_HOME: /apache-tomcat-<version>
Using CATALINA_TMPDIR: /apache-tomcat-<version>/temp
Using JRE_HOME: /ds/java

9. Open a browser to http://hostname:8080/syncconsole. By default, Tomcat listens on port
8080 for HTTP requests.

Note: If you re-start the Identity Data Sync, you must also log out of the
current Management Console session and then log back in to start a new
console session.

To Log into the Management Console

1. Go to the server root directory.

$ cd UnboundID-Sync

2. Start the Identity Data Sync.

$ bin/start-sync-server

3. Start the Apache Tomcat application server.

$ /apache-tomcat-<version>/bin/startup.sh

4. Open a browser to http://hostname:8080/syncconsole/.

5. Type the root user DN (or any authorized administrator user name) and password, and then
click Login.

Installing the Identity Data Sync

38

6. On the Management Console, click Configuration.

7. View the Configuration menu. By default, the console displays the Basic object type
properties. You can change the complexity level of the object types using the Object Types
drop-down list.

To Uninstall the Management Console

1. Close the Management Console, and shut down the servlet container. (On Microsoft
Windows, use shutdown.bat).

$ apache-tomcat-<version>/bin/shutdown.sh

2. Remove the webapps/syncconsole directory.

$ rm -rf webapps/syncconsole

3. Restart the servlet container instance if necessary. Alternatively, if no other applications are
installed in the servlet instance, then the entire servlet installation can be removed by deleting
the servlet container directory.

Installing the Identity Data Sync

39

To Upgrade the Management Console

1. Shut down the console and servlet container.

2. In the current deployment of the Management Console, move the webapps/syncconsole/
WEB-INF/web.xml file to another location.

3. Download and deploy the latest version for the Management Console. Follow steps 2–5
outlined in the section "To Install the Console Out of the Box".

4. Assuming you had not renamed the .war file when you originally deployed the Management
Console, run a diff between the previous and newer version of the web.xml file to determine
any changes that should be applied to the new web.xml file. Make those changes to
the new file, and then replace the newly deployed Management Console’s web.xml to
webapps/syncconsole/WEB-INF/web.xml.

5. Start the servlet container.

Updating the Identity Data Sync

UnboundID issues new software builds periodically and distributes the software package in zip
format. Administrators can use the Identity Proxy’s update utility to update the current server
code with the latest features and bug fixes. To update the Identity Proxy to a newer version,
download the build package, and then unzip the new server package on the same host as the
server that you wish to update. Before upgrading a server, you should ensure that it is capable of
starting without severe or fatal errors.

During an update process, the updater checks a manifest file that contains a MD5 checksum of
each file in its original state when installed from zip. Next, it compares the checksum of the new
server files to that of the old server. Any files that have different checksums will be updated. For
files that predates the manifest file generation, the file is backed up and replaced. The updater
also logs all file changes in the history directory to tell what files have been changed.

For schema updates, the update tool preserves any custom schema definitions (99-user.ldif).
For any default schema element changes, if any, the updater will warn the user about this
condition and then create a patch schema file and copy it into the server’s schema directory. For
configuration files, the update tool preserves the configuration file, config.ldif, unless new
configuration options must be added to the Identity Proxy.

Once the updater finishes its processing, it checks if the newly updated server starts without any
fatal errors. If an error occurs during the update process, the update tool reverts the server root
instance to the server state prior to the update.

The update also upgrades the Password Synchronization Agent plug-in to its latests version
automatically. Any software updates to the PSA plug-inwill be included with the new Identity
Data Sync zip file.

Installing the Identity Data Sync

40

To Update the Identity Proxy

Assume that an existing version of the Identity Proxy is stored at UnboundID-Sync-old, which
you want to update.

1. Make sure you have complete, readable backup of the existing system before upgrading the
Identity Proxy build. Also, make sure you have a clear backout plan and schedule.

2. Download the latest version of the UnboundID Identity Data Sync software and unzip the
file. For this example, let’s assume the new server is located in the UnboundID-Sync-new
directory.

3. Check the version number of the newly downloaded Identity Proxy instance using the --
version option on any command-line utility. For example, you should see the latest revision
number.

$ UnboundID-Sync-new/setup --version UnboundID Identity Data Sync 4.7.0.1
Build 2011043200609Z Revision 9235

4. Use the update tool of the newly unzipped build to update the Identity Proxy code. Make
sure to specify the Identity Proxy instance that you are upgrading with the --serverRoot
option. The Identity Proxy must be stopped for this update to be applied.

$ UnboundID-Sync-new/update --serverRoot UnboundID-Sync-old

Note: The UnboundID Identity Data Sync provides a web console called
the Management Console, to configure and monitor the server. If you
update the Identity Proxy version, you should also update the Management
Console.

5. View the log file to see which files were changed. The log file is located in the <server-
root>/history directory. For example, the file will be labelled with the Identity Proxy
version number and revision.

$ view <server-root>/history/1272307020420-4.7.0.0.9235/update.log

To Upgrade the RPM Package

If the Linux RPM package was used to install the Identity Data Store, the following should be
performed to upgrade the server.

• Assume that the new RPM package, unboundid-sync-<new-version>.rpm, is placed in the
server root directory. From the server root directory, run the rpm command with the --
upgrade option.

$ rpm --upgrade unboundid-sync-<new-version>.rpm

The RPM package does not support a revert option once the build is upgraded.

Installing the Identity Data Sync

41

The upgrade history is written to /opt/unboundid/sync/UnboundID-Sync/history/
<timestamp>/update.log.

Reverting an Update

Once the Identity Proxy has been updated, you can revert to the most recent version (one level
back) using the revert-update tool. The revert-update tool accesses a log of file actions
taken by the updater to put the filesystem back to its prior state. If you have run multiple
updates, you can run the revert-update tool multiple times to revert to each prior update
sequentially. You can only revert back one level. For example, if you have run the update twice
since first installing the Identity Proxy, you can run the revert-update command to revert to its
previous state, then run the revert-update command again to return to its original state.

Note: The UnboundID Identity Data Sync will be stopped during the
revert-update process.

To Revert to the Most Recent Server Version

Use revert-update in the server root directory revert back to the most recent version of the
server.

$ UnboundID-Sync-old/revert-update

Installing a Redundant Failover Server

The UnboundID Identity Data Sync supports multiple redundant failover servers that
automatically become active when the main Identity Data Sync is down for any reason. Only
one Identity Data Sync instance is active at any time, but multiple redundant servers can be
present in the topology in a configurable prioritized order.

Before you install a redundant failover server, you must have already installed and configured
an Identity Data Sync instance. When installing the redundant server, the installer will copy
the first Identity Data Sync’s configuration, including external server setup, sync pipes, sync
classes, DN and attribute maps.

Note: It is critical that the Identity Data Syncs (primary and secondary) have
their configuration remain identical. Both servers should be registered to the
"all servers" group. All dsconfig changes need to be applied to the server
group "all servers".

Installing the Identity Data Sync

42

To Install a Redundant Server

Before you install the redundant failover server, you should already have an existing Identity
Data Sync instance configured and running.

1. Unpack the UnboundID Identity Data Sync zip build. Make sure you name the unpacked
directory to something other than the first server instance directory.

$ unzip UnboundID-Sync-<version>.zip -d sync2

2. Go to the server root directory if you are not already there.

3. Follow steps 2–12 in Installing the UnboundID Identity Data Sync, except in step 4, type yes
to add the server to an existing topology. If you are using the setup tool in non-interactive
mode, use the following command:

$./setup --localHostName sync2.example.com --ldapPort 8389 \
 --masterHostName sync1.example.com --masterPort 7389 \
 --masterUseNoSecurity --acceptLicense --rootUserPassword password \
 --no-prompt

The secondary server is now ready to take over as a primary server in the event of a failover.
As a result, no realtime-sync invocations are needed for this server.

4. Verify the configuration by using the bin/status tool. Note the Priority Index associated
with each Identity Data Sync instance. The Identity Data Sync with the lowest priority-index
number has the highest priority.

$ bin/status --bindPassword secret

 ...(status output)...

 --- Sync Topology ---
 Host:Port : Status : Priority
 -------------------------------------:-------------:---------------
 sync1.example.com:389 (this server) : Active : 1
 sync2.example.com:389 : Unavailable : 2

5. Obtain the name of a particular Identity Data Sync, run the dsconfig tool with the list-
external-servers option.

$ bin/dsconfig list-external-servers

6. To change the Priority Index of the Identity Data Sync, use bin/dsconfig.

$ bin/dsconfig set-external-server-prop \
 --server-name intra-sync-sync2.example.com:389 \
 --set sync-server-priority-index:1

Note: To change the priority index interactively, use bin/dsconfig.
First, enable the Advanced Objects menu. Next, on the UnboundID
Identity Data Sync configuration console main menu, select External
Server, select View and Edit, then select the Identity Data Sync instance.
Finally, on the Identity Data Sync External Server menu, select the sync-
server-priority-index property and change it to a value of your choice.

Installing the Identity Data Sync

43

Remember, the lower priority-index number has the higher priority (e.g.,
"1" has the highest priority).

Removing a Redundant Server

Administrators can remove a redundant server from your synchronization topology using the
uninstall command on the Identity Data Sync that you plan to remove from the topology. The
uninstall command internally removes all references to the server on the other peer servers in
the topology.

In the rare case that you removed a server from the topology and no longer have access to it, for
example, because it got deleted from the filesystem, and the other servers in the topology still
have references to it, you can run the remove-defunct-sync-server tool on each machine to
remove the reference to the original server.

To Remove a Redundant Server

• Run the uninstall command on the server that you want to remove from the topology.

$ <server-root>/uninstall

Configuring SSL in the Identity Data Sync

The UnboundID Identity Data Sync provides a means to enable SSL or StartTLS at installation
time, using either an existing certificate or by automatically generating a self-signed certificate.
However, if SSL was not configured at install time, then it may be enabled at any time using the
following process. These instructions assume that the certificate is available in a JKS-formatted
keystore, but a similar process may be used for certificates available through other mechanisms
like a PKCS#12 file or a PKCS#11 token.

To Configure SSL in the Identity Data Sync

1. Change to the server root directory.

$ cd /ds/UnboundID-Sync

2. Create a text file containing the password for the certificate keystore. It is recommended that
file permissions (or filesystem ACLs) be configured so that the file is only readable by the
Identity Data Sync user.

$ echo ’changeit’ > config/keystore.pin
$ chmod 0400 config/keystore.pin

3. Run the dsconfig command with no arguments in order to launch the dsconfig tool in
interactive mode. Enter the connection parameters when prompted.

Installing the Identity Data Sync

44

4. On the Identity Data Sync Configuration Console main menu, enter o (lowercase letter
"o") to change the complexity of the configuration objects menu. Select the option to show
objects at the Standard menu.

5. On the Identity Data Sync Configuration Console main menu, enter the number
corresponding to the Key Manager Provider.

6. On the Key Manager Provider management menu, select the option to view and edit an
existing key manager.

7. On the Key Manager Provider menu, enter the option for JKS. You will see other options,
like Null, PKCS11, and PKCS12.

8. Make any necessary changes to the JKS key manager provider for the keystore that you will
be using. The enabled property must have a value of TRUE, the key-store-file property
must reflect the path to the keystore file containing the server certificate, and the key-store-
pin-file property should reflect the path to a file containing the password to use to access
the keystore contents.

9. On the Enabled Property menu, enter the option to change the value to TRUE.

10.On the File Based Key Manager Provider, type f to save and apply the changes.

11.Return to the dsconfig main menu, and enter the number corresponding to Trust Manager
Provider.

12.On the Trust Manager Provider management menu, enter the option to view and edit an
existing trust manager provider.

13.On the Trust Manager Provider menu, enter the option for JKS. You will see other options
for Blind Trust (accepts any certificate) and PKCS12 reads information about trusted
certificates from a PKCS#12 file.

14.Ensure that the JKS trust manager provider is enabled and that the trust-store-file
property has a value that reflects the path to the truststore file to consult when deciding
whether to trust any presented certificates.

15.On the File Based Trust Manager Provider menu, type f to save and apply the changes.

16.Return to the dsconfig main menu, enter the number corresponding to Connection Handler.

17.On the Connection Handler management menu, enter the option to view and edit and
existing connection handler.

18.On the Connection Handler menu, enter the option for LDAPS Connection Handler. You
will see other options for JMX Connection Handler and LDAP Connection Handler.

19.On the LDAP Connection Handler menu, ensure that the connection handler has an
appropriate configuration for use. The enabled property should have a value of TRUE, the
listen-port property should reflect the port on which to listen for SSL-based connections,
and the ssl-cert-nickname property should reflect the alias for the target certificate in

Installing the Identity Data Sync

45

the selected keystore. Finally, when completing the changes, type f to save and apply the
changes.

20.Verify that the server is properly configured to accept SSL-based client connections using an
LDAP-based tool like ldapsearch. For example:

$ bin/ldapsearch --port 1636 --useSSL --baseDN "" \
 --searchScope base "(objectclass=*)"

The server is using the following certificate:
 Subject DN: CN=179.13.201.1, OU=Identity Data Sync
 Certificate, O=Example Company, L=Austin, ST=Texas,
 C=US Issuer DN: EMAILADDRESS=whatever@example.com,
 CN=Cert Auth, OU=My Certificate Authority, O=Example
 Company, L=Austin, ST=Texas, C=US
 Validity: Fri Sep 25 15:21:10 CDT 2011 through Sat Sep 25 15:21:10 CDT 2012
Do you wish to trust this certificate and continue connecting to the server?
Please enter 'yes' or 'no':yes

21.If desired, you may disable the LDAP connection handler so only the LDAPS connection
handler will be enabled and the server will only accept SSL-based connections.

Configuring StartTLS

The StartTLS extended operation is used to initiate a TLS-secured communication channel over
a clear-text connection, such as an insecure LDAP connection. The main advantage of StartTLS
is that it provides a way to use a single connection handler capable of both secure and insecure
communication rather than requiring a dedicated connection handler for secure communication.

To Configure StartTLS

1. Use dsconfig to configure the Connection Handler to allow StartTLS. The allow-start-
tls property cannot be set if SSL is enabled. The connection handler must also be configured
with a key manager provider and a trust manager provider.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "LDAP Connection Handler" \
 --set allow-start-tls:true \
 --set key-manager-provider:JKS \
 --set trust-manager-provider:JKS

2. Use ldapsearch to test StartTLS.

$ bin/ldapsearch -p 1389 --useStartTLS -b "" -s base "(objectclass=*)"

The server is using the following certificate:
 Subject DN: CN=Server Cert, OU=Identity Data Sync Certificate,
 O=Example Company, L=Austin, ST=Texas, C=US
 Issuer DN: EMAILADDRESS=whatever@example.com, CN=Cert Auth,
 OU=My Certificate Authority, O=Example Company, L=Austin, ST=Texas, C=US
 Validity: Thu Oct 29 10:29:59 CDT 2011 through Fri Oct 29 10:29:59 CDT 2012

 Do you wish to trust this certificate and continue connecting to the server?
 Please enter 'yes' or 'no':yes

dn:
objectClass: ds-root-dse
objectClass: top

Installing the Identity Data Sync

46

startupUUID: 6fa8f196-d112-40b4-b8d8-93d6d44d59ea

Configuring the Identity Data Sync

47

Chapter

3 Configuring the Identity Data Sync

The UnboundID Identity Data Sync provides a comprehensive suite of command-line tools
and a graphical Sync Management Console that accesses the underlying Identity Data Sync
configuration framework. The configuration is stored as a flat file (LDIF format) in the
cn=config branch. Administrators can use the server’s tools to configure a single server
instance or server groups remotely or locally. All configuration changes to the server and their
equivalent reversion commands are recorded in the config-audit.log.

Before setting up the Identity Data Sync, review the section Configuration Model to read about
the important components of the Identity Data Sync.

This chapter presents the following topics:

Topics:

• Pre-Deployment Checklist
• Creating Administrators
• About the Configuration Tools
• About the Sync User Account
• Configuring the Synchronzation Server in Standard Mode
• Configuring the Identity Data Sync Using the Management Console
• About dsconfig Configuration Tool
• Configuring the Identity Data Sync Using dsconfig
• Generating a Summary of Configuration Components
• Preparing the Identity Data Sync for External Server Communication
• Preparing External Servers: If the Admin Does Not Have Root Access on DSEE

External Servers
• Using Resync on the Identity Data Sync
• Controlling Real Time Synchronization
• Configuring Attribute Maps
• Configuring the Directory Server Backend for Synchronizing Deletes
• Configuring DN Maps
• Configuring Fractional Replication
• Managing Failover Behavior
• About the Server SDK

Configuring the Identity Data Sync

48

Pre-Deployment Checklist

Prior to any deployment, you must determine the configuration parameters necessary for your
Synchronization topology. Answer the following questions and record them prior to configuring
your Identity Data Sync instance(s).

External Servers

External Server Type. What type of external servers are you using in the Synchronization
topology: UnboundID Identity Data Store, UnboundID Identity Proxy (3.x), Sun Directory
Server (5.x and above), Alcatel-Lucent 8661 Directory Server, Alcatel-Lucent 8661 Directory
Proxy Server (3.x), Sun Directory Server Enterprise Edition (DSEE 6.x, 7.x), Microsoft Active
Directory, Oracle (10g, 11g), Microsoft SQL Server (2005, 2008).

LDAP Connection Settings. What is the host, port, bind DN, and bind password for each
external server instance(s) that you want included in the Synchronization topology?

Security and Authentication Settings. If the external server instance uses a secure connection,
does it use SSL or StartTLS? What authentication method does the external server use: none,
simple, external (i.e., SASL mechanisms)? If you are synchronizing to or from an Active
Directory system, you must establish an SSL or StartTLS connection to the Synchronization
Server.

Sync Pipes

A Sync Pipe defines a single synchronization path between the Source and Destination targets.
You will need one Sync Pipe for each point-to-point synchronization path that you define for a
topology of source servers to a topology of destination servers. Answer the following questions.

Sync Source. Which external server is the Sync Source for the Synchronization topology?
You can define a priority order if more than one external server is defined as a Sync Source for
failover purposes.

Sync Destination. Which external server is the Sync Destination for the Synchronization
topology? You can define a priority order if more than one external server is defined as a Sync
Destination for failover purposes.

Sync Classes

For each Sync Pipe defined, you must define one or more Sync Classes. A Sync Class defines
how attributes and DNs are mapped and how Source and Destination entries are correlated.
Questions required to define a Sync Class are as follows:

Evaluation Ordering. If you will be defining more than one Sync Class, what is the evaluation
order of each Sync Class?

Configuring the Identity Data Sync

49

Sync Classes are evaluated according to the evaluation-order-index property and the criteria
used to identify the first matching Sync Class. When there is an overlap between criteria used to
identify a Sync Class, the Sync Class with the most specific criteria will be used first.

Base DNs. Are entries in the Sync Class only under specific base DNs?

Include Filters. What are the search filters to be used to search for entries in the Sync Source?

Synchronized Entry Operations. Which types of operations on entries should be synchronized:
creates, modifications, and/or deletes?

DNs. What are the differences between the DNs from the Sync Source topology to the Sync
Destination topology? Are there structural differences in terms of the Directory Information
Tree (DIT) between the Sync Source and the Sync Destination? For example, does the
Sync Source use a Nested DIT versus a Flattened DIT? Does the Sync Destination use a
corresponding DIT as the Sync Source (i.e., a Nested DIT versus a Flattened DIT)?

Destination Correlation Attributes. Correlation attributes are important configuration
parameters that are used to associate a source entry to a destination entry during the
synchronization process. During the Sync configuration setup, administrators define one or
more comma-separated lists of destination correlation attributes that are used to search for the
corresponding source entry. The Identity Data Sync first maps all attributes in a detected change
from source to destination attributes using the attribute maps defined in the Sync Class. Then, it
correlates the source entry to the destination entry.

The correlation attributes are flexible enough so that you can try several destination searches
with different combinations of attributes until it finds the single entry that it matches. For LDAP
server endpoints, you can use the distinguished name (DN) to correlate entries eventhough
DN is not technically an attribute of an entry. For instance, you could specify the attribute lists
"DN,uid", "uid,employeeNumber" and "cn,employeeNumber" to correlate entries in LDAP
deployments. The Identity Data Sync will search for a corresponding entry that has the same dn
and uid values. If the search fails, it then searches for uid and employeeNumber. Again if the
search fails, it searches for cn and employeeNumber. If none of these searches are successful, the
synchronization change would be aborted and a message logged.

To prevent incorrect matches, the most restrictive attribute lists—those that will never match
the wrong entry—should be first in the list, followed by less restrictive attribute lists, which will
only be used when the earlier lists fail. For LDAP-to-LDAP deployments, we recommend that
DN not be used as a sole correlation attribute. It is best to use DN with a combination of other
unique identifiers in the entry (e.g., dn and uid) to guarantee correlation. For other non-LDAP
deployments, administrators need to determine the attributes that can be synchronized across the
network.

An important question related to destination correlation attributes is: Which set of Sync
Destination attributes in an entry should be used to correlate an entry in the Sync Source? In
other words, how does the Identity Data Sync find the destination entry that corresponds to the
source entry that needs to be synchronized?

Attributes. What are the differences between the attributes from the Sync Source to the Sync
Destination? Some questions related to attributes are as follows:

Configuring the Identity Data Sync

50

• Automatically Mapped Source Attributes. Are there attributes that can be automatically
synchronized with the same name at the Sync Source to Sync Destination? For example, can
you set direct mappings for cn, uid, telephoneNumber, or for all attributes?

• Non-Auto Mapped Source Attributes. Are there some attributes that should not be
automatically mapped from the Sync Source to Sync Destination? For example, the
Sync Source may have an attribute, employee, while the Sync Destination may have a
corresponding attribute, employeeNumber. If an attribute is not automatically mapped, then
an Attribute Mapping must be provided if it is to be synchronized.

• Attribute Mappings. How are attributes mapped from the Sync Source to the Sync
Destination? (For example, are they mapped directly, mapped based on attribute values, or
mapped based on attributes that store DN values?)

Creating Administrators

The UnboundID Sync Management Console does not persistently store any credentials for
authenticating to the Identity Data Sync but uses the credentials provided by the user when
logging in. When managing multiple Identity Data Sync instances, the provided credentials must
be valid for each instance. Therefore, assuming you have multiple synchronization servers—
the main server and a failover—if you change an admin user on the main synchronization server
instance, you must make the same change on the other server instance. Likewise, if you have
multiple Identity Data Syncs, you must make any changes manually at each server instance.

To Create an Administrator

1. To log into the console, you can either use a root user DN or create a new administrator user
ID. The dsframework command can be used to create a user ID, for example:

$ bin/dsframework create-admin-user --hostname server1.example.com \
 --port 1389 --bindDN "cn=Directory Manager" \
 --bindPassword secret --userID someAdmin --set password:secret

2. Once you have set up a new admin account, the administrator can log in to the Sync
Management Console using the user ID short form "someAdmin" or the full DN,
"cn=someAdmin,cn=Administrators,cn=Admin Data".

About the Configuration Tools

The UnboundID Identity Data Sync configuration can be accessed and modified in the following
ways:

• Using the Management Console. The UnboundID Identity Data Sync provides a web-
based console for graphical server management and monitoring. The console provides
equivalent functionality as the dsconfig command for viewing or editing configurations. All
configuration changes using this tool are recorded in logs/config-audit.log, which also
has the equivalent reversion commands should you need to back out of a configuration.

Configuring the Identity Data Sync

51

• Synchronization Command-Line Tools. The UnboundID Identity Data Sync provides
three command-line tools, create-sync-pipe-config, resync, and realtime-sync tools
to quickly configure an Identity Data Sync topology. The create-sync-pipe-config tool
is a configuration wizard that guides you through an Identity Data Sync configuration,
records the configuration in a batch file (<server-root>/sync-pipe-cfg.txt), and allows
you to apply the batch file to a local Identity Data Sync configuration. The batch file can
be re-applied to other servers. The resync tool is used to verify that everything is in-sync
after synchronization has started or used in bulk synchronization mode to initially populate
a target directory or database. The realtime-sync tool is used to start synchronization
immediately, at a specified point at a change log event, or at a specified time duration ago.

• Using the dsconfig Command-Line Tool. The dsconfig tool is a text-based menu-
driven interface to the underlying configuration. The tool runs the configuration using three
operational modes: interactive command-line mode, non-interactive command-line mode,
and batch mode. All configuration changes made using this tool are recorded in logs/
config-audit.log.

• If you are configuring a Sync Pipe from scratch, we recommend using the create-sync-
pipe-config tool as it will lead you through the steps necessary to define each Sync Pipe
component.

About the Sync User Account

During the configuration process, the Identity Data Sync sets up a Sync User Account DN on
each external server. The account (by default, cn=Sync User) is used exclusively by the Identity
Data Sync to communicate with the endpoint external servers. The entry is important in that it
contains the credentials (DN and password) used by the Identity Data Sync to access the source
and target servers. The Sync User account resides in different entries depending on the targeted
system:

• For UnboundID Identity Data Store, UnboundID Identity Proxy (3.x), Alcatel-Lucent 8661
Directory Server, Alcatel-Lucent 8661 Directory Proxy Server (3.x), the Sync User Account
resides in the configuration entry (e.g., cn=Sync User, cn=Root DNs,cn=config).

• For Sun Directory Server and Sun DSEE, the Sync User account resides under the base DN
in the userRoot backend (e.g., cn=Sync User,dc=example,dc=com). We also recommend
that the Sync User account NOT be in the cn=config branch for Sun Directory Server
and DSEE machines. If it resides there, delete it, and then add it to the normal backend
(dc=example,dc=com) and update the configuration in the Identity Data Sync.

• For Microsoft Active Directory servers, the Sync User account resides in the Users container
(e.g., cn=Sync User,cn=Users,DC=adsync,DC=unboundid,DC=com).

• For Oracle and Microsoft SQL Servers, the Sync User account is a login account (SyncUser)
with the sufficient privileges (for example, Resource and Connect) to access the tables to be
synchronized.

Although in most cases, modifications to this account will never take place, you can ensure
that the entry never gets synchronized by setting up an optional Sync Class if your Sync User
account resides in the userRoot backend (Sun Directory Server or Sun DSEE) or Users container
(Microsoft Active Directory). For example, you can configure this Sync Class to have all

Configuring the Identity Data Sync

52

CREATE, MODIFY, and DELETE operations set to false, so that the Sync User Account never
gets synchronized with the other user entries.

Configuring the Synchronzation Server in Standard Mode

The general process to configure an Identity Data Sync (standard mode) is to first define
the external servers in the topology and then define the Sync Pipe(s) and its associated Sync
Classes. You can use the create-sync-pipe-config tool to set up your Sync Pipes and Sync
Classes. For bidirectional deployments, you will need to configure two Sync Pipes, one for each
directional path (Sun DS 5.2 to UnboundID DS and vice-versa).

In the following example, we will also set up a simple attribute map that maps an email attribute
on the first endpoint servers to the mail attribute on the second endpoint servers. In typical cases
like these, you need to set up a specific attribute mapping from email to mail for the Sun to
UnboundID Sync Pipe and also have both of these source attributes be excluded for automatic
mapping. If you do not exclude the source attribute, the Identity Data Sync will attempt to create
an email attribute on the second endpoint topology, which could fail if the email attribute is not
present in the destination server’s schema. Conversely, you have to create a specific mail to
email mapping and auto-exclude the source attribute on the UnboundID to Sun Sync Pipe going
the other direction.

For this example, you will define two sync classes: one to handle the customized email to mail
attribute mapping; the other, to handle all other cases (called the default sync class). Next, you
will use the dsconfig command to create the specific attribute mapping. After that, you can
run the resync command to test the mappings. Finally, you can start synchronization using the
realtime-sync command.

Assumptions

The following example shows a bidirectional synchronization deployment in standard mode
between a Sun Directory Server 5.x topology and an UnboundID Identity Data Store topology.
The example assumes that you have two replicated topologies configured: the first endpoint
topology consists of two Sun Directory Server LDAP servers (version 5.2 patch 4): the main
server and one failover. Both Sun Directory Servers 5.x have their Retro Change logs enabled
and contains the full DIT that will be synchronized to the second endpoint. The second endpoint
topology consists of two UnboundID Identity Data Stores (version 3.x): the main server and
one failover. Both UnboundID Identity Data Stores have their change logs enabled and contain
entries similar to the first endpoint servers, except that it uses a mail attribute, instead of an
email attribute.

Note: For UnboundID Identity Data Store and Alcatel-Lucent 8661
Directory Server systems, you must configure the changelog-deleted-
entry-include-attribute property on the change log backend. This
property allows for the proper synchronization of DELETE operations that
occur with this endpoint server. For more information, see Configuring the
Identity Data Store Backend for Synchronizing Deletes.

Configuring the Identity Data Sync

53

Configuring the Synchronization using create-sync-pipe-config

For all configurations, we strongly recommend that you use the create-sync-pipe-config
command-line wizard to guide you through a Sync Pipe configuration. Once the configuration is
completed, you can fine-tune the settings using the dsconfig tool.

To Configure the Identity Data Sync using create-sync-pipe-config

1. Start the Identity Data Sync.

$ <server-root>/bin/start-sync-server

2. From the bin directory, use the create-sync-pipe-config tool to set up the
Synchronization sync pipes. The tool will start the command-line wizard and walk you
through the steps to configure your Sync Pipes.

$ bin/create-sync-pipe-config

3. On the Initial Synchronization Configuration Tool menu, press Enter (yes) to continue the
configuration.

4. On the Synchronization Mode menu, press Enter to select Standard mode. A Standard Mode
Sync Pipe will fetch the full entries from both the source and destination and compare them
to produce the minimal set of changes to bring the destination into sync. A Notification
Mode Sync Pipe will skip the fetch and compare phases of processing and simply notify
the destination that a change has happened and provide it with the details of the change.
Notifications are currently only supported on UnboundID and Alcatel-Lucent 8661 Directory
or Proxy Servers 3.0.3 or later.

5. On the Synchronization Directory menu, select if the Synchronization topology will be one-
way (1) or bidirectional (2). In this example, enter the number for bidirectional. If you typed
the option for one-way synchronization, you will next see the Source Endpoint Type menu.
For this example, because you entered the option for bidirectional synchronization, you will
next see the First Endpoint Type menu.

6. On the First Endpoint Type menu, select the directory or database server for the first
endpoint. The available options are seen below. In this example, type the number
corresponding to the Directory Server.

>>>> First Endpoint Type
Enter the type of data store for the source endpoint:
 1) UnboundID Directory Server
 2) UnboundID Proxy Server
 3) Alcatel-Lucent Directory Server
 4) Alcatel-Lucent Proxy Server
 5) Sun Directory Server
 6) Microsoft Active Directory
 7) Microsoft SQL Server
 8) Oracle Database
 9) Custom JDBC

 b) back
 q) quit

Configuring the Identity Data Sync

54

Enter choice [1]: 5

7. On the First Endpoint Name menu, type a name for the Endpoint Server, or accept the default
("Sun Directory Server"). In this example, type "Sun DS 5.2".

8. On the Base DNs menu, type the base DN on the first endpoint topology where the entries
will be searched. In this example, accept the default (dc=example,dc=com). If you have other
base DNs, type the DN or press Enter when finished. If you enter another base DN, make
sure that it does not overlap with the other base DN(s).

9. On the Server Security menu, select the server security type. The available options are None
(LDAP), SSL, and StartTLS. In this example, press Enter to accept the default (None).

10.On the First Endpoint Servers menu, type the host name and listener port number for the First
Endpoint Server, or accept the default (port 389). Make sure that the endpoint servers are
online and running. The server will perform a test connection to the server. If the server is
unresponsive, you will be asked to retry contacting the server, discard the server, or keep the
server.

11.After entering the first server, enter the hostname and listener ports of the additional servers
in the endpoint topology. The server will also perform a test connection to this server. If the
server is unresponsive, you will be asked to retry contacting the server, discard the server,
or keep the server. At this stage, you can enter more servers, remove the existing servers, or
press Enter when you are finished entering the servers.

12.Next, you will be prompted to enter the Sync User account DN for the endpoint servers.
This step will ask you to enter a Sync User Account DN (cn=Sync User,cn=Root
DNs,cn=config) and password.

13.At this point, you must set up the servers in the Second Endpoint topology. Repeat steps 6–
12 to configure the second endpoint server. Select the option for UnboundID, and then set up
the two external endpoint servers and Sync User Account DN.

Prepare the External Servers

1. After you have configured the first and second endpoint topologies, the Identity Data Sync
will prompt you to "prepare" each external server by testing the connection to each server.
This step entails determining if each external server has the necessary privileges (e.g., root
privileges are required) to communicate and to transfer data during synchronization. If an
error occurs, the Identity Data Sync will prompt you to re-configure the specific connection
parameter. Using the Sync User Account DN, the server verifies the base DNs, and enables
and checks the change log on the external server. If the maximum age of the change log has
not been set, you will also be prompted for a value between two hours or seven days (the
recommended maximum age is 2 days).

2. Repeat step 1 to prepare the other external servers.

Note: If your endpoint servers have no base entries or data, the command
cannot create the cn=Sync User,cn=Root DNs,cn=config account. In

Configuring the Identity Data Sync

55

this specific case, you can select 2 (Abandon the Operation) to continue,
then create the base entry on the destination servers.

Configure the Sync Pipes and its Sync Classes

1. Continuing the create-sync-pipe-config session, you will be prompted to create a name
for the Sync Pipe on the Sync Pipe Name menu. Type a descriptive name to identify the Sync
Pipe or accept the default. Because this example is bidirectional, the following step is setting
up a Sync Pipe path from the Sun DS 5.2 endpoint to the UnboundID Identity Data Store
endpoint. In a later step, you will need to define another Sync Pipe from UnboundID DS to
Sun DS.

2. On the Sync Class Definitions menu, type Yes if you want to create a custom Sync Class.
Otherwise, press Enter to accept the default (no), which will take you to step 8. A Sync
Class defines the operation types (e.g., creates, modifies, or deletes) and attributes that are
synchronized, how attributes and DNs are mapped, and how source and destination entries
are correlated. For this example, enter yes to create a basic sync class for the email to mail
attribute mapping, which excludes the source attribute from automatic synchronization. Later
in the procedure, you will need to configure the email to mail attribute mapping using the
dsconfig tool.

3. Next, you will be prompted to create a Sync Class name. Enter a name for the new Sync
Class. For this example, enter "SunDS>UBID".

4. On the Base DNs for Sync Class menu, enter one or more base DNs if you want to
synchronize specific subtrees of a DIT. Entries outside of the specified base DNs will be
excluded from synchronization. Make sure the base DNs do not overlap in any way. In this
example, press Enter to accept the default (no) as we will not restrict any entries during the
synchronization process.

5. On the Filters for Sync Class menu, you can define one or more LDAP search filters to
restrict specific entries for synchronization. Those entries that do not match the filters will be
excluded from synchronization. In this example, press Enter to accept the default (no).

6. Next, on the Synchronized Attributes for Sync Class menu, specify which attributes will be
automatically mapped from one system to another. You can select the following options: 1
to Synchronize all attributes, 2 to Specify attributes to synchronize, 3 to Specify attributes
to exclude from synchronization. In this example, assume that the Sun Directory Server
endpoint has an email attribute that needs to be mapped to a mail attribute in the target
endpoint servers. A specific attribute mapping will be configured in a later step. In this
example, we will exclude the source attribute (email) from being auto-mapped to the target
servers by selecting the option, Specify attributes to exclude from synchronization.

7. On the Operations for Sync Class menu, select the operations that will be synchronized
for the Sync Class (1 for creates, 2 for deletes, 3 for modifies, 4 for none), or press Enter
to accept the default ("1, 2, 3"). You can enter a comma-separated list of numbers that
correspond to the operation. For these example, press Enter to accept the default (creates,
deletes, modifies).

Configuring the Identity Data Sync

56

8. Next, define a default or "catch-all" Sync Class that specifies how the other entries are
processed. In the following example, press Enter to continue, the system will create a Sync
Class called "Default Sync Class".

9. On the Default Sync Class Operations menu, specify the operations that the default
Sync Class (1 for creates, 2 for deletes, 3 for modifies, 4 for none) will handle during
synchronization. In this example, press Enter to accept the default (1, 2, 3). You have
successfully defined one sync pipe that goes from Sun Directory Server to UnboundID
Identity Data Store.

10.At this stage, you must define a Sync Pipe going from the UnboundID Directory Server to
the Sun Directory Server. Repeat the previous steps 4–9. When you create a sync class, make
sure to create a UBID>SunDS sync class, and then exclude the mail attribute from being
synchronized to the other endpoint servers.

Review the Configuration and Apply the Changes

1. Review the Sync Pipe Configuration Summary, and then, press Enter to accept the default
("write configuration"), which records the commands in a batch file (sync-pipe-cfg.txt).
The batch file can be re-used to set up other Sync topologies.

 >>>> Configuration Summary
 Sync Pipe: Sun DS 5.2 to UnboundID DS
 Source: Sun DS 5.2
 Type: Sun Directory Server
 Access Account: cn=Sync User,cn=Root DNs,cn=config
 Base DN: dc=example,dc=com
 Servers: sun-ds1.example.com:21389, sun-ds2.example.com:22389
 Destination: UnboundID DS
 Type: UnboundID Directory Server
 Access Account: cn=Sync User,cn=Root DNs,cn=config
 Base DN: dc=example,dc=com
 Servers: UnboundID.example.com:23389, UnboundID.example.com:24389
 Sync Classes:
 SunDS>UBID
 Base DN:
 Filters:
 DN Map: None
 Synchronized Attributes: all except: email
 Operations: Creates,Deletes,Modifies
 DEFAULT
 Operations: Creates,Deletes,Modifies
 Sync Pipe: UnboundID DS to Sun DS 5.2
 Source: UnboundID DS
 Type: UnboundID Directory Server
 Access Account: cn=Sync User,cn=Root DNs,cn=config
 Base DN: dc=example,dc=com
 Servers: UnboundID.example.com:23389, UnboundID.example.com:24389
 Destination: Sun DS 5.2
 Type: Sun Directory Server
 Access Account: cn=Sync User,cn=Root DNs,cn=config
 Base DN: dc=example,dc=com
 Servers: sun-ds1.example.com:21389, sun-ds2.example.com:22389
 Sync Classes:
 UBID>SunDS
 Base DN:
 Filters:
 DN Map: None
 Synchronized Attributes: all except: mail
 Operations: Creates,Deletes,Modifies
 DEFAULT
 Operations: Creates,Deletes,Modifies
 w) write configuration
 b) back
 q) quit
 Enter choice [w]:

Configuring the Identity Data Sync

57

2. Apply the configuration changes to the local Identity Data Sync instance using a dsconfig
batch file. Once you have applied the changes to the server, you can review the configuration
in the <server-root>/sync-pipe-cfg.txt file.

3. If you have any Server SDK extensions, save them to the <server-root>/lib/extensions
directory.

4. Connect to the Identity Data Sync using the LDAP Connection Parameters: host name, port,
user bind DN and bind DN password. The configuration is recorded to the <server-root>/
sync-pipe-cfg.txt.

You have successfully configured the initial Sync Pipes for your system. The next step will
be to configure the attribute mappings using the dsconfig command.

Configure the Attribute Map and Mapping

The following section continues from the previous example by defining an attribute map that
has a mapping from the email attribute in the source servers to a mail attribute in the target
servers. You must ensure that both attributes are valid in the target servers and are present in
their respective schemas.

1. On the Identity Data Sync, run the dsconfig command to create an attribute map for the
"SunDS>UBID" sync class for the "Sun DS 5.2 to UnboundID DS" sync pipe, and then run
the second dsconfig command to apply the new attribute map to the Sync Pipe and Sync
Class.

$ bin/dsconfig --no-prompt create-attribute-map \
 --map-name "SunDS>UBID Attr Map" \
 --set "description:Attribute Map for SunDS>UBID Sync Class" \
 --port 7389 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

$ bin/dsconfig --no-prompt set-sync-class-prop \
 --pipe-name "Sun DS 5.2 to UnboundID DS" \
 --class-name "SunDS>UBID" \
 --set "attribute-map:SunDS>UBID Attr Map" \
 --port 7389 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

Note: You can use dsconfig in interactive mode. The attribute map and
attribute mapping options appear on the Identity Data Sync Configuration
Console main menu.

2. Next, create an attribute mapping (from email to mail) for the new attribute map.

$ bin/dsconfig --no-prompt create-attribute-mapping \
 --map-name "SunDS>UBID Attr Map" --mapping-name mail --type direct \
 --set "description:Email>Mail Mapping" --set from-attribute:email \
 --port 7389 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

3. Because this example shows how to set up a bidirectional deployment, repeat steps 1–2 to
create an attribute map for the UBID>SunDS sync class for the UnboundID DS to Sun DS
5.2 sync pipe, and create an attribute mapping that maps mail to email.

$ bin/dsconfig --no-prompt create-attribute-map --map-name "UBID>SunDS Attr Map" \
 --set "description:Attribute Map for UBID>SunDS Sync Class" \

Configuring the Identity Data Sync

58

 --port 7389 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

$ bin/dsconfig --no-prompt set-sync-class-prop \
 --pipe-name "UnboundID DS to Sun DS 5.2" --class-name "UBID>SunDS" \
 --set "attribute-map:UBID>SunDS Attr Map" \
 --port 7389 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

$ bin/dsconfig --no-prompt create-attribute-mapping \
 --map-name "UBID>SunDS Attr Map" --mapping-name email --type direct \
 --set "description:Mail>Email Mapping" --set from-attribute:mail \
 --port 7389 --bindDN "cn=admin,dc=example,dc=com" \
 --bindPassword secret

Configure Server Locations

The Identity Data Sync supports endpoint failover, which is configurable using the location
property on the external servers. By default, the Sync Server prefers to connect to endpoint
servers in the same location as itself and also prefers to failover to endpoint servers in the same
location as itself. If there are no location settings configured, then the Identity Data Sync will
simply iterate through the configured list of external servers on the Sync Source and Sync
Destination when failing over.

It is good practice to set the location property on the external servers and the location
property of the Identity Data Sync global configuration whenever possible. For more
information on failover location preference, see the section Failover Server Preference.

Note: Location-based failover is only applicable for LDAP endpoint servers, such as the
UnboundID Identity Data Store of the UnboundID Identity Proxy.

1. On the Identity Data Sync, run dsconfig to set the location for each external server in the
Sync Source and Sync Destination. For example, the following command sets the location
for six servers in two data centers, "austin" and "dallas".

$ bin/dsconfig set-external-server-prop --server-name example.com:1389 \
 --set location:austin
$ bin/dsconfig set-external-server-prop --server-name example.com:2389 \
 --set location:austin
$ bin/dsconfig set-external-server-prop --server-name example.com:3389 \
 --set location:austin
$ bin/dsconfig set-external-server-prop --server-name example.com:4389 \
 --set location:dallas
$ bin/dsconfig set-external-server-prop --server-name example.com:5389 \
 --set location:dallas
$ bin/dsconfig set-external-server-prop --server-name example.com:6389 \
 --set location:dallas

2. On the Identity Data Sync, run dsconfig to set the location on the Global Configuration.
This is the location of the Identity Data Sync itself, and preferably, it will be the same as at
least one of your external servers. In this example, set the location to "austin".

$ bin/dsconfig set-global-configuration-prop --set location:austin

Complete the Bidirectional Deployment

At this stage, you have configured the Sync Pipes, Sync Classes, and Attribute Mappings
necessary for your synchronization topology.

Configuring the Identity Data Sync

59

1. Run the bulk synchronization command resync to test the attribute mapping. For more
information, see Using Resync on the Synchronization Server. Any logging performed during
a resync operation appears in the logs/tools/resync.log.

$ bin/resync --pipe-name "Sun DS 5.2 to UnboundID DS" \
 --sourceSearchFilter "(uid=user.0)" --dry-run \
 --logFilePath logs/tools/resync.log --logLevel debug

2. Finally, start the synchronization process using the realtime-sync command. For more
information, see Controlling Real Time Synchronization.

$ bin/realtime-sync start --pipe-name "Sun DS 5.2 to UnboundID DS" \
 --pipe-name "UnboundID DS to Sun DS 5.2" --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret

You have successfully completed the bidirectional Synchronization deployment.

Configuring the Identity Data Sync Using the Management
Console

The UnboundID Identity Data Sync provides a graphical web application tool, UnboundID
Sync Management Console, which accesses the server's underlying configuration. The Sync
Management Console provides functionally equivalent to the dsconfig command-line tool in
addition to monitoring and server information.

Note: Like the dsconfig tool, all changes made using the Sync
Management Console are recorded in logs/config-audit.log.

Configuring the External Servers Using the Management Console

External servers are the specific servers that should be included in the Synchronization topology.
You must specify the LDAP connection and security parameters necessary to send requests
to these servers. External servers can be either a UnboundID Identity Data Store, UnboundID
Identity Proxy (3.x), Alcatel-Lucent 8661 Directory Servers, Alcatel-Lucent 8661 Directory
Proxy Servers (3.x), Sun Directory Server 5.x, Sun Directory Server Enterprise Edition (DSEE
6.x, 7.x), Microsoft Active Directory, Oracle (10g,11g), or Microsoft SQL Server (2005, 2008).

To Configure the External Servers

1. Start the Identity Data Sync.

$ <server-root>/bin/start-sync-server

2. Start the servlet container.

$ /apache-tomcat-<version>/bin/startup.sh

Configuring the Identity Data Sync

60

3. Open a browser to http://hostname:8080/sync. The servlet container listens on port 8080 for
HTTP requests.

4. Type the root user DN (or any authorized administrator user name) and password, and the
server hostname or IP address and port to log on (for example, server1.example.com:389).

5. On the Identity Data Sync Management Console, click Configuration.

6. Under "The core server," click External Servers to identify all of the servers that will by
synchronized.

7. Click the Add New button to define the first server in the topology.

Configuring the Identity Data Sync

61

8. Type a name for the external server, and then click Continue. The name can be any label that
will help you identify the server.

9. On the Type drop-down menu, select the type of external server that you are defining. In this
example, select Sun DS Sync Source.

10.Type the hostname for the external server, and then click Continue.

11.Type the external server’s connection parameters that were configured when the server was
first installed. If security and authentication settings were configured for the external server,
define them on this page. When completed, click Confirm then Save.

Configuring the Identity Data Sync

62

12.Click Apply to save the settings for this external server. The equivalent dsconfig command-
line instruction is displayed to recreate the external server in a scripted installation or to
quickly define similar external servers from the command line.

13.Click Add New to define another external server.

14.Once you have defined one external server, you can use the settings defined for the first
server as a template for the next one. On the External Server page, type the name of the
new external server, select the first server on the Template drop-down menu, and then click
Continue. In this example, only the server name and host name has changed for the second
server.

Configuring the Identity Data Sync

63

15.At this stage, repeat steps 8–13 to define the other external source and target servers. You
will only need to change the description, host name, and port number for each server.

You have successfully defined the external servers in the Synchronization topology.

Configuring the Sync Pipe Using the Management Console

Next, you will need to configure how synchronization is processed between the Source and
Destination topologies. The next two sections present information on how to set up the Sync
Pipe and Sync Class.

To Configure the Sync Pipe Using the Management Console

1. On the Configuration page, click Sync Pipes.

2. Click Add New to define a Sync Pipe.

Configuring the Identity Data Sync

64

3. Type the name of the Sync Pipe, and then click Continue.

4. For the Sync Source, click Select New.

5. Type a name for the Sync Source to identify the topology, and then click Continue.

6. On the Type drop-down menu, select the Sync Source type. In this example, select "Sun DS
Sync Source."

Configuring the Identity Data Sync

65

7. In the New field, type the base DN to be used for synchronization searches, and then click
Add. The base DN defines the scope of the searches that the Identity Data Sync processes for
its change flow. You can specify more than one base DN, but the base DNs must not overlap
another base DN (i.e., they cannot be sub-branches of another base DN).

8. In the Server section, select the server(s) to be used as the Sync Source. The order of the
servers is important as it determines the priority order of the Synchronization source.
Specifically, the Identity Data Sync will connect to the first server when detecting changes
as long as it is available. Click Add All if the default order is acceptable. For example, in the
graphic below, the sun-ds-1 server is used in preference to the sun-ds-2 server. If you want to
select the second server as the higher priority, click the server link, and then click Add. Then,
move the other server to the Select column. Click Continue when done.

9. In the Ignore Changes by DN field, type a DN for which the Synchronization Server
should ignore any modifications by the user DN, and then click Add. This function serves
as a form of loopback detection from the Destination target to the Source target when
using bidirectional synchronization. During loopback, the Identity Data Sync ignores any
modifications made by the user, except for any deletion operations. Click Confirm then
Save when done. For example, you can specify the DN of the synchronization user, cn=Sync
User,cn=Root DNs,cn=config.

Configuring the Identity Data Sync

66

10.Click Apply to save the Sync Source configuration.

11.Repeat steps 5–10 for the Sync Destination, so that you have the Sync Source and Sync
Destination defined for the Sync Pipe.

12.After defining the Sync Destination, enter a description for the Sync Pipe. Modify the Polling
Interval if necessary. The Polling Interval is the amount of time that the Identity Data Sync
waits between checking the Sync Source for changes. The default time is 500 ms.

Although likely unnecessary, you can change the default number of worker threads if
necessary. The number of worker threads should be increased if there is a large network

Configuring the Identity Data Sync

67

latency between the Sync Source servers and the Sync Destination servers. Click Confirm
then Save when done.

13.Click Apply to save the changes.

14.Repeat steps 1–13 if you want to define a bidirectional Sync pipe from the Sync Destination
to Sync Source. Otherwise, click Back to define the next Synchronization configuration.

Configuring the Sync Class Using the Management Console

A Sync Class is defined for each type—or class—of entry that should be treated differently by
the Identity Data Sync. This includes what types of changes are synchronized, what attri- butes
are synchronized and how they are mapped, how source and destination entries are correlated,
and how DNs are mapped.

The Sync Class also defines what attributes within the entries should be included or excluded
in the synchronization process. When a change to an entry is first detected in a Sync Source,
the Sync Pipe evaluates the inclusion criteria (i.e., include-base-dn and include-filter) to

Configuring the Identity Data Sync

68

find the first matching Sync Class according to the evaluation-order-index property. If a
change does not match any Sync Class, then it is discarded. Otherwise, the matching Sync Class
processes any attribute or DN mappings and determines what type of change is synchronized.

Note: If you do not want certain types of entries to be synchronized,
then you can define a Sync Class for these attributes and then clear the
synchronize-creates, synchronize-modifies, and synchronize-
deletes boxes.

To Configure a Sync Class Using the Management Console

1. On the Sync Pipe page, click View and Edit next to the Sync Class that you want to
configure.

2. Click Add New to define a Sync Class for the Sync Pipe. A Sync Pipe may have more than
one Sync Class defined.

3. Type a name for the Sync Class.

Configuring the Identity Data Sync

69

4. On the Sync Class page, in the Description field, type a general description for the Sync
Class. This is an optional step.

5. In the Evaluation Order Index field, type the priority ordering for the Sync Class if you
have more than one Sync Class configured for the topology. Sync Classes with a smaller
evaluation order index are evaluated first. Because this example defines only one Sync Class,
the default value of 9999 is used.

6. In the Include Base DN field, type the base DN for the branches of the Sync Source that
contain entries in this Sync Class. Only entries with this base DN will be included in the
Sync Class. This is an optional step. If no base DN is specified, the location of the entry in
the Sync Source is not taken into account when determining if an entry is part of this Sync
Class.

7. In the Include Filter field, type a search filter that determines which entries are in the Sync
Class. If no filter is specified, all entries within the specified included base DNs are included
in the Sync Class.

8. In the Attribute Map section, click Select New to define a set of attribute mappings from
Sync Source to Sync Destination. In this example, the Sync Source (Sun DS 5.2) attributes
map directly to the Sync Destination (UnboundID Identity Data Store), so no attribute maps
require definition. See Configuring Attribute Maps.

Configuring the Identity Data Sync

70

9. In the DN Map section, click Select New to define a set of DN mappings from Sync Source
to Sync Destination. In this example, the Sync Source DNs (Sun DS 5.2) map directly to the
Sync Destination DNs (UnboundID Identity Data Store), so no DN maps require definition.
See Configuring DN Maps.

10.In the Auto Mapped Source Attribute field, type any source attributes that should be
automatically mapped to attributes of the same name in the destination target, and then click
Add. By default, all attributes are mapped automatically.

11.In the Excluded Auto Mapped Attributes field, type any source attributes that should not be
automatically mapped to attributes in the destination target, and then click Add. By default,
no attributes are excluded.

12.In the Destination Correlation Attributes field, type a comma-separated list of destination
attributes that are used to correlate a source entry to a destination entry. For example, the
default option is to use the DN to correlate entries (for LDAP-to-LDAP deployments), but
you could specify that the DN and uid attributes be used to correlate entries, or the cn and
employeeNumber attributes, or others, depending on how the entries are structured in the
Sync Source and Sync Destination, respectively. To prevent incorrect matches, the most
restrictive attribute lists, those that will never match the wrong entry, should be first in the
list, followed by less restrictive attribute lists, which will only be used when the earlier lists
fail.

13.Clear the specific types of changes that you do not want to synchronize: Synchronize
Creates, Synchronize Modifies, Synchronize Deletes

14.When completed, click Confirm then Save.

15.Click Apply to complete defining the Sync Class.

Configuring the Identity Data Sync

71

16.On the Sync Classes page, click Back to return to the Sync Pipe page.

17.On the Sync Pipe page, click Started, and then click Confirm then Save. The Started field
on the Sync Pipe controls whether a given Sync Pipe is synchronizing.

18.Click Apply to save the settings.

Configuring the Identity Data Sync

72

19.Repeat steps 2–18 to create another Sync Class, or log out of the console.

Starting the Global Sync Configuration Using the Management Console

After you have configured the Sync Pipe and Sync Class, you must start the Global Sync
configuration property (that is, enable synchronization). By starting the Identity Data Sync,
it starts or stops synchronization for all configured Sync Pipes. Each Sync Pipe must also be
started for synchronization to take place.

To Start the Global Sync Configuration Using the Management Console

1. On the Configuration page, click Global Sync Configuration.

2. Click the Started box, and then click Confirm then Save.

3. Click Apply to save the configuration settings.

4. After you have completed the configuration, run the prepare-endpoint-server tool from
the command line to ensure that the external servers can communicate with each other. See
Preparing the Identity Data Sync for External Server Communication for more information.

Configuring the Identity Data Sync

73

5. Next, run the bin/resync tool to verify the synchronization configuration. See Verifying the
Synchronization Configuration using Resync.

6. Next, run the bin/realtime-sync tool to start the startpoint. See Setting Startpoints.

About dsconfig Configuration Tool

The dsconfig tool is the text-based management tool used to configure the underlying Identity
Data Store configuration. The tool has three operational modes: interactive mode, non-
interactive mode, and batch mode.

The dsconfig tool also offers an offline mode using the --offline option, in which the server
does not have to be running to interact with the configuration. In most cases, the configuration
should be accessed with the server running in order for the server to give the user feedback
about the validity of the configuration.

Using dsconfig in Interactive Command-Line Mode

In interactive mode, the dsconfig tool offers a filtering mechanism that only displays the
most common configuration elements. The user can specify that more expert level objects and
configuration properties be shown using the menu system.

Running dsconfig in interactive command-line mode provides a user-friendly, menu-driven
interface for accessing and configuring the UnboundID Identity Data Sync. To start dsconfig in
interactive command-line mode, simply invoke the dsconfig script without any arguments. You
will be prompted for connection and authentication information to the Identity Data Sync, and
then a menu will be displayed of the available operation types.

In some cases, a default value will be provided in square brackets. For example, [389] indicates
that the default value for that field is port 389. You can press Enter to accept the default. To
skip the connection and authentication prompts, provide this information using the command-
line options of dsconfig.

Using dsconfig Interactive Mode: Viewing Object Menus

Because some configuration objects are more likely to be modified than others, the UnboundID
Identity Data Sync provides four different object menus that hide or expose configuration
objects to the user. The purpose of object levels is to simply present only those properties that
an administrator will likely use. The Object type is a convenience feature designed to unclutter
menu readability.

The following object menus are available:

• Basic. Only includes the components that are expected to be configured most frequently.

• Standard. Includes all components in the Basic menu plus other components that might
occasionally need to be altered in many environments.

Configuring the Identity Data Sync

74

• Advanced. Includes all components in the Basic and Standard menus plus other components
that might require configuration under special circumstances or that might be potentially
harmful if configured incorrectly.

• Expert. Includes all components in the Basic, Standard, and Advanced menus plus other
components that should almost never require configuration or that could seriously impact the
functionality of the server if not properly configured.

To Change the dsconfig Object Menu

1. Repeat steps 1–6 in the section using dsconfig in To Install the Identity Data Sync in
Interactive Mode.

2. On the UnboundID Identity Data Sync configuration main menu, type o (letter “o”) to
change the object level. By default, Basic objects are displayed.

3. Enter a number corresponding to a object level of your choice: 1 for Basic, 2 for Standard, 3
for Advanced, 4 for Expert.

4. View the menu at the new object level. You should see additional configuration options for
the Identity Data Sync components.

>>>> UnboundID Identity Data Sync configuration console main menu

What do you want to configure?

 1) Account Status Notification Handler 15) Log Retention Policy
 2) Alert Handler 16) Log Rotation Policy
 3) Backend 17) Password Generator
 4) Certificate Mapper 18) Password Policy
 5) Client Connection Policy 19) Password Validator
 6) Connection Criteria 20) Plugin
 7) Connection Handler 21) Request Criteria
 8) Global Configuration 22) Result Criteria
 9) Identity Mapper 23) Root DN User
 10) Key Manager Provider 24) Search Entry Criteria
 11) Local DB Index 25) Search Reference Criteria
 12) Location 26) Trust Manager Provider
 13) Log Field Mapping 27) Virtual Attribute
 14) Log Publisher 28) Work Queue

 o) 'Standard' objects are shown - change this
 q) quit

Enter choice:

Using dsconfig in Non-Interactive Mode

The dsconfig non-interactive command-line mode provides a simple way to make arbitrary
changes to the Identity Data Sync by invoking it from the command line. To use administrative
scripts to automate configuration changes, run the dsconfig command in non-interactive mode,
which is convenient scripting applications. Note, however, that if you plan to make changes to
multiple configuration objects at the same time, then the batch mode might be more appropriate.

You can use the dsconfig tool to update a single configuration object using command-line
arguments to provide all of the necessary information. The general format for the non-interactive
command line is:

Configuring the Identity Data Sync

75

$ bin/dsconfig --no-prompt {globalArgs} {subcommand} {subcommandArgs}

The --no-prompt argument indicates that you want to use non-interactive mode. The {sub-
command} is used to indicate which general action to perform. The {globalArgs} argument
provides a set of arguments that specify how to connect and authenticate to the Identity Data
Sync. Global arguments can be standard LDAP connection parameters or SASL connection
parameters depending on your setup. For example, using standard LDAP connections, you can
invoke the dsconfig tool as follows:

$ bin/dsconfig --no-prompt list-backends \
 --hostname server.example.com \
 --port 389 \
 --bindDN uid=admin,dc=example,dc=com \
 --bindPassword password

If your system uses SASL GSSAPI (Kerberos), you can invoke dsconfig as follows:

$ bin/dsconfig --no-prompt list-backends \
 --saslOption mech=GSSAPI \
 --saslOption authid=admin@example.com \
 --saslOption ticketcache=/tmp/krb5cc_1313 \
 --saslOption useticketcache=true

The {subcommandArgs} argument contains a set of arguments specific to the particular
subcommand that you wish to invoke. To always display the advanced properties, use the --
advanced command-line option.

Note: Global arguments can appear anywhere on the command line
(including before the subcommand, and after or intermingled with
subcommand-specific arguments). The subcommand-specific arguments can
appear anywhere after the subcommand.

To Get the Equivalent dsconfig Non-Interactive Mode Command

1. Using dsconfig in interactive mode, make changes to a configuration but do not apply the
changes (that is, do not enter "f").

2. Enter d to view the equivalent non-interactive command.

3. View the equivalent command (seen below), and then press Enter to continue. For example,
based on an example in the previous section, changes made to the db-cache-percent returns
the following:

Command line to apply pending changes to this Local DB Backend:
dsconfig set-backend-prop --backend-name userRoot --set db-cache-percent:40

The command does not contain the LDAP connection parameters required for the tool to
connect to the host since it is presumed that the command would be used to connect to a
different remote host.

Configuring the Identity Data Sync

76

Using dsconfig Batch Mode

The UnboundID Identity Data Sync provides a dsconfig batching mechanism that reads
multiple dsconfig invocations from a file and executes them sequentially. The batch file
provides advantages over standard scripting by minimizing LDAP connections and JVM
invocations that normally occur with each dsconfig call. Batch mode is the best method to
use with setup scripts when moving from a development environment to test environment, or
from a test environment to a production environment. The --no-prompt option is required with
dsconfig in batch mode.

$ bin/dsconfig --no-prompt --hostname host1 --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret \
 --batch-file /path/to/sync-pipe-config.txt

If a dsconfig command has a missing or incorrect argument, the command will fail and abort
the batch process without applying any changes to the Identity Data Sync. The dsconfig
command supports a --batch-continue-on-error option which instructs dsconfig to apply
all changes and skip any errors.

You can view the logs/config-audit.log file to review the configuration changes made to
the Identity Data Sync and use them in the batch file. The batch file can have blank lines for
spacing and lines starting with a pound sign (#) for comments. The batch file also supports a "\"
line continuation character for long commands that require multiple lines.

The Identity Data Sync also provides a docs/sun-ds-compatibility.dsconfig file for
migrations from Sun/Oracle to UnboundID Identity Data Sync machines.

Configuring the Identity Data Sync Using dsconfig

You can use the dsconfig tool to configure any part of the Identity Data Sync. However, you
will likely use the tool for more fine-grained adjustments. If you are configuring a Sync Pipe
for the first time, you should use the bin/create-sync-pipe-config tool as it will guide you
through the necessary Sync Pipes creation steps for your system.

To Configure the Identity Data Sync Using dsconfig Interactive

1. Launch the dsconfig tool in interactive command-line mode.

$ <server-root>/bin/dsconfig

2. On the LDAP Connection Parameters menu, type the Identity Data Sync host name, or IP
address, or press Enter to accept the default.

3. On the Identity Data Sync Connection menu, type the number corresponding to the type of
LDAP connection type (1 for LDAP, 2 for SSL, 3 for StartTLS) that you are using on the
Identity Data Sync, or press Enter to accept the default.

Configuring the Identity Data Sync

77

4. Next, type the LDAP listener port number, and then type the user bind DN, and the bind DN
password.

5. On the Configuration Console main menu, enter a number corresponding to a component that
you want to configure or edit.

>>>> UnboundID Identity Data Sync configuration console main menu

What do you want to configure?

 1) Attribute Map 8) Log Publisher
 2) Attribute Mapping 9) Log Retention Policy
 3) Connection Handler 10) Log Rotation Policy
 4) DN Map 11) Sync Class
 5) External Server 12) Sync Destination
 6) Global Configuration 13) Sync Pipe
 7) Global Sync Configuration 14) Sync Source

 o) 'Basic' objects are shown - change this
 q) quit

Enter choice:

Configuring Server Groups Using dsconfig Interactive

In a typical Identity Data Sync deployment, administrators set up one Synchronization Server
and one or more redundant failover servers. The failover servers can immediately take over
from the primary server if connection is lost for any reason (see Installing a Redundant Failover
Server on page 39 for instructions).

It is important that the primary and secondary servers have the same configuration settings to
ensure the proper operation of your sync topology. To enable this, you must assign the Identity
Data Syncs to a server group using the dsconfig tool, so that any change to one server will
automatically be applied to the other servers in the group.

After you have set up a server group, you can make an update on one server using dsconfig,
then apply the change to the other servers in the group using the --applyChangeTo server-
group option of the dsconfig non-interactive command. If you want to apply the change to one
server in the group, use the --applyChangeTo single-server option. When using dsconfig
in interactive command-line mode, you will be asked if you want to apply the change to a single
server or to all servers in the server group.

To Configure Server Groups

• Run the dsconfig command and set the global configuration property for server groups to
"all-servers". On the primary Synchronization Server, do the following:

$ bin/dsconfig set-global-configuration-prop \
 --set configuration-server-group:all-servers

If you add redundant or failover servers to the topology, the setup tool will copy the
configuration from the primary server to the new server(s).

Configuring the Identity Data Sync

78

Configuring External Servers Using dsconfig Interactive

To set up a Synchronization topology, you must define a single server of a topology of identical,
replicated servers to be synchronized. For each Directory Server, you must define the host,
port, SSL, bind DN, and bind password. A single external server configuration object can be
referenced by multiple Sync Sources and Sync Destinations.

To Configure the External Servers Using dsconfig Interactive

1. On the Configuration Console main menu, type the number corresponding to External
Server.

2. On the External Server Management menu, type the number corresponding to create a new
External Server.

3. Next, select the type of external server. In this example, select the option for Sun DS
External Server.

4. Next, you will be prompted to enter the name for the external server.

5. On the Server-Host-Name Property menu, type the host name of the external server.

6. On the Sun DS External Server Properties menu, change the server-port, bind-dn, and
password for the external server. Type the number corresponding to each property, and
follow the prompts to enter the values. When completed, type f to save and apply the
changes.

7. Repeat steps 2–6 to define any additional external servers. The Synchronization Server uses
the settings for the first server as a template to create the other external servers. Type the
number to use the first external server as a template for the other external server.

8. Repeat steps 2–7 to create the other external servers that you plan to synchronize.

9. On the External Server Management menu, type the number to view the list of external
servers that you have created.

External Server : Type : server-host-name : server-port
----------------:--------------:------------------:------------
ds-dest1 : UnboundID-ds : ds3.example.com : 389
ds-dest2 : UnboundID-ds : ds4.example.com : 389
ds-src1 : sun-ds : ds1.example.com : 389
ds-src2 : sun-ds : ds2.example.com : 389

Configuring the Sync Source Using dsconfig Interactive

Sync Sources define the directory topology that is the source of the data to be synchronized.
When data in the Sync Source changes, it is synchronized to the Sync Destination topology.
Sync Sources can reference one or more external servers of the appropriate type (UnboundID
Directory Server, UnboundID Identity Proxy (3.x), Alcatel-Lucent 8661 Directory Server,

Configuring the Identity Data Sync

79

Alcatel-Lucent 8661 Directory Proxy Servers (3.x), Sun Directory Server 5.x, Sun DSEE 6.x,
7.x, Microsoft Active Directory, Oracle 10g,11g, or Microsoft SQL Server 2005, 2008).

To Configure the Sync Source Using dsconfig Interactive

1. On the Configuration Console main menu, type the number corresponding to the Sync
Source.

2. On the Sync Source Management menu, type the number corresponding to create a new Sync
Source.

3. On the Sync Source Type menu, enter the number corresponding to the Sync Source type.

4. Next, you will be prompted to enter a name for the Sync Source. Enter a unique name for the
sync source.

5. On the Base DN Property menu, enter the base DN for the Sync Source. In this example, type
dc=example,dc=com, and then press Enter when prompted to complete the step.

6. On the Configuring the Server Property menu, select the external servers that will be part of
the Sync Source topology. You can enter the number(s) corresponding to the external servers
separated by commas. For example, enter "3,4" for several external servers.

7. On the Sync Source Properties menu, you can set the ignore-changes-by-dn property that
specifies the user DN whose modifications on the external server will be ignored during
synchronization. This property is useful when using the UnboundID Identity Data Sync
bidirectionally to limit loop back synchronization changes (modifications) back to the source
by the specified user DN. Because this example is setting up a one-way sync pipe, you can
type f to finish. Note that, by default, the ignore-changes-by-dn property is set for the
uid=sync user DN.

The DN of the user who is performing a delete operation is not normally available in the
change log. Delete operations by these users will not be ignored.

Configuring the Sync Destination Using dsconfig Interactive

Sync Destinations define the topology of directory servers where changes detected at the Sync
Source are applied. Sync Destinations reference one or more external servers of the appropriate
type.

To Configure the Sync Destination Using dsconfig Interactive

1. On the Configuration Console main menu, type the number corresponding to set up the Sync
Destination.

2. On the Sync Destination Management menu, type the number corresponding to creating a
new Sync Destination.

Configuring the Identity Data Sync

80

3. Next, on the Sync Destination Type menu, enter the number corresponding to the Sync type
(1 for UnboundID Directory Server, 2 for Microsoft Active Directory, 3 for JDBC Sync, 4
for Sun DS Sync). In this example, type the number for UnboundID Sync Destination.

4. Next, you will be prompted to enter a name for the Sync Destination. Enter a unique name
for the Sync Destination.

5. On the Base DN Property menu, enter the base DN for the Sync Destination. In this example,
type dc=example,dc=com, and then press Enter when prompted to complete the step.

6. On the Server Property menu, select the external servers that will be part of the Sync
Destination topology. You can enter the number corresponding to the external servers
separated by commas (e.g., "1,2").

7. On the Sync Destination Properties menu, type f to save and apply the changes.

Configuring a Sync Pipe Using dsconfig Interactive

A Sync Pipe defines a single synchronization path between the source and destination
topologies. Every Sync Pipe has one or more Sync Classes that controls how and what is
synchronized. Multiple Sync Pipes can run in a single UnboundID Identity Data Sync instance.

Note: Once you have set up a Sync Pipe, remember to start the Sync Pipe
for synchronization using the realtime-sync start command.

To Configure a Sync Pipe Using dsconfig Interactive

1. On the Configuration Console main menu, type the number corresponding to the Sync Pipe.

2. On the Sync Pipe Management menu, type the number corresponding to creating a new Sync
Pipe.

3. Enter a unique name for the Sync Pipe. A Sync Pipe defines a single synchronization path
between the Sync Source and Sync Destination.

4. On the Sync-Source Property menu, select the Sync Source for the Sync Pipe from an
existing sync source, or create a new Sync Source if it was not created in an earlier step.

5. On the Sync-Destination Property menu, select the Sync Destination for the Sync Pipe from
an existing sync destination, or create a new Sync Destination if it was not created in an
earlier step.

6. On the Sync Pipe Properties menu, type the number corresponding to starting the Sync Pipe,
follow the prompts, and then when done, type f to save and apply the changes. Although the
Sync Pipe has started, you must define at least one Sync Class for synchronization to work.

7. Repeat steps 1–6 to create other Sync Pipes. The Identity Data Sync can have multiple Sync
Pipes in the system. When done, you must define at least one Sync Class for each Sync

Configuring the Identity Data Sync

81

Pipe. Within a Sync Pipe, a Sync Class defines each type of entry that needs to be treated
differently.

Configuring the Sync Class Using dsconfig Interactive

Sync Classes define the operation types (e.g., creates, modifies, or deletes) and attributes that
are synchronized, how attributes and DNs are mapped, and how source and destination entries
are correlated. A source entry is in at most one Sync Class and is determined by a base DN and
LDAP filters. A Sync Class can have multiple Attribute Maps and DN Maps, or none. For each
Sync Pipe, a Sync Class is defined for each type of entry that needs to be treated differently.

To Configure a Sync Class for each Sync Pipe

1. On the Configuration Console main menu, type the number corresponding to the Sync Class.

2. On the Sync Class Management menu, type the number corresponding to creating a new
Sync Class.

3. Select the Sync Pipe that will use the Sync Class. If there is only one Sync Pipe, verify that
the existing Sync Pipe is the one that you are configuring, and then press Enter to accept the
default.

4. Next, enter a name for the Sync Class that you are defining.

5. On the Sync Class Properties menu, for the Evaluation Order Index field, type the priority
ordering for the Sync Class if you have more than one Sync Class configured for the
topology. Sync Classes with a smaller evaluation-order-index property is evaluated first.
Because this example defines only one Sync Class, the default value of 9999 is used.

6. For the Include Base DN field, type the base DN for the branches of the Sync Source that
contain entries in this Sync Class. Only entries with this base DN will be included in the
Sync Class. This is an optional step. If no base DN is specified, the location of the entry in
the Sync Source is not taken into account when determining if an entry is part of this Sync
Class.

7. For the Include Filter field, type a search filter that determines which entries are in the Sync
Class. If no filter is specified, all entries within the specified included base DNs are included
in the Sync Class.

8. For the Attribute Map field, enter an attribute map for the Sync Class. Because this example
shows a migration path from Sun Directory Server 5.x to UnboundID Directory Server, you
do not need to set up an attribute map, unless you have added new attributes to your schema.
See Configuring Attribute Maps on page 93.

9. For the DN Map field, enter a DN map for the Sync Class. See Configuring DN Maps.

10.On the Sync Class Properties menu, type f to save and apply the changes when you have
completed configuring the sync class.

11.Repeat steps 1–10 to define another Sync Class for the Sync Pipe.

Configuring the Identity Data Sync

82

Starting the Global Sync Configuration Using dsconfig Interactive

After you have set up the Synchronization topology, you must start the Global Sync
Configuration, which will use only those Sync Pipes that have been started.

To Start the Global Sync Configuration

1. On the Configuration Console main menu, type the number corresponding to the Global
Sync Configuration.

2. On the Global Sync Configuration Management menu, type the number corresponding to
view and edit the configuration.

3. On the Global Sync Configuration Properties menu, type the number corresponding to setting
the started property, and then follow the prompts to set the value to TRUE.

4. On the Global Sync Configuration Properties menu, type f to save and apply the changes.

Generating a Summary of Configuration Components

The Identity Data Sync provides a summarize-config tool that generates a summary of the
configuration in a local or remote identity data store instance. The tool is useful when comparing
configuration settings on the identity data store instance when troubleshooting issues or when
verifying configuration settings on newly-added servers to your network. The tool can interact
with the local configuration regardless of whether the server is running or not.

By default, the tool generates a list of basic components. To include a list of advanced
components, use the --advanced option. To run the tool on an offline server, use the --offline
option. Run the summarize-config --help option to view other available tool options.

To Generate a Summary of Configuration Components

• Run the summarize-config tool to generate a summary of the configuration components on
the identity data store instance. The following command runs a summary on a local online
server.

$ bin/summarize-config

Sync Pipes:
 Sync Pipe: UnboundID Directory Server 2 to UnboundID Directory Server
 started: false
 synchronization-mode: standard
 change-detection-polling-interval: 500 ms
 num-worker-threads: 20
 sync-source:
 UnboundID Sync Source: UnboundID Directory Server 2
 base-dn: "dc=example,dc=com"
 ignore-changes-by-dn: "cn=Sync User,cn=Root DNs,cn=config"
 use-changelog-batch-request: true
 proxy-server: none
 server:

Configuring the Identity Data Sync

83

 UnboundID DS External Server: localhost:2389
 server-host-name: localhost
 server-port: 2389
 bind-dn: "cn=Sync User,cn=Root DNs,cn=config"
 password: ********
 connection-security: none
 authentication-method: simple
 allowed-operation: abandon, add, bind, compare, delete, extended,
 modify, modify-dn, search
 trust-manager-provider: none
 key-manager-provider: none
 sync-destination:
 UnboundID Sync Destination: UnboundID Directory Server
 base-dn: "dc=example,dc=com"
 server:
 UnboundID DS External Server: localhost:1389
 server-host-name: localhost
 server-port: 1389
 bind-dn: "cn=Sync User,cn=Root DNs,cn=config"
 password: ********
 connection-security: none
 authentication-method: simple
 allowed-operation: abandon, add, bind, compare, delete, extended,
 modify, modify-dn, search
 trust-manager-provider: none
 key-manager-provider: none
 proxy-server: none
 Sync Classes:
 Sync Class: test sync class 2
 evaluation-order-index: 10
 include-base-dn: "ou=sites,dc=example,dc=com"
 include-filter: (objectClass=site), (siteName=u*)
 auto-mapped-source-attribute: -all-
 excluded-auto-mapped-source-attributes: No source attributes are excluded
 from synchronization.
 destination-correlation-attributes: dn
 synchronize-creates: true
 synchronize-modifies: true
 synchronize-deletes: true
 allow-destination-renames: true
 dn-map: none
 attribute-map: none
 Sync Class: DEFAULT
 evaluation-order-index: 9999
 include-base-dn: The location of the entry in the Sync Source is not taken
 into account when determining whether an entry is part of this Sync Class.
 include-filter: All entries are included in this Sync Class.
 auto-mapped-source-attribute: -all-
 excluded-auto-mapped-source-attributes: No source attributes are excluded
 from synchronization.
 destination-correlation-attributes: dn
 synchronize-creates: false
 synchronize-modifies: false
 synchronize-deletes: false
 allow-destination-renames: true
 dn-map: none
 attribute-map: none

 Sync Pipe: UnboundID Directory Server to UnboundID Directory Server 2
 started: false
 synchronization-mode: standard
 change-detection-polling-interval: 500 ms
 num-worker-threads: 20
 sync-source:
 UnboundID Sync Source: UnboundID Directory Server
 base-dn: "dc=example,dc=com"
 ignore-changes-by-dn: "cn=Sync User,cn=Root DNs,cn=config"
 use-changelog-batch-request: false
 proxy-server: none
 server:
 UnboundID DS External Server: localhost:1389
 server-host-name: localhost
 server-port: 1389
 bind-dn: "cn=Sync User,cn=Root DNs,cn=config"
 password: ********
 connection-security: none
 authentication-method: simple
 allowed-operation: abandon, add, bind, compare, delete, extended,
 modify, modify-dn, search
 trust-manager-provider: none

Configuring the Identity Data Sync

84

 key-manager-provider: none
 sync-destination:
 UnboundID Sync Destination: UnboundID Directory Server 2
 base-dn: "dc=example,dc=com"
 server:
 UnboundID DS External Server: localhost:2389
 server-host-name: localhost
 server-port: 2389
 bind-dn: "cn=Sync User,cn=Root DNs,cn=config"
 password: ********
 connection-security: none
 authentication-method: simple
 allowed-operation: abandon, add, bind, compare, delete, extended,
 modify, modify-dn, search
 trust-manager-provider: none
 key-manager-provider: none
 proxy-server: none
 Sync Classes:
 Sync Class: test sync class
 evaluation-order-index: 10
 include-base-dn: "ou=people,dc=example,dc=com"
 include-filter: (uid=user.*)
 auto-mapped-source-attribute: description, email, password
 excluded-auto-mapped-source-attributes: No source attributes are excluded
 from synchronization.
 destination-correlation-attributes: dn
 synchronize-creates: true
 synchronize-modifies: true
 synchronize-deletes: true
 allow-destination-renames: true
 dn-map:
 DN Map: test dn map
 from-dn-pattern: "*,**,dc=com"
 to-dn-pattern: "uid={givenname:/^(.)(.*)/$1/s}{sn:/^(.)(.*)/$1/s}
 {eid},{2},o=example"
 attribute-map:
 Attribute Map: test attribute map
 Attribute Mappings:
 Direct Attribute Mapping: username
 to-attribute: username
 from-attribute: uid
 Constructed Attribute Mapping: description
 to-attribute: description
 value-pattern: {givenname:/^(.)(.*)/$1/s}{sn:/^(.)(.*)/$1/s}{eid}
 DN Attribute Mapping: email
 to-attribute: email
 from-attribute: firstname
 dn-map:
 DN Map: test dn map
 from-dn-pattern: "*,**,dc=com"
 to-dn-pattern: "uid={givenname:/^(.)(.*)/$1/s}{sn:/^(.)(.*)/$1/s}
 {eid},{2},o=example"
 Sync Class: DEFAULT
 evaluation-order-index: 9999
 include-base-dn: The location of the entry in the Sync Source is not taken
 into account when determining whether an entry is part of this Sync Class.
 include-filter: All entries are included in this Sync Class.
 auto-mapped-source-attribute: -all-
 excluded-auto-mapped-source-attributes: No source attributes are excluded
 from synchronization.
 destination-correlation-attributes: dn
 synchronize-creates: true
 synchronize-modifies: true
 synchronize-deletes: true
 allow-destination-renames: true
 dn-map: none
 attribute-map: none

Global Sync Configuration:
 started: true
 changelog-password-decryption-key: -
 sync-failover-polling-interval: 7500

Configuring the Identity Data Sync

85

Preparing the Identity Data Sync for External Server
Communication

The UnboundID Identity Data Sync provides a tool, prepare-endpoint-server, that sets
up any communication variances that may occur between the Identity Data Sync and the
external servers. Typically, directory servers can have different security settings, privileges, and
passwords (e.g., for trust stores) configured on the Sync Source that would reject any import of
entries in the Sync Destination.

The prepare-endpoint-server tool also creates a Synchronization User Account and its
privileges on all of the external servers (see About the Sync User Account for more detailed
information). If necessary, you will be prompted for the root or administrator credentials
(for example, uid=admin,dc=example,dc=com) to set up this user account. The prepare-
endpoint-server tool also checks if the sync-user account has the proper privileges to access
the firstChangeNumber and lastChangeNumber attributes in the root DSE entry so that it
can get the most up-to-date changes to the system. If the Sync User does not have the proper
privileges, the Identity Data Sync displays a warning message. You can view any warning or
error messages in the logs/prepare-endpoint-server.log file.

Note: If you created your Synchronization topology using the create-
sync-pipe-config tool, then you do not need to run this command
separately as it is already part of the process.

To Prepare the Identity Data Sync for External Server Communication

1. Use the prepare-endpoint-server tool to prepare the directory server instances on the
remote host for synchronization as a data source for the subtree, dc=example,dc=com. If the
user account is not present on the external server, then the Identity Data Sync will create it if
it has a parent entry.

$ bin/prepare-endpoint-server \
 --hostname sun-ds1.example.com --port 21389 \
 --syncServerBindDN "cn=Sync User,dc=example,dc=com" \
 --syncServerBindPassword secret --baseDN "dc=example,dc=com" \
 --isSource

2. When prompted, enter the bind DN and password to create the user account. This step
enables the change log database and sets the changelog-maximum-age property to some
recommended value.

3. Repeat steps 1–2 for the other external source servers. Remember to specify the host name
and port number of the external server.

4. For the destination servers, repeat steps 2–3 but remember to include the --isDestination
option. If your destination servers do not have any entries, then a "Denied" message will be
generated when creating the cn=Sync User entry as no base DN exists.

Configuring the Identity Data Sync

86

$ bin/prepare-endpoint-server \
 --hostname UnboundID-ds1.example.com --port 33389 \
 --syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \
 --syncServerBindPassword sync --baseDN "dc=example,dc=com" \
 --isDestination

5. Repeat step 4 for the other Destination servers.

Preparing External Servers: If the Admin Does Not Have
Root Access on DSEE External Servers

If you are syncing from a Sun DSEE external endpoint server and do not have root access to
those machines, you can provide the following manual steps to someone who does have root
access on the machines.

To Set Up the DSEE External Servers

1. Complete the Identity Data Sync configuration using the create-sync-pipe-config tool or
the dsconfig command.

2. Make sure that the Sync User account is created outside of the cn=config branch. We
have seen problems with DSEE when the Sync User is placed there. If the Sync User is
in cn=config, delete it, add it to the normal backend (e.g., dc=example,dc=com), and
then update the configuration in the Identity Data Sync. For example, create an LDIF
file, and save it as "sync-user.ldif". When configuring DSEE endpoint servers, you must
include resource limit attributes in the cn=Sync User entry, so that resync can conduct
searches throughout the whole directory. The nsLookThroughLimit operational attributes
determines the maximum number of entries checked during a search. The nsTimeLimit
operational attribute determines the maximum time spent processing a search operation.
The nsIdleTimeout operational attribute determines the maximum amount of time that a
client connection can remain idle before it is dropped. The nsSizeLimit operational attribute
determines the maximum number of returned entries for a search operation. All of these
attributes are set to -1, which means that there is no limit for each respective parameter.

dn: cn=Sync User,dc=example,dc=com
cn: Sync User
givenName: Sync
sn: User
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
userPassword: password
nsLookThroughLimit: -1
nsTimeLimit: -1
nsIdleTimeout: -1
nsSizeLimit: -1

3. Add the following entry to the external DSEE server:

$ ldapmodify -h {dsee-host} -p {ldap-port} -D "cn=directory manager" -w {password} \
 -a -f sync-user.ldif

Configuring the Identity Data Sync

87

4. On the DSEE server, perform a search to see what arguments are already set on the Retro
Change Log plug-in. Look for arguments for the attribute, nsslapd-pluginarg[0-9]. In the
following example, we see that nsslapd-pluginarg0 and nsslapd-pluginarg1 are already
present, so we need to use nsslapd-pluginarg2 for any additional settings.

$ ldapsearch -h {dsee-host} -p {ldap-port} -D "cn=directory manager" -w {password} \
 -b "cn=Retro Changelog Plugin,cn=plugins,cn=config" -s base "(objectclass=*)"

dn: cn=Retro Changelog Plugin,cn=plugins,cn=config
objectClass: top
objectClass: nsSlapdPlugin
objectClass: ds-signedPlugin
objectClass: extensibleObject
cn: Retro Changelog Plugin
nsslapd-pluginPath: /ds/upc/servers/sunds52/lib/retrocl-plugin.so
nsslapd-pluginInitfunc: retrocl_plugin_init
nsslapd-pluginType: object
nsslapd-plugin-depends-on-type: database
nsslapd-changelogdir: /ds/upc/servers/sunds52/slapd-upc/db/changelog
nsslapd-pluginEnabled: on
nsslapd-changelogmaxage: 3d
nsslapd-pluginarg0: -ignore_attributes
nsslapd-pluginarg1: copyingFrom
nsslapd-pluginId: retrocl
nsslapd-pluginVersion: 5.2_Patch_4
nsslapd-pluginVendor: Sun Microsystems, Inc.
nsslapd-pluginDescription: Retrocl Plugin
ds-pluginSignatureState: valid signature

5. On the DSEE server, enable the Retro Change Log Plug-in using the console or command-
line tool. Use ldapmodify to apply the following LDIF to the server, or you can make
the equivalent changes to dse.ldif after the server has been shutdown. The LDIF file
enables the Retro Change Log plug-in, sets the max age to three days, and adds the
deletedEntryAttributes setting into one of the nsslapd-pluginarg fields (see below).
The deletedEntryAttributes attribute is used to ensure that the Identity Data Sync has
the proper information for the correlation of deletes against the target system. The attribute
will be used to record objectclass, cn, uid, and modifiersName during deletes. You
can modify this list of attributes so that the Identity Data Sync can find the corresponding
entry in the destination server. In this example, make sure to use the nsslapd-pluginarg2
attribute name to add the deletedEntryAttributes parameters as nsslapd-pluginarg0 and
nsslapd-pluginarg1 are in use. Finally, save the file as retro-changelog-enable.ldif.

dn: cn=Retro Changelog Plugin,cn=plugins,cn=config
changetype: modify
replace: nsslapd-pluginEnabled
nsslapd-pluginEnabled: on
-
replace: nsslapd-changelogmaxage
nsslapd-changelogmaxage: 3d
-
replace: nsslapd-pluginarg2
nsslapd-pluginarg2: deletedEntryAttributes=objectclass,cn,uid,modifiersName

6. Use ldapmodify to enable the Retro Change Log Plug-in.

$ ldapmodify -h {dsee-host} -p {ldap-port} -D "cn=directory manager" -w {password} \
 -f retro-changelog-enable.ldif

7. Restart DSEE so that the plug-in can start recording changes.

8. Create an LDIF file called sync-dsee-aci.ldif to add an ACI so that the Sync User can
access the change log and data, respectively.

dn: cn=changelog

Configuring the Identity Data Sync

88

changetype: modify
add: aci
aci: (targetattr="*")(version 3.0; acl "UnboundID Sync User Access"; allow
 (read,search,compare) userdn="ldap:///cn=Sync User,dc=example,dc=com";)

dn: cn=example,dc=com
changetype: modify
add: aci
aci: (targetattr="*")(version 3.0; acl "UnboundID Sync User Read/Write Access";
 allow (all) userdn="ldap:///cn=Sync User,dc=example,dc=com";)

If the DSEE server is only used as a source, and no modifies will be performed against the
server, then the ACI should be as follows:

dn: dc=changelog
changetype: modify
add: aci
aci: (targetattr="*")(version 3.0; acl "UnboundID Sync User Access"; allow
 (read,search,compare) userdn="ldap:///cn=Sync User,dc=example,dc=com";)

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="*")(version 3.0; acl "UnboundID Sync User Read Only Access"; allow
 (read,search,compare) userdn="ldap:///cn=Sync User,dc=example,dc=com";)

9. Use ldapmodify to add the sync-dsee-aci.ldif to the DSEE server.

$ ldapmodify -h {dsee-host} -p {ldap-port} -D "cn=directory manager" -w {password} \
 -f sync-dsee-aci.ldif

Using Resync on the Identity Data Sync

The UnboundID Identity Data Sync provides a bulk synchronization command-line tool, resync,
that can be used to verify the Synchronization setup. The resync tool operates on a single Sync
Pipe at a time and retrieves entries from the Sync Source in bulk, and compares the source
entries with the corresponding destination entries. If destination entries are missing or attributes
out-of-sync, then the Identity Data Sync updates them.

The command provides a --dry-run option that can be run to test the matches between Sync
Source and Destination but not commit any changes to the target topology. The resync tool also
provides options to write debugging output to a log with a configurable level of verbosity for
testing purposes.

Note: While you can use the resync tool to update any mismatched
entries, you should use the tool only for relatively small datasets. For large
deployments, you can export entries from the Sync Source into an LDIF
file, run the translate-ldif tool to translate and filter the entries into
the destination format, and then import the result LDIF file into the Sync
Destination.

Typically, you can use the resync tool to verify the synchronization configuration after it
has been configured. The command has some important options that can be used to test the
configuration:

Configuring the Identity Data Sync

89

Table 8: Useful Resync Command Options

Resync Option Description

--dry-run
Reports the sync status of the configuration without committing the change to the tar-
get topology.

--numPasses
Specifies the number of passes to compare an entry that is out-of-sync to account for
synchronization delays. If both Sync Source and Sync Destination are quiescent, then a
value of 1 can be provided.

--logFilePath
Specifies the path to the log file that records the details of the resync operation.

--logLevel
Specifies the resync log level that controls the amount of logging. The following levels
are available:

• out-of-sync-summary. Provides a single summary message for each missing or
out-of-sync entry

• out-of-sync-detailed. Provides a single detailed message including the source and
destination entry contents.

• all-entries-summary. Provides multiple summary messages, which are logged for
every entry that is loaded or compared. The contents of the entries are not included.

• all-entries-detailed. Provides multiple detailed messages, which are logged for
every entry that is loaded or compared. This option can impact performance as it
generates a large output file.

• debug. Provides multiple verbose messages, which are logged for every entry that
is loaded or compared. This option should only be used to diagnose or troubleshoot
a problem as its potential size could impact performance. The contents of the
entries are included during processing.

--ratePerSecondFile
Specifies a specific synchronization rate (synchronizing changes per second). The
option allows you to adjust the rate during off-peak hours or adjust the rate based on
measured loads for very long running resync operations. The file must contain a single
positive integer number surrounded by white space (for example, 1) to start with. If
the file is updated with an invalid number (for example, changing it to zero, a negative
number, or something other than an integer number), the rate is not updated.

To use this feature, run resync first at 100 operations/sec, measure the impact on the
source servers, then adjust as desired.

--secondsBetweenPass
Specifies the number of seconds to wait between each pass to recheck entries
that were out-of-sync. This option is used when entries are out-of-sync due to
synchronization delays.

--sourceInputFile
Specifies a file containing a list of DNs to be retrieved from the Sync Source and pro-
cessed. The option allows for faster processing of very large data sets by targeting
individual base-level searches for each source DN in the file. For LDAP Sync Sources,
this file should contain a list of DNs; for JDBC Sync Sources, the data may be in a user-
defined format since it will be consumed by a JDBC Sync Source extension. When
synchronizing with a database, you can use the --entryType option that specifies
the type of database entry to search for. This must match one of the configured entry
types in the JDBCSyncSource

The resync tool provides a number of other useful functions, including the ability to schedule a
nightly synchronization if real-time synchronization is not necessary (for example, the creation
of new entries during a specific time period can be resynced at a designated nightly time). The
tool also provides explicit control over which attributes are included or excluded during the
synchronization process if fine-grained synchronization is required by the Attribute or DN maps.
For more information, type bin/resync --help for information and examples.

Configuring the Identity Data Sync

90

Testing Attribute and DN Maps Using Resync

You can use the resync tool to test how attribute maps and DN maps are configured by
synchronizing a single entry. If the --logFilePath and --logLevel options are specified, the
resync tool generates a log file with varying degrees of details to show any synchronization
messages. You can specify the log file and the level of detail of processing messages.

To Test Attribute and DN Maps Using Resync

• Use the resync tool in "dry run" mode by specifying a single entry. Assume that the Sync
Source topology contains an entry, uid=user.0. Any logging performed during a resync
operation appears in the logs/tools/resync.log.

$ bin/resync --pipe-name sun-to-UnboundID-sync-pipe \
 --sourceSearchFilter "(uid=user.0)" --dry-run --logLevel debug

Verifying the Synchronization Configuration Using Resync

The most common example for resync is to test that the Sync Pipe configuration has been set
up correctly. For example, the following procedure assumes that the configuration was set up
with the Sync Source topology (two replicated Sun Directory Server 5.x servers) with 2003
entries; the Sync Destination topology (two replicated UnboundID Identity Data Stores) has
only the base entry and the cn=Sync User entry. Both Source and Destination topologies have
their LDAP Change Logs enabled. Because both topologies are not actively being updated, the
resync tool can be run with one pass through the entries.

To Verify the Synchronization Configuration Using Resync

Use resync with the --dry-run option to check the synchronization configuration. The
following example does a dry-run process to verify the Sync configuration and creates entries
that are not present in the Source Destination. The output also displays a timestamp that can
be tracked in the logs.

$ bin/resync --pipe-name sun-to-UnboundID-sync-pipe --numPasses 1 --dry-run

Starting Pass 1

Status after completing all passes[20/Mar/2010:10:20:07 -0500]

Source entries retrieved 2003
Entries missing 2002
Entries out-of-sync 1
Duration (seconds) 4

Resync completed in 4 s.

0 entries were in-sync, 0 entries were modified, 0 entries were created,
1 entries are still out-of-sync, 2002 entries are still missing, and
0 entries could not be processed due to an error

Configuring the Identity Data Sync

91

Populating an Empty Sync Destination Topology Using Resync

The resync tool can populate an empty Sync Destination with the Sync Source entries prior
to real-time synchronization. If you already have data from the Sync Source in the Sync
Destination, you can use the resync tool to synchronize entries with the Sync Source.

The following procedures shows how you can use resync to populate an empty Sync Destination
topology for small datasets. For large deployments, see To Populate an Empty Sync Destination
Topology Using translate-ldif.

To Populate an Empty Sync Destination Topology Using Resync

1. In this example, assume that the Sync Destination topology has only the base entry
(dc=example,dc=com) and the cn=Sync User entry. Run resync in a dry-run (see the
previous example). Assume an error was generated during the process.

2. Rerun the resync command with the log file path and with the log level debug. Do not
include the --dry-run option. Any logging performed during a resync operation appears in
the logs/tools/resync.log.

$ bin/resync --pipe-name sun-to-UnboundID-sync-pipe \
 --numPasses 1 --logLevel debug

3. Open the logs/resync-failed-DNs.log file in a text editor to locate the error and fix it. As
seen below, sometimes an entry cannot be created because the parent entry does not exist.
After creating the parent entry on the destination (ou=People,dc=example,dc=com), you can
rerun the resync command to create the missing entries.

Entry '(see below)' was dropped because there was a failure at the resource:
Failed to create entry uid=mlott,ou=People,dc=example,dc=com. Cause:
LDAPException(resultCode=no such object, errorMessage='Entry
uid=user.38,ou=People,dc=example,dc=com cannot be added because its parent
entry ou=People,dc=example,dc=com does not exist in the server',
 matchedDN='dc=example,dc=com')
(id=1893859385ResourceOperationFailedException.java:126 Build revision=4881)
dn: uid=user.38,ou=People,dc=example,dc=com

4. Rerun the resync command. The command creates the entries in the Sync Destination
topology that are present in the Sync Source topology.

$ bin/resync --pipe-name sun-to-UnboundID-sync-pipe

...(output from each pass)...

Status after completing all passes[20/Mar/2010:10:23:33 -0500]

Source entries retrieved 160
Entries in-sync 156
Entries created 4
Duration (seconds) 11

Resync completed in 12s.

156 entries were in-sync, 0 entries were modified, 4 entries were created, 0 entries
are still out-of-sync, 0 entries are still missing, and 0 entries could not be
processed due to an error

Configuring the Identity Data Sync

92

Populating an Empty Sync Destination Topology Using translate-ldif

If you populate a Sync Destination using the resync tool, it could take some time to load a large
dataset. For a faster method, you can use the translate-ldif tool to populate an empty Sync
Destination topology for a very large number of entries. The translate-ldif tool translates the
contents of an LDIF file in Sync Source format to Sync Destination format using the filtering
and mapping criteria defined for the Sync Pipe’s Sync Classes.

To Populate an Empty Sync Destination Topology Using translate-ldif

1. On a Sync Source Server, export the data to an LDIF file.

2. On the Identity Data Sync, run the translate-ldif tool to translate or filter the entries into
the Sync Destination format, if necessary. Make sure to specify the path to the LDIF file on
the Sync Source server and the path to the output file.

$ bin/translate-ldif --pipe-name sun-to-UnboundID-sync-pipe \
 --sourceLDIF /path/to/sync-source-data.ldif \
 --destinationLDIF /path/to/sync-dest-data.ldif

3. On a Sync Destination Server, import the data using the path to the translated LDIF file.

Setting the Synchronization Rate Using Resync

The resync command has a --ratePerSecondFile option that allows you to set a specific
synchronization rate (sync changes per second). The option allows you to adjust the rate
during off-peak hours or adjust the rate based on measured loads for very long running resync
operations by simply changing the rate in the file.

To use this feature, run resync first at 100 operations/sec, measure the impact on the source
servers, then adjust as desired. The file must contain a single positive integer number surrounded
by white space (for example, 1) to start with. If the file is updated with an invalid number (for
example, changing it to zero, a negative number, or something other than an integer number),
the rate is not updated.

To Set the Synchronization Rate Using Resync

1. Create a text file containing the resync rate. The number must be a positive integer
surrounded by white space.

$ echo ’100 ’ > rate.txt

2. Run the resync command with the --ratePerSecondFile option.

$ bin/resync --pipe-name "sun-to-UnboundID-sync-pipe" \
 --ratePerSecondPath rate.txt

Configuring the Identity Data Sync

93

Note: The resync command also has a --ratePerSecond option that
allows you to set the sync rates per second by specifying the target
rate. The option allows you to throttle resync and reduce its load on the
end servers. If this option is not provided, then the tool resyncs at the
maximum rate.

3. Check the rate on your system, and then update the rate file again to change the resync rate.

$ echo ’150 ’ > rate.txt

Synchronizing a Specific List of DNs

The resync command allows you to synchronize a specific set of DNs that are read from a file
using the --sourceInputFile option. The option is most useful for very large datasets that
require faster processing by targeting individual base-level searches for each source DN in the
file. If any DN fails for any reason (parsing, search, or process errors), the command creates an
output file of the skipped entries (resync-failed-DNs.log), which can be rerun again.

The file must contain only a list of DNs in LDIF format with "dn:" or "dn::". The file can
include comment lines by starting each line with a pound sign (#). All DNs can be wrapped and
are assumed to be wrapped on any lines that begin with a space followed by text. Empty lines
are ignored.

For small files, you can create a file manually. For large files, you can use ldapsearch to create
an LDIF file, as seen below.

To Synchronize a Specific List of DNs

1. To create a file of DNs, you can enter each manually for small files, or you can run an
ldapsearch command using the special OID "1.1" extension, which only returns the DNs in
your DIT. For example, on the Sync Source directory server, run the following command:

$ bin/ldapsearch --port 1389 --bindDN "uid=admin,dc=example,dc=com \
 --baseDN dc=example,dc=com --searchScope sub "(objectclass=*)" "1.1" > dn.ldif

2. Task step.

$ bin/resync --pipe-name "sun-to-UnboundID-pipe" --sourceInputFile dn.ldif

Starting pass 1

[20/Mar/2010:10:32:11 -0500]

Resync pass 1
Source entries retrieved 1999
Entries created 981
Current pass, entries processed 981
Duration (seconds) 10
Average ops/second 98

Status after completing all passes[20/Mar/2010:10:32:18 -0500]

Source entries retrieved 2003
Entries created 2003

Configuring the Identity Data Sync

94

Duration (seconds) 16
Average ops/second 98
Resync completed in 16 s.

0 entries were in-sync, 0 entries were modified, 2003 entries were created, 0 entries
are still out-of-sync, 0 entries are still missing, and 0 entries could not be
processed due to an error

3. If any errors occurred, view the logs/tools/resync-failed-DNs.log to see the skipped
DNs. Then, correct the source DNs file, and rerun the resync command.

Controlling Real Time Synchronization

In real-time mode, the UnboundID Identity Data Sync polls the source server for changes and
synchronizes the destination entries immediately. Once the UnboundID Identity Data Sync
determines that a detected change should be included in the synchronization, it fetches the full
entry from the source. Then, it finds the corresponding entry in the destination end-point using
flexible correlation rules and applies the minimum set of changes to bring the attributes that
were modified into sync. The server fetches and compares the full entries to make sure it does
not synchronize any stale data from the change log.

About the Realtime-Sync Tool

The UnboundID Identity Data Sync provides a utility to control real-time synchronization
including starting and stopping synchronization globally or for individual Sync Pipes. The
tool also provides features to set a specific starting point for real-time synchronization, so that
changes made before the current time are ignored, and to schedule a stop or start at a future date.

Table 9: Realtime-Sync Command Options

Realtime-Sync Options Descriptions

start Start synchronization globally or for a specific Sync Pipe.

stop Stop synchronization globally or for a specific Sync Pipe.

set-startpoint Start synchronization for a specific Sync Pipe at a specified time. When specified, all

changes made prior to the current time the command is invoked will be ignored by the

Sync Pipe. Additional options include:

• --change-number {change number}. Begin synchronization at a specific change

number in the change log. This feature cannot be used if the endpoint server is

the UnboundID Identity Proxy. See "Syncing Through Proxy Servers" for more

information.

• --startpoint-rewind {duration}. Begin synchronization by "rewinding" or starting

the synchronization back at a specified duration from the current time. The

duration string has the format: d (days), h (hours), m (minutes), s (seconds), ms

(milliseconds). For example, to start the synchronization state that occurred 1 day,

2 hours, 12 minutes, and 30 seconds, use "1d2h12m30s". You can also specify

milliseconds, for example, "300ms".

The set-startpoint option cannot be run on a Sync Pipe that has already started.

Configuring the Identity Data Sync

95

Note: To get an accurate picture of the current status of real-time
synchronization, view the monitor properties: num-sync-ops-in-flight,
num-ops-in-queue, and source-unretrieved-changes. For example, use
ldapsearch to view a specific Sync Pipe’s monitor information:

$ bin/ldapsearch --baseDN cn=monitor --searchScope sub "(cn=Sync Pipe
 Monitor: PIPE_NAME)"

Another useful tool is the Periodic Stats Logger.

Starting Real Time Synchronization Globally

You can start real time synchronization globally for all Sync Pipes using the realtime-sync
tool in the bin directory (or bat directory for Microsoft Windows systems). The command
assumes that you have properly configured your Synchronization topology.

To Start Real Time Synchronization Globally

1. Use realtime-sync to start a synchronization topology globally. Assume that a single Sync
Pipe called "dsee-to-UnboundID-sync-pipe" exists.

$ bin/realtime-sync start --pipe-name "dsee-to-UnboundID-sync-pipe" \
 --port 389 --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret

2. If you have more than one Sync Pipe configured, specify each Sync Pipe using the --
pipe-name option. The following example starts realtime-sync for a bidirectional
synchronization topology.

$ bin/realtime-sync start --pipe-name "Sun DS to UnboundID DS" \
 --pipe-name "UnboundID DS to Sun DS" --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret

Pausing Synchronization

You can pause or start synchronization by using the 'start' and 'stop' subcommands. If
synchronization is stopped and then restarted, then changes made at the Sync Source while
synchronization was stopped will still be detected and applied.

Synchronization for individual Sync Pipes can be started or stopped using the --pipe-name
argument. If the --pipe-name argument is omitted, then synchronization is started or stopped
globally.

To Stop Real Time Synchronization Globally

• Use realtime-sync to stop a synchronization topology globally. This command will stop all
Sync Pipes started.

$ bin/realtime-sync stop --port 389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret --no-prompt

Configuring the Identity Data Sync

96

To Stop an Individual Sync Pipe

• Use realtime-sync to stop an individual Sync Pipe. Assume the topology has two Sync
Pipes, Sync Pipe1 and Sync Pipe2. This command stops Sync Pipe1.

$ bin/realtime-sync stop --pipe-name "Sync Pipe1" --port 389 \
 --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret --no-prompt

Setting Startpoints

You can set startpoints that instructs the Sync Pipe to ignore all changes made prior to the
current time using the set-startpoint subcommand with the realtime-sync command. Once
synchronization is started, only changes made after this command is run will be detected at the
Sync Source and applied at the Sync Destination.

The set-startpoint subcommand is often run during the initial setup prior to starting real-
time synchronization for the first time. It should be run prior to initializing the data in the Sync
Destination, which is usually done either by using the resync command or by exporting data
from the Sync Source, running translate-ldif, and then importing the data into the Sync
Destination.

The set-startpoint subcommand also has two convenient options that can start
synchronization at a specific change log number or back at a sync state that occurred at a
specific time duration ago (for example, you can start synchronizing at a sync state that occurred
10 minutes ago from the current time).

To Set a Synchronization Startpoint

1. Stop the synchronization topology globally (if it had been started previously) using the
realtime-sync command with the stop subcommand.

$ bin/realtime-sync stop --pipe-name "Sync Pipe1" \
 --port 389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret --no-prompt

2. Set the startpoint for the synchronization topology. Any changes made before setting this
command will be ignored.

$ bin/realtime-sync set-startpoint --pipe-name "Sync Pipe1" \
 --port 389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret --no-prompt
 --beginning-of-changelog

Set StartPoint task 2011072109564107 scheduled to start immediately
[21/Jul/2011:09:56:41 -0500] severity="INFORMATION" msgCount=0 msgID=1889535170
message="The startpoint has been set for Sync Pipe 'Sync Pipe1'.
Synchronization will resume from the last change number in the Sync Source"
Set StartPoint task 2011072109564107 has been successfully completed

Configuring the Identity Data Sync

97

To Restart the Sync at a Specific Change Log Event

1. First, search for a specific change log event from which you want to restart the
synchronization state. On one of the endpoint servers, run ldapsearch to search the change
log.

$ bin/ldapsearch -p 1389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret --baseDN cn=changelog --dontWrap
 "(objectclass=*)"

 dn: cn=changelog
 objectClass: top
 objectClass: untypedObject
 cn: changelog

 dn: changeNumber=1,cn=changelog
 objectClass: changeLogEntry
 objectClass: top
 targetDN: uid=user.13,ou=People,dc=example,dc=com
 changeType: modify
 changes::
 cmVwbGFjZTogcm9vbU51bWJlcgpyb29tTnVtYmVyOiAwMTM4Ci0KcmVwbGFjZTogbW9kaW
 ZpZXJzTmFtZQptb2RpZmllcnNOYW1lOiBjbj1EaXJlY3RvcnkgTWFuYWdlcixjbj1Sb290
 IEROcyxjbj1jb25maWcKLQpyZXBsYWNlOiBkcy11cGRhdGUtdGltZQpkcy11cGRhdGUtdG
 ltZTo6IEFBQUJKZ25OWlUwPQotCgA=
 changenumber: 1
 ... (more output)
 dn: changeNumber=2329,cn=changelog
 objectClass: changeLogEntry
 objectClass: top
 targetDN: uid=user.49,ou=People,dc=example,dc=com
 changeType: modify
 changes::
 cmVwbGFjZTogcm9vbU51bWJlcgpyb29tTnVtYmVyOiAwNDMzCi0KcmVwbGFjZTogbW9kaW
 ZpZXJzTmFtZQptb2RpZmllcnNOYW1lOiBjbj1EaXJlY3RvcnkgTWFuYWdlcixjbj1Sb290
 IEROcyxjbj1jb25maWcKLQpyZXBsYWNlOiBkcy11cGRhdGUtdGltZQpkcy11cGRhdGUtdG
 ltZTo6IEFBQUJKZ25OMC84PQotCgA=
 changenumber: 2329

2. Restart synchronization from change number 2329 using the realtime-sync tool. Any event
before this change number will not be synchronized to the target endpoint.

$ bin/realtime-sync set-startpoint --change-number 2329 \
 --pipe-name "Sync Pipe 1" --bindPassword secret --no-prompt

To Rewind the Sync State by a Specific Time Duration

The following command will start begin synchronizing data at the state that occurred 2 hours
and 30 minutes ago from the current time on External Server 1 for Sync Pipe "Sync Pipe 1".
Any changes made before this time will not be synchronized to the target servers. You can
specify days (d), hours (h), minutes (m), seconds (s), or milliseconds (ms).

• Use realtime-sync with the --startpoint-rewind option to "rewind" the synchronization state
and begin synchronizing at the specified time duration ago.

$ bin/realtime-sync set-startpoint --startpoint-rewind 2h30m \
 --pipe-name "Sync Pipe 1" --bindPassword secret --no-prompt

Configuring the Identity Data Sync

98

Scheduling a Realtime Sync as a Task

The realtime-sync tool features both an offline mode of operation as well as the ability to
schedule an operation to run within the Identity Data Sync's process. To schedule an operation,
supply LDAP connection options that allow this tool to communicate with the server through
its task interface. Tasks can be scheduled to run immediately or at a later time. Once scheduled,
tasks can be managed using the manage-tasks tool.

To Schedule a Realtime Sync as a Task

1. Use the --start option with the realtime-sync command to schedule a start for the syn-
chronization topology. The following command will set the start time at July 21, 2009 at
12:01:00 AM. You can also schedule a stop using the stop subcommand.

$ bin/realtime-sync set-startpoint \
 --pipe-name "sun-to-UnboundID-sync-pipe" \
 --port 389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret --start 20110721000100 --no-prompt

Set StartPoint task 2009072016103807 scheduled to start Jul 21, 2011 12:01:00 AM CDT

2. Run the manage-tasks tool to manage or cancel the schedule task.

$ bin/manage-tasks --port 7389 \
 --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret

Configuring Attribute Maps

Attribute Maps are collections of Attribute Mappings, where each mapping defines those
destination attributes and value that differ from that of source attributes and how the system will
translate the data from one system to another. There are three types of Attribute mappings that
can be defined:

• Direct mapping. Attributes are directly mapped to another attribute. For example,
employeenumber->employeeid

• Constructed Mapping. Destination attribute values are derived from source attribute values
and static text. For example: {givenname}.{sn}@example.com->mail

• DN Mapping. Attributes are mapped for attributes that store DNs. You can reference the
same DN maps that map entry DNs. For example, an attribute called manager.

The Identity Data Sync automatically validates any attribute mapping prior to applying the
configuration.

Configuring the Identity Data Sync

99

Configuring an Attribute Map Using dsconfig Interactive

You can use the dsconfig tool in interactive mode to create an attribute map. A Sync Class can
reference multiple Attribute Maps. Multiple Sync Classes can share the same Attribute Map.

To Configure an Attribute Map Using dsconfig Interactive

1. On the Configuration Console main menu, type the number corresponding to the Attribute
Map management menu.

2. On the Attribute Map management menu, type the number corresponding to creating a new
attribute map.

3. Next, enter a name for the Attribute Map.

4. On the Attribute Map Property menu, type the number corresponding to entering a general
description for the Attribute Map. This step is optional. Follow the prompts to enter a
description for the Attribute Map. When completed, type f to save the changes and apply.

You have successfully created an attribute map. Next, you must create specific add attribute
mappings to your map.

Note: You can use dsconfig in non-interactive mode to create an
attribute for easy scripting.

$ bin/dsconfig --no-prompt create-attribute-map \
 --map-name test-attribute-map \
 --set "description:Test Attribute Map" \
 --port 389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

Configuring an Attribute Mapping Using dsconfig Interactive

You can use the dsconfig tool in non-interactive mode to create one or more attribute
mappings. In this example, the Attribute Mapping sets up a Direct Mapping for one attribute:
employeeNumber -> employeeID.

Note: The Identity Data Sync provides a scramble-value advanced
property that can be configured with each Attribute Mapping. The scramble
feature allows you to load a Sync Destination topology with the scrambled
values of real production data attributes. Obfuscating production data is
convenient in testing environments.

Configuring the Identity Data Sync

100

To Configure an Attribute Mapping Using dsconfig Interactice

1. On the Configuration Console main menu, type the number corresponding to the Attribute
Mapping Management menu.

2. On the Attribute Mapping Management menu, type the number corresponding to creating a
new mapping.

3. Select the attribute map that you want to configure. If there is only one Attribute Map, press
Enter to accept the default.

4. Select the type of Attribute Mapping that you want to create: 1 for Constructed, 2 for Direct
Attribute, 3 for DN Attribute. In this example, type 2 for a Direct Attribute Mapping.

5. Enter a name for the to-attribute for the Direct Attribute Mapping. For this example, type
employeeID.

6. Enter a name for the from-attribute for the Direct Mapping. For this example, type
employeeNumber.

7. On the Directory Attribute Mapping menu, type f to save and apply the changes.

8. After you have configured your Attribute Mappings, remember to add the new Attribute Map
to a new Sync Class or modify an existing Sync Class.

Configuring an Attribute Mapping Using dsconfig Non-Interactive

You can use the dsconfig tool in non-interactive mode to create an attribute mapping. You can
view the log of all configuration changes in the logs/config-audit.log as well as view the
analogous commands to back out of each change.

To Configure an Attribute Mapping Using dsconfig Non-Interactive

1. On the Identity Data Sync, use dsconfig in non-interactive mode to create an Attribute
Mapping.

$ bin/dsconfig --no-prompt create-attribute-mapping \
 --map-name test-attribute-map \
 --mapping-name employeeID \
 --type direct \
 --set from-attribute:employeeNumber \
 --port 389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

2. After you have configured your Attribute Mappings, remember to add the new Attribute Map
to a new Sync Class or modify an existing Sync Class.

$ bin/dsconfig --no-prompt set-sync-class-prop \
 --pipe-name test-sync-pipe \
 --class-name test-sync-class \
 --set attribute-map:test-attribute-map \
 --port 389 --bindDN "uid=admin,dc=example,dc=com" \

Configuring the Identity Data Sync

101

 --bindPassword secret

Configuring the Directory Server Backend for
Synchronizing Deletes

One important attribute that must be configured on the directory server’s change log backend is
the changelog-deleted-entry-include-attribute property. The property specifies which
attributes should be recorded in the change log entry during a DELETE operation. Normally, the
Identity Data Sync cannot correlate a deleted entry to the entry on the destination as there is not
enough information to figure out what was deleted. If you have a Sync Class configured with
a filter, such as "include-filter: objectClass=person," then you need the objectClass
attribute to be recorded in the change log entry. Likewise, if you have special correlation
attributes (other than DN), you will need those attributes recorded on the change log entry to be
properly synchronized at the endpoint server.

To Configure the Changelog-Deleted-Entry-Include-Attribute Property

• On each directory server backend (UnboundID Identity Data Store), use the dsconfig
command to set the property. Remember to add the connection parameters specific to your
server (hostname, port, bind DN, and bind DN password).

$ bin/dsconfig set-backend-prop --backend-name changelog \
 --set changelog-deleted-entry-include-attribute:objectClass

To Synchronize Deletes on Sun DSEE Endpoints

If the destination endpoint in a one-way or bi-directional Sync configuration is a Oracle/Sun
DSEE (or Sun DS) server, the Sun DSEE server does not store the value of the user deleting
the entry, specified in the modifiersname attribute. It only stores the value of the user who last
modified the entry while it still existed. To set up a Sun DSEE destination endpoint to record
the user who deleted the entry, you can use the UnboundID Server SDK to create a plug-in as
follows:

1. Update the Sun DSEE schema to include a deleted-by-sync auxiliary objectclass. It will only
be used as a marker objectclass, so it will not require or allow additional attributes to be
present on an entry.

2. Update the Sun DSEE Retro Change Log Plug-in to include the deleted-by-sync auxiliary
objectclass as a value for the deletedEntryAttrs attribute.

3. Write an LDAPSyncDestinationPlugin script that in the preDelete() method modifies the
entry that is being deleted to include the deleted-by-sync objectclass.

4. Update the Sync Class filter that is excluding changes by the Sync User to also include (!
(objectclass=deleted-by-sync)).

Configuring the Identity Data Sync

102

Configuring DN Maps

Similar to Attribute Maps, DN Maps define mappings when destination DNs differ from source
DNs. These differences must be resolved using DN Maps in order for synchronization to
successfully take place. For example, the Sync Source could have a DN in the following format:

uid=jdoe,ou=People,dc=example,dc=com

While the Sync Destination could have the standard X.500 DN format:

• Wildcards. DN Mappings allow the use of wild cards for DN transformations. A single wild
card ("*") matches a single RDN component and can be used any number of times. The
double wild card ("**") matches zero or more RDN components and can be used only once.
The wild card values can be used in the to-dn-pattern attribute using "{1}" to replace their
original index position in the pattern, or "{attr}" to match an attribute value. For example:

*,**,dc=com->{1},ou=012,o=example,c=us

For example, given the DN, uid=johndoe,ou=People,dc=example,dc=com, we want to map
the DN to a target DN, uid=johndoe,ou=012,o=example,c=us.

• "*" matches one RDN component. Thus, "*" matches "uid=johndoe".

• "**" matches zero or more RDN components. Thus, "**" matches
"ou=People,dc=example".

• "dc=com" matches "dc=com" in the DN.

The DN is mapped to the "{1},ou=012,o=example,c=us".

• {1} substitutes the first wildcard element. Thus, {1} substitutes "uid=johndoe", so that the
DN is successfully mapped to "uid=johndoe,ou=012,o=example,c=us".Regular Expressions.
You can also use regular expressions and attributes from the user entry in the to-dn-pattern
attribute. For example, the following expression constructs a value for the uid attribute,
which is the RDN, out of the initials (first letter of givenname and sn) and the employee ID
(the eid attribute) of a user.

uid={givenname:/^(.)(.*)/$1/s}{sn:/^(.)(.*)/$1/s}{eid},{2},o=exampl

For more information, see the Configuration Reference Entry DN Map for more details on
using regular expression syntax using the to-dn-pattern attribute.

Note: The Identity Data Sync automatically validates any DN mapping prior
to applying the configuration.

Configuring a DN Map Using dsconfig Interactive

You can use the dsconfig tool in interactive mode to create a DN Map. A Sync Class can
reference multiple DN Maps. Multiple Sync Classes can share the same DN Map.

Configuring the Identity Data Sync

103

To Configure a DN Map Using dsconfig Interactive

1. On the Configuration Console main menu, type the number corresponding to displaying the
DN Map Management menu.

2. On the DN Map management menu, type the number corresponding to creating a new DN
map.

3. Enter a unique name for the DN Map.

4. For the from-dn-pattern property, enter a value. For example, type
**,dc=myexample,dc=com.

5. For the to-dn-pattern property, enter a value. For example, type {1},o=example.com.

6. On the DN Map Properties menu, type the number corresponding to entering a general
description for the DN Map. This step is optional. Follow the prompts to enter a description
for the DN Map. When completed, type f to save the changes and apply.

7. After you have configured your DN Mappings, remember to add the new DN Map to a new
Sync Class or modify an existing Sync Class.

Configuring a DN Map Using dsconfig Non-Interactive

You can configure a DN Map using the dsconfig tool in non-interactive mode that can
be included in a setup script in another Identity Data Sync installation. Make sure that you
understand the mapping process. If you need any assistance, contact your authorized support
provider.

To Configure a DN Map Using dsconfig Non-Interactive

1. Use dsconfig to create a DN Map for the Synchronization Server.

$ bin/dsconfig --no-prompt create-dn-map \
 --map-name nested-to-flattened \
 --set "from-dn-pattern:*,*,dc=example,dc=com" \
 --set "to-dn-pattern:uid={givenname:/^(.)(.*)/\$1/s}{sn:/^(.)(.*)/\$1/s}(eid},
{2},o=example" \
 --port 1389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

2. After you have configured your DN Mappings, remember to add the new DN Map to a new
Sync Class or modify an existing Sync Class.

$ bin/dsconfig --no-prompt set-sync-class-prop \
 --pipe-name test-sync-pipe \
 --class-name test-sync-class \
 --set dn-map:test-dn-map \
 --port 389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

Configuring the Identity Data Sync

104

Configuring Fractional Replication

The UnboundID Identity Data Sync supports fractional replication to any type of server. For
example, if a replica only performs user authentications, then the Identity Data Sync can
be configured to propagate, for example, only the uid and userpassword password policy
attributes, reducing the database size at the replica and the network traffic needed to keep this
server in sync to this server.

The following example presents a fractional replication use case, where the uid and
userPassword attributes of all entries in the Source topology are synchronized to the
Destination topology. Because the uid and userPassword attributes are present, you also need
to synchronize the objectclass attribute. The example assumes that you have already configured
a Synchronization Server and defined the sync pipe, sync class, and external servers but have
not run realtime synchronization or bulk resync.

To Configure Fractional Replication

1. On the Configuration Console main menu, type the number corresponding to Sync Classes.

2. On the Sync Class management menu, type the number corresponding to viewing and editing
an existing Sync Class. Assume that only one Sync Class has been defined thus far.

3. Verify that the Sync Pipe and Sync Class exist.

4. On the Sync Class Properties menu, type the number specifying the source LDAP filter
(include-filter property) that defines which source entries are to be included in the Sync
Class.

5. On the Include-Filter Property menu, type the number corresponding to adding a filter value.
For this example, type (objectclass=person). You will prompted to enter another filter.
Press Enter to continue. On the menu, enter 1 to use the value when specifying it.

6. On the Sync Class Properties menu, type the number corresponding to the auto-mapped-
source-attribute property. When you change the value from "-all-" to a specific
attribute, then only the specified attribute is automatically mapped from the Source topology
to the Destination topology.

7. On the Auto-Mapped-Source-Attribute Property menu, type the number corresponding to
adding the source attributes that will be automatically mapped to the Destination attributes of
the same name. When prompted, enter each attribute, and then press Enter.

Enter another value for the 'auto-mapped-source-attribute' property
 [continue]: uid
Enter another value for the 'auto-mapped-source-attribute' property
 [continue]: userPassword
Enter another value for the 'auto-mapped-source-attribute' property
 [continue]: objectclass
Enter another value for the 'auto-mapped-source-attribute' property
 [continue]:

Configuring the Identity Data Sync

105

8. On the Auto-Mapped-Source-Attribute Property menu, type the number corresponding to
removing one or more values. In this example, we want to remove the "-all-" value, so that
only the objectclass, uid, and userPassword attributes are only synchronized.

9. On the Auto-Mapped-Source-Attribute Property menu, press Enter to accept the values.

10.On the Sync Class Properties menu, type the number corresponding to excluding some
attributes from the synchronization process. Because we are using the objectclass=person
filter, we must exclude the cn, givenName, and sn attributes. Enter the menu number
corresponding to adding one or more attributes, and then add each attribute that you want
to exclude on the excluded-auto-mapped-source-attributes Property menu. Here,
we want to exclude the cn, and sn attributes, which are required attributes of the Person
objectclass. We also exclude the givenName attribute, which is an optional attribute of the
inetOrgPerson objectclass.

Enter another value for the 'excluded-auto-mapped-source-attributes' property
 [continue]: givenName
Enter another value for the 'excluded-auto-mapped-source-attributes' property
 [continue]: sn
Enter another value for the 'excluded-auto-mapped-source-attributes' property
 [continue]:

11.On the Excluded-Auto-Mapped-Source-Attributes Property menu, confirm your selections,
and then press Enter to accept the changes.

Note: If you have a situation where you use entryUUID as a correlation
attribute, you may encounter some attribute uniqueness errors while
using the resync tool. Two ways to fix this are: 1) set the excluded-
auto-mapped-source-attributes property value to entryUUID
on the Sync Class configuration menu, or 2) run resync with the --
excludeDestinationAttr entryUUID argument.

12.On the Sync Class Properties menu, review the configuration, and then type f to accept the
changes.

13.On the server instances in the Destination topology, you must turn off schema checking
due to a schema error that occurs when the required attributes in the Person objectclass
are not present. The command assumes that you have already set the global configuration
property for the server-group to "all-servers". You can use bin/dsconfig with the --
applyChangeTo server-group in non-interactive mode to turn off schema checking on all
of the servers in the group.

$ bin/dsconfig --no-prompt set-global-configuration-prop \
 --set check-schema:false --applyChangeTo server-group \
 --port 3389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret

14.Run bin/resync to load the filtered data from the source endpoint to the target endpoint.

$ bin/resync --pipe-name "test-sync-pipe" --numPasses 3

15.Run bin/realtime-sync to start synchronization.

$ bin/realtime-sync start --pipe-name "test-sync-pipe" \

Configuring the Identity Data Sync

106

 --port 7389 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret --no-prompt

You have successfully configured a fractional replication example.

Managing Failover Behavior

The Identity Data Sync delivers high availability in production environments using robust
failover mechanisms. To illustrate the generalized failover behavior of the Synchronization
Server, Figure 13 shows a simplified synchronization topology with a single failover server on
the source, destination, and Identity Data Sync, respectively. The gray lines represent possible
failover connections in the event the server is down. It is assumed that the external servers are
prioritized so that src1 has higher priority than src2; dest1 has higher priority than dest2.

The main Identity Data Sync and its redundant failover instance communicate with each other
over LDAP and bind using "cn=IntraSync User,cn=Root DNs,cn=config". The servers
run periodic health checks on each other and share information on all changes that have been
processed. Whenever the failover server loses connection to the main Identity Data Sync, for
example, during a ping or an LDAP search request, it assumes that the main server is down and
begins processing changes from the last known change. Control reverts back to the main server
once it is back online.

Unlike the Identity Data Syncs, the external servers and their corresponding failover server(s) do
not run periodic health checks. If an external server goes offline (e.g., dest1), the failover server
(e.g., dest2) will receive transactions and remain connected to the Identity Data Sync until the
Sync Pipe is restarted, regardless if the main external server goes back online.

Figure 13: The Identity Data Sync in a Simplified Setup

Figure 14: The Identity Data Sync during a Failover

Configuring the Identity Data Sync

107

Conditions that Trigger Immediate Failover

Immediate failover occurs when the Identity Data Sync encounters the following error code that
are returned from an external server. The error code numbers are presented in parentheses:

➢ BUSY (51)
➢ UNAVAILABLE (52)
➢ SERVER CONNECTION CLOSED (81)
➢ CONNECT ERROR (91)

For example, if the Identity Data Sync attempts a write operation to a target server (e.g., src1 or
dest1) that is in lockdown mode, the Identity Data Sync will see a returned UNAVAILABLE
error code. The Identity Data Sync will then automatically fail over to the next highest
prioritized redundant server instance in the target topology (e.g., src2 or dest2), issue an alert,
and then reissue the retry attempt. If the operation is unsuccessful for any reason, the server logs
the error.

Failover Server Preference

The Identity Data Sync supports endpoint failover, which is configurable using the location
property on the external servers. By default, the Sync Server prefers to connect to endpoint
servers in the same location as itself and also prefers to failover to endpoint servers in the same
location as itself. If there are no location settings configured, then the Identity Data Sync will
simply iterate through the configured list of external servers on the Sync Source and Sync
Destination when failing over.

The Sync Server does not do periodic health checks and will not fail back to a more preferred
server automatically. Because of the cost of sync failover (establishing a new connection pool,
determining where to pick back up in the changelog, etc.), it will always stay connected to
a given server until that server stops responding or until the Sync Pipe is restarted. When a
failover does happen, it will always go back to the most preferred server (optionally using
location settings to determine this) and work its way down the list. The following provides an
example configuration of external servers for illustration purposes.

austin1.server.com:1389
london1.server.com:2389
boston1.server.com:3389
austin2.server.com:4389
boston2.server.com:5389
london2.server.com:6389

Although they are given descriptive names, these servers do not have their location property
set and thus will not be able to use location-based failover. If the austin1 server were to become
unavailable, the Sync Server will automatically pick up changes on the next server on the list,
london1. If london1 is also down, then the next server, boston1 will be picked up. Once the Sync
Server iterates through the list, it returns to the top of the list. So, if the Identity Data Sync is
connected to london2 and it goes down, it will fail over to austin1.

The previous example is not optimal in terms of WAN-friendliness. To minimize WAN traffic,
you can configure the location property for each external server using the dsconfig command
on the Sync Server. We can expand the previous example to include location properties

Configuring the Identity Data Sync

108

for each server. Assume that Sync Server has its own location property (set in the Global
Configuration) set to "austin".

austin1.server.com:1389 location=austin
london1.server.com:2389 location=london
boston1.server.com:3389 location=boston
austin2.server.com:4389 location=austin
boston2.server.com:5389 location=boston
london2.server.com:6389 location=london

With the location property set for each server, the Identity Data Sync gets it changes from
server austin1. If austin1 goes down, the Sync Server will pick up changes to austin2. If
austin2 goes down, then the Sync Server will iterate through the rest of the list in the order it is
configured (i.e., london1, boston1, boston2, london2).

The location property has another sub-property, preferred-failover-location that
specifies a set of alternate locations in which servers may be accessed if no servers in this
Location are available. If multiple values are provided, then the order in which the locations are
listed is the order in which they should be tried. The preferred-failover-location property
provides more control over the failover process and allows the failover process to jump to the
specified location. Care must be used so that circular failover reference does not take place. In
most applications, the preferred-failover-location property will not be needed. Here is an
example configuration:

austin1.server.com:1389 location=austin preferred-failover-location=boston
london1.server.com:2389 location=london preferred-failover-location=austin
boston1.server.com:3389 location=boston preferred-failover-location=london
austin2.server.com:4389 location=austin preferred-failover-location=boston
boston2.server.com:5389 location=boston preferred-failover-location=austin
london2.server.com:6389 location=london preferred-failover-location=london

The Sync Server will respect the preferred-failover-location if it is set. That is, if it cannot
find any external servers in the same location as itself, it will look for any external servers in
its own preferred-failover-location (in this case, boston). In this example when austin1
becomes unavailable, it will fail over to austin2 because they are in the same location. If austin2
is unavailable, it will fail over to boston1, which is in the preferred-failover-location of
the Sync Server. If boston1 in unavailable, the Sync Server will fail over to boston2, and finally,
it will try the london1 and london2 servers.

Note that any time the Sync Server is currently connected to an endpoint and then loses
connectivity, triggering a failover, it will fail over using the preferred server order as determined
by location (if set), or else the order that the servers are configured. Using the previous example,
this means that it will always try to fail over to austin1 (unless it's failing away from austin1).
And then if austin1 cannot be contacted, it will try austin2, boston1, boston2, london1, and
finally london2. It will keep cycling through in this order until one can be contacted.

To summarize, external servers with the same location as the Sync Server will be first server
to which it fails over, followed by external servers in the preferred failover location of the
Sync Server, followed by external servers with no location defined. The sorting is stable;
servers within a given location will remain in the same relative order that they started in (in
the configured list of external servers). If the Sync Server does not have a location defined, the
failover ordering will be determined by the order of the servers that were configured in the list.

Configuring the Identity Data Sync

109

Configuration Properties that Control Failover Behavior

The Identity Data Sync’s out-of-the-box configuration settings should meet the requirements for
most applications. Administrators should be aware of four important advanced properties to fine
tune the failover mechanism (each property presented in the next section):

➢ max-operation-attempts (sync pipe)
➢ response-timeout (source and destination endpoints)
➢ max-failover-error-code-frequency (source and destination endpoints)
➢ max-backtrack-replication-latency (source endpoints only)

These properties apply to the following LDAP error codes:

Table 10: LDAP Error Codes

Error Codes Description

ADMIN_LIMIT_EXCEEDED (11) Indicates that processing on the requested operation

could not continue, because an administrative limit was

exceeded.

ALIAS_DEREFERENCING_ PROBLEM (36) Indicates that a problem was encountered while

attempting to dereference an alias for a search operation.

CANCELED (118) Indicates that a cancel request was successful, or that the

specified operation was canceled.

CLIENT_SIDE_LOCAL_ERROR (82) Indicates that a local (client-side) error occurred.

CLIENT_SIDE_ENCODING_ERROR (83) Indicates that an error occurred while encoding a request.

CLIENT_SIDE_DECODING_ERROR (84) Indicates that an error occurred while decoding a request.

CLIENT_SIDE_TIMEOUT (85) Indicates that a client-side timeout occurred.

CLIENT_SIDE_USER_CANCELLED (88) Indicates that a user cancelled a client-side operation.

CLIENT_SIDE_NO_MEMORY (90) Indicates that the client could not obtain enough memory

to perform the requested operation.

CLIENT_SIDE_CLIENT_LOOP (96) Indicates that a referral loop is detected.

CLIENT_SIDE_REFERRAL_LIMIT_ EXCEEDED (97) Indicates that the referral hop limit was exceeded.

DECODING_ERROR (84) Indicates that an error occurred while decoding a

response.

ENCODING_ERROR (83) Indicates that an error occurred while encoding a

response.

INTERACTIVE_TRANSACTION_ ABORTED (30221001) Indicates that an interactive transaction was aborted.

LOCAL_ERROR (82) Indicates that a local error occurred.

LOOP_DETECT (54) Indicates that a referral or chaining loop was detected

while processing a request.

NO_MEMORY (90) ndicates that not enough memory could be obtained to

perform the requested operation.

OPERATIONS_ERROR (1) Indicates that an internal error prevented the operation

from being processed properly.

OTHER (80) Indicates that an error occurred that does not fall into any

of the other categories.

Configuring the Identity Data Sync

110

Error Codes Description

PROTOCOL_ERROR (2) Indicates that the client sent a malformed or illegal request

to the server.

TIME_LIMIT_EXCEEDED (3) Indicates that a time limit was exceeded while attempting

to pro-cess the request.

TIMEOUT (85) Indicates that a timeout occurred.

UNWILLING_TO_PERFORM (53) Indicates that the server is unwilling to perform the

requested operation.

max-operation-attempts

The max-operation-attempts property (part of the Sync Pipe configuration) specifies the
maximum number of times to retry a synchronization operation that fails for reasons other than
the Sync Destination being busy, unavailable, server connection closed, or connect error.

To Change the max-operation-attempts Property

• To change the default number of retries, use dsconfig in non-interactive mode to change
the max-operation-attempts value on the Sync Pipe object. The following command changes
the number of maximum attempts from 5 (default) to 4. Remember to include the LDAP or
LDAPS connection parameters (hostname, port, bindDN, bindDNPassword).

$ bin/dsconfig set-sync-pipe-prop --pipe-name "Test Sync Pipe" \
 --set max-operation-attempts:4

response-timeout

The response-timeout property (part of the Sync Source and Sync Destination configuration)
specifies how long the Identity Data Sync should wait for a response from a search request to a
source server before failing with LDAP result code 85 (client-side timeout). When a client-side
timout occurs, the Sync Source will retry the request according to the max-failover-error-
code-frequency property before failing over to a different source server and performing the
retry. The total number of retries will not exceed the max-operation-attempts property defined
in the Sync Pipe configuration. A value of zero indicates that there should be no client-side
timeout. The default value is one minute.

To Change the response-timeout Property

• To set the response-timeout property, use the dsconfig tool to set it. Assuming a
bidirectional topology, you can set the property on the Sync Source and Sync Destination,
respectively. Remember to include the LDAP or LDAPS connection parameters (hostname,
port, bindDN, bindPassword).

$ bin/dsconfig set-sync-source-prop --source-name src --set "response-timeout:8 s"

$ bin/dsconfig set-sync-destination-prop --destination-name U4389 --set "response-
timeout:9 s"

Configuring the Identity Data Sync

111

max-failover-error-code-frequency

The max-failover-error-code-frequency property (part of the Sync Source configuration)
specifies the maximum time period that an error code can re-appear until it fails over to another
server instance. This property allows the retry logic to be tuned, so that retries can be performed
once on the same server before giving up and trying another server. The value can be set to zero
if there is no acceptable error code frequency and failover should happen immediately. It can
also be set to a very small value (such as 10 ms) if a high frequency of error codes is tolerable.
The default value is 3 minutes.

To Change the max-failover-error-code-frequency Property

• To change the maximum failover error code frequency, use dsconfig in non-interactive
mode to change the property on the Sync Source object. The following command changes
the frequency from 3 minutes to 2 minutes. Remember to include the LDAP or LDAPS
connection parameters (hostname, port, bindDN, bindPassword) with the dsconfig
command.

$ bin/dsconfig set-sync-source-prop --source-name source1 \
 --set "max-failover-error-code-frequency:2 m"

max-backtrack-replication-latency

The max-backtrack-replication-latency property (part of the Sync Source configuration)
sets the time period that a new Identity Data Sync will look for any missed changes in the
change log to account for any changes that come in due to replication delays. The property
should be set to a conservative upper-bound of the maximum replication delay between two
servers in the topology. A value of zero implies that there is no limit on the replication latency.
The default value is 2 hours. The Identity Data Sync stops looking in the change log once
it finds a change that is older than the maximum replication latency than the last change it
processed on the failed server.

For example, after failing over to another server, the Identity Data Sync must look through
the new server’s change log to find the equivalent place to begin synchronizing any changes.
Normally, the Identity Data Sync can successfully backtrack with only a few queries of the
directory, but in some situations, it might have to look further back through the change log
to make sure that no changes were missed. Because the changes can come from a variety of
sources (replication, synchronization, and over LDAP), the replicated changes between directory
servers are interleaved in each change log. When the Identity Data Sync fails over between
servers, it has to backtrack to figure out where synchronization can safely pick up the latest
changes.

Backtracking occurs until the following:

• It determines that there is no previous change log state available for any source servers, so it
must start at the beginning of the change log.

Configuring the Identity Data Sync

112

• It finds the last processed replication change sequence number (CSN) from the last time
it was connected to that replica, if at all. This process is similar to the "set-startpoint"
functionality on the realtime-sync tool.

• It finds the last processed replication CSN from every replica that has produced a change so
far, and it determines that each change entry in the next oldest batch of changes has already
been processed.

• It finds a change that is separated by more than a certain duration (specified by the max-
backtrack-replication-latency property) from the most recently processed change.

To Change the max-backtrack-replication-latency Property

• To change the maximum backtrack replication, use dsconfig in non-interactive mode
to change the max-backtrack-replication-latency value to some time period. The
following command changes the maximum backtracking from two hours to three hours.
Remember to include the LDAP or LDAPS connection parameters (hostname, port, bindDN,
bindPassword) with this command.

$ bin/dsconfig set-sync-source-prop --source-name source1 \
 --set "max-backtrack-replication-latency:3 h"

About the Server SDK

You can create extensions that use the Server SDK to extend the functionality of your Identity
Data Sync. Extension bundles are installed from a .zip archive or a file system directory. You
can use the manage-extension tool to install or update any extension that is packaged using the
extension bundle format. It opens and loads the extension bundle, confirms the correct extension
to install, stops the server if necessary, copies the bundle to the server install root, and then
restarts the server.

Note: The manage-extension tool may only be used with Java extensions
packaged using the extension bundle format. Groovy extensions do not
use the extension bundle format. For more information, see the "Building
and Deploying Java-Based Extensions" section of the Server SDK
documentation, which describes the extension bundle format and how to
build an extension.

To Run the Manage-Extension Tool

• Run the manage-extension tool to install and copy the files. For example, you can install the
SCIM extension, scim-extension-1.1.0, as follows:

$ bin/manage-extension --install scim-extension-1.1.0

Syncing with Active Directory Systems

113

Chapter

4 Syncing with Active Directory Systems

The UnboundID Identity Data Sync supports full synchronization for newly created or modified
accounts with native password changes between directory server, relational databases, and
Microsoft Active Directory systems. Synchronization with Active Directory systems provides a
robust and scalable solution for large multi-directory and multi-national networks. The Identity
Data Sync also delivers immediate failover capabilities to source and destination instances
without data loss in case the target systems go down.

This chapter presents the configuration procedures needed to set up synchronization between
UnboundID Identity Data Store, Alcatel-Lucent 8661 Directory Server, Sun DSEE, or Sun
Directory Server source or targets with Microsoft Active Directory systems:

Topics:

• Before You Begin
• Configuring Active Directory Synchronization
• Installing the UnboundID Password Sync Agent

Syncing with Active Directory Systems

114

Before You Begin

If you are planning to sync passwords between systems, then synchronization with Microsoft
Active Directory systems requires that SSL be enabled on the Active Directory domain
controller, so that the UnboundID Identity Data Sync can securely propagate the cn=Sync
User account password and other user passwords to the Active Directory target. Likewise, the
UnboundID Synchronization must be configured to accept SSL connections. If you do not plan
to synchronize passwords, then SSL is not a requirement.

• For information on setting up an SSL connection on the Identity Data Sync, see Installing the
Identity Data Sync on page 25.

Configuring Active Directory Synchronization

To install and configure synchronization with Active Directory systems, the following is a
summary of procedures that you need to carry out depending on the type of synchronization:

• Run create-sync-pipe-config. On the Identity Data Sync, use the create-sync-pipe-
config tool to configure the Sync Pipes to communicate with the Active Directory source or
target.

• Configure Outbound Password Synchronization on an UnboundID Identity Data Store
Sync Source. After you run the create-sync-pipe-config tool, determine if you require
outbound password synchronization from an UnboundID Identity Data Store sync source.
If you do not plan to synchronize passwords, you can skip this step. If you plan to provide
outbound password synchronization from the UnboundID Identity Data Store, enable the
Password Encryption component on all UnboundID Identity Data Store sources that receive
password modifications. The UnboundID Identity Data Store uses the Password Encryption
component, analogous to the Password Sync Agent component, to intercept password
modifications and add an encrypted attribute, ds-changelog-encrypted-password, to the
change log entry. The component allows passwords to be synced securely to the Active
Directory system, which uses a different password storage scheme. The encrypted attribute
appears in the change log and gets synchronized to the other servers but does not appear in
the entries. For more information, see Configuring the Password Encryption Component.

• Configure Outbound Password Synchronization on an Active Directory Sync Source.
After you run the create-sync-pipe-config tool, determine if you require outbound
password synchronization from an Active Directory sync source. If you do not plan to
synchronize passwords, you can skip this step. If you plan to provide outbound password
synchronization from the Active Directory system, install the Password Sync Agent (PSA)
presented in Installing the UnboundID Password Sync Agent after configuring the Identity
Data Sync.

• When Running realtime-sync set-startpoint. The realtime-sync set-startpoint
command may take several minutes to run, because it must issue repeated searches of the
Active Directory domain controller until it has paged through all the changes and receives a
cookie that is up-to-date.

Syncing with Active Directory Systems

115

To Configure Active Directory Synchronization

The following procedure configures a one-way sync pipe with the Active Directory topology as
the Sync Source and the UnboundID Identity Data Store topology as the Sync Destination.

1. From the server-root directory, start the Synchronization Server.

$ <server-root>/bin/start-sync-server

2. Run the create-sync-pipe-config tool to set up the initial Synchronization topology.

$ bin/create-sync-pipe-config

3. On the Initial Synchronization Configuration Tool menu, press Enter to continue the
configuration.

4. On the Synchronization Mode menu, press Enter to select Standard mode. A standard Mode
Sync Pipe will fetch the full entries from both the source and destination and compare them
to produce the minimal set of changes to bring the destination into sync. A notification
mode Sync Pipe will skip the fetch and compare phases of processing and simply notify
the destination that a change has happened and provide it with the details of the change.
Notifications are currently only supported from UnboundID and Alcatel-Lucent Directory or
Proxy Servers 3.x or later.

5. On the Synchronization Directory menu, select if the Synchronization topology will be one-
way (1) or bidirectional (2). In this example, enter "2" for bidirectional.

6. On the Source Endpoint Type menu, enter 6 for Microsoft Active Directory.

>>>> Source Endpoint Type

Enter the type of data store for the source endpoint:

 1) UnboundID Directory Server
 2) UnboundID Proxy Server
 3) Alcatel-Lucent Directory Server
 4) Alcatel-Lucent Proxy Server
 5) Sun Directory Server
 6) Microsoft Active Directory
 7) Microsoft SQL Server
 8) Oracle Database
 9) Generic JDBC

 b) back
 q) quit

Enter choice [2]:

7. On the Source Endpoint Name menu, type a name for the Source Server, or accept the
default ("Microsoft Active Directory Source"). For this example, use the "[Microsoft Active
Directory]".

8. On the Server Security menu, select the security connection type for the source server,
which will be SSL by default for Active Directory configurations. Note that any connection
with the Active Directory topology requires an SSL connection, while connections with

Syncing with Active Directory Systems

116

the UnboundID Identity Data Store, Sun DSEE, or Sun Directory Server can use a standard
LDAP or SSL connection.

9. On the Servers menu, enter the host name and listener port number for the Source Server,
or accept the default (port 636). The server will attempt a connection to the server. If the
server is unresponsive, you will be asked to retry <hostname>:636, contact, discard, or keep
the server. After entering the first server, enter the additional servers (hostname:port) for the
source endpoints, which will be prioritized below the first server. You also have the option to
remove any existing servers.

10.On the Synchronization User Account DN menu, enter the User Account DN for
the source servers. The account will be used exclusively by the Synchronization
Server to communicate with the source external servers. This step will ask you to
enter a User Account DN and password, or accept the default account DN (cn=Sync
User,cn=Users,DC=adsync,DC=UnboundID,DC=com). Note that the default account DN is
only presented as an example. Make sure to enter an account DN within your domain. Also,
the User Account DN password must meet the minimum password requirements for Active
Directory domains.

11.At this point, you must set up the Destination Endpoint servers. The setup steps are similar
to steps 6–11. Select the option for UnboundID and then set up an external destination server
and User Account DN.

To Prepare the External Servers

1. After you have configured the Source and Destination Endpoints, the Identity Data Sync will
prompt you to "prepare" each external server. This step entails asking you if you trust the
certificate presented to it, and then testing the connection. The following example shows the
user interaction involved in preparing one external server. If you do not prepare the external
servers, you can do so after configuring the Sync Pipes using the prepare-endpoint-server
tool. The following example shows a snippet of a user session:

>>>> Prepare Server '10.8.1.163:636'

Servers in a synchronization topology must be 'prepared' for synchronization. This
involves making sure the synchronization user account exists and has the proper
privileges.

Would you like to prepare server '10.8.1.163:636' for synchronization?

1) Yes
2) No

b) back
q) quit

Enter choice [1]:

Testing connection to 10.8.1.163:636

Do you wish to trust the following certificate?
Certificate Subject: CN=WIN-G2R2NXV87VX.adsync.UnboundID.com
Issuer Subject: CN=adsync-WIN-G2R2NXV87VX-CA,DC=adsync,DC=UnboundID,DC=com
Validity: Thus Nov 12 11:39:52 CST 2009 to Fri Nov 12 11:39:52 CST 2010

Enter ’y’ to trust the certificate or ’n’ to reject it.
y

Testing connection to 10.8.1.163:636 Done
Testing ’cn=Sync User,cn=Users,DC=adsync,DC=UnboundID,DC=com’ access Done

Syncing with Active Directory Systems

117

Configuring this server for synchronization requires manager access. Enter the DN of
an account capable of managing the external directory server [cn=Administrator,
cn=Users,DC=adsync,DC=UnboundID,DC=com]:

Enter the password for ’cn=Administrator,cn=Users,DC=adsync,DC=unbound,DC=com’:
Verifying base DN ’dc=adsync,dc=UnboundID,dc=com’ Done

2. Next, you will be prompted to enter the maximum age of changelog entries. The value is
formatted as [number][time-unit], where the time unit is "h" for hours, "d" for days, or "w"
for weeks (e.g., "8h" for eight hours, "3d" for three days, "1w" for one week). A larger value
is typically preferred because this setting value caps how long the Identity Data Sync Server
can be offline. A smaller value limits how many changes are stored and is necessary to limit
excessive changelog growth in high-modification environments.

3. Next, you will be prompted if you want to prepare another server in the topology. You will
be given the option to re-use the previously entered manager credentials to access this server.
Repeat the process for each server that you have configured in the system.

To Configure the Sync Pipes and its Sync Classes

1. Next, on the Sync Pipe Name menu, you will be prompted to set up the Sync Pipe name.
Type a unique name to identify the Sync Pipe or accept the default.

2. On the Pre-Configured Sync Class Configuration for Active Directory Sync Source menu,
enter yes if you want to synchronize user CREATE operations, and then enter the object class
for the user entries at the destination server (default object class is user). Next, you will be
prompted if you want to synchronize user MODIFY and DELETE operations from Active
Directory. Enter yes if you want to do so.

3. Next, you will be asked if you want to synchronize user passwords from Active Directory.
Press Enter to accept the default (yes). If you plan to synchronize passwords from Active
Directory, you must also install the UnboundID Password Sync Agent component on
each domain controller. See Installing the UnboundID Password Sync Agent for more
information.

4. Next, you will be asked if you want to create a DN map for the user entries in the Sync
Pipe. Enter the base DN for the user entries at the Microsoft Active Directory Sync Source
(for example, CN=Users,DC=adsync,DC=UnboundID,DC=com), and then enter the base DN
for the user entries at the UnboundID Identity Data Store Sync Destination (for example,
OU=users,DC=adsync,DC=UnboundID,DC=com). Make sure to enter a base DN within your
domain.

5. At this stage, you will see a list of basic attribute mappings from the Microsoft Active
Directory Source to the UnboundID Identity Data Store destination. If you want to add more
complex attribute mappings involving constructed or DN attribute mappings, you must
quit the command and use the dsconfig tool. The following example shows a sample user
session.

Below is a list of the basic mappings that have been set up for user entries
synchronized from Microsoft Active Directory -> UnboundID Directory Server. You can
add to or modify this list with any direct attribute mappings. To set up more
complex mappings (such as constructed or DN attribute mappings), use the 'dsconfig'
tool.

 1) cn -> cn

Syncing with Active Directory Systems

118

 2) sn -> sn
 3) givenName -> givenName
 4) description -> description
 5) sAMAccountName -> uid
 6) unicodePwd -> userPassword

 b) back
 q) quit
 n) Add a new attribute mapping

6. Enter n to add a new attribute mapping. First, enter the source attribute, and then enter the
destination attribute. The following example shows a sample user session, where a mapping
is set up for the telephoneNumber attribute (Active Directory) to the otherTelephone
attribute (UnboundID).

Select an attribute mapping to remove, or choose 'n' to add a new one
[Press ENTER to continue]: n

Enter the name of the source attribute: telephoneNumber

Enter the name of the destination attribute: otherTelephone

7. Next, enter yes if you want to synchronize group CREATE, MODIFY, and DELETE
operations from Active Directory.

8. Next, type yes if you want to synchronize group entries from Active Directory. Then,
review the basic user group mappings. If you want to use more complex mappings, such
as constructed or DN attribute mappings, use the dsconfig tool. If you want to add new
group attribute mappings, type n. In this example, press Enter to continue as no new group
mappings will be created. The following example shows a portion of a user session.

Would you like to sync group entries from Active Directory? (yes / no) [no]: yes
Below is a list of the basic mappings that have been set up for user entries in the
Sync Class: 'AD Groups Sync Class'. You can add to or modify this list with any
direct attribute mappings. To set up more complex mappings (such as constructed or
DN attribute mappings), use the 'dsconfig' tool.

 1) {cn} -> {cn} (Direct Mapping)
 2) 'groupOfUniqueNames' -> {objectClass} (Constructed Mapping)
 3) {member} -> {uniqueMember} (Direct Mapping)

 b) back
 q) quit
 n) Add a new direct attribute mapping

Select an attribute mapping to remove, or choose 'n' to add a new one [Press ENTER
to continue]:

9. On the Sync Pipe Sync Class Definitions menu, enter another name for a new Sync class if
required. You will essentially repeat the steps in 2–7 to define this new Sync Class. You also
have the option to remove any existing sync classes already defined. If you do not require
any additional sync class definitions, press Enter to continue.

10.Review the Sync Pipe Configuration Summary, and then, press Enter to accept the default
("write configuration"), which records the commands in a batch file (sync-pipe-cfg.txt).
The batch file can be re-used to set up other Sync topologies. The following summary shows
two Sync Pipes (from Active Directory to UnboundID; the other, from UnboundID to Active
Directory) and its associated Sync Classes.

>>>> Configuration Summary
 Sync Pipe: AD to UnboundID
 Source: Microsoft Active Directory
 Type: Microsoft Active Directory
 Access Account: cn=Sync User,cn=Users,DC=adsync,DC=UnboundID,DC=com

Syncing with Active Directory Systems

119

 Base DN: DC=adsync,DC=UnboundID,DC=com
 Servers: 10.5.1.149:636

 Destination: UnboundID Directory Server
 Type: UnboundID Directory Server
 Access Account: cn=Sync User,cn=Root DNs,cn=config
 Base DN: dc=example,dc=com
 Servers: localhost:389

 Sync Classes:
 Microsoft Active Directory Users Sync Class
 Base DN: DC=adsync,DC=UnboundID,DC=com
 Filters: (objectClass=user)
 DN Map: **,CN=Users,DC=adsync,DC=UnboundID,DC=com ->{1},ou=users,
 dc=example,dc=com
 Synchronized Attributes: Custom set of mappings are defined
 Operations: Creates,Deletes,Modifies

 Sync Pipe: UnboundID to AD
 Source: UnboundID Directory Server
 Type: UnboundID Directory Server
 Access Account: cn=Sync User,cn=Root DNs,cn=config
 Base DN: dc=example,dc=com
 Servers: localhost:389

 Destination: Microsoft Active Directory
 Type: Microsoft Active Directory
 Access Account: cn=Sync User,cn=Users,DC=adsync,DC=UnboundID,DC=com
 Base DN: DC=adsync,DC=UnboundID,DC=com
 Servers: 10.5.1.149:636

 Sync Classes:
 UnboundID Directory Server Users Sync Class
 Base DN: dc=example,dc=com
 Filters: (objectClass=inetOrgPerson)
 DN Map: **,ou=users,dc=example,dc=com ->{1},CN=Users,DC=adsync,
 DC=UnboundID,DC=com
 Synchronized Attributes: Custom set of mappings are defined
 Operations: Creates,Deletes,Modifies

 w) write configuration
 b) back
 q) quit

Enter choice [w]:

11.Next, you will be prompted as to whether you want to apply the configuration to the local
Identity Data Sync instance. Type yes to apply the configuration changes.

12.The configuration is recorded at <server-root>/logs/tools/createsync-pipe-
config.log.

To Configure the Password Encryption Component

The next two steps are only required if you are synchronizing passwords from UnboundID
Identity Data Store to Active Directory. They are not required if you are synchronizing from
Active Directory to UnboundID Identity Data Store, or have no plans to synchronize passwords.

1. On the UnboundID Identity Data Store that will receive the password modifications,
enable the Change Log Password Encryption component on the Identity Data Store. The
component intercepts password modifications, encrypts the password and adds an encrypted
attribute, ds-changelog-encrypted-password, to the change log entry. You can copy and
paste the encryption key from the output if displayed, or you can access it from the <server-
root>/bin/sync-pipe-cfg.txt.

$ bin/dsconfig set-plugin-prop --plugin-name "Changelog Password Encryption" \

Syncing with Active Directory Systems

120

 --set enabled:true --set changelog-password-encryption-key:ej5u9e39pqo68"

2. On the Identity Data Sync, set the decryption key used to decrypt the user password value in
the change log entries. The key allows the user password to be synchronized to other servers
that do not use the same password storage scheme.

$ bin/dsconfig set-global-sync-configuration-prop \
 --set changelog-password-decryption-key:ej5u9e39pqo68

3. You can test the configuration or populate data in the Destination Servers using bulk
resync mode. See Using Resync on the Identity Data Sync. Then, you can use realtime-
sync to start synchronizing the data. See Controlling Real Time Synchronization for more
information. Finally, if you are planning on synchronizing passwords, you must install the
Password Sync Agent (PSA) on all of the domain controllers in the topology. See the next
chapter on how to install the PSA.

Installing the UnboundID Password Sync Agent

When synchronizing passwords with Active Directory systems, the UnboundID Synchronization
Server requires that an additional software component, the UnboundID Password Sync Agent
(PSA), be installed on all domain controllers in the synchronization topology. This component
provides real-time outbound password synchronization from Microsoft Active Directory to
any of the Sync Destinations supported by the UnboundID Identity Data Sync. Currently these
systems include the UnboundID Identity Data Store, UnboundID Identity Proxy (3.x), Alcatel-
Lucent 8661 Directory Server, Alcatel-Lucent 8661 Directory Proxy Server (3.x), Sun Directory
Server 5.x, Sun DSEE (6.x, 7.x), Oracle (10g, 11g), and Microsoft SQL Server (2005, 2008).

The PSA component was designed to provide real-time password synchronization between
directories that support differing password storage schemes. The PSA component immediately
hashes the password with a 160-bit salted secure hash algorithm and erases the memory
where the clear-text password was stored. The component only transmits data over a secure
(SSL) connection. The PSA follows Microsoft's security guidelines when handling clear-text
passwords (see http://msdn.microsoft.com/en-us/library/ms721884(VS.85).aspx).

Note: For outbound password synchronization from UnboundID Identity
Data Store to Active Directory, you can enable the Password Encryption
component, which has similar functionality to that of the PSA component.
See Configuring the Password Encryption Component for more information.

Syncing with Active Directory Systems

121

Figure 15: Password Synchronization with Microsoft Active Directory Systems

The PSA also utilizes Microsoft Windows password filters, which are part of the local security
authority (LSA) process. The password filters allow you to implement password policy
validation and change notification mechanisms for your system. For more information on this
topic, see http://msdn.microsoft.com/en-us/library/ms721882(VS.85).aspx.

The PSA supports failover between Identity Data Syncs. It caches the hashed password changes
in a local database until it can be guaranteed that all Identity Data Syncs in the topology have
received them. The failover features provide added flexibility as any or all of the Identity Data
Syncs can be taken offline or re-configured in real-time without losing any password changes
from Active Directory.

The UnboundID Password Sync Agent is safe to leave running on a domain controller
indefinitely. If you want to temporarily (or permanently) stop synchronizing passwords, simply
remove the userPassword attribute mapping in the Identity Data Sync, or just stop the Identity
Data Sync. The PSA will not allow its local cache of password changes to grow out of control; it
automatically cleans out records from its local database as soon as they have been acknowledged
at an Identity Data Sync. It also purges changes that have been in the database for over a week.
This feature provides both safety as well as maintenance convenience, so that the PSA will not
require any manual updates if the sync configuration changes.

Supported Platforms

The Password Sync Agent (PSA) software has been tested and is supported for the following
platforms:

➢ Windows Server 2003
➢ Windows Server 2003 R2
➢ Windows Server 2008
➢ Windows Server 2008 R2

Before You Install the Password Sync Agent

Before you install the Password Sync Agent, consider the following:

• If you have no plans to synchronize passwords, you do not need to install the PSA.

Syncing with Active Directory Systems

122

• Make sure that the Active Directory domain controller has SSL enabled and running on the
Windows host machine.

• The UnboundID Identity Data Syncs must be configured to accept SSL connections when
communicating with the Active Directory host.

• At least one Active Directory Sync Source (ADSyncSource) needs to be configured on the
UnboundID Identity Data Sync and should point to the domain controller(s) on which the
PSA is being installed.

• At the time of installation, all UnboundID Identity Data Syncs in the sync topology must be
online and available.

• The PSA component is for outbound-only password synchronization from the Active
Directory Systems. The PSA component is not necessary if you are performing a one-way
password sync from the UnboundID Identity Data Store to the Active Directory server.

To Install the Password Sync Agent

UnboundID distributes the Password Sync Agent (PSA) in zip file format. The PSA will be
available together with each UnboundID Identity Data Sync build. Before you install the PSA,
ensure that your system meets the conditions presented in the previous section.

The initial (i.e., first time) installation of the PSA requires a system restart for the new PSA DLL
(Microsoft requirement).

1. On the domain controller, run the installer by double-clicking the setup.exe program.

2. Select an installation folder for the service files. This is where the PSA will store its binaries,
local database, and log files.

3. Enter the host names (or IP addresses) and SSL ports of the UnboundID Identity Data Syncs.
They should be separated by a colon, for example, "sync.host.com:636". Do not add any
prefixes to the hostnames.

4. Enter the Directory Manager DN and password. This is only used to set up a special
"ADSync" user on the Identity Data Syncs. You must also enter a password for this user.
Since this is a first-time installation, the ADSync User password will be set to the password
you supply. However, if it has been set before (by a previous installation), the password you
supply will be verified against the existing password. In this case, make sure you use the
same password that was used previously.

5. Click Next to begin the installation. All of the specified Identity Data Syncs will be
contacted, and any failures will roll back the installation. If everything succeeds, you will see
an information message indicating that a restart is required. At this point the PSA is installed
but not running. It will not begin until the computer restarts, and the LSA process loads it
into memory. Unfortunately, the LSA process cannot be restarted at runtime.

6. If you are syncing pre-encoded passwords from an Active Directory system to an
UnboundID Directory system, you must allow pre-encoded passwords in the default
password policy.

Syncing with Active Directory Systems

123

$ bin/dsconfig set-password-policy-prop --policy-name "Default Password Policy" \
--set allow-pre-encoded-passwords:true

To Upgrade the Password Sync Agent (restart optional)

For software upgrades for the Password Sync Agent (PSA), the Identity Data Sync provides the
update tool that upgrades the server code to the latest version. New PSA builds are packaged
with the Identity Data Sync upgrade distributions. The upgrade does not require a restart,
because the core password filter is already running under LSA. The upgrade replaces the
implementation binaries, which are encapsulated from the password filter DLL.

To upgrade the Password Sync Agent, see Updating the Identity Data Sync.

To Uninstall the Password Sync Agent

If you are required to uninstall the PSA, you can simply use the Add/Remove Programs on the
Windows Control Panel.

1. Go to Control Panel, select Add/Remove Programs. Find the Password Sync Agent and
click Remove. Click Yes on the warning that asks if you are sure.

2. At this stage, the PSA has been stopped, and passwords will no longer get synchronized to
the Identity Data Syncs or stored in the local database. The implementation DLL has been
unloaded, and the database and log files are deleted. Only the binaries remain.

3. The core password filter, however, is still running under the LSA process (it cannot be
unloaded at runtime). At this point, it imposes zero overhead on the domain controller,
because its implementation DLL has been unloaded. If it is absolutely necessary to remove
the password filter itself (located at C:\WINDOWS\System32\ubidPassFilt.dll), simply
restart the computer. On restart, the password filter and implementation binaries (found in the
install folder) can be deleted.

After uninstalling the Password Sync Agent, it cannot be reinstalled without another reboot (i.e.
it will revert back to a first-time installation state).

Manual Configuration for Advanced Users

All the configuration settings for the Password Sync Service are stored in the Windows registry
under the key HKLM\SOFTWARE\UnboundID\PasswordSync. If you want to manually change any
of the configuration properties, you can do so at runtime by modifying the values under this
registry key. The agent will automatically reload and refresh its settings from the registry. You
can verify that the agent is working by checking the current log file, found in the server root
directory under logs\password-sync-current.log.

Syncing with Active Directory Systems

124

Syncing with Relational Databases

125

Chapter

5 Syncing with Relational Databases

The UnboundID Identity Data Sync supports high-scale, highly-available data synchronization
between the directory servers and a relational database management systems (RDBMS).
UnboundID officially supports synchronization with Oracle Database 10g and 11g as well
as Microsoft SQL Server 2005 and 2008. The architecture, however, does not make any
assumptions about the type of database or schema being managed; any database with a JDBC
3.0 or higher driver compatible with Java 1.6 can be used.

This chapter presents the following information:

Topics:

• Overview
• About the Server SDK
• About the DBSync Process
• About the DBSync Example
• About the Overall DBSync Configuration Process
• Downloading the Software Packages
• Creating the JDBC Extension
• Configuring the Database for Synchronization
• Pre-Configuration Checklist
• General Tips When Syncing to a Database Destination
• Configuring the Directory-to-Database Sync Pipe
• General Tips When Syncing from a Database Source
• Configuring the Database-to-Directory Sync Pipe
• Synchronizing a Specific List of Database Elements Using Resync

Syncing with Relational Databases

126

Overview

The UnboundID Identity Data Sync supports high-scale, highly-available data synchronization
between the directory servers and a relational database management systems (RDBMS).
UnboundID officially supports synchronization with Oracle Database 10g and 11g as well
as Microsoft SQL Server 2005 and 2008. The architecture, however, does not make any
assumptions about the type of database or schema being managed; any database with a JDBC
3.0 or higher driver compatible with Java 1.6 can be used.

About the Server SDK

To synchronize LDAP data to or from a relational database, you must first create a JDBC Sync
Source or Destination extension to act as an interface between the UnboundID Synchronization
Server and your database environment. You can create the extension using the UnboundID
Server SDK, which provides APIs to develop plug-ins and third-party extensions to the server
using Java or Groovy. The Server SDK’s documentation (javadoc and examples) is delivered
with the Server SDK build in zip format.

Note: Server SDK support is provided if you have purchased Premium
Support for the product that you are developing extensions for. However,
UnboundID does not provide support for the third party extensions
developed using the Server SDK. You should contact your product level
support group if you need assistance.

The Server SDK contains two abstract classes that will likely be required for your
implementation:

➢ com.unboundid.directory.sdk.sync.api.JDBCSyncSource

➢ com.unboundid.directory.sdk.sync.api.JDBCSyncDestination

The abstract classes correspond to how you use the database, either as a source of
synchronization or as a target destination. The remainder of the SDK contains helper classes and
utility functions to make the script implementation simpler.

The SDK allows you to use any change tracking mechanism to detect changes in the database.
However, we provide a recommended generic approach using a simplified change log table and
triggers to record changes. Our solution is largely vendor and database version-independent
and is configurable on any database that supports row-based trigger semantics. Examples are
provided in the config/jdbc/samples directory for Oracle Database and Microsoft SQL
Server.

The Identity Data Sync uses the scripted adapter layer (shown in Figure 16) to convert any
database change to an equivalent LDAP entry. From there, the Sync Pipe processes the data
through inclusive (or exclusive) filtering together using attribute and DN maps defined in
the Sync Classes to update the endpoint servers. For example, once you have implemented a

Syncing with Relational Databases

127

script using Java, you can configure it for use by setting the extension-class property on a
ThirdPartyJDBCSyncSource or ThirdPartyJDBCSyncDestination configuration object within
the Identity Data Sync. The procedures to accomplish this are presented later in this chapter.

Figure 16: Architectural Overview

About the DBSync Process

The Identity Data Sync is designed for high-scale, point-to-point data synchronization between
a directory server and a RDBMS system via an UnboundID Server SDK extension. The Identity
Data Sync provides multiple configuration options, such as advanced filtering (fractional and
subtree), attribute and DN mappings, transformations, correlations, and configurable logging
features for seamless one-way or bidirectional synchronization.

To support synchronizing changes out of a database, the database must be configured with a
change tracking mechanism. We recommend a general approach involving triggers (one trigger
per table) to record all changes to a change log table. The database change log table should
record the type of change (INSERT, UPDATE, DELETE) that occurred, the specific table name, the
unique identifier for the row that was changed, the database entry type, the changed columns,
the modifier’s name, and the timestamp of the change. An example is presented later in this
chapter.

The Identity Data Sync delegates the physical interaction with the database to a userdefined
extension, which has full control of the SQL queries. The extension layer provides flexibility in
how you define the mapping semantics between your LDAP environment and your relational
database environment. The connection management, pooling, retry logic, and other boilerplate
code are all handled internally by the Identity Data Sync.

The RDBMS Synchronization (DBSync) implementation does not support failover between
different physical database servers as is the case for directory servers. Most enterprise databases
have a built-in failover layer (for example, Microsoft’s node-based SQL Server Failover

Syncing with Relational Databases

128

Cluster) from which the Identity Data Sync can point to a single virtual address and port and
still be highly available. Note that while you can have a single RDBMS node, you can scale to
multiple directory server instances at the other endpoint.

About the DBSync Example

The Identity Data Sync provides a DBSync example between two endpoints consisting of an
UnboundID Identity Data Store source and a RDBMS system, which will be used throughout
this chapter. The entity-relational diagram for the normalized database schema is available in /
config/jdbc/samples/oracle-db/ComplexSchema.jpg and is shown in Figure 17. Five tables
are represented with their primary keys in bold. The entity relations and foreign keys are marked
by the relationship lines.

Figure 17: ER Diagrams for the Schema Tables

Example DS Entries

The synchronization example assumes that the directory server’s schema has been configured
to handle the mapped attributes. If you are configuring a database-to-directory sync pipe
with a newly installed directory server, you must ensure that the schema has the correct
attributeType and objectClass definitions in place. You can add the definitions in a
custom 99-user.ldif file in the config/schema folder of your directory server implementation,
if necessary. The following snippet shows an example of the LDAP entries that are
used in the synchronization example. Figure 17 maps to a custom object class on the
directory server, while the "groups" table maps to a standard LDAP group entry with
objectclass:groupOfUniqueNames. Example entries appear as follows:

dn: accountid=0,ou=People,dc=example,dc=com
objectClass: site-user
firstName: John
lastName: Smith
accountID: 1234
email: jsmith@example.com
phone: +1 556 805 4454
address: 17121 Green Street
numLogins: 4
lastLogin: 20070408182813.196Z
enabled: true

dn: cn=Group 1,ou=Groups,dc=example,dc=com
objectClass: groupOfUniqueNames
description: This is Group 1
uniqueMember: accountID=0,ou=People,dc=example,dc=com
uniqueMember: accountID=1,ou=People,dc=example,dc=com

Syncing with Relational Databases

129

About the Overall DBSync Configuration Process

The procedure to configure a DBSync system is slightly more complicated than that of a
directory server-to-directory server synchronization configuration due to the extra tasks required
to create the extensions and to configure the database. The overall configuration process is as
follows:

1. Download the appropriate JDBC 3.0 or higher driver. UnboundID cannot bundle any JDBC
drivers with the Identity Data Sync due to licensing restrictions, but most are freely available
to end users. When ready, you can place it in the lib directory in the Synchronization Server’s
server root directory (/UnboundID-Sync/lib), and then restart the server for the driver to get
loaded into the runtime.

For example, you should download the ojdbc6.jar file for Oracle systems or the
sqljdbc4.jar file for MS SQL Server systems.

Older JDBC drivers which do not implement the Java Service Provider mechanism may
have to specify "jdbc.drivers" as a JVM argument. Open the java.properties file using a
text editor, add the jdbc.drivers argument to a utility, save the file, and then run the
dsjavaproperties command to apply the change. For example, enter the following for
start-syncserver:

start-sync-server.java-args=-d64 -server -Xmx256m -Xms256m
-XX:+UseConcMarkSweepGC -
Djdbc.drivers=foo.bah.Driver:wombat.sql.Driver:com.example.OurDriver
... etc.

See the documentation for DriverManager (http://download.oracle.com/javase/6/
docs/api/java/sql/DriverManager.html) for more information.

2. Create one or more JDBC extensions based on the Server SDK. If you are configuring for
bidirectional synchronization, you will need two scripts: one for the JDBC Sync Source; the
other for the JDBC Sync Destination. Place the compiled extension in the /lib/extensions.

3. Configure the database change log table and triggers (presented later). While you can use
the vendor’s native change tracking mechanism, we recommend setting up a change log
table, shown later in the configuration procedures. Each table requires one database trigger to
detect the changes and loads them into the change log table.

4. Configure the Sync Pipes including the Sync Classes, external servers, DN and attribute
maps for one direction (e.g., from directory server to database).

5. Run the resync --dry-run command to test the configuration settings.

6. Run realtime-sync set-startpoint to initialize the starting point for synchronization.

7. Run the resync command to populate data on the destination endpoint.

8. Start the Sync Pipes using the realtime-sync start command.

9. Monitor the Identity Data Sync using the status commands and logs.

Syncing with Relational Databases

130

10.For bidirectional synchronization, configure another Sync Pipe in the other direction (e.g.,
from database to directory server), repeat steps 4–8 to test the complete synchronization
system.

Downloading the Software Packages

You need to download your JDBC driver prior to setting up your synchronization environment
with a RDBMS system.

1. Download the UnboundID Identity Data Sync ZIP file. Unzip the server in a directory of
your choice.

2. If you are configuring the Identity Data Sync from scratch, you must ensure that you
have JDK1.6 update 25. The JDK is required to build any Server SDK extensions. Set the
JAVA_HOME environment variable and your PATH or CLASSPATH variables accordingly.

Download an appropriate JDBC 3.0 or higher driver for your system. Place it in the lib
directory in the Identity Data Sync’s server root directory (/UnboundID-Sync/lib). For
example, you should download the ojdbc6.jar file for Oracle systems or the sqljdbc4.jar
file for MS SQL Server systems.

You will need to re-start the server to pick up changes to an extension.

3. Download the Server SDK zip file and unzip it in a directory of your choice.

Creating the JDBC Extension

The JDBC extension implementation must be written in Java or the Groovy scripting language
(http://groovy.codehaus.org/api/). Consult the Server SDK documentation for details on
how to build and deploy extensions. The examples in this guide use pure Java. Both languages
have been tested and are fully supported by the Identity Data Sync. UnboundID recommends
implementing extensions in pure Java, because it is more strict and will catch programming
errors during compile time rather than at runtime. Groovy is more flexible and can accomplish
more with less lines of code, but it also can be more difficult to understand.

For those unfamiliar with Groovy, it is an open-source, dynamically-typed scripting language,
similar to Java and provides quick adoption for those developers who already know the Java
programming language. Groovy scripts can leverage existing Java classes and libraries to allow
embedded applications within Java or as standalone scripts. Extensions written in Groovy are
loaded at Sync Pipe startup, which allows you to dynamically reload a script by restarting the
Sync Pipe.

Groovy scripts must live under the /lib/groovy-scripted-extensions directory (Java
implementations using the Server SDK reside under lib/extensions), which may
also contain other plug-ins built using the UnboundID Server SDK. If a script declares
a package name, it must live under the corresponding folder hierarchy, just like a Java
class. For example, to use a script class called ComplexJDBCSyncSource whose package is
com.unboundid.examples.oracle, place it under the /lib/groovy-scripted-extensions/
com/unboundid/examples/oracle and set the script-class property on the Sync Source

Syncing with Relational Databases

131

to com.unboundid.examples.oracle.ComplexJDBCSyncSource. There are a few reference
implementations provided in the config/jdbc/samples directory. You can use the manage-
extension tool in the bin directory (UNIX/LINUX) or bat directory (Windows) to install or
update the extension. See the Managing Extensions section for more information.

Note: Any changes to an existing script requires a manual Sync Pipe restart.
Any configuration change automatically restarts the affected Sync Pipe.

The default libraries available on the classpath to your script implementation include:

• Groovy 1.7 (http://groovy.codehaus.org/api/)

• UnboundID LDAP SDK for Java 2.2.0 (http://unboundid.com/products/ldapsdk/docs/
javadoc/index.html)

• JRE 1.6 (http://download.oracle.com/javase/6/docs/api/)

Logging from within a script can be done with the Server SDK’s ServerContext abstract
class. Some of ServerContext’s methods, such as registerChangeListener() or
getInternalConnection() will not be available when running the Resync tool, because it runs
outside of the Synchronization Server process. Any logging performed within a script during a
Resync operation will appear in the logs/tools/resync.log file.

About Groovy

There are a few things to be aware of when using Groovy:

• Semicolons are optional.

• The 'return' keyword is optional.

• You can use the 'this' keyword inside static methods (which refers to this class).

• Methods and classes are public by default.

• The 'throws' clause in a method signature is not checked by the Groovy compiler, because
there is no difference between checked and unchecked exceptions.

• You will not get compile errors like you would in Java for using undefined members or
passing arguments of the wrong type.

• Arrays need to be declared with square brackets (for example, int[] myArray = [1,2,3]).
See the reference at http://groovy.codehaus.org/Differences+from+Java.

Implementing a JDBC Sync Source

The JDBCSyncSource abstract class must be implemented to synchronize data out of a
relational database (e.g., for database to directory server synchronization). Since the UnboundID
Identity Data Sync is LDAP-centric, this class allows you to take database content and convert

Syncing with Relational Databases

132

it into LDAP entries. For more detailed information on the class, consult the UnboundID Server
SDK Javadoc.

The extension imports classes from the Java API, UnboundID LDAP SDK for Java API, and
the UnboundID Server SDK. Depending on the data, you will need to implement the following
methods within your script:

• initializeJDBCSyncSource. Called when a Sync Pipe first starts up, or when the Resync
process first starts up. Any initialization should be performed here, such as creating internal
data structures and setting up variables.

• finalizeJDBCSyncSource. Called when a Sync Pipe shuts down, or when the Resync
process shuts down. Any clean up should be performed here, and all internal resources
should be freed.

• setStartpoint. Sets the starting point for synchronization by identifying the starting
point in the change log. This method should cause all changes previous to the specified
start point to be disregarded and only changes after that point to be returned by the
getNextBatchOfChanges method. There are several different startpoint types (see
SetStartpointOptions in the Server SDK), and this implementation is not required to support
them all. If the specified startpoint type is unsupported, this method throws an exception
(IllegalArgumentException). This method can be called from two different contexts: when
the realtime-sync set-startpoint command is used (the Sync Pipe is required to be
stopped in this context) or immediately after a connection is first established to the source
server (e.g., before the first call to getNextBatchOfChanges method).

Note: The RESUME_AT_SERIALIZABLE startpoint type must be supported by
your implementation, because this method is used when a Sync Pipe first
starts up and loads its state from disk.

• getStartpoint. Gets the current value of the startpoint for change detection.

• fetchEntry. Returns a full source entry (in LDAP form) from the database, corresponding to
the DatabaseChangeRecord object that is passed in. The resync command also uses this class
to retrieve entries.

• acknowledgeCompletedOps. Provides a means for the Identity Data Sync to acknowledge
to the database which operations have completed processing.

Note: The internal value for the startpoint should only be updated after
a sync operation is acknowledged back to this script (via this method).
Otherwise it will be possible for changes to be missed when the Identity Data
Sync is restarted or a connection error occurs.

• getNextBatchOfChanges. Retrieves the next set of changes for processing. The method also
provides a generic means to limit the size of the result set.

• listAllEntries. Used by the resync command to get a listing of all entries.

Syncing with Relational Databases

133

• cleanupChangelog. In general, we recommend implementing a cleanupChangelog method,
so that the Identity Data Sync can purge old records from the change log table, based on a
configurable age.

See the config/jdbc/samples directory for example script implementations and the Server
SDK javadoc for more detailed information on each method.

Implementing a JDBC Sync Destination

The JDBCSyncDestination abstract class must be implemented to synchronize data into a
relational database (e.g., for directory server to database synchronization). The class allows you
to take LDAP content and convert it to database content.

The extension imports classes from the Java API, UnboundID LDAP SDK for Java API, and
the UnboundID Server SDK, depending on your database configuration. You will need to
implement the following methods within your script:

• initializeJDBCSyncDestination. Called when a Sync Pipe first starts up, or when the
Resync process first starts up. Any initialization should be performed here, such as creating
internal data structures and setting up variables.

• finalizeJDBCSyncDestination. Called when a Sync Pipe shuts down, or when the Resync
process shuts down. Any clean up should be performed here, and all internal resources
should be freed.

• createEntry. Creates a full database entry (or row), corresponding to the LDAP Entry that is
passed in.

• modifyEntry. Modify a database entry, corresponding to the LDAP Entry that is passed in.

• fetchEntry. Return a full destination database entry (in LDAP form), corresponding to the
source entry that is passed in.

• deleteEntry. Delete a full entry from the database, corresponding to the LDAP Entry that is
passed in.

For more detailed information on the abstract class, consult the Server SDK Javadoc.

Configuring the Database for Synchronization

To configure the database for synchronization, you must do three things: 1) set up a database
SyncUser account; 2) set up the change tracking mechanism; and 3) set up the database triggers
(one per table) for your application. The following example uses the example setup script
is available in /config/jdbc/samples/oracle-db/OracleSyncSetup.sql, where items
in brackets (for example [ubid_changelog]) is a user-named label for the account, table or
column.

Syncing with Relational Databases

134

Note: Database change tracking is only necessary if you are syncing FROM
the database. If you are syncing TO a database, you only need to set up the
SyncUser account and the correct privileges.

1. Create an Oracle login (SyncUser) for the Identity Data Sync, so that the Synchronization
Server can access the database server. Also make sure to grant sufficient privileges to the
SyncUser for any tables to be synchronized. Make sure to change the default password on
production systems.

CREATE USER SyncUser IDENTIFIED BY password
 DEFAULT TABLESPACE users TEMPORARY TABLESPACE temp;
GRANT "RESOURCE" TO SyncUser;
GRANT "CONNECT" TO SyncUser;

2. Set up your change log tables on the database. An example is presented as follows:

CREATE TABLE ubid_changelog (
 --This is the unique number for the change change_number Number NOT NULL PRIMARY
 KEY,
 --This is the type of change (insert, update, delete). NOTE: This should represent
 --the actual type of change that needs to happen on the destination(for example a
 --database delete might translate to a LDAPmodify, etc.)
 change_type VARCHAR2(10) NOT NULL,

 --This is the name of the table that was changed table_name VARCHAR(50) NOT NULL,
 --This is the unique identifier for the row that was changed. It is up to
 --the trigger code to construct this, but it should follow a DN-like format
 --(e.g. accountID={accountID}) where at least the primary key(s) are
 --present. If multiple primary keys are required, they should be delimited
 --with a unique string, such as '%%' (e.g. accountID={accountID}%%
 --groupID={groupID})
 identifier VARCHAR2(100) NOT NULL,

 --This is the database entry type. The allowable values for this must be
 --set on the JDBC Sync Source configuration within the Synchronization
 --Server.
 entry_type VARCHAR2(50) NOT NULL,

 --This is a comma-separated list of columns that were updated as part of
 --this change.
 changed_columns VARCHAR2(1000) NULL,

 --This is the name of the database user who made the change
 modifiers_name VARCHAR2(50) NOT NULL,

 --This is the timestamp of the change
 change_time TIMESTAMP(3) NOT NULL, CONSTRAINT chk_change_type
 CHECK (change_type IN ('insert','update','delete'))) ORGANIZATION INDEX;

3. Create an Oracle function to get the SyncUser name. This is a convenience function for the
triggers.

CREATE OR REPLACE FUNCTION get_sync_user RETURN VARCHAR2
IS
BEGIN
 RETURN 'SyncUser';
END get_sync_user;

4. Create an Oracle sequence object for the change-number column in the change log table.

CREATE SEQUENCE ubid_changelog_seq MINVALUE 1 START WITH 1
NOMAXVALUE INCREMENT BY 1 CACHE 100 NOCYCLE;

Syncing with Relational Databases

135

5. Create a Database Trigger for each table that will participate in synchronization. An example
is shown below and shows a trigger for the Accounts table that tracks all changed columns
after any INSERT, UPDATE, and DELETE operation. The code generates a list of changed
items and then inserts them into the change log table. See the example in /config/ jdbc/
samples/oracle-db/OracleSyncSetup.sql.

CREATE OR REPLACE TRIGGER ubid_accounts_trg AFTER INSERT OR
 DELETE OR UPDATE ON accounts
FOR EACH ROW
DECLARE
 my_identifier ubid_changelog.identifier%TYPE;
 my_changetype ubid_changelog.change_type%TYPE;
 my_changedcolumns ubid_changelog.changed_columns%TYPE := '';
 CURSOR column_cursor IS select COLUMN_NAME from USER_TAB_COLUMNS where
 TABLE_NAME='ACCOUNTS';
BEGIN
 --Short circuit and do nothing if the change came from the Identity Data Sync
 itself.
 --This prevents loopbacks when doing bidirectional synchronization.

 IF UPPER(USER) = UPPER(get_sync_user()) THEN RETURN; END IF;

 -- Figure out change type
 IF INSERTING THEN
 my_identifier := 'accountID=' || :NEW.accountID;
 my_changetype := 'insert';
 ELSIF DELETING THEN
 my_identifier := 'accountID=' || :OLD.accountID;
 my_changetype := 'delete';
 ELSIF UPDATING THEN
 my_identifier := 'accountID=' || :NEW.accountID;
 my_changetype := 'update';

 -- Figure out changed coumns
 FOR my_row IN column_cursor
 LOOP
 IF UPDATING (my_row.COLUMN_NAME) THEN
 my_changedcolumns := my_changedcolumns || my_row.COLUMN_NAME || ',';
 END IF;
 END LOOP;
 END IF;

 --Do the insert
 INSERT INTO ubid_changelog (change_number, change_type, table_name, identifier,
 entry_type,
 changed_columns, modifiers_name, change_time) VALUES
 (ubid_changelog_seq.NEXTVAL,
 my_changetype, 'ACCOUNTS', my_identifier, 'account', my_changedcolumns, USER,
 SYSTIMESTAMP);

 --If changes to this table affect multiple LDAP entries, multiple records should
 --be inserted into the changelog table. For example, if an update to an "account"
 in
 --the database affected an "account" LDAP entry and a "groups" LDAP entry, then we
 --would have another "INSERT INTO ubid_changelog..." here with a different entry
 --type.
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Changelog trigger exception:');
 DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.FORMAT_ERROR_BACKTRACE);
 END;

Pre-Configuration Checklist

Before configuring the Identity Data Sync, we assume that you have accomplished the following
items:

• Create a Sync User account with the access privileges to the RDBMS server, so that the
Identity Data Sync can access the machine.

Syncing with Relational Databases

136

• Set up your change log tables on the database.

• Set up the triggers in the database: one per table that will participate in synchronization.

• Create a JDBC extension using Java or Groovy to map the LDAP Entries to the RDBMS
table rows or vice-versa, place it in the /lib/groovy-scripted-extensions directory (Java
implementations using the Server SDK reside under lib/extensions). You must also create an
extension if configuring a Sync Pipe from database to directory server. See the example in
the config/jdbc/samples directory.

• Make sure the database is configured to listen for external connections. If it is locked down
for security, the Identity Data Sync will register a connection error during Sync Pipe startup.

General Tips When Syncing to a Database Destination

When configuring a directory-to-database Sync Pipe, you should be aware of the following
recommendations:

• Identify the Object Classes. It is advisable to identify the different object classes that will
be synced. Create a Sync Class per object class, so that you can easily distinguish between
them and have different mappings and sync rules set up for each one.

• For each Sync Class, make sure to set the following items listed below. You can access
many of the configuration menus using the dsconfig tool.

• Set the Include-Filter Property. Make sure the include-filter property is set on the Sync
Class configuration menu to something that will uniquely identify the source entries, such
as "objectClass=customer".

• Create Specific Attribute Mappings. Create a specific Attribute Mapping for every
LDAP attribute that you want to be synced to a database column(s); add all of these to
a single Attribute Map and set it on the Sync Class. This way, the script will not have to
know about the schema on the directory side. It may be desirable to add a Constructed
Attribute Mapping that maps a literal value to the objectClass attribute, if needed by the
script, to determine the database entry type. For example, you could have something like
"account" -> objectClass, which would result in the constructed destination LDAP entry
always containing an objectClass of "account".

• Create Specific DN Maps (optional). Create a DN Map that recognizes the DN's of
the source entries and maps them to a desired destination DN. In most cases, this step is
unnecessary, because the script will use the attributes rather than the DN to figure out
which database entry needs changed.

• Set auto-mapped-source-attribute to "-none-". Remove the default value of "-all-"
from "auto-mapped-source-attribute" on the Sync Class configuration menu, and replace
it with the value "-none-". We do not want any values from the directory automatically
mapped to an attribute with the same name when using explicit attribute mappings. (You
can set this property using the dsconfig tool. On theconfiguration console main menu,
select Sync Class, and then enter View edit an existing sync class on the Sync Class
Management menu. Select your Sync Class to open the Sync Class Configuration menu.)

Syncing with Relational Databases

137

• Configure Create-Only Attributes. Any attributes that should be included on creates but
never modified (such as objectclass) should be specified on the Sync Pipe as a create-only
attribute. This way if the Identity Data Sync ever computes a difference in that attribute
between the source and destination, it will not try to modify it at the destination.

• Avoid bidirectional Loopback. Make sure to set the ignore-changes-by-[user|dn]
property on both Sync Sources configuration menus when configuring for bidirectional
synchronization. This is important to make sure that changes are not looped back by the
Identity Data Sync.

• Synchronizing DELETE Operations. On UnboundID Identity Data Store and Alcatel-
Lucent 8661 Directory Server systems, you must configure the changelog-deleted-
entryinclude-attribute property on the Change Log backend menu using the dsconfig
tool. This property allows for the proper synchronization of DELETE operations that occur
with this endpoint server. For the example presented in this section, you would set the
changelog-deleted-entry-include-attribute=accountid. For more information, see
Configuring the Directory Server Backend for Synchronizing Deletes.

• Set the Attribute-Synchronization-Mode Appropriately for DB Sync. For MODIFY
operations, the Identity Data Sync detects any change on the source change log, fetches the
source entry, applies mappings, computes the equivalent destination entry, fetches the actual
destination entry, and then runs a diff between the two entries to determine the minimal
set of changes to get the destination in sync with the source. By default, the Identity Data
Sync only makes changes on the destination entry for those attributes that were detected
in the original change log entry. However, this is configurable using the attribute-
synchronization-mode property. The attribute-synchronization-mode property sets
the type of diff operation that is performed between the source and destination entries on a
MODIFY operation, which in turn determines the scope of attributes that are modified on the
destination.

If the source endpoint is a database server (Oracle or MS SQL Server), we recommend
setting the attribute-synchronization-mode property to all-attributes on the Sync
Class configuration menu. In this way, the diff operation will consider all the source
attributes and any that have changed will be updated on the destination, even if the change
was not originally detected in the change log. In some cases, you may not be able to get a
list of changed columns in the database, in which case, you would have to use this mode,
because modified-attributes-only will not change any destination attributes if it thinks
that there are no source attributes changed. If both endpoints are directory servers, we
recommend keeping the default configuration to modified-attributes-only to avoid any
possible replication conflicts.

• Handling MODDN Operations. The concept of a modifyDN or renaming an entry does
not have a direct equivalent in the relational database world. The JDBCSyncDestination
API does not provide a separate method for handling changes of this type; instead,
the modifyEntry() method is called just as if it is a normal change. The extension
can check if the entry was renamed by looking at the SyncOperation that is
passed in (i.e., syncOperation.isModifyDN()). If this method returns true, the
fetchedDestEntry parameter will have the old DN; the new DN can be obtained by calling
syncOperation.getDestinationEntryAfterChange() and getting the DN from there.

Syncing with Relational Databases

138

Configuring the Directory-to-Database Sync Pipe

The following procedure shows the interactive steps to set up a one-way Sync Pipe with an
UnboundID Identity Data Store as the Sync Source and a RDBMS (Oracle) system as the Sync
Destination. The procedure uses the create-sync-pipe-config tool in interactive commandline
mode, which shows the configuration steps in a top-down flow from Sync Pipe to external
servers.

The procedure is broken out into sections for easy access and is based on the interactive prompts
that the create-sync-pipe-config tool will present. The instructions assume that the user has the
proper root user or admin privileges to make configuration changes. Once you have configured
the sync pipes, then you can fine-tune the configuration later using the dsconfig utility.

Step 1. Creating the Directory-to-Database Sync Pipe

The initial configuration steps show how to set up a single Sync Pipe from a directory
server instance to a database using the create-sync-pipe-config tool in interactive mode.
The create-sync-pipe-config tool prompts the user for input and leads you through the
configuration steps in a wizard-like mode. The procedure will show how to set up and configure
the Sync Pipe, external servers, and Sync Classes. The examples are based on the Complex
JDBC sample in the config/jdbc/samples/oracle-db directory.

Optionally, you can run the create-sync-pipe-config tool with the server offline and import
the configuration later.

1. Start the Identity Data Sync.

$ bin/start-sync-server

2. Run the create-sync-pipe-config tool.

$ bin/create-sync-pipe-config

3. At the Initial Synchronization Configuration Tool prompt, press Enter to continue.

4. On the Synchronization Mode menu, press Enter to select Standard mode. A standard Mode
Sync Pipe will fetch the full entries from both the source and destination and compare them
to produce the minimal set of changes to bring the destination into sync. A notification
mode Sync Pipe will skip the fetch and compare phases of processing and simply notify
the destination that a change has happened and provide it with the details of the change.
Notifications are currently only supported from UnboundID and Alcatel-Lucent Directory or
Proxy Servers 3.0.3 or later.

5. On the Synchronization Directory menu, enter the number corresponding to Create a One-
way Sync Pipe from directory to database. If you are planning to deploy a bidirectional Sync
configuration, enter the number corresponding to bidirectional synchronization.

Syncing with Relational Databases

139

To Configure the Sync Source

1. On the Source Endpoint Type menu, enter the number for the sync source corresponding to
the type of source external server. For this example, enter the number corresponding to the
UnboundID Identity Data Store.

2. Next, you will be prompted to enter a name for the Source Endpoint. Enter a descriptive
name for the Sync Source. For example, dssync.

3. Next, enter the base DN for the directory server, which is used as the base for LDAP
searches. For example, enter dc=example,dc=com, and then press Enter again to return to
the menu. If you enter more than one base DN, make sure the DNs do not overlap.

4. On the Server Security menu, select the type of secure communication that the Identity
Data Sync will use with the endpoint server instances. Select either 1) None; 2) SSL; or 3)
StartTLS. For this example, select the default (None).

5. Next, enter the host and port of the first Source Endpoint server. The Sync Source can
specify a single server or multiple servers in a replicated topology. The Identity Data
Sync will contact this first server if it is available, then contact the next highest priority
server if the first server is unavailable, etc. After you have entered the host and port, the
Synchronization Server tests that a connection can be established.

6. On the Identity Data Sync User Account, enter the DN of the sync user account and create
a password for this account. The Sync User account allows the Identity Data Sync to
access the source endpoint server. By default, the Sync User account is placed at cn=Sync
User,cn=Root DNs,cn=config. Press Enter to accept the default configuration.

To Configure the Destination Endpoint Server

1. Next, on the Destination Endpoint Type menu, select the type of datastore on the endpoint
server. In this example, enter the number corresponding for Oracle Database.

2. Next, you will be prompted to enter a name for the Destination Endpoint. Enter a descriptive
name for the Sync Destination. For example, oraclesync.

3. On the JDBC Endpoint Connection Parameters menu, enter the fully-qualified and resolvable
host name or IP address for the Oracle database server. After you have entered the host name,
the Identity Data Sync checks if the hostname or IP address is resolvable.

4. Next, enter the listener port for the database server. For this example, press Enter to accept
the default (1521).

5. Enter a database name. For this example, use dbsync-test.

6. Next, the Identity Data Sync attempts to locate the JDBC driver in the lib directory. If the
server found the file, it will generate a success message.

Successfully found and loaded JDBC driver for:
jdbc:oracle:thin:@//dbsync-w2k8-vm-2:1521/dbsync-test

Syncing with Relational Databases

140

If the server cannot find the JDBC driver, you can add it later, or quit the create-sync-
pipe-config tool and add the file to the lib directory. The following message is displayed to
std-out.

Could not find an appropriate JDBC driver in the /UnboundID-Sync/lib
directory for: jdbc:oracle:thin:@//dbsync-w2k8-vm-2:1521/dbsync-test

What do you want to do?

 1) I will add the JDBC driver later
 2) Quit this tool and add the JDBC driver now

 b) back
 q) quit
Choose an option [1]:

7. Next, you will be prompted if you want to add any additional JDBC connection properties
for the database server. Please consult your JDBC driver’s vendor documentation to see what
properties are supported. For this example, press Enter to accept the default (no).

8. Next, you will be prompted to enter a name for the database user account with which the
Identity Data Sync will communicate. Press Enter to accept the default (SyncUser). Then,
enter the password for the SyncUser account. For information on creating the SyncUser
account on the Oracle Server, see step 1 in Configuring the Database for Synchronization.

9. On the Standard Setup menu, enter the number for the language (Java or Groovy) that was
used to write the server extension.

10.At this stage, you will be prompted to enter the fully qualified name of the Server SDK
extension class that implements the JDBCSyncDestination API.

Enter the fully qualified name of the Java class that will implement
com.unboundid.directory.sdk.sync.api.JDBCSyncDestination:
com.unboundid.examples.oracle.ComplexJDBCSyncDestination

11.Next, the Identity Data Sync prompts if you want to configure any user-defined arguments
needed by the server extension. These are defined in the extension itself and the values
are specified in the server configuration. If there are user-defined arguments, enter yes.
Otherwise press Enter to accept the default (no) and continue. For this example, enter "yes"
to configure the arguments for the script.

12.Next, the Identity Data Sync prompts if you want to prepare the Source Endpoint server,
which tests the connection to the directory server and tests that the Sync User account is
accessible. Press Enter to accept the default (yes). For the Sync User account, it will return
"Denied" as the account has not been written yet to the Directory Server at this time.

Testing connection to server1.example.com:1389 Done
Testing 'cn=Sync User,cn=Root DNs,cn=config' access Denied

13.Next, you will be prompted if you want to configure the Sync User account on the directory
server. Press Enter to accept the default (yes). You will be prompted for the bind DN (e.g.,
cn=Directory Manager) and the bind DN password of the directory server so that you can
configure the cn=Sync User account. The Identity Data Sync creates the Sync User account,
tests the base DN, and enables the change log.

Created 'cn=Sync User,cn=Root DNs,cn=config'
Verifying base DN 'dc=example,dc=com' Done

Syncing with Relational Databases

141

Enabling cn=changelog

14.Next, you will be prompted to enter the maximum age of the change log entries. For this
example, press Enter to accept the default (2d).

Step 2. Configuring the Sync Pipe and Sync Classes

In this section, we define the Sync Pipe and then create two Sync Classes. The first Sync Class
is used to match the "accounts" objects. The second Sync Class is used to match the "group"
objects. We’ll set the basic Sync Class definitions and then add the attribute and DN maps in a
later step.

To Configure the Sync Pipe and Sync Classes

1. Continuing from the previous session, enter a name for the Sync Pipe. Make sure the name is
descriptive to identify it if you have more than one sync pipe configured. For example, enter
dssync-to-oraclesync.

2. Next, you will be prompted if you would like to define one or more Sync Classes. Enter yes.
We’ll define the Accounts Sync Class, and then the Groups Sync Class in the next sections.

To Configure the Accounts Sync Class

1. Next, enter a name for the Sync Class. Make sure the name is descriptive to identify the sync
class. For example, type accounts_sync_class.

2. At this stage, if you plan to restrict entries to specific subtrees, then enter one or more base
DNs. For this example, press Enter to accept the default (no).

3. Next, you will be prompted to set an LDAP search filter. For this example, type yes to set up
a filter and enter the filter "(accountid=*)". Press Enter again to continue. This property
sets the LDAP filters and returns all entries that match the search criteria to be included
in the Sync Class. In this example, we want to specify that any entry with an accountID
attribute be included in the Sync Class. If the entry does not contain any of these values, it
will not be synchronized to the target server.

4. Continuing from the previous example, on the Sync Class menu, you will be prompted if
you want to synchronize all attributes, specific attributes, or exclude specific attributes from
synchronization. Press Enter to accept the default (all). We’ll adjust these mappings in a
later section.

5. Next, specify the operations that will be synchronized for the Sync Class. For this example,
press Enter to accept the default (1, 2, 3) for creates, deletes, modifies.

Syncing with Relational Databases

142

To Configure the Groups Sync Class

For this current example, we need to configure another Sync Class to handle the
Groups objectclass. The procedures are similar to that of the configuration steps for the
account_sync_class Sync Class that were presented in the previous section.

1. On the Sync Class Management menu, enter a name for a new sync class. In this example,
enter groups_sync_class.

2. At this stage, if you plan to restrict entries to specific subtrees, then enter one or more base
DNs. Enter one or more base DNs. For this example, type no.

3. Next, you will be prompted to set an LDAP search filter. For this example, type yes to
set up a filter and enter the filter "(objectClass=groupOfUniqueNames)". Press Enter
again to continue. This property sets the LDAP filters and returns all entries that match the
groupOfUniqueNames attribute to be included in the Sync Class. If the entry does not contain
any of these values, it will not be synchronized to the target server.

4. Continuing from the previous example, on the Sync Class menu, you will be prompted if
you want to synchronize all attributes, specific attributes, or exclude specific attributes from
synchronization. Press Enter to accept the default (all). We’ll adjust these mappings in a
later section.

5. Next, specify the operations that will be synchronized for the Sync Class. For this example,
press Enter to accept the default (1, 2, 3) for creates, deletes, modifies.

6. At this point, you will see the Sync Class menu again asking you to enter the name of another
Sync Class. Press Enter to continue.

7. Next, on the Default Sync Class Operations menu, press Enter to accept the default (1,2,3)
for creates, deletes, and modifies. The Default Sync Class determines how all entries that do
not match any other Sync Class are handled, including whether create, delete, and/or modify
operations are synchronized.

8. Review the configuration, and then press Enter to write the configuration to the Identity
Data Sync. If you want to change any property, you can go back to the particular menu, or
make the adjustments later using the dsconfig tool. If you decide to write the configuration
to the Identity Data Sync, press Enter, and then enter the connection properties for your
Identity Data Sync (bind DN, bind DN password).

>>>> Configuration Summary

 Sync Pipe: dssync-to-oraclesync

 Source: dssync
 Type: UnboundID Directory Server
 Access Account: cn=Sync User,cn=Root DNs,cn=config
 Base DN: dc=example,dc=com
 Servers: server1.example.com:1389

 Destination: oraclesync
 Type: Oracle Database
 Access Account: SyncUser
 Servers: dbsync-w2k8-vm-2:1521

 Sync Classes:

Syncing with Relational Databases

143

 accounts_sync_class
 Base DN:
 Filters: (accountID=*)
 DN Map: None
 Synchronized Attributes: -none-
 Operations: Creates,Deletes,Modifies

 groups_sync_class
 Base DN:
 Filters: (objectClass=groupOfUniqueNames)
 DN Map: None
 Synchronized Attributes: -none-
 Operations: Creates,Deletes,Modifies

 DEFAULT
 Operations: Creates,Deletes,Modifies

 w) write configuration
 b) back
 q) quit Enter

choice [w]:

9. The create-sync-pipe-config tool outputs the following messages. If you have to make
any manual changes to the external servers, it will present them.

Creating External Servers Done
Creating Endpoints Done
Creating Sync Pipes Done
Creating Attribute and DN Mappings Done
Creating Sync Classes Done

The following issues should be resolved before starting synchronization:

 Server 'dbsync-w2k8-vm-2:1521' needs manual preparation before starting
 synchronization.

 * You need to manually create the 'SyncUser' user account on this server and grant
 the proper privileges.

 You need to implement the following scripted adapter(s): com.unboundid.exam-
 ples.samples.ComplexJDBCSyncDestination.

 Refer to the product documentation for a recommended approach for initially
 bringing the two ends points into sync. Once this is done, you can enable
 real-time synchronization using the 'realtime-sync' tool.

Press RETURN to continue

See /UnboundID-Sync/logs/tools/create-sync-pipe-config.log for a detailed log of
this operation

Step 3. Fine-Tuning the Sync Classes

The Accounts and Groups Sync Classes require more fine-tuning as the DN and attributes maps
need to be configured. Some additional properties are required for the example presented in this
chapter.

To Fine-Tune the Accounts Sync Class

1. Start the dsconfig tool. Then, enter or select the LDAP (or LDAPS) connection parameters
for the Identity Data Sync.

$ bin/dsconfig

Syncing with Relational Databases

144

2. On the Configuration Console main menu, enter the number corresponding to Sync Class. On
the Standard Objects menu, enter the corresponding number for Sync Class.

3. On the Sync Class Management menu, type 3 to view and edit an existing Sync Class.

4. Select or confirm that you are configuring a given Sync Pipe. Press Enter to continue.

5. Next, select the specific Sync Class that you want to modify. For this example, enter the
number corresponding for the accounts sync class.

>>>> Select the Sync Class from the following list:

 1) accounts_sync_class
 2) DEFAULT
 3) groups_sync_class

 b) back
 q) quit

Enter choice [b]: 1

6. On the Sync Class Properties menu, enter the number corresponding to the description
property. For this example, enter "This Sync Class matches the site-user, guest, and
administrator objectClasses." This step is optional but if you configure more than one Sync
Class, you should add a general description describing the sync class’s purpose.

>>>> Configure the properties of the Sync Class
 >>>> via creating 'account_sync_class' Sync Class

 1) description "This Sync Class matches the site-user,
 guest, and administrator
 objectclasses."
 2) evaluation-order-index 10
 3) include-base-dn The location of the entry in the Sync
 Source is not taken into account when
 determining whether an entry is
 part of this Sync Class.
 4) include-filter (accountID=*)
 5) attribute-map No attribute map is used.
 6) dn-map No dn map is used.
 7) auto-mapped-source-attribute all
 8) excluded-auto-mapped-source- No source attributes are excluded from
 attributes synchronization.
 9) destination-correlation-attributes dn
 10) synchronize-creates true
 11) synchronize-modifies true
 12) synchronize-deletes true

 ?) help
 f) finish - create the new Sync Class
 a) show advanced properties of the Sync Class
 d) display the equivalent dsconfig arguments to create
 this object
 b) back
 q) quit

Enter choice [b]:

To Configure an Attribute Map

1. On the Sync Class Property menu, enter the corresponding to setting the attribute map. On
the Attribute Map Property menu, enter 2 to add one or more values, and then, enter 1 to
create a new attribute map.

Syncing with Relational Databases

145

2. Next, enter a name for the Attribute Map. Make sure the name is descriptive as you can
typically have more than one attribute map in a Sync Class. For this example, enter Directory
to DB Attr Map. Review the configuration on the Attribute Map Properties menu, and then
enter f to save the configuration. We’ll add the attribute mappings in a later section.

>>>> Configure the properties of the Attribute Map
 >>>> via creating 'Directory to DB Attr Map' Attribute Map

 Property Value(s)

 1) description -

 ?) help
 f) finish - create the new Attribute Map
 d) display the equivalent dsconfig arguments to create this object
 b) back
 q) quit

Enter choice [b]: f

To Configure a DN Map

Next, we set up a DN Map from DNs in the form of *,ou=People,dc=example,dc=com and
map it to a column/row value of "accountid={accountid}" in the database using the dsconfig
command.

1. On the Sync Class Property menu, enter the number corresponding to the dn-map property.
On the DN Map Property menu, enter 2 to add one or more values. Since there are no
existing maps, enter 1 to create a new DN Map. Enter a name for the DN Map. For this
example, enter ubid_to_oracle_accounts_dn_map. Review the configuration on the DN
Map Properties menu, and then enter f to save the configuration.

2. Next, enter the name of the from-dn-pattern property on the source directory server. For
example, enter "*,ou=People,dc=example,dc=com."

3. Next, enter the name of the to-dn-pattern property to which it will be mapped to the
destination database server. For example, enter "accountid={accountid}."

4. On the DN Map Property menu, review the configuration, and then enter f to save and apply
the changes.

>>>> Configure the properties of the DN Map
 >>>> via creating 'ubid_to_oracle_accounts_dn_map' DN Map
 >>>> via creating 'account_sync_class' Sync Class

 Property Value(s)
 --
 1) description -
 2) from-dn-pattern "*,ou=People,dc=example,dc=com"
 3) to-dn-pattern accountid={accountid}

 ?) help
 f) finish - create the new DN Map
 d) display the equivalent dsconfig arguments to create this object

 b) back
 q) quit

Enter choice [b]:f

5. On the DN Map Property menu, press Enter to use the value
(ubid_to_oracle_accounts_dn_map) that you just entered.

Syncing with Relational Databases

146

To Configure the Ignore-Zero-Length-Values Property

1. On the Sync Class Property menu, type a to show the advanced properties. Then, enter the
number corresponding to the ignore-zero-length-values property. This property ignores
attribute changes that result in an empty (zero-length) value. Set the value to TRUE.

2. On the Sync Class Property menu, review the configuration, and type f to save and apply the
changes. The advanced properties menu is displayed.

>>>> Configure the properties of the Sync Class
 >>>> via creating 'account_sync_class' Sync Class

 1) description "This Sync Class matches the
 site-user. guest, and administrator
 objectclasses."
 2) evaluation-order-index 5
 3) include-base-dn The location of the entry is in the
 Sync Source is not taken into
 account when determining whether an
 entry is part of this Sync Class.
 4) include-filter (accountID=*)
 5) attribute-map Directory to DB Attr Map
 6) dn-map ubid_to_oracle_accounts_dn_map
 7) auto-mapped-source-attribute -none-
 8) excluded-auto-mapped-source- No source attributes are excluded
 attributes from synchronization.
 9) destination-correlation-attributes accountID
 10) destination-correlation-attributes- -
 on-delete
 11) synchronize-creates true
 12) synchronize-modifies true
 13) synchronize-deletes true
 14) attribute-synchronization-mode all-attributes
 15) ignore-zero-length-values true
 16) replace-all-attr-values true
 17) modifies-as-creates false
 18) creates-as-modifies false

 ?) help
 f) finish - create the new Sync Class
 a) show advanced properties of the Sync Class
 d) display the equivalent dsconfig arguments to
 create this object
 b) back
 q) quit

Enter choice [b]: f

You have successfully configured the account_sync_class Sync Class.

To Fine-Tune the Groups Sync Class

For this current example, we need to configure another Sync Class to handle the
Groups objectclass. The procedures are similar to that of the configuration steps for the
account_sync_class Sync Class.

1. On the Sync Class Management menu, enter the number corresponding to View and Edit an
Existing Sync Class, and then select groups_sync_class.

2. On the Sync Class Properties menu, configure the following properties:

a) Set the description property to: "This Sync Class matches the Groups objectclass."
b) Create and set the attribute map to: Directory to DB Groups Map

Syncing with Relational Databases

147

c) Create and set the DN map to: ubid_to_oracle_groups_dn_map. The equivalent
dsconfig command is as follows:

$ bin/dsconfig create-dn-map \
 --map-name ubid_to_oracle_groups_dn_map \
 --set "from-dn-pattern:**" \
 --set "to-dn-pattern:name={cn}"

d) Set the ignore-zero-length-values property to: true

3. The specific property values for the Groups Sync Class can be seen below. When finished,
review the configuration, and then enter f to save and apply the changes:

>>>> Configure the properties of the Sync Class
 >>>> via creating 'Groups Sync Class' Sync Class

 Property Value(s)

 1) description This Sync Class matches the Groups
 objectclass.
 2) evaluation-order-index 10
 3) include-base-dn The location of the entry in the Sync
 Source is not taken into account when
 determining whether an entry is part
 of this Sync Class.
 4) include-filter (objectClass=groupOfUniqueNames)
 5) attribute-map Directory to DB Groups Map
 6) dn-map ubid_to_oracle_groups_dn_map
 7) auto-mapped-source-attribute -none-
 8) excluded-auto-mapped-source- No source attributes are excluded
 attributes from synchronization.
 9) destination-correlation-attributes dn
 10) destination-correlation-attributes- -
 on-delete
 11) synchronize-creates true
 12) synchronize-modifies true
 13) synchronize-deletes true
 14) ignore-zero-length-values true
 15) replace-all-attr-values true
 16) modifies-as-creates false
 17) creates-as-modifies false

 ?) help
 f) finish - create the new Sync Class
 a) hide advanced properties of the Sync Class
 d) display the equivalent dsconfig arguments to
 create this object
 b) back
 q) quit

Enter choice [b]: f

4. On the Sync Class Management menu, enter b to back out of this menu to return to the
UnboundID Identity Data Sync configuration console main menu.

Step 4. Configuring the Attribute Mappings

In a previous step, the attribute maps were configured and added to each Sync Class (see
Configuring the Attribute Mappings on page 141). Attribute maps are containers for attribute
mappings that map the source attributes to similar or other attributes in the destination server.
Based on the example schema, we want to configure the following Accounts and Group Table
attributes on the system as follows:

Syncing with Relational Databases

148

Table 11: Attribute Mappings to Synchronize the Accounts Table

from-attribute (DS) to-attribute (DB)

accountID accountID

address address

email email

firstName firstName

lastName lastName

lastLogin lastLogin

middleName middleName

numLogins numLogins

phone phone

Table 12: Attribute Mappings to Synchronize the Group Table

from-attribute (DS) to-attribute (DB)

cn name

description description

uniqueMember1 memberID

To Create the Attribute Mapping

1. On the configuration console main menu, enter the number corresponding to Attribute
Mapping. On the Basic objects menu, enter the number corresponding to Attribute Mapping.

2. On the Attribute Map Management menu, enter the number corresponding to Create a New
Attribute Mapping.

3. Select the Attribute Map that will be the container for this attribute mapping. For this
example, enter the number corresponding to the Directory to DB Attr Map.

>>>> Select the Attribute Map from the following list:

 1) Directory to DB Attr Map
 2) Directory to DB Groups Map

 b) back
 q) quit

Enter choice [b]: 1

4. Next, select the type of attribute mapping that you want to create. In this example, enter the
number corresponding to Direct Attribute Mapping.

5. Next, enter the name of the "to-attribute" to which the entry’s attribute will be mapped on the
destination database server. For this example, enter accountID.

6. Next, enter the name of the "from-attribute" from which it will be mapped to the "to-
attribute" on the source directory server. For example, enter: accountID.

7. On the Direct Attribute Mapping Properties menu, review the configuration, and then type f
to save the changes.

>>>> Configure the properties of the Direct Attribute Mapping

1 DN attribute mapping

Syncing with Relational Databases

149

 >>>> via creating 'accountID' Direct Attribute Mapping

 Property Value(s)

 1) to-attribute accountID
 2) description -
 3) from-attribute accountID

 ?) help
 f) finish - create the new Direct Attribute Mapping
 a) show advanced properties of the Direct Attribute Mapping
 d) display the equivalent dsconfig arguments to create this object
 b) back
 q) quit

Enter choice [b]: f

8. Repeat steps 2–7 for the other attribute mappings.

• Or, you can use the dsconfig batch file feature to configure the attribute mappings at
one time. Quit the dsconfig interactive session, create a text file, copy-and-paste the
following dsconfig commands in the file, save the file as "attr-mappings.txt." Run the
dsconfig command using the -F (or --batch-file) option. You must also use the --no-
prompt option with the command. From the command line, run the dsconfig command
and specify the batch file.

dsconfig create-attribute-mapping --map-name "Directory to DB Attr Map" \
--mapping-name address --type direct --set from-attribute:address
dsconfig create-attribute-mapping --map-name "Directory to DB Attr Map" \
--mapping-name email --type direct --set from-attribute:email
dsconfig create-attribute-mapping --map-name "Directory to DB Attr Map" \
--mapping-name firstName --type direct --set from-attribute:firstName
dsconfig create-attribute-mapping --map-name "Directory to DB Attr Map" \
--mapping-name lastName --type direct --set from-attribute:lastName
dsconfig create-attribute-mapping --map-name "Directory to DB Attr Map" \
--mapping-name lastLogin --type direct --set from-attribute:lastLogin
dsconfig create-attribute-mapping --map-name "Directory to DB Attr Map" \
--mapping-name middleName --type direct --set from-attribute:middleName
dsconfig create-attribute-mapping --map-name "Directory to DB Attr Map" \
--mapping-name numLogins --type direct --set from-attribute:numLogins
dsconfig create-attribute-mapping --map-name "Directory to DB Attr Map" \
--mapping-name phone --type direct --set from-attribute:phone

Create the Group Attribute Mappings and assign them to the
"Directory to DB Groups Map"
dsconfig create-attribute-mapping --map-name "Directory to DB Groups Map" \
--mapping-name description --type direct --set from-attribute:description

Create the "Directory to Database Group Membership DN Map".
dsconfig create-dn-map \
--map-name "Directory to Database Group Membership DN Map" \
--set "from-dn-pattern:*,ou=people,dc=example,dc=com" \
--set "to-dn-pattern:{1}"
dsconfig create-attribute-mapping --map-name "Directory to DB Groups Map" \
--mapping-name memberID --type dn --set from-attribute:uniqueMember \
--set dn-map:"Directory to Database Group Membership DN Map"
dsconfig create-attribute-mapping --map-name "Directory to DB Groups Map" \
--mapping-name name --type direct --set from-attribute:cn

From the command line, run the following:

$ bin/dsconfig --port 7389 --bindPassword password \
--batch-file attr-mappings.txt --no-prompt

Syncing with Relational Databases

150

Step 5. Run the Resync Tool to Test the Configuration

The resync tool is used to test the sync configuration and connections. The tool has a --dry-
run option that does not update the destination server but is convenient to test the configuration
settings and report what is currently out of sync.

To Run Resync to Test the Configuration

• Run the resync command in "dry-run" mode to test the synchronization setup.

$ bin/resync --pipe-name dssync-to-oraclesync --dry-run

Step 6. Set the Startpoint in the Change Log

The realtime-sync set-startpoint command sets the starting point in the change log to tell
the Identity Data Sync where to start when the Sync Pipe is started. This command provides a
way to avoid syncing all of the changes that have happened in the past.

To Set the Startpoint

• Run the realtime-sync set-startpoint command to mark the point to start tracking
changes in the change tracking mechanism.

$ bin/realtime-sync set-startpoint --end-of-changelog \
--pipe-name dssync-to-oraclesync --port 389 --bindDN "cn=Directory Manager" \
--bindPassword password

Step 7. Run the Resync Tool to Populate Data at the Destination Endpoint

The resync tool is also used to populate a target server with data from the source.

To Run the Resync Tool to Populate Data onto a Target Server

• Run the resync command to populate data onto a newly configured target server. The
Identity Data Sync will make three passes to load data onto the server.

$ bin/resync --pipe-name dssync-to-oraclesync --numPasses 3

Step 8. Start the Sync Pipe

At this stage, we have configured everything necessary for the directory-to-database Sync Pipe.
We only need to start it. Generally, it is preferable to use the realtime-sync tool to start and
stop the Sync Pipes as well as start and stop the Sync configuration globally.

Syncing with Relational Databases

151

To Start the Sync Pipe

• Run the realtime-sync tool to start Sync Pipe.

$ bin/realtime-sync start --pipe-name dssync-to-oraclesync

Step 9. Debugging the Configuration

Typically, you will need to debug any problems after you run the prepare-endpoint-server
and resync commands. There are a number of logging and tools options available when
debugging the configuration as presented in the following sections.

Check the Status

• Run the status tool to verify the synchronization. You should check if the servers are
connected and that changes are being detected. You can enter your bindPassword and have
the system use your bindDN and port as defaults.

$ status --bindPassword password

• You can also restrict the status output to just list a single sync pipe using the --pipe-name
option.

$ status --bindPassword password --pipe-name dssync-to-oraclesync

Check the Logs

• Increase the detail in the Sync log by changing the Sync Log Publisher handler’s logged-
message-type property to include: change-applied-detailed, change-detected-
detailed, and entry-mapping-details.

$ dsconfig set-log-publisher-prop --publisher-name "File-Based Sync Logger" \
--set logged-message-type:change-applied-detailed \
--set logged-message-type:change-detected-detailed \
--set logged-message-type:change-failed-detailed \
--set logged-message-type:dropped-op-type-not-synchronized \
--set logged-message-type:dropped-out-of-scope \
--set logged-message-type:entry-mapping-details \
--set logged-message-type:no-change-needed

• Tail the errors log in the logs directory to locate any errors.

• Enable the debug logger (disabled by default), then rerun the resync command. You should
disable the logger when no longer needed as it can impact performance.

Enable the Debug Logger
dsconfig set-log-publisher-prop --publisher-name "File-Based Debug Logger" \

--set enabled:true

Set the Debug Target and Verbosity Level
dsconfig create-debug-target --publisher-name "File-Based Debug Logger" \
--target-name com.unboundid.directory.sync.jdbc --set debug-level:verbose

When finished with debugging, disable the logger

Syncing with Relational Databases

152

dsconfig set-log-publisher-prop --publisher-name "File-Based Debug Logger" \
--set enabled:false

• If your connections are working and the resync operation is working but you are seeing sync
errors, tail the sync-failed-ops log. The problems could be in your attribute or DN maps.

Scripted Logging Methods

The ServerContext class provides several logging methods which can be used to generate
log messages and/or alerts from the scripted JDBC layer: logMessage(), sendAlert(),
debugCaught(), debugError(), debugInfo(), debugThrown(), debugVerbose(), and
debugWarning(). These are described in the Server SDK API Javadocs.

Testing One Entry at a Time

Testing and debugging a configuration can be made more tractable if you test one entry at a
time. When testing a directory-to-database sync configuration, the easiest way to do this is to
use the resync tool’s "--sourceInputFile" option, which allows you to specify a list of one or
more DNs to sync.

When to Restart the Sync Pipe

• Make sure to restart the Sync Pipes after modifying a any extension code and rebuilding.
You do not need to first run realtime-sync stop; running realtime-sync start will
automatically re-start the pipe.

$ bin/realtime-sync start

• Because resync is a separate process and independently loads the server configuration, it is
not necessary to restart the sync pipe.

Note: Any Identity Data Sync configuration changes automatically restart
the Sync Pipe. Extension implementation changes require a manual Sync
Pipe restart.

Contact Your Support Provider

If you require assistance, your authorized support provider usually requests that you run the
bin/collect-support-data command so that they can locate the source of any problems. The
command generates a zip file that you can send to your support provider.

$ bin/collect-support-data --bindDN uid=admin,dc=example,dc=com \
--bindPassword password

Syncing with Relational Databases

153

General Tips When Syncing from a Database Source

When syncing from a database to a target endpoint server (directory server or RDBMS),
remember to consider the following tips:

• Identify Database Entry Types. It is advisable to identify the different database entry types
that will be synced. There are two things that you need to do:

• Set the database-entry-type property on the JDBC Sync Source (this is required), and
make sure the entry types are what the triggers are inserting into the change tracking
mechanism.

• Create a Sync Class per entry type, so that you can easily distinguish between them and
have different mappings and sync rules set up for each one.

• For each Sync Class, do the following:

• Make sure the include-filter property is set to match the entry type.

• Create a specific Attribute Mapping for every database column that you want to be synced
to a LDAP attribute; add this to a single Attribute Map and set it on the Sync Class. This
way, the script will not have to know about the schema on the directory side.

• Create a DN Map that recognizes the DNs generated by the script and map them to the
correct location at the destination; set that on the Sync Class.

• Remove the default value of "-all-" from the auto-mapped-source-attribute property
on the Sync Class, and replace it with the value "objectClass". The object class for the
fetched source entry is determined by the scripted layer. You do not want any values
from the database automatically mapped to an attribute with the same name, which is
why we set up explicit Attribute Mappings. The exception to this rule is the objectclass
attribute, which we want to directly map for CREATE operations. If this is not done, an
error is generated due to the lack of structural object class in the entry.

• Change the destination-correlation-attributes property to contain the attributes
that uniquely represent the database entries on the directory server destination. This will
likely be something other than the default, which is "dn".

• Avoid Bidirectional Loopback. Make sure to set the ignore-changes-by-[user|dn]
property on both Sync Sources when configuring for bidirectional synchronization. This is
important to make sure that changes are not looped back by the Identity Data Sync.

Configuring the Database-to-Directory Sync Pipe

The setup procedure for a Sync Pipe from a database to the directory server is similar to that of
the directory-to-database sync configuration. However, there are slight differences in terms of
enabling or setting properties for bidirectional synchronization.

Syncing with Relational Databases

154

To display the additional features of the dsconfig command, the following procedure uses
dsconfig in non-interactive mode to set up the Database-to-Directory Sync Pipe. You can run
each command from the command line, in scripts, or in a batch file when setting up multiple
configurations.

The procedures assume that you have already set up the directory-to-database Sync Pipe and
that it is fully operational and connected. Remember to include the connection parameters
(hostname, port, bindDN, and bindPassword) with each dsconfig command.

To Create the Database-to-Directory Sync Pipe

1. Run the create-sync-pipe-config tool to configure the Database-to-Directory Sync Pipe.
The steps are similar to those presented in the previous sections.

2. Run the resync tool to test the configuration. When testing a database-to-directory Sync
Pipe, you must specify the --entryType of the database table that is synchronized.

$ bin/resync --pipe-name oracle_to_ubid --entryType account --dry-run

3. Run the realtime-sync tool with the set-startpoint subcommand to mark the point to
start tracking changes in the change tracking mechanism.

$ bin/realtime-sync set-startpoint --end-of-changelog --pipe-name oracle_to_ubid \
--port 389 --bindDN "cn=Directory Manager" --bindPassword password

4. Run the resync tool to populate data onto a newly configured target server. The Identity
Data Sync will make three passes to load data onto the server.

$ bin/resync --pipe-name oracle_to_ubid --numPasses 3 --entryType account
$ bin/resync --pipe-name oracle_to_ubid --numPasses 3 --entryType group

5. Run the realtime-sync tool to start Sync Pipe.

$ bin/realtime-sync start --pipe-name oracle_to_ubid

6. Troubleshoot the Sync Pipe as presented in Step 9. Debugging the Configuration.
You have successfully configured a bidirectional DBSync system.

Synchronizing a Specific List of Database Elements Using
Resync

The resync command allows you to synchronize a specific set of database keys that are
read from a JDBC Sync Source file using the --sourceInputFile option. The contents of
the file are passed line-by-line into the listAllEntries() method of the JDBCSyncSource
extension, which is used for the Sync Pipe. The method processes the input and returns
DatabaseChangeRecord instances based on the input from the file.

Syncing with Relational Databases

155

To Synchronize a Specific List of Database Elements Using Resync

1. Create a file of JDBC Sync Source elements. The format of the file is up to the user, but it
typically contains a list of primary keys or SQL queries. For example, create a file containing
a list of primary keys and save it as sourceSQL.txt.

user.0
user.1
user.2
user.3

2. Run the resync command with the --sourceInputFile option to run on individual primary
keys in the file.

$ bin/resync --pipe-name "dbsync-pipe" --sourceInputFile sourceSQL.txt

3. If you are targeting a specific type of database entry to search for, you can also use the --
entryType option that matches one of the configured entry types in the JDBCSyncSource.

$ bin/resync --pipe-name "dbsync-pipe" \
--entryType account --sourceInputFile sourceSQL.txt

Syncing with Relational Databases

156

Syncing Through Proxy Servers

157

Chapter

6 Syncing Through Proxy Servers

The UnboundID Identity Data Sync supports synchronization between directory servers and
relational databases. Because most data centers deploy their directory servers in a proxied
environment, the UnboundID Identity Data Sync can also synchronize data through a proxy
server in both load-balanced and entry-balancing deployments. The following types of proxy
endpoints are supported:

➢ UnboundID Identity Proxy (version 3.x or later)
➢ Alcatel-Lucent 8661 Directory Proxy Servers (3.x or later)

The Sync-through-Proxy feature is only available for deployments in combination with a
backend set of standalone or replicated UnboundID Identity Data Stores (version 3.x or later) or
Alcatel-Lucent 8661 Directory Server (3.x or later).

This chapter presents the procedures to set up a Sync-through-Proxy deployment and provides
some background information on how it works. Before setting up the Identity Data Sync, review
the section Configuration Model to understand the important components of the Identity Data
Sync. Also, review the Proxy Server Administration Guide for background information on the
proxy server.

This chapter presents the following topics:

Topics:

• Features
• How It Works
• About the Overall Sync-through-Proxy Configuration Process
• About the Sync-Through-Proxy Configuration Example
• Configuring the Example Source Proxy Deployment
• Configuring the Example Destination Proxy Deployment
• Indexing the LDAP Changelog
• A Special Note about Syncing Changes using the Get Changelog Batch Request

Syncing Through Proxy Servers

158

Features

The UnboundID Identity Data Sync (version 3.x) supports data synchronization through a proxy
server from and to an endpoint consisting of the following:

➢ UnboundID Identity Proxy (version 3.x or later)
➢ Alcatel-Lucent 8661 Directory Proxy Server (version 3.x or later)

Each proxy server has a backend set of servers consisting of the following:

➢ UnboundID Identity Data Stores (version 3.x or later)
➢ Alcatel-Lucent 8661 Directory Server (version 3.x or later)

The servers have been updated with additional components to provide seamless synchronization
through the proxy using the following features:

• Synchronization is fully supported for load-balanced and entry-balancing proxy server
deployments.

• The Identity Data Store and the UnboundID Identity Proxy provide a common interface
to detect and retrieve changes to be synchronized, including failover to an alternate source
server.

• The Directory Proxy Server provides a built-in server affinity mechanism to ensure change
log searches are routed to the same directory server each time while it is online. This allows
for more efficient processing compared to load-balancing the searches across the backend
directory servers.

• The UnboundID Identity Data Sync uses the same configuration procedures as any other
endpoint setup. The proxy server’s operations are largely transparent to the Synchronization
Server.

• Proxy transformations are not supported. Any required transformations must be implemented
in the Identity Data Sync rather than the Proxy Server.

Note: If you are using the UnboundID Identity Data Sync (version 3.x) with
an earlier version of the UnboundID Identity Proxy and UnboundID Identity
Data Store (versions 1.4.x, 2.2.x), you cannot run sync-through-proxy. The
feature has not been backported to earlier versions.

How It Works

To handle data synchronization through a proxy server, the UnboundID Identity Data Store,
UnboundID Identity Proxy, Alcatel-Lucent 8661 Directory Server, Alcatel-Lucent 8661
Directory Proxy Server, and the UnboundID Identity Data Sync all have been updated with
a new cn=changelog state management system that supports a token-based API and other

Syncing Through Proxy Servers

159

components necessary for seamless data synchronization through the proxy. The tools have also
been updated to handle these new components.

In a standard, non-proxied configuration, the Identity Data Sync polls the source server for
changes, determines if a change is necessary, and fetches the full entry from the source. Then,
it finds the corresponding entry in the destination endpoint using flexible correlation rules
and applies the minimal set of changes to bring any modified attributes into sync. The server
fetches and compares the full entries to make sure it does not synchronize any stale data from
the change log.

In a proxied environment, the Identity Data Sync essentially does the same thing but
transparently to the user, it passes the request through a proxy server to the backend set of
directory servers. The Identity Data Sync uses the highest priority proxy server designated in its
endpoint server configuration and can quickly use other proxy servers in the event of a failover.
Figure 18 shows an example deployment with two endpoints consisting of a proxy server
deployment in front of the backend set of directory servers. Remember that you can have one
endpoint consisting of UnboundID Identity Proxy and UnboundID Identity Data Stores while
the other endpoint can be a directory server or RDBMS deployment (UnboundID Identity Data
Store, Alcatel-Lucent 8661 Directory Server, Alcatel-Lucent 8661 Directory Proxy Servers, Sun
DSEE 6.x, 7.x, Sun Directory Server 5.2 patch 3 or higher, Microsoft Active Directory, Oracle
10g, 11g, or Microsoft SQL Server 2005, 2008).

Figure 18: Sync-Through-Proxy

About the Get Changelog Batch Request and Get Server ID Controls

When the Identity Data Sync runs a poll for any changes, it sends a Get Changelog Batch (GCB)
Extended Request to the cn=changelog backend. The Get Changelog Batch looks for entries
in the change log and asks for information on the server ID, change number, and replica state
for each change. The Proxy Server routes the request to a directory server instance, which then
returns a changed entry plus a token identifying the server ID, change number and replica state
for each change. The proxy server then sends a Get Changelog Batch Response back to the
Identity Data Sync with this information. For entry-balancing deployments, the Directory Proxy
Server must "re-package" the directory server tokens into its own proxy token to identify the
specific data set. We will return to this a bit later.

To provide automatic server affinity in the proxied environment, the Identity Data Sync uses
the Get Server ID (GSID) Request Control together with the Get Changelog Batch (GCB) to
identify the server ID of any fetched entry as illustrated in Figure 19. The first time that the
Identity Data Sync issues GCB request, it also issues a GSID Request Control to identify the
specific server ID that is processing the extended request. The Directory Proxy Server routes

Syncing Through Proxy Servers

160

the request to the directory server instance, and then returns a server ID in the response. Upon
the next GCB request, the Identity Data Sync sends a Route to Server (RTS) Request Control
specifying the server instance to access again (in this example, server A) in this batch session. It
also issues a GSID Request Control to get an updated server ID in the event that the particular
server (e.g., server A) is down. This method avoids round-robin server selection and provides
more efficient overall change processing.

Figure 19: Get Changelog Batch Requests with Built-in Server Affinity

About the Directory Server and Directory Proxy Server Tokens

The Directory Server maintains a new change log database index to determine at what point
to resume sending changes (corresponding to ADD, MODIFY, or DELETE operations) in its
change log. While a simple stand-alone directory server can track its resume point by the last
change number sent, it is more difficult for replicated servers or servers deployed in entry-
balancing environments. In replicated environments, each replica has a different change number
ordering in its change log as updates can come from a variety of sources: local write operations,
changes from the other replication servers, or synchronized changes from other end-points.
Figure 20 illustrates a simple chart of two example change logs in two replicated directory
servers, server A and B. In the chart, A represents the replica identifier for a replicated subtree
in Server A, and B represents the replica identifier for the same replicated subtree in server B.
The replica identifiers with a hyphen ("-") mark any local, non-replicated but different changes.
While the two replicas record all of the changes, you can see that the two change logs have two
different change number orderings as updates come in at different times.

Figure 20: Different Change Number Order in Two Replicated Change Logs

To track the change log resume position, the Directory Server uses a change log database index
to identify the latest change number position corresponding to the highest replicationCSN

Syncing Through Proxy Servers

161

number for a given replica. This information is encapsulated in a directory server token and
returned in the Get Changelog Batch Response control to the Directory Proxy Server. The token
has the following format:

Directory Server Token: server ID, changeNumber, replicaState

For example, if the Proxy Server sends a request for any changed entries and the Directory
Servers return the change number 1003 from server A and change number 2005 from server B,
then each directory server token would contain the following information:

Directory Server Token A:
 serverID A, changeNumber 1003, replicaState {15(A)}

Directory Server Token B:
 serverID B, changeNumber 2005, replicaState {12(B), 15(A)}

Change Log Tracking in Entry-Balancing Deployments

Entry-balancing provides additional complexity in change log tracking in that a shared area of
data can exist above the entry-balancing base DN in addition to each backend set having its own
set of changes and tokens as mentioned previously. In Figure 21, the change logs of two servers
are shown with server A belonging to an entry-balancing set 1 and server B belonging to an
entry-balancing set 2. Shared areas that exist above the entry-balancing base DN are assumed
to be replicated to all servers. Thus, SA represents the replica identifier for that shared area on
server A and SB represents the replica identifier for the same area on server B.

Figure 21: Different Change Number Order in Two Replicated Change Logs

The Directory Proxy Server cannot simply pass a directory server token from the client to
the backend directory server backend and back again as each directory server has its own set
of changes and its tokens. Thus, in an entry-balancing deployment, the Proxy Server must
maintain its own token mechanism that associates a directory server token (changeNumber, rep-
licaIdentifier, replicaState) to a particular backend set.

Proxy Token:
backendSetID 1: ds-token 1 (changeNumber, replicaIdentifier, replicaState)
backendSetID 2: ds-token 2 (changeNumber, replicaIdentifier, replicaState)

For example, if the Directory Proxy Server returned change 1002 from server A and change
2002 from server CB, then the Proxy token would contain the following:

Proxy Token:
backendSetID 1: ds-token-1 {serverID A, changeNumber 1002, replicaState (5(SA), 15(A)}
backendSetID 2: ds-token-2 {serverID B, changeNumber 2002, replicaState (10(SB), 20(B)}

For each change entry returned by a backend, the Directory Proxy Server must also decide
whether it is a duplicate of a change made to the backend set above the entry-balancing base,

Syncing Through Proxy Servers

162

since such changes appear in the change log across all backend sets. If the change is a duplicate,
then it is discarded. Otherwise, any new change is returned with a new value of the proxy token.

About the Overall Sync-through-Proxy Configuration
Process

The procedure to configure a Sync-through-Proxy system follows the basic procedures for a
standard Sync configuration. The overall configuration process is as follows:

1. Set up your proxy server with its backend set of directory servers at one endpoint or both
endpoints.

2. Download the Identity Data Sync zip build, and unpack it to a directory of your choice.
3. From the server root directory of the Identity Data Sync, run the create-sync-pipe-config

command for your initial configuration. The command will interactively prompt you to input
values necessary for your configuration.

4. Run the prepare-external-server command on the endpoint Directory Proxy Server
instance and the backend set of directory servers. The Directory Proxy Server passes on a
client request to the directory servers, which requires the cn=Sync User account be present
on those servers for accessibility purposes. The LDAP Change Log is also enabled on the
directory servers.

5. Run the resync --dry-run command to test the configuration settings.
6. Run realtime-sync set-startpoint to initialize the starting point for synchronization.

Note that you cannot use the --change-number option with a Sync-through-Proxy
deployment but can use another option, such as --end-of-changelog or --change-
sequence-number options.

7. Run the resync command to populate data on a target endpoint.
8. Start the Sync Pipes using the realtime-sync start command.
9. Monitor the Identity Data Sync using the status commands and logs.

About the Sync-Through-Proxy Configuration Example

This section presents the steps to configure a sync-through-proxy network and uses an example
configuration that has its two endpoints consisting of an UnboundID Identity Proxy with a
backend set of UnboundID Identity Data Stores: both sets are replicated. The Directory Proxy
Server uses an entry-balancing environment for the DN:ou=People,dc=example,dc=com
and provides a subtree view for dc=example,dc=com in its client connection policy. For this
example, we assume that communication will be over standard LDAP and that failover servers
are not installed or designated in the Identity Data Sync.

Syncing Through Proxy Servers

163

Figure 22: Example Sync-Through-Proxy Configuration

Configuring the Example Source Proxy Deployment

To configure the source proxy deployment, follow the procedures in the next two sections. The
--port option defaults to 389, the --bindDN option defaults to "cn=Directory Manager", and the
--proxyBindDN option defaults to "cn=Proxy User,cn=Root DNs,cn=config".

Configuring the Directory Servers

The following procedures present the basic dsconfig command-line instructions in non-
interactive mode to set up this example’s backend set of directory servers. The specific setup
procedures may differ based on your particular environment. For more detailed background
information, please review the UnboundID Identity Data Store Administration Guide.

To Configure the Directory Servers

1. To begin installing and configuring the directory servers, unzip the directory server file in a
location of your choice.

$ unzip UnboundID-DS-<version>.zip

2. If you plan to use SSL or StartTLS for communication, copy any keystore and truststore files
to the <server-root>/config directory. For this example, we do not use SSL or StartTLS.
All communication will be over standard LDAP.

3. If you have an existing schema file, copy the file to the <server-root>/config/schema
directory.

4. Run the setup command from the root server root directory. Select your memory size
options for your machine. For this example, create the base entry for the first directory server

Syncing Through Proxy Servers

164

instance in the first backend set at host name ldap-west-01.example.com. Set the maximum
JVM heap size to 4 GB.

$./setup --cli --no-prompt --listenAddress ldap-west-01.example.com \
--ldapPort 389 --rootUserPassword password --baseDN dc=example,dc=com \
--aggressiveJVMTuning --maxHeapSize 4g --acceptLicense

5. Configure the directory server. Here you can configure your local DB indexes, virtual
attributes, log files, password policies, SASL mechanisms and global configuration
properties. Minimally, you must enable the change log database backend on your server
instance, either from the command line or using a dsconfig batch file.

$ dsconfig --no-prompt set-backend-prop --backend-name changelog --set enabled:true

Note: If you do not plan to have the specific directory server instance
participate in synchronization, you do not need to enable its change log.

6. Repeat steps 1–5 for the other instances. Make sure to specify the hostname and port for each
server instance.

7. Import the dataset for the first backend set into the first server in the backend set. You must
stop the server if it is running prior to the import.

$ bin/stop-ds
$ bin/import-ldif --backendID userRoot --ldifFile ../dataset.ldif
$ bin/start-ds

8. On the first server instance in the first backend set, configure replication between this server
and the second server in the same backend set.

$ bin/dsreplication enable --host1 ldap-west-01.example.com \
 --port1 389 --bindDN1 "cn=Directory Manager" --bindPassword1 password \
 --replicationPort1 8989 --host2 ldap-west-02.example.com --port2 389 \
 --bindDN2 "cn=Directory Manager" --bindPassword2 password \
 --replicationPort2 9989 --adminUID admin --adminPassword admin \
 --baseDN dc=example,dc=com --no-prompt

9. Initialize the second server in the backend set with data from the first server in the backend
set. This command can be run from either instance.

$ bin/dsreplication initialize --hostSource ldap-west-01.example.com \
 --portSource 389 --hostDestination ldap-west-02.example.com \
 --portDestination 389 --baseDN "dc=example,dc=com" --adminUID admin \
 --adminPassword admin --no-prompt

10.Run dsreplication status to check your replicas.

$ bin/dsreplication status --hostname ldap-west-01.example.com \
 --port 389 --adminPassword admin --no-prompt

11.Repeat steps 8 through 11 (import, enable replication, initialize replication, check status) for
the second backend set.

Syncing Through Proxy Servers

165

To Configure the Directory Proxy Servers

The following procedures present the basic dsconfig command-line instructions to set up your
proxy servers in non-interactive mode. The procedures configure the proxy servers from a
bottom-up perspective: from defining the external servers to configuring the client-connection
policy. If you are configuring the proxy servers for the first time, we recommend using the
create-initial-proxy-config tool. The tool provides a command-line wizard presenting
the interactive steps to configure your proxy server. For additional changes, you can use the
dsconfig tool to fine-tune your proxy server. For more detailed background information, please
review the UnboundID Directory Proxy Server Administration Guide.

1. To begin installing and configuring the directory servers, unzip the UnboundID Directory
Proxy Server file in a location of your choice.

$ unzip UnboundID-Proxy-<version>.zip

2. Run the setup command from the proxy server root server root directory. For this example,
the default bind DN will be "cn=Directory Manager" and bind DN (or root user) password is
set to "pxy-pwd." You can also use the --aggressiveJVMTuning with the --maxHeapSize
options to set the amount of JVM memory for this application.

$ setup --cli --no-prompt --ldapPort 389 --rootUserPassword pxy-pwd \
--acceptLicense

3. From the Directory Proxy Server root directory, run the prepare-external-server
command to set up the cn=Proxy User account and its privileges to give the proxy server
access to the backend directory servers. After you press Enter, the command tests the
connection to the server, creates the "cn=Proxy User" account, tests the connection to the
account again, and checks the backend.

$ bin/prepare-external-server --no-prompt \
 --hostname ldap-west-01.example.com \
 --port 389 --bindDN "cn=Directory Manager" --bindPassword password \
 --proxyBindDN "cn=Proxy User,cn=Root DNs,cn=config" \
 --proxyBindPassword pass --baseDN "dc=example,dc=com"

4. Repeat step 3 for the other directory server instances in this example. Make sure to specify
the specific hostname and port.

5. Next, run the dsconfig command to define the external servers and their types. The
Directory Proxy Server communicates with these external servers through the cn=Proxy
User account. Normally, you may want to set up any health checks and designate your
server locations using this command. However, for this example, we use round-robin load-
balancing algorithms, which do not require any health checks or locations to be specified.

$ bin/dsconfig --no-prompt create-external-server --server-name ldap-west-01 \
 --type "unboundid-ds" --set "server-host-name:ldap-west-01.example.com" \
 --set "server-port:389" --set "bind-dn:cn=Proxy User" \
 --set "password:password" --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-external-server --server-name ldap-west-02 \
 --type "unboundid-ds" --set "server-host-name:ldap-west-02.example.com" \
 --set "server-port:389" --set "bind-dn:cn=Proxy User" \
 --set "password:password" --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

Syncing Through Proxy Servers

166

$ bin/dsconfig --no-prompt create-external-server --server-name ldap-west-03 \
 --type "unboundid-ds" --set "server-host-name:ldap-west-03.example.com" \
 --set "server-port:389" --set "bind-dn:cn=Proxy User" \
 --set "password:password" --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-external-server --server-name ldap-west-04 \
 --type "unboundid-ds" --set "server-host-name:ldap-west-04.example.com" \
 --set "server-port:389" --set "bind-dn:cn=Proxy User" \
 --set "password:password" --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

6. Next, create a load-balancing algorithm for each backend set. In this example, create one
algorithm for the two replicated servers in the first backend set, and another for the two
replicated servers in the second backend set.

$ bin/dsconfig --no-prompt create-load-balancing-algorithm \
 --algorithm-name "test-lba-1" \
 --type "round-robin" --set "enabled:true" \
 --set "backend-server:ldap-west-01" \
 --set "backend-server:ldap-west-02" \
 --set "use-location:false" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-load-balancing-algorithm \
 --algorithm-name "test-lba-2" \
 --type "round-robin" --set "enabled:true" \
 --set "backend-server:ldap-west-03"
 --set "backend-server:ldap-west-04"
 --set "use-location:false" \
 --bindDN "cn=Directory Manager" \
 --bindPassword pxy-pwd

7. Next, configure the proxying request processors. A request processor provides the logic to
either process the operation directly, forward the request to another server, or hand off the
request to another request processor. You will define two proxying request processors, one
for each load-balanced directory server set.

$ bin/dsconfig --no-prompt create-request-processor \
 --processor-name "proxying-processor-1" --type "proxying" \
 --set "load-balancing-algorithm:test-lba-1" \
 --bindDN "cn=Directory Manager" --bindPassword pxy-pwd

$ bin/dsconfig --no-prompt create-request-processor \
 --processor-name "proxying-processor-2" --type "proxying" \
 --set "load-balancing-algorithm:test-lba-2" \
 --bindDN "cn=Directory Manager" --bindPassword pxy-pwd

8. At this stage, we define an entry-balancing request processor. This request processor is used
to distribute entries under a common parent entry among multiple backend sets. A backend
set is a collection of replicated directory servers that contain identical portions of the data.
This request processor uses multiple proxying request processors to process operations for
the various backend LDAP servers.

$ bin/dsconfig --no-prompt create-request-processor \
 --processor-name "entry-balancing-processor" \
 --type "entry-balancing" \
 --set "entry-balancing-base-dn:ou=People,dc=example,dc=com" \

 --set "subordinate-request-processor:proxying-processor-1" \
 --set "subordinate-request-processor:proxying-processor-2" \
 --bindDN "cn=Directory Manager" --bindPassword pxy-pwd

9. Next, define the placement algorithm, which selects the server set to use for new add
operations to create new entries. In this example, we define a placement algorithm with a

Syncing Through Proxy Servers

167

round-robin algorithm that forwards LDAP add requests to backends sets in a round-robin
manner.

$ bin/dsconfig --no-prompt create-placement-algorithm \
 --processor-name "entry-balancing-processor" \
 --algorithm-name "round-robin-placement" \
 --set "enabled:true" --type "round-robin" \
 --bindDN "cn=Directory Manager" --bindPassword pxy-pwd

10.Define the subtree view that specifies the base DN for the entire deployment.

$ bin/dsconfig --no-prompt create-subtree-view \
 --view-name "test-view" \
 --set "base-dn:dc=example,dc=com" \
 --set "request-processor: entry-balancing-processor" \
 --bindDN "cn=Directory Manager" --bindPassword pxy-pwd

11.Finally, define a client connection policy that specifies how the client connects to the proxy
server.

$ bin/dsconfig --no-prompt set-client-connection-policy-prop \
 --policy-name "default" --add "subtree-view:test-view" \
 --bindDN "cn=Directory Manager" --bindPassword pxy-pwd

You have successfully configured the first endpoint topology for the source servers.

Configuring the Example Destination Proxy Deployment

To configure the destination proxy deployment, follow the procedures in the previous two
sections. A summary of the example configuration commands are listed in Table 6-1. The --
port option defaults to 389, the --bindDN option defaults to "cn=Directory Manager", and the
--proxyBindDN option defaults to "cn=Proxy User,cn=Root DNs,cn=config".

Table 13: Summary of Proxy Configuration Commands for the Source and Destination Deployments

Component Source Proxy Topology Destination Proxy Topology

Prepare External
Servers prepare-external-server --no-prompt \

--hostname "ldap-west-01.example.com"
 \
--bindPassword "password" --base DN"
 dc=example,dc=com"

prepare-external-server --no-prompt \
--hostname "ldap-west-02.example.com"
 \
--bindPassword "password" \
--baseDN" dc=example,dc=com"

prepare-external-server --no-prompt \
--hostname "ldap-west-03.example.com"\
--bindPassword "password" \
--baseDN" dc=example,dc=com"

prepare-external-server --no-prompt \
--hostname "ldap-west-04.example.com"
 \
--bindPassword "password" \
--baseDN" dc=example,dc=com"

prepare-external-server \
--no-prompt \
--hostname "ldap-
east-01.example.com" \
--bindPassword "password" \
--base DN" dc=example,dc=com"

prepare-external-server \
--no-prompt \
--hostname "ldap-
east-02.example.com" \
--bindPassword "password" \
--baseDN" dc=example,dc=com"

prepare-external-server \
--no-prompt \
--hostname "ldap-
east-03.example.com" \
--bindPassword "password" \
--base DN" dc=example,dc=com"

prepare-external-server \
--no-prompt \
--hostname "ldap-
east-04.example.com" \
--bindPassword "password" \
--baseDN" dc=example,dc=com"

Syncing Through Proxy Servers

168

Component Source Proxy Topology Destination Proxy Topology

External Servers
dsconfig create-external-server \
--server-name: "ldap-west-01" \
--type "unboundid-ds" \
--set "server-host-name:ldap-
west-01.example.com" \
--set "server-port:389" \
--set "bind-dn:cn=Proxy User" \
--set "password:password"

dsconfig create-external-server \
--server-name: "ldap-west-02" \
--type "unboundid-ds" \
--set "server-host-name:ldap-
west-02.example.com" \
--set "server-port:389" \
--set "bind-dn:cn=Proxy User" \
--set "password:password"

dsconfig create-external-server
--server-name: "ldap-west-03" \
--type "unboundid-ds" \
--set "server-host-name:ldap-
west-03.example.com" \
--set "server-port:389" \
--set "bind-dn:cn=Proxy User" \
--set "password:password"

dsconfig create-external-server \
--server-name: "ldap-west-04" \
--type "unboundid-ds" \
--set "server-host-name:ldap-
west-04.example.com" \
--set "server-port:389" \
--set "bind-dn:cn=Proxy User" \
--set "password:password"

dsconfig create-external-server \
--server-name: "ldap-east-01" \
--type "unboundid-ds"
--set "server-host-name:ldap-
east-01.example.com" \
--set "server-port:389" \
--set "bind-dn:cn=Proxy User" \
--set "password:password"

dsconfig create-external-server \
--server-name: "ldap-east-02" \
--type "unboundid-ds" \
--set "server-host-name:ldap-
east-02.example.com" \
--set "server-port:389" \
--set "bind-dn:cn=Proxy User" \
--set "password:password"

dsconfig create-external-server
--server-name: "ldap-east-03" \
--type "unboundid-ds" \
--set "server-host-name:ldap-
east-03.example.com" \
--set "server-port:389" \
--set "bind-dn:cn=Proxy User" \
--set "password:password"

dsconfig create-external-server \
--server-name: "ldap-east-04" \
--type "unboundid-ds" \
--set "server-host-name:ldap-
east-04.example.com" \
--set "server-port:389" \
--set "bind-dn:cn=Proxy User" \
--set "password:password"

Load-Balancing
Algorithm

dsconfig create-load-balancing-
algorithm \
--algorithm-name "test-lba-1" \
--type "round-robin" \
--set "enabled:true" \
--set "backend-server: ldap-west-01 \
--set "backend-server: ldap-west-02 \
--set "use-location:false"

dsconfig create-load-balancing-
algorithm \
--algorithm-name "test-lba-2" \
--type "round-robin" \
--set "enabled:true" \
--set "backend-server: ldap-west-03 \
--set "backend-server: ldap-west-04 \
--set "use-location:false"

dsconfig create-load-balancing-
algorithm \
--algorithm-name "test-lba-1" \
--type "round-robin" \
--set "enabled:true" \
--set "backend-server: ldap-
east-01 \
--set "backend-server: ldap-
east-02 \
--set "use-location:false"

dsconfig create-load-balancing-
algorithm \
--algorithm-name "test-lba-2" \
--type "round-robin" \
--set "enabled:true" \
--set "backend-server: ldap-
east-03 \
--set "backend-server: ldap-
east-04 \
--set "use-location:false"

Request
Processors (load-
balancing)

dsconfig dsconfig create-request-
processor \
--processor-name "proxying-
processor-1" \
--type "proxying" \
--set "load-balancing-algorithm:test-
lba-1"

dsconfig create-request-processor \
--processor-name "proxying-
processor-2" \
--type "proxying" \
--set "load-balancing-algorithm:test-
lba-2

dsconfig create-request-processor \

Same as source

Syncing Through Proxy Servers

169

Component Source Proxy Topology Destination Proxy Topology
--processor-name "entry-balancing-
processor" \
--type "entry-balancing" \
--set "entry-balancing-base-
dn:ou=People,dc=example,dc=com" \
--set "subordinate-request-
processor:proxying-processor-1" \
--set "subordinate-request-
processor:proxying-processor-2"

Placement
Algorithm dsconfig create-placement-algorithm \

--processor-name "entry-balancing-
processor" \
--algorithm-name "round-robin-
placement" \
--set "enabled:true" \
--type "round-robin"

Same as source

Subtree View
dsconfig create-subtree-view \
--view-name: "test-view" \
--set "base-dn:dc=example,dc=com" \
--set "request-processor:entry-
balancing-rocessor"

Same as source

Client Connection
Policy dsconfig set-client-connection-policy-

prop \
--policy-name: "default" \
--add "subtree-view:test-view"

Same as source

To Configure the Identity Data Sync

At this stage, the UnboundID Identity Proxy and its backend set of UnboundID Directory Server
instances should be configured and fully functional for each endpoint, which is labelled as ldap-
west and ldap-east in this example.

1. Download the UnboundID Synchronization ZIP file. Unzip the file in a directory of your
choice.

$ unzip UnboundID-Sync-<version>.zip

2. If this is the first time that you are installing the Identity Data Sync on this machine, you
must ensure that you have JDK1.6 update 25. Set the JAVA_HOME environment variable
and your PATH or CLASSPATH variables accordingly.

3. From the Identity Data Sync root directory, run the setup tool. For this example, the default
bindDN will be "cn=Directory Manager" and the rootUser Password (or root user) is set to
"password".You can also use the --aggressiveJVMTuning with the --maxHeapSize options
to set the amount of JVM memory for this application.

$ setup --no-prompt --ldapPort 389 --rootUserPassword password --acceptLicense

4. From the Identity Data Sync root directory, run the create-sync-pipe-config tool, and
then, press Enter to continue.

$ bin/create-sync-pipe-config

5. At the Initial Synchronization Configuration Tool prompt, press Enter to continue.

Syncing Through Proxy Servers

170

6. On the Synchronization Mode menu, press Enter to select Standard mode. A standard Mode
Sync Pipe will fetch the full entries from both the source and destination and compare them
to produce the minimal set of changes to bring the destination into sync. A notification
mode Sync Pipe will skip the fetch and compare phases of processing and simply notify
the destination that a change has happened and provide it with the details of the change.
Notifications are currently only supported from UnboundID and Alcatel-Lucent Directory or
Proxy Servers 3.0.3 or later.

7. On the Synchronization Directory menu, enter the number associated with the type of
synchronization you want to configure: 1 for One-Way, 2 for bidirectional. For this example,
type 1 for one-way, which will require that you configure one Sync Pipes (e.g., "proxy 1 to
proxy 2").

8. Next, you will be prompted to configure the first endpoint server, which will be the first
Directory Proxy Server topology. On the First Endpoint Type menu, enter the number
for the type of backend datastore for the first endpoint. In this example, type the number
corresponding to the UnboundID Proxy Server.

>>>> First Endpoint Type

Enter the type of data store for the first endpoint:

 1) UnboundID Directory Server
 2) UnboundID Proxy Server
 3) Alcatel-Lucent Directory Server
 4) Alcatel-Lucent Proxy Server
 5) Sun Directory Server
 6) Microsoft Active Directory
 7) Microsoft SQL Server
 8) Oracle Database
 9) Custom JDBC

 b) back
 q) quit

Enter choice [1]: 2

9. Next, enter a descriptive name for the first endpoint. For this example, use "UnboundID
Proxy 1".

10.Next, enter the base DN where the Identity Data Sync can search for the entries on the first
endpoint server. For this example, press Enter to accept the default, dc=example,dc=com.

11.Specify the type of security when communicating with the endpoint server. For this example,
select None.

12.Enter the hostname and port of the endpoint server. The Identity Data Sync will
automatically test the connection to the endpoint server. Repeat the step if you are
configuring another server for failover.

13.Next, enter the Sync User account that will be used to access the endpoint server (i.e., proxy
server 1). Enter cn=Sync User,cn=Root DNs,cn=config, then, enter a password for the
account.

14.At this point, you have defined the first endpoint deployment using the Proxy Server (e.g.,
ldap-west). Repeat steps 8-13 to define the second proxy deployment (e.g., ldap-east) on the
Identity Data Sync.

Syncing Through Proxy Servers

171

15.At this point, you will be prompted to "prepare" the endpoint servers in the topology. The
endpoint servers here refer to the proxy servers in this example. This step ensures that the
Sync User account is present on each server and that it has the proper privileges to allow
communication between the Synchronization Server and the proxy servers. In addition to
preparing the proxy server, the Identity Data Sync must also prepare the backend set of
directory servers as the proxy server passes through the authorization to access these servers.
If they have not been prepared, you will see the following messages to invoke the commands
prior to starting synchronization. Also note that each endpoint is a source and a destination
in a bidirectional sync network; therefore, you must use --isSource and --isDestination
options. If you are configuring a one-way Sync Pipe, you must specify --isSource for the
first endpoint.

Discovering additional servers that require preparation

Server ldap-west-01.example.com:389 requires preparation. Before
starting synchronization you must invoke the following command,
substituting the correct password for [password]:
 prepare-endpoint-server --hostname ldap-west-01.example.com --port 389 \
 --baseDN dc=example,dc=com --isSource --isDestination \
 --syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \
 --syncServerBindPassword "[password]"

Server ldap-west-02.example.com:389 requires preparation. Before
starting synchronization you must invoke the following command,
substituting the correct password for [password]:
 prepare-endpoint-server --hostname ldap-west-02.example.com --port 389 \
 --baseDN dc=example,dc=com --isSource --isDestination \
 --syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \
 --syncServerBindPassword "[password]"

Server ldap-west-03.example.com:389 requires preparation. Before
starting synchronization you must invoke the following command,
substituting the correct password for [password]:
 prepare-endpoint-server --hostname ldap-west-03.example.com --port 389 \
 --baseDN dc=example,dc=com --isSource --isDestination \
 --syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \
 --syncServerBindPassword "[password]"

Discovering additional servers that require preparation Done

16.Next, repeat step 15 to prepare the second endpoint server (i.e., in this example, the second
proxy server). Again, if you have not prepared the underlying directory servers (e.g., ldap-
east-01, ldap-east-02, ldap-east-03), you will need to run the commands prior to starting
synchronization.

17.Define the Sync Pipe from proxy 1 to proxy 2. First, enter a descriptive name for the Sync
Pipe. In this example, accept the default "UnboundID Proxy 1 to UnboundID Proxy 2."

18.Next, if you want to customize on a per-entry basis how attributes get synchronized,
you must define one or more sync classes. Type yes if you have specific attribute or DN
mappings, create a sync class for the special cases, and use default sync class for all other
mappings. For this example, press Enter to accept the default (no).

19.For the default Sync Class Operations, specify the operations that will be synchronized for
the default sync class. For this example, accept the default ([1,2,3]) for Creates, Deletes, and
Modifies.

20.Finally, review the configuration settings, and then accept the default (write configuration)
to the Identity Data Sync. The Identity Data Sync writes your configuration settings to a file,
sync-pipe-cfg.txt, so that you can apply these configurations to other failover Identity Data

Syncing Through Proxy Servers

172

Syncs if necessary. Connect to the Identity Data Sync so that the server will be updated with
your settings.

To Confirm the Proxy Server and Use-Changelog-Batch-Request Properties

1. If you did not use the create-sync-pipe-config tool to create your Sync configuration,
there are two properties that you need to verify on each endpoint: proxy-server and use-
changelog-batch-request. The proxy-server property should specify the name of the
proxy server, while the use-changelog-batch-request should be set to true on the Sync
Source only. The use-changelog-batch-request is not available on the Destination end-
point. Remember to add the connection parameters to your Identity Data Sync (hostname,
port, bind DN, and bind password). The following commands check the properties on a Sync
Source.
On the Sync Source:

$ bin/dsconfig --no-prompt \
get-sync-source-prop \
--source-name "UnboundID Proxy 1" \
--property "proxy-server" \
--property "use-changelog-batch-request"

On the Sync Destination:

$ bin/dsconfig --no-prompt \
get-sync-source-prop \
--source-name "UnboundID Proxy 2" \
--property "proxy-server"

2. From the server root directory, run the dsconfig command to set a flag indicating that the
endpoints are proxy servers. Remember to add the connection parameters for the Identity
Data Sync (hostname, port, bind DN, and bind password) with the following commands:

$ bin/dsconfig --no-prompt \
set-sync-source-prop \
--source-name "UnboundID Proxy 1" \
--set proxy-server:ldap-west-01 \
--set use-changelog-batch-request:true

$ bin/dsconfig --no-prompt \
set-sync-source-prop \
--source-name "UnboundID Proxy 2" \
--set proxy-server:ldap-east-01

To Run Prepare-External-Server on the Backend Set of Directory Servers

1. From the server root directory, run the prepare-external-server command on each of
directory server instances in the first endpoint topology that you want to have participate in
synchronization.

$ prepare-endpoint-server \
--hostname ldap-west-01.example.com --port 389 \
--baseDN dc=example,dc=com --isSource \
--syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \
--syncServerBindPassword "password"

$ prepare-endpoint-server \
--hostname ldap-west-02.example.com --port 389 \
--baseDN dc=example,dc=com --isSource \
--syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \
--syncServerBindPassword "password"

Syncing Through Proxy Servers

173

$ prepare-endpoint-server \
--hostname ldap-west-03.example.com --port 389 \
--baseDN dc=example,dc=com --isDestination \
--syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \
--syncServerBindPassword "password"

$ prepare-endpoint-server \
--hostname ldap-west-04.example.com --port 389 \
--baseDN dc=example,dc=com --isDestination \
--syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \
--syncServerBindPassword "password"

2. Repeat the previous step on the other endpoint topology (e.g., ldap-east).

To Test and Start the Configuration

1. Run the resync --dry-run command to test the configuration settings. We recommend
running it for each sync pipe, debug any issues, then run the command again for the other
sync pipe.

$ bin/resync --pipe-name "UnboundID Proxy 1 to UnboundID Proxy 2" --dry-run

2. Run realtime-sync set-startpoint to initialize the starting point for synchronization.

$ realtime-sync set-startpoint --end-of-changelog \
--pipe-name "UnboundID Proxy 1 to UnboundID Proxy 2" --port 389 \
--bindDN "cn=Directory Manager" \
--bindPassword password

Note: For Sync-through-Proxy deployments, you cannot use the --
change-number option with the realtime-sync set-startpoint
command as the Identity Data Sync cannot retrieve specific change
numbers from the backend set of directory servers. You can use the --
change-sequence-number, --end-of-changelog or the other options
available for the tool.

3. Run the resync command to populate data on the endpoint destination server if necessary.

$ bin/resync --pipe-name "UnboundID Proxy 1 to UnboundID Proxy 2" --numPasses 3

4. Start the Sync Pipe using the realtime-sync start command.

$ bin/realtime-sync start --pipe-name "UnboundID Proxy 1 to UnboundID Proxy 2"

5. Monitor the Identity Data Sync using the status commands and logs.
You have successfully configured a Sync-through-Proxy deployment.

Indexing the LDAP Changelog

The UnboundID Directory Server (3.0 or later) and the Alcatel-Lucent 8661 Directory
Server (3.0 or later) both support attribute indexing in the Changelog Backend to allow

Syncing Through Proxy Servers

174

Get Changelog Batch requests to filter results that include only changes involving specific
attributes. For example, if you are running a Sync-through-Proxy configuration in an entry-
balanced deployment, the Identity Data Sync sends a Get Changelog Batch request to the Proxy
Server, which will send out individual Get Changelog Batch requests to each backend server.
Each directory server that receives a request must iterate over the whole range of changelog
entries and then match entries based on search criteria for inclusion in the batch. The majority
of this processing involves determining whether a changelog entry includes changes to a
particular attribute or set of attributes, or not. Using changelog indexing, client applications can
dramatically speed up throughput when targeting these specific attributes.

Administrators can configure attribute indexing using the index-include-attribute and
index-exclude-attribute properties on the Changelog Backend. The properties can accept
the specific attribute name or special LDAP values "*" to specify all user attributes or "+" to
specify all operational attributes.

To determine if the identity data store supports this feature, administrators can view the Root
DSE for the following entry:

supportedFeatures: 1.3.6.1.4.1.30221.2.12.3

To Configure Changelog Indexing

This procedure assumes that the backend set of directory servers is comprised of either the
UnboundID Identity Data Store (3.0 or later) or the Alcatel-Lucent 8661 Directory Server (3.0
or later), which is fronted by an UnboundID Directory Proxy Server (3.0 or later) or an Alcatel-
Lucent 8661 Directory Proxy Server (3.0 or later). You do not need to configure the Directory
Proxy Server as it passes the GetChangelogBatch requests to the backend directory servers.

1. On all source Directory Servers, enable changelog indexing for the particular attributes that
will be synchronized. Use the combination of the index-include-attribute and index-
exclude-attribute properties. The following example specifies that all user attributes
("index-include-attribute:*") be indexed in the changelog, except the description and
location attributes ("index-exclude-attribute:description" and "index-exclude-
attribute:location").

$ bin/dsconfig set-backend-prop --backend-name changelog \
 --set "index-include-attribute:*" \
 --set "index-exclude-attribute:description \
 --set "index-exclude-attribute:location

Note: There is practically no performance and disk consumption penalty
when using "index-include-attribute:*" with a combination of
index-exclude-attribute properties versus explicitly defining each
attribute using index-include-attribute alone. The only cautionary
note about using "index-include-attribute:*" is to be careful that
unnecessary attributes get indexed.

2. On the Identity Data Sync, go to the Sync Class Management menu, and configure the
auto-map-source-attributes property to specify the explicit mappings for the attributes
that need to be synchronized. Note that you cannot use the -all- value for the auto-map-

Syncing Through Proxy Servers

175

source-attributes property as this will not take advantage of changelog indexing. You
must explicitly list out the attributes that should be auto-mapped.

Note:

The Identity Data Sync will write a NOTICE message to the error log
when the Sync Pipe first starts up, indicating whether the server is using
changelog indexing or not.

[30/Mar/2012:13:21:36.781 -0500] category=SYNC severity=NOTICE
msgID=1894187256 msg="Sync Pipe 'TestPipe' is not using changelog
indexing on the source server"

The message appears under the following conditions: 1) if the source
server supports changelog indexing, 2) if the attribute mappings are set
up in such a way that will allow the Identity Data Sync to use changelog
indexing (i.e., using specific attribute mappings and not setting the auto-
map-source-attributes property to -all-).

A Special Note about Syncing Changes using the Get
Changelog Batch Request

If the UnboundID Sync Source is configured with use-changelog-batch-request=true, then
the Sync Server will use the Get Changelog Batch (GCB) request to retrieve changes from the
LDAP changelog. This extended request can contain an optional set of selection criteria, which
allows the requester to indicate that they would only like changelog entries for changes that
involve a specific set of attributes.

The Sync Server tries to specify this selection criteria in the GCB requests whenever possible,
because it allows the source server to take advantage of changelog indexing if enabled. The
Sync Server takes the union of the source attributes from DN mappings, attribute mappings,
and the auto-mapped-source-attributes property on the Sync Class to create the selection
criteria. However, if it encounters the special value "-all-" in the auto-mapped-source-
attributes property, then it cannot make use of selection criteria because this means that the
sync pipe is interested in all possible source attributes, not just a certain subset.

When the Identity Data Store receives a GCB request that contains selection criteria, it makes
sure that it only returns changelog entries that involve changes to one or more of the attributes
in that criteria. This means that for ADD and MODIFY changelog entries, the changes must
include at least one attribute from the selection criteria: for MODDN changelog entries, one of
the RDN attributes must match the selection criteria; for DELETE changelog entries, one of the
deletedEntryAttrs much match the selection criteria.

Note again that none of this applies if you have auto-mapped-source-attributes=-all-,
because the selection criteria is not present in the GCB request in this case. But if you have
not auto-mapped "all" source attributes, then you need to make sure at least one of them is
configured to show up in the deletedEntryAttrs (via the changelog-deleted-entry-
include-attribute property on the Changelog Backend).

Syncing Through Proxy Servers

176

Another way to do this is to set use-reversible-form to true on the Changelog Backend; this
will cause all the attributes to be included in the deletedEntryAttrs.

Configuring Notification Mode

177

Chapter

7 Configuring Notification Mode

The UnboundID Identity Data Sync supports a notification synchronization mode that transmits
change notifications on a source endpoint to third-party destination applications. As is the case
with synchronization running in standard mode, notifications can be filtered based on the type of
entry that was changed, the specific attributes that were changed, and the type of change (ADD,
MODIFY, DELETE). The Identity Data Sync can send a notification to arbitrary endpoints by
using a custom server extension based on the UnboundID Server SDK.

One deployment example is the implementation of a 3GPP-compliant Subscriber Data
Management system. The Identity Data Sync-based system generates SOAP XML-formatted
push notifications over HTTP and transmits them to front-end applications whenever a change
in the backend subscriber database occurs. In this example, the Identity Data Sync processes the
subscriber changes using a custom extension based on the UnboundID Server SDK. The custom
extension and other third-party libraries manage the connection and protocol logic necessary to
send the notifications to its front-end applications.

This chapter presents the background information and procedures to set up a notification mode
system:

Topics:

• About Notification Mode
• About the Notification Mode Configuration
• About the Server SDK and LDAP SDK
• Important Design Questions
• Implementing the Custom Server Extension
• Configuring the Notification Sync Pipe
• Access Control Filtering on the Sync Pipe
• Contact Your Support Provider

Configuring Notification Mode

178

About Notification Mode

The UnboundID Identity Data Sync, version 3.1.0 or later, supports two modes of
synchronization: standard and notification. Standard Mode is the default mode used to
synchronize changes between its two endpoints. In standard mode, the Synchronization Server
polls the directory server’s LDAP Change Log for all create, modify, and delete operations on
any entry. It fetches the full entries from both the source and destination endpoints and compares
them to produce the minimal set of changes needed to bring the destination server in sync with
the source server. The Identity Data Sync completes the process by updating the destination
endpoint with the necessary changes.

Figure 23: Standard Mode Synchronization Change Flow

The Identity Data Sync provides another way to process changes called Notification Mode
that polls the directory server’s LDAP Change Log for changes on any entry but skips the
fetch and compare phases of processing. Instead, the Sync Destination is notified of the change
regardless of the current state of that entry at the source or destination. The Identity Data Sync
accesses state information on the change log to reconstruct the before-and-after values of any
modified attribute (for example, for MODIFY change operation types). It passes in the change
information to a custom server extension based on the UnboundID Server SDK.

Third-party libraries can be employed to customize the notification message to an output
format required by the client application or service. For example, the server extension can use
a third-party XML parsing library to convert the change notifications to a SOAP XML format.
Notification mode can only be used with an UnboundID Identity Data Store, Alcatel-Lucent
8661 Directory Server, UnboundID Identity Proxy, or Alcatel-Lucent 8661 Directory Proxy
Server as the source endpoint.

Configuring Notification Mode

179

Figure 24: Notification Mode Synchronization Change Flow

Note: The Identity Data Sync can use notification mode with any type of
endpoint; therefore, it is not an absolute requirement to have a custom server
extension in your system. For example, it is possible to set up a notification
sync pipe between two LDAP server endpoints although it is not a practical
production deployment scenario.

Notification Mode Architecture

Notification mode requires a one-way directional sync pipe from a source endpoint topology
to a target client application. The Synchronization Engine detects the changes in the directory
server’s LDAP Change Log, filters the results specified in the Sync Classes, applies any DN
and attribute mappings, then reconstructs the change information from the change log attributes.
The server extension picks up the notification arguments from the SyncOperation interface (part
of the Server SDK) and converts the data to the desired output format. The server extension
establishes the connections and protocol logic to push the notification information to the client
applications or services.

Note: The UnboundID Server SDK ships with documentation and examples
on how to create a directory server extenstion to support notification mode.

For a given entry, the Identity Data Sync sends notifications in the order that the changes
occurred in the change log even if a modified attribute has been overwritten by a later change.
For example, if an entry’s telephoneNumber attribute is changed three times, three notifications
will be sent in the order they appeared in the change log.

Configuring Notification Mode

180

Figure 25: Notification Mode Architecture

Sync Source Requirements

In Notification Mode, a separate Sync Pipe is required for each client application that should
receive a notification. The Sync Sources must consist of one or more instances of the following
directory or proxy servers with the UnboundID Identity Data Sync (version 3.1.0 or later):

➢ UnboundID Identity Data Store (version 3.0.5 or later)
➢ UnboundID Identity Proxy (version 3.0.5 or later)
➢ Alcatel-Lucent 8661 Directory Server (version 3.0.5 or later)
➢ Alcatel-Lucent 8661 Directory Proxy Server (version 3.0.5 or later)

The Sync Destination can be of any type.

Note: While the UnboundID Identity Proxy and Alcatel-Lucent 8661
Directory Proxy Server can front other vendor’s directory servers, such
as Active Directory and Sun DSEE, for processing LDAP operations, the
UnboundID Synchronization Server cannot synchronize changes from these
sources through the Directory Proxy Server. Synchronizing changes directly
from Active Directory and Sun DSEE is supported but not with notification
mode.

Failover Capabilities

To ensure high availability in the source backend directory servers, administrators should set up
replication on the directory servers to ensure data consistency among the servers. Additionally,
administrators can front the backend directory server set with a proxy server to redirect traffic
should connection to the primary server fail. It is also necessary to use a proxy server for
synchronizing changes in an entry-balancing environment. Once the primary directory server
is online, it assumes control with no information loss as its state information is kept across the
backend directory servers.

Configuring Notification Mode

181

For destination failovers, the connection retry logic to the applications must be implemented
in the server extension, which will then use the Sync Pipe’s advanced property settings to
retry any failed operations. Note that there is a difference between a connection retry and an
operation retry. An extension should not retry operations since the Identity Data Sync does so
automatically. But the custom server extension is responsible for re-establishing connections to
a destination that has gone down and/or failing over to an alternate server. The server extension
can also be designed to trigger its own error-handling code during the failed operation.

For Identity Data Sync failovers, the secondary Identity Data Syncs will be at or slightly behind
the state where the primary server initiated a failover. Both primary and sec- ondary Identity
Data Syncs track the last failed acknowledgement, so once the primary server fails over to a
secondary server, the secondary server will not miss a change.

Note: If failover is a concern between Identity Data Syncs, you can change
the sync-failover-polling-interval property from 5000 ms to a smaller
value. This will result in a quicker failover but will marginly increase traffic
between the two Identity Data Syncs. Use dsconfig to access the property
on the Global Sync Configuration menu.

Standard Administration and Monitoring Capabilities

The Notification mode is a configuration setting on the Sync Pipe. All of the operations,
administration, and management (OA&M) functions available in standard mode, such as
monitoring, (LDAP, JMX, SNMP), alerts (JMX, SNMP, SMTP), and extensive logging features
remain the same for notification mode.

Notification Sync Pipe Change Flow

Figure 26 shows the change flow that occurs in the notification sync pipe. Although not
pictured, the changes are processed in parallel using multi-threading, which increases
throughput and offsets network latency. A single change-detection thread is dedicated to pull
in batches of change log entries and queue them internally. Multi-threaded sync pipes allow
the Synchronization Server to process multiple notifications in parallel in the same manner as
synchronizing changes in standard mode. To guarantee consistency, the Identity Data Sync’s
internal locking mechanisms ensure the following properties:

• Changes to the same entry will be processed in the same order that they appear in the change
log.

• Changes to parent entries will be processed before changes to its children.

• Changes to entries with same RDN value are handled sequentially.

The number of concurrent threads is configurable on the Sync Pipe using the num-worker-
threads property in the Identity Data Sync. This configuration property determines how many
operations can be processed in parallel. It can be set to "1" for those applications that require
strict serial processing. In general, we recommend that the single-threading strategy be avoided
to ensure that throughput and performance are not limited.

Configuring Notification Mode

182

Apart from the threading model, one important aspect of the synchronization flow is that noti-
fication mode does not fetch the full source and destination entries in comparison to standard
mode. The Identity Data Sync reconstructs the entries from specialized change log attributes
that record the before-and-after values and entry-key attributes for each modification. See LDAP
Change Log Features Required for Notifications for more information.

Figure 26: Notification Sync Pipe Change Flow

About the Notification Mode Configuration

The Identity Data Sync supports notification mode with the following components.

Create-Sync-Pipe-Config

The create-sync-pipe-config tool supports the configuration of notification mode. Any pre-
existing sync sources can be read from the local configuration (in the config.ldif file), so
that redefining your sync sources is unnecessary if your topology is using a topology of servers
consisting of the UnboundID Identity Data Store (3.0.5 or later) or the Alcatel-Lucent 8661
Directory Server (3.0.5 or later) and possibly fronted by an UnboundID Identity Proxy or an
Alcatel-Lucent Directory Proxy Server.

No Resync

The resync function is disabled on a Sync Pipe in notification mode as its functionality is not
supported in this implementation. Notification mode views the directory server’s change log
as a rolling set of data that pushes out change notifications to its target application. The notion
of bringing the destination endpoints in-sync with the source endpoint only applies to standard
synchronization mode.

Configuring Notification Mode

183

LDAP Change Log Features Required for Notifications

As of version 3.0.3, the UnboundID Identity Data Store and the Alcatel-Lucent 8661 Directory
Server have expanded their configuration to support notification mode with the addition of
two new advanced global change log properties: changelog-max-before-after-values and
changelog-include-key-attribute.

The properties are enabled and configured during the create-sync-pipe-config configuration
process on the Identity Data Sync. The properties can also be enabled on the directory servers
using the dsconfig advanced properties setting on the Backend->Changelog menu and are
described in the following sections:

changelog-include-key-attribute

The changelog-include-key-attribute property specifies one or more attributes that
should always be included in the change log entry. The purpose of this property is to specify
those attributes needed to correlate entries between the source and destination, such as uid,
employeeNumber, mail, etc. The other reason these properties are needed is for evaluating any
filters in the Sync Class. For example, if notifications are only sent for user entries, and the
Sync Class included the filter "(objectclass=people)", then the objectclass attribute must be
configured as a changelog-include-key-attribute so that the Sync Pipe can evaluate the
inclusion criteria when processing the change. In standard mode, values needed in the filter are
read from the entry itself after it is fetched instead of from the changelog entry. Note also that
these attributes are always included in a change log entry, also called a change record, regardless
if they have changed or not.

The changelog-include-key-attribute property causes the current (after-change) value of
the specified attributes to be recorded in the ds-changelog-entry-key-attr-values attribute
on the change log entry. This applies for all change types. On a DELETE operation, the values
are from the entry before it was deleted. The key values are recorded on every change and
override any settings configured in the changelog-include-attribute, changelog-exclude-
attribute, changelog-deleted-entry-include-attribute, or changelog-deleted-entry-
exclude-attribute properties in the directory server changelog (see the UnboundID Identity
Data Store Configuration Reference for more information).

Normal LDAP to LDAP synchronization topologies typically use "dn" as a correlation attribute.
If you use "dn" as a correlation attribute only, you do not need to set the changelog- include-
key-attribute property. However, if you require another attribute for correlation (e.g., uid,
subscriberNumber, customerNumber, etc.), then you must set this property by specifying it
during the configuration process (see Configuring the Notification Sync Pipe).

Table 14: LDAP Change Log Attributes: ds-changelog-entry-key-attr-values

LDAP Change Log Attributes Description

ds-changelog-entry-key-attr-
values

Stores the attribute that is always included in a change log entry on every change
for correlation purposes. In addition to regular attributes, you can also specify virtual
and operational attributes as your entry keys.

To view an example, see the UnboundID Directory Server Administration Guide.

Configuring Notification Mode

184

changelog-max-before-after-values

The changelog-max-before-after-values property specifies a single value greater than zero
that sets the maximum number of before-and-after values (default: 200) that should be stored
for any changed attribute in the change log. Also, when enabled, it will add the ds-changelog-
before-values and ds-changelog-after-values attributes to any change record that contains
changes (i.e., only Modify and ModifyDN).

The main purpose of the changelog-max-before-after-values property is to ensure that you
do not store an excessively large number of before-and-after changes for multi-valued attributes
in an change log entry. In most cases, the directory server’s schema defines a multi-valued
attribute to be unlimited in an entry. For example, if you have a group entry whose member
attribute references 10000 entries, you may not want to record all of the attributes if a new
member is added. The property safeguards against this scenario.

If either the ds-changelog-before-values or the ds-changelog-after-values attributes
exceed the count set in the changelog-max-before-after-values property, the attribute values
are no longer stored in a change record but its attribute name and number is stored in the ds-
changelog-attr-exceeded-max-values-count attribute, which appears in the change record.

In addition to this property, you should also set the use-reversible-form property to "TRUE".
This guarantees that sufficient information is stored in the change log for all operation types to
be able to replay the operations at the destination. The create-sync-pipe-config tool sets up
both of these properties if you choose to let it prepare the servers.

To summarize, the changelog-max-before-after-values property sets up the following
change log attributes, seen in Table 7-2:

Table 15: LDAP Change Log Attributes: changelog-max-before-after-values

LDAP Change Log Attributes Description

ds-changelog-before-values Captures all "before" values of a changed attribute. It will store up to the specified
value in the changelog-max-before-after-values property (default
200).

ds-changelog-after-values Captures all "after" values of a changed attribute. It will store up to the specified
value in the changelog-max-before-after-values property (default
200).

ds-changelog-attr-exceeded-
max-values-count

Stores the attribute names and number of before/after values on the change log
entry after the maximum number of values (set by the changelog-max-before-after-
values property) has been exceeded. This is a multi-valued attribute whose format
is:

attr=attributeName,beforeCount=200,afterCount=201

where "attributeName" is the name of the attribute and the "beforeCount" and
"afterCount" are the total number of values for that attribute before and after the
change, respectively. In either case (before or after the change) if the number of
values is exceeding the maximum, then those values will not be stored.

LDAP Change Log for Notifications and Standard Mode

Both notification and standard mode sync pipes can consume the same LDAP Change Log
without affecting the other. Standard mode polls the change record in the change log for any
modifications, fetches the full entries on the source and the destination, and then compares

Configuring Notification Mode

185

them for the specific changes. Notification mode gets the before-and-after values of a changed
attribute to reconstruct an entry and bypasses the fetch-and-compare phase. Both can consume
the same LDAP Change Log with no performance loss or conflicts.

Note: If your configuration obtains the change log through the proxy server,
the contents of the change log will not change as it is being read from the
change logs on the directory server backend.

About the Server SDK and LDAP SDK

The Server SDK and the LDAP SDK for Java have been updated to support the features
required for notification mode. The specific changes are highlighted in the sections below. For
detailed information, see the javadoc for the respective SDK.

The Identity Data Sync engine processes the notification and makes it available to a ServerSDK
extension, which can be written in Java or Groovy. Similar to database synchroni- zation, place
the custom server extension in the <server-root>/lib/groovy-scripted-extensions folder
(for Groovy-based extensions) or the jar file in the <server-root>/lib/ extensions folder
(for Java-based extensions) prior to configuring the Identity Data Sync for notification mode.
Groovy scripts are compiled and loaded at runtime.

Server SDK Updates

To support notification mode, the Server SDK has been updated with a new extension type,
SyncDestination, which is a generic endpoint used to synchronize with any type of client
application. The architecture makes no assumptions about the type of output and processing
required for the client applications as they are handled by the server extension. This generic
extension type can also be used for standard synchronization mode.

An important interface that your server extension will use is the SyncOperation interface. The
interface represents a single synchronized change from the Sync Source to the Sync Destination.
The same SyncOperation object exists from when a change is detected all the way through when
the change is applied at the destination. See the Server SDK Javadoc for detailed information.

Some methods that are implemented by the server extension are summarized as follows (for
detailed information and examples, see the Server SDK Javadoc and the provided examples):

Table 16: SyncDestination Class

SyncDestination Class Description

defineConfigArguments Defines any configuration arguments needed for your extension. For example, this
method can be used to configure the URL of a remote host to send a notification
to. These arguments can then be used with the dsconfig tool in interactive and non-
interactive (scripted) modes, and the web console.

initializeSyncDestination Defines a life cycle method to initialize the Sync Destination.

createEntry Creates the full destination entry, corresponding to the LDAP entry that is passed in.

modifyEntry Modifies an entry on the destination, corresponding to the LDAP entry that is
passed in.

Configuring Notification Mode

186

SyncDestination Class Description

deleteEntry Deletes a full entry (in LDAP form) from the destination endpoint, corresponding to
the source Entry that is passed in.

fetchEntry This method exists in the API to provide a generic solution that works for standard
sync mode. It is not needed in a notification mode deployment.

finalizeSyncDestination Defines a life cycle method to finalize the Sync Pipe when it shuts down.

getCurrentEndpointURL Returns the URL or path identifying the destination endpoint to which this extension
is transmitting data.

LDAP SDK Updates

To support notification mode, the LDAP SDK for Java has been updated to support the
before- and-after attributes in the change log. The LDAP SDK provides a new class,
UnboundIDChangelogEntry (in the com.unboundid.ldap.sdk.unboundidds package) that
has high level methods to work with the ds-changelog-before-value, ds-changelog-
after-values, and ds-changelog-entry-key-attr-values attributes. The class is part of the
commercial edition of the LDAP SDK for Java and is installed automatically with the Identity
Data Sync. For detailed information and examples, see the LDAP SDK Javadoc.

Important Design Questions

Before you begin implementing and configuring your sync pipe in notification mode, you should
consider the following design questions:

➢ What is the interface to the client applications?
➢ What type of connection logic is required?
➢ How will the extension handle timeouts and connection failures?
➢ What are the failover scenarios?
➢ What data needs to be included in the change log?
➢ How long do the change log entries need to be available?
➢ What are the scalability requirements for the system?
➢ What attributes should be used for correlation?
➢ What should happen with each type of change?
➢ What mappings must be implemented?

Implementing the Custom Server Extension

Notification mode relies heavily on the server extension code to process and transmit the change
using the required protocol and data formats needed for the client applications. You can create
the extension using the UnboundID Server SDK, which provides the APIs to develop code
for any destination endpoint type. The Server SDK’s documentation (javadoc and examples)
is delivered with the Server SDK build in zip format. The SDK provides all of the necessary
classes to extend the functionality of the Identity Data Sync without code changes to the
core product. Once the server extension is in place, you can use other third-party libraries to
transform the notification to any desired output format.

Configuring Notification Mode

187

General Tips When Implementing Your Extension

When configuring a Sync Pipe in notification mode, you should be aware of the following
recommendations:

• Use the manage-extension Tool. You can use the manage-extension tool in the bin
directory (UNIX/LINUX) or bat directory (Windows) to install or update the extension. See
the Managing Extensions section for more information.

• Review the Server SDK Package. The Server SDK comes with its own documentation
and examples that show how to build and deploy a java or groovy extension. Note that to
deploy a java extension, you must stop the server, copy the jar file to the lib/extensions
folder, and then re-start the server. For Groovy extensions, copy the script to lib/groovy-
scripted-extensions folder, and then re-start the sync pipe, which will reload the scripted
extensions. You do not have to stop and re-start the server for Groovy extensions.

• Connection & Protocol Logic. The Server SDK-based extension must manage the
notification connection and protocol logic to the client applications.

• Implementing Extensions. We recommend doing incremental development of your
extension code or scripts. Start by testing the create methods, then the delete methods, and
then the modify methods for each entry type. Write some code, test it, make adjustments, and
repeat again. Then update the configuration. Finally, package the extensions for deployment.
You can also increase the sync logging levels to see more details about what is happening
with your extensions.

• Use the SyncOperation Type. The SyncOperation class encapsulates everything to do
with a given change. Objects of this type are used in all of the Sync SDK extensions. The
SyncOperation class has been updated to include new methods for support notification mode
(see the Server SDK Javadoc for the SyncOperation class for information on the full set of
methods):

Table 17: SyncOperation

Method Description

getDestinationEntryBeforeChange() Gets the destination entry before the change.

getDestinationEntryAfterChange() Gets the destination entry after the change.

isModifyDN() Determines if the changes is a MODIFY DN operation without looking at the
change entry.

getChangelogEntry() Gets the original change log entry to retrieve any attributes from it. This is the
original source change before any mappings.

getSyncClass() Gets a specific sync class and its components.

getType() Returns the type of this SyncOperation.

logError() Logs an error message to the synchronization log for this change.

logInfo() Logs an information message to the synchronization log for this change.

• Use the EndpointException Type. The Sync Destination type throws a new sync
exception type called EndpointException. This extends a standard Java exception, so
that you can wrap other types of throwables and provide your own exceptions. There
is also logic to handle LDAP exceptions, using the LDAP SDK, and wrap them into an
EndpointException.

Configuring Notification Mode

188

• About the PostStep result codes. The EndpointException class throws uses PostStep
result codes that are returned in the server extension:

Table 18: PostStep

PostStep Result Codes Description

retry_operation_limited If set, this will retry a failed attempt up to the limit set by
max_operation_attempts. Finally, it will be logged as failed.

retry_operation_unlimited Retry the operation an unlimited number of times until a success, abort, or
retried_operation_limited. This should only be used when the destination
endpoint is unavailable.

abort_operation Aborts the current operation without any additional processing.

• Use the ServerContext class for logging. The ServerContext class provides several
logging methods which can be used to generate log messages and/or alerts from the scripted
layer: logMessage(), sendAlert(), debugCaught(), debugError(), debugInfo(),
debugThrown(), debugVerbose(), and debugWarning(). These are described in the Server
SDK API Javadocs. Logging related to an individual SyncOperation should be done with
the SyncOperation#logInfo and SyncOperation#logError methods.

• Diagnosing Script Errors. When a Groovy extension does not behave as expected, first
look in the error log for stack traces. If you see classLoader errors, the script could be in
the wrong location or does not have the correct package. Groovy code errors are very good
at highlighting the line number where the error occurs. Groovy checks for errors at run-
time. Business logic errors must be systematically found by testing each operation (Creates
Modifies, Deletes). Make sure logger levels are set high enough to debug.

Configuring the Notification Sync Pipe

The following procedure shows the interactive steps to set up a one-way Sync Pipe with
an UnboundID Identity Data Store as the Sync Source and a generic sync destination. The
procedure uses the create-sync-pipe-config tool in interactive command-line mode, which
shows the configuration steps in a top-down flow from Sync Pipe. Many of the configuration
steps shown in this section are similar to those seen in previous chapters. The section only
highlights the differences for configuring a Sync Pipe in notification mode.

The procedure is broken out into sections for easy access and is based on the interactive prompts
that the create-sync-pipe-config tool will present. The instructions assume that the user
has the proper root user or admin privileges to make configuration changes. Once you have
configured the sync pipe, then you can fine-tune the configuration later using the dsconfig
utility.

General Tips When Configuring Your Sync Classes

When configuring a sync class for a Sync Pipe in notification mode, you should be aware of the
following recommendations:

• Exclude Operational Attributes. You may want to exclude any operational attributes
from syncing to the destination so that its before-and-after values are not recorded in

Configuring Notification Mode

189

the change log. For example, the following attributes can be excluded: creatorsName,
createTimeStamp, ds-entry-unique-id, modifiersName, and modifyTimeStamp.

There are three methods to accomplish this depending on your directory server version. It is
preferable to filter the changes at the change log level over making the changes in the Sync
Class to avoid extra configuration settings:

• For version 3.0.3 of the UnboundID Identity Data Store or the Alcatel-Lucent 8661
Directory Server, use the directory server’s changelog-exclude-attribute property to
specify each operational attribute that you want to exclude in the synchronization process.
You can set the configuration using the dsconfig tool on the directory server Change Log
Backend menu. For example, set changelog-exclude-attribute:modifiersName.

• For version 3.1.0 of the UnboundID Identity Data Store or the Alcatel-Lucent 8661
Directory Server, use the directory server’s changelog-exclude-attribute property
with the special character, "+". For example, to exclude all operational attributes, set
"change-log-exclude-attribute:+".

• On version 3.1.0 of the UnboundID Identity Data Sync, you can configure a Sync Class
that sets the excluded-auto-mapped-source-attributes property to each operational
attribute that you want excluded from the synchronization process.

• Consider Advanced Properties on the Sync Class. The Identity Data Sync has some
advanced properties that you might want to consider using for your notifications sync
topology depending on your design objectives.

• destination-create-only-attribute. This property sets the attributes that you want to
include on CREATE operations only but never want to modify. For example, you would
specify objectclass as an attribute that you do not want to modify on the destination.

• replace-all-attr-values. This property specifies whether to use the ADD and DELETE
modification types (reversible), or the REPLACE modification type (non-reversible) for
modifications to destination entries. If set to true, REPLACE will be used; otherwise,
ADD and DELETE of individual attribute values will be used.

• Consider Changelog Indexing. If you target specific attributes and require higher
performance throughput, consider implementing changelog indexing. See the Syncing
Through Proxy Servers chapter for more information.

Step 1. Creating the Notification Sync Pipe

The initial configuration steps show how to set up a single Sync Pipe from a directory server
instance to a generic sync destination client using the create-sync-pipe-config tool in
interactive mode. The create-sync-pipe-config tool prompts the user for input and leads you
through the configuration steps in a wizard-like mode. The procedure will show how to set up
and configure the Sync Pipe, External Servers, and Sync Classes.

Optionally, you can run the create-sync-pipe-config tool with the server offline and apply
the configuration later.

Configuring Notification Mode

190

Before You Begin

1. Place any third-party libraries used in your application in the <server-root>/lib/
extensions folder.

2. Implement your server extension and place it into the appropriate directory before starting
any Sync Pipe that uses this endpoint. Custom endpoints require a Server SDK extension in
order to interface with the target data store. The general location for the extensions should be
the following:

➢ Java extensions: <server-root>/lib/extensions
➢ Groovy extensions: <server-root>/lib/groovy-scripted-extensions

Because the Identity Data Sync must reference the fully qualified class name for the
extension, it must reside in the appropriate sub-directories. For example, if the extension is
in the com.unboundid.sdk.examples.groovy package, then it must be placed in the <server-
root>/lib/groovy-scripted-extensions/com/unboundid/sdk/examples/groovy folder.

To Create a Sync Pipe in Notification Mode

1. Start the Identity Data Sync.

$ bin/start-sync-server

2. Run the create-sync-pipe-config tool.

$ bin/create-sync-pipe-config

3. At the Initial Synchronization Configuration Tool prompt, press Enter to continue.

4. On the Synchronization Mode menu, select the option for notification mode. A standard
Mode Sync Pipe will fetch the full entries from both the source and destination and compare
them to produce the minimal set of changes to bring the destination into sync. A notification
mode Sync Pipe skips the "fetch and compare" phases of processing and simply notify
the destination that a change has happened and provide it with the details of the change.
Notifications are currently only supported from UnboundID and Alcatel-Lucent Directory or
Directory Proxy Servers 3.0.5 or later.

5. On the Synchronization Directory menu, enter the option to create a one-way Sync Pipe in
notification mode from directory to a generic client application.

To Configure the Sync Source

1. On the Source Endpoint Type menu, enter the number for the sync source corresponding to
the type of source external server. For this example, enter the option to select the UnboundID
Identity Data Store.

Configuring Notification Mode

191

2. If any pre-existing Sync Sources are present in the local server (stored in config.ldif), the
tool asks if you want to select the sources listed. Enter the number corresponding to the Sync
Source listed, or type n to create a new sync source.

3. Next, if you are creating a new Sync Source, you will be prompted to enter a name for the
Source Endpoint. Enter a descriptive name for the Sync Source. For example, ds1.

4. Next, enter the base DN for the directory server, which is used as the base for LDAP
searches. For example, enter dc=example,dc=com, and then press Enter again to return to
the menu. If you enter more than one base DN, make sure the DNs do not overlap.

5. On the Server Security menu, select the type of secure communication that the Identity
Data Sync will use with the endpoint server instances. Select either 1) None; 2) SSL; or 3)
StartTLS. For this example, select the default (None).

6. Next, enter the host and port of the first Source Endpoint server. The Sync Source can
specify a single server or multiple servers in a replicated topology. The Identity Data
Sync will contact this first server if it is available, then contact the next highest priority
server if the first server is unavailable, etc. After you have entered the host and port, the
Synchronization Server tests that a connection can be established.

7. On the Identity Data Sync User Account menu, enter the DN of the sync user account and
create a password for this account. The Sync User account allows the Identity Data Sync to
access the source endpoint server. By default, the Sync User account is placed at cn=Sync
User,cn=Root DNs,cn=config. Press Enter to accept the default configuration.

To Configure the Destination Endpoint Server

1. Next, on the Destination Endpoint Type menu, select the type of datastore on the endpoint
server. In this example, select the option for Custom.

2. Next, you will be prompted to enter a name for the Destination Endpoint. Enter a descriptive
name for the Sync Destination. For example, "Custom Destination".

3. On the Notifications Setup menu, select the language (Java or Groovy) that was used to write
the server extension.

4. At this stage, you will be prompted to enter the fully qualified name of the Server SDK
extension that implements the abstract class. If you wrote your extension in Java, the
extension should reside in the /lib/extensions directory.

Enter the fully qualified name of the Java class that
will implement com.unboundid.directory.sdk.sync.api.SyncDestination:
com.unboundid.sdk.examples.ExampleSyncDestination

• If you wrote your extension in Groovy, the script should reside in the /lib/groovy-
scripted-extensions directory and is verified by the Identity Data Sync.

Enter the fully qualified name of the Groovy class that will implement
com.unboundid.directory.sdk.sync.scripting.ScriptedSyncDestination:
com.unboundid.sdk.examples.groovy.ExampleSyncDestination

The script class appears to already be in place.

Configuring Notification Mode

192

5. Next, the Identity Data Sync prompts if you want to configure any user-defined arguments
needed by the server extension. Typically, you would define connection arguments, such as
hostname, port, bindDN, or bindPassword if the destination calls for these parameters. The
configuration parameters that are allowed are defined by the extension itself and the values
are stored in the server configuration. These properties can be modified using the dsconfig
tool and the web console. If there are user-defined arguments, enter "yes". Otherwise press
Enter to accept the default (no) and continue. For this example, enter "yes" to configure the
arguments for the ExampleSyncDestination.groovy script.

Do you need to configure any arguments for
com.unboundid.sdk.examples.groovy.ExampleSyncDestination? (yes / no) [no]: yes

6. Assuming you entered "yes" to configure any arguments, enter "n" to add a new argument.
Then enter an extension argument in the form "name=value." For example, you can set the
argument for the listener port, port=389. Repeat this step for any other arguments defined in
your server extension.

7. Next, you will be prompted to configure the maximum number of before-and-after values for
all changed attributes. Notification mode requires that the source change logs include all of
the before-and-after values for changed attributes. Some entries, such as groups, might have
attributes with hundreds or thousands of values, which could lead to excessively large change
log entries, when all values are included in the changelog (the individual changes such as
a user that is added or removed from a group are always included in the changelog entry).
The cap is provided as a safeguard to avoid this problem; however, it is recommended that
you set it to something well above the maximum number of values that any synchronized
attribute will have. If this cap is exceeded, the Identity Data Sync will issue an alert. For this
example, we accept the default value of 200.

Enter a value for the max changelog before/after values,
or -1 for no limit [200]:

8. Next, you will be prompted to configure any key attributes in the change log that should
always be included in every notification. These attributes can be used to find the destination
entry corresponding to the source entry and will be present whether or not the attributes
changed. In a later step, you will configure one or more Sync Classes, and any attributes you
plan to use in a Sync Class include-filter should also be configured as key attributes. For this
example, press Enter to add a key attribute, and then enter "n" to add a new key attribute.
Then, enter "uid" as an example. Repeat this step to enter more entry key attributes.

Enter an attribute name: uid

9. Next, you will be prompted if you want the changes to be processed by the Sync engine
strictly in sequential order, which will cause the worker threads to be reduced to 1. In both
standard and notification modes, the Sync Pipe processes the changes concurrently with
multiple threads, resulting in higher overall throughput, but make certain assurances about
changes to the same entry being processed sequentially. If changes must be applied strictly in
order, then the number of Sync Pipe worker threads will be reduced to 1. Note that this will
limit the maximum throughput of the Sync Pipe, especially with a slow or remote destination
endpoint.

Configuring Notification Mode

193

Step 2. Configuring the Sync Pipe and Sync Classes

From this point on, the configuration steps follows the same process as a standard
synchronization mode sync pipe. See About the Sync User Account for more information.

To Configure the Sync Pipe

1. Continuing from the previous session, enter a name for the Sync Pipe. Make sure the name is
descriptive to identify it if you have more than one sync pipe configured. For example, enter
"ds-to-syncdest".

2. Next, on the Sync Pipe Sync Class Definitions menu, you will be prompted if you would like
to define one or more Sync Classes. Type yes.

To Configure the Sync Class

1. Next, enter a name for the Sync Class. Make sure the name is descriptive to identify the sync
class.

2. At this stage, if you plan to restrict entries to specific subtrees, then enter one or more base
DNs. For this example, press Enter to accept the default (no).

3. Next, you will be prompted to set an LDAP search filter. For this example, type yes to set up
a filter and enter the filter "(uid=*)". Press Enter again to continue. This property sets the
LDAP filters and returns all entries that match the search criteria to be included in the Sync
Class. In this example, we want to specify that any entry with an uid attribute be included in
the Sync Class, regardless if there is a change or not to it.

4. Continuing from the previous example, on the Sync Class menu, you will be prompted if
you want to synchronize all attributes, specific attributes, or exclude specific attributes from
synchronization. Press Enter to accept the default (all). You can adjust these mappings in a
later section.

5. Next, specify the operations that will be synchronized for the Sync Class. For this example,
press Enter to accept the default (1, 2, 3) for creates, deletes, modifies.

6. Review the configuration, and then press Enter to write the configuration to the Identity
Data Sync. If you want to change any property, you can go back to the particular menu, or
make the adjustments later using the dsconfig tool. If you decide to write the configuration
to the Identity Data Sync, press Enter, and then enter the connection properties for your
Identity Data Sync (bindDN, bindPassword).

7. The create-sync-pipe-config tool outputs the final processing messages. If you have to
make any manual changes to the external servers, it will present them. At this stage, you have
successfully completed configuring your sync class.

Configuring Notification Mode

194

Step 3. Configure Attribute and DN Mappings

At this point, you can set up your attribute and DN mappings for your sync pipe. The
notifications procedure is identical to that of any standard mode implementation. For more
information, see Configuring Attribute Maps and Configuring DN Maps.

Step 4. Configure Advanced Properties

Next, configure any advanced properties for your Sync Pipe in notification mode deployment
using the dsconfig tool and accessing the Sync Class.

Step 5. Set the Startpoint in the Change Log

The realtime-sync set-startpoint command sets the starting point in the change log to tell
the Identity Data Sync where to start when the Sync Pipe is started. This command provides a
way to avoid syncing all of the changes that have happened in the past.

To Set the Startpoint

• Run the realtime-sync set-startpoint command to an appropriate place in the change
log. For example, the following command rewinds the startpoint at 15 minutes before the
current time period.

$ realtime-sync set-startpoint --startpoint-rewind 15m \
--pipe-name "ds-to-syncdest" --bindPassword password --no-prompt

Step 6. Start the Sync Pipe

At this stage, we have configured everything necessary for the ds-to-syncdest Sync Pipe. We
only need to start it. Generally, it is preferable to use the realtime-sync tool to start and stop
the Sync Pipes as well as start and stop the Sync configuration globally.

To Start the Sync Pipe

• Run the realtime-sync tool to start Sync Pipe.

$ bin/realtime-sync start --pipe-name ds-to-syncdest

Step 7. Debugging the Configuration

Typically, you will need to debug any problems after you run the prepare-endpoint-server
command. There are a number of logging and tools options available when debugging the
configuration as follows:

Configuring Notification Mode

195

Check the Status

• Run the status tool to verify the source-side connectivity and processing. You should check
if the servers are connected and that changes are being detected. You can enter your bindDN
password and have the system use your bind DN and port as defaults. For a description of
each status parameter shown, see Running the Status Tool.

$ status --bindPassword password

• You can also restrict the status output to just list a single sync pipe using the --pipe-name
option.

$ status --bindPassword password --pipe-name ds-to-syncdest

Check the Logs

• Increase the detail in the Sync log by changing the Sync Log Publisher handler’s logged-
message-type property to include: change-applied-detailed, change-detected-
detailed, and entry-mapping-details. However, these properties should be disabled for
production deployments as they could affect performance. The Identity Data Sync records
errors in the sync log if it detects change log entries that are missing information that are
needed to perform a notification.

$ dsconfig --no-prompt set-log-publisher-prop \
--publisher-name "File-Based Sync Logger" \
--set logged-message-type:change-applied-detailed \
--set logged-message-type:change-detected-detailed \
--set logged-message-type:change-failed-detailed \
--set logged-message-type:dropped-op-type-not-synchronized \
--set logged-message-type:dropped-out-of-scope \
--set logged-message-type:entry-mapping-details \
--set logged-message-type:no-change-needed

• Enable the debug logger (disabled by default). You should disable the logger when no longer
needed as it can impact performance.

Enable the Debug Logger
dsconfig --no-prompt set-log-publisher-prop \
--publisher-name "File-Based Debug Logger" --set enabled:true

Set the Debug Target and Verbosity Level
dsconfig --no-prompt create-debug-target \
--publisher-name "File-Based Debug Logger" \
--target-name com.unboundid.directory.sync.jdbc
--set debug-level:verbose

When finished with debugging, disable the logger
dsconfig --no-prompt set-log-publisher-prop \
--publisher-name "File-Based Debug Logger" \
--set enabled:false

• If your connections are working and the realtime-sync operation is working but you are
seeing sync errors, check the sync log. The problems could be in your attribute or DN maps.

Check the Alerts

• Set an Alert for a Backlog of Changes. If destination processing slows down, the sync
worker threads can get backed up. You can set a property on the Sync Source Change Log

Configuring Notification Mode

196

configuration to send an alert if a specified number of changes have been backed up. Once
this number or threshold value has been exceeded, the Sync Source will send an alert.

$ dsconfig --no-prompt set-sync-source-prop \
--source-name "UnboundID Directory Server Source" \
--set sync-backlog-alert-threshold:5000

When to Restart the Sync Pipe

• Make sure to re-start the Sync Pipes after modifying a script implementation. Any Identity
Data Sync configuration change automatically re-starts the Sync Pipe. Script implementation
changes require a manual Sync Pipe restart but no server restart. Java implementations
require a server restart.

$ bin/realtime-sync stop
$ bin/realtime-sync start

Access Control Filtering on the Sync Pipe

As of version 3.2, the Identity Data Sync provides an advanced Sync Pipe configuration
property, filter-changes-by-user, that performs access control filtering on the target entry of
a changelog entry for a specific user.

Administrators can configure a Sync Pipe in notification mode that performs access control
filtering on the changelog data as it comes back from the source directory server. In this case,
since the changelog entry contains data from the target entry, the access controls filter out
attributes that the user does not have the privileges to see before it is returned. For example,
values in the changes, ds-changelog-before-values, ds-changelog-after-values, ds-
changelog-entry-key-attr-values, and deletedEntryAttrs attributes after filtered out
through access control instructions.

This property is only available for Notification mode and can be configured using the create-
sync-pipe-config or the dsconfig tool.

The source server must be the UnboundID Identity Data Store or Alcatel-Lucent 8661 Directory
Server (version 3.2 or later), or an UnboundID Identity Proxy (version 3.2 or later) or Alcatel-
Lucent 8661 Directory Proxy Server (version 3.2 or later) that points to an UnboundID Identity
Data Store or Alcatel-Lucent 8661 Directory Server (version 3.2 or later).

Important Points about Access Control Filtering

Note the following points about access control filtering:

• The Directory Server will not return the changelog entry if the user is not allowed to see the
target entry itself.

• The Directory Server strips out any attributes (for example, values in the changes, ds-
changelog-before-values, ds-changelog-after-values, ds-changelog-entry-key-
attr-values, and deletedEntryAttrs attributes) that the user is not allowed to see.

Configuring Notification Mode

197

• If no changes are left in the entry, then no changelog entry will be returned.

• If only some attributes are stripped out, then the changelog entry will still be returned.

• Access control filtering on a specific attribute value is not supported. You will either get all
attribute values or none.

• If a sensitive attribute policy is used to filter attributes when a client normally accesses the
directory server, this sensitive attribute policy will not be taken into consideration during
notifications since the Sync User is always connecting using the same method. You should
configure your access controls in way to filter out these attributes not based on the type of
connection made to the server but rather based on who is accessing the data. This way the
filter-changes-by-user property will be able to evaluate if that person should have access
to these attributes or not in the changelog entry for notifications.

To Configure the Sync Pipe to Filter Changes by Access Control Instructions

1. Set the filter-changes-by-user property to filter changes based on access controls for a
specific user.

$ bin/dsconfig set-sync-pipe-prop --pipe-name "Notifications Sync Pipe" \
--set "filter-changes-by-user:uid=admin,dc=example,dc=com"

2. On the source Directory Server, set the report-excluded-changelog-attributes property to
include the names of users that have been removed through access control filtering. This will
allow the Identity Data Sync to warn about attributes that were supposed to be synchronized
but were filtered out. This step is recommended but not required.

$ bin/dsconfig set-backend-prop --backend-name "changelog" \
--set "report-excluded-changelog-attributes:attribute-names"

Note: The Identity Data Sync only uses the attribute-names setting for the
Directory Server’s report-excluded-changelog-attributes property.
It does not use the attribute-counts setting for the property.

Contact Your Support Provider

If you require technical support, your authorized support provider requests that you run the
bin/collect-support-data command so that they can locate the source of any problems. The
command generates a zip file that you can send to provier.

$ bin/collect-support-data --bindDN uid=admin,dc=example,dc=com \
 --bindPassword password

Configuring Notification Mode

198

Configuring Synchronization with SCIM

199

Chapter

8 Configuring Synchronization with SCIM

The UnboundID Identity Data Sync provides data synchronization between directory servers
or proxy servers and System for Cross-domain Identity Management (SCIM) applications over
HTTP. You can synchronize with custom SCIM applications or with the UnboundID Directory
and Directory Proxy Server configured as SCIM servers using the SCIM extension.

Before setting up the Identity Data Sync, review the section “Configuration Model” to
understand the important components of the Identity Data Sync.

This chapter presents the following topics:

Topics:

• About Synchronizing with a SCIM Sync Destination
• Configuring Synchronization with SCIM
• Mapping LDAP Schema to SCIM Resource Schema

Configuring Synchronization with SCIM

200

About Synchronizing with a SCIM Sync Destination

You can configure the Identity Data Sync to synchronize with SCIM service providers. The
System for Cross-domain Identity Management (SCIM) protocol is designed to make managing
user identity in cloud-based applications and services easier. SCIM allows you to provision
identities, groups, and passwords to, from, and between clouds.

Note: You can configure the UnboundID Identity Data Store and
UnboundID Identity Proxy to be SCIM servers using the SCIM HTTP
Servlet Extension. For more information about configuring the SCIM
Extension for use with the UnboundID Identity Data Store and UnboundID
Identity Proxy, see the UnboundID SCIM Extension User’s Guide.

The Identity Data Sync is LDAP-centric and operates on LDAP attributes. The SCIM sync
destination server component acts as a translation layer between a SCIM service provider’s
schema and an LDAP representation of the entries.

Note: While the Identity Data Sync is LDAP-centric and typically at least
one endpoint is an LDAP Directory Server, this is not a strict requirement.
For example, you could set up a JDBC to SCIM sync pipe.

The Identity Data Sync contains sync classes that define how source and destination entries
are correlated. The SCIM sync destination contains its own mapping layer, based on scim-
resources.xml that maps LDAP schema to and from SCIM.

Figure 27: Synchronizing with a SCIM Sync Destination

The SCIM destination supports high availability and failover and SSL communication. As for
other types of endpoint, you can configure SCIM sync destinations using the create-sync-
pipe-config tool.

Note: The Identity Data Sync can only use SCIM as a Sync Destination.
Note There is no mechanism in the SCIM protocol for detecting changes, so
it cannot be used as a Sync Source.

Configuring Synchronization with SCIM

201

Overview of SCIM Destination Configuration Objects

The SCIMSyncDestination object defines a SCIM service provider sync pipe destination that is
accessible over HTTP via the SCIM protocol. It is configured with the following properties:

• server. Specifies the names of the SCIM External Servers that are used as the destination of
synchronization.

• resource-mapping-file. Specifies the path to the scim-resources.xml file, a configuration
file that defines the SCIM schema and maps it to the LDAP schema. Out of the box, this file
is located in <server root>/config/scim-resources.xml. This file can be customized
to define and expose deployment-specific resources. For information about this file and
how to map resources to and from the LDAP entries, refer to the SCIM SDK and Reference
Implementation documentation at http://www.unboundid.com/labs/projects/system-for-cross-
domain-identity-management/docs/scim-sdk-docs.

• rename-policy. Specifies how to handle the rename of a SCIM resource.

The SCIM Sync Destination object is based on the open source UnboundID SCIM SDK. Before
configuring a SCIM destination, you may want to familiarize yourself with the following
documents. They will help you understand and make efficient use of SCIM with the Identity
Data Sync.

➢ SCIM Core Schema: http://www.simplecloud.info/specs/draft-scim-core-schema-02.html
➢ SCIM REST API: http://www.simplecloud.info/specs/draft-scim-rest-api-01.html

Tips for Syncing to a SCIM Destination

When configuring an LDAP to SCIM Sync Pipe, you should be aware of the following:

• Use scim-resources.xml for Attribute and DN Mappings. When working with SCIM sync
destinations, there are two layers of mapping, once at the Sync Class level and again at the
SCIM sync destination level in the scim-resources.xml file. To reduce complexity, do all the
mappings that you can in the scim-resources.xml file.

• Avoid Groups Unless the SCIM ID is DN Based. Group synchronization is supported
if the SCIM ID is based on the DN. If the SCIM ID is not the DN itself, it must be one of
the components of the RDN, meaning that the DNs of group members must contain the
necessary attribute. If a SCIM service provider uses entryUUID as the SCIM ID, then the
Identity Data Sync creates or modifies the group entry in SCIM by looking up the entryUUID
for each group member, which is not currently supported.

• SCIM Modifies Entries Using PUT. The SCIM sync destination modifies entries using
the full HTTP PUT method. For every modify, SCIM replaces the entire resource with the
updated resource. For information about the implications of this on password updates, refer
to “Password Considerations with SCIM”.

Configuring Synchronization with SCIM

202

Renaming a SCIM Resource

The SCIM protocol does not support changes that require the SCIM resource to be renamed,
such as a MODDN operation. Instead, when a change is detected to an attribute value that is
used as part of the SCIM ID attribute, the Identity Data Sync handles it in one of the following
ways:

• Deletes the specified SCIM resource and then adds the new resource with the new SCIM ID.

• Adds the new resource with the new SCIM ID and then deletes the old resource.

• Skips the rename portion of the change. If renames are expected on the source endpoint, a
careful set of destination-correlation attributes should be chosen so that the destination can
still be found after it is renamed on the source.

You can configure this behavior by setting the rename-policy property of the SCIM Sync
Destination.

Password Considerations with SCIM

As of the SCIM 1.1 draft-scim-api-01 specification, Modifying with PUT is now required per
section 3.3.1. and because the SCIM sync destination modifies entries using a full PUT method,
special considerations need to be made for password attributes. The UnboundID SCIM Server
allows password attributes to be omitted from a change when they have not been modified by
an operation. This prevents passwords from inadvertently being overwritten during the PUT
operation, which does not include the password attribute. Ideally, other SCIM service providers
will not wipe a password because a PUT request does not contain it. Check with your vendor to
confirm this behavior before starting your SCIM sync pipe.

Configuring Synchronization with SCIM

You can configure synchronization with SCIM using the create-sync-pipe-config utility or using
the dsconfig command-line tool. If you are configuring from scratch, we recommend using the
create-sync-pipe-config tool as it will lead you through the steps necessary to define each
component.

If you configure synchronization between an LDAP server and a SCIM service provider from
scratch, you need to take the following steps:

• Set up External Servers. Configure one external server for every physical endpoint.

• Configure the Sync Source server. Designate the external servers that correspond to the
source server.

• Configure the Sync Destination server. Designate the external servers that correspond to
the SCIM sync destination.

• Configure the Sync Pipe. Configure tyour LDAP to SCIM sync pipe.

Configuring Synchronization with SCIM

203

• Configure the Sync Classes. Each sync class represents a type of entry that needs to be
synchronized. When specifying a sync class for synchronization with a SCIM service
provider, you want to avoid including attribute and DN mappings, but instead use it to
specify operations that you want to synchronize and which correlation attributes to use.

• Set the Evaluation Order for your Sync Classes. Each sync class must be assigned an
evaluation order to determine the processing precedence for each class.

• Configure your scim-resources.xml File. At a minimum, change the
<resourceIDMapping> element(s) to use whatever the SCIM Service Provider uses as the
SCIM ID.

• Set Up Communication for each External Server. Run prepare-endpoint-server once
for every LDAP external server that is part of the sync source.

• Start Sync. Use realtime-sync to set the startpoint and then start the sync pipe.

Configuring the External Servers

Before you begin, you first need to set up an external server for each host in your deployment.
This entails registering the directory server as the Sync Source server and the SCIM server as
the Sync Destination server.

To Configure the External Servers

1. Configure the UnboundID Identity Data Store as an external server, which will later be
configured as a Sync Source. On the Identity Data Sync, run the following dsconfig
command:

$ bin/dsconfig create-external-server \
 --server-name source-ds \
 --type unboundid-ds \
 --set server-host-name:ds1.example.com \
 --set server-port:636 \
 --set "bind-dn:cn=Directory Manager" \
 --set password:secret \
 --set connection-security:ssl \
 --set key-manager-provider:Null \
 --set trust-manager-provider:JKS

2. Configure the SCIM Server as an external server, which will later be configured as a Sync
Destination. The scim-service-url property specifies the location of the SCIM sync
destination, which is the complete URL used to access the SCIM service provider. The user-
name property provides the account used to connect to the SCIM service provider. It is used
in conjunction with the chosen authentication method. By default, the value is set to cn=Sync
User,cn=Root DNs,cn=config. Note that for other SCIM service providers, the user name
might not be in DN format.

$ bin/dsconfig create-external-server \
 --server-name scim \
 --type scim \
 --set scim-service-url:https://scim1.example.com:8443 \
 --set "user-name:cn=Sync User,cn=Root DNs,cn=config" \
 --set password:secret \
 --set connection-security:ssl \
 --set hostname-verification-method:strict \

Configuring Synchronization with SCIM

204

 --set trust-manager-provider:JKS

Configuring the Directory Server Sync Source

At this stage, you need to configure the Sync Source for your synchronization network. You can
configure more than one external server to act as the sync source for failover purposes. If the
source is an UnboundID Identity Data Store, you must also configure the following items:

• Enable Changelog Password Encryption Plug-in. You need to enable the change log
password encryption plugin on any directory server that will receive password modifications.
This plugin intercepts password modifications, encrypts the password and adds an encrypted
attribute to the change log entry.

• Synchronizing Deletes.You need to configure the changelog-deleted-entry-include-
attribute property on the changelog backend, so that the Identity Data Sync can properly
record which attributes were removed during a DELETE operation.

To Configure the Directory Server Sync Source

1. Run dsconfig to configure the external server as the Sync Source. Based on the previous
example where we configured the UnboundID Directory Server as source-ds, run the
following command:

$ bin/dsconfig create-sync-source --source-name source \
 --type unboundid \
 --set base-dn:dc=example,dc=com \
 --set server:source-ds \
 --set use-changelog-batch-request:true

2. Enable the change log password encryption plugin on any directory server that will receive
password modifications. You can copy and paste the encryption key from the output, if
displayed, or access it from the <server-root>/bin/sync-pipe-cfg.txt file, if you used
the create-sync-pipe-config tool to set up your sync pipe.

$ bin/dsconfig set-plugin-prop \
 --plugin-name "Changelog Password Encryption"
 --set enabled:true\
 --set changelog-password-encryption-key:ej5u9e39pqo68

3. Enable the change log password encryption plug-in on any directory server that will receive
password modifications. This plugin intercepts password modifications, encrypts the
password and adds an encrypted attribute to the change log entry. You can copy and paste
the encryption key from the output, if displayed, or access it from the <server-root>/bin/
sync-pipe-cfg.txt file, if you used the create-sync-pipe-config tool to set up your
sync pipe.

$ bin/dsconfig set-plugin-prop \
 --plugin-name "Changelog Password Encryption" \
 --set enabled:true\
 --set changelog-password-encryption-key:ej5u9e39pqo68

4. Next, on the sync server, set the decryption key used to decrypt the user password value in
the change log entries. The key allows the user password to be synchronized to other servers
that do not use the same password storage scheme.

Configuring Synchronization with SCIM

205

$ bin/dsconfig set-global-sync-configuration-prop \
 --set changelog-password-decryption-key:ej5u9e39pq-68

5. Finally, configure the changelog-deleted-entry-include-attribute property on the
changelog backend.

$ bin/dsconfig set-backend-prop --backend-name changelog \
 --set changelog-deleted-entry-include-attribute:objectClass

Configuring the SCIM Sync Destination

The SCIM sync destination synchronizes data with a SCIM service prpovider.

To Configure the SCIM Sync Destination

• Run the dsconfig command to configure the SCIM external serer as the Sync Destination.

$ bin/dsconfig create-sync-destination \
 --destination-name scim \
 --type scim \
 --set server:scim

Configuring the Sync Pipe, Sync Classes, and Evaluation Order

This section describes how to configure a sync pipe for LDAP to SCIM synchronization, how
to create sync classes for the sync pipe, and how to set the evaluation order index for the sync
classes.

Note: The Synchronization mode must be set to Standard. You cannot
currently use Notification Mode with SCIM.

To Configure the SCIM Sync Pipe

Once you have configured the source and destination endpoints, you can configure the sync pipe
for your LDAP to SCIM synchronization.

• Run dsconfig command to configure the LDAP-to-SCIM Sync Pipe.

$ bin/dsconfig create-sync-pipe \
 --pipe-name ldap-to-scim \
 --set sync-source:source \
 --set sync-destination:scim

To Configure the SCIM Sync Classes

Next, we create three sync classes. The first sync class is used to match user entries in the Sync
Source. The second class is used to match group entries. The third class is used to a DEFAULT
class that is used to match all other entries.

Configuring Synchronization with SCIM

206

1. Run the dsconfig command to create the Sync Class. In the following command, you set the
Sync Pipe Name and Sync Class name.

$ bin/dsconfig create-sync-class \
 --pipe-name ldap-to-scim \
 --class-name user

2. Next, use dsconfig to set the base DN and filter for the Sync Class that was created in
the previous step. The include-base-dn property specifies a the base DN in the source,
which is ou=people,dc=example,dc=com. So, this sync class is invoked only for changes at
the ou=people level. The include-filter property specifies an LDAP filter that tells the
Identity Data Sync to include inetOrgPerson entries as user entries.

$ bin/dsconfig set-sync-class-prop \
 --pipe-name ldap-to-scim \
 --class-name user \
 --add include-base-dn:ou=people,dc=example,dc=com \
 --add "include-filter:(objectClass=inetOrgPerson)"

3. Next, create the sync class, which is used to match group entries.

$ bin/dsconfig create-sync-class \
 --pipe-name ldap-to-scim \
 --class-name group

4. For the second Sync Class, set the base DN and the filters to match the group entries.

$ bin/dsconfig set-sync-class-prop \
 --pipe-name ldap-to-scim \
 --class-name group \
 --add include-base-dn:ou=groups,dc=example,dc=com \
 --add "include-filter:(|(objectClass=groupOfEntries)\
 (objectClass=groupOfNames)(objectClass=groupOfUniqueNames)\
 (objectClass=groupOfURLs))"

5. For the third Sync Class, create a DEFAULT Sync Class that is used to match all other
entries. Because we do not want to synchronize changes that come from anything but
user and group entries, we set synchronize-creates, synchronize-modifies, and
synchronize-delete to false. Alternatively, you can omit this class, as entries that do not
match a sync class are not synchronized.

$ bin/dsconfig create-sync-class \
 --pipe-name ldap-to-scim \
 --class-name DEFAULT \
 --set evaluation-order-index:99999 \
 --set synchronize-creates:false \
 --set synchronize-modifies:false \
 --set synchronize-deletes:false

To Set the Evaluation Order Index

Once you have configured all of the sync classes needed by your sync pipe, you set the
evaluation order index for each sync class. The sync pipe uses the evaluation order index to
decide which sync class to process first. Classes with a lower number are evaluated first.

• Run dsconfig to set the evaluation order index for the Sync Class. Classes with a lower
number are evaluated first. In this example, set the value to 100. The actual number depends
on your particular deployement.

Configuring Synchronization with SCIM

207

$ bin/dsconfig set-sync-class-prop \
 --pipe-name ldap-to-scim \
 --class-name user \
 --set evaluation-order-index:100

Setting Up Communication with the Source Server(s)

Next, use the prepare-endpoint-server tool to set up communication between the Identity
Data Sync and the LDAP source servers. If user accounts do not exist, this tool creates the
appropriate user account and its privileges for the Identity Data Sync to use. Also, because the
source is a Directory Server, this tool enables the change log.

Note: The prepare-endpoint-server tool can only be used on LDAP
directory servers. For the SCIM Server, you must manually create a sync
user entry.

To Set Up Communication with the Source Server(s)

Run the prepare-endpoint-server command to setup communication with the Identity
Data Sync and the source server(s). The tool will then prompt you for the bind DN and
password to create the user account and enables the change log.

$ bin/prepare-endpoint-server \
 --hostname ds1.example.com \
 --port 636 \
 --useSSL \
 --trustAll \
 --syncServerBindDN "cn=Sync User,cn=Root DNs,cn=config" \
 --syncServerBindPassword "password" \
 --baseDN "dc=example,dc=com" \
 --isSource

Starting the Sync Pipe

The realtime-sync tool sets a specific starting point for real-time synchronization, so that
changes made before the current time are ignored, and schedules a stop or start at a future date.

To Start and Manage the SCIM Sync Pipe

1. Run the realtime-sync tool to set the startpoint for the Sync Source.

$ bin/realtime-sync set-startpoint \
 --end-of-changelog \
 --pipe-name ldap-to-scim

2. Once you are ready to start synchronization, run the following command:

$ bin/realtime-sync start \
 --pipe-name ldap-to-scim \
 --no-prompt

Configuring Synchronization with SCIM

208

Mapping LDAP Schema to SCIM Resource Schema

The resources configuration file is an XML file that is used to define the SCIM resource schema
and its mapping to LDAP schema. The default configuration of the scim-resources.xml file
provides definitions for the standard SCIM Users and Groups resources, and mappings to the
standard LDAP inetOrgPerson and groupOfUniqueNames object classes.

Note: The scim-resources.xml file is the same as the one provided with
the UnboundID Identity Data Store.

The default configuration may be customized by adding extension attributes to the Users and
Groups resources, or by adding new extension resources. The resources file is composed of a
single <resources> element, containing one or more <resource> elements.

The default configuration maps the SCIM resource ID to the LDAP entryUUID attribute. In all
cases, this will need to be changed to match whatever attribute the destination SCIM service
provider is using for its SCIM resource ID. For example, if the destination uses the value of the
uid attribute, then you would modify scim-resources.xml to change the resourceIDMapping
as follows:

<resourceIDMapping ldapAttribute="uid" />

Ideally, this would be an attribute that already exists on the source LDAP entry, but if not, then
Sync can construct it using a Constructed Attribute Mapping. For example, suppose the SCIM
service provider used the first and last initials of the user, concatenated with the employee id
(given by the eid attribute) as the SCIM resource ID. In this case, you would configure an
attribute mapping as follows:

dsconfig create-attribute-mapping --map-name MyAttrMap --mapping-name scimID --type
 constructed --set 'value-pattern:{givenname:/^(.)(.*)/$1/s}{sn:/^(.)(.*)/$1/s}{eid}'

This creates an attribute called scimID on the mapped entry when it is processed by the sync
engine. For example, if the user's name was John Smith and employee ID was 12345, then the
scimID would be "js12345". See the configuration reference for Constructed Attribute Mapping
for more details on the regular expression syntax used here. Once this is done, you would
configure the scim-resources.xml file as follows:

<resourceIDMapping ldapAttribute="scimID" />

This will cause it to pull out the constructed scimID value from the entry and use that at the
SCIM resource ID when making requests to the service provider.

For any given SCIM resource endpoint, only one <LDAPAdd> template can be defined, and only
one <LDAPSearch> element can be referenced. If entries of the same object class can be located
under different subtrees or base DNs of the Identity Data Store, then a distinct SCIM resource
must be defined for each unique entry location in the Directory Information Tree. If using the
SCIM HTTP Servlet Extension for the UnboundID Identity Data Store, this can be implemented
in many ways. For example:

Configuring Synchronization with SCIM

209

• Create multiple SCIM servlets, each with a unique resources.xml configuration, and each
running under a unique HTTP connection handler.

• Create multiple SCIM servlets, each with a unique resources.xml configuration, each running
under a single, shared HTTP connection handler, but each with a unique context path.

Note that LDAP attributes are allowed to contain characters that are invalid in XML (because
not all valid UTF-8 characters are valid XML characters). The easiest and most-correct way to
handle this is to make sure that any attributes that may contain binary data are declared using
"dataType=binary" in the scim-resources.xml file. Likewise, when using the Identity Access
API make sure that the underlying LDAP schema uses the Binary or Octet String attribute
syntax for attributes which may contain binary data. This will cause the server to automatically
base64-encode the data before returning it to clients and will also make it predictable for clients
because they can assume the data will always be base64-encoded.

However, it is still possible that attributes that are not declared as binary in the schema may
contain binary data (or just data that is invalid in XML), and the server will always check for
this before returning them to the client. If the client has set the content-type to XML, then
the server may choose to base64-encode any values which are found to include invalid XML
characters. When this is done, a special attribute is added to the XML element to alert the client
that the value is base64-encoded. For example:

<scim:value base64Encoded="true">AAABPB0EBZc=</scim:value>

The remainder of this section describes the mapping elements available in the scim-
resources.xml file.

About the <resource> Element

A resource element has the following XML attributes:

• schema: a required attribute specifying the SCIM schema URN for the resource. Standard
SCIM resources already have URNs assigned for them, such as urn:scim:schemas:core:1.0. A
new URN must be obtained for custom resources using any of the standard URN assignment
methods.

• name: a required attribute specifying the name of the resource used to access it through the
SCIM REST API.

• mapping: a custom Java class that provides the logic for the resource mapper. This class
must extend the com.unboundid.scim.ldap.ResourceMapper class.

A resource element contains the following XML elements in sequence:

• description: a required element describing the resource.

• endpoint: a required element specifying the endpoint to access the resource using the SCIM
REST API.

• LDAPSearchRef: a mandatory element that points to an LDAPSearch element. The
LDAPSearch element allows a SCIM query for the resource to be handled by an LDAP
service and also specifies how the SCIM resource ID is mapped to the LDAP server.

Configuring Synchronization with SCIM

210

• LDAPAdd: an optional element specifying information to allow a new SCIM resource to be
added through an LDAP service. If the element is not provided then new resources cannot be
created through the SCIM service.

• attribute: one or more elements specifying the SCIM attributes for the resource.

About the <attribute> Element

A attribute element has the following XML attributes:

• schema: a required attribute specifying the schema URN for the SCIM attribute. If omitted,
the schema URN is assumed to be the same as that of the enclosing resource, so this only
needs to be provided for SCIM extension attributes. Standard SCIM attributes already have
URNs assigned for them, such as urn:scim:schemas:core:1.0. A new URN must be obtained
for custom SCIM attributes using any of the standard URN assignment methods.

• name: a required attribute specifying the name of the SCIM attribute.

• readOnly: an optional attribute indicating whether the SCIM sub-attribute is not allowed to
be updated by the SCIM service consumer. The default value is false.

• required: an optional attribute indicating whether the SCIM attribute is required to be
present in the resource. The default value is false.

A attribute element contains the following XML elements in sequence:

• description: a required element describing the attribute. Then just one of the following
elements:

• simple: specifies a simple, singular SCIM attribute.

• complex: specifies a complex, singular SCIM attribute.

• simpleMultiValued: specifies a simple, multi-valued SCIM attribute.

• complexMultiValued: specifies a complex, multi-valued SCIM attribute.

About the <simple> Element

A simple element has the following XML attributes:

• dataType: a required attribute specifying the simple data type for the SCIM attribute. The
following values are permitted: binary, boolean, dateTime, decimal, integer, string.

• caseExact: an optional attribute that is only applicable for string data types. It indicates
whether comparisons between two string values use a case-exact match or a case-ignore
match. The default value is false.

A simple element contains the following XML elements in sequence:

Configuring Synchronization with SCIM

211

• mapping: an optional element specifying a mapping between the SCIM attribute and an
LDAP attribute. If this element is omitted, then the SCIM attribute has no mapping and the
SCIM service ignores any values provided for the SCIM attribute.

About the <complex> Element

The complex element does not have any XML attributes. It contains the following XML
element:

• subAttribute: one or more elements specifying the sub-attributes of the complex SCIM
attribute, and an optional mapping to LDAP. The standard type, primary, and display sub-
attributes do not need to be specified.

About the <simpleMultiValued> Element

A simpleMultiValued element has the following XML attributes:

• childName: a required attribute specifying the name of the tag that is used to encode values
of the SCIM attribute in XML in the REST API protocol. For example, the tag for the
standard emails SCIM attribute is email.

• dataType: a required attribute specifying the simple data type for the plural SCIM attribute
(i.e. the data type for the value sub-attribute). The following values are permitted: binary,
boolean, dateTime, integer, string.

• caseExact: an optional attribute that is only applicable for string data types. It indicates
whether comparisons between two string values use a case-exact match or a case-ignore
match. The default value is false.

A simpleMultiValued element contains the following XML elements in sequence:

• canonicalValue: specifies the values of the type sub-attribute that is used to label each
individual value, and an optional mapping to LDAP.

• mapping: an optional element specifying a default mapping between the SCIM attribute and
an LDAP attribute.

About the <complexMultiValued> Element

A complexMultiValued element has the following XML attributes:

• tag: a required attribute specifying the name of the tag that is used to encode values of the
SCIM attribute in XML in the REST API protocol. For example, the tag for the standard
addresses SCIM attribute is address.

A complexMultiValued element contains the following XML elements in sequence:

• subAttribute: one or more elements specifying the sub-attributes of the complex SCIM
attribute. The standard type, primary, and display sub-attributes do not need to be specified.

Configuring Synchronization with SCIM

212

• canonicalValue: specifies the values of the type sub-attribute that is used to label each
individual value, and an optional mapping to LDAP.

About the <subAttribute> Element

A subAttribute element has the following XML attributes:

• name: a required element specifying the name of the sub-attribute.

• readOnly: an optional attribute indicating whether the SCIM sub-attribute is not allowed to
be updated by the SCIM service consumer. The default value is false.

• required: an optional attribute indicating whether the SCIM sub-attribute is required to be
present in the SCIM attribute. The default value is false.

• dataType: a required attribute specifying the simple data type for the SCIM sub-attribute.
The following values are permitted: binary, boolean, dateTime, integer, string.

• caseExact: an optional attribute that is only applicable for string data types. It indicates
whether comparisons between two string values use a case-exact match or a case-ignore
match. The default value is false.

A subAttribute element contains the following XML elements in sequence:

• description: a required element describing the sub-attribute.

• mapping: an optional element specifying a mapping between the SCIM sub-attribute and an
LDAP attribute. This element is not applicable within the complexMultiValued element.

About the <canonicalValue> Element

A canonicalValue element has the following XML attributes:

• name: specifies the value of the type sub-attribute. For example, work is the value for emails,
phone numbers and addresses intended for business purposes.

A canonicalValue element contains the following XML elements in sequence:

• subMapping: an optional element specifying mappings for one or more of the sub-
attributes. Any sub-attributes that have no mappings will be ignored by the mapping service.

About the <mapping> Element

A mapping element has the following XML attributes:

• ldapAttribute: A required element specifying the name of the LDAP attribute to which the
SCIM attribute or sub-attribute map.

Configuring Synchronization with SCIM

213

• transform: An optional element specifying a transformation to apply when mapping an
attribute value from SCIM to LDAP and vice-versa. The available transformations are
described in “Mapping LDAP Schema to SCIM Resource Schema”.

About the <subMapping> Element

A subMapping element has the following XML attributes:

• name: a required element specifying the name of the sub-attribute that is mapped.

• ldapAttribute: a required element specifying the name of the LDAP attribute to which the
SCIM sub-attribute maps.

• transform: an optional element specifying a transformation to apply when mapping an
attribute value from SCIM to LDAP and vice-versa. The available transformations are
described later. The available transformations are described in “Mapping LDAP Schema to
SCIM Resource Schema”.

About the <LDAPSearch> Element

A LDAPSearch element has the following XML attributes:

• baseDN: a required element specifying the LDAP search base DN to be used when querying
for the SCIM resource.

• filter: a required element specifying an LDAP filter that matches entries representing the
SCIM resource. This filter is typically an equality filter on the LDAP object class.

• resourceIDMapping: an optional element specifying a mapping from the SCIM resource ID
to an LDAP attribute. When the element is omitted, the resource ID maps to the LDAP entry
DN.

Note:

The LDAPSearch element can be added as a top-level element outside of any
<Resource> elements, and then referenced within them via an ID attribute.

About the <resourceIDMapping> Element

A resourceIDMapping element has the following XML attributes:

• ldapAttribute: a required element specifying the name of the LDAP attribute to which the
SCIM resource ID maps.

• createdBy: a required element specifying the source of the resource ID value when a new
resource is created by the SCIM consumer using a POST operation. Allowable values for this
element include scim-consumer, meaning that a value must be present in the initial resource
content provided by the SCIM consumer, or directory, meaning that a value is automatically

Configuring Synchronization with SCIM

214

provided by the Directory Server (as would be the case if the mapped LDAP attribute is
entryUUID).

The following example illustrates an LDAPSearch element that contains a resourceIDMapping
element:

<LDAPSearch id="userSearchParams">
 <baseDN>ou=people,dc=example,dc=com</baseDN>
 <filter>(objectClass=inetOrgPerson)</filter>
 <resourceIDMapping ldapAttribute="entryUUID" createdBy="directory"/>
</LDAPSearch>

About the <LDAPAdd> Element

A LDAPAdd element has the following XML attributes:

• DNTemplate: a required element specifying a template that is used to construct the DN of an
entry representing a SCIM resource when it is created. The template may reference values of
the entry after it has been mapped using {ldapAttr}, where ldapAttr is the name of an LDAP
attribute.

• fixedAttribute: zero or more elements specifying fixed LDAP values to be inserted into the
entry after it has been mapped from the SCIM resource.

About the <fixedAttribute> Element

A fixedAttribute element has the following XML attributes:

• ldapAttribute: a required attribute specifying the name of the LDAP attribute for the fixed
values.

• onConflict: an optional attribute specifying the behavior when the LDAP entry already
contains the specified LDAP attribute. The value merge indicates that the fixed values should
be merged with the existing values. The value overwrite indicates that the existing values are
to be overwritten by the fixed values. The value preserve indicates that no changes should be
made. The default value is merge.

A fixedAttribute element contains the following XML element:

• fixedValue: one or more elements specifying the fixed LDAP values.

Managing Logging and Alerts

215

Chapter

9 Managing Logging and Alerts

The Identity Data Sync supports extensive logging features to track any aspect of your
Synchronization topology. You can also set up administrative alert handlers to notify of any
specific events.

This chapter presents the following information:

Topics:

• Working with Logs
• Default Identity Data Sync Logs
• Viewing the List of Log Publishers
• Sync Log Message Types
• Creating New Log Publishers
• About Log Compression
• About Log Signing
• Configuring Log Rotation
• Configuring Log Retention
• Working with Alarms, Alerts, and Gauges
• Working with Administrative Alert Handlers
• Configuring the SNMP Subagent Alert Handler
• Running the Status Tool
• Monitoring the Identity Data Sync
• Monitoring Using SNMP

Managing Logging and Alerts

216

Working with Logs

The UnboundID® Identity Data Sync supports different types of log publishers that can be used
to provide the monitoring information for sync, access, debug, and error messages that occur
during normal server processing. The Identity Data Sync provides a standard set of default log
files as well as mechanisms to configure custom log publishers with their own log rotation and
retention policies.

Types of Log Publishers

The UnboundID Identity Data Sync provides a number of different types of log publishers that
can be used to log processing information about the server. There are several primary types of
loggers:

• Sync loggers provide information about synchronization actions that occur within the
server. Specifically, the Sync Log records all changes applied, detected or failed; dropped
operations that were not synchronized; changes dropped due to being out of scope, or no
changes needed for synchronization. The log also shows the entries that were involved in the
synchronization process.

• Resync loggers provide summaries or details of synchronized entries and any missing entries
in the Sync Destination.

• Error loggers provide information about warnings, errors, or significant events that occur
within the server.

• Debug loggers can provide detailed information about processing performed by the server,
including any exceptions caught during processing, detailed information about data read from
or written to clients, and accesses to the underlying database.

• Access loggers provide information about LDAP operations processed within the server.
This log only applies to operations performed in the server. This includes configuration
changes, searches of monitor data, and bind operations for authenticating administrators
using the command-line tools and the UnboundID Sync Management console.

By default, the following log publishers are enabled on the system:

➢ File-based sync logger
➢ File-based access logger
➢ File-based error logger

The UnboundID Identity Data Sync also provides a File-based Audit Logger, which is a special
type of access logger that can provide detailed information about changes processed within the
server, and a File-based Debug Logger. Both are disabled by default.

Managing Logging and Alerts

217

Default Identity Data Sync Logs

The Identity Data Sync provides a standard set of default log files to monitor the server activity.
You can view this set of logs in the UnboundID-Sync/logs directory. The following default log
files are available as seen in the table below.

Table 19: Identity Data Sync Logs

Log File Description

access File-based Access Log that records LDAP operations processed by the Identity Data

Sync. Access log records can be used to provide information about problems during

operation processing and provide information about the time required to process each

operation.

config-audit.log Records information about changes made to the Identity Data Sync configuration in a

format that can be replayed using the dsconfig tool

errors File-based Error Log. Provides information about warnings, errors, and significant events

that are not errors but occur during server processing.

server.out Records anything written to standard output or standard error, which includes startup

messages. If garbage collection debugging is enabled, then the information will be

written to server.out.

server.pid Stores the server’s process ID.

server.status Stores the timestamp, a status code, and an optional message providing additional

information on the server status.

setup.log Records messages that occur during the initial configuration of an Identity Data Sync

with the setup command.

sync File-based Sync Log that records synchronization operations processed by the server.

Specifically, the log records all changes applied, detected or failed; dropped operations

that were not synchronized; changes dropped due to being out of scope, or no changes

needed for synchronization.

sync-pipe-cfg.txt Records the configuration changes used with the bin/create-sync-pipe-

config tool. The file is placed wherever the tool is run. Typically, this is in server-root

or in the bin directory.

tools Holds logs for long running utilities. Current and previous copies of the log are present in

the directory.

update.log Records messages that occur during an Identity Data Sync upgrade.

Viewing the List of Log Publishers

You can quickly view the list of log publishers on the Identity Data Sync using the dsconfig
tool.

Note: Initially, the JDBC, syslog, and Admin Alert log publishers must
specifically be configured using dsconfig before they appear in the list of

Managing Logging and Alerts

218

log publishers. Procedures to configure these types of log publishers appear
later in this chapter.

To View the List of Log Publishers

• Use dsconfig to view the log publishers.

$ bin/dsconfig list-log-publishers

Log Publisher : Type : enabled
---:-------------------:--------
Debug ACI Logger : debug-access : false
Expensive Operations Access Logger : file-based-access : false
Failed Operations Access Logger : file-based-access : true
File-Based Access Logger : file-based-access : true
File-Based Audit Logger : file-based-audit : false
File-Based Debug Logger : file-based-debug : false
File-Based Error Logger : file-based-error : true
Replication Repair Logger : file-based-error : true
Successful Searches with No Entries Returned : file-based-access : false

Sync Log Message Types

The Identity Data Sync logs certain types of log messages with the sync log. You can control
which message types can be included or excluded from the logger, or added to in a custom log
publisher.

Table 20: Sync Log Message Types

Message Type Description

change-applied Default summary message. Logged each time a change is applied successfully.

change-detected Default summary message. Logged each time a change is detected.

change-failed-detailed Default detail message. Logged when a change cannot be applied. It includes the

reason for the failure and details about the change that can be used to manually

repair the failure.

dropped-op-type-not-synchronized Default summary message. Logged when a change is dropped because the

operation type (for example, ADD) is not synchronized for the matching Sync

Class.

dropped-out-of-scope Default summary message. Logged when a change is dropped because it does

not match any Sync Class.

no-change-needed Default summary message. Logged each time a change is dropped because the

modified source entry is already in-sync with the destination entry.

change-detected-detailed Optional detail message. Logged each time a change is detected. It includes

attribute values for added and modified entries. This level of information is often

useful for diagnosing problems, but it causes log files to grow faster, which

impacts performance

entry-mapping-details Optional detail message. Logged each time a source entry (attributes and

DN) are mapped to a desintation entry. This level of information is often useful

for diagnosing problems, but it causes log files to grow faster, which impacts

performance.

Managing Logging and Alerts

219

Message Type Description

change-applied-detailed Optional detail message. Logged each time a change is applied. It includes

attribute values for added and modified entries. This level of information is often

useful for diagnosing problems, but it causes log files to grow faster, which

impacts performance.

change-failed Optional summary message. Logged when a change cannot be applied. It

includes the reason for the failure but not enough information to manually repair

the failure.

intermediate-failure Optional summary message. Logged each time an attempt to apply a change

fails. Note that a subsequent retry of applying the change might succeed.

Creating New Log Publishers

The UnboundID Identity Data Sync provides customization options to help you create your own
log publishers with the dsconfig command.

When you create a new log publisher, you must also configure the log retention and rotation
policies for each new publisher. For more information, see Configuring Log Rotation and
Configuring Log Retention.

To Create a New Log Publisher

1. Use the dsconfig command in non-interactive mode to create and configure the new log
publisher. This example shows how to create a logger that only logs disconnect operations.

$ bin/dsconfig create-log-publisher \
 --type file-based-access --publisher-name "Disconnect Logger" \
 --set enabled:true \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set log-connects:false \
 --set log-requests:false --set log-results:false \
 --set log-file:logs/disconnect.log

Note: To configure compression on the logger, add the option to the
previous command:

--set compression-mechanism: gzip

Compression cannot be disabled or turned off once configured for
the logger. Therefore, careful planning is required to determine your
logging requirements including log rotation and retention with regards to
compressed logs.

2. If needed, view log publishers with the following command:

$ bin/dsconfig list-log-publishers

Managing Logging and Alerts

220

To Create a Log Publisher Using dsconfig Interactive Command-Line Mode

1. On the command line, type bin/dsconfig.

2. Authenticate to the server by following the prompts.

3. On the Configuration Console main menu, select the option to configure the log publisher.

4. On the Log Publisher Management menu, select the option to create a new log publisher.

5. Select the Log Publisher type. In this case, select File-Based Access Log Publisher.

6. Type a name for the log publisher.

7. Enable it.

8. Type the path to the log file, relative to the Identity Data Sync root. For example, logs/
disconnect.log.

9. Select the rotation policy you want to use for your log publisher.

10.Select the retention policy you want to use for your log publisher.

11.On the Log Publisher Properties menu, select the option for log-connects:false, log-
disconnects:true, log-requests:false, and log-results:false.

12.Type f to apply the changes.

About Log Compression

The Identity Data Sync supports the ability to compress log files as they are written. This feature
can significantly increase the amount of data that can be stored in a given amount of space, so
that log information can be kept for a longer period of time.

Because of the inherent problems with mixing compressed and uncompressed data, compression
can only be enabled at the time the logger is created. Compression cannot be turned on or off
once the logger is configured. Further, because of problems in trying to append to an existing
compressed file, if the server encounters an existing log file at startup, it will rotate that file and
begin a new one rather than attempting to append to the previous file.

Compression is performed using the standard gzip algorithm, so compressed log files can be
accessed using readily-available tools. The summarize-access-log tool can also work directly
on compressed log files, rather than requiring them to be uncompressed first. However, because
it can be useful to have a small amount of uncompressed log data available for troubleshooting
purposes, administrators using compressed logging may wish to have a second logger defined
that does not use compression and has rotation and retention policies that will minimize the
amount of space consumed by those logs, while still making them useful for diagnostic purposes
without the need to uncompress the files before examining them.

Managing Logging and Alerts

221

You can configure compression by setting the compression-mechanism property to have the
value of "gzip" when creating a new logger.

About Log Signing

The Identity Data Sync supports the ability to cryptographically sign a log to ensure that it
has not been modified in any way. For example, financial institutions require audit logs for all
transactions to check for correctness. Tamper-proof files are therefore needed to ensure that
these transactions can be propertly validated and ensure that they have not been modified by any
third-party entity or internally by unscrupulous employees. You can use the dsconfig tool to
enable the sign-log property on a Log Publisher to turn on cryptographic signing.

When enabling signing for a logger that already exists and was enabled without signing, the first
log file will not be completely verifiable because it still contains unsigned content from before
signing was enabled. Only log files whose entire content was written with signing enabled will
be considered completely valid. For the same reason, if a log file is still open for writing, then
signature validation will not indicate that the log is completely valid because the log will not
include the necessary "end signed content" indicator at the end of the file.

To validate log file signatures, use the validate-file-signature tool provided in the bin
directory of the server (or the bat directory for Windows systems).

Once you have enabled this property, you must disable and then re-enable the Log Publisher for
the changes to take effect.

To Configure Log Signing

1. Use dsconfig to enable log signing for a Log Publisher. In this example, set the sign-log
property on the File-based Audit Log Publisher.

$ bin/dsconfig set-log-publisher-prop --publisher-name "File-Based Audit Logger" \
 --set sign-log:true

2. Disable and then re-enable the Log Publisher for the change to take effect.

$ bin/dsconfig set-log-publisher-prop --publisher-name "File-Based Audit Logger" \
 --set enabled:false
$ bin/dsconfig set-log-publisher-prop --publisher-name "File-Based Audit Logger" \
 --set enabled:true

To Validate a Signed File

The Identity Data Sync provides a tool, validate-file-signature, that checks if a file has not
been tampered with in any way.

• Run the validate-file-signature tool to check if a signed file has been tampered with.
For this example, assume that the sign-log property was enabled for the File-Based Audit
Log Publisher.

Managing Logging and Alerts

222

$ bin/validate-file-signature --file logs/audit

All signature information in file 'logs/audit' is valid

Note: If any validations errors occur, you will see a message similar to
the one as follows:

One or more signature validation errors were encountered
while validating the contents of file 'logs/audit':
* The end of the input stream was encountered without
 encountering the end of an active signature block.
 The contents of this signed block cannot be trusted
 because the signature cannot be verified

Configuring Log Rotation

The Identity Data Sync allows you to configure the log rotation policy for the server. When any
rotation limit is reached, the Identity Data Sync rotates the current log and starts a new log. If
you create a new log publisher, you must configure at least one log rotation policy.

You can select the following properties:

• Time Limit Rotation Policy. Rotates the log based on the length of time since the last
rotation. Default implementations are provided for rotation every 24 hours and every 7 days.

• Fixed Time Rotation Policy. Rotates the logs every day at a specified time (based on 24-
hour time). The default time is 2359.

• Size Limit Rotation Policy. Rotates the logs when the file reaches the maximum size for
each log. The default size limit is 100 MB.

• Never Rotate Policy. Used in a rare event that does not require log rotation.

To Configure the Log Rotation Policy

• Use dsconfig to modify the log rotation policy for the access logger.

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Access Logger" \
 --remove "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --add "rotation-policy:7 Days Time Limit Rotation Policy"

Configuring Log Retention

The Identity Data Sync allows you to configure the log retention policy for each log on the
server. When any retention limit is reached, the Identity Data Sync removes the oldest archived
log prior to creating a new log. Log retention is only effective if you have a log rotation policy
in place. If you create a new log publisher, you must configure at least one log retention policy.

Managing Logging and Alerts

223

• File Count Retention Policy. Sets the number of log files you want the Identity Data Sync
to retain. The default file count is 10 logs. If the file count is set to 1, then the log will
continue to grow indefinitely without being rotated.

• Free Disk Space Retention Policy. Sets the minimum amount of free disk space. The
default free disk space is 500 MBytes.

• Size Limit Retention Policy. Sets the maximum size of the combined archived logs. The
default size limit is 500 MBytes.

• Custom Retention Policy. Create a new retention policy that meets your Identity Data
Sync’s requirements. This will require developing custom code to implement the desired log
retention policy.

• Never Delete Retention Policy. Used in a rare event that does not require log deletion.

To Configure the Log Retention Policy

• Use dsconfig to modify the log retention policy for the access logger.

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Access Logger" \
 --set "retention-policy:Free Disk Space Retention Policy"

Working with Alarms, Alerts, and Gauges

An alarm represents a stateful condition of the server or a resource that may indicate a problem,
such as low disk space or external server unavailability. A gauge defines a set of threshold
values with a specified severity that, when crossed, cause the server to enter or exit an alarm
state. Gauges are used for monitoring continuous values like CPU load or free disk space
(Numeric Gauge), or an enumerated set of values such as 'server unavailable' or ‘server
unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity changes due
to changes in the monitored value. Like alerts, alarms have severity (NORMAL, WARNING,
MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a Condition
property, and may have a Specific Problem or Resource property. If surfaced through SNMP,
a Probable Cause property and Alarm Type property are also listed. Alarms can be configured
to generate alerts when the alarm's severity changes. The Alarm Manager, which governs the
actions performed when an alarm state is entered, is configurable through the dsconfig tool and
Management Console. A complete listing of system alerts, alarms, and their severity is available
in <server-root>/docs/admin-alerts-list.csv.

There are two alert types supported by the server - standard and alarm-specific. The server
constantly monitors for conditions that may attention by administrators, such as low disk space.
For this condition, the standard alert is low-disk-space-warning, and the alarm-specific alert
is alarm-warning. The server can be configured to generate alarm-specific alerts instead of, or
in addition to, standard alerts. By default, standard alerts are generated for conditions internally
monitored by the server. However, gauges can only generate alarm-alerts.

Managing Logging and Alerts

224

The Identity Data Sync installs a set of gauges that are specific to the product and that can be
cloned or configured through the dsconfig tool. Existing gauges can be tailored to fit each
environment by adjusting the update interval and threshold values. Configuration of system
gauges determines the criteria by which alarms are triggered. The Stats Logger can be used to
view historical information about the value and severity of all system gauges.

The Identity Data Sync is compliant with the International Telecommunication Union CCITT
Recommendation X.733 (1992) standard for generating and clearing alarms. If configured,
entering or exiting an alarm state can result in one or more alerts. An alarm state is exited
when the condition no longer applies. An alarm_cleared alert type is generated by the
system when an alarm's severity changes from a non-normal severity to any other severity.
An alarm_cleared alert will correlate to a previous alarm when the Condition and Resource
properties are the same. The Condition corresponds to the Summary column in the admin-
alerts-list.csv file.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores
information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over
time that can change in severity and be cleared when a monitored value returns to normal.
Alarms can be viewed with the status tool. As with other alert types, alert handlers can be
configured to manage the alerts generated by alarms.

To View Information in the Alarms Backend

• The following uses ldapsearch to view alarms. The following displays the listing for the
CPU usage alarm.

$ bin/ldapsearch --port 1389 --bindDN "cn=Directory Manager" \
 --bindPassword secret --baseDN cn=alarms "(objectclass=ds-admin-alarm)"

dn: ds-alarm-id=CPU Usage (Percent)-Host System,cn=alarms
dn: ds-alarm-id=CPU Usage (Percent)-Host System,cn=alarms
objectClass: top
objectClass: ds-admin-alarm
ds-alarm-id: CPU Usage (Percent)-Host System
ds-alarm-condition: CPU Usage (Percent)
ds-alarm-specific-resource: Host System
ds-alarm-severity: CRITICAL
ds-alarm-previous-severity: CRITICAL
ds-alarm-details: Gauge CPU Usage (Percent) for Host System
 has value 99, having had a value of 83.13 in the
 previous interval. The severity is critical, having
 assumed this severity Thu Sep 25 10:24:20 CDT 2014
 when the value crossed threshold 80
ds-alarm-additional-text: If CPU use is high, check the server's current workload
 and other processes on this system and make any needed adjustments. Reducing
 the load on the system will lead to better response times
ds-alarm-start-time: 20140925152420.004Z
ds-alarm-critical-last-time: 20140925152420.004Z
ds-alarm-critical-total-duration-millis: 0

To Test Alarms and Alerts

1. Configure a gauge with dsconfig and set the override-severity property to critical. The
following example uses the CPU Usage (Percent) gauge.

$ dsconfig set-gauge-prop \
 --gauge-name "CPU Usage (Percent)" \
 --set override-severity:critical

Managing Logging and Alerts

225

2. Run the status tool to verify that an alarm was generated with corresponding alerts. The
status tool provides a summary of the server’s current state with key metrics and a list of
recent alerts and alarms. The sample output has been shortened to show just the alarms and
alerts information.

$ bin/status

 --- Administrative Alerts ---
 Severity : Time : Message
 ---------:-----------------:--
 Info : 11/Aug/2014 : A configuration change has been made in the Identity
 : 15:48:46 -0500 : Data Store:
 : : [11/Aug/2014:15:48:46.054 -0500]
 : : conn=17 op=73 dn='cn=Directory Manager,cn=Root
 : : DNs,cn=config' authtype=[Simple] from=127.0.0.1
 : : to=127.0.0.1 command='dsconfig set-gauge-prop
 : : --gauge-name 'Cleaner Backlog (Number Of Files)'
 : : --set warning-value:-1'
 Info : 11/Aug/2014 : A configuration change has been made in the Identity
 : 15:47:32 -0500 : Data Store: [11/Aug/2014:15:47:32.547 -0500]
 : : conn=4 op=196 dn='cn=Directory Manager,cn=Root
 : : DNs,cn=config' authtype=[Simple] from=127.0.0.1
 : : to=127.0.0.1 command='dsconfig set-gauge-prop
 : : --gauge-name 'Cleaner Backlog (Number Of Files)'
 : : --set warning-value:0'
 Error : 11/Aug/2014 : Alarm [CPU Usage (Percent). Gauge CPU Usage (Percent)
 : 15:41:00 -0500 : for Host System has
 : : a current value of '18.583333333333332'.
 : : The severity is currently OVERRIDDEN in the
 : : Gauge's configuration to 'CRITICAL'.
 : : The actual severity is: The severity is
 : : currently 'NORMAL', having assumed this severity
 : : Mon Aug 11 15:41:00 CDT 2014. If CPU use is high,
 : : check the server's current workload and make any
 : : needed adjustments. Reducing the load on the system
 : : will lead to better response times.
 : : Resource='Host System']
 : : raised with critical severity
Shown are alerts of severity [Info,Warning,Error,Fatal] from the past 48 hours
 Use the --maxAlerts and/or --alertSeverity options to filter this list

 --- Alarms ---
 Severity : Severity Start : Condition : Resource : Details
 : Time : : :
 ---------:----------------:-----------:-------------:------------------------------
 Critical : 11/Aug/2014 : CPU Usage : Host System : Gauge CPU Usage (Percent) for
 : 15:41:00 -0500 : (Percent) : : Host System
 : : : : has a current value of
 : : : : '18.785714285714285'.
 : : : : The severity is currently
 : : : : 'CRITICAL', having assumed
 : : : : this severity Mon Aug 11
 : : : : 15:49:00 CDT 2014. If CPU use
 : : : : is high, check the server's
 : : : : current workload and make any
 : : : : needed adjustments. Reducing
 : : : : the load on the system will
 : : : : lead to better response times
 Warning : 11/Aug/2014 : Work Queue: Work Queue : Gauge Work Queue Size (Number
 : 15:39:40 -0500 : Size : : of Requests) for Work Queue
 : : (Number of: : has a current value of '27'.
 : : Requests) : : The severity is currently
 : : : : 'WARNING' having assumed this
 : : : : severity Mon Aug 11 15:48:50
 : : : : CDT 2014. If all worker
 : : : : threads are busy processing
 : : : : other client requests, then
 : : : : new requests that arrive will
 : : : : be forced to wait in the work
 : : : : queue until a worker thread
 : : : : becomes available
Shown are alarms of severity [Warning,Minor,Major,Critical]
Use the --alarmSeverity option to filter this list

Managing Logging and Alerts

226

Working with Administrative Alert Handlers

The UnboundID Identity Data Sync provides mechanisms to send alert notifications to
administrators when significant problems or events occur during processing, such as problems
during server startup or shutdown. The Identity Data Sync provides a number of alert handler
implementations, including:

• Error Log Alert Handler. Sends administrative alerts to the configured server error
logger(s).

• Exec Alert Handler. Executes a specified command on the local system if an administrative
alert matching the criteria for this alert handler is generated by the Identity Data Sync.
Information about the administrative alert will be made available to the executed application
as arguments provided by the command.

• Groovy Scripted Alert Handler. Provides alert handler implementations defined in a
dynamically-loaded Groovy script that implements the ScriptedAlertHandler class defined
in the Server SDK.

• JMX Alert Handler. Sends administrative alerts to clients using the Java Management
Extensions (JMX) protocol. UnboundID uses JMX for monitoring entries and requires that
the JMX connection handler be enabled.

• SMTP Alert Handler. Sends administrative alerts to clients via email using the Simple Mail
Transfer Protocol (SMTP). The server requires that one or more SMTP servers be defined in
the global configuration.

• SNMP Alert Handler. Sends administrative alerts to clients using the Simple Network
Monitoring Protocol (SNMP). The server must have an SNMP agent capable of
communicating via SNMP 2c.

• SNMP Subagent Alert Handler. Sends SNMP traps to a master agent in response to
administrative alerts generated within the server.

• Third Party Alert Handler. Provides alert handler implementations created in third-party
code using the Server SDK.

Configuring the JMX Connection Handler and Alert Handler

You can configure the JMX connection handler and alert handler respectively using the
dsconfig tool. Any user allowed to receive JMX notifications must have the jmx-read and
jmx-notify privileges. By default, these privileges are not granted to any users (including root
users or global administrators). For security reasons, we recommend that you create a separate
user account that does not have any other privileges but these. Although not shown in this
section, you can configure the JMX connection handler and alert handler using dsconfig in
interactive command-line mode, which is visible on the "Standard" object menu.

Managing Logging and Alerts

227

To Configure the JMX Connection Handler

1. Use dsconfig to enable the JMX Connection Handler.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "JMX Connection Handler" \
 --set enabled:true \
 --set listen-port:1689

2. Add a new non-root user account with the jmx-read and jmx-notify privileges. This
account can be added using the ldapmodify tool using an LDIF representation like:

dn: cn=JMX User,cn=Root DNs,cn=config
changetype: add
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: ds-cfg-root-dn-user
givenName: JMX
sn: User
cn: JMX User
userPassword: password
ds-cfg-inherit-default-root-privileges: false
ds-cfg-alternate-bind-dn: cn=JMX User
ds-privilege-name: jmx-read
ds-privilege-name: jmx-notify

To Configure the JMX Alert Handler

• Use dsconfig to configure the JMX Alert Handler.

$ bin/dsconfig set-alert-handler-prop --handler-name "JMX Alert Handler" \
 --set enabled:true

Configuring the SNMP Subagent Alert Handler

You can configure the SNMP Subagent alert handler using the dsconfig tool, which is visible
at the "Standard" object menu. Before you begin, you need an SNMP Subagent capable of
communicating via SNMP2c. For more information on SNMP, see Monitoring Using SNMP.

To Configure the SNMP Subagent Alert Handler

• Use dsconfig to configure the SNMP subagent alert handler. The server-host-name is the
address of the system running the SNMP subagent. The server-port is the port number on
which the subagent is running. The community-name is the name of the SNMP community
that is used for the traps.

The Identity Data Sync also supports a SNMP Alert Handler, which is used in deployments
that do not enable an SNMP subagent.

$ bin/dsconfig set-alert-handler-prop \
 --handler-name "SNMP Subagent Alert Handler" \
 --set enabled:true \
 --set server-host-name:host2 \

Managing Logging and Alerts

228

 --set server-port:162 \
 --set community-name:public

Running the Status Tool

The Identity Data Sync provides a command-line tool, status, that outputs the health of the
Identity Data Sync. The status tool is a command-line utility that polls the current health of
the server and displays summary information about the number of operations processed in the
network. The tool provides different component categories as shown below.

Table 21: Status Tool Sections

Status Section Description

Server Status
Displays the server start time, operation status, number of connections (open, max,

and total).

 --- Server Status ---
Server Run Status: Started 17/May/2012:15:26:47.000-0500
Operational Status: Available
Open Connections: 6
Max Connections: 8
Total Connections: 24

Server Details
Displays the server details including host name, administrative users, install path,

Sync Server version, and Java version.

 --- Server Details ---
Host Name: sync1.example.com
Administrative Users: cn=ADSync User
Administrative Users: cn=Directory Manager
Administrative Users: cn=IntraSync User
Installation Path: /UnboundID-Sync
Server Version: UnboundID Identity Data Sync 4.7.0
Java Version: jdk-7u9

Connection Handlers
Displays the state of the connection handlers including address, port, protocol and

current state.

 --- Connection Handlers ---
Address:Port : Protocol : State
-------------:----------:---------
0.0.0.0:1689 : JMX : Disabled
0.0.0.0:636 : LDAPS : Disabled
0.0.0.0:7389 : LDAP : Enabled

Sync Topology
Displays information about the connected Sync topology and any standby sync

server instances.

 --- Sync Topology ---
Host:Port : Status : Priority
 Index
-------------------------------------:---------:---------------
sync1.example.com:7389 (this server) : Active : 1
sync2.example.com:8389 : Standby : 2

Summary for Sync Pipe
Displays the health status for each sync pipe configured on the topology, including

current status, percent busy, changes detected, operations completed, number of

operations processing, number of operations waiting, source unretrieved changes,

failed operation attempts, source changes count. The most important stats to view

are the Source Unretrieved Changes and the Failed Op Attempts.

Managing Logging and Alerts

229

Status Section Description

➢ Started. Indicates whether the Sync Pipe has started or not.

➢ Current Ops Per Second. Indicates the current throughput rate in operations

per second.

➢ Percent Busy. Indicates the number of sync operations currently in flight divided

by the number of worker threads.

➢ Changes Detected. Indicates the total number of changes detected.

➢ Ops Completed Total. Indicates the toal number of changes detected and

completed.

➢ Num Ops In Flight. Indicates the number of operations that are in flight.

➢ Num Ops In Queue. Indicates the number of operations that are on the input

queue waiting to be synchronized.

➢ Source Unretrieved Changes. Indicates how many outstanding changes are

still in the source changelog that have not yet been retrieved by the Sync Server.

If this is greater than zero, it indicates a sync backlog, because the internal sync

queue is already too full to bring in these changes.

➢ Failed Op Attempts. Indicates the number of failed operation attempts.

➢ Poll For Source Changes Count. Indicates the number of times that the source

has been polled for changes.

 --- Summary for 'UBID1 to UBID2' Sync Pipe ---
Summary Stat : Count
------------------------------:-------
Started : true
Current Ops Per Second : 1882
Percent Busy : 0
Changes Detected : 27299
Ops Completed Total : 26746
Num Ops In Flight : 0
Num Ops In Queue : 0
Source Unretrieved Changes : 10218
Failed Op Attempts : 5
Poll For Source Changes Count : 480

Operations Completed for the

Sync Pipe

Displays the completed operation statistics for the sync pipe, including the number of

successful operations, out of scope, operation type not synced, no change needed,

entry already exists, no match found, multiple matches found, failed during mapping,

failed at resource, unexpected exception, total operations.

➢ Success. Indicates the total number of changes that completed successfully.

➢ Out Of Scope. Indicates the total number of changes that made it into the Sync

Pipe but were dropped because they did not match the criteria in a Sync Class.

➢ Op Type Not Synced. Indicates the total number of changes that completed

because the operation type (e.g. create) is not synchronized.

➢ No Change Needed. Indicates the total number of changes that completed

because no change was needed.

➢ Entry Already Exists. Indicates the total number of changes that completed

unsuccessfully because the entry already existed for a create operation.

➢ No Match Found. Indicates the total number of changes that completed

unsuccessfully because no match for an operation (e.g. a modify) was found.

➢ Multiple Matches Found. Indicates the total number of changes that completed

unsuccessfully because multiple matches for a source entry were found at the

destination.

➢ Failed During Mapping. Indicates the total number of changes that completed

unsuccessfully because there was a failure during attribute or DN mapping.

➢ Failed At Resource. Indicates the total number of changes that completed

unsuccessfully because they failed at the source.

Managing Logging and Alerts

230

Status Section Description

➢ Unexpected Exception. Indicates the total number of changes that completed

unsuccessfully because there was an unexpected exception during processing

(e.g. an NPE).

➢ Total. Indicates the total number of operations completed.

 --- Ops Completed for 'UBID1 to UBID2' Sync Pipe ---
Op Result : Count
-----------------------:-------
Success : 4559
Out Of Scope : 0
Op Type Not Synced : 0
No Change Needed : 22181
Entry Already Exists : 0
No Match Found : 0
Multiple Matches Found : 0
Failed During Mapping : 0
Failed At Resource : 0
Unexpected Exception : 0
Total : 26746

Sync Pipe Source Stats
Displays the source statistics for the external server, including the current connection

status, successful connect attempts, failed connect attempts, forced disconnects,

unretrieved changed, failed to decode changelog entry.

➢ Is Connected. Indicates whether the Sync Source is connected or not.

➢ Connected Server. Indicates the hostname and port number of the connected

server.

➢ Successful Connect Attempts. Indicates the number of successful connection

attempts.

➢ Failed Connect Attempts. Indicates the number of failed connection attempts.

➢ Forced Disconnects. Indicates the number of forced disconnects.

➢ Root DSE Polls. Indicates the number of polling attempts of the root DSE.

➢ Unretrieved Changes. Indicates the number of unretrieved changes.

➢ Entries Fetched. Indicates the number of entries fetched from the source.

➢ Failed To Decode Changelog Entry. Indicates the operations that failed to

decode changelog entries.

➢ Ops Excluded By Modifiers Name. Indicates the number of operations

excluded by modifier’s name.

➢ Num Backtrack Batches Retrieved. Indicates the number of backtrack batches

retrieved.

--- Source Stats for 'UBID1 to UBID2' Sync Pipe ---
Source Stat : Value
---------------------------------:----------------------
Is Connected : true
Connected Server : ldap://
sync1.example.com:1389
Successful Connect Attempts : 1
Failed Connect Attempts : 8
Forced Disconnects : 1
Root DSE Polls : 366
Unretrieved Changes : 10218
Entries Fetched : 26740
Failed To Decode Changelog Entry : 0
Ops Excluded By Modifiers Name : 0
Num Backtrack Batches Retrieved : 0

Sync Pipe Destination Stats Displays the destination statistics for the external server, including the current

connection status, successful connect attempts, failed connect attempts, forced

disconnects, unretrieved changed, failed to decode changelog entry.

➢ Is Connected. Indicates whether the Sync Source is connected or not.

Managing Logging and Alerts

231

Status Section Description

➢ Connected Server. Indicates the connection URL of the connected server.

➢ Successful Connect Attempts. Indicates the number of successful connection

attempts.

➢ Failed Connect Attempts. Indicates the number of failed connection attempts.

➢ Forced Disconnects. Indicates the number of forced disconnects.

➢ Entries Fetched. Indicates the number of entries fetched.

➢ Entries Created. Indicates the number of entries created.

➢ Entries Modified. Indicates the number of entries modified.

➢ Entries Deleted. Indicates the number of entries deleted.

--- Destination Stats for 'UBID1 to UBID2' Sync Pipe ---
Source Stat : Value
---------------------------------:----------------------
Is Connected : true
Connected Server : ldap://
sync1.example.com:3389
Successful Connect Attempts : 1
Failed Connect Attempts : 0
Forced Disconnects : 0
Entries Fetched : 26740
Entries Created : 0
Entries Modified : 4559
Entries Deleted : 0

Admin Alerts Displays the 15 administrative alerts that were generated over the last 48 hour

period. You can limit the number of displayed alerts using the --maxAlerts

option. For example, status --maxAlerts 0 suppresses any displayed alerts.

 --- Administrative Alerts ---
Severity : Time : Message
--------------:----------------------------:------------------------
Informational : 17/May/2012 15:28:07 -0500 : A configuration
 change
has been made in the Identity Data Sync: [17/
May/2012:15:28:07:-0500]
conn=1 op=7 dn='cn=Directory Manager,cn=Root DNs,cn=config'
authtype=[Simple] from=10.2.1.232 to=101.6.1.232
command='dsconfig createxternal-server
--server-name sync1.example.com:1389 --type unboundid
--set server-hostname: sync1.example.com
--set server-port:1389
--set 'bind-dn:cn=Sync User,cn=Root DNs,cn=config'
--set 'password:AAB8sw4PRiOfLXNI4cu+5Saa''
Informational : 17/May/2012 15:26:47 -0500 : The
Synchronization Server has started successfully
Shown are info messages, warnings and errors from
the past 48 hours

To Run the Status Tool

• Go to the server root directory. Run the status command on the command line.

$ bin/status --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret

To Search for a Specific Status Monitor

• You can use the ldapsearch utility to directly search for a specific monitoring statistic. For
example, run ldapsearch to find the current throughput of a Sync Pipe.

$ sync1/bin/ldapsearch --hostname sync.example.com --port 30636 \

Managing Logging and Alerts

232

--baseDN "cn=Sync Pipe Monitor: ds-to-dsml,cn=monitor" \
--searchScope base "(objectClass=*)" "current-ops-per-second"

Arguments from tool properties file: --useSSL true --bindDN cn=Directory Manager
--bindPassword ***** --trustAll true

dn: cn=Sync Pipe Monitor: ds-to-dsml,cn=monitor
current-ops-per-second: 1001

Monitoring the Identity Data Sync

The UnboundID Identity Data Sync exposes its monitoring information under the cn=monitor
entry for easy access to its information. Administrators can use various means to monitor the
server’s information including the Synchronization Management Console, JConsole, LDAP
command-line tools, and through SNMP.

Table 22: Identity Data Sync Monitoring Component

Component Description

Active Operations Provides information about the operations currently being processed by the

Identity Data Sync. Shows the number of operations, information on each

operation, and the number of active persistent searches.

Backend Provides general information about the state of an Identity Data Sync backend,

including the backend ID, base DN(s), entry counts, entry count for the

cn=admin data, writability mode, and whether it is a private backend. The

following backend monitors are provided:

➢ adminRoot

➢ ads-truststore

➢ alerts

➢ backup

➢ config

➢ monitor

➢ schema

➢ tasks

➢ userRoot

Berkeley DB JE Environment Provides information about the state of the Oracle Berkeley DB Java Edition

database used by the Identity Data Sync backend. Most of the statistics are

obtained from the Berkeley DB JE and are not under the control of the Identity

Data Sync.

Client Connections Provides information about all client connections to the Synchronization Server.

The client connection information contains a name followed by an equal sign

and a quoted value (e.g., connID="15", connectTime="20100308223038Z", etc.)

Disk Space Usage Provides information about the disk space available to various components of

the Identity Data Sync.

Connection Handler Provides information about the available connection handlers on the Identity

Data Sync, which includes the LDAP and LDIF connection handlers. These

handlers are used to accept client connections and to read requests and send

responses to those clients.

General Provides general information about the state of the Identity Data Sync, including

product name, vendor name, server version, etc.

JVM Stack Trace Provides a stack trace of all threads processing within the JVM.

Managing Logging and Alerts

233

Component Description

LDAP Connection Handler Statistics Provides statistics about the interaction that the associated LDAP connection

handler has had with its clients, including the number of connections established

and closed, bytes read and written, LDAP messages read and written,

operations initiated, completed, and abandoned, etc.

Processing Time Histogram Categorizes operation processing times into a number of user-defined buckets

of information, including the total number of operations processed, overall

average response time (ms), number of processing times between 0ms and

1ms, etc.

System Information Provides general information about the system and the JVM on which the

Identity Data Sync is running, including system host name, operation system,

JVM architecture, Java home, Java version, etc.

Version Provides information about the Identity Data Sync version, including build ID,

version, revision number, etc.

Work Queue Provides information about the state of the Identity Data Sync work queue,

which holds requests until they can be processed by a worker thread, including

the requests rejected, current work queue size, number of worker threads,

number of busy worker threads, etc.

A dedicated thread pool can be used for processing administrative operations.

This thread pool enables diagnosis and corrective action if all other worker

threads are processing operations. To request that operations be processed

using the administrative thread pool, the requester must have the use-

admin-session privilege (included for root users). By default, eight

threads are available for this purpose. This can be changed with the num-

administrative-session-worker-threads property in the work

queue configuration.

Monitoring Using SNMP

The UnboundID Identity Data Sync supports real-time monitoring using the Simple Network
Management Protocol (SNMP). The Identity Data Sync provides an embedded SNMPv3
subagent plugin that, when enabled, sets up the server as a managed device and exchanges
monitoring information with a master agent based on the AgentX protocol.

SNMP Implementation

In a typical SNMP deployment, many production environments use a network management
system (NMS) for a unified monitoring and administrative view of all SNMP-enabled devices.
The NMS communicates with a master agent, whose main responsibility is to translate the
SNMP protocol messages and multiplex any request messages to the subagent on each managed
device (for example, Identity Data Sync instance, Identity Proxy, Synchronization Server,
or OS Subagent). The master agent also processes responses or traps from the agents. Many
vendors provide commercial NMS systems, such as Alcatel-Lucent (Omnivista EMS), HP
(OpenView), IBM-Tivoli (Netview), Oracle-Sun (Solstice Enterprise Manager), and others.
Specific discussion on integrating an SNMP deployment on an NMS system is beyond the scope
of this chapter. Consult with your NMS system for specific information.

Managing Logging and Alerts

234

The UnboundID Identity Data Sync contains an SNMP subagent plug-in that connects to a
Net-SNMP master agent over TCP. The main configuration properties of the plug-in are the
address and port of the master agent, which default to localhost and port 705, respectively.
When the plug-in is initialized, it creates an AgentX subagent and a managed object server, and
then registers as a MIB server with the Identity Data Sync instance. Once the plug-in's startup
method is called, it starts a session thread with the master agent. Whenever the connection is
lost, the subagent automatically attempts to reconnect with the master agent. The Identity Data
Sync’s SNMP subagent plug-in only transmits read-only values for polling or trap purposes
(set and inform operations are not supported). SNMP management applications cannot perform
actions on the server on their own or by means of an NMS system.

Figure 28: Example SNMP Deployment

One important note is that the UnboundID Identity Data Sync was designed to interface with
a Net-SNMP (version 5.3.2.2 or later) master agent implementation with AgentX over TCP.
Many operating systems provide their own Net-SNMP module, such as the System Management
Agent (SMA) on Solaris or OpenSolaris. However, SMA disables some features present in the
Net-SNMP package and only enables AgentX over UNIX Domain Sockets, which cannot be
supported by Java. If your operating system has a native Net-SNMP master agent that only
enables UNIX Domain Sockets, you must download and install a separate Net-SNMP binary
from its web site.

Configuring SNMP

Because all server instances provide information for a common set of MIBs, each server
instance provides its information under a unique SNMPv3 context name, equal to the server
instance name. The server instance name is defined in the Global Configuration, and is
constructed from the host name and the server LDAP port by default. Consequently, information
must be requested using SNMPv3, specifying the context name that pertains to the desired
server instance. This context name is limited to 30 characters or less. Any context name longer
than 30 characters will result in an error message. Since the default context name is limited to
30 characters or less, and defaults to the server instance name and the LDAP port number, pay
special attention to the length of the fully-qualified (DNS) hostname.

Managing Logging and Alerts

235

Note: The Identity Data Sync supports SNMPv3, and only SNMPv3 can
access the MIBs. For systems that implement SNMP v1 and v2c, Net-SNMP
provides a proxy function to route requests in one version of SNMP to an
agent using a different SNMP version.

To Configure SNMP

1. Enable the Identity Data Sync’s SNMP plug-in using the dsconfig tool. Make sure to
specify the address and port of the SNMP master agent. On each Identity Data Sync instance,
enable the SNMP subagent. Note that the SNMPv3 context name is limited to 30 bytes
maximum. If the default dynamically-constructed instance name is greater than 30 bytes,
there will be an error when attempting to enable the plugin.

$ bin/dsconfig set-plugin-prop --plugin-name "SNMP Subagent" \
 --set enabled:true --set agentx-address:localhost \
 --set agentx-port:705 --set session-timeout:5s \
 --set connect-retry-max-wait:10s

2. Enable the SNMP Subagent Alert Handler so that the sub-agent will send traps for
administrative alerts generated by the server.

$ bin/dsconfig set-alert-handler-prop \
 --handler-name "SNMP Subagent Alert Handler" --set enabled:true

3. View the error log. You will see a message that the master agent is not connected, because it
is not yet online.

The SNMP sub-agent was unable to connect to the master
agent at localhost/705: Timeout

4. Edit the SNMP agent configuration file, snmpd.conf, which is often located in /etc/snmp/
snmpd.conf. Add the directive to run the agent as an AgentX master agent:

master agentx agentXSocket tcp:localhost:705

Note that the use of localhost means that only sub-agents running on the same host can
connect to the master agent. This requirement is necessary since there are no security
mechanisms in the AgentX protocol.

5. Add the trap directive to send SNMPv2 traps to localhost with the community name, public
(or whatever SNMP community has been configured for your environment) and the port.

trap2sink localhost public 162

6. To create a SNMPv3 user, add the following lines to the /etc/snmp/snmpd.conf file.

rwuser initial
createUser initial MD5 setup_passphrase DES

7. Run the following command to create the SNMPv3 user.

snmpusm -v3 -u initial -n "" -l authNoPriv -a MD5 -A setup_passphrase \
localhost create snmpuser initial

Managing Logging and Alerts

236

8. Start the snmpd daemon and after a few seconds you should see the following message in the
Identity Data Sync error log:

The SNMP subagent connected successfully to the master agent
at localhost:705. The SNMP context name is host.example.com:389

9. Set up a trap client to see the alerts that are generated by the Identity Data Sync. Create a
config file in /tmp/snmptrapd.conf and add the directive below to it. The directive specifies
that the trap client can process traps using the public community string, and can log and
trigger executable actions.

authcommunity log, execute public

10.Install the MIB definitions for the Net-SNMP client tools, usually located in the /usr/
share/snmp/mibs directory.

$ cp resource/mib/* /usr/share/snmp/mibs

11.Then, run the trap client using the snmptrapd command. The following example specifies
that the command should not create a new process using fork() from the calling shell (-f),
do not read any configuration files (-C) except the one specified with the -c option, print to
standard output (-Lo), and then specify that debugging output should be turned on for the
User-based Security Module (-Dusm). The path after the -M option is a directory that contains
the MIBs shipped with our product (i.e., server-root/resource/mib) .

$ snmptrapd -f -C -c /tmp/snmptrapd.conf -Lf /root/trap.log -Dusm \
 -m all -M +/usr/share/snmp/mibs

12.Run the Net-SNMP client tools to test the feature. The following options are required: -
v <SNMP version>, -u <user name>, -A <user password>, -l <security level>, -n
<context name (instance name)> . The -m all option loads all MIBs in the default MIB
directory in /usr/share/snmp/mibs so that MIB names can be used in place of numeric
OIDs.

$ snmpget -v 3 -u snmpuser -A password -l authNoPriv -n host.example.com:389 \
-m all localhost localDBBackendCount.0

$ snmpwalk -v 3 -u snmpuser -A password -l authNoPriv -n host.example.com:389 \
-m all localhost systemStatus

13.If you want alerts sent from the SNMP Subagent through the Net-SNMP master agent and
onwards, you must enable the SNMP Subagent Alert Handler. The SNMP Alert Handler is
used in deployments that do not enable the Subagent.

$ bin/dsconfig --no-prompt set-alert-handler-prop \
 --handler-name "SNMP Subagent Alert Handler" \
 --set enabled:true \
 --set server-host-name:host2 \
 --set server-port:162 \
 --set community-name:public

Managing Logging and Alerts

237

Configuring SNMP on AIX

Native AIX SNMP implementations do not support AgentX sub-agents, which is a requirement
for the UnboundID Identity Data Sync. To implement SNMP on AIX platforms, any freely-
available net-snmp package must be installed.

Special care must be made to ensure that you are using the net-snmp binary packages and not
the native snmp implementation. Third-party net-snmp binary packages typically install under /
opt/freeware and have the following differences:

Native Daemon: /usr/sbin/snmpd
Native Configuration File: /etc/snmpd.conf, /etc/snmpdv3.conf
Native Daemon Start and Stop: startsrc -s snmpd, stopsrc -s snmpd

net-snmp Daemon: /opt/freeware/sbin/snmpd
net-snmp Configuration File: /opt/freeware/etc/snmp/snmpd.conf
net-snmp start and stop: /etc/rc.d/init.d/snmpd start|stop

When configuring an SNMP implementation on AIX, remember to check the following items so
that the Identity Data Sync is referencing the net-snmp installation:

• The shell PATH will reference the native implementation binaries. Adjust the PATH variable
or invoke the net-snmp binaries explicitly.

• If the native daemon is not stopped, there will likely be port conflicts between the native
daemon and the net-snmp daemon. Disable the native daemon or use distinct port numbers
for each.

SNMP on AIX Security Considerations

On AgentX sub-agent-compliant systems, it is recommended to use agentXSocket
tcp:localhost:705 to configure the net-snmp master agent to allow connections only from
sub-agents located on the same host. On AIX systems, it is possible to specify an external IP
network interface (for example, agentXSocket tcp:0.0.0.0:708 would listen on all external
IP interfaces), which would allow the UnboundID Identity Data Sync to be located on a different
host to the snmp master agent.

While it is possible to implement non-local sub-agents, administrators should understand
the security risks that are involved with this configuration. Primarily, because there is no
communication authentication or privacy between the UnboundID Identity Data Sync and the
master agent. An eavesdropper might be able to listen in on the monitoring data sent by the
UnboundID Identity Data Sync. Likewise, a rogue sub-agent might be able to connect to the
master agent and provide false monitoring data or deny access to SNMP monitoring data.

In general, it is recommended that sub-agents be located on the same host as the master agent.

MIBS

The Identity Data Sync provides SMIv2-compliant MIB definitions (RFC 2578, 2579, 2580)
for distinct monitoring statistics. These MIB definitions are to be found in text files under
resource/mib directory under the server root directory.

Managing Logging and Alerts

238

Each MIB provides managed object tables for each specific SNMP management information as
follows:

• LDAP Remote Server MIB. Provides information related to the health and status of the
LDAP servers that the Identity Proxy connects to, and statistics about the operations invoked
by the Identity Proxy on those LDAP servers.

• LDAP Statistics MIB. Provides a collection of connection-oriented performance data that is
based on a connection handler in the Identity Data Sync. A server typically contain only one
connection handler and therefore supplies only one table entry.

• Local DB Backend MIB. Provides key metrics related to the state of the local database
backends contained in the server.

• Processing Time MIB. Provides a collection of key performance data related to the
processing time of operations broken down by several criteria but reported as a single
aggregated data set.

• Replication MIB. Provides key metrics related to the current state of replication, which can
help diagnose how much outstanding work replication may have to do.

• System Status MIB. Provides a set of critical metrics for determining the status and health
of the system in relation to its work load.

For information on the available monitoring statistics for each MIB available on the Identity
Data Store and the Identity Proxy, see the text files provided in the resource/mib directory
below the server installation.

The Identity Data Sync generates an extensive set of SNMP traps for event monitoring. The
traps display the severity, description, name, OID, and summary. For information about the
available alert types for event monitoring, see the resource/mib/UNBOUNDID-ALERT-MIB.txt
file.

Managing Security

239

Chapter

10 Managing Security

The UnboundID Identity Data Sync provides a full suite of security features to secure
communication between the client and the server, to establish trust between components
(for example, for replication and administration), and to secure data. Internally, the Identity
Data Sync uses cryptographic mechanisms that leverage the Java JRE’s Java Secure Sockets
Extension (JSSE) implementation of the SSL protocol using Key Manager and Trust Manager
providers for secure connection integrity and confidentiality, and the Java Cryptography
Architecture (JCA) for data encryption.

This chapter presents procedures to configure security and covers the following topics:

Topics:

• Summary of the UnboundID Identity Data Sync Security Features
• Identity Data Sync SSL and StartTLS Support
• Managing Certificates
• Configuring the Key and Trust Manager Providers
• Configuring SSL in the Identity Data Sync
• Configuring StartTLS
• Authentication Mechanisms
• Working with SASL Authentication
• Configuring Pass-Through Authentication
• Adding Operational Attributes that Restrict Authentication
• Configuring Certificate Mappers

Managing Security

240

Summary of the UnboundID Identity Data Sync Security
Features

The UnboundID Identity Data Sync supports a strong set of cryptographic and other
mechanisms to secure communication and data. The following security-related features are
available:

• SSL/StartTLS Support. The Identity Data Sync supports the use of SSL and StartTLS to
encrypt communication between the client and the server. Administrators can configure
different certificates for each connection handler, or use the same certificate for all
connection handlers. Additionally, the server allows for more fine-grained control of the
key material used in connecting peers in SSL handshakes and trust material for storing
certificates.

• Message Digest/Encryption Algorithms. The Identity Data Sync supports the use of a
number of one-way message digests (e.g., CRYPT, 128-bit MD5, 160-bit SHA-1, and 256-
bit, 384-bit, and 512-bit SHA-2 digests with or without salt) as well as a number of reversible
encryption algorithms (BASE64, 3DES, AES, RC4, and Blowfish) for storing passwords.
Note that even if passwords are encoded using reversible encryption, that encryption is
intended for use only within the server itself, and the passwords will not be made available
to administrators in unencrypted form. It is generally recommended that encrypted password
storage only be used if you anticipate using an authentication mechanism that requires the
server to have access to the clear-text representation of passwords, like CRAM-MD5 or
DIGEST-MD5.

• SASL Mechanism Support. The Identity Data Sync supports a number of SASL
mechanisms, including ANONYMOUS, CRAM-MD5, DIGEST-MD5, EXTERNAL,
PLAIN, and GSSAPI. In some vendors’ directory servers, the use of CRAM-MD5 and
DIGEST-MD5 requires that the server have access to the clear-text password for a user.
In this case, the server supports reversible encryption to store the passwords in a more
secure encoding than clear text. The server also supports two types of one-time password
(OTP) mechanisms for multi-factor authentication: UNBOUNDID-TOTP SASL and
UNBOUNDID-DELIVERED-OTP SASL. The proprietary UNBOUNDID-TOTP SASL
mechanism allows multi-factor authentication to the server using the time-based one-
time password (TOTP) code. The proprietary UNBOUNDID-DELIVERED-OTP SASL
mechanism allows multi-factor authentication to the server by delivering a one-time
password to the the end user through some out-of-band channel, such as email or SMS.

• Password Policy Support. The Identity Data Sync provides extensive password policy
support including features, like customizable password attributes, maximum password
age, maximum password reset age, multiple default password storage schemes, account
expiration, idle account lockout and others. The server also supports a number of password
storage schemes, like one-way digests (CRYPT, MD5, SMD5, SHA, SSHA, SSHA256,
SSHA384, SSHA512) and reversible encryption (BASE64, 3DES, AES, RC4, BLOWFISH).
Administrators can also use a number of password validators, like maximum password
length, similarity to current password and the set of characters used. See the chapter on
Password Policies for more information.

Managing Security

241

• Full-Featured Access Control System. The Identity Data Sync provides a full-featured
access control subsystem that determines whether a given operation is allowable based on
a wide range of criteria. The access control system allows administrators to grant or restrict
access to data, restrict the use of specific types of controls and extended operations and
provides strong validation for access control rules before accepting them. See the chapter on
Access Control for more information.

• Client Connection Policies Support. The Identity Data Sync provides the ability to control
which clients get connected to the server, how they can get connected to the system, and
what resources or operations are available to them. For example, administrators can set up
client connection criteria that blacklists IP addresses or domains that are known to attempt
brute force attacks. Likewise, client connection policies can be configured to restrict the type
of operations, controls, extended-operations, SASL mechanisms, search filters and resource
limits available to the client. For example, you can configure a client connection policy that
limits the number of concurrent connections or rejects all requests on unsecured connections.

• Backup Protection. The Identity Data Sync provides the ability to protect the integrity of
backup contents using cryptographic digests and encryption. When generating a backup,
the administrator has an option to generate a cryptographic digest of the backup contents
and also optionally to digitally sign that digest. The server also has options to compress
and/or encrypt the contents of the backup. When restoring the backup, the server can verify
that the digest matches the content of the backup and generates an error if the backup has
been changed from when it was initially written, making it tamper-evident. The server also
provides the ability to verify the integrity of a backup without actually restoring it. See
chapter on Backing Up and Restoring Data for more information.

Identity Data Sync SSL and StartTLS Support

The UnboundID Identity Data Sync supports the use of SSL and/or StartTLS to secure
communication with clients and other components in your environment.

Note: Although the term "SSL" (Secure Sockets Layer) has been superceded
by "TLS" (Transport-Layer Security), the older term "SSL" will continue to
be used in this document to make it easier to distinguish between the use of
TLS as a general mechanism for securing communication and the specific
use of the StartTLS extended operation.

The supported versions of SSL or StartTLS are determined by what the underlying JVM
supports. The server will automatically look at the supported protocols and attempt to determine
the best one to use.

When using Oracle Java SE 1.7, version TLSv1.2 is preferred by the server. A particular
protocol can be specified by setting the com.unboundid.util.SSLUtil.defaultSSLProtocol
property

Managing Security

242

LDAP-over-SSL (LDAPS)

The Identity Data Sync provides the option of using dedicated connection handlers for LDAPS
connections. LDAPS differs from LDAP in that upon connect, the client and server establish an
SSL session before any LDAP messages are transferred. LDAPS connection handlers with SSL
enabled may only be used for secure communication, and connections must be closed when the
SSL session is shut down.

StartTLS Support

The StartTLS extended operation provides a means to add SSL encryption to an existing plain-
text LDAP connection. The client opens an unencrypted TCP connection to the server and, after
processing zero or more LDAP operations over that clear-text connection, sends a StartTLS
extended request to the server to indicate that the client-server communication should be
encrypted.

To require the use of SSL for client connections accepted by a connection handler, set use-ssl
to true for that connection handler. To allow clients to use StartTLS on a connection handler,
the administrator must configure that connection handler to allow StartTLS. Because SSL
and StartTLS are mutually exclusive, you cannot enable both SSL and StartTLS for the same
connection handler (although you can have some connection handlers configured to use SSL and
others configured to use StartTLS).

Managing Certificates

You can generate and manage certificates using a variety of commonly available tools, such as
the Java keytool utility, which is a key and certificate management utility provided with the
Java SDK. The keytool utility can be used to create keystores, which hold key material used in
the course of establishing an SSL session, and truststores, which may be consulted to determine
whether a presented certificate should be trusted.

Because there are numerous ways to create or obtain certificates, the procedures in this section
will only present basic steps to set up your certificates. Many companies have their own
certificate authorities or have existing certificates that they use in the servers, and in such
environments you should follow the guidelines specific to your company’s implementation.

The UnboundID Identity Data Sync supports three keystore types: Java Keystore (JKS),
PKCS#12, and PKCS#11.

• Java Keystore (JKS). In most Java SE implementations, the JKS keystore is the default
and preferred keystore format. JKS keystores may be used to hold certificates for other
Java-based applications, but such keystores are likely not compatible with non-Java-based
applications.

• PKCS#12. This keystore type is a well-defined standard format for storing a certificate
or certificate chain, and may be used to hold certificates already in use for other types of

Managing Security

243

servers. Most other servers that provide a proprietary format for storing certificates provide a
mechanism for converting those certificates to PKCS#12.

• PKCS#11. Also, known as Cryptoki (pronounced "crypto-key") is a format for cryptographic
token interfaces for devices, such as cryptographic smart cards, hardware accelerators,
and high performance software libraries. PKCS#11 tokens may also offer a higher level of
security than other types of keystores, and many of them have been FIPS 140-2 certified and
may be tamper-evident or tamper-resistant.

Authentication Using Certificates

The Identity Data Sync supports two different mechanisms for certificate-based authentication:

• Client Certificate Validation. The Identity Data Sync can request the client to present its
own certificate for client authentication during the SSL or StartTLS negotiation process. If
the client presents a certificate, then the server will use the trust manager provider configured
for the associated connection handler to determine whether to continue the process of
establishing the SSL or StartTLS session. If the client certificate is not accepted by the
trust manager provider, then the server will terminate the connection. Note that even if the
client provides its own certificate to the server during the process of establishing an SSL or
StartTLS session, the underlying LDAP connection may remain unauthenticated until the
client sends an LDAP bind request over that connection.

• SASL EXTERNAL Certificate Authentication. The SASL EXTERNAL mechanism
is used to allow a client to authenticate itself to the Identity Data Sync using information
provided outside of LDAP communication. In the Identity Data Sync, that information must
come in the form of a client certificate presented during the course of SSL or StartTLS
negotiation. Once the client has established a secure connection to the server in which it
provided its own client certificate, it may send a SASL EXTERNAL bind request to the
server to request that the server attempt to identify the client based on information contained
in that certificate. The server will then use a certificate mapper to identify exactly one user
entry that corresponds to the provided client certificate, and it may optionally perform
additional verification (e.g., requiring the certificate the client presented to be present in the
userCertificate attribute of the user’s entry). If the certificate mapper cannot identify
exactly one user entry for that certificate, or if its additional validation is not satisfied, then
the bind attempt will fail and the client connection will remain unauthenticated.

Creating Server Certificates using Keytool

You can generate and manage certificates using the keytool utility, which is available in the
Java 1.6 SDK. The keytool utility is a key and certificate management utility that allows users
to manage their public/private key pairs, x509 certificate chains and trusted certificates. The
utility also stores the keys and certificates in a keystore, which is a password-protected file
with a default format of JKS although other formats like PKCS#12 are available. Each key and
trusted certificate in the keystore is accessed by its unique alias.

Managing Security

244

To Create a Server Certificate using Keytool

1. Change to the directory where the certificates will be stored.

$ cd /ds/UnboundID-Sync/config

2. Use the keytool utility to create a private/public key pair and a keystore. The keytool utility
is part of the Java SDK. If you cannot access the utility, make sure to change your path to
include the Java SDK (${JAVA_HOME}/bin) directory.

The following command creates a keystore named "keystore", generates a public/private key
pair and creates a self-signed certificate based on the key pair. This certificate can be used
as the server certificate or it can be replaced by a CA-signed certificate chain if additional
keytool commands are executed. Self-signed certificates are only convenient for testing
purposes, they are not recommended for use in deployments in which the set of clients is
not well-defined and carefully controlled. If clients are configured to blindly trust any server
certificate, then they may be vulnerable to man-in-the-middle attacks.

The -dname option is used to specify the certificate’s subject, which generally includes a CN
attribute with a value equal to the fully-qualified name that clients will use to communicate
with the Identity Data Sync. Some clients may refuse to establish an SSL or StartTLS
session with the server if the certificate subject contains a CN value which does not match
the address that the client is trying to use, so this should be chosen carefully. If the -dname
option is omitted, you will be prompted for input. The certificate will be valid for 180 days.

$ keytool -genkeypair \
 -dname "CN=server.example.com,ou=Identity Data Sync Certificate,
 O=Example Company,C=US"\
 -alias server-cert \
 -keyalg rsa \
 -keystore keystore \
 -keypass changeit \
 -storepass changeit \
 -storetype JKS \
 -validity 180 \
 -noprompt

Note: The -keypass and -storepass arguments can be omitted to cause
the tool to interactively prompt for the password. Also, the key password
should match the keystore password.

3. View the keystore. Notice the entry type is privateKeyEntry which indicates that the
entry has a private key associated with it, which is stored in a protected format to prevent
unauthorized access. Also note that the Owner and the Issuer are the same, indicating that
this certificate is self-signed.

$ keytool -list -v -keystore keystore -storepass changeit

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: server-cert
Creation date: Sep 30, 2011
Entry type: PrivateKeyEntry

Managing Security

245

Certificate chain length: 1
Certificate[1]:
Owner: CN=server.example.com, OU=Identity Data Sync Certificate, O=Example Company,
 C=US
Issuer: CN=server.example.com, OU=Identity Data Sync Certificate, O=Example Company,
 C=US
Serial number: 4ac3695f
Valid from: Wed Sep 30 09:21:19 CDT 2011 until: Mon Mar 29 09:21:19 CDT 2012
Certificate fingerprints:
 MD5: 3C:7B:99:BA:95:A8:41:3B:08:85:11:91:1B:E1:18:00
 SHA1: E9:7E:38:0F:1C:68:29:29:C0:B4:8C:08:2B:7C:DA:14:BF:41:DE:F5
 Signature algorithm name: SHA1withRSA
 Version: 3

4. If you are going to have your certificate signed by a Certificate Authority, skip to step 7.
Otherwise export the self-signed certificate. Then examine the certificate.

$ keytool -export -alias server-cert -keystore keystore -rfc -file server.crt
Enter keystore password:
Certificate stored in file <server.crt>

$ cat server.crt
-----BEGIN CERTIFICATE-----
MIICVTCCAb6gAwIBAgIESsNpXzANBgkqhkiG9w0BAQUFADBvMQswCQYDVQQGEwJVUzEYMBYGA1UEChMPRXhhb
XBsZSBDb21wYW55MS8wLQYDVQQLEyZVbmJvdW5kaWQgRGlyZWN0b3J5IFNlcnZlciBD ZXJ0aWZpY2F0ZTEVM
BMGA1UEAxMMMTcyLjE2LjE5My4xMB4XDTA5MDkzMDE0MjExOVoXDTEwMDMyOTE0MjExOVowbzELMAkGA1UEBh
MCVVMxGDAWBgNVBAoTD0V4YW1wbGUgQ29tcGFueTEvMC0GA1UE CxMmVW5ib3VuZGlkIERpcmVjdG9yeSBRZX
J2ZXIgQ2VydGlmaWNhdGUxFTATBgNVBAMTDDE3Mi4x Ni4xOTMuMTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgY
kCgYEAmRBpSeRcqur4XP8PjJWcGDVR31wE cItmMImbjpf0rTq+KG8Ssp8+se+LjLHLaeNg3itR3xMBwp7mQ4
E42i2PBIIZ0PwOKBRPxZDxpsITsSy3o9anTsopIVg1pUpST2iHGBQ+j+VY33cdcc5EoJwYykZ4d1iu45yc834
VByXjiKUCAwEAATANBgkqhkiG9w0BAQUFAAOBgQCJIZfsfQuUig4F0kPC/0fFbhW96TrLTOi6AMIOTork1SuJ
lkxp/nT+eD8eGoE+zshyJWTfVnzMDIlFMJwDIIVvnYmyeR1vlCchyJE6JyFiLpBWs6RuLD8iuHydYEwK8NkEF
YvVb/UIKqJlZ8H8+1Ippt0bENRnGD7zMwJv5ZE49w==
-----END CERTIFICATE-----

5. Import the self-signed certificate into a truststore, and then type yes to trust the certificate.

$ keytool -importcert -alias server-cert -file server.crt \
 -keystore truststore -storepass changeit

Owner: CN=server.example.com, OU=Identity Data Sync Certificate, O=Example Company,
 C=US
Issuer: CN=server.example.com, OU=Identity Data Sync Certificate, O=Example Company,
 C=US
Serial number: 4ac3695f
Valid from: Wed Sep 30 09:21:19 CDT 2011 until: Mon Mar 29 09:21:19 CDT 2012
Certificate fingerprints:
 MD5: 3C:7B:99:BA:95:A8:41:3B:08:85:11:91:1B:E1:18:00
 SHA1: E9:7E:38:0F:1C:68:29:29:C0:B4:8C:08:2B:7C:DA:14:BF:41:DE:F5
 Signature algorithm name: SHA1withRSA
 Version: 3
Trust this certificate? [no]: yes
Certificate was added to keystore

6. View the truststore with the self-signed certificate. If you intend to use this self-signed
certificate as your server certificate, you are done. Again, it is not recommended to use self-
signed certificate in production deployments. Note that the entry type of trustedCertEntry
indicates that the keystore owner trusts that the public key in the certificate belongs to the
entity identified by the owner of the certificate.

$ keytool -list -v -keystore truststore -storepass changeit

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: server-cert
Creation date: Sep 30, 2011
Entry type: trustedCertEntryOwner: CN=server.example.com, OU=Identity Data Sync
 Certificate, O=Example Company, C=US

Managing Security

246

Issuer: CN=server.example.com, OU=Identity Data Sync Certificate, O=Example Company,
 C=US
Serial number: 4ac3695f Valid from: Wed Sep 30 09:21:19 CDT 2011 until: Mon Mar 29
 09:21:19 CDT 2012
Certificate fingerprints:
 MD5: 3C:7B:99:BA:95:A8:41:3B:08:85:11:91:1B:E1:18:00
 SHA1: E9:7E:38:0F:1C:68:29:29:C0:B4:8C:08:2B:7C:DA:14:BF:41:DE:F5
 Signature algorithm name: SHA1withRSA
 Version: 3

7. Create the Certificate Signing Request (CSR) by writing to the file server.csr. Follow the
instructions of the third-party Certificate Authority (CA), and submit the file to a CA. The
CA authenticates you and then returns a certificate reply, which you can save as signed.crt.

$ keytool -certreq -v -alias server-cert -keystore keystore \
 -storepass changeit -file server.csr

Certification request stored in file <server.csr>
Submit this to your CA

8. If you are working with a third-party CA or if your company has your own CA server, then
both the key and trust stores should include information about the CA’s root certificate as
well as any intermediate certificates used to sign the Identity Data Sync certificate. Obtain
the CA root and any intermediate certificates to set up a chain of trust in your keystore. View
the trusted CA and intermediate certificates to check that the displayed certificate fingerprints
match the expected ones.

$ keytool -v -printcert -file root.crt
$ keytool -v -printcert -file intermediate.crt

9. Import the CA’s root certificate in the keystore and truststore. If there are other intermediate
certificates, then import them using the same commands, giving them each different aliases
in the key and trust stores.

$ keytool -importcert -v -trustcacerts -alias cacert \
 -keystore keystore -storepass changeit -file root.crt
$ keytool -importcert -v -trustcacerts -alias cacert -keystore truststore \
 -storepass changeit -file root.crt

10.Import the Identity Data Sync certificate signed by the CA into your keystore, which will
replace the existing self-signed certificate created when the private key was first generated.

$ keytool -importcert -v -trustcacerts -alias server-cert -keystore keystore -
storepass changeit -file signed.crt

Owner: CN=server.example.com, OU=Identity Data Sync Certificate, O=Example Company,
 C=US
Issuer: EMAILADDRESS=whatever@example.com, CN=Cert Auth, OU=My Certificate Authority,
 O=Example Company, L=Austin, ST=Texas, C=US
Serial number: e19cb2838441dbb6 Valid from: Wed Sep 30 10:10:30 CDT 2011 until: Thu
 Sep 30 10:10:30 CDT 2012
Certificate fingerprints:
 MD5: E0:C5:F7:CF:0D:13:F5:FC:2D:A6:A4:87:FD:4C:36:1A
 SHA1: E4:15:0B:ED:99:1C:13:47:29:66:76:A0:3B:E3:4D:60:33:F1:F8:21
 Signature algorithm name: SHA1withRSA
 Version: 1
Trust this certificate? [no]: yes
Certificate was added to keystore [Storing changeit]

11.Add the certificate to the truststore.

$ keytool -importcert -v -trustcacerts -alias server-cert \
 -keystore truststore -storepass changeit -file signed.crt

Managing Security

247

Client Certificates

Client certificates can be used when stronger client authentication is desired but are not required
for SSL connections to be established. The process for creating client certificates usually
involve following an organization's certificate management policies. There are two important
considerations to take into account:

• If a client presents its own certificate to the server, then the server must trust that certificate.
This generally means that self-signed client certificates are not acceptable for anything
but testing purposes or cases in which there are very small number of clients that will be
presenting their own certificates. Otherwise, it is not feasible to configure the server to trust
every client certificate.

• If the client certificates will be used for LDAP authentication via SASL EXTERNAL, then
the certificate must contain enough information to allow the Identity Data Sync to associate
it with exactly one user entry. The requirements for this are dependent upon the certificate
mapper configured for use in the server, but this may impose constraints on the certificate
(for example, the format of the certificate’s subject).

Creating PKCS#12 Certificates

PKCS#12 is an industry standard format for deploying X.509 certificates (or certificate chains)
and a private key as a single file. PKCS#12 is part of the family of standards called the Public-
Key Cryptography Standard (PKCS) developed by RSA Laboratories.

To Generate PKCS#12 Certificates using Keytool

• To create a new certificate in PKCS#12 format, follow the same procedures as in Creating
Server Certificates using Keytool, except use the --storetype pkcs12 argument. For
example, to create a PKCS#12 self-signed certificate and keystore, use the following
command:

$ keytool -genkeypair \
 -dname "CN=server.example.com,ou=Identity Data Sync Certificate,O=Example
 Company,C=US" \
 -alias server-cert -keyalg rsa -keystore keystore.p12 -keypass changeit \
 -storepass changeit -storetype pkcs12 -validity 180 -noprompt

To Export a Certificate from an NSS Database in PKCS#12 Format

Some directory servers, including the Sun/Oracle DSEE Directory Server, use the Network
Security Services (NSS) library to manage certificates. If you have such a directory server and
wish to migrate its certificates for use with the UnboundID Identity Data Sync, then PKCS#12
can be used to accomplish this task. Use the pk12util NSS command-line utility to export
a certificate from an NSS certificate database in PKCS12 format. You can use the PKCS#12
certificate when using QuickSetup or setting up SSL.

• Run the following pk12util command.

Managing Security

248

$ pk12util -o server.p12 -n server-cert -k /tmp/pwdfile \
 -w /tmp/pwdfile -d . -P "ds-"

nss-pk12util: PKCS12 EXPORT SUCCESSFUL

Working with PKCS#11 Tokens

The Cryptographic Token Interface Standard, PKCS#11, defines the native programming
interfaces to cryptographic tokens, like Smartcards and hardware cryptographic accelerators. A
security token provides cryptographic services. PKCS#11 provides an interface to cryptographic
devices via "slots". Each slot, which corresponds to a physical reader or other device interface,
may contain a token. A token is typically a PKCS#11 hardware token implemented in physical
devices, such as hardware accelerators or smart cards. A software token is a PKCS#11 token
implemented entirely in software.

Note: Because different types of PKCS#11 tokens have different
mechanisms for creating, importing, and managing certificates, it may or
may not be possible to achieve this using common utilities like keytool.
In some cases (particularly for devices with strict Note FIPS 140-2
compliance), it may be necessary to use custom tools specific to that
PKCS#11 token for managing its certificates. Consult the documentation for
your PKCS#11 token for information about how to configure certificates for
use with that token.

Configuring the Key and Trust Manager Providers

Java uses key managers to get access to certificates to use for SSL and StartTLS
communication. Administrators use the Identity Data Sync’s key manager providers to provide
access to keystore contents. There are three types of key manager providers:

• JKS Key Manager Provider. Provides access to certificates stored in keystores using the
Java-default JKS format.

• PKCS#11 Key Manager Provider. Provides access to certificates maintained in PKCS#11
tokens.

• PKCS#12 Key Manager Provider. Provides access to certificates in PKCS#12 files.

Trust manager providers are used to determine whether to trust any client certificate that may
be presented during the process of SSL or StartTLS negotiation. The available trust manager
provider types include:

• Blind Trust Manager Provider. Automatically trusts any client certificate presented
to the server. This should only be used for testing purposes. Never use it for production
environments, because it can be used to allow users to generate their own certificates to
impersonate other users in the server.

Managing Security

249

• JKS Trust Manager Provider. Attempts to determine whether to trust a client certificate, or
the certificate of any of its issuers, is contained in a JKS-formatted file.

• PKCS#12 Trust Manager Provider. Attempts to determine whether to trust a client
certificate, or the certificate of any of its issuers, is contained in a PKCS#12 file.

Configuring the JKS Key and Trust Manager Provider

The following procedures are identical to those in the previous section except that the dsconfig
tool in non-interactive mode commands are presented from the command line.

To Configure the JKS Key Manager Provider

1. Change to the server root.

$ cd /ds/UnboundID-Sync

2. Create a text file containing the password for the certificate keystore. It is recommended that
file permissions (or filesystem ACLs) be configured so that the file is only readable by the
Identity Data Sync user.

$ echo ’changeit’ > config/keystore.pin
$ chmod 0400 keystore.pin

3. Use the dsconfig tool to enable the key manager provider.

$ bin/dsconfig set-key-manager-provider-prop \
 --provider-name JKS --set enabled:true

4. Use dsconfig to enable the trust manager provider.

$ bin/dsconfig set-trust-manager-provider-prop \
 --provider-name JKS --set enabled:true

5. Use dsconfig to enable the LDAPS connection handler. Port 636 is typically reserved for
LDAPS, but if your server is using the port, you should specify another port, like 1636. If
the certificate alias differs from the default "server-cert", use the --set ssl-cert-nick-
name:<aliasname> to set it, or you can let the server decide by using the --reset ssl-
cert-nickname option. For example, if the server certificate has an alias of "server," add the
option --set ssl-cert-nickname:server to the command.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "LDAPS Connection Handler" \
 --set listen-port:1636 --set enabled:true

6. Test the listener port for SSL-based client connection on port 1636 to return the Root DSE.
Type yes to trust the certificate.

$ bin/ldapsearch --port 1636 --useSSL --baseDN "" --searchScope base \
 "(objectclass=*)"

The server is using the following certificate:
 Subject DN: CN=179.13.201.1, OU=Identity Data Sync Certificate, O=Example Company,
 L=Austin, ST=Texas, C=US

Managing Security

250

 Issuer DN: EMAILADDRESS=whatever@example.com, CN=Cert Auth, OU=My Certificate
 Authority, O=Example Company, L=Austin, ST=Texas, C=US
 Validity: Fri Sep 25 15:21:10 CDT 2011 through Sat Sep 25 15:21:10 CDT 2012
 Do you wish to trust this certificate and continue connecting to the server?
 Please enter 'yes' or 'no':yes

7. If desired, you may disable the LDAP Connection Handler so that communication can only
go through SSL.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "LDAP Connection Handler" \
 --set enabled:false

Configuring the PKCS#12 Key Manager Provider

PKCS#12 (sometimes referred to as the Personal Information Exchange Syntax Standard) is a
standard file format used to store private keys with its accompanying public key certificates,
protected with a password-based symmetric key.

To Configure the PKCS#12 Key Manager Provider

1. Change to the identity data store root.

$ cd /ds/UnboundID-Sync

2. Create a text file containing the password for the certificate keystore. It is recommended that
file permissions (or filesystem ACLs) be configured so that the file is only readable by the
Identity Data Sync user.

$ echo ’changeit’ > config/keystore.pin
$ chmod 0400 keystore.pin

3. Use the dsconfig tool to configure and enable the PKCS#12 key manager provider.

$ bin/dsconfig set-key-manager-provider-prop \
 --provider-name PKCS12 \
 --set enabled:true \
 --set key-store-file:/config/keystore.p12 \
 --set key-store-type:PKCS12 \
 --set key-store-pin-file:/config/keystore.pin

4. Use the dsconfig tool to configure and enable the PKCS#12 trust manager provider.

$ bin/dsconfig set-trust-manager-provider-prop \
 --provider-name PKCS12 \
 --set enabled:true \
 --set trust-store-file:/config/truststore.p12

5. Use dsconfig to enable the LDAPS connection handler. Port 636 is typically reserved for
LDAPS, but if your server is using the port, you should specify another port, like 1636. If
the certificate alias differs from the default "server-cert", use the --set ssl-cert-nick-
name:<aliasname> to set it, or you can let the server decide by using the --reset ssl-
cert-nickname option. For example, if the server certificate has an alias of "server," add the
option --set ssl-cert-nickname:server to the command.

$ bin/dsconfig set-connection-handler-prop \

Managing Security

251

 --handler-name "LDAPS Connection Handler" \
 --set enabled:true \
 --set listen-port:2636 \
 --set ssl-cert-nickname:1 \
 --set key-manager-provider:PKCS12 \
 --set trust-manager-provider:PKCS12

Configuring the PKCS#11 Key Manager Provider

The Cryptographic Token Interface (Cryptoki), or PKCS#11, format defines a generic interface
for cryptographic tokens used in single sign-on or smartcard systems. The Identity Data Sync
supports PKCS#11 keystores.

To Configure the PKCS#11 Key Manager Provider

1. Change to the server root.

$ cd /ds/UnboundID-Sync

2. Create a text file containing the password for the certificate keystore. It is recommended that
file permissions (or filesystem ACLs) be configured so that the file is only readable by the
Identity Data Sync user.

$ echo ’changeit’ > config/keystore.pin
$ chmod 0400 keystore.pin

3. Use the dsconfig tool to configure and enable the PKCS#11 key manager provider.

$ bin/dsconfig set-key-manager-provider-prop \
 --provider-name PKCS11 \
 --set enabled:true \
 --set key-store-type:PKCS11 \
 --set key-store-pin-file:/config/keystore.pin

4. Use the dsconfig tool to enable the trust manager provider. Since there is no PKCS#11 trust
manager provider, then you must use one of the other truststore provider types (for example,
JKS or PKCS#12).

$ bin/dsconfig set-trust-manager-provider-prop \
 --provider-name JKS \
 --set enabled:true \
 --set trust-store-file:/config/truststore.jks

5. Use dsconfig to enable the LDAPS connection handler. Port 636 is typically reserved for
LDAPS, but if your server is using the port, you should specify another port, like 1636.
If the certificate alias differs from the default "server-cert", use the --set ssl-cert-
nickname:<aliasname> to set it, or you can let the server decide by using the --reset ssl-
cert-nickname option. For example, if the server certificate has an alias of "server," add the
option --set ssl-cert-nickname:server to the command.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "LDAPS Connection Handler" \
 --set enabled:true \
 --set listen-port:1636 \
 --set ssl-cert-nickname:1 \
 --set key-manager-provider:PKCS11 \
 --set trust-manager-provider:JKS

Managing Security

252

Configuring the Blind Trust Manager Provider

The Blind Trust Manager provider accepts any peer certificate presented to it and is provided
for testing purposes only. This trust manager should not be used in production environments,
because it can allow any client to generate a certificate that could be used to impersonate any
user in the server.

To Configure the Blind Trust Manager Provider

1. Change to the Identity Data Sync install root.

$ cd /ds/UnboundID-Sync

2. Use the dsconfig tool to enable the blind trust manager provider.

$ bin/dsconfig set-trust-manager-provider-prop \
 --provider-name "Blind Trust" --set enabled:true

3. Use dsconfig to enable the LDAPS connection handler. Port 636 is typically reserved for
LDAPS, but if your server is using the port, you should specify another port, like 1636. If
the certificate alias differs from the default "server-cert", use the --set ssl-cert-nick-
name:<aliasname> to set it, or you can let the server decide by using the --reset ssl-
cert-nickname option. For example, if the server certificate has an alias of "server," add the
option --set ssl-cert-nickname:server to the command.

Configuring SSL in the Identity Data Sync

The UnboundID Identity Data Sync provides a means to enable SSL or StartTLS at installation
time, using either an existing certificate or by automatically generating a self-signed certificate.
However, if SSL was not configured at install time, then it may be enabled at any time using the
following process. These instructions assume that the certificate is available in a JKS-formatted
keystore, but a similar process may be used for certificates available through other mechanisms
like a PKCS#12 file or a PKCS#11 token.

To Configure SSL in the Identity Data Sync

1. Change to the server root directory.

$ cd /ds/UnboundID-Sync

2. Create a text file containing the password for the certificate keystore. It is recommended that
file permissions (or filesystem ACLs) be configured so that the file is only readable by the
Identity Data Sync user.

$ echo ’changeit’ > config/keystore.pin
$ chmod 0400 config/keystore.pin

Managing Security

253

3. Run the dsconfig command with no arguments in order to launch the dsconfig tool in
interactive mode. Enter the connection parameters when prompted.

4. On the Identity Data Sync Configuration Console main menu, enter o (lowercase letter
"o") to change the complexity of the configuration objects menu. Select the option to show
objects at the Standard menu.

5. On the Identity Data Sync Configuration Console main menu, enter the number
corresponding to the Key Manager Provider.

6. On the Key Manager Provider management menu, select the option to view and edit an
existing key manager.

7. On the Key Manager Provider menu, enter the option for JKS. You will see other options,
like Null, PKCS11, and PKCS12.

8. Make any necessary changes to the JKS key manager provider for the keystore that you will
be using. The enabled property must have a value of TRUE, the key-store-file property
must reflect the path to the keystore file containing the server certificate, and the key-store-
pin-file property should reflect the path to a file containing the password to use to access
the keystore contents.

9. On the Enabled Property menu, enter the option to change the value to TRUE.

10.On the File Based Key Manager Provider, type f to save and apply the changes.

11.Return to the dsconfig main menu, and enter the number corresponding to Trust Manager
Provider.

12.On the Trust Manager Provider management menu, enter the option to view and edit an
existing trust manager provider.

13.On the Trust Manager Provider menu, enter the option for JKS. You will see other options
for Blind Trust (accepts any certificate) and PKCS12 reads information about trusted
certificates from a PKCS#12 file.

14.Ensure that the JKS trust manager provider is enabled and that the trust-store-file
property has a value that reflects the path to the truststore file to consult when deciding
whether to trust any presented certificates.

15.On the File Based Trust Manager Provider menu, type f to save and apply the changes.

16.Return to the dsconfig main menu, enter the number corresponding to Connection Handler.

17.On the Connection Handler management menu, enter the option to view and edit and
existing connection handler.

18.On the Connection Handler menu, enter the option for LDAPS Connection Handler. You
will see other options for JMX Connection Handler and LDAP Connection Handler.

19.On the LDAP Connection Handler menu, ensure that the connection handler has an
appropriate configuration for use. The enabled property should have a value of TRUE, the

Managing Security

254

listen-port property should reflect the port on which to listen for SSL-based connections,
and the ssl-cert-nickname property should reflect the alias for the target certificate in
the selected keystore. Finally, when completing the changes, type f to save and apply the
changes.

20.Verify that the server is properly configured to accept SSL-based client connections using an
LDAP-based tool like ldapsearch. For example:

$ bin/ldapsearch --port 1636 --useSSL --baseDN "" \
 --searchScope base "(objectclass=*)"

The server is using the following certificate:
 Subject DN: CN=179.13.201.1, OU=Identity Data Sync
 Certificate, O=Example Company, L=Austin, ST=Texas,
 C=US Issuer DN: EMAILADDRESS=whatever@example.com,
 CN=Cert Auth, OU=My Certificate Authority, O=Example
 Company, L=Austin, ST=Texas, C=US
 Validity: Fri Sep 25 15:21:10 CDT 2011 through Sat Sep 25 15:21:10 CDT 2012
Do you wish to trust this certificate and continue connecting to the server?
Please enter 'yes' or 'no':yes

21.If desired, you may disable the LDAP connection handler so only the LDAPS connection
handler will be enabled and the server will only accept SSL-based connections.

Configuring StartTLS

The StartTLS extended operation is used to initiate a TLS-secured communication channel over
a clear-text connection, such as an insecure LDAP connection. The main advantage of StartTLS
is that it provides a way to use a single connection handler capable of both secure and insecure
communication rather than requiring a dedicated connection handler for secure communication.

To Configure StartTLS

1. Use dsconfig to configure the Connection Handler to allow StartTLS. The allow-start-
tls property cannot be set if SSL is enabled. The connection handler must also be configured
with a key manager provider and a trust manager provider.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "LDAP Connection Handler" \
 --set allow-start-tls:true \
 --set key-manager-provider:JKS \
 --set trust-manager-provider:JKS

2. Use ldapsearch to test StartTLS.

$ bin/ldapsearch -p 1389 --useStartTLS -b "" -s base "(objectclass=*)"

The server is using the following certificate:
 Subject DN: CN=Server Cert, OU=Identity Data Sync Certificate,
 O=Example Company, L=Austin, ST=Texas, C=US
 Issuer DN: EMAILADDRESS=whatever@example.com, CN=Cert Auth,
 OU=My Certificate Authority, O=Example Company, L=Austin, ST=Texas, C=US
 Validity: Thu Oct 29 10:29:59 CDT 2011 through Fri Oct 29 10:29:59 CDT 2012

 Do you wish to trust this certificate and continue connecting to the server?
 Please enter 'yes' or 'no':yes

Managing Security

255

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 6fa8f196-d112-40b4-b8d8-93d6d44d59ea

Authentication Mechanisms

The UnboundID Identity Data Sync supports the use of both simple and Simple Authentication
and Security Layer (SASL) authentication.

Simple Authentication

Simple authentication allows a client to identify itself to the Identity Data Sync using the
DN and password of the target user. Because the password is provided in the clear, simple
authentication is inherently insecure unless the client communication is encrypted using a
mechanism like SSL or StartTLS.

If both the DN and password of a simple bind request are empty (i.e., zero-length strings), then
the server will process it as an anonymous bind. This will have no effect if the client is not
already authenticated, but it can be used to destroy any previous authentication session and
revert the connection to an unauthenticated state as if no bind had ever been performed on that
connection.

Working with SASL Authentication

SASL (Simple Authentication and Security Layer, defined in RFC 4422) provides an extensible
framework that can be used to add suport for a range of authentication and authorization
mechanisms. The UnboundID Identity Data Sync provides support for a number of common
SASL mechanisms.

Figure 29: Simple Authentication and Security Layer

Working with the SASL ANONYMOUS Mechanism

The ANONYMOUS SASL mechanism does not actually perform any authentication or
authorization, but it can be used to destroy an existing authentication session. It also provides
an option to allow the client to include a trace string, which can be used to identify the purpose
of the connection. Because there is no authentication, the content of the trace string cannot be
trusted.

The SASL ANONYMOUS mechanism is disabled by default but can be enabled if desired using
the dsconfig tool. The SASL configuration options are available as an Advanced menu option
using dsconfig in interactive mode.

Managing Security

256

The LDAP client tools provided with the Identity Data Sync support the use of SASL
ANONYMOUS. The optional "trace" SASL option may be used to specify the trace string to
include in the bind request.

To Configure SASL ANONYMOUS

1. Use dsconfig to enable the SASL ANONYMOUS mechanism.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name ANONYMOUS --set enabled:true

2. Use ldapsearch to view the root DSE and enter a trace string in the access log.

$ bin/ldapsearch --port 1389 --saslOption mech=ANONYMOUS \
 --saslOption "trace=debug trace string" --baseDN "" \
 --searchScope base "(objectclass=*)"

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 59bab79d-4429-49c8-8a88-c74a86792f26

3. View the access log using a text editor in /ds/UnboundID-Sync/logs folder.

[26/Oct/2011:16:06:33 -0500] BIND RESULT conn=2 op=0 msgID=1 resultCode=0
additionalInfo="trace='debug trace string'" etime=345.663
 clientConnectionPolicy="default"

Working with the SASL PLAIN Mechanism

SASL PLAIN is a password-based authentication mechanism which uses the following
information:

• Authentication ID. Used to identify the target user to the server. It should be either "dn:"
followed by the DN of the user or "u:" followed by a username. If the "u:"-style syntax is
used, then an identify mapper will be used to map the specified username to a user entry. An
authentication ID of "dn:" that is not actually followed by a DN may be used to request an
anonymous bind.

• Clear-text Password. Specifies the password for the user targeted by the authentication ID.
If the given authentication ID was "dn:", then this should be an empty string.

• Optional Authorization ID. Used to request that operations processed by the client be
evaluated as if they had been requested by the user specified by the authorization ID
rather than the authentication ID. It can allow one user to issue requests as if he/she had
authenticated as another user. The use of an alternate authorization identity will only be
allowed for clients with the proxied-auth privilege and the proxy access control permission.

Because the bind request includes the clear-text password, SASL PLAIN bind requests are as
insecure as simple authentication. To avoid an observer from capturing passwords sent over the
network, it is recommended that SASL PLAIN binds be issued over secure connections.

By default, the SASL PLAIN mechanism uses an Exact Match Identity Mapper that expects
the provided username to exactly match the value of a specified attribute in exactly one entry

Managing Security

257

(for example, the provided user name must match the value of the uid attribute). However, an
alternate identity mapper may be configured for this purpose which can identify the user in
other ways (for example, transforming the provided user name with a regular expression before
attempt to find a user entry with that transformed value).

LDAP clients provided with the server can use SASL PLAIN with the following SASL options:

• authID. Specifies the authentication ID to use for the bind. This must be provided.

• authzID. Specifies an optional alternate authorization ID to use for the bind.

To Configure SASL PLAIN

1. Use dsconfig to enable the SASL PLAIN mechanism.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name PLAIN --set enabled:true

2. Use ldapsearch to view the root DSE using the authentication ID (authid) with the
username jdoe. The authid option is required. Enter a password for the authentication ID.

$ bin/ldapsearch --port 1389 --saslOption mech=PLAIN \
 --saslOption "authid=u:jdoe" --baseDN "" \
 --searchScope base "(objectclass=*)"
Password for user 'u:jdoe':

Note: You can also specify the fully DN of the user when using the SASL
PLAIN option:

$ bin/ldapsearch --port 1389 --saslOption mech=PLAIN \
 --saslOption "authid=dn:uid=jdoe,ou=People,dc=example,dc=com" \
 --baseDN "" --searchScope base "(objectclass=*)"
Password for user 'dn:uid=jdoe,ou=People,dc=example,dc=com':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 59bab79d-4429-49c8-8a88-c74a86792f26

Working with the SASL CRAM-MD5 Mechanism

CRAM-MD5 is a password-based SASL mechanism that prevents exposure of the clear-text
password by authenticating through the use of an MD5 digest generated from a number of
elements, including the clear-text password, the provided authentication ID, and a challenge
comprised of randomly-generated data. This ensures that the clear-text password itself is not
transmitted, and the inclusion of server-generated random data protects against replay attacks.

During the CRAM-MD5 session, the client sends a bind request of type SASL CRAM-MD5.
The Identity Data Sync sends a response with a SASL "Bind in Progress" result code plus
credential information that includes a randomly generated challenge string to the LDAP client.
The client combines that challenge with other information, including the authentication ID
and clear-text password and uses that to generate an MD5 digest to be included in the SASL

Managing Security

258

credentials, along with a clear-text version of the authentication ID. When the Identity Data
Sync receives the second request, it will receive the clear-text password from the target user’s
entry and generate the same digest. If the digest that the server generates matches what the client
provided, then the client will have successfully demonstrated that it knows the correct pass-
word.

Note that although CRAM-MD5 does offer some level of protection for the password, so that
it is not transferred in the clear, the MD5 digest that it uses is not as secure as the encryption
used by SSL or StartTLS. As such, authentication mechanisms that use a clear-text password
are more secure communication channel. However, the security that CRAM-MD5 offers may
be sufficient for cases in which the performance overhead that SSL/StartTLS can incur. It is
available for use in the UnboundID Identity Data Sync because some clients may require it.

Also note that to successfully perform CRAM-MD5 authentication, the Identity Data Sync must
be able to obtain the clear-text password for the target user. By default, the Identity Data Sync
encodes passwords using a cryptographically secure one-way digest that does not allow it to
determine the clear-text representation of the password. As such, if CRAM-MD5 is used, then
the password storage schemes for any users that authenticate in this manner should be updated,
so that they will use a password storage scheme that supports reversible encryption. It will be
necessary for any existing users to change their passwords so that those passwords will be stored
in reversible form. The reversible storage schemes supported by the Identity Data Sync include:

➢ 3DES
➢ AES
➢ BASE64
➢ BLOWFISH
➢ CLEAR
➢ RC4

CRAM-MD5 uses an authentication ID to identify the user as whom to authenticate. The
format of that authentication ID may be either "dn:" followed by the DN of the target user (or
just "dn:" to perform an anonymouse bind), or "u:" followed by a username. If the "u:"-style
syntax is chosen, then an identity mapper will be used to identify the target user based on that
username. The dsconfig tool may be used to configure the identify mapper to use CRAM-MD5
authentication.

The LDAP client tools provided with the Identity Data Sync support the use of CRAM-MD5
authentication. The authID SASL option should be used to specify the authentication ID for the
target user.

To Configure SASL CRAM-MD5

1. Use dsconfig to enable the SASL CRAM-MD5 mechanism if it is disabled. By default, the
CRAM-MD5 mechanism is enabled.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name CRAM-MD5 --set enabled:true

2. For this example, create a password policy for CRAM-MD5 using a reversible password
storage scheme, like 3DES.

Managing Security

259

$ bin/dsconfig create-password-policy \
 --policy-name "Test UserPassword Policy" \
 --set password-attribute:userpassword \
 --set default-password-storage-scheme:3DES

3. Use ldapmodify to add the ds-pwp-password-policy-dn attribute to an entry to indicate
the Test UserPassword Policy should be used for that entry. After you have typed the change,
press CTRL-D to process the modify operation. This step assumes that you have already
configured the Test Password Policy.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: ds-pwp-password-policy-dn
ds-pwp-password-policy-dn: cn=Test UserPassword Policy,cn=Password Policies,cn=config

Processing MODIFY request for uid=jdoe,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=jdoe,ou=People,dc=example,dc=com

4. Use ldapmodify to change the userPassword to a reversible password storage scheme. The
password storage scheme is specified in the user’s password policy.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
replace: userPassword
userPassword: secret

An alternate method to change the userPassword attribute password storage scheme is to
deprecate the old scheme and then bind as the user using simple authentication or SASL
PLAIN. This action will cause any existing password encoding using a deprecated scheme to
be re-encoded with the existing scheme.

5. Use ldapsearch to view the root DSE using the authentication ID (authid) option with the
username jdoe. The authid option is required. Enter a password for the user.

$ bin/ldapsearch --port 1389 --saslOption mech=CRAM-MD5 \
 --saslOption "authid=u:jdoe" --baseDN "" --searchScope base "(objectclass=*)"
Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 50567aa3-acd2-4106-a077-37a092275363

Working with the SASL DIGEST-MD5 Mechanism

The Identity Data Sync supports the SASL DIGEST-MD5 mechanism, which is a stronger
mechanism than SASL CRAM-MD5. Like the SASL CRAM-MD5 mechanism, the client
authenticates to the Identity Data Sync using a stronger digest of the authentication ID plus other
information without exposing its clear-text password over the network.

During the DIGEST-MD5 session, the client sends a bind request of type SASL DIGEST-MD5.
The Identity Data Sync sends a response with a "Bind in Progress" message plus credential
information that includes a random challenge string to the LDAP client. The client responds
by sending a bind response that includes a digest of the server’s random string, a separately
generated client string, the authentication ID, the authorization ID if supplied, the user’s clear-
text password and some other information. The client then sends its second bind request. The

Managing Security

260

Identity Data Sync also calculates the digest of the client's credential. The Identity Data Sync
validates the digest and retrieves the client’s password. Upon completion, the server sends a
success message to the client.

As with SASL CRAM-MD5, the client and the server must know the clear-text password for
the user. By default, the Identity Data Sync encodes passwords using a one-way storage scheme
(Salted SHA-1) that stores an encoded representation of the password and does not allow it to
determine the clear-text representation of the password. Any users requiring SASL DIGEST-
MD5 authentication must use a password policy that supports two-way, reversible encryption,
in which the password is encoded, stored, and later decoded when requested. The following
password storage schemes are reversible:

➢ 3DES
➢ AES
➢ BASE64
➢ BLOWFISH
➢ CLEAR
➢ RC4

By default, SASL DIGEST-MD5 uses the Exact Match Identity Mapper, which returns a
success result if the authorization ID is an exact match for the value of the uid attribute.
Administrators can configure the SASL DIGEST-MD5 mechanism to use other identity
mappers, such as the Regular Expression Identity Mapper or a custom Identity Mapper written
using the UnboundID Server SDK.

In many ways, the DIGEST-MD5 SASL mechanism is very similar to the CRAM-MD5
mechanism. It avoids exposing the clear-text password through the use of an MD5 digest
generated from the password and other information. It also supports the use of an alternate
authorization ID to indicate that operations be processed under the authority of another user.
Like CRAM-MD5, DIGEST-MD5 provides better security than mechanisms like SASL-PLAIN
that send the clear-text password over an unencrypted channel.

DIGEST-MD5 is considered a stronger mechanism than CRAM-MD5, because it includes
additional information in the digest that makes it harder to decipher, such as randomly-generated
data from the client in addition to the server-provided challenge as well as other elements like
a realm and digest URI. DIGEST-MD5 is also considered weaker than sending a clear-text
password over an encrypted connection, because it requires the server to store passwords in
reversible form, which can be a security risk. We recommend that CRAM-MD5 and DIGEST-
MD5 be avoided unless required by clients.

The LDAP client tools provided with the Identity Data Sync provide the ability to use DIGEST-
MD5 authentication using the following properties:

• authID. Specifies the authentication ID for the target user, in either the "dn:" or "u:" forms.
This property is required.

• authzID. Specifies an optional authorization ID that should be used for operations processed
on the connection.

• realm. The realm in which the authentication should be processed. This may or may not be
required, based on the server configuration.

Managing Security

261

• digest-uri. The digest URI that should be used for the bind. It should generally be "ldap://"
followed by the fully-qualified address for the Identity Data Sync. If this is not provided,
then a value will be generated.

• qop. The quality of protection to use for the bind request. At present, only auth is supported
(indicating that the DIGEST-MD5 bind should only be used for authentication and should
not provide any subsequent integrity or confidentiality protection for the connection), and if
no value is provided then auth will be assumed.

To Configure SASL DIGEST-MD5

1. Use dsconfig to enable the SASL DIGEST-MD5 mechanism if it is disabled. By default, the
DIGEST-MD5 mechanism is enabled.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name DIGEST-MD5 --set enabled:true

2. Set up a reversible password storage scheme as outlined Working with the SASL CRAM-MD5
Mechanism, steps 2–5, which is also required for DIGEST-MD5.

3. Use ldapsearch to view the root DSE using the authentication ID with the username jdoe.
The authid option is required. Enter a password for the authentication ID.

$ bin/ldapsearch --port 1389 --saslOption mech=DIGEST-MD5 \
 --saslOption "authid=u:jdoe" --baseDN "" \
 --searchScope base "(objectclass=*)"
Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 2188e4d4-c2bb-4ab9-8e1c-848e0168c9de

4. The user identified by the authentication ID requires the proxied-auth privilege to allow it
to perform operations as another user.

$ bin/ldapmodify

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: ds-privilege-name
ds-privilege-name: proxied-auth

5. Use ldapsearch with the authid (required) and authzid option to test SASL DIGEST-
MD5.

$ bin/ldapsearch --port 1389 --saslOption mech=DIGEST-MD5 \
 --saslOption authid=u:jdoe \
 --saslOption authzid=dn:uid=admin,dc=example,dc=com \
 --base "" --searchScope base "(objectclass=*)"
Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 2188e4d4-c2bb-4ab9-8e1c-848e0168c9de

Managing Security

262

Working with the SASL EXTERNAL Mechanism

The SASL EXTERNAL mechanism allows a client to authenticate using information about
the client, which is available to the server, but is not directly provided over LDAP. In the
UnboundID Identity Data Sync, SASL EXTERNAL requires the use of a client certificate
provided during SSL or StartTLS negotiation. This is a very secure authentication mechanism
that does not require the use of passwords, although its use on a broad scale is generally only
feasible in environments with a PKI deployment.

Prior to the SASL EXTERNAL session exchange, the client should have successfully
established a secure communication channel using SSL or StartTLS, and the client must have
presented its own certificate to the server in the process. The SASL EXTERNAL bind request
itself does not contain any credentials, and the server will use only the information contained in
the provided client certificate to identify the target user.

The Identity Data Sync’s configuration settings for SASL EXTERNAL includes three important
properties necessary for its successful operation:

• certificate-validation-policy. Indicates whether to check to see if the certificate presented by
the client is present in the target user’s entry. Possible values are:

• always - Always require the peer certificate to be present in the user’s entry.
Authentication will fail if the user’s entry does not contain any certificates, or if it
contains one or more certificates and the certificate presented by the client is not included
in the user’s entry.

• ifpresent - (Default) If the user’s entry contains one or more certificates, require that one
of them match the peer certificate. Authentication will be allowed to succeed if the user’s
entry does not have any certificates, but it will fail if the user’s entry has one or more
certificates and the certificate provided by the client is not included in the user’s entry.

• never - Do not look for the peer certificate to be present in the user’s entry.
Authentication may succeed if the user’s entry does not contain any client certificates,
or if the user’s entry contains one or more certificates regardless of whether the provided
certificate is included in that set.

• certificate-attribute. Specifies the name of the attribute that holds user certificates to
be examined if the ds-cfg-certificate-validation-policy attribute has a value of
ifpresent or always. This property must specify the name of a valid attribute type defined
in the server schema. Default value is userCertificate. Note that LDAP generally requires
certificate values to use the ";binary" attribute modifier, so certificates should actually
be stored in user entries using the attribute "userCertificate;binary" rather than just
"userCertificate".

• certificate-mapper. Specifies the certificate mapper that will be used to identify the target
user based on the certificate presented by the client. For more information on certificate
mappers, see Configuring Certificate Mappers. The LDAP client tools provided with the
Identity Data Sync support the use of SASL EXTERNAL authentication. This mechanism
does not require any specific SASL options to be provided (other than mech=EXTERNAL
to indicate that SASL EXTERNAL should be used). However, additional arguments are

Managing Security

263

required to use SSL or StartTLS, and to provide a keystore so that a client certificate will be
available.

To Configure SASL EXTERNAL

1. Change to the server root directory.

$ cd /ds/UnboundID-Sync

2. Determine the certificate-validation-policy property. If you do not need to store the
DER-encoded representation of the client’s certificate in the user’s entry, skip to the next
step.

If you select Always, you must ensure that the user’s entry has the attribute present with
a value. If you select ifpresent, you can optionally have the userCertificate attribute
present. You can store the client’s certificate in the user entry using ldapmodify.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: userCertificate;binary
userCertificate;binary:<file:///path/to/client.der

3. If you have an attribute other than userCertificate, than specify it using the certificate-
attribute property. You may need to update your schema to support the attribute.

4. Determine the certificate-mapper property. For more information on certificate mappers,
see Configuring Certificate Mappers.

5. Use dsconfig to enable the SASL EXTERNAL mechanism if it is disabled. By default, the
SASL mechanism is enabled. For this example, set the certificate-mapper property to
"Subject Attribute to User Attribute". All other defaults are kept.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name EXTERNAL --set enabled:true \
 --set "certificate-mapper:Subject Attribute to User Attribute"

6. Use ldapsearch to test SASL EXTERNAL.

$ bin/ldapsearch --port 1636 --useSSL \
 --keyStorePath /path/to/clientkeystore \
 --keyStorePasswordFile /path/to/clientkeystore.pin \
 --trustStorePath /path/to/truststore \
 --saslOption mech=EXTERNAL --baseDN "" \
 --searchScope base "(objectClass=*)

Working with the GSSAPI Mechanism

The SASL GSSAPI mechanism provides the ability to authenticate LDAP clients using
Kerberos V, which is a single sign-on mechanism commonly used in enterprise environments.
In these environments, user credentials are stored in the Kerberos key distribution center (KDC)
rather than the Identity Data Sync. When an LDAP client attempts to authenticate to the Identity
Data Sync using GSSAPI, a three-way exchange occurs that allows the client to verify its
identity to the server through the KDC.

Managing Security

264

The Identity Data Sync's support for GSSAPI is based on the Java Authentication and
Authorization Service (JAAS). By default, the server will automatically generate a JAAS
configuration that should be appropriate for the most common use cases. For more complex
deployments, it is possible for an administrator to supply a custom JAAS configuration that is
most appropriate for that environment.

While the GSSAPI specification includes a provision for protecting client-server communication
through integrity (in which the communication is not encrypted, but is signed so that it is
possible to guarantee that it was not be altered in transit) or confidentiality (in which the
communication is encrypted so that it cannot be examined by third-party observers), the Identity
Data Sync currently supports GSSAPI only for the purpose of authenticating clients but not for
securing their communication with the server.

Preparing the Kerberos Environment for GSSAPI Authentication

To implement GSSAPI authentication in the Identity Data Sync, it is assumed that you already
have a working Kerberos V deployment in which the Identity Data Sync and LDAP clients
will participate. The process for creating such a deployment is beyond the scope of this
documentation, and you should consult the documentation for your operating system to better
understand how to construct a Kerberos deployment. However, there are a few things to keep in
mind:

• It is recommended that the KDC be configured to use "aes128-cts" as the TKT and TGS
encryption type, as this encryption type should be supported by all Java VMs. Some other
encryption types may not be available by default in some Java runtime environments. In
Kerberos environments using the MIT libraries, this can be achieved by ensuring that the
following lines are present in the [libdefaults] section of the /etc/krb.conf configuration
file on the KDC system:

default_tkt_enctypes = aes128-cts
default_tgs_enctypes = aes128-cts
permitted_enctypes = aes128-cts

• When a client uses Kerberos to authenticate to a server, the addresses of the target server
and the KDC are used in cryptographic operations. It is important to ensure that all systems
agree on the addresses of the Identity Data Sync and KDC systems. It is therefore strongly
recommended that DNS be configured so that the primary addresses for the KDC and
Identity Data Sync systems are the addresses that clients will use to communicate with them.

• Kerberos authentication is time-sensitive and if system clocks are not synchronized, then
authentication may fail. It is therefore strongly recommended that NTP or some other form of
time synchronization be used for all KDC, Identity Data Sync, and client systems.

To authenticate itself to the Kerberos environment, the KDC should include both host and
service principals for all Identity Data Syncsystems. The host principal is in the form "host/
" followed by the fully-qualified address of the server system, and the service principal
should generally be "ldap/" followed by the fully-qualified address (for example, "host/
directory.example.com" and "ldap/directory.example.com", respectively). In a MIT
Kerberos environment, the kadmin utility may be used to create these principals, as follows:

/usr/sbin/kadmin -p kws/admin
Authenticating as principal kws/admin with password.
Password for kws/admin@EXAMPLE.COM:
kadmin: add_principal -randkey host/directory.example.com

Managing Security

265

WARNING: no policy specified for host/directory.example.com@EXAMPLE.COM;
 defaulting to no policy
Principal "host/directory.example.com@EXAMPLE.COM" created.
kadmin: ktadd host/directory.example.com
Entry for principal host/directory.example.com with kvno 3, encryption type AES-128
 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
kadmin: add_principal -randkey ldap/directory.example.com
WARNING: no policy specified for ldap/directory.example.com@EXAMPLE.COM;
 defaulting to no policy
Principal "ldap/directory.example.com@EXAMPLE.COM" created.
kadmin: quit

On each Identity Data Sync system, the service principal for that instance must be exported to a
keytab file, which may be accomplished using a command as follows:

/usr/sbin/kadmin -p kws/admin
Authenticating as principal kws/admin with password.
Password for kws/admin@EXAMPLE.COM:
kadmin: ktadd -k /ds/UnboundID-Sync/config/server.keytab ldap/directory.example.com
Entry for principal ldap/directory.example.com with kvno 4, encryption type AES-128
 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/ds/UnboundID-Sync/config/
 server.keytab.
kadmin: quit

Because this file contains the credentials that the Identity Data Sync will use to authenticate to
the KDC, it is strongly recommended that appropriate protection be taken to ensure that it is
only accessible to the Identity Data Sync itself (for example, by configuring file permissions
and/or file system access controls).

Configuring the GSSAPI SASL Mechanism Handler

The GSSAPI SASL mechanism handler provides the following configuration options:

• enabled. Indicates whether the GSSAPI SASL mechanism handler is enabled for use in the
server. By default, it is disabled.

• kdc-address. Specifies the address that the Identity Data Sync should use to communicate
with the KDC. If this is not specified, then the server will attempt to determine it from the
underlying system configuration.

• server-fqdn. Specifies the fully-qualified domain name that clients will use to communicate
with the Identity Data Sync. If this is not specified, the server will attempt to determine it
from the underlying system configuration.

• realm. Specifies the Kerberos realm that clients will use. If this is not specified, the server
will attempt to determine it from the underlying system configuration.

• kerberos-service-principal. Specifies the service principal that the Identity Data Sync
will use to authenticate itself to the KDC. If this is not specified, the service principal
will be "ldap/" followed by the fully-qualified server address (for example, ldap/
directory.example.com).

• keytab. Specifies the path to the keytab file that holds the credentials for the Kerberos
service principal that the Identity Data Sync will use to authenticate itself to the KDC. If this
is not specified, the server will use the system-wide keytab.

• identify-mapper. Specifies the identify mapper that the Identity Data Sync will use to map
a client’s Kerberos principal to the entry of the corresponding user account in the server. In
the default configuration, the server will use a regular expression identity mapper that will

Managing Security

266

look for an entry with a uid value equal to the username portion of the Kerberos principal
For example, for a Kerberos principal of jdoe@EXAMPLE.COM, the identity mapper will
perform an internal search with a filter of (uid=jdoe).

• enable-debug. Indicates whether the Identity Data Sync should write debugging information
about Kerberos-related processing (including JAAS processing) that the server performs. If
enabled, this information will be written to standard error, which will appear in the logs/
server.out log file.

• jaas-config file. Specifies the path to a JAAS configuration file that the server should use. If
this is not specified, the server will generate a JAAS configuration file based on the values of
the other configuration properties. It is recommended that this only be used in extraordinary
circumstances in which the server-generated JAAS configuration is not acceptable.

Testing GSSAPI Authentication

Once the GSSAPI SASL mechanism handler has been enabled and configured in the Identity
Data Sync, then clients should be able to use GSSAPI to authenticate to the server using
Kerberos. The ldapsearch tool provided with the Identity Data Sync may be used to test this,
with a command like:

$ bin/ldapsearch --hostname directory.example.com --port 389 \
 --saslOption mech=GSSAPI --saslOption authID=jdoe@EXAMPLE.COM \
 --baseDN "" --searchScope base "(objectClass=*)"

If the client already has a valid Kerberos session authenticated with a principal of
jdoe@EXAMPLE.COM, then this command should make use of that existing session and
proceed without requiring any further credentials. If there is no existing Kerberos session, then
the ldapsearch command will prompt for the Kerberos password for that user (or it may be
supplied using either the --bindPassword or --bindPasswordFile arguments).

The --saslOption command-line argument may be used to specify a number of properties
related to SASL authentication, with values to that option be given in "name=value" format.
When using SASL authentication, the mech property must always be used to specify the SASL
mechanism to use, and --saslOption mech=GSSAPI indicates that the GSSAPI mechanism will
be used. When the GSSAPI mechanism has been selected, then the following additional SASL
options are available for use:

• authid. Specifies the authentication ID, which is the Kerberos principal for the user
authenticating to the server. This option must always be provided when using GSSAPI.

• authzID. Specifies the authorization ID that should be used. At present, the Identity Data
Sync does not support the use of an alternate authorization identity, so this should either be
omitted or identical to the value of the authID property.

• kdc. Specifies the address of the KDC that the client should use during the authentication
processing. If this is not provided, the client will attempt to determine it from the system’s
Kerberos configuration.

• realm. Specifies the Kerberos realm that should be used. If this is not provided, the client
will attempt to determine it from the system’s Kerberos configuration.

Managing Security

267

• protocol. Specifies the protocol that the Identity Data Sync uses for its service principal (i.e.,
the portion of the service principal that appears before the slash and fully-qualified server
address). If this is not provided, a default protocol of "ldap" will be used.

• useTicketCache. Indicates whether the client should attempt to make use of a Kerberos
ticket cache to leverage an existing Kerberos session, which may allow the client to
authenticate to the server without the need to supply any additional credentials. If this is
not provided, or if it is provided with a value of TRUE, then a ticket cache will be used if
available. The use of a ticket cache may be disabled by providing this option with a value of
FALSE.

• requireCache. Indicates whether to require the use of a ticket cache in order to leverage
an existing Kerberos session rather than allowing the use of user-supplied credentials
for authentication. By default, this will be assumed to have a value of FALSE, but if it
is provided with a value of TRUE, then authentication will only be successful if the user
already has an existing Kerberos session. This will be ignored if the useTicketCache option
has been provided with a value of FALSE.

• ticketCache. Specifies the path to the file to use as the Kerberos ticket cache. If this is
not provided, the default ticket cache file path will be assumed. This will be ignored if the
useTicketCache option has been provided with a value of FALSE.

• renewTGT. Indicates whether to attempt to renew the user’s ticket-granting ticket when
authenticating with an existing Kerberos session. If this is not provided, a default value of
FALSE will be used.

• debug. Indicates whether to write debug information about the GSSAPI authenication
processing to standard error. By default, no debug information will be written, but it may be
enabled with a value of TRUE.

• configFile. Used to specify the path to a JAAS configuration file that the client should
use when performing GSSAPI processing. If this is not specified, then a default JAAS
configuration file will be generated based on other properties.

These options are available for use with all tools supplied with the Identity Data Sync which
support SASL authentication.

Working with the UNBOUNDID-TOTP SASL Mechanism

The Identity Data Sync supports a proprietary multifactor authentication mechanism that allows
the server to use the Time-based One-Time Password (TOTP) algorithm, specified in RFC 6238.
The TOTP algorithm is an extension of the Hash-based Message Authentication Code One-
Time Password (HTOP) algorithm, specified in RFC 4226. The TOTP algorithm computes a
temporary code using the current time and a secret key that is shared between the client app
(e.g., Google Authenticator) and the server. When combined with a static password, a TOTP
code can provide a means of multifactor authentication that offers dramatically better security
than can be achieved using a static password by itself.

This proprietary security mechanism, UNBOUNDID-TOTP SASL, issues a bind request that
includes at least an authentication ID and a TOTP code, but may also include an authorization
ID and/or a static password. When the Identity Data Sync receives such a bind request, it first
uses the authentication ID to identify the user that is authenticating and then retrieves the shared

Managing Security

268

secret from the user's entry (stored as a base32-encoded value in the ds-auth-totp-shared-
secret operational attribute) and uses that in conjunction with the current time to generate a
TOTP code. If that matches the code that the user entered, then that confirms that the client
knows the shared secret. If a static password was also provided, then the server will confirm
that it matches what is stored in the userPassword attribute (or whatever password attribute is
specified in the user's password policy). By default, the server will require the client to provide a
static password, since without it, the client will only be performing single-factor authentication.

The Commercial Edition of the LDAP SDK for Java provides the necessary client-
side support for the UNBOUNDID-TOTP SASL mechanism and provides a
com.unboundid.ldap.sdk.unboundidds.OneTimePassword class to generate HOTP and TOTP
codes for testing purposes.

Notes about the UnboundID-TOTP SASL Mechanism

The UnboundID-TOTP SASL mechanism supports some new features of interest that add extra
security to your system:

• Limiting the Reuse of the One-Time Password. Although TOTP passwords are only valid
for a limited period of time, it is possible that an individual observing an unencrypted TOTP
authentication could replay the bind request in order to reuse the TOTP code as long as the
server considers it valid. To avoid this, the prevent-totp-reuse property may be used to
cause the server to store information in the user's entry about TOTP codes that have been
used to successfully authenticate and may still be valid. Subsequent TOTP authentication
attempts will then ensure that the provided TOTP code does not match a previously-used
value.

• Implementing the Validate TOTP Extended Operation. The Identity Data Store supports
a Validate TOTP Extended Operation, which validates the TOTP password without
performing any authentication on the user. This feature is enabled by default. This is not
needed for UNBOUNDID-TOTP SASL support and nor does it alter the authentication state
of a connection in any way, but it may be useful for third-party applications to use TOTP as a
type of "step-up" authentication mechanism or to add extra assurance about the identity of an
already authenticated user.

• Using Sensitive Attributes with the TOTP Shared Secret. You can use a sensitive
attribute definition to prevent clients from retrieving TOTP shared secrets from the server
and to ensure that all shared secret changes occur over secure connections. Note that this
sensitive attribute definition must be referenced from the sensitive-attribute property of
a client connection policy or the global sensitive-attribute property to be enabled.

To Configure UNBOUNDID-TOTP SASL

1. Configure the server so that ds-auth-totp-shared-secret is a sensitive attribute that can
only be set over a secure connection and cannot ever be retrieved from the server. Create the
sensitive attribute and reference it from the global configuration using dsconfig.

$ bin/dsconfig create-sensitive-attribute \
 --attribute-name ds-auth-totp-shared-secret \
 --set attribute-type:ds-auth-totp-shared-secret \
 --set allow-in-returned-entries:suppress \
 --set allow-in-filter:reject \
 --set allow-in-compare:reject \

Managing Security

269

 --set allow-in-add:secure-only \
 --set allow-in-modify:secure-only

$ bin/dsconfig set-global-configuration-prop \
 --add sensitive-attribute:ds-auth-totp-shared-secret

2. Update a user entry so that it contains a ds-auth-totp-shared-secret attribute with a
value that holds the base32-encoded shared secret that will be used for TOTP authentication.
If you put the sensitive attribute in place, then you will need to do this over a secure
connection, such as over SSL or StartTLS. There is no maximum limit to the length of
the ds-auth-totp-shared-secret string, but there is a minimum length of 16 base32-
encoded characters. Note that Google Authenticator requires a base32 string whose length is
a multiple of 8, and it cannot include the padding character ("=").

dn: uid=user.0,ou=People,dc=example,dc=com
changetype: modify
add: ds-auth-totp-shared-secret
ds-auth-totp-shared-secret: ONSWG4TFORRW6ZDF

3. To test this feature, install a TOTP client. For this example, you can use the Google
Authenticator app on your Android, iOS, and Blackberry mobile device. On the Google
Authenticator app, choose the Add Account option to manually add an account. Enter a
name and the same base32-encoded key that you assigned to the user in the previous step.
The default account type is "Time Based"; do not choose "Counter Based". You should see
an item with the name you selected and a six-digit code that will change every 30 seconds.

Note: The Google Authenticator app only needs to know the current
time and the shared secret in order to compute the TOTP code. It does
not require a Google account, nor does it require a data connection or the
ability to perform network communication.

4. The Identity Data Sync's tools provide support for the UNBOUNDID-TOTP SASL
mechanism. You can run an LDAP search using the UNBOUNDID-TOTP SASL mechanism
in the same way as any other SASL component.

$ bin/ldapsearch --saslOption mech=UNBOUNDID-TOTP \
 --saslOption authID=u:user.0 \
 --saslOption totpPassword=628094 \
 --bindPassword password \
 --baseDN "" \
 --searchScope base \
 "(objectClass=*)"

Working with the UNBOUNDID-DELIVERED-OTP SASL

The Identity Data Sync now includes support for a new form of two-factor authentication,
UNBOUNDID-DELIVERED-OTP SASL, which uses one-time passwords (OTPs) that are
delivered to the end user through some out-of-band mechanism. Out of the box, the server
provides support for e-mail (through the same SMTP external server approach used for email)
and SMS (through the Twilio web service). The Server SDK also provides support for creating
custom delivery mechanisms.

The process for authenticating using this new mechanism involves two steps:

Managing Security

270

• The client must first send a "deliver one-time password" extended request to the server. This
request includes an authentication ID (either "dn:" followed by the DN or "u:" followed
by the username), the user's static password, and an optional set of allowed delivery
mechanisms. If successful, this will cause the server to generate a one-time password, store it
in the user's entry, and send it to the user through some mechanism.

• Once the user has received the one-time password, the client should perform an
UNBOUNDID-DELIVERED-OTP SASL bind (which may be on the same connection or
a different connection as was used to process the "deliver one-time password" extended
operation). The credentials for this SASL mechanism include an authentication ID to identify
the user, an optional authorization ID (if operations performed by the client should be
authorized as a different user), and the one-time password that was delivered to them.

The static password is not included in the SASL bind request, but because the user must provide
the static password in order to obtain the one-time password, it still qualifies as a form of
multifactor authentication. Unlike UNBOUNDID-TOTP SASL, there is no need to have a
shared secret between the client and the server, or any special client-side software to generate
the one-time password, or a need to worry about whether the client and server clocks are
roughly in sync.

To Configure the UNBOUNDID-DELIVERED OTP SASL

1. Add support for one or more OTP delivery mechanisms. For email, you first need to create
an SMTP external server and associate it with the global configuration before you can create
the delivery mechanism.

$ bin/dsconfig create-external-server \
 --server-name "Intranet SMTP Server" \
 --type smtp \
 --set server-host-name:server.example.com

$ bin/dsconfig set-global-configuration-prop \
 --add "smtp-server:Intranet SMTP Server"

$ bin/dsconfig create-otp-delivery-mechanism \
 --mechanism-name E-Mail \
 --type email \
 --set enabled:true \
 --set 'sender-address:otp@example.com' \
 --set "email-address-attribute-type:mail" \
 --set "message-subject:Your one-time password" \
 --set "message-text-before-otp:Your one-time password: "

2. If you have a Twilio account, you can use it to configure the server to deliver one-time
passwords over SMS.

dsconfig create-otp-delivery-mechanism \
--mechanism-name SMS \
--type twilio \
--set enabled:true
--set twilio-account-sid:xxxxx \
--set twilio-auth-token:xxxxx \
--set "sender-phone-number:xxxxx" \
--set phone-number-attribute-type:mobile \
--set "message-text-before-otp:Your one-time password: "

3. Once you have your OTP delivery mechanisms, you can configure the extended operation
handler.

Managing Security

271

$ bin/dsconfig create-extended-operation-handler \
 --handler-name "Deliver One-Time Password" \
 --type deliver-otp \
 --set enabled:true \
 --set "identity-mapper:Exact Match" \
 --set "password-generator:One-Time Password Generator" \
 --set default-otp-delivery-mechanism:SMS \
 --set default-otp-delivery-mechanism:E-Mail

4. Next, configure the SASL mechanism handler.

$ bin/dsconfig create-sasl-mechanism-handler \
 --handler-name UNBOUNDID-DELIVERED-OTP \
 --type unboundid-delivered-otp \
 --set enabled:true \
 --set "identity-mapper:Exact Match" \
 --set "otp-validity-duration:5 minutes"

5. Make sure the server contains a user account with the account needed to deliver the one-time
password to the user (i.e., a valid email address or mobile number).

6. Next, use the deliver one-time password extended operation to have the server generate
and send a one-time password to the user. The Commercial Edition of UnboundID LDAP
SDK contains support for the extended request and response needed to do this. In actual
production deployments, you can create a web form to allow the user to enter the information
and click a button. The server comes with a new deliver-one-time-password command-line
tool that can achieve the same result.

$ bin/deliver-one-time-password \
 --userName jdoe \
 --promptForBindPassword \
 --deliveryMechanism SMS
Enter the static password for the user:

Successfully delivered a one-time password via mechanism 'SMS' to '123-456-7890'

If processed successfully, you will receive a text as follows:

Your one-time password: 123456

7. Finally, authenticate to the server using the UNBOUNDID-DELIVERED-OTP SASL
mechanism. The Commercial Edition of the LDAP SDK can help you accomplish this so that
the user sees an interface. Or, you can use ldapsearch or some other tool to accomplish the
same result.

$ bin/ldapsearch \
 -o mech=UNBOUNDID-DELIVERED-OTP \
 -o authID=u:jdoe \
 -o otp=123456 \
 -b '' \
 -s base '(objectClass=*)' \
 ds-supported-otp-delivery-mechanism

The search returns:

dn:
ds-supported-otp-delivery-mechanism: E-Mail
ds-supported-otp-delivery-mechanism: SMS

Managing Security

272

Configuring Pass-Through Authentication

Pass-through authentication (PTA) is a mechanism by which one Identity Data Sync receives
the bind request and can consult another Identity Data Sync to authenticate the bind request.
Administrators can implement this functionality by configuring a PTA plug-in that enables the
Identity Data Sync to accept simple password-based bind operations.

To Configure Pass-Through Authentication

1. First, use dsconfig to define the external servers for the instances that will be
used to perform the authentication. The bind DN is set to uid=pass-through-
user,dc=example,dc=com, which is used to bind to the target LDAP server for simple
authentication. The verify-credentials-method property ensures that a single set of
connections for processing binds and all other types of operations is in place without
changing the identity of the associated connection.

$ bin/dsconfig create-external-server \
--server-name "ds-with-pw-1.example.com:389" \
--type unboundid-sync \
--set server-host-name:ds-with-pw-1.example.com \
--set server-port:389 \
--set "bind-dn:uid=pass-through-user,dc=example,dc=com" \
--set authentication-method:simple \
--set verify-credentials-method:retain-identity-control

2. Repeat step 1 so that you have multiple external servers in case one of them becomes
unavailable.

$ bin/dsconfig create-external-server \
 --server-name "ds-with-pw-2.example.com:389" \
 --type unboundid-sync \
 --set server-host-name:ds-with-pw-2.example.com \
 --set server-port:389 \
 --set "bind-dn:uid=pass-through-user,dc=example,dc=com" \
 --set authentication-method:simple \
 --set verify-credentials-method:retain-identity-control

3. Create an instance of the pass-through authentication plug-in that will use the external
server(s) as a source of authentication. Based on this configuration, the server will first try to
process a local bind as the target user (try-local-bind:true). The try-local-bind:true
together with the override-local-password:true means that if the local bind fails for any
reason, then it will try sending the request to either ds-with-pw-1.example.com:389 or ds-
with-pw-2.example.com:389 (server-access-mode:round-robin). If the bind succeeds
against the remote server, then the local entry will be updated to store the password that was
used (update-local-password:true). The number of connections to initially establish to
the LDAP external server is set to 10 (initial-connections:10). The maximum number of
connections maintained to the LDAP external server is 10 (max-connections:10).

$ bin/dsconfig create-plugin \
 --plugin-name "Pass-Through Authentication" \
 --type pass-through-authentication \
 --set enabled:true \
 --set server:ds-with-pw-1.example.com:389 \
 --set server:ds-with-pw-2.example.com:389 \
 --set try-local-bind:true \

Managing Security

273

 --set override-local-password:true \
 --set update-local-password:true \
 --set server-access-mode:round-robin \
 --set initial-connections:10 \
 --set max-connections:10

Note:

The try-local-bind property works in conjunction with the override-
local-password property. If try-local-bind is true and override-
local-password is set to its default value of false, then the server
attempts a local bind first. If it fails because no password is set, then it
will forward the bind request to a remote server. If the password was set
but still fails, the server will not send the request to the remote server.

If try-local-bind is true and override-local-password is true, then
a local bind will be attempted. The server will forward the request to the
remote server if the local bind fails for any reason.

Adding Operational Attributes that Restrict Authentication

The Identity Data Sync provides a number of operational attributes that can be added to user
entries in order to restrict the way those users can authenticate and the circumstances under
which they can be used for proxied authorization. The operational attributes are as follows:

• ds-auth-allowed-address. Used to indicate that the user should only be allowed to
authenticate from a specified set of client systems. Values should be specified as individual
IP addresses, IP address patterns (using wildcards like "1.2.3.*", CIDR notation like
"1.2.3.0/24", or subnet mask notation like "1.2.3.0/255.255.255.0"), individual DNS
addresses, or DNS address patterns (using wildcards like "*.example.com"). If no allowed
address values are present in a user entry, then no client address restrictions will be enforced
for that user.

• ds-auth-allowed-authentication-type. Used to indicate that the user should only be allowed
to authenticate in certain ways. Allowed values include "simple" (to indicate that the user
should be allowed to bind using simple authentication) or "sasl {mech}" (to indicate that the
user should be allowed to bind using the specified SASL mechanism, like "sasl PLAIN").
If no authentication type values are present in a user entry, then no authentication type
restrictions will be enforced for that user.

• ds-auth-require-secure-authentication. Used to specify whether the user should be
required to authenticate in a secure manner. If this attribute is present with a value of "true",
then that user will only be allowed to authenticate over a secure connection or using a
mechanism that does not expose user credentials (e.g., the CRAM-MD5, DIGEST-MD5,
and GSSAPI SASL mechanisms). If this attribute is present with a value of "false", or it is
not present in the user's entry, then the user will not be required to authenticate in a secure
manner.

• ds-auth-require-secure-connection. Used to specify whether the user should be required
to communicate with the server over a secure connection. If this attribute is present in a user

Managing Security

274

entry with a value of "true", then that user will only be allowed to communicate with the
server over a secure connection (using SSL or StartTLS). If this attribute is present with a
value of "false", or if it is not present in the user's entry, then the user will not be required to
use a secure connection.

• ds-auth-is-proxyable. Used to indicate whether the user can be used as the target of proxied
authorization (using the proxied authorization v1 or v2 control, the intermediate client
control, or a SASL mechanism that allows specifying an alternate authorization identity).
If this attribute is present in a user entry with a value of "required", then that user will
not be allowed to authenticate directly to the server but instead will only be allowed to be
referenced by proxied authorization. If this attribute is present with a value of "prohibited",
then that user will not be allowed to be the target of proxied authorization but may only
authenticate directly to the server. If this attribute is present with a value of "allowed", or if it
is not present in the user's entry, then the user may authenticate directly against the server or
be the target of proxied authorization.

• ds-auth-is-proxyable-by. Used to restrict the set of accounts that may target the user for
proxied authorization. If this attribute is present in a user's entry, then its values must be the
DNs of the users that can target the user for proxied authorization (as long as those users
have sufficient rights to use proxied authorization). If it is absent from the user's entry, then
any account with appropriate rights may target the user via proxied authorization.

Configuring Certificate Mappers

SASL EXTERNAL requires that a certificate mapper be configured in the server. The certificate
mapper is used to identify the entry for the user to whom the certificate belongs. The Identity
Data Sync supports a number of certificate mapping options including:

• Subject Equals DN. The Subject Equals DN mapper expects the subject of the
certificate to exactly match the DN of the associated user entry. This option is not
often practical as certificate subjects (e.g., cn=jdoe,ou=Client Cert,o=Example
Company,c=Austin,st=Texas,c=US) are not typically in the same form as an entry (e.g.,
cn=jdoe,ou=People,o=Example Company, or uid=jdoe,ou=People,dc=example,dc=com).

• Fingerprint. The Fingerprint mapper expects the user's entry to contain an attribute (ds-
certficate-fingerprint by default, although this is configurable), whose values are
the SHA-1 or MD5 fingerprints of the certificate(s) that they can use to authenticate. This
attribute must be indexed for equality.

• Subject Attribute to User Attribute. The Subject Attribute to User Attribute mapper can be
used to build a search filter to find the appropriate user entry based on information contained
in the certificate subject. For example the default configuration expects the cn value from
the certificate subject to match the cn value of the user's entry, and the e value from the
certificate subject to match the mail value of the user's entry.

• Subject DN to User Attribute. The Subject DN to User Attribute mapper expects the
user's entry to contain an attribute (ds-certificate-subject-dn by default, although
this is configurable), whose values are the subjects of the certificate(s) that they can use to
authenticate. This multi-valued attribute can contain the subjects of multiple certificates. The
attribute must be indexed for equality.

Managing Security

275

Configuring the Subject Equals DN Certificate Mapper

The Subject Equals DN Certificate Mapper is the default mapping option for the SASL
EXTERNAL mechanism. The mapper requires that the subject of the client certificate exactly
match the distinguished name (DN) of the corresponding user entry. The mapper, however, is
only practical if the certificate subject has the same format as your Identity Data Sync’s entries.

To Configure the Subject Equals DN Certificate Mapper

• Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
 --handler-name EXTERNAL \
 --set "certificate-mapper:Subject Equals DN"

Configuring the Fingerprint Certificate Mapper

The Fingerprint Mapper causes the server to compute an MD5 or SHA-1 fingerprint of the
certificate presented by the client and performs a search to find that fingerprint value in a user’s
entry (ds-certificate-fingerprint by default). The ds-certificate-fingerprint attribute
can be added to the user’s entry together with the ds-certificate-user auxiliary object
class. For multiple certificates, the attribute can have separate values for each of the acceptable
certificates. If you decide to use this attribute, you must index the attribute as it is not indexed by
default.

The following example will use this certificate:

Alias name: client-cert
Creation date: Oct 29, 2011
Entry type: PrivateKeyEntry

Certificate chain length: 1 Certificate[1]:
Owner: CN=jdoe, OU=Client Cert, O=Example Company, L=Austin, ST=Texas, C=US
Issuer: EMAILADDRESS=whatever@example.com, CN=Cert Auth, OU=My Certificate Authority,
O=Example Company, L=Austin, ST=Texas, C=US
Serial number: e19cb2838441dbcd
Valid from: Thu Oct 29 13:07:10 CDT 2011 until: Fri Oct 29 13:07:10 CDT 2012
Certificate fingerprints:
 MD5: 40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB
 SHA1: 2A:89:71:06:1A:F5:DA:FF:51:7B:3D:2D:07:2E:33:BE:C6:5D:97:13
 Signature algorithm name: SHA1withRSA
 Version: 1

To Configure the Fingerprint Certificate Mapper

1. Create an LDIF file to hold a modification that adds the ds-certificate-user object class
and ds-certificate-fingerprint attribute to the target user’s entry.

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: ds-certificate-user
-
add: ds-certificate-fingerprint
ds-certificate-fingerprint: 40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

Managing Security

276

2. Then, apply the change to the entry using ldapmodify:

$ bin/ldapmodify --filename add-cert-attr.ldif

dn: uid=jdoe,ou=People,dc=example,dc=com
ds-certificate-fingerprint:40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

3. Check that the attribute was added to the entry using ldapsearch.

$ bin/ldapsearch --baseDN dc=example,dc=com "(uid=jdoe)" \

ds-certificate-fingerprint
dn:uid=jdoe,ou=People,dc=example,dc=com
ds-certificate-fingerprint:40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

4. Create an index for the ds-certificate-fingerprint attribute. If the server is configured
with multiple data backends, then the attribute should be indexed in each of those backends.

$ bin/dsconfig create-local-db-index --backend-name userRoot \
 --index-name ds-certificate-fingerprint --set index-type:equality

5. Use the rebuild-index tool to cause an index to be generated for this attribute.

$ bin/rebuild-index --task --baseDN dc=example,dc=com \
 --index ds-certificate-fingerprint

[14:56:28] The console logging output is also available in
'/ds/UnboundID-Sync/logs/tools/rebuild-index.log'
[14:56:29] Due to changes in the configuration, index
dc_example_dc_com_ds-certificate-fingerprint.equality is currently
operating in a degraded state and must be rebuilt before it can used
[14:56:29] Rebuild of index(es) ds-certificate-fingerprint started with 161 total
records to process
[14:56:29] Rebuild complete. Processed 161 records in 0 seconds
(average rate 1125.9/sec)

6. Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
 --handler-name EXTERNAL \
 --set "certificate-mapper:Fingerprint Mapper"

Configuring the Subject Attribute to User Attribute Certificate Mapper

The Subject Attribute to User Attribute Certificate Mapper maps common attributes from
the subject of the client certificate to the user’s entry. The generated search filter must match
exactly one entry within the scope of the base DN(s) for the mapper. If no match is returned or if
multiple matchines entries are found, the mapping fails.

Given the subject of the client certificate:

Owner: CN=John Doe, OU=Client Cert, O=Example Company, L=Austin, ST=Texas, C=US

We want to match to the following user entry:

dn: uid=jdoe,ou=People,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
uid: jdoe
givenName: John

Managing Security

277

sn: Doe
cn: John Doe
mail: jdoe@example.com

To Configure the Subject Attribute to User Attribute Certificate Mapper

• Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
 --handler-name EXTERNAL \
 --set "certificate-mapper:Subject Attribute to User Attribute"

Configuring the Subject DN to User Attribute Certificate Mapper

The Subject DN to User Attribute Certificate mapper expects the user’s entry to contain an
attribute (ds-certificate-subject-dn by default) whose values match the subjects of the
certificates that the user can use to authenticate. The ds-certificate-subject-dn attribute can
be added to the user’s entry together with the ds-certificate-user auxiliary object class. The
attribute is multi-valued and can contain the Subject DNs of multiple certificates. The certificate
mapper must match exactly one entry, or the mapping will fail.

If you decide to use this attribute, you must add an equality index for this attribute in all data
backends.

To Configure the Subject DN to User Attribute Certificate Mapper

1. Create an LDIF file to hold a modification that adds the ds-certificate-user object class
and ds-certificate-subject-dn attribute to the target user’s entry.

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: ds-certificate-user
-
add: ds-certificate-subject-dn
ds-certificate-subject-dn:CN=John Doe,OU=Client Certificate,O=Example
 Company,L=Austin,ST=Texas,C=US

2. Then, apply the change to the entry using ldapmodify:

$ bin/ldapmodify --filename add-cert-attr.ldif

3. Check that the attribute was added to the entry using ldapsearch.

$ bin/ldapsearch --baseDN dc=example,dc=com "(uid=jdoe)" \
 ds-certificate-subject-dn

dn: uid=jdoe,ou=People,dc=example,dc=com
ds-certificate-fingerprint:CN=jdoe, OU=Client Cert, O=Example Company,
 L=Austin, ST=Texas, C=US

4. Create an index to the ds-certificate-subject-dn attribute.

$ bin/dsconfig create-local-db-index --backend-name userRoot \
 --index-name ds-certificate-subject-dn --set index-type:equality

Managing Security

278

5. Use the rebuild-index tool to ensure that the index is properly generated in all appropriate
backends.

$ bin/rebuild-index --task --baseDN dc=example,dc=com \
 --index ds-certificate-subject-dn

[15:39:19] The console logging output is also available in
'/ds/UnboundID-Sync/logs/ tools/rebuild-index.log'
[15:39:20] Due to changes in the configuration, index
dc_example_dc_com_ds-certificate-subject-dn.equality is currently operating
in a degraded state and must be rebuilt before it can used
[15:39:20] Rebuild of index(es) ds-certificate-subject-dn started with 161 total
records to process
[15:39:20] Rebuild complete. Processed 161 records in 0 seconds
(average rate 2367.6/sec)

6. Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
 --handler-name EXTERNAL \
 --set "certificate-mapper:Subject DN to User Attribute"

Troubleshooting the Identity Data Sync

279

Chapter

11 Troubleshooting the Identity Data Sync

The UnboundID Identity Data Sync provides a highly-available background synchronization
solution for all types of network configurations. However, problems can arise from issues in the
Identity Data Sync itself or from a supporting component, like the JVM, operating system, or
hardware. The Identity Data Sync provides tools to diagnose any problems quickly to determine
the underlying cause and the best course of action to take towards a resolution.

This chapter provides information on how to perform this analysis to help ensure that the
problem is resolved as quickly as possible. It targets cases in which the Identity Data Sync
is running on Solaris or Linux systems, but much of the information can be useful on other
platforms.

This chapter presents the following information:

Topics:

• About Synchronization Troubleshooting
• About the Troubleshooting Tools
• Troubleshooting Process Flow
• Using the Sync Log
• Troubeshooting Sync Failures
• Problems with the Management Console: JVM Memory Issues
• Working with the Collect Support Data Tool

Troubleshooting the Identity Data Sync

280

About Synchronization Troubleshooting

The majority of synchronization problems involve issues around the connection state of the
external servers and the synchronization of the data between the two endpoints. Administrators
should check if the Identity Data Sync properly failed over to another endpoint instance if the
connection was down on the highest priority external server. Further, if the main Identity Data
Sync is down for any reason, administrators should check if the Synchronization Server properly
failed over to another Identity Data Sync instance.

When troubleshooting synchronization information, administrators must determine if the DN
and attribute mappings were properly configured and if the information is properly being
synchronized across the network. Typical scenarios involve checking for any entry sync failures
and mapping issues.

About the Troubleshooting Tools

The Identity Data Sync provides utilities to troubleshoot the synchronization state of your server
and to locate the causes of any problems that have occurred. The following tools are available
for diagnosing any problems and are located in the <server-root>/bin directory on UNIX or
Linux systems, or the <server-root>/bat directory on Windows systems:

Table 23: Troubleshooting Tools

Tool Description

status The status tool provides a high-level view of the current operational state of the Identity
Data Sync and displays any recent alerts that have occurred in past 24 hours. You can specify
the --pipe-name argument to restrict the output to a specific sync pipe.

ldap-diff The ldap-diff tool can be used to compare one or more entries across two server end-
points to determine any data sync issues.

ldapsearch
The ldapsearch tool is used to get the full entries from two different servers if you want to
review the exact content of an entry from each server.

logs
The logs directory provides important logs that should be used to troubleshoot or monitor any
issue with the Identity Data Sync:

➢ Sync log provides information about the synchronization operations that occur within the
server. Specifically, the Sync Log records all changes applied, detected or failed; dropped
operations that were not synchronized; changes dropped due to being out of scope, or no
changes needed for synchronization. The log also shows the entries that were involved in
the synchronization process.

➢ Sync Failed Operations Log provides a list of synchronization operations that have failed
for any reason.

➢ Resync log provides summaries or details of synchronized entries and any missing entries
in the Sync Destination.

➢ Error log provides information about warnings, errors, or significant events that occur
within the server.

➢ Debug log can provide detailed information, if enabled, about processing performed by the
server, including any exceptions caught during processing, detailed information about data
read from or written to clients, and accesses to the underlying database.

➢ Access loggers provide information about LDAP operations processed within the server.
This log only applies to operations performed in the server. This includes configuration
changes, searches of monitor data, and bind operations for authenticating administrators
using the command-line tools and the UnboundID Sync Management console.

Troubleshooting the Identity Data Sync

281

Tool Description
For more information, see Managing Logging and Alerts.

resync The resync tool can be used to validate your sync classes and your data mappings from one
endpoint to another (DN or attribute maps). The tool provides a dry-run mode that sees what
could happen to data using an operation without actually affecting the data.

collect-support-data The collect-support-data tool is used to aggregate the results of various support
tools data for the UnboundID Support team to diagnose. For more information, see Working
with the Collect Support Data Tool.

Troubleshooting Process Flow

The general troubleshooting flow involves checking the status of the Identity Data Sync, and
then looking at the log files for information. The general flow is as follows:

1. Run Status. Run the status command to get the synchronization state information for your
synchronization network.

2. Check the Sync Log. Depending on the nature of the problem, check the sync log file to
diagnose any potential problems.

3. Check the Failed Operations Log. If you believe that the issue is data synchronization-
related, then check the logs/sync-failed-ops.log to look at the cause of an issue.

4. Check Identity Data Sync Error Logs. If the issue is a connectivity problem related to the
source or destination servers, check the Identity Data Sync error logs and the external server
error logs.

5. Check Endpoint Server Logs. Look at the access and error logs on the source and
destination servers.

6. Run Collect-Support-Data. If the Identity Data Sync is experiencing issues that require
assistance from your authorized support provider, then run the collect-support-data tool
right away while the server is up and running to gather as much information as possible.

Using the Sync Log

The Sync log, located in the logs directory (<server-root>/logs/sync), provides useful
troubleshooting information on the type of operation that was processed or completed. Most log
entries provide the following common elements in their messages:

Table 24: Sync Logs Elements

Sync Log Element Description

category Indicates the type of operation, which will always by SYNC.

severity
Indicates the severity type of the message: INFORMATION, MILD_WARNING,
SEVERE_WARNING, MILD_ERROR, SEVERE_ERROR, FATAL_ERROR, DEBUG, or
NOTICE.

msgID Specifies the unique ID number assigned to the message.

op Specifies the operation number specific to sync.

changeNumber Specifies the change number from the source server assigned to the modification.

replicationCSN Specifies the replication change sequence number from the source server.

replicaID Specifies the replica ID from the source server if there are multiple backend databases.

pipe Specifies the sync pipe that was used to sync this operation.

Troubleshooting the Identity Data Sync

282

Sync Log Element Description

msg Displays the result of the sync operation.

Sync Log Example 1

The following example displays an informational message that a modification to an entry was
detected on the source server.

$ tail -f logs/sync

[17/May/2010:15:46:19 -0500] category=SYNC severity=INFORMATION msgID=1893728293 op=14
changeNumber=15 replicationCSN=00000128A7E3C7D31E960000000F replicaID=7830 pipe="DS1 to
DS2" msg="Detected MODIFY of uid=user.993,ou=People,dc=example,dc=com at ldap://
server1.example.com:1389"

Sync Log Example 2

The next example shows a successful synchronization operation that resulted from a MODIFY
operation on the source server and synchronized to the destination server.

[18/May/2010:13:54:04 -0500] category=SYNC severity=INFORMATION msgID=1893728306
op=701 changeNumber=514663 replicationCSN=00000128ACC249A31E960007DA67 replicaID=7830
pipe="DS1 to DS2" class="DEFAULT" msg="Synchronized MODIFY of uid=user.698,ou=People,
dc=example,dc=com at ldap://server1.example.com:1389 by modifying entry uid=user.698,
ou=People,dc=example,dc=com at ldap://server3.example.com:3389"

Sync Log Example 3

The next example shows a failed synchronization operation on a MODIFY operation from the
source server that could not be synchronized on the destination server. The log displays the
LDIF-formatted modification that failed, which came from a schema violation that resulted from
an incorrect attribute mapping (telephoneNumber -> telephone) from the source to destination
server.

[18/May/2010:11:29:49 -0500] category=SYNC severity=SEVERE_WARNING msgID=1893859389
op=71831 changeNumber=485590 replicationCSN=00000128AC3DE8D51E96000768D6
replicaID=7830 pipe="DS1 to DS2" class="DEFAULT" msg="Detected MODIFY of
uid=user.941,ou=People,dc=example,dc=com at ldap://server1.example.com:1389, but
failed to apply this change because: Failed to modify entry uid=user.941,
ou=People,dc=example,dc=com on destination 'server3.example.com:3389'.
Cause: LDAPException(resultCode=65(object class violation), errorMessage='
Entry uid=user.941,ou=People,dc=example,dc=com cannot be modified because the
resulting entry would have violated the server schema: Entry uid=user.941,ou=People,
dc=example,dc=com violates the Directory Server schema configuration because it
includes attribute telephone which is not allowed by any of theobjectclasses
defined in that entry') (id=1893859386 ResourceOperationFailedException.java:125
Build revision=6226). Details: Source change detail:

dn: uid=user.941,ou=People,dc=example,dc=com
changetype: modify
replace: telephoneNumber
telephoneNumber: 027167170433915
-
replace: modifiersName
modifiersName: cn=Directory Manager,cn=Root DNs,cn=config
-
replace: modifyTimestamp
modifyTimestamp: 20131010020345.546Z
 Equivalent destination changes:
dn: uid=user.941,ou=People,dc=example,dc=com
changetype: modify
replace: telephone

Troubleshooting the Identity Data Sync

283

telephone: 818002279103216
 Full source entry:
dn: uid=user.941,ou=People,dc=example,dc=com
objectClass: person
... (more output)
Mapped destination entry:
dn: uid=user.941,ou=People,dc=example,dc=com
telephone: 818002279103216
objectClass: person
objectClass: inetOrgPerson
... (more output) ...

Troubeshooting Sync Failures

While many Identity Data Sync issues are deployment-related and are directly affected by the
hardware, software, and network structure used in the synchronization topology, most sync
failures usually fall into one of three categories:

• Entry Already Exists. Indicates that when an add operation was attempted on the
destination server, an entry with the same DN already exists.

• No Match Found. Indicates that a match was not found at the destination based on the
current sync classes and correlation rules (i.e., DN and attribute mapping). When this value
has a high count, it is likely that there were correlation rule problems. For example, use bin/
status and look for "No Match Found".

• Failure at Resource. Indicates that some other error happened during the sync process that
does not fall into the above categories. Typically, these errors are communication problems
with a source or destination server.

Statistics for these and numerous other types of errors are kept under the cn=monitor branch and
can be viewed directly using the status command.

Troubleshooting "Entry Already Exists" Failures

The status utility provides a comprehensive view of your synchronization network and displays
the operation statistics to diagnose any potential problems with the Identity Data Sync or the
external servers. If you see that there is a count for the Entry Already Exists statistic using the
status tool, then verify the problem in the sync log. For example, the status tool displays the
following information:

 --- Ops Completed for 'DS1 to DS2' Sync Pipe ---
Op Result : Count
-----------------------:------
Success : 0
Out Of Scope : 0
Op Type Not Synced : 0
No Change Needed : 0
Entry Already Exists : 1
No Match Found : 1
Multiple Matches Found : 0
Failed During Mapping : 0
Failed At Resource : 0
Unexpected Exception : 0
Total : 2

Then verify the change by viewing the <server-root>/logs/sync file to see the specific operation,
which could be due to someone manually adding the entry on the target server:

Troubleshooting the Identity Data Sync

284

[18/May/2010:15:14:30 -0500] category=SYNC severity=SEVERE_WARNING msgID=1893859372
op=2 changeNumber=529277 replicationCSN=00000128AD0D9BA01E960008137D replicaID=7830
pipe="DS1 to DS2" class="DEFAULT" msg="Detected ADD of uid=user.1001,ou=People,
dc=example,dc=com at ldap://server1.example.com:1389, but cannot create this entry
at the destination because an equivalent entry already exists at ldap://server3.
example.com:3389. Details: Search using [search-criteria dn: uid=user.1001,ou=People,
dc=example,dc=com attrsToGet: [*, dn]] returned results; [uid=user.1001,ou=People,
dc=example,dc=com]. "

However, in the following example, a client attempted a MODIFY operation on an entry
(uid=1234) on the source server, but the Identity Data Sync could not find the entry on the
destination server when it ran an initial search. The Identity Data Sync then changed the
MODIFY request to an ADD operation request to add the entry to the destination server. The
ADD operation subsequently failed because an entry with the same DN already existed on
the target server. In a case like this, the main problem could be due to an incorrectly-formed
correlation rule (DN mapping) defined in the Sync Class used in the Sync Pipe.

[12/May/2010:00:00:53 -0500] category=SYNC severity=SEVERE_WARNING msgID=1893859389
op=2827888 changeNumber=5317162 replicationCSN=4bea4af3000b21140000 replic-
aID=8468,dc=example,dc=com pipe="DS1 to DS2" class=”FullSync" msg="Detected MODIFY of
uid=1234,ou=People,dc=example,dc=com at ldap://server1.example.com:389, but failed to
apply this change because: Failed to create entry uid=1234,ou=People,dc=example,
dc=com on destination ’server1:389'. Cause: LDAPException(resultCode=entry already
exists, errorMessage='The entry uid=1234,ou=People,dc=dest,dc=com cannot be added
because an entry with that name already exists') (id=1893859385)”

To Troubleshoot an "Entry Already Exists" Problem

1. Assuming that a possible DN mapping is ill-formed, you should first run the ldap-diff utility
to compare the entries on the source and destination servers. Then look at the ldap-diff
results with your mapping rules to see why the original search did not find a match.

$ bin/ldap-diff \
--outputLDIF config-difference.ldif \
--baseDN "dc=example,dc=com" \
--sourceHost server1.example.com \
--targetHost server2.example.com \
--sourcePort 1389 \
--targetPort 3389 \
--sourceBindDN "cn=Directory Manager" \
--sourceBindPassword password \
--searchFilter "(uid=1234)"

2. Next, look at the destination server access logs to verify the search and filters it used to find
the entry. Typically, you will find that your key correlation attributes are out-of-sync, which
is why the search failed.

3. If the mapping rule attributes are out-of-sync, then you need to determine why that happened.
Review your sync classes and mapping rules, and use the information from the ldap-diff
results to determine why a specific attribute may not be getting updated. Some questions to
answer are as follows:

• Do you have more than one sync class that the operation could be matched with?

• If you use an "include-base-dn" or "include-filter" in your mapping rules, does this
exclude this operation by mistake?

• If you use an attribute map, are your mappings correct? Usually, the cause in these type of
messages are the destination mapping attribute settings. For example, if you define a set
of correlation attributes as follows: dn, mobile, accountNumber. And the accountNumber

Troubleshooting the Identity Data Sync

285

changes for some reason, this will cause future operations on this entry to fail. To resolve
this, you would either remove accountNumber from the rule, or add a second rule as
follows: dn, mobile. The second rule will only be used if the search using the first set of
attributes fails. In this case, the entry will be found and the accountNumber information
will also be updated.

4. If you have deletes being synced, check to see if there was a previous delete of this entry that
did not sync properly. In some cases, you will have to use simpler logic for deletes than other
operations due to the available attributes in the change logs. This scenario could cause an
entry to not be deleted for some reason, which would cause an issue when a new entry with
the same DN is added later. You can then use this information with your mapping rules to
see why the original search did not find a match.

5. Look at the destination directory server access logs to verify the search and filters it used to
find the entry. Typically, you will find that your key attribute mappings are out-of-sync.

Troubleshooting "No Match Found" Failures

If you see that there is a count for the No Match Found statistic using the status tool,
then verify the problem in the sync log. For example, the status tool displays the following
information:

--- Ops Completed for 'DS1 to DS2' Sync Pipe ---
Op Result : Count
-----------------------:------
Success : 0
Out Of Scope : 0
Op Type Not Synced : 0
No Change Needed : 0
Entry Already Exists : 1
No Match Found : 1
Multiple Matches Found : 0
Failed During Mapping : 0
Failed At Resource : 0
Unexpected Exception : 0
Total : 2

Then verify the change by viewing the <server-root>/logs/sync file to see the specific
operation:

[12/May/2010:10:30:45 -0500] category=SYNC severity=MILD_WARNING msgID=1893793952
op=4159648 changeNumber=6648922 replicationCSN=4beadaf4002f21150000 replicaID=8469-
ou=test,dc=example,dc=com pipe="DS1 to DS2" class="Others" msg="Detected DELETE of
'uid=1234,ou=test,dc=example,dc=com' at ldap://server1.example.com:389, but cannot
DELETE this entry at the destination because no matching entries were found at ldap://
server2.example.com:389. Details: Search using [search-criteria dn:
uid=1234,ou=test,dc=alu,dc=com filter: (nsUniqueId=3a324c60-5ddb11df-80ffe681-
717b93af) attrsToGet: [*, accountNumber, dn, entryuuid, mobile, nsUniqueId, object-
Class]] returned no results."

To Troubleshoot "No Match Found" Failures

1. First, test the search using the filter in the error message if displayed. For example, the sync
log specifies "filter: (nsUniqueId=3a324c60-5ddb11df-80ffe681-717b93af)". Use the
ldapsearch tool to test the filter. Did this succeed? If yes, can you see anything in the your
attribute mappings that would exclude this from working properly?

Troubleshooting the Identity Data Sync

286

2. Next, test the search using the full DN as the base. For example, use ldapsearch with the full
DN (uid=1234,ou=People,dc=example,dc=com). Did this succeed? If yes, then does the
entry contain the attribute used in the mapping rule?

3. If the attribute is not in the entry, then determine if there is a reason why this attribute value
was not synced in the first place. Look at the attribute mappings and the filters used in the
sync classes.

Troubleshooting "Failed at Resource" Failures

If you see that there is a count for the "Failed at Resource" statistic using the status tool,
then verify the problem in the sync log. For example, the status tool displays the following
information:

--- Ops Completed for 'DS1 to DS2' Sync Pipe ---
Op Result : Count
-----------------------:------
Success : 0
Out Of Scope : 0
Op Type Not Synced : 0
No Change Needed : 0
Entry Already Exists : 0
No Match Found : 0
Multiple Matches Found : 0
Failed During Mapping : 0
Failed At Resource : 1
Unexpected Exception : 0
Total : 1

You will see this stat after a change has been detected at the source in any of the following
cases:

• If the fetch of the full source entry fails. In this case, the entry exists but there is a connection
failure, server down, timeout, etc.

• If the fetch of the destination entry fails or if the modification to the destination fails for an
exceptional reason (but not for cases "Entry Already Exists," "Multiple Matches Found," "No
Match Found").

Verify the change by viewing the <server-root>/logs/sync file to see the specific operation.
If you see any of the following resultCodes, then your server is seeing timeout errors:

• resultCode=timeout: errorMessage=A client-side timeout was encountered while waiting
60000ms for a search response from server server1.example.com:1389

• resultCode=timeout: errorMessage=An I/O error occurred while trying to read the response
from the server

• resultCode=server down: errorMessage=An I/O error occurred while trying to read the
response from the server

• resultCode=server down: errorMessage=The connection to server
server1.example.com:1389 was closed while waiting for a response to search request
SearchRequest

Troubleshooting the Identity Data Sync

287

• resultCode=object class violation: errorMessage='Entry
device=1234,dc=example,dc=com violates the Directory Server schema configuration
because it contains undefined object class

To Troubleshoot "Failed at Resource" Failures

With the Failure at Destination timeout errors, you can look at the following settings in the
Identity Data Sync to see of they need adjustments:

1. For External Server Properties. Check the connect-timeout property. This property
specifies the maximum length of time to wait for a connection to be established before giving
up and considering the server unavailable.

2. For the Sync Destination/Sync Source Properties. Check the response-timeout property.
This property specifies the maximum length of time that an operation should be allowed to
be blocked while waiting for a response from the server. A value of zero indicates that there
should be no client-side timeout. In this case, the server’s default will be used.

$ bin/dsconfig --no-prompt --port 389 --bindDN "cn=Directory Manager" \
--bindPassword password list-external-servers --property connect-timeout

External Server : Type : connect-timeout : response-timeout
-------------------------:--------------:-----------------:-----------------
server1.example.com:389 : sundsee-ds : 10 s : -
server2.example.com:389 : sundsee-ds : 10 s : -
server3.example.com:389 : unboundid-ds : 10 s : -
server4.example.com:389 : unboundid-ds : 10 s : -

3. For Sync Pipe Properties. Check the max-operation-attempts, retry-backoff-initial-
wait, retry-backoff-max-wait, retry-backoff-increase-by, retry-backoff-
percentage-increase. These Sync Pipe Properties provide tuning parameters that are used
in conjunction with the timeout settings. When a sync pipe experiences an error, then it will
use these settings to determine how often and quickly it will retry the operation.

$ bin/dsconfig --no-prompt list-sync-pipes \
--property max-operation-attempts --property retry-backoff-initial-wait \
--property retry-backoff-max-wait --property retry-backoff-increase-by \
--property retry-backoff-percentage-increase \
--port 389 --bindDN "cn=Directory Manager" --bindPassword password

Problems with the Management Console: JVM Memory
Issues

Console runs out of memory (PermGen). If you are running a Management Console for a
UnboundID Identity Data Store while also running a console for the UnboundID Identity Proxy
Management Console and an UnboundID Identity Data Sync Management Console, you may
see a Java PermGen error as follows:

Exception in thread "http-bio-8080-exec-7" java.lang.OutOfMemoryError: PermGen Space

For a servlet container, such as Tomcat, you can specify additional arguments to pass to
the JVM by creating a bin/setenv.sh file (or setenv.bat for Windows) that sets the

Troubleshooting the Identity Data Sync

288

CATALINA_OPTS variable. The startup.sh script will automatically pick this up. For
example:

#!/bin/bash
The following may be modified to change JVM memory arguments.
MAX_HEAP_SIZE=512m
MIN_HEAP_SIZE=$MAX_HEAP_SIZE
MAX_PERM_SIZE=256m

CATALINA_OPTS="-Xmx${MAX_HEAP_SIZE} -Xms${MIN_HEAP_SIZE} -XX:MaxPermSize=
${MAX_PERM_SIZE}"

Working with the Collect Support Data Tool

The Identity Data Sync provides a significant amount of information about its current state
including any problems that it has encountered during processing. If a problem occurs, the
first step is to run the collect-support-data tool in the bin directory. The tool aggregates
all relevant support files into a zip file that administrators can send to your authorized support
provider for analysis. The tool also runs data collector utilities, such as jps, jstack, and jstat
plus other diagnostic tools for Solaris and Linux machines, and bundles the results in the zip file.

The tool may only archive portions of certain log files to conserve space, so that the resulting
support archive does not exceed the typical size limits associated with e-mail attachments.

The data collected by the collect-support-data tool varies between systems. For example,
on Solaris Zone, configuration information is gathered using commands like zonename and
zoneadm. However, the tool always tries to get the same information across all systems for the
target Identity Data Sync. The data collected includes the configuration directory, summaries
and snippets from the logs directory, an LDIF of the monitor and RootDSE entries, and a list of
all files in the server root.

Server Commands Used in the Collect Support Data Tool

The following presents a summary of the data collectors that the collect-support-data tool
archives in zip format. If an error occurs during processing, you can re-run the specific data
collector command and send the results to your authorized support provider.

Table 25: Directory Server Commands Used in the Collect-Support-Data Tool

Data Collector Description

status Runs status -F to show the full version information of the Identity Data Sync (Unix,

Windows).

server-state Runs server-state to show the current state of the Identity Data Sync process

(Unix, Windows).

dsreplication status Runs dsreplication status to show the status of the replicated topology (Unix,

Windows). If the --noReplicationStatus option is used, the replication status

information is not collected.

Troubleshooting the Identity Data Sync

289

JDK Commands Used in the Collect-Support-Data Tool

Table 26: JDK Commands Used in the Collect-Support-Data Tool

Data Collector Description

jps Java Virtual Machine Process status tool. Reports information on the JVM (Solaris,
Linux, Windows, Mac OS).

jstack Java Virtual Machine Stack Trace. Prints the stack traces of threads for the Java process
(Solaris, Linux, Windows, Mac OS).

jstat Java Virtual Machine Statistics Monitoring Tool. Displays performance statistics for the
JVM (Solaris, Linux, Windows, Mac OS).

jinfo Displays the Java configuration information for the Java process (Solaris, Linux,
Windows, Mac OS).

Linux Commands Used in the collect-support-data Tool

Table 27: Linux Commands Used in the Collect-Support-Data Tool

Data Collector Description

tail Displays the last few lines of a file. Tails the /var/logs/messages directory.

uname Prints system, machine, and operating system information.

ps Prints a snapshot of the current active processes.

df Prints the amount of available disk space for filesystems in 1024-byte units.

cat Concatenates the following files and prints to standard output:

➢ /proc/cpuinfo

➢ /proc/meminfo

➢ /etc/hosts

➢ /etc/nsswitch.conf

➢ /etc/resolv.conf

netstat Prints the state of network interfaces, protocols, and the kernal routing table.

ifconfig Prints information on all interfaces.

uptime Prints the time the server has been up and active.

dmesg Prints the message buffer of the kernel.

vmstat Prints information about virtual memory statistics.

iostat Prints disk I/O and CPU utilization information.

mpstat Prints performance statistics for all logical processors.

pstack Prints an execution stack trace on an active processed specified by the pid.

top Prints a list of active processes and how much CPU and memory each process is using.

Solaris Commands Used in the collect-support-data Tool

Table 28: Solaris Commands Used in the Collect-Support-Data Tool

Data Collector Description

uname Prints system, machine, and operating system information.

ps Prints a snapshot of the current active processes.

zonename Prints the name of the current zone.

zoneadm Prints the name of the current configured in verbose mode.

Troubleshooting the Identity Data Sync

290

Data Collector Description

df Prints the amount of available disk space for filesystems in 1024-byte units.

zfs Prints basic ZFS information: dataset pool names, and their used, available, referenced,
and mountpoint properties.

zpool Print a zpool's status.

fmdump Prints the log files managed by the Solaris Fault Manager.

prtconf Prints the system configuration information.

iostat Prints disk I/O and CPU utilization information.

prtdiag Prints the system diagnostic information.

cat Concatenates the following files and prints to standard output:

➢ /proc/cpuinfo

➢ /proc/meminfo

➢ /etc/hosts

➢ /etc/nsswitch.conf

➢ /etc/resolv.conf

tail Displays the last few lines of a file. Tails the /var/logs/messages directory and
the /var/log/system.log directory.

netstat Prints the state of network interfaces, protocols, and the kernal routing table.

ifconfig Prints information on all interfaces.

uptime Prints the time the server has been up and active.

dmesg Prints the message buffer of the kernel.

patchadd Prints the patches added to the system if any (Solaris, not OpenSolaris).

vmstat Prints information about virtual memory statistics.

iostat Prints disk I/O and CPU utilization information.

mpstat Prints performance statistics for all logical processors.

pstack Prints an execution stack trace on an active processed specified by the pid.

prstat Prints resource usage.

AIX Commands Used in the collect-support-data Tool

Table 29: AIX Commands Used in the Collect-Support-Data Tool

Data Collector Description

ulimit Defines user and system resources.

uptime Prints the time the server has been up and active.

ps Prints a snapshot of the current active processes.

zonename Prints the name of the current zone.

cat Concatenates the following files and prints to standard output:

➢ /proc/cpuinfo

➢ /proc/meminfo

➢ /etc/hosts

➢ /etc/nsswitch.conf

➢ /etc/resolv.conf

vmstat Prints information about virtual memory statistics.

alog Prints the contents of the boot log file.

netstat Prints the state of network interfaces, protocols, and the kernal routing table.

ifconfig Prints information on all interfaces.

df Prints the amount of available disk space for filesystems in 1024-byte units.

sar Print the local activity of the server.

lparstat Prints logical partition information and statistics.

Troubleshooting the Identity Data Sync

291

Data Collector Description

vmo Prints the characteristics of one or more tunable parameters.

iostat Prints disk I/O and CPU utilization information.

mpstat Prints performance statistics for all logical processors.

MacOS Commands Used in the Collect Support Data Tool

Table 30: MacOS Commands Used in the Collect-Support-Data Tool

Data Collector Description

uname Prints system, machine, and operating system information.

uptime Prints the time the server has been up and active.

ps Prints a snapshot of the current active processes.

system_profiler Prints system hardware and software configuration.

vm_stat Prints machine virtual memory statistics.

tail Displays the last few lines of a file. Tails the /var/log/system.log directory.

netstat Prints the state of network interfaces, protocols, and the kernal routing table.

ifconfig Prints information on all interfaces.

df Prints the amount of available disk space for filesystems in 1024-byte units.

sample Profiles a process during an interval.

Available Tool Options

The collect-support-data tool has some important options that you should be aware of:

• --noLdap. Specifies that no effort should be made to collect any information over LDAP.
This option should only be used if the server is completely unresponsive or will not start and
only as a last resort.

• --pid {pid}. Specifies the ID of an additional process from which information is to be
collected. This option is useful for troubleshooting external server tools and can be specified
multiple times for each external server, respectively.

• --sequential. Use this option to diagnose “Out of Memory” errors. The tool collects data in
parallel to minimize the collection time necessary for some analysis utilities. This option
specifies that data collection should be run sequentially as opposed to in parallel. This action
has the effect of reducing the initial memory footprint of this tool at a cost of taking longer to
complete.

• --reportCount {count}. Specifies the number of reports generated for commands that
supports sampling (for example, vmstat, iostat, or mpstat). A value of 0 (zero) indicates
that no reports will be generated for these commands. If this option is not specified, it
defaults to 10.

• --reportInterval {interval}. Specifies the number of seconds between reports for commands
that support sampling (for example, mpstat). This option must have a value greater than 0
(zero). If this option is not specified, it default to 1.

• --maxJstacks {number}. Specifies the number of jstack samples to collect. If not specified,
the default number of samples collected is 10.

Troubleshooting the Identity Data Sync

292

• --collectExpensiveData. Specifies that data on expensive or long running processes be
collected. These processes are not collected by default, because they may impact the
performance of a running server.

• --comment {comment}. Provides the ability to submit any additional information about the
collected data set. The comment will be added to the generated archive as a README file.

• --includeBinaryFiles. Specifies that binary files be included in the archive collection. By
default, all binary files are automatically excluded in data collection.

• --adminPassword {adminPassword}. Specifies the global administrator password used to
obtain dsreplication status information.

• --adminPasswordFile {adminPasswordFile}. Specifies the file containing the password of
the global administrator used to obtain dsreplication status information.

To Run the Collect Support Data Tool

1. Go to the server root directory.

2. Use the collect-support-data tool. Make sure to include the host, port number, bind DN,
and bind password.

$ bin/collect-support-data --hostname 127.0.0.1 --port 389 \
 --bindDN "cn=Directory Manager" --bindPassword secret \
 --serverRoot /opt/UnboundID-Sync --pid 1234

3. Email the zip file to your Authorized Support Provider.

Command-Line Tools

293

Chapter

12 Command-Line Tools

The UnboundID Identity Data Sync provides a full suite of command-line tools necessary to
administer the server. The command-line tools are available in the bin directory for UNIX or
Linux systems and bat directory for Microsoft Windows systems.

This chapter presents the following topics:

Topics:

• Using the Help Option
• Available Command-Line Utilities
• Managing the tools.properties File
• Running Task-based Utilities

Command-Line Tools

294

Using the Help Option

Each command-line utility provides a description of the subcommands, arguments, and usage
examples needed to run the tool. You can view detailed argument options and examples by
typing --help with the command.

bin/dsconfig --help

For those utilities that support additional subcommands (for example, dsconfig), you can get a
list of the subcommands by typing --help-subcommands.

bin/dsconfig --help-subcommands

You can also get more detailed subcommand information by typing --help with the specific
subcommand.

bin/dsconfig list-log-publishers --help

Note: For detailed information and examples of the command-line tools, see
the UnboundID Identity Data Sync Command-Line Tool Reference.

Available Command-Line Utilities

The Identity Data Sync provides the following command-line utilities, which can be run directly
in interactive or non-interactive modes or can be included in scripts.

Table 31: Command-Line Utilities

Command-Line Tools Description

authrate Perform repeated authentications against an LDAP identity data store, where each

authentication consists of a search to find a user followed by a bind to verify the

credentials for that user.

backup Run full or incremental backups on one or more Identity Data Sync backends. This

utility also supports the use of a properties file to pass predefined command-line

arguments. See Managing the tools.properties File for more information.

base64 Encode raw data using the base64 algorithm or decode base64-encoded data

back to its raw representation.

collect-support-data Collect and package system information useful in troubleshooting problems. The

information is packaged as a ZIP archive that can be sent to a technical support

representative.

create-rc-script Create an Run Control (RC) script that may be used to start, stop, and restart the

Identity Data Sync on UNIX-based systems.

create-sync-pipe-config Create an initial Identity Data Sync configuration.

dsconfig View and edit the Identity Data Sync configuration.

dsframework Manage administrative server groups or the global administrative user accounts

that are used to configure servers within server groups.

Command-Line Tools

295

Command-Line Tools Description

dsjavaproperties Configure the JVM arguments used to run the Identity Data Sync and associated

tools. Before launching the command, edit the properties file located in config/

java.properties to specify the desired JVM options and JAVA_HOME.

dump-dns Obtain a listing of all of the DNs for all entries below a specified base DN in the

identity data store.

enter-lockdown-mode Request that the Identity Data Sync enter lockdown mode, during which it only

processes operations requested by users holding the lockdown-mode

privilege.

ldap-diff Compare the contents of two LDAP servers.

ldap-result-code Display and query LDAP result codes.

ldapcompare Perform LDAP compare operations in the Identity Data Sync.

ldapdelete Perform LDAP delete operations in the Identity Data Sync.

ldapmodify Perform LDAP modify, add, delete, and modify DN operations in the Identity Data

Sync.

ldappasswordmodify Perform LDAP password modify operations in the Identity Data Sync.

ldapsearch Perform LDAP search operations in the Identity Data Sync.

ldif-diff Compare the contents of two LDIF files, the output being an LDIF file needed to

bring the source file in sync with the target.

ldifmodify Apply a set of modify, add, and delete operations against data in an LDIF file.

ldifsearch Perform search operations against data in an LDIF file.

leave-lockdown-mode Request that the Identity Data Sync leave lockdown mode and resume normal

operation.

list-backends List the backends and base DNs configured in the Identity Data Sync.

make-ldif Generate LDIF data based on a definition in a template file.

manage-extension Install or update extension bundles. An extension bundle is a package of

extension(s) that utilize the Server SDK to extend the functionality of the

UnboundID Identity Data Sync. Extension bundles are installed from a zip archive

or file system directory. UnboundID Identity Data Sync will be restarted if running

to activate the extension(s).

manage-tasks Access information about pending, running, and completed tasks scheduled in the

Identity Data Sync.

modrate Perform repeated modifications against an LDAP identity data store.

move-subtree Move a subtree entries or a single entry from one server to another.

parallel-update Perform add, delete, modify, and modify DN operations concurrently using multiple

threads.

prepare-external-server Prepare an Identity Data Sync and a directory server for communication.

profile-viewer View information in data files captured by the Identity Data Sync profiler.

realtime-sync Control real-time synchronization including starting and stopping synchronization

globally or for individual Sync Pipes. You can also set the start point for real-time

synchronization so that changes made before a specified time are ignored.

remove-backup Safely remove a backup and optionally all of its dependent backups from the

specified Identity Data Sync backend.

remove-defunct-server Remove an Identity Data Sync from a topology. This tool is only used when an

Identity Data Sync has been permanently made unavailable since a server is

removed from its topology by the uninstall tool.

restore Restore a backup of the Identity Data Sync backend.

Command-Line Tools

296

Command-Line Tools Description

resync Resynchronize a Sync Destination with the contents of the Sync Pipe's

corresponding Sync Source.

revert-update Returns a server to the version before the last update was performed.

review-license Review and/or indicate your acceptance of the product license.

scramble-ldif Obscure the contents of a specified set of attributes in an LDIF file.

search-and-mod-rate Perform repeated searches against an LDAP identity data store and modify each

entry returned.

searchrate Perform repeated searches against an LDAP identity data store.

server-state View information about the current state of the Identity Data Sync process.

setup Perform the initial setup for the Identity Data Sync instance.

start-sync-server Start the Identity Data Sync.

status Display basic server information.

stop-sync-server Stop or restart the Identity Data Sync.

subtree-accessibility List or update the a set of subtree accessibility restrictions defined in the Identity

Data Store.

sum-file-sizes Calculate the sum of the sizes for a set of files.

summarize-config Generate a configuration summary of either a remote or local Identity Data Sync

instance. By default, only basic components and properties will be included. To

include advanced components, use the --advanced option.

translate-ldif Translates the contents of an LDIF file from the format for a Sync Source to the

format of the Sync Destination using the filtering and mapping criteria defined for

Sync Classes in the specified Sync Pipe.

uninstall Uninstall the Identity Data Sync.

update Update the Identity Data Sync to a newer version by downloading and unzipping

the new server install package on the same host as the server you wish to update.

Then, use the update tool from the new server package to update the older

version of the server. Before upgrading a server, you should ensure that it is

capable of starting without severe or fatal errors. During the update process, the

server is stopped if running, then the update performed, and a check is made to

determine if the newly updated server starts without major errors. If it cannot start

cleanly, the update will be backed out and the server returned to its prior state.

See the revert-update tool for information on reverting an update.

validate-ldif Validate the contents of an LDIF file against the server schema.

Managing the tools.properties File

The UnboundID Identity Data Sync supports the use of a tools properties file that simplifies
command-line invocations by reading in a set of arguments for each tool from a text file.
Each property is in the form of name/value pairs that define predetermined values for a tool’s
arguments. Properties files are convenient when quickly testing the Identity Data Sync in
multiple environments.

The Identity Data Sync supports two types of properties file: default properties files that can be
applied to all command-line utilities or tool-specific properties file that can be specified using

Command-Line Tools

297

the --propertiesFilePath option. You can override all of the Identity Data Sync's command-
line utilities with a properties file using the config/tools.properties file.

Creating a Tools Properties File

You can create a properties file with a text editor by specifying each argument, or option,
using standard Java properties file format (name=value). For example, you can create a simple
properties file that define a set of LDAP connection parameters as follows:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
bindPassword=secret
baseDN=dc=example,dc=com

Next, you can specify the location of the file using the --propertiesFilePath /path/to/
File option with the command-line tool. For example, if you save the previous properties file
as bin/mytool.properties, you can specify the path to the properties file with ldapsearch as
follows:

$ bin/ldapsearch --propertiesFilePath bin/mytools.properties "(objectclass=*)"

Properties files do not allow quotation marks of any kind around values. Any spaces or special
characters should be escaped. For example,

bindDN=cn=QA\ Managers,ou=groups,dc=example,dc=com

The following is not allowed as it contains quotation marks:

bindDN=cn="QA Managers,ou=groups,dc=example,dc=com"

Tool-Specific Properties

The Identity Data Sync also supports properties for specific tool options using the format:
tool.option=value. Tool-specific options have precedence over general options. For example,
the following properties file uses ldapsearch.port=2389 for ldapsearch requests by the client.
All other tools that use the properties file uses port=1389.

hostname=server1.example.com
port=1389
ldapsearch.port=2389
bindDN=cn=Directory\ Manager

Another example using the dsconfig configuration tool is as follows:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
dsconfig.bindPasswordFile=/ds/config/password

Note: The .bindPasswordFile property requires an absolute path. If
you were to specify ~/ds/config/password, where ~ refers to the home
directory, the server does not expand the ~ value when read from the
properties file.

Command-Line Tools

298

Specifying Default Properties Files

The Identity Data Sync provides a default properties files that apply to all command-line utilities
used in client requests. A default properties file, tools.properties, is located in the <server-
root>/config directory.

If you place a custom properties file that has a different filename as tools.properties in this
default location, you need to specify the path using the --propertiesFilePath option. If you
make changes to the tools.properties file, you do not need the --propertiesFilePath
option. See the examples in the next section.

Evaluation Order Summary

The Identity Data Sync uses the following evaluation ordering to determine options for a given
command-line utility:

• All options used with a utility on the command line takes precedence over any options in any
properties file.

• If the --propertiesFilePath option is used with no other options, the Identity Data Sync
takes its options from the specified properties file.

• If no options are used on the command line including the --propertiesFilePath option
(and --noPropertiesFile), the Identity Data Sync searches for the tools.properties file
at <server-root>

• If no default properties file is found and a required option is missing, the tool generates an
error.

• Tool-specific properties (for example, ldapsearch.port=3389) have precedence over
general properties (for example, port=1389).

Evaluation Order Example

Given the following properties file that is saved as <server-root>/bin/tools.properties:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
bindPassword=secret

The Identity Data Sync locates a command-line options in a specific priority order.

1. All options presented with the tool on the command line take precedence over any options
in any properties file. In the following example, the client request is run with the options
specified on the command line (port and baseDN). The command uses the bindDN and
bindPassword arguments specified in the properties file.

$ bin/ldapsearch --port 2389 --baseDN ou=People,dc=example,dc=com \
 --propertiesFilePath bin/tools.properties “(objectclass=*)”

Command-Line Tools

299

2. Next, if you specify the properties file using the --propertiesFilePath option and no other
command-line options, the Identity Data Sync uses the specified properties file as follows:

$ bin/ldapsearch --propertiesFilePath bin/tools.properties \
 “(objectclass=*)”

3. If no options are presented with the tool on the command line and the --noPropertiesFile
option is not present, the Identity Data Sync attempts to locate any default
tools.properties file in the following location:

<server-root>/config/tools.properties

Assume that you move your tools.properties file from <server-root>/bin to the <server-
root>/config directory. You can then run your tools as follows:

$ bin/ldapsearch "(objectclass=*)"

The Identity Data Sync can be configured so that it does not search for any properties file
by using the --noPropertiesFile option. This options tells the Identity Data Sync to use
only those options specified on the command line. The --propertiesFilePath and --
noPropertiesFile options are mutually exclusive and cannot be used together.

4. If no default tools.properties file is found and no options are specified with the
command-line tool, then the tool generates an error for any missing arguments.

Running Task-based Utilities

The Identity Data Sync has a Tasks subsystem that allows you to schedule basic operations, such
as backup, restore, bin/start-sync-server, bin/start-sync-server and others. All task-based utilities
require the --task option that explicitly indicates the utility is intended to run as a task rather
than in offline mode. The following table shows the arguments that can be used for task-based
operations:

Table 32: Task-based Utilities

Option Description

--task Indicates that the tool is invoked as a task. The --task argument is required. If a

tool is invoked as a task without this --task argument, then a warning message

will be displayed stating that it must be used. If the --task argument is provided

but the tool was not given the appropriate set of authentication arguments to the

server, then an error message will be displayed and the tool will exit with an error.

--start Indicates the date and time, expressed in the format 'YYYYMMDDhhmmss',

when the operation starts when scheduled as a server task. A value of '0' causes

the task to be scheduled for immediate execution. When this option is used, the

operation is scheduled to start at the specified time, after which this utility will exit

immediately.

--dependency Specifies the ID of a task upon which this task depends. A task will not start

execution until all its dependencies have completed execution. This option can be

used multiple times in a single command.

--failedDependencyAction Specifies the action this task will take should one of its dependent tasks fail.

The value must be one of the following: PROCESS, CANCEL, DISABLE. If not

specified, the default value is CANCEL. This option can be used multiple times in a

single command.

Command-Line Tools

300

Option Description

--completionNotify Specifies the email address of a recipient to be notified when the task completes.

This option can be used multiple times in a single command.

--errorNotify Specifies the email address of a recipient to be notified if an error occurs when this

task executes. This option can be used multiple times in a single command.

	Contents
	Copyright
	Preface
	Purpose of This Guide
	Audience
	Related Documentation
	Document Conventions

	Introduction
	Overview of the Identity Data Sync
	The Synchronization Problem
	The UnboundID Advantage
	Common Synchronization Use Cases
	Use Case: Synchronization during Directory Server Migrations
	Advanced Replication
	Fractional Replication
	Local Data Replication
	Filtered Replication
	Subtree Replication
	Advanced Replication Combinations

	Use Case: Synchronization with Active Directory
	Use Case: Synchronizing Realistic Test Environments
	Use Case: Synchronizing with Relational Databases
	Use Case: Synchronizing through Proxy Servers

	Identity Data Sync: How It Works
	Point-to-Point Bidirectional Synchronization
	Synchronization Architecture
	Change Tracking
	Monitoring and Alerts
	Logging

	Synchronization Modes of Operation
	Standard Synchronization Mode
	Notification Synchronization Mode

	Sync Operations
	Data Transformations
	Resync
	Real-Time Synchronization
	About the Sync Retry Mechanism

	Configuration Model
	Sync Control Flow Scenarios
	A Synchronization Example
	Available Tools Summary
	Summary

	Installing the Identity Data Sync
	Before You Begin
	Tuning Considerations
	Supported Operating Platforms
	Software Requirements: Java
	Install dstat (SUSE Linux)

	About the RPM Package
	To Install the RPM Package

	About the Server Installation Modes
	Installing the UnboundID Identity Data Sync in Interactive Mode
	To Install the Identity Data Sync in Interactive Mode

	Installing the UnboundID Identity Data Sync in Non-Interactive Mode
	To Install the Identity Data Sync in Non-Interactive Mode

	Installing the Identity Data Sync with a Truststore in Non-Interactive Mode
	To Install the Identity Data Sync with a Truststore in Non-Interactive Mode

	Running the Server
	To Start the Identity Data Sync
	To Start the Identity Data Sync with Global Sync Disabled
	To Run the Server as a Foreground Process
	To Start the Server at Boot Time

	Stopping the Identity Data Sync
	To Stop the Server
	To Schedule a Server Shutdown
	To Restart the Server
	To Restart the Identity Data Sync using an Internal Restart

	Uninstalling the Server
	To Uninstall the Server in Interactive Mode
	To Uninstall the Server in Non-Interactive Mode
	To Uninstall Selected Components in Non-Interactive Mode
	To Uninstall the RPM Build Package

	Installing the Management Console
	To Install the Management Console Out of the Box
	To Log into the Management Console
	To Uninstall the Management Console
	To Upgrade the Management Console

	Updating the Identity Data Sync
	To Update the Identity Proxy
	To Upgrade the RPM Package
	Reverting an Update
	To Revert to the Most Recent Server Version

	Installing a Redundant Failover Server
	To Install a Redundant Server

	Removing a Redundant Server
	To Remove a Redundant Server

	Configuring SSL in the Identity Data Sync
	To Configure SSL in the Identity Data Sync

	Configuring StartTLS
	To Configure StartTLS

	Configuring the Identity Data Sync
	Pre-Deployment Checklist
	External Servers
	Sync Pipes
	Sync Classes

	Creating Administrators
	To Create an Administrator

	About the Configuration Tools
	About the Sync User Account
	Configuring the Synchronzation Server in Standard Mode
	Assumptions
	Configuring the Synchronization using create-sync-pipe-config
	To Configure the Identity Data Sync using create-sync-pipe-config
	Prepare the External Servers
	Configure the Sync Pipes and its Sync Classes
	Review the Configuration and Apply the Changes
	Configure the Attribute Map and Mapping
	Configure Server Locations
	Complete the Bidirectional Deployment

	Configuring the Identity Data Sync Using the Management Console
	Configuring the External Servers Using the Management Console
	To Configure the External Servers

	Configuring the Sync Pipe Using the Management Console
	To Configure the Sync Pipe Using the Management Console

	Configuring the Sync Class Using the Management Console
	To Configure a Sync Class Using the Management Console

	Starting the Global Sync Configuration Using the Management Console
	To Start the Global Sync Configuration Using the Management Console

	About dsconfig Configuration Tool
	Using dsconfig in Interactive Command-Line Mode
	Using dsconfig Interactive Mode: Viewing Object Menus
	To Change the dsconfig Object Menu

	Using dsconfig in Non-Interactive Mode
	To Get the Equivalent dsconfig Non-Interactive Mode Command

	Using dsconfig Batch Mode

	Configuring the Identity Data Sync Using dsconfig
	To Configure the Identity Data Sync Using dsconfig Interactive
	Configuring Server Groups Using dsconfig Interactive
	To Configure Server Groups

	Configuring External Servers Using dsconfig Interactive
	To Configure the External Servers Using dsconfig Interactive

	Configuring the Sync Source Using dsconfig Interactive
	To Configure the Sync Source Using dsconfig Interactive

	Configuring the Sync Destination Using dsconfig Interactive
	To Configure the Sync Destination Using dsconfig Interactive

	Configuring a Sync Pipe Using dsconfig Interactive
	To Configure a Sync Pipe Using dsconfig Interactive

	Configuring the Sync Class Using dsconfig Interactive
	To Configure a Sync Class for each Sync Pipe

	Starting the Global Sync Configuration Using dsconfig Interactive
	To Start the Global Sync Configuration

	Generating a Summary of Configuration Components
	To Generate a Summary of Configuration Components

	Preparing the Identity Data Sync for External Server Communication
	To Prepare the Identity Data Sync for External Server Communication

	Preparing External Servers: If the Admin Does Not Have Root Access on DSEE External Servers
	To Set Up the DSEE External Servers

	Using Resync on the Identity Data Sync
	Testing Attribute and DN Maps Using Resync
	To Test Attribute and DN Maps Using Resync

	Verifying the Synchronization Configuration Using Resync
	To Verify the Synchronization Configuration Using Resync

	Populating an Empty Sync Destination Topology Using Resync
	To Populate an Empty Sync Destination Topology Using Resync

	Populating an Empty Sync Destination Topology Using translate-ldif
	To Populate an Empty Sync Destination Topology Using translate-ldif

	Setting the Synchronization Rate Using Resync
	To Set the Synchronization Rate Using Resync

	Synchronizing a Specific List of DNs
	To Synchronize a Specific List of DNs

	Controlling Real Time Synchronization
	About the Realtime-Sync Tool
	Starting Real Time Synchronization Globally
	To Start Real Time Synchronization Globally

	Pausing Synchronization
	To Stop Real Time Synchronization Globally
	To Stop an Individual Sync Pipe

	Setting Startpoints
	To Set a Synchronization Startpoint
	To Restart the Sync at a Specific Change Log Event
	To Rewind the Sync State by a Specific Time Duration

	Scheduling a Realtime Sync as a Task
	To Schedule a Realtime Sync as a Task

	Configuring Attribute Maps
	Configuring an Attribute Map Using dsconfig Interactive
	To Configure an Attribute Map Using dsconfig Interactive

	Configuring an Attribute Mapping Using dsconfig Interactive
	To Configure an Attribute Mapping Using dsconfig Interactice

	Configuring an Attribute Mapping Using dsconfig Non-Interactive
	To Configure an Attribute Mapping Using dsconfig Non-Interactive

	Configuring the Directory Server Backend for Synchronizing Deletes
	To Configure the Changelog-Deleted-Entry-Include-Attribute Property
	To Synchronize Deletes on Sun DSEE Endpoints

	Configuring DN Maps
	Configuring a DN Map Using dsconfig Interactive
	To Configure a DN Map Using dsconfig Interactive

	Configuring a DN Map Using dsconfig Non-Interactive
	To Configure a DN Map Using dsconfig Non-Interactive

	Configuring Fractional Replication
	To Configure Fractional Replication

	Managing Failover Behavior
	Conditions that Trigger Immediate Failover
	Failover Server Preference
	Configuration Properties that Control Failover Behavior
	max-operation-attempts
	To Change the max-operation-attempts Property

	response-timeout
	To Change the response-timeout Property

	max-failover-error-code-frequency
	To Change the max-failover-error-code-frequency Property

	max-backtrack-replication-latency
	To Change the max-backtrack-replication-latency Property

	About the Server SDK
	To Run the Manage-Extension Tool

	Syncing with Active Directory Systems
	Before You Begin
	Configuring Active Directory Synchronization
	To Configure Active Directory Synchronization
	To Prepare the External Servers
	To Configure the Sync Pipes and its Sync Classes
	To Configure the Password Encryption Component

	Installing the UnboundID Password Sync Agent
	Supported Platforms
	Before You Install the Password Sync Agent
	To Install the Password Sync Agent
	To Upgrade the Password Sync Agent (restart optional)
	To Uninstall the Password Sync Agent
	Manual Configuration for Advanced Users

	Syncing with Relational Databases
	Overview
	About the Server SDK
	About the DBSync Process
	About the DBSync Example
	Example DS Entries

	About the Overall DBSync Configuration Process
	Downloading the Software Packages
	Creating the JDBC Extension
	About Groovy
	Implementing a JDBC Sync Source
	Implementing a JDBC Sync Destination

	Configuring the Database for Synchronization
	Pre-Configuration Checklist
	General Tips When Syncing to a Database Destination
	Configuring the Directory-to-Database Sync Pipe
	Step 1. Creating the Directory-to-Database Sync Pipe
	To Configure the Sync Source
	To Configure the Destination Endpoint Server

	Step 2. Configuring the Sync Pipe and Sync Classes
	To Configure the Sync Pipe and Sync Classes
	To Configure the Accounts Sync Class
	To Configure the Groups Sync Class

	Step 3. Fine-Tuning the Sync Classes
	To Fine-Tune the Accounts Sync Class
	To Configure an Attribute Map
	To Configure a DN Map
	To Configure the Ignore-Zero-Length-Values Property
	To Fine-Tune the Groups Sync Class

	Step 4. Configuring the Attribute Mappings
	To Create the Attribute Mapping

	Step 5. Run the Resync Tool to Test the Configuration
	To Run Resync to Test the Configuration

	Step 6. Set the Startpoint in the Change Log
	To Set the Startpoint

	Step 7. Run the Resync Tool to Populate Data at the Destination Endpoint
	To Run the Resync Tool to Populate Data onto a Target Server

	Step 8. Start the Sync Pipe
	To Start the Sync Pipe

	Step 9. Debugging the Configuration
	Check the Status
	Check the Logs
	Scripted Logging Methods
	Testing One Entry at a Time
	When to Restart the Sync Pipe
	Contact Your Support Provider

	General Tips When Syncing from a Database Source
	Configuring the Database-to-Directory Sync Pipe
	To Create the Database-to-Directory Sync Pipe

	Synchronizing a Specific List of Database Elements Using Resync
	To Synchronize a Specific List of Database Elements Using Resync

	Syncing Through Proxy Servers
	Features
	How It Works
	About the Get Changelog Batch Request and Get Server ID Controls
	About the Directory Server and Directory Proxy Server Tokens
	Change Log Tracking in Entry-Balancing Deployments

	About the Overall Sync-through-Proxy Configuration Process
	About the Sync-Through-Proxy Configuration Example
	Configuring the Example Source Proxy Deployment
	Configuring the Directory Servers
	To Configure the Directory Servers
	To Configure the Directory Proxy Servers

	Configuring the Example Destination Proxy Deployment
	To Configure the Identity Data Sync
	To Confirm the Proxy Server and Use-Changelog-Batch-Request Properties
	To Run Prepare-External-Server on the Backend Set of Directory Servers
	To Test and Start the Configuration

	Indexing the LDAP Changelog
	To Configure Changelog Indexing

	A Special Note about Syncing Changes using the Get Changelog Batch Request

	Configuring Notification Mode
	About Notification Mode
	Notification Mode Architecture
	Sync Source Requirements
	Failover Capabilities
	Standard Administration and Monitoring Capabilities
	Notification Sync Pipe Change Flow

	About the Notification Mode Configuration
	Create-Sync-Pipe-Config
	No Resync
	LDAP Change Log Features Required for Notifications
	changelog-include-key-attribute
	changelog-max-before-after-values
	LDAP Change Log for Notifications and Standard Mode

	About the Server SDK and LDAP SDK
	Server SDK Updates
	LDAP SDK Updates

	Important Design Questions
	Implementing the Custom Server Extension
	General Tips When Implementing Your Extension

	Configuring the Notification Sync Pipe
	General Tips When Configuring Your Sync Classes
	Step 1. Creating the Notification Sync Pipe
	Before You Begin
	To Create a Sync Pipe in Notification Mode
	To Configure the Sync Source
	To Configure the Destination Endpoint Server

	Step 2. Configuring the Sync Pipe and Sync Classes
	To Configure the Sync Pipe
	To Configure the Sync Class

	Step 3. Configure Attribute and DN Mappings
	Step 4. Configure Advanced Properties
	Step 5. Set the Startpoint in the Change Log
	To Set the Startpoint

	Step 6. Start the Sync Pipe
	To Start the Sync Pipe

	Step 7. Debugging the Configuration
	Check the Status
	Check the Logs
	Check the Alerts
	When to Restart the Sync Pipe

	Access Control Filtering on the Sync Pipe
	Important Points about Access Control Filtering
	To Configure the Sync Pipe to Filter Changes by Access Control Instructions

	Contact Your Support Provider

	Configuring Synchronization with SCIM
	About Synchronizing with a SCIM Sync Destination
	Overview of SCIM Destination Configuration Objects
	Tips for Syncing to a SCIM Destination
	Renaming a SCIM Resource
	Password Considerations with SCIM

	Configuring Synchronization with SCIM
	Configuring the External Servers
	To Configure the External Servers

	Configuring the Directory Server Sync Source
	To Configure the Directory Server Sync Source

	Configuring the SCIM Sync Destination
	To Configure the SCIM Sync Destination

	Configuring the Sync Pipe, Sync Classes, and Evaluation Order
	To Configure the SCIM Sync Pipe
	To Configure the SCIM Sync Classes
	To Set the Evaluation Order Index

	Setting Up Communication with the Source Server(s)
	To Set Up Communication with the Source Server(s)

	Starting the Sync Pipe
	To Start and Manage the SCIM Sync Pipe

	Mapping LDAP Schema to SCIM Resource Schema
	About the <resource> Element
	About the <attribute> Element
	About the <simple> Element
	About the <complex> Element
	About the <simpleMultiValued> Element
	About the <complexMultiValued> Element
	About the <subAttribute> Element
	About the <canonicalValue> Element
	About the <mapping> Element
	About the <subMapping> Element
	About the <LDAPSearch> Element
	About the <resourceIDMapping> Element
	About the <LDAPAdd> Element
	About the <fixedAttribute> Element

	Managing Logging and Alerts
	Working with Logs
	Types of Log Publishers

	Default Identity Data Sync Logs
	Viewing the List of Log Publishers
	To View the List of Log Publishers

	Sync Log Message Types
	Creating New Log Publishers
	To Create a New Log Publisher
	To Create a Log Publisher Using dsconfig Interactive Command-Line Mode

	About Log Compression
	About Log Signing
	To Configure Log Signing
	To Validate a Signed File

	Configuring Log Rotation
	To Configure the Log Rotation Policy

	Configuring Log Retention
	To Configure the Log Retention Policy

	Working with Alarms, Alerts, and Gauges
	To View Information in the Alarms Backend
	To Test Alarms and Alerts

	Working with Administrative Alert Handlers
	Configuring the JMX Connection Handler and Alert Handler
	To Configure the JMX Connection Handler
	To Configure the JMX Alert Handler

	Configuring the SNMP Subagent Alert Handler
	To Configure the SNMP Subagent Alert Handler

	Running the Status Tool
	To Run the Status Tool
	To Search for a Specific Status Monitor

	Monitoring the Identity Data Sync
	Monitoring Using SNMP
	SNMP Implementation
	Configuring SNMP
	To Configure SNMP

	Configuring SNMP on AIX
	SNMP on AIX Security Considerations

	MIBS

	Managing Security
	Summary of the UnboundID Identity Data Sync Security Features
	Identity Data Sync SSL and StartTLS Support
	LDAP-over-SSL (LDAPS)
	StartTLS Support

	Managing Certificates
	Authentication Using Certificates
	Creating Server Certificates using Keytool
	To Create a Server Certificate using Keytool

	Client Certificates
	Creating PKCS#12 Certificates
	To Generate PKCS#12 Certificates using Keytool
	To Export a Certificate from an NSS Database in PKCS#12 Format

	Working with PKCS#11 Tokens

	Configuring the Key and Trust Manager Providers
	Configuring the JKS Key and Trust Manager Provider
	To Configure the JKS Key Manager Provider

	Configuring the PKCS#12 Key Manager Provider
	To Configure the PKCS#12 Key Manager Provider

	Configuring the PKCS#11 Key Manager Provider
	To Configure the PKCS#11 Key Manager Provider

	Configuring the Blind Trust Manager Provider
	To Configure the Blind Trust Manager Provider

	Configuring SSL in the Identity Data Sync
	To Configure SSL in the Identity Data Sync

	Configuring StartTLS
	To Configure StartTLS

	Authentication Mechanisms
	Simple Authentication

	Working with SASL Authentication
	Working with the SASL ANONYMOUS Mechanism
	To Configure SASL ANONYMOUS

	Working with the SASL PLAIN Mechanism
	To Configure SASL PLAIN

	Working with the SASL CRAM-MD5 Mechanism
	To Configure SASL CRAM-MD5

	Working with the SASL DIGEST-MD5 Mechanism
	To Configure SASL DIGEST-MD5

	Working with the SASL EXTERNAL Mechanism
	To Configure SASL EXTERNAL

	Working with the GSSAPI Mechanism
	Preparing the Kerberos Environment for GSSAPI Authentication
	Configuring the GSSAPI SASL Mechanism Handler
	Testing GSSAPI Authentication

	Working with the UNBOUNDID-TOTP SASL Mechanism
	Notes about the UnboundID-TOTP SASL Mechanism
	To Configure UNBOUNDID-TOTP SASL

	Working with the UNBOUNDID-DELIVERED-OTP SASL
	To Configure the UNBOUNDID-DELIVERED OTP SASL

	Configuring Pass-Through Authentication
	To Configure Pass-Through Authentication

	Adding Operational Attributes that Restrict Authentication
	Configuring Certificate Mappers
	Configuring the Subject Equals DN Certificate Mapper
	To Configure the Subject Equals DN Certificate Mapper

	Configuring the Fingerprint Certificate Mapper
	To Configure the Fingerprint Certificate Mapper

	Configuring the Subject Attribute to User Attribute Certificate Mapper
	To Configure the Subject Attribute to User Attribute Certificate Mapper

	Configuring the Subject DN to User Attribute Certificate Mapper
	To Configure the Subject DN to User Attribute Certificate Mapper

	Troubleshooting the Identity Data Sync
	About Synchronization Troubleshooting
	About the Troubleshooting Tools
	Troubleshooting Process Flow
	Using the Sync Log
	Sync Log Example 1
	Sync Log Example 2
	Sync Log Example 3

	Troubeshooting Sync Failures
	Troubleshooting "Entry Already Exists" Failures
	To Troubleshoot an "Entry Already Exists" Problem

	Troubleshooting "No Match Found" Failures
	To Troubleshoot "No Match Found" Failures

	Troubleshooting "Failed at Resource" Failures
	To Troubleshoot "Failed at Resource" Failures

	Problems with the Management Console: JVM Memory Issues
	Working with the Collect Support Data Tool
	Server Commands Used in the Collect Support Data Tool
	JDK Commands Used in the Collect-Support-Data Tool
	Linux Commands Used in the collect-support-data Tool
	Solaris Commands Used in the collect-support-data Tool
	AIX Commands Used in the collect-support-data Tool
	MacOS Commands Used in the Collect Support Data Tool
	Available Tool Options
	To Run the Collect Support Data Tool

	Command-Line Tools
	Using the Help Option
	Available Command-Line Utilities
	Managing the tools.properties File
	Creating a Tools Properties File
	Tool-Specific Properties
	Specifying Default Properties Files
	Evaluation Order Summary
	Evaluation Order Example

	Running Task-based Utilities

	Index

