
Ping Identity® Data Metrics Server
Administration Guide

Version: 6.0.1.0

Copyright

Copyright © 2017 UnboundID Corporation

All rights reserved

This document constitutes an unpublished, copyrighted work and contains valuable trade
secrets and other confidential information belonging to UnboundID Corporation. None of the
foregoing material may be copied, duplicated, or disclosed to third parties without the express
written permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or
through such sites or resources. UnboundID will not be responsible or liable for any actual or
alleged damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such sites or
resources. UnboundID and the UnboundID Logo are trademarks or registered trademarks of
UnboundID Corp. in the United States and foreign countries. All other marks referenced are
those of their respective owners.

Table of Contents
Copyright i

Preface viii

Audience viii

Documentation Included with the Data Metrics Server viii

Metrics Reference Documentation ix

Related documentation ix

Chapter 1: Introduction 1

Data Metrics Server Overview 2

Data Metrics Server Components 2

Data Collection 2

Performance Data 3

System and Status Data 3

Charts and Dashboards 4

PostgreSQL DBMS Details 4

Chapter 2: Installing the Data Metrics Server 6

Supported Platforms 7

Install the JDK 7

Configure a Non-Root User 7

Optimize the Solaris Operating System 7

Restrict ZFS Memory Consumption 8

Limit ZFS Transaction Group Writes 8

Configure ZFS Access to Underlying Disks 8

Configure ZFS Compression 8

Optimize the Linux Operating System 8

Set the file descriptor limit 9

Set the filesystem flushes 10

Install sysstat and pstack on Red Hat 10

Install the dstat utility 10

Disable filesystem swapping 10

Manage system entropy 10

Enable the server to listen on privileged ports 10

Configure Servers to be Monitored 11

Disk Space Requirements and Monitoring Intervals 11

- ii -

Table of Contents

Tracked Applications 12

Install the Server 12

Log into the Administrative Console 15

Server folders and files 15

Add Monitored Servers to the Data Metrics Server 16

Using the monitored-servers Tool 17

Remove Monitored Servers 17

Start and Stop the Server 18

Start the Data Metrics Server as a Background Process 18

Start the Data Metrics Server as a Foreground Process 18

Start the Data Metrics Server at Boot Time 18

Stop the Data Metrics Server 19

Restart the Data Metrics Server 19

Uninstall the server 19

Administrative accounts 20

Change the administrative password 20

Chapter 3: Managing the Data Metrics Server 21

Data Metrics Server Error Logging 22

Logging Retention Policies 22

Logging Rotation Policies 22

Create Log Publishers 22

Error Log Publisher 23

Backend Monitor Entries 24

Disk Space Usage Monitor 26

Notifications and Alerts 26

Configure alert handlers 27

The Alerts Backend 27

View Information in the Alerts Backend 28

Modify the Alert Retention Time 28

Configure Duplicate Alert Suppression 29

System alarms, alerts, and gauges 29

Test alerts and alarms 30

Back Up the Data Metrics Server Database 31

- iii -

Historical Data Storage 32

Planning the Backup 32

Start the DBMS Backup 33

Restore a DBMS Backup 33

Management Tools 33

Available Command-Line Utilities 34

The tools.property File 35

Tool-Specific Properties 36

Specify Default Properties Files 36

Use the Configuration API 37

Authentication and authorization 37

Relationship between the Configuration API and the dsconfig tool 37

API paths 46

Sorting and filtering configuration objects 47

Update properties 47

Administrative actions 49

Update servers and server groups 50

Configuration API Responses 50

Domain Name Service (DNS) caching 51

IP address reverse name lookups 52

Configure traffic through a load balancer 52

Configure authentication with a SASL external certificate 53

Server SDK extensions 54

Chapter 4: Collecting Data and Metrics 56

Metrics Overview 57

Count Metrics 57

Continuous Metrics 57

Discrete Metrics 57

Dimensions 58

Query Overview 59

Select Query Data 60

Aggregate Query Results 60

Format Query Results 61

The query-metric Tool 61

Performance Data Collection 63

- iv -

Table of Contents

System Monitoring Data Collection 64

Stats Collector Plugin 64

System Utilization Monitors 65

External Collector Daemon 65

Server Clock Skew 65

Tune Data Collection 66

Reducing the Data Collected 66

Reducing the Frequency of Data Collection 66

Reducing the Frequency of Sample Block Creation 66

Reducing Data Metrics Server Impact on Performance 67

Data Processing 67

Importing Data 67

Aggregating Data 68

Monitoring for Service Level Agreements 68

SLA Thresholds 69

Threshold Time Line 71

Configure an SLA Object 71

Chapter 5: Configuring Charts and Dashboards 74

Available Dashboards 75

Customize the LDAP Dashboard 78

Debug Dashboard Customization 78

Preserve Customized Files 79

The Chart Builder Tool 79

Chart Presentation Details 80

Chart Builder Parameters 81

Chart Properties File 82

Available Charts for PingData Servers 82

Charts for All Servers 82

Directory Server Charts 83

Directory Proxy Server Charts 83

Data Sync Server Charts 83

Data Metrics Server Charts 83

Data Governance Broker Charts 83

- v -

Velocity Templates 84

Supporting Multiple Content Types 86

Velocity Context Providers 87

Velocity Tools Context Provider 87

Chapter 6: Troubleshooting 89

Use the collect-support-data tool 90

Slow Queries Based on Sample Cache Size 90

Insufficient memory errors 91

Unexpected Query Results 91

Conditions for automatic server shutdown 92

Problems with SSL communication 92

Installation and maintenance issues 92

The setup program will not run 92

The server will not start 93

The server has shutdown 95

The server will not accept client connections 96

The server is unresponsive 96

Problems with the Administrative Console 97

Chapter 7: Data Metrics Server API Reference 98

Connection and Security 99

Secure Error Messages 100

Response Codes 100

List Monitored Instances 101

EXAMPLES 101

Retrieve Monitored Instance 102

EXAMPLE: 103

List Available Metrics 103

EXAMPLES 104

Retrieve a Metric Definition 105

EXAMPLE 106

Perform a Metric Query 106

Data Set Structure 108

Google Chart Tools Datasource Protocol 110

Access Alerts 112

Retrieving Event Types 112

- vi -

Table of Contents

Retrieving Events 112

LDAP SLA 113

Retrieving the SLA Object 113

EXAMPLE 114

Pagination 115

Index 117

- vii -

Preface

The Data Metrics Server Administration Guide provides procedures to install and manage the
Data Metrics Server in a multi-client environment.

Audience
This guide is intended for administrators who are responsible for installing and managing
servers in an identity enterprise environment. Knowledge of the following is recommended:

l Identity platforms and LDAP concepts.

l General system administration and networking practices.

l Java VM optimization.

l Application performance monitoring.

l Statistics and metrics basics.

Documentation Included with the Data Metrics Server
The following documents are installed with the Data Metrics Server:

l Ping Identity Data Metrics Server Administration Guide (PDF) – provides installation,
administration, and management tasks for the Data Metrics Server.

l Ping Identity Security Guide – provides security-specific information for PingData
servers.

l Ping Identity Metrics Reference (HTML) – provides information about the metrics
collected by the Data Metrics Server.

l Ping Identity Metrics Configuration Reference (HTML) – provides information about the
configuration options available for theData Metrics Server.

- viii -

Preface

l Ping Identity Metrics Command-Line Tool Reference (HTML) – provides information about
each of the command-line tools available with the Data Metrics Server and their options
and use.

l Ping Identity Data Metrics Server Release Notes (HTML) – provides features and fixes
included in this release.

Metrics Reference Documentation
The Data Metrics Server package contains online reference documentation that can be used to
implement custom charts. Access the documentation at the following URL:

https://<metrics-server-host>:<port>/docs/index.html

The Data Metrics Server Documentation page provides links to a reference file that details
every metric available per product, a Data Metrics Server REST API documentation that
explains the endpoints, and the Data Metrics Server Chart Builder tool to customize any chart.

The page displays the following columns:

l Name – Provides a link to a given metric. Click a name to launch the Chart Builder tool
and display a preview chart for that specific metric.

l Produced By – Indicates the Ping Identity product source that is generating the metric.

l Description – Provides a brief description of the metric.

l Dimensions – Displays the type of data on the chart.

l Statistics – Displays the type of measurement taken for the metric.

The Data Metrics Server documentation page also provides a Dimensions tab, showing the
type of dimensions available for a customized chart. This information is useful when
configuring charts and dashboards. See Configuring Charts for Servers for more information.

Related documentation
The following documents represent the rest of the PingData product set and may be referenced
in this guide:

l PingData Directory Server Reference (HTML)

l PingData Directory Server Administration Guide (PDF)

l PingData Security Guide (PDF)

l PingData Data Sync Server Reference Guide (HTML)

l PingData Data Sync Server Administration Guide

l PingData Directory Proxy Server Reference (HTML)

l PingData Directory Proxy Server Administration Guide (PDF)

- ix -

Preface

l PingData Data Governance Broker Reference (HTML)

l PingData Data Governance Broker Administration Guide (PDF)

l PingData Security Guide (PDF)

l LDAP SDK (HTML)

l Server SDK (HTML)

- x -

Chapter 1: Introduction

The Data Metrics Server collects performance data from the Ping Data Platform.

Topics include:

Data Metrics Server Overview

Data Metrics Server Components

Data Collection

Charts and Dashboards

PostgresSQL DBMS Details

- 1 -

Chapter 1: Introduction

Data Metrics Server Overview
The Data Metrics Server provides insight into the transactions and performance of the Ping
Data Platform. The Data Metrics Server collects data from configured instances and replicas of
the Directory Server, the Directory Proxy Server, the Data Sync Server, and the Data
Governance Broker. Data collected from the Data Metrics Server enables:

l Measuring the performance of the identity infrastructure as a whole service, not a
collection of individual servers.

l Identifying client applications that require the greatest amount of resources.

l Determining which servers have the most available resources to handle requests.

l Predicting the capacity and needs of the identity infrastructure to plan for increased
traffic.

l Analyzing all aspects of the identity infrastructure for troubleshooting performance
issues.

Data Metrics Server Components
The Data Metrics Server consists of the following components:

Data Metrics Server – A stand-alone server that relies on the PostgresSQL database for
collected metrics. The Data Metrics Server gathers data for itself and configured PingData
servers.

Metrics API – A REST API that provides access to collected metrics data. The API is
accessible over HTTPS and supports multiple management parameters including filtering,
averaging, and setting ranges for multiple data sets.

query-metric tool – The primary command-line tool for metric data access. This tool can
also be used for scripted automation of extracting data from the Data Metrics Server. An
explore option enables custom queries and additions to charts and dashboards.

SNMP access – System-level metrics can be accessed over SNMP.

Data Set – A proprietary data structure that is designed for interoperability with charting
libraries such as Highcharts, or FusionCharts.

Charts, Chart Builder, and Dashboard Templates – Tools for customizable, web-based
metrics charts and dashboards.

Data Collection
The Data Metrics Server collects data from all monitored servers through LDAP queries to the
server's backend. Each monitored server collects and stores a limited history of data locally.
Data includes system status and performance information. To collect data, the Data Metrics
Server regularly polls all monitored servers for data that is stored in time-contiguous blocks,

- 2 -

Data Collection

gathers the recent data, and stores data in a PostgreSQL database. Polling has minimal impact
on the monitored servers.

Performance Data
The majority of information collected represents the performance of the monitored server.
Each monitored server should be configured to enable the Data Metrics Server to adequately
keep up with the flow. Performance data represents multiple dimensions of a metric. For
example, a response time metric can represent the request type, time to respond, the
application that made the request, and the action that was taken.

System and Status Data
All servers configured to be monitored by the Data Metrics Server store server and host
system data. Server and machine metrics are retrieved from the cn=monitor backend of the
monitored server.

The Stats Collector plugin is responsible for collecting performance data from the cn=monitor
backend. Data includes server responses, replication activity, local database activity, and host
system metrics. Stats Collector configuration defines:

l Data sample and collection intervals.

l The granularity of data collected (basic, extended, or verbose).

l The types of host system data collected such as CPU, disk, and network.

l The type of data aggregation that occurs for LDAP application statistics.

See Tuning Data Collection for more information. The following illustrates the data collection
process:

Data Collection

Data collection occurs in the following steps:

1. Data samples are taken and stored in time-contiguous blocks on the disk of the
monitored server.

2. The Data Metrics Server collection service polls for new sample blocks.

- 3 -

Chapter 1: Introduction

3. The new sample blocks are queued to disk on the Data Metrics Server.

4. The Data Metrics Server import service loads new blocks into the database.

Charts and Dashboards
The Data Metrics Server provides a number of charts and dashboards to display metrics
information. A Chart Builder tool enables configuring charts on an HTML page and saving the
properties for use in a dashboard. Several charts are provided for general system information
and specific PingData server functions. All dashboards are viewed from the Data Metrics
Server.

PostgreSQL DBMS Details
The Data Metrics Server uses a PostgreSQL DBMS to store data, which is included in the
installation. This is a traditional table-based DBMS best suited for tabular data. The Data
Metrics Server interacts with the DBMS in four ways:

l Data import – Import places steady write load on the DBMS and accounts for 80% of
the writes. This single-threaded interaction puts a lock on the target table. A Data
Metrics Server that monitors 20 servers keeps a single 10K RPM disk 70% busy with this
single interaction.

l Data aggregation – Data aggregation places a less frequent read/write load on the
DBMS. This interaction is responsible for the aggregation of the data samples from one
time resolution to the next, reading from one set of tables and writing to another set.
Sample aggregation uses no table-level locks and the ratio of records between
read:write is between 60:1 and 24:1.

l Data sample age-out – Sample age-out occurs at regular intervals and results in a
table being dropped and/or added. Age-out occurs every 30 minutes, though some
intervals may drop and/or add more than one table.

l Data query – Sample queries occur when clients request metric samples from the
public API. The API can aggregate multiple dimensions and multiple servers in a single
request. A single request may fetch several million rows from the DBMS, though it only
returns a few hundred data points to the client. Samples from previous queries are
cached by the Data Metrics Server, but initial queries for a given metric may take
several seconds and result in a large amount of disk read activity.

Over time, the storage of samples in the data tables is optimized to match the access patterns
of the queries. However, the public API supports queries where the results are the aggregate
of thousands of different dimension sets, and each dimension set may have thousands of
samples within the time range of the query. For example, a query about the throughput of all
Directory Server and Directory Proxy Servers for all applications and all LDAP operations over
the last 72 hours might result in four to six million DBMS records being read into memory,

- 4 -

PostgreSQL DBMS Details

aggregated, and finally reduced to 100 data values. The results from each query are cached so
that a subsequent request for the same data results in less DBMS activity. Both disk seek time
and rotational delay impact the performance of a first-time query, so disks with faster RPM
speeds provide a measurable improvement for first-time queries.

- 5 -

Chapter 2: Installing the Data Metrics
Server

This section describes how to install and run the Data Metrics Server. It includes pre-
installation requirements and considerations.

Topics include:

Supported Platforms

Installing Java

Creating a Non-Root user

Configuring the Operating System for Linux and Solaris

Configuring the PingData Servers to Gather Metrics

Installing the Data Metrics Server

Logging into the Administrative Console

Server Folders and Files

Adding Monitored Servers to the Data Metrics Server

Removing Monitored Servers

Start and Stop the Data Metrics Server Server

Uninstall the Data Metrics Server

Administrative Accounts

- 6 -

Chapter 2: Installing the Data Metrics Server

Supported Platforms
The Data Metrics Server is a pure Java application. It is intended to run within the Java Virtual
Machine on any Java Standard Edition (SE) or Enterprise Edition (EE) certified platform. For the
list of supported platforms and Java versions, access the Ping Identity Customer Support
Center portal or contact a PingData authorized support provider.

Note
It is highly recommended that a Network Time Protocol (NTP) system be in place so that multi-server
environments are synchronized and timestamps are accurate.

Install the JDK
The Java 64-bit JDK is required on the server. Even if Java is already installed, create a
separate Java installation for use by the server to ensure that updates to the system- wide
Java installation do not inadvertently impact the installation.

Solaris systems require both the 32-bit (installed first) and 64-bit versions. The 64-bit version
of Java on Solaris relies on a number of files provided by the 32-bit installation.

Configure a Non-Root User
The Data Metrics Server installer cannot be run as the root user, and generally the Data
Metrics Server (and PostgreSQL) should not be run as root. As a non-root user, network port
numbers below 1024 cannot be used.

In general, this account will need the ability to do the following:

l Listen on privileged network ports.

l Bypass restrictions on resource limits.

For security, the account should be restricted from the following:

l The ability to see processes owned by other users on the system.

l The ability to create hard links to files owned by other users on the system.

Optimize the Solaris Operating System
Ping Identity recommends the use of ZFS™, which is provided with Solaris systems. All of the
server's components should be located on a single storage pool (zpool), rather than having
separate pools configured for different server components. Multiple filesystems can be created
inside the pool. ZFS's copy-on-write transactional model does not require isolating I/O-
intensive components. Therefore, all available disks should be placed in the same zpool.

The following configurations should be made to optimize ZFS. Most configuration changes
require a reboot of the machine.

- 7 -

Optimize the Linux Operating System

Restrict ZFS Memory Consumption
Database caching rather than filesystem caching is needed for performance. Configure the ZFS
memory in the etc/system file to use no more than 2GB for caching, such as:

set zfs:zfs_arc_max= 0x80000000

This property sets the maximum size of the ARC cache to 2GB (0x80000000 or 2147483648
bytes).

Limit ZFS Transaction Group Writes
To improve write throughput and latency, set the zfs_write_limit_override property in the
etc/system file to the size of the available disk cache on the system. For example, for a
system that has a 32MB cache per disk, set the following parameter:

set zfs:zfs_write_limit_override=0x2000000

Configure ZFS Access to Underlying Disks
ZFS should be given direct access to the underlying disks that will be used to back the storage.
In this configuration, the zpool used for the server should have a RAID 1+0 configuration (a
stripe across one or more 2-disk mirrors). Although this setup can reduce the amount of
available space when compared with other configurations, RAID 1+0 provides better
performance and reliability.

Configure ZFS Compression
ZFS should have compression enabled to improve performance. In most cases, the reduced
costs of the disk I/O outweighs the CPU cost of compressing and decompressing the data. Turn
on ZFS compression by running the zfs command:

zfs set compression=on <zfs-filesystem-name>

The changes take effect without a machine reboot.

Optimize the Linux Operating System
Configure the Linux filesystem by making the following changes.

Note
The server explicitly overrides environment variables like PATH, LD_LIBRARY_PATH, and
LD_PRELOAD to ensure that settings used to start the server do not inadvertently impact its
behavior. If these variables must be edited, set values by editing the set_environment_
vars function of the lib/_script-util.sh script. Stop and restart the server for the
change to take effect.

- 8 -

Chapter 2: Installing the Data Metrics Server

Set the file descriptor limit
The server allows for an unlimited number of connections by default, but is restricted by the
file descriptor limit on the operating system. If needed, increase the file descriptor limit on the
operating system with the following procedure.

Note
If the operating system relies on systemd, refer to the Linux operating system documentation for
instructions on setting the file descriptor limit.

1. Display the current hard limit of the system. The hard limit is the maximum server limit
that can be set without tuning the kernel parameters in the proc filesystem.

ulimit -aH

2. Edit the /etc/sysctl.conf file. If the fs.file-max property is defined in the file, make
sure its value is set to at least 65535. If the line does not exist, add the following to the
end of the file:

fs.file-max = 65535

3. Edit the /etc/security/limits.conf file. If the file has lines that set the soft and hard
limits for the number of file descriptors, make sure the values are set to 65535. If the
lines are not present, add the following lines to the end of the file (before #End of

file). Insert a tab between the columns.

* soft nofile 65535
* hard nofile 65535

4. Reboot the system, and then use the ulimit command to verify that the file descriptor
limit is set to 65535 with the following command:

ulimit -n

Once the operating system limit is set, the number of file descriptors that the server will use
can be configured by either using a NUM_FILE_DESCRIPTORS environment variable, or by
creating a config/num-file-descriptors file with a single line such as, NUM_FILE_
DESCRIPTORS=12345. If these are not set, the default of 65535 is used. This is strictly optional
if wanting to ensure that the server shuts down safely prior to reaching the file descriptor limit.

Note
For RedHat 7 or later, modify the 20-nproc.conf file to set both the open files andmax user
processes limits:

/etc/security/limits.d/20-nproc.conf

Add or edit the following lines if they do not already exist:
* soft nproc 65536
* soft nofile 65536
* hard nproc 65536
* hard nofile 65536
root soft nproc unlimited

- 9 -

Optimize the Linux Operating System

Set the filesystem flushes
Linux systems running the ext3 filesystem only flush data to disk every five seconds. If the
server is on a Linux system, edit the mount options to include the following:

commit=1

This variable changes the flush frequency from five seconds to one. Also, set the flush
frequency in the /etc/fstab file to make sure the configuration remains after reboot.

Install sysstat and pstack on Red Hat
The server troubleshooting tool collect-support-data relies on the iostat, mpstat, and
pstack utilities to collect monitoring, performance statistics, and stack trace information on
the server’s processes. For Red Hat systems, make sure that these packages are installed, for
example:

$ sudo yum install sysstat gdb dstat -y

Install the dstat utility
The dstat utility is used by the collect-support-data tool.

Disable filesystem swapping
Any performance tuning services, like tuned, should be be disabled. If performance tuning is
required, vm.swappiness can be set by cloning the existing performance profile then adding
vm.swappiness = 0 to the new profile's tuned.conf file in /usr/lib/tuned/profile-
name/tuned.conf. The updated profile is then selected by running tuned-adm profile
customized_profile.

Manage system entropy
Entropy is used to calculate random data that is used by the system in cryptographic
operations. Some environments with low entropy may have intermittent performance issues
with SSL-based communication. This is more typical on virtual machines, but can occur in
physical instances as well. Monitor the kernel.random.entropy_avail in sysctl value for
best results.

If necessary, update $JAVA_HOME/jre/lib/security/java.security to use
file:/dev/./urandom for the securerandom.source property.

Enable the server to listen on privileged ports
Linux systems do not provide a direct analog to the Solaris User and Process Rights
Management subsystems. Linux does have a similar mechanism called capabilities used to
grant specific commands the ability to do things that are normally only allowed for a root
account. This is different from the Solaris model because instead of granting the ability to a

- 10 -

Chapter 2: Installing the Data Metrics Server

specific user, capabilities are granted to a specific command. It may be convenient to enable
the server to listen on privileged ports while running as a non-root user.

The setcap command is used to assign capabilities to an application. The cap_net_bind_
service capability enables a service to bind a socket to privileged ports (port numbers less
than 1024). If Java is installed in /ds/java (and the Java command to run the server is
/ds/java/bin/java), the Java binary can be granted the cap_net_bind_service capability
with the following command:

$ sudo setcap cap_net_bind_service=+eip /ds/java/bin/java

The java binary needs an additional shared library (libjli.so) as part of the Java installation.
More strict limitations are imposed on where the operating system will look for shared libraries
to load for commands that have capabilities assigned. So it is also necessary to tell the
operating system where to look for this library. This can be done by creating the file
/etc/ld.so.conf.d/libjli.conf with the path to the directory that contains the libjli.so
file. For example, if the Java installation is in /ds/java, the contents of that file should be:

/ds/java/lib/amd64/jli

Run the following command for the change to take effect:

$ sudo ldconfig -v

Configure Servers to be Monitored
Before installing the Data Metrics Server, configure the servers to be monitored:

l Directory Server

l Directory Proxy Server

l Data Sync Server

l Data Governance Broker

The monitored servers require sufficient disk space to store the monitoring data, and can be
configured with Tracked Applications if there are specific application bind DNs that should be
monitored.

Disk Space Requirements and Monitoring Intervals
The metrics backend on the monitored servers is responsible for the temporary storage of
metric data, and is configured to keep a maximum amount of metric history based on log
retention policies, which are configured with the dsconfig tool.

The default retention policies define a cap on disk space usage, which in turn determines the
amount of metric history retained. If the Data Metrics Server is stopped for a period of time,
the monitored servers should be configured to retain enough metrics history to prevent gaps in
data when the Data Metrics Server restarts. The amount of disk space required for metrics
history can also depend on the monitored server's Stats Collector Plugin settings. In general,
500MB is enough to retain an eight-hour span of metrics history.

- 11 -

Install the Server

The value of the sample-flush-interval property of the monitored server's metrics backend
determines the maximum delay between when a metric is captured and when it can be picked
up by the Data Metrics Server. The flush interval can be set between 15 and 60 seconds, with
longer values resulting in less processing load on the Data Metrics Server. However, this flush
interval increases the latency between when the metric was captured and when it becomes
visible in a chart or dashboard. Changing the sample-flush-interval attribute to 60 seconds,
has the Data Metrics Server keep 2000 minutes of history.

The number of metrics produced per unit of time varies based on the configuration. No formula
can be provided to compute exact storage required for each hour of history. In general, 60MB
per hour is a standard estimate.

Tracked Applications
If the Data Metrics Server will monitor client applications associated with the monitored
servers, the Tracked Applications feature should be configured for monitored servers as well.
Activity performed by a particular LDAP Bind DN can be associated with a Data Metrics Server
application-name, which in turn can be included in Data Metrics Server SLA definitions.

The Processing Time Histogram plugin is configured on each Directory Server and Directory
Proxy Server as a set of histogram ranges. These ranges should be defined identically across
all monitored servers. For each monitored server, set the separate-monitor-entry-per-
tracked-application property of the processing time histogram plugin to true. Per-
application monitoring information will appear under cn=monitor. The per-application-
ldap-stats property must also be set to per-application-only in the Stats Collector Plugin.
See the Ping Identity Directory Server Administration Guide for Tracked Application
configuration details.

The following sets the required property of the Processing Time Histogram plugin:

$ bin/dsconfig set-plugin-prop \
 --plugin-name "Processing Time Histogram" \
 --set separate-monitor-entry-per-tracked-application:true

The following example sets the required property of the Stats Collector plugin:

$ bin/dsconfig set-plugin-prop \
 --plugin-name "Stats Collector" \
 --set per-application-ldap-stats:per-application-only

Install the Server
Use the setup tool to install the server. The server needs to be started and stopped by the
user who installed it.

Note
A Windows installation requires that the Visual Studio 2010 runtime patch be installed prior to running the
setup command.

- 12 -

Chapter 2: Installing the Data Metrics Server

1. Log in as a user, other than root.

2. Obtain the latest zip release bundle from Ping Identity and unpack it in a directory owned
by this user.

$ unzip PingData<server>-<version>.zip

3. Change to the server root directory.

$ cd PingData<server>

4. Run the setup command.

$./setup

5. Type yes to accept the End-User License Agreement and press Enter to continue.

6. Read the installation process and prerequisites. Press Enter to continue.

7. Type the port number of for the PostgreSQL database instance to use to store monitoring
data, or press Enter to accept the default port.

8. Enter the directory to be used for PostgreSQL data files, or press Enter to accept the
default (pgsql_data). If the name entered is a relative path name, it will be created in
the current working directory.

9. Enter a name for the database administrative account, or press Enter to accept the
default. The setup tool will create a user (role) and database to be used by the Data
Metrics Server. These credentials are strictly for use by this tool during this session and
are not retained.

10. Enter and confirm a password for this account.

11. Specify the name of the PostgreSQL account to be associated with the Data Metrics
Server historical monitoring data, or press Enter to accept the default (metrics). The
tool will create this user account using the administrative account specified in step 9.

12. The password generated for this account is metrics, press Enter to accept the default,
or type yes and provide and confirm a new password.

13. Enter the fully-qualified host name for the server, or press Enter to accept the default.

14. Create the initial root user DN for the server, or press Enter to accept (cn=Directory
Manager)

15. Enter and confirm a password for this account.

16. Press Enter to enable server services and the Administrative Console.

17. Enter the port for HTTPS connection to the Platform (SCIM and the Configuration) APIs,
or press Enter to accept the default.

18. Enter the port on which the Data Metrics Server will accept LDAP client connections, or
press Enter to accept the default.

- 13 -

Install the Server

19. To enable LDAPS, type yes, or press Enter to accept the default no.

20. If LDAPS is enabled, enter the port on which the server will accept LDAPS client
connections, or press Enter to accept the default (2636).

21. To enable StartTLS, type yes, or press Enter to accept the default no.

22. Choose a certificate option for the server.

Certificate server options:

1) Generate self-signed certificate (recommended for testing purposes
only)
2) Use an existing certificate located on a Java KeyStore (JKS)
3) Use an existing certificate located on a PKCS12 KeyStore
4) Use an existing certificate on a PKCS11 token

Depending on the option chosen, other information may be needed. If the Java or the
PKCS#12 KeyStore is chosen, the KeyStore path and PIN is needed. If the PKCS#11
token is chosen, the key PIN is needed.

22. Choose an option to assign the amount of memory that the server should allocate to the
Data Metrics Server and press Enter.

23. Press Enter (yes) to start the server when configuration is complete.

24. Press Enter to install the Data Metrics Server with the defined parameters.

After the Data Metrics Server server is installed, access the Metrics landing page
(https://<host>:<HTTPS-port>/view/index) for access to the default dashboards, chart
builder tool, and online documentation.

- 14 -

Chapter 2: Installing the Data Metrics Server

Log into the Administrative Console
After the server is installed, access the Administrative Console,
https://<host>/console/login, to verify the configuration and manage the server. To log
into the Administrative Console, use the initial root user DN specified during setup (by default
cn=Directory Manager).

The dsconfig command or the Administrative Console can be used to create additional root
DN users in cn=Root DNs,cn=config. These new users require the fully qualified DN as the
login name, such as cn=new-admin,cn=Root DNs,cn=config. To use a simple user name
(with out the cn= prefix) for logging into the Administrative Console, the root DN user must
have the alternate-bind-dn attribute configured with an alternate name, such as "admin."

If the Administrative Console needs to run in an external container, such as Tomcat, a separate
package can be installed according to that container's documentation. Contact Ping Identity
Customer Support for the package location and instructions.

Server folders and files
After the distribution file is unzipped, the following folders and command-line utilities are
available:

- 15 -

Add Monitored Servers to the Data Metrics Server

Directories/Files/Tools Description

ldif Stores any LDIF files that you may have created or imported.

import-tmp Stores temporary imported items.

classes Stores any external classes for server extensions.

db For the Directory Server, this is where its Berkeley DB files reside.

bak Stores the physical backup files used with the backup command-line tool.

velocity Stores Velocity templates that define the server's application pages.

update.bat, and update The update tool for UNIX/Linux systems and Windows systems.

uninstall.bat, and uninstall The uninstall tool for UNIX/Linux systems and Windows systems.

ping_logo.png The image file for the Ping Identity logo.

setup.bat, and setup The setup tool for UNIX/Linux systems and Windows systems.

revert-update.bat, and revert-
update

The revert-update tool for UNIX/Linux systems and Windows systems.

README README file that describes the steps to set up and start the server.

License.txt Licensing agreement for the product.

legal-notices Stores any legal notices for dependent software used with the product.

docs Provides the release notes, Configuration Reference (HTML), API Reference, and
all other product documentation.

metrics Stores the metrics that can be gathered for this server and surfaced in the Data
Metrics Server.

bin Stores UNIX/Linux-based command-line tools.

bat Stores Windows-based command-line tools.

lib Stores any scripts, jar files, and library files needed for the server and its
extensions.

collector Used by the server to make monitored statistics available to the Data Metrics
Server.

locks Stores any lock files in the backends.

postgres Stores PostgresSQL files.

tmp Stores temporary files.

resource Stores the MIB files for SNMP and can include ldif files, make-ldif templates,
schema files, dsconfig batch files, and other items for configuring or managing the
server.

config Stores the configuration files for the backends (admin, config) as well as the
directories for messages, schema, tools, and updates.

logs Stores log files.

Add Monitored Servers to the Data Metrics Server
Configure the Data Metrics Server to monitor servers using the monitored-servers tool.

- 16 -

Chapter 2: Installing the Data Metrics Server

Using the monitored-servers Tool
The monitored-servers command-line tool configures communication between the servers
and the Data Metrics Server, then adds external server definitions to the Data Metrics Server
based on the server's administrative data. Before a server is added to the Data Metrics Server
configuration, the system determines whether communication needs to be configured. If so,
the cn=Monitoring User root user account is created on the external server.

Running the tool with the add-servers subcommand creates an external server based on the
information discovered about the remote server. It also uses the information located in the
cn=admin data entry to discover other servers in the topology, which are also added to the
configuration.

The following examples use the monitored-servers tool:

l Run the monitored-servers tool with the add-servers subcommand. Specify
connection information for the Data Metrics Server, as well as connection information for
any remote servers in use.

$ bin/monitored-servers add-servers \
 --bindDN uid=admin,dc=example,dc=com \
 --bindPassword password \
 --monitoringUserBindPassword password \
 --remoteServerHostname localhost \
 --remoteServerPort 1389 \
 --remoteServerBindPassword password

l Use the --dry-run option to generate output detailing the work that would be done in a
live session without actually making changes to the server configuration.

$ bin/monitored-servers add-servers \
 --bindDN uid=admin,dc=example,dc=com \
 --bindPassword password \
 --monitoringUserBindPassword password \
 --remoteServerHostname localhost \
 --remoteServerPort 1389 \
 --remoteServerBindPassword password \
 --dry-run

Remove Monitored Servers
Use the monitored-servers tool to remove servers from the Data Metrics Server:

1. List the monitored servers, with the /bin/status tool.

2. Choose a server from the Monitored Servers list. Remove the server by name with the
following command:

bin/monitored-servers remove-server "Austin Instance 1"

- 17 -

Start and Stop the Server

Start and Stop the Server
When the Data Metrics Server starts for the very first time, it downloads new samples from the
monitored servers and adds data to the database. Until it has finished this first data collection,
the Data Metrics Server will not be able to answer metric queries to the database. The Data
Metrics Server processes samples from the oldest to the newest, so queries on more recent
data may require more start-up time. If the monitored servers have been collecting samples
for several days, there may be a significant backlog of data to collect.

To determine if the server is ready to respond to metric queries, run the status tool. If the
Sample Import Backlog property is zero (0), the server is ready.

Note
The DataMetrics Server needs to be started and stopped by the user who installed it. If the DataMetrics
Server is started or stopped by a different user, the following error is listed in the postgres.log file when
Postgres starts:

FATAL: role "<username>" does not exist

Start the Data Metrics Server as a Background Process
Navigate to the server root directory, and run the following command:

$ bin/start-metrics-engine

For Windows systems:

$ bat/start-metrics-engine

Start the Data Metrics Server as a Foreground Process
Navigate to the server root directory, and run the following command:

$ bin/start-metrics-engine --nodetach

Start the Data Metrics Server at Boot Time
By default, the Data Metrics Server does not start automatically when the system is booted. To
configure the monitoring server to start automatically when the system boots, use the create-
rc-script tool to create a run control script as follows:

1. Create the startup script as the non-root Data Metrics Server user. In this example ds is
the user.

$ bin/create-rc-script --outputFile Ping-Identity-ME.sh \
 --userName ds

2. Log in as root, move the generated Ping-Identity-ME.sh script into the /etc/init.d
directory, and create symlinks to it from the /etc/rc3.d (starting with an "S" to start
the server) and /etc/rc0.d directory (starting with a "K" to stop the server).

- 18 -

Chapter 2: Installing the Data Metrics Server

mv Ping-Identity-ME.sh /etc/init.d/
ln -s /etc/init.d/Ping-Identity-ME.sh /etc/rc3.d/S50-Ping-Identity-ME.sh
ln -s /etc/init.d/Ping-Identity-ME.sh /etc/rc0.d/K50-Ping-Identity-ME.sh

Stop the Data Metrics Server
Navigate to the server root directory, and run the following command:

$ bin/stop-metrics-engine

Restart the Data Metrics Server
Restart the Data Metrics Server using the --restart or -R option. Running this command is
equivalent to shutting down the server, exiting the JVM session, and then starting up again,
which requires a re-priming of the JVM cache.

Navigate to the server root directory, and run the following command:

$ bin/stop-metrics-engine --restart

Uninstall the server
Use the uninstall command-line utility to uninstall the server using either interactive or non-
interactive modes. Interactive mode provides options, progress, and a list of the files and
directories that must be manually deleted if necessary.

Non-interactive mode, invoked with the --no-prompt option, suppresses progress
information, except for fatal errors. All options for the uninstall command are listed with the
--help option.

The uninstall command must be run as either the root user or the user account that installed
the server.

Perform the following steps to uninstall in interactive mode:

1. Navigate to the server root directory.

$ cd PingData<server>

2. Start the uninstall command:

$./uninstall

3. Select the components to be removed, or press Enter to remove all components.

4. If the server is running, press Enter to shutdown the server before continuing.

5. Manually remove any remaining files or directories, if required.

- 19 -

Administrative accounts

Administrative accounts
Users that authenticate to the Configuration API or the Administrative Console are stored in
cn=Root DNs,cn=config. The setup tool automatically creates one administrative account
when performing an installation. Accounts can be added or changed with the dsconfig tool.

Change the administrative password
Root users are governed by the Root Password Policy and by default, their passwords never
expire. However, if a root user's password must be changed, use the ldappasswordmodify
tool.

1. Open a text editor and create a text file containing the new password. In this example,
name the file rootuser.txt.

$ echo password > rootuser.txt

2. Use ldappasswordmodify to change the root user’s password.

$ bin/ldappasswordmodify --port 1389 --bindDN "cn=Directory Manager" \
--bindPassword secret --newPasswordFile rootuser.txt

3. Remove the text file.

$ rm rootuser.txt

- 20 -

Chapter 3: Managing the Data Metrics
Server

There are several ways to manage the Data Metrics Server status and performance. The Data
Metrics Server Administrative Console enables browser-based server management, the
dsconfig tool enables command line management, and the Configuration API enables
management by third-party interfaces.

Topics include:

Data Metrics Server Error Logging

Backend Monitor Entries

Configure Alert Handlers

The Alerts Backend

System Alarms and Gauges

Backup the Data Metrics Server Database

Management Tools

Using the Configuration API

Domain Name Service (DNS) Caching

IP Address Reverse Name Lookup

Configuring Traffic Through a Load Balancer

Configuring Authentication with a SASL External Certificate

Server SDK Extensions

- 21 -

Chapter 3: Managing the Data Metrics Server

Data Metrics Server Error Logging
The Data Metrics Server provides logging for warnings, errors, or significant events that occur
within the server. Log publishers rely on log rotation and retention policies. Customization
options for log publishers are available with the dsconfig command, (bin/dsconfig or
bat/dsconfig on Windows).

Each log publisher must have at least one log rotation policy and log retention policy
configured. Configure the log rotation policy for each log publisher. When a rotation limit is
reached, the server rotates the current log and starts a new log.

Logging Retention Policies
Select retention configuration from the following:

Time Limit Rotation Policy – Rotates the log based on the length of time since the last
rotation. Default implementations are provided for rotation every 24 hours and every seven
days.

Fixed Time Rotation Policy – Rotates the logs every day at a specified time (based on 24-
hour time). The default time is 2359.

Size Limit Rotation Policy – Rotates the logs when the file reaches the maximum size for
each log. The default size limit is 100MB.

Never Rotate Policy – Used in a rare event that does not require log rotation.

Logging Rotation Policies
Select rotation configuration from the following:

File Count Retention Policy – Sets the number of log files for the Data Metrics Server to
retain. The default file count is 10 logs. If the file count is set to 1, then the log will continue to
grow indefinitely without being rotated.

Free Disk Space Retention Policy – Sets the minimum amount of free disk space. The
default free disk space is 500MB.

Size Limit Retention Policy – Sets the maximum size of the combined archived logs. The
default size limit is 500MB.

Custom Retention Policy – Create a new retention policy. This requires developing custom
code to implement the log retention policy.

Never Delete Retention Policy – Used in a rare event that does not require log deletion.

Create Log Publishers
Create a new log publisher with dsconfig, either from the command line or in interactive
mode. Retention and rotation policies must be configured for the log publisher. For more
information about policy options, see Configure Logs.

- 22 -

Data Metrics Server Error Logging

Note
Compression cannot be disabled or turned off once configured for the logger. Determine
logging requirements, prior to creating and configuring them.

Perform the following steps to create a log publisher:

1. The following creates a log publisher with the dsconfig command that logs disconnect
operations.

$ bin/dsconfig create-log-publisher \
 --type file-based-access --publisher-name "Disconnect Logger" \
 --set enabled:true \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set log-connects:false \
 --set log-requests:false --set log-results:false \
 --set log-file:logs/disconnect.log

To configure compression on the logger, add this option to the previous command:

--set compression-mechanism: gzip

2. To view log publishers, enter the following command:

$ bin/dsconfig list-log-publishers

Error Log Publisher
The Error Log reports errors, warnings, and informational messages about events that occur
during the course of the server’s operation. Each entry in the error log records the following
properties (some are disabled by default and must be enabled):

Time Stamp – Displays the date and time of the operation in the format
DD/Month/YYYY:HH:MM:SS <offset from UTC time>.

Category– Specifies the message category that is loosely based on the server components.

Severity – Specifies the message severity of the event, which defines the importance of the
message in terms of major errors that need to be quickly addressed. The default severity
levels are fatal-error, notice, severe-error, and severe-warning.

Message ID – Specifies the numeric identifier of the message.

Message – Stores the error, warning, or informational message.

The following example displays an error log for the Data Metrics Server. The log is enabled by
default and is accessible in the <server-root>/logs/errors file.

[21/Oct/2012:05:15:23.048 -0500] category=RUNTIME_INFORMATION severity=NOTICE
msgID=20381715 msg="JVM Arguments: '-Xmx8g', '-Xms8g', '-XX:MaxNewSize=1g',
'-XX:NewSize=1g', '-XX:+UseConcMarkSweepGC', '-XX:+CMSConcurrentMTEnabled',
'-XX:+CMSParallelRemarkEnabled', '-XX:+CMSParallelSurvivorRemarkEnabled',
'-XX:+CMSScavengeBeforeRemark', '-XX:RefDiscoveryPolicy=1',
'-XX:ParallelCMSThreads=4', '-XX:CMSMaxAbortablePrecleanTime=3600000',
'-XX:CMSInitiatingOccupancyFraction=80', '-XX:+UseParNewGC', '-XX:+UseMembar',

- 23 -

Chapter 3: Managing the Data Metrics Server

'-XX:+UseBiasedLocking', '-XX:+UseLargePages', '-XX:+UseCompressedOops',
'-XX:PermSize=128M', '-XX:+HeapDumpOnOutOfMemoryError',
'-Dcom.unboundid.directory.server.scriptName=setup'"
[21/Oct/2012:05:15:23.081 -0500] category=EXTENSIONS severity=NOTICE
msgID=1880555611 msg="Administrative alert type=server-starting
id=4178daee-ba3a-4be5-8e07-5ba17bf30b71
class=com.unboundid.directory.server.core.MetricsEngine
msg='The Metrics Server is starting'"
[21/Oct/2012:05:15:23.585 -0500] category=CORE severity=NOTICE
msgID=1879507338 msg="Starting group processing for backend api-users"
[21/Oct/2012:05:15:23.586 -0500] category=CORE severity=NOTICE
msgID=1879507339 msg="Completed group processing for backend api-users"
[21/Oct/2012:05:15:23.586 -0500] category=EXTENSIONS severity=NOTICE
msgID=1880555575 msg="'Group cache (2 static group(s) with 0 total
memberships and 0 unique members, 0 virtual static group(s),
1 dynamic group(s))' currently consumes 7968 bytes and can grow to a maximum
of an unknown number of bytes"
[21/Oct/2012:05:16:18.011 -0500] category=CORE severity=NOTICE
msgID=458887 msg="The Metrics Server (Metrics Server 4.5.1.0
build 20121021003738Z, R12799) has started successfully"

Use dsconfig to modify the default File-Based Error Log, as in the following command:

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Error Logger" \
 --set include-product-name:true --set include-instance-name:true \
 --set include-startup-id:true

Backend Monitor Entries
Each PingData server exposes its monitoring information under the cn=monitor entry.
Administrators can use various means to monitor the servers through SNMP, the
Administrative Console, JConsole, LDAP command-line tools, and the Stats Logger.

The Monitor Backend contains an entry per component or activity being monitored. The list of
all monitor entries can be seen using the ldapsearch command as follows:

$ bin/ldapsearch --hostname server1.example.com \
 --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --baseDN "cn=monitor" "(objectclass=*)" cn

The following table lists a subset of monitor entries.

Component Description

Active Operations Provides information about the operations currently being processed by the server
including the number of operations, information on each operation, and the
number of active persistent searches.

Monitoring Components

- 24 -

Backend Monitor Entries

Component Description

Backends Provides general information about the state of a server backend, including the
entry count. If the backend is a local database, there is a corresponding database
environment monitor entry with information on cache usage and on-disk size.

Client Connections Provides information about all client connections to the server including a name
followed by an equal sign and a quoted value, such as connID="15",
connectTime="20100308223038Z".

Connection Handlers Provides information about the available connection handlers on the server
including the LDAP and LDIF connection handlers.

Disk Space Usage Provides information about the disk space available to various components of the
server.

General Provides general information about the state of the server, including product name,
vendor name, and server version.

Index Provides information on each index including the number of preloaded keys and
counters for read, write, remove, open-cursor, and read-for-search actions. These
counters provide insight into how useful an index is for a given workload.

HTTP/HTTPS Connection
Handler Statistics

Provides statistics about the interaction that the associated HTTP connection
handler has had with its clients, including the number of connections accepted,
average requests per connection, average connection duration, total bytes
returned, and average processing time by status code.

JVM Stack Trace Provides a stack trace of all threads processing within the JVM.

LDAP Connection Handler
Statistics

Provides statistics about the interaction that the associated LDAP connection
handler has had with its clients, including the number of connections established
and closed, bytes read and written, LDAP messages read and written, and
operations initiated, completed, and abandoned.

Processing Time Histogram Categorizes operation processing times into a number of user-defined buckets of
information, including the total number of operations processed, overall average
response time (ms), and number of processing times between 0ms and 1ms.

System Information Provides general information about the system and the JVM on which the server is
running, including system host name, operation system, JVM architecture, Java
home, and Java version.

Version Provides information about the server version, including build ID, and revision
number.

Work Queue Provides information about the state of the server work queue, which holds
requests until they can be processed by a worker thread, including the requests
rejected, current work queue size, number of worker threads, and number of busy
worker threads.

The work queue configuration has a monitor-queue-time property set to
true by default. This logs messages for new operations with a qtime attribute
included in the log messages. Its value is expressed in milliseconds and
represents the length of time that operations are held in the work queue.

Monitoring Components

- 25 -

Chapter 3: Managing the Data Metrics Server

Disk Space Usage Monitor
The disk space usage monitor provides information about the amount of usable disk space
available for server components. It also provides the ability to generate administrative alerts,
as well as take action if the amount of usable space drops below the defined thresholds.

The disk space usage monitor evaluates the free space at locations registered through the
DiskSpaceConsumer interface. Disk space monitoring excludes disk locations that do not have
server components registered. However, other disk locations may still impact server
performance, such as the operating system disk, if it becomes full. When relevant to the
server, these locations include the server root, the location of the config directory, the
location of every log file, all JE backend directories, the location of the changelog, the location
of the replication environment database, and the location of any server extension that
registers itself with the DiskSpaceConsumer interface.

All values must be specified as absolute values or as percentages. A mix of absolute values
and percentages cannot be used. The following thresholds are available:

l Low space warning – This threshold defines either a percentage or an absolute amount
of usable space. If the amount of usable space drops below this threshold, the server
generates an administrative alert. It generates alerts at regular intervals, based on
configuration settings, until the amount of usable space is increased, or as the amount of
usable space is further reduced.

l Low space error – This threshold is also defined as either a percentage or an absolute
size. Once the amount of usable space drops below this threshold, the server will
generate an alert notification and will begin rejecting all operations requested by non-
root users with "UNAVAILABLE" results. Once the server enters this mode, some action
must be taken before the server will resume normal operations. This threshold must be
less than or equal to the low space warning threshold. If they are equal, the server will
begin rejecting requests from non-root users immediately upon detecting low usable disk
space.

l Out of space error – This threshold can also be defined as a percentage or an absolute
size. Once the amount of usable space drops below this threshold, the server will
generate a final administrative alert and will shut itself down. This threshold must be
less than or equal to the low space error threshold. If they are equal, the server will shut
itself down rather than rejecting requests from non-root users.

Notifications and Alerts
Each PingData sever provides delivery mechanisms for account status notifications,
administrative alerts, and alarms using SMTP, JMX, or SNMP. Alerts, alarms, and events
reflect state changes within the server that may be of interest to a user or monitoring service.
Account status notifications are only delivered to the account owner.

Alert handler implementations include:

- 26 -

Configure alert handlers

Error Log Alert Handler – Sends administrative alerts to the configured server error logger
(s).

Exec Alert Handler – Executes a specified command on the local system if an administrative
alert matching the criteria for this alert handler is generated by the server. Information about
the administrative alert is made available to the executed application as arguments provided
by the command.

Groovy Scripted Alert Handler – Provides alert handler implementations defined in a
dynamically-loaded Groovy script that implements the ScriptedAlertHandler class defined
in the Server SDK.

JMX Alert Handler – Sends administrative alerts to clients using the Java Management
Extensions (JMX) protocol. PingData uses JMX for monitoring entries and requires that the JMX
connection handler be enabled.

SMTP Alert Handler – Sends administrative alerts to clients via email using the SMTP. The
server requires that one or more SMTP servers be defined in the global configuration.

SNMP Alert Handler – Sends administrative alerts to clients using the Simple Network
Monitoring Protocol (SNMP). The server must have an SNMP agent capable of communicating
through SNMP.

SNMP Subagent Alert Handler – Sends SNMP traps to a master agent in response to
administrative alerts generated within the server.

Third Party Alert Handler – Provides alert handler implementations created in third-party
code using the Server SDK.

A complete listing of system alerts, alarms, and their severity is available in <server-
root>/docs/admin-alerts-list.csv

Configure alert handlers
Alert handlers can be configured with the dsconfig tool. PingData servers support JMX, SMTP,
and SNMP. Use the --help option for a list of configuration options. The following is a sample
command to create and enable an SMTP Alert handler from the command line:

$ bin/dsconfig create-alert-handler \
 --handler-name "SMTP Alert Handler" \
 --type smtp \
 --set enabled:true \
 --set "sender-address:alerts@example.com" \
 --set "recipient-address:administrators@example.com" \
 --set "message-subject:Directory Admin Alert \%\%alert-type\%\%" \
 --set "message-body:Administrative alert:\\n\%\%alert-message\%\%"

The Alerts Backend
PingData servers generate administrative alerts under the cn=alerts branch. The backend
makes it possible to obtain admin alert information over LDAP for use with remote monitoring.

- 27 -

Chapter 3: Managing the Data Metrics Server

The backend's primary job is to process search operations for alerts. It does not support add,
modify, or modify DN operations of entries.

The alerts persist on disk in the config/alerts.ldif file so that they can survive server
restarts. By default, the alerts remain on disk for seven days before being removed. However,
administrators can configure the number of days for alert retention using the dsconfig tool.
The administrative alerts of Warning level or worse that have occurred in the last 48 hours are
viewable from the output of the status command-line tool and in the Administrative Console.

View Information in the Alerts Backend
Use ldapsearch to view the administrative alerts:

$ bin/ldapsearch --port 1389 --bindDN "cn=Directory Manager" \
 --bindPassword secret --baseDN cn=alerts "(objectclass=*)"
dn: cn=alerts
objectClass: top
objectClass: ds-alert-root
cn: alerts

dn: ds-alert-id=3d1857a2-e8cf-4e80-ac0e-ba933be59eca,cn=alerts
objectClass: top
objectClass: ds-admin-alert
ds-alert-id: 3d1857a2-e8cf-4e80-ac0e-ba933be59eca
ds-alert-type: server-started
ds-alert-severity: info
ds-alert-type-oid: 1.3.6.1.4.1.32473.2.11.33
ds-alert-time: 20110126041442.622Z
ds-alert-generator: com.unboundid.directory.server.core.metrics.engine
ds-alert-message: The server has started successfully

Modify the Alert Retention Time
Use dsconfig to change the maximum time information about generated alerts retained in the
alerts backend. After this time, the information is purged from the server. The minimum
retention time is 0 milliseconds, which immediately purges the alert information.

$ bin/dsconfig set-backend-prop --backend-name "alerts" \
 --set "alert-retention-time: 2 weeks"

View the property using dsconfig:

$ bin/dsconfig get-backend-prop --backend-name "alerts" \
 --property alert-retention-time

Property : Value(s)
---------------------:---------
alert-retention-time : 2 w

- 28 -

System alarms, alerts, and gauges

Configure Duplicate Alert Suppression
Use dsconfig to configure the maximum number of times an alert is generated within a
particular time frame for the same condition. The duplicate-alert-time-limit property
specifies the length of time that must pass before duplicate messages are sent over the
administrative alert framework and the maximum number of messages should be sent.

$ bin/dsconfig set-global-configuration-prop \
 --set duplicate-alert-limit:2 \
 --set "duplicate-alert-time-limit:3 minutes"

System alarms, alerts, and gauges
An alarm represents a stateful condition of the server or a resource that may indicate a
problem, such as low disk space or external server unavailability. A gauge defines a set of
threshold values with a specified severity that, when crossed, cause the server to enter or exit
an alarm state. Gauges are used for monitoring continuous values like CPU load or free disk
space (Numeric Gauge), or an enumerated set of values such as 'server available' or ‘server
unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity changes
due to changes in the monitored value. Like alerts, alarms have severity (NORMAL, WARNING,
MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a Condition
property, and may have a Specific Problem or Resource property. If surfaced through SNMP, a
Probable Cause property and Alarm Type property are also listed. Alarms can be configured
to generate alerts when the alarm's severity changes.

There are two alert types supported by the server - standard and alarm-specific. The server
constantly monitors for conditions that may need attention by administrators, such as low disk
space. For this condition, the standard alert is low-disk-space-warning, and the alarm-
specific alert is alarm-warning. The server can be configured to generate alarm-specific alerts
instead of, or in addition to, standard alerts. By default, standard alerts are generated for
conditions internally monitored by the server. However, gauges can only generate alarm-
alerts.

The server installs a set of gauges that are specific to the product and that can be cloned or
configured through the dsconfig tool. Existing gauges can be tailored to fit each environment
by adjusting the update interval and threshold values. Configuration of system gauges
determines the criteria by which alarms are triggered. The Stats Logger can be used to view
historical information about the value and severity of all system gauges.

PingData servers are compliant with the International Telecommunication Union CCITT
Recommendation X.733 (1992) standard for generating and clearing alarms. If configured,
entering or exiting an alarm state can result in one or more alerts. An alarm state is exited
when the condition no longer applies. An alarm_cleared alert type is generated by the system
when an alarm's severity changes from a non-normal severity to any other severity. An
alarm_cleared alert will correlate to a previous alarm when Condition and Resource property
are the same. The Alarm Manager, which governs the actions performed when an alarm state
is entered, is configurable through the dsconfig tool and Administrative Console.

- 29 -

Chapter 3: Managing the Data Metrics Server

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores
information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over
time that can change in severity and be cleared when a monitored value returns to normal.
Alarms can be viewed with the status tool. As with other alert types, alert handlers can be
configured to manage the alerts generated by alarms. A complete listing of system alerts,
alarms, and their severity is available in <server-root>/docs/admin-alerts-list.csv.

Test alerts and alarms
After alarms and alert handlers are configured, verify that the server takes the appropriate
action when an alarm state changes by manually increasing the severity of a gauge. Alarms
and alerts can be verified with the status tool.

1. Configure a gauge with dsconfig and set the override-severity property to critical.
The following example uses the CPU Usage (Percent) gauge.

$ dsconfig set-gauge-prop \
 --gauge-name "CPU Usage (Percent)" \
 --set override-severity:critical

2. Run the status tool to verify that an alarm was generated with corresponding alerts.
The status tool provides a summary of the server’s current state with key metrics and
a list of recent alerts and alarms. The sample output has been shortened to show just the
alarms and alerts information.

$ bin/status

 --- Administrative Alerts ---
Severity : Time : Message
---------:----------------:---

Error : 11/Aug/2016 : Alarm [CPU Usage (Percent). Gauge CPU Usage
(Percent)
 : 15:41:00 -0500 : for Host System has
 : : a current value of '18.583333333333332'.
 : : The severity is currently OVERRIDDEN in the
 : : Gauge's configuration to 'CRITICAL'.
 : : The actual severity is: The severity is
 : : currently 'NORMAL', having assumed this
severity
 : : Mon Aug 11 15:41:00 CDT 2016. If CPU use is
high,
 : : check the server's current workload and make
any
 : : needed adjustments. Reducing the load on the
system
 : : will lead to better response times.
 : : Resource='Host System']
 : : raised with critical severity
Shown are alerts of severity [Info,Warning,Error,Fatal] from the past 48

- 30 -

Back Up the Data Metrics Server Database

hours
Use the --maxAlerts and/or --alertSeverity options to filter this list

 --- Alarms ---
Severity : Severity : Condition : Resource : Details
 : Start Time : : :
---------:------------:-----------:-------------:-------------------------
--
Critical : 11/Aug/2016: CPU Usage : Host System : Gauge CPU Usage
(Percent) for
 : 15:41:00 : (Percent) : : Host System
 : -0500 : : : has a current value of
 : : : : '18.785714285714285'.
 : : : : The severity is
currently
 : : : : 'CRITICAL', having
assumed
 : : : : this severity Mon Aug 11
 : : : : 15:49:00 CDT 2016. If
CPU use
 : : : : is high, check the
server's
 : : : : current workload and
make any
 : : : : needed adjustments.
Reducing
 : : : : the load on the system
will
 : : : : lead to better response
times
Shown are alarms of severity [Warning,Minor,Major,Critical
Use the --alarmSeverity option to filter this list

Back Up the Data Metrics Server Database
The Data Metrics Server stores all historical metric samples in the PostgreSQL DBMS, along
with several other data tables that are used for bookkeeping and normalization of the sample
data. Even a small Data Metrics Server installation, which monitors three to four servers, will
use sample tables that occupy 95% of the total DBMS space. While a functional backup must
capture a consistent view of several tables, the size of the sample tables dictates the desired
approach to a regular backup strategy.

The historical samples enable:

l Diagnosing past performance problems.

l Capacity planning and historical reporting.

l Access to data needed for a revenue stream, such as data used for billing and charge
back.

- 31 -

Chapter 3: Managing the Data Metrics Server

Defining data that is important to the infrastructure will help determine the right backup
strategy. In the case of billing, the data needed is typically small compared to the total
population of the DBMS. This may be all the data needed, and the planning and resources
required to backup the DBMS will be minimal.

If it's not possible to determine what data will be important in the future, backing up all DBMS
data is the safest approach.

Historical Data Storage
The Data Metrics Server DBMS stores all historical sample data. It can store time-aggregated
data for up to twenty years. The data in the DBMS is continually changing as long as the Data
Metrics Server is running.

The system that feeds data to the Data Metrics Server is designed to allow the Data Metrics
Server to be offline for hours at a time without dropping any data. The collection points hold
the data for hours, giving the Data Metrics Server time for maintenance tasks. The collection
points do have a limit on how long they hold data, so the Data Metrics Server cannot be offline
for an indeterminate time.

If the Data Metrics Server is offline so long that the collection points start to delete data that
has not yet been captured, then there will be gaps in the data. Aggregation still works, even
with these gaps. If the data gap is four hours, four time samples will be missing in the one hour
aggregation level, and no data will be missing in the one day aggregation level. However, the
one day aggregation level will use only 20 hours of data rather than 24. By default, the Data
Metrics Server can be offline for about eight hours before any data is lost.

The Data Metrics Server responds to queries that result in data with time gaps. The resulting
data differentiates between data with zero value and missing data.

Planning the Backup
Choose a time window during which the Data Metrics Server can be offline and ensure that
there is enough disk space to hold the new image. The exact size of a DBMS table and its
corresponding backup depends on the number of monitored servers, the number of tracked
applications, the collected metrics, and the retention duration for each of the aggregation
levels. The following table provides values from installations used during testing.

Data 25 Monitored Servers 50 Monitored Servers

Number of tracked applications 20 20

1 second data resolution 8 hours 8 hours

1 minute data retention 14 days 14 days

1 hour data retention 52 weeks 52 week

1 day data retention 20 years 20 years

1 second table size 22 G 42 G

1 minute table size 8 G 18 G

Data From Sample Deployments

- 32 -

Management Tools

Data 25 Monitored Servers 50 Monitored Servers

1 hour table size 4 G (estimated) 9 G (estimated)

1 day data retention 4 G (estimated) 7 G (estimated)

time to backup 15 minutes (estimated) 30 minutes (estimated)

time for import catchup 10 minutes 42 minutes

size of compressed backup image 3 G (estimated) 5.5 G (estimated)

time to restore 1 hour (estimated) 2 h (estimated)

Data From Sample Deployments

If no backups are performed and the DBMS is completely lost, reinitialize the DBMS, restart
the Data Metrics Server, and start collecting data again. All collected metric and event data are
lost, but the configuration required to start collecting data again is retained.

Start the DBMS Backup
Shut down the Data Metrics Server before a backup or restore.

To backup the entire DBMS use the following command:

$ tar -cf backup.tar <path-to-postgres-data-directory>

Restore a DBMS Backup
To restore the full backup to a new database, use the following command:

$ tar -xvf backup.tar

Run the command from the base directory of the PostgreSQL data directory.

For more information, documentation is available on the PostgreSQL website.

Management Tools
The Data Metrics Server provides several command-line tools to administer the server. The
command-line tools are available in the bin directory for UNIX or Linux systems and bat
directory for Microsoft Windows systems.

Each command-line utility provides a description of the subcommands, arguments, and usage
examples needed to run the tool. View detailed argument options and examples by typing --
help with the command.

$ bin/dsconfig --help

To list the subcommands for each command:

$ bin/dsconfig --help-subcommands

To list more detailed subcommand information:

$ bin/dsconfig list-log-publishers --help

- 33 -

Chapter 3: Managing the Data Metrics Server

Available Command-Line Utilities
The following command-line utilities are available, which can be run in interactive, non-
interactive, or script mode.

Command-Line Tool Description

backup Run full or incremental backups on one or more Data Metrics Server backends. This
utility also supports the use of a properties file to pass predefined command-line
arguments. See Managing the tools.properties File for more information.

base64 Encode raw data using the base64 algorithm or decode base64-encoded data back
to its raw representation.

collect-support-data Collect and package system information useful in troubleshooting problems. The
information is packaged as a ZIP archive that can be sent to a technical support
representative.

create-rc-script Create an Run Control (RC) script that may be used to start, stop, and restart the
server on UNIX-based systems.

config-diff Generate a summary of the configuration changes in a local or remote server
instance. The tool can be used to compare configuration settings when
troubleshooting issues, or when verifying configuration settings on new servers.

dsconfig View and edit the server configuration.

dsframework Manage administrative server groups or the global administrative user accounts that
are used to configure servers within server groups.

dsjavaproperties Configure the JVM arguments used to run the server and associated tools. Before
launching the command, edit the properties file located in
config/java.properties to specify the desired JVM options and JAVA_
HOME environment variable.

ldapmodify Perform LDAP modify, add, delete, and modify DN operations.

ldappasswordmodify Perform LDAP password modify operations.

ldapsearch Perform LDAP search operations.

ldif-diff Compare the contents of two LDIF files, the output being an LDIF file needed to bring
the source file in sync with the target.

ldifmodify Apply a set of modify, add, and delete operations against data in an LDIF file.

manage-extension Install or update extension bundles. An extension bundle is a package of extension
(s) that utilize the Server SDK to extend the functionality of the server. Extension
bundles are installed from a zip archive or file system directory. The server is
restarted to activate the extension(s).

metric-engine-schema Show current and required DBMS schema version information.

monitored-servers Configure the set of servers to be monitored by this Data Metrics Server and prepare
external servers for monitoring.

query-metric Explore collected monitoring data by forming queries for data.

queryrate Execute metric queries.

restore Restore a backup of the server backend.

revert-update Returns a server to the version before the last update was performed.

Command Line Tools

- 34 -

Management Tools

Command-Line Tool Description

review-license Review or accept the product license.

server-state View information about the current state of the server process.

setup Perform the initial setup for the server instance.

start-server Start the server.

status Display basic server information.

stop-server Stop or restart the server.

sum-file-sizes Calculate the sum of the sizes for a set of files.

uninstall Uninstall the server.

update Update the server to a newer version by downloading and unzipping the new server
install package on the same host as the server to update. Use the update tool from
the new server package to update the older version of the server. During the update
process, the server is stopped if running, then the update is performed. A check is
performed to determine if the newly updated server starts without major errors. If it
cannot start cleanly, the update is backed out and the server is returned to its prior
state. See the revert-update tool for information on reverting an update.

Command Line Tools

The tools.property File
The tools.properties file simplifies command-line invocations by reading in a set of
arguments for each tool from a text file. Each property consists of a name/value pair for a
tool’s arguments.

Two types of properties files are supported:

l Default properties files that can be applied to all command-line utilities.

l Tool-specific properties file that can be specified using the --propertiesFilePath
option.

All of the server's command-line utilities can be over-written using the
config/tools.properties file.

Create a properties file with a text editor or using the standard Java properties file format
(name=value). For example, create a simple properties file that defines a set of LDAP
connection parameters as follows:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
bindPassword=secret

Specify the location of the file using the --propertiesFilePath option. For example, specify
the path to the properties file with ldapsearch as follows:

$ bin/ldapsearch --propertiesFilePath bin/mytools.properties "(objectclass=*)"

- 35 -

Chapter 3: Managing the Data Metrics Server

Properties files do not allow quotation marks around values. Any spaces or special characters
should be escaped.

Tool-Specific Properties
The server also supports properties for specific tool options using the format:
tool.option=value. Tool-specific options have precedence over general options. For
example, the following properties file uses ldapsearch.port=2389 for ldapsearch requests
by the client.

All other tools that use the properties file use port=1389.

hostname=server1.example.com
port=1389
ldapsearch.port=2389
bindDN=cn=Directory\ Manager

Another example using the dsconfig configuration tool is as follows:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
dsconfig.bindPasswordFile=/ds/config/password

Specify Default Properties Files
The server provides a default properties file, tools.properties, that applies to all command-
line utilities used in client requests. The file is located in the <server-root>/config directory.

To use a file with a different filename in this default location, specify the path using the
--propertiesFilePath option.

Evaluation Order
The following evaluation ordering is used to determine options for a given command-line
utility:

l All options used with a utility on the command line take precedence over any options in
any properties file.

l If the --propertiesFilePath option is used with no other options, the server takes its
options from the specified properties file.

l If no options are used on the command line including the --propertiesFilePath option
(and --noPropertiesFile), the server searches for the tools.properties file at
<server-root>.

l If no default properties file is found and a required option is missing, the tool generates
an error.

l Tool-specific properties (for example, ldapsearch.port=3389) have precedence over
general properties (for example, port=1389).

- 36 -

Use the Configuration API

Use the Configuration API
PingData servers provide a Configuration API, which may be useful in situations where using
LDAP to update the server configuration is not possible. The API is consistent with the System
for Cross-domain Identity Management (SCIM) 2.0 protocol and uses JSON as a text exchange
format, so all request headers should allow the application/json content type.

The server includes a servlet extension that provides read and write access to the server’s
configuration over HTTP. The extension is enabled by default for new installations, and can be
enabled for existing deployments by simply adding the extension to one of the server’s HTTP
Connection Handlers, as follows:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --add http-servlet-extension:Configuration

The API is made available on the HTTPS Connection handler’s host:port in the /config
context. Due to the potentially sensitive nature of the server’s configuration, the HTTPS
Connection Handler should be used, for hosting the Configuration extension.

Authentication and authorization
Clients must use HTTP Basic authentication to authenticate to the Configuration API. If the
username value is not a DN, then it will be resolved to a DN value using the identity mapper
associated with the Configuration servlet. By default, the Configuration API uses an identity
mapper that allows an entry’s UID value to be used as a username. To customize this
behavior, either customize the default identity mapper, or specify a different identity mapper
using the Configuration servlet’s identity-mapper property. For example:

$ bin/dsconfig set-http-servlet-extension-prop \
 --extension-name Configuration \
 --set "identity-mapper:Alternative Identity Mapper”

To access configuration information, users must have the appropriate privileges:

l To access the cn=config backend, users must have the bypass-acl privilege or be
allowed access to the configuration using an ACI.

l To read configuration information, users must have the config-read privilege.

l To update the configuration, users must have the config-write privilege.

Relationship between the Configuration API and the dsconfig tool
The Configuration API is designed to mirror the dsconfig tool, using the same names for
properties and object types. Property names are presented as hyphen case in dsconfig and
as camel-case attributes in the API. In API requests that specify property names, case is not
important. Therefore, baseDN is the same as baseDn. Object types are represented in hyphen
case. API paths mirror what is in dsconfig. For example, the dsconfig list-connection-
handlers command is analogous to the API's /config/connection-handlers path. Object
types that appear in the schema URNs adhere to a type:subtype syntax. For example, a Local

- 37 -

Chapter 3: Managing the Data Metrics Server

DB Backend's schema URN is urn:unboundid:schemas:configuration:2.0:backend:local-
db. Like the dsconfig tool, all configuration updates made through the API are recorded in
logs/config-audit.log.

The API includes the filter, sort, and pagination query parameters described by the SCIM
specification. Specific attributes may be requested using the attributes query parameter,
whose value must be a comma-delimited list of properties to be returned, for example
attributes=baseDN,description. Likewise, attributes may be excluded from responses by
specifying the excludedAttributes parameter. See Sorting and Filtering with the
Configuration API for more information on query parameters.

Operations supported by the API are those typically found in REST APIs:

HTTP Method Description Related dsconfig
Example

GET Lists the attributes of an object when used with a path
representing an object, such as /config/global-
configuration or /config/backends/userRoot. Can
also list objects when used with a path representing a parent
relation, such as /config/backends.

get-backend-prop

list-backends

get-global-
configuration-
prop

POST Creates a new instance of an object when used with a relation
parent path, such as config/backends.

create-backend

PUT Replaces the existing attributes of an object. A PUT operation is
similar to a PATCH operation, except that the PATCH is
determined by determining the difference between an existing
target object and a supplied source object. Only those attributes in
the source object are modified in the target object. The target
object is specified using a path, such as
/config/backends/userRoot.

set-backend-prop

set-global-
configuration-
prop

PATCH Updates the attributes of an existing object when used with a path
representing an object, such as /config/backends/userRoot.
See PATCH Example.

set-backend-prop

set-global-
configuration-
prop

DELETE Deletes an existing object when used with a path representing an
object, such as /config/backends/userRoot.

delete-backend

The OPTIONS method can also be used to determine the operations permitted for a particular
path.

Object names, such as userRoot in the Description column, must be URL-encoded in the path
segment of a URL. For example, %20 must be used in place of spaces, and %25 is used in place
of the percent (%) character. So the URL for accessing the HTTP Connection Handler object is:

/config/connection-handlers/http%20connection%20handler

GET Example
The following is a sample GET request for information about the userRoot backend:

- 38 -

Use the Configuration API

GET /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json

The response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://localhost:5033/config/backends/userRoot"
 },
 "backendID": "userRoot2",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example2,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "10",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "1 m",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "0",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "0",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "enabled": "false",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",

- 39 -

Chapter 3: Managing the Data Metrics Server

 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "false",
 "id2childrenIndexEntryLimit": "66",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "jeProperty": [
 "je.cleaner.adjustUtilization=false",
 "je.nodeMaxEntries=32"
],
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "5000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled"
}

GET list example
The following is a sample GET request for all local backends:

GET /config/backends
Host: example.com:5033
Accept: application/scim+json

The response (which has been shortened):

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
 "totalResults": 24,
 "Resources": [

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:ldif"
],
 "id": "adminRoot",
 "meta": {

- 40 -

Use the Configuration API

 "resourceType": "LDIF Backend",
 "location": "http://localhost:5033/config/backends/adminRoot"
 },
 "backendID": "adminRoot",
 "backupFilePermissions": "700",
 "baseDN": [
 "cn=admin data"
],
 "enabled": "true",
 "isPrivateBackend": "true",
 "javaClass": "com.unboundid.directory.server.backends.LDIFBackend",
 "ldifFile": "config/admin-backend.ldif",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertWhenDisabled": "false",
 "writabilityMode": "enabled"
 },

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:trust-store"
],
 "id": "ads-truststore",
 "meta": {
 "resourceType": "Trust Store Backend",
 "location": "http://localhost:5033/config/backends/ads-truststore"
 },
 "backendID": "ads-truststore",
 "backupFilePermissions": "700",
 "baseDN": [
 "cn=ads-truststore"
],
 "enabled": "true",
 "javaClass":
"com.unboundid.directory.server.backends.TrustStoreBackend",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertWhenDisabled": "true",
 "trustStoreFile": "config/server.keystore",
 "trustStorePin": "********",
 "trustStoreType": "JKS",
 "writabilityMode": "enabled"
 },

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:alarm"
],
 "id": "alarms",
 "meta": {
 "resourceType": "Alarm Backend",
 "location": "http://localhost:5033/config/backends/alarms"
 },
 ...

- 41 -

Chapter 3: Managing the Data Metrics Server

PATCH example
Configuration can be modified using the HTTP PATCH method. The PATCH request body is a
JSON object formatted according to the SCIM patch request. The Configuration API, supports a
subset of possible values for the path attribute, used to indicate the configuration attribute to
modify.

The configuration object's attributes can be modified in the following ways. These operations
are analogous to the dsconfig modify-[object] options.

l An operation to set the single-valued description attribute to a new value:

{
 "op" : "replace",
 "path" : "description",
 "value" : "A new backend."
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --set "description:A new backend"

l An operation to add a new value to the multi-valued jeProperty attribute:

{
 "op" : "add",
 "path" : "jeProperty",
 "value" : "je.env.backgroundReadLimit=0"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --add je-property:je.env.backgroundReadLimit=0

l An operation to remove a value from a multi-valued property. In this case, path
specifies a SCIM filter identifying the value to remove:

{
 "op" : "remove",
 "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --remove je-property:je.cleaner.adjustUtilization=false

l A second operation to remove a value from a multi-valued property, where the path
specifies both an attribute to modify, and a SCIM filter whose attribute is value:

{
 "op" : "remove",
 "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
}

- 42 -

Use the Configuration API

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --remove je-property:je.nodeMaxEntries=32

l An option to remove one or more values of a multi-valued attribute. This has the effect
of restoring the attribute's value to its default value:

{
 "op" : "remove",
 "path" : "id2childrenIndexEntryLimit"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --reset id2childrenIndexEntryLimit

The following is the full example request. The API responds with the entire modified
configuration object, which may include a SCIM extension attribute
urn:unboundid:schemas:configuration:messages containing additional instructions:

Example request:

PATCH /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json

{
 "schemas" : ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations" : [{
 "op" : "replace",
 "path" : "description",
 "value" : "A new backend."
 }, {
 "op" : "add",
 "path" : "jeProperty",
 "value" : "je.env.backgroundReadLimit=0"
 }, {
 "op" : "remove",
 "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"
 }, {
 "op" : "remove",
 "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
 }, {
 "op" : "remove",
 "path" : "id2childrenIndexEntryLimit"
 }]
}

Example response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"

- 43 -

Chapter 3: Managing the Data Metrics Server

],
 "id": "userRoot2",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://example.com:5033/config/backends/userRoot2"
 },
 "backendID": "userRoot2",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example2,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "10",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "1 m",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "0",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "0",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "description": "123",
 "enabled": "false",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",

- 44 -

Use the Configuration API

 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "false",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "jeProperty": [
 "\"je.env.backgroundReadLimit=0\""
],
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "5000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled",
 "urn:unboundid:schemas:configuration:messages:2.0": {
 "requiredActions": [

{
 "property": "jeProperty",
 "type": "componentRestart",
 "synopsis": "In order for this modification to take effect,
 the component must be restarted, either by disabling and
 re-enabling it, or by restarting the server"
 },

{
 "property": "id2childrenIndexEntryLimit",
 "type": "other",
 "synopsis": "If this limit is increased, then the contents
 of the backend must be exported to LDIF and re-imported to
 allow the new limit to be used for any id2children keys
 that had already hit the previous limit."
 }
]
 }
}

- 45 -

Chapter 3: Managing the Data Metrics Server

API paths
The Configuration API is available under the /config path. A full listing of root sub-paths can
be obtained from the /config/ResourceTypes endpoint:

GET /config/ResourceTypes
Host: example.com:5033
Accept: application/scim+json

Sample response (abbreviated):

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
 "totalResults": 520,
 "Resources": [

{
 "schemas": [
 "urn:ietf:params:scim:schemas:core:2.0:ResourceType"
],
 "id": "dsee-compat-access-control-handler",
 "name": "DSEE Compat Access Control Handler",
 "description": "The DSEE Compat Access Control
 Handler provides an implementation that uses syntax

compatible with the Sun Java System Directory Server
 Enterprise Edition access control handler.",
 "endpoint": "/access-control-handler",
 "meta": {
 "resourceType": "ResourceType",
 "location": "http://example.com:5033/config/ResourceTypes/dsee-compat-
access-control-handler"
 }
 },

{
 "schemas": [
 "urn:ietf:params:scim:schemas:core:2.0:ResourceType"
],
 "id": "access-control-handler",
 "name": "Access Control Handler",
 "description": "Access Control Handlers manage the
 application-wide access control. The server's access
 control handler is defined through an extensible
 interface, so that alternate implementations can be created.
 Only one access control handler may be active in the server
 at any given time.",
 "endpoint": "/access-control-handler",
 "meta": {
 "resourceType": "ResourceType",
 "location": "http://example.com:5033/config/ResourceTypes/access-
control-handler"

- 46 -

Use the Configuration API

 }
 },

{
...

The response's endpoint elements enumerate all available sub-paths. The path
/config/access-control-handler in the example can be used to get a list of existing access
control handlers, and create new ones. A path containing an object name like
/config/backends/{backendName}, where {backendName} corresponds to an existing
backend (such as userRoot) can be used to obtain an object’s properties, update the
properties, or delete the object.

Some paths reflect hierarchical relationships between objects. For example, properties of a
local DB VLV index for the userRoot backend are available using a path like
/config/backends/userRoot/local-db-indexes/uid. Some paths represent singleton
objects, which have properties but cannot be deleted nor created. These paths can be
differentiated from others by their singular, rather than plural, relation name (for example
global-configuration).

Sorting and filtering configuration objects
The Configuration API supports SCIM parameters for filter, sorting, and pagination. Search
operations can specify a SCIM filter used to narrow the number of elements returned. See the
SCIM specification for the full set of operations for SCIM filters. Clients may also specify sort
parameters, or paging parameters. As previously mentioned, clients may specify attributes to
include or exclude in both get and list operations.

GET Parameter Description

filter Values can be simple SCIM filters such as id eq "userRoot" or
compound filters like meta.resourceType eq "Local DB Backend"
and baseDn co "dc=exmple,dc=com".

sortBy Specifies a property value by which to sort.

sortOrder Specifies either ascending or descending alphabetical order.

startIndex 1-based index of the first result to return.

count Indicates the number of results per page.

GET Parameters for Sorting and Filtering

Update properties
The Configuration API supports the HTTP PUT method as an alternative to modifying objects
with HTTP PATCH. With PUT, the server computes the differences between the object in the
request with the current version in the server, and performs modifications where necessary.
The server will never remove attributes that are not specified in the request. The API responds
with the entire modified object.

Request:

PUT /config/backends/userRoot
Host: example.com:5033

- 47 -

Chapter 3: Managing the Data Metrics Server

Accept: application/scim+json
{
 "description" : "A new description."
}

Response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://example.com:5033/config/backends/userRoot"
 },
 "backendID": "userRoot",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "25",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "30 s",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "5",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "1",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",

- 48 -

Use the Configuration API

 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "description": "abc",
 "enabled": "true",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "true",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "100000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled"
}

Administrative actions
Updating a property may require an administrative action before the change can take effect. If
so, the server will return 200 Success, and any actions are returned in the
urn:unboundid:schemas:configuration:messages:2.0 section of the JSON response that
represents the entire object that was created or modified.

For example, changing the jeProperty of a backend will result in the following:

"urn:unboundid:schemas:configuration:messages:2.0": {
 "requiredActions": [

{
 "property": "baseContextPath",
 "type": "componentRestart",

- 49 -

Chapter 3: Managing the Data Metrics Server

 "synopsis": "In order for this modification to
 take effect, the component must be restarted,
 either by disabling and re-enabling it, or by
 restarting the server"
 },

{
 "property": "id2childrenIndexEntryLimit",
 "type": "other",
 "synopsis": "If this limit is increased, then the
 contents of the backend must be exported to LDIF
 and re-imported to allow the new limit to be used
 for any id2children keys that had already hit the
 previous limit."
 }
]
}
...

Update servers and server groups
Servers can be configured as part of a server group, so that configuration changes that are
applied to a single server, are then applied to all servers in a group. When managing a server
that is a member of a server group, creating or updating objects using the Configuration API
requires the applyChangeTo query parameter. The behavior and acceptable values for this
parameter are identical to the dsconfig parameter of the same name. A value of
singleServer or serverGroup can be specified. For example:

https://example.com:5033/config/Backends/userRoot?applyChangeTo=singleServer

Note
This does not apply to mirrored subtree objects, which include Topology and Cluster level objects.
Changes made tomirrored objects are applied to all objects in the subtree.

Configuration API Responses
Clients of the API should examine the HTTP response code in order to determine the success or
failure of a request. The following are response codes and their meanings:

Response Code Description Response
Body

200 Success The requested operation succeeded, with the response body being the
configuration object that was created or modified. If further actions are
required, they are included in the
urn:unboundid:schemas:configuration:messages:2.0
object.

List of objects,
or object
properties,
administrative
actions.

204 No Content The requested operation succeeded and no further information has
been provided, such as in the case of a DELETE operation.

None.

400 Bad Request The request contents are incorrectly formatted or a request is made for
an invalid API version.

Error summary
and optional

- 50 -

Domain Name Service (DNS) caching

Response Code Description Response
Body

message.

401 Unauthorized User authentication is required. Some user agents such as browsers
may respond by prompting for credentials. If the request had specified
credentials in an Authorization header, they are invalid.

None.

403 Forbidden The requested operation is forbidden either because the user does not
have sufficient privileges or some other constraint such as an object is
edit-only and cannot be deleted.

None.

404 Not Found The requested path does not refer to an existing object or object
relation.

Error summary
and optional
message.

409 Conflict The requested operation could not be performed due to the current
state of the configuration. For example, an attempt was made to create
an object that already exists or an attempt was made to delete an object
that is referred to by another object.

Error summary
and optional
message.

415 Unsupported
Media Type

The request is such that the Accept header does not indicate that JSON
is an acceptable format for a response.

None.

500 Server Error The server encountered an unexpected error. Please report server
errors to customer support.

Error summary
and optional
message.

An application that uses the Configuration API should limit dependencies on particular text
appearing in error message content. These messages may change, and their presence may
depend on server configuration. Use the HTTP return code and the context of the request to
create a client error message. The following is an example encoded error message:

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:Error"
],
 "status": 404,
 "scimType": null,
 "detail": "The Local DB Index does not exist."
}

Domain Name Service (DNS) caching
If needed, two global configuration properties can be used to control the caching of hostname-
to-numeric IP address (DNS lookup) results returned from the name resolution services of the
underlying operating system. Use the dsconfig tool to configure these properties.

network-address-cache-ttl– Sets the Java system property networkaddress.cache.ttl,
and controls the length of time in seconds that a hostname-to-IP address mapping can be
cached. The default behavior is to keep resolution results for one hour (3600 seconds). This
setting applies to the server and all extensions loaded by the server.

- 51 -

Chapter 3: Managing the Data Metrics Server

network-address-outage-cache-enabled – Caches hostname-to-IP address results in the
event of a DNS outage. This is set to true by default, meaning name resolution results are
cached. Unexpected service interruptions may occur during planned or unplanned
maintenance, network outages or an infrastructure attack. This cache may allow the server to
function during a DNS outage with minimal impact. This cache is not available to server
extensions.

IP address reverse name lookups
Ping Identity servers do not explicitly perform numeric IP address-to-hostname lookups.
However, address masks configured in Access Control Lists (ACIs), Connection Handlers,
Connection Criteria, and Certificate handshake processing may trigger implicit reverse name
lookups. For more information about how address masks are configured in the server, review
the following information for each server:

l ACI dns: bind rules under Managing Access Control (Directory Server and Directory
Proxy Servers)

l ds-auth-allowed-address: Adding Operational Attributes that Restrict Authentication
(Directory Server)

l Connection Criteria: Restricting Server Access Based on Client IP Address (Directory
Server and Directory Proxy Servers)

l Connection Handlers: restrict server access using Connection Handlers (Configuration
Reference Guide for all PingData servers)

Configure traffic through a load balancer
If a PingData server is sitting behind an intermediate HTTP server, such as a load balancer, a
reverse proxy, or a cache, it will log incoming requests as originating with the intermediate
HTTP server instead of the client that actually sent the request. If the actual client's IP address
should be recorded to the trace log, enable X-Forwarded-* handling in both the intermediate
HTTP server and the PingData server. See the product documentation for the device type. For
PingData servers:

l Edit the appropriate Connection Handler object (HTTPS or HTTP) and set use-
forwarded-headers to true.

l When use-forwarded-headers is set to true, the server will use the client IP address
and port information in the X-Forwarded-* headers instead of the address and port of
the entity that's actually sending the request, the load balancer. This client address
information will show up in logs where one would normally expect it to show up, such as
in the from field of the HTTP REQUEST and HTTP RESPONSE messages.

- 52 -

Configure authentication with a SASL external certificate

Configure authentication with a SASL external
certificate
By default, the Data Metrics Server authenticates to the Directory Server using LDAP simple
authentication (with a bind DN and a password). However, the Data Metrics Server can be
configured to use SASL EXTERNAL to authenticate to the Directory Server with a client
certificate.

Note
This procedure assumes that DataMetrics Server instances are installed and configured to communicate
with the backend Directory Server instances using either SSL or StartTLS.

After the servers are configured, perform the following steps to configure SASL EXTERNAL
authentication:

1. Create a JKS keystore that includes a public and private key pair for a certificate that the
Data Metrics Server instance(s) will use to authenticate to the Directory Server instance
(s). Run the following command in the instance root of one of the Data Metrics Server
instances. When prompted for a keystore password, enter a strong password to protect
the certificate. When prompted for the key password, press ENTER to use the keystore
password to protect the private key:

$ keytool -genkeypair \
 -keystore config/metrics-user-keystore \
 -storetype JKS \
 -keyalg RSA \
 -keysize 2048 \
 -alias metrics-user-cert \
 -dname "cn=Metrics User,cn=Root DNs,cn=config" \
 -validity 7300

2. Create a config/metrics-user-keystore.pin file that contains a single line that is the
keystore password provided in the previous step.

3. If there are other Data Metrics Server instances in the topology, copy the metrics-
user-keystore and metrics-user-keystore.pin files into the config directory for all
instances.

4. Use the following command to export the public component of the user certificate to a
text file:

$ keytool -export \
 -keystore config/metrics-user-keystore \
 -alias metrics-user-cert \
 -file config/metrics-user-cert.txt

5. Copy the metrics-user-cert.txt file into the config directory of all Directory Server
instances. Import that certificate into each server's primary trust store by running the
following command from the server root. When prompted for the keystore password,

- 53 -

Chapter 3: Managing the Data Metrics Server

enter the password contained in the config/truststore.pin file. When prompted to
trust the certificate, enter yes.

$ keytool -import \
 -keystore config/truststore \
 -alias metrics-user-cert \
 -file config/metrics-user-cert.txt

6. Update the configuration for each Data Metrics Server instance to create a new key
manager provider that will obtain its certificate from the config/metrics-user-

keystore file. Run the following dsconfig command from the server root:

$ dsconfig create-key-manager-provider \
 --provider-name "Metrics User Certificate" \
 --type file-based \
 --set enabled:true \
 --set key-store-file:config/metrics-user-keystore \
 --set key-store-type:JKS \
 --set key-store-pin-file:config/metrics-user-keystore.pin

7. Update the configuration for each LDAP external server in each Data Metrics Server
instance to use the newly-created key manager provider, and also to use SASL
EXTERNAL authentication instead of LDAP simple authentication. Run the following
dsconfig command:

$ dsconfig set-external-server-prop \
 --server-name ds1.example.com:636 \
 --set authentication-method:external \
 --set "key-manager-provider:Metrics User Certificate"

After these changes, the Data Metrics Server should re-establish connections to the LDAP
external server and authenticate with SASL EXTERNAL. Verify that the Data Metrics Server is
still able to communicate with all backend servers by running the bin/status command. All of
the servers listed in the "--- LDAP External Servers ---" section should have a status of
Available. Review the Directory Server access log can to make sure that the BIND RESULT
log messages used to authenticate the connections from the Data Metrics Server include
authType="SASL", saslMechanism="EXTERNAL", resultCode=0, and authDN="cn=Metrics
User,cn=Root DNs,cn=config".

Server SDK extensions
Custom server extensions can be created with the Server SDK. Extension bundles are installed
from a .zip archive or a file system directory. Use the manage-extension tool to install or
update any extension that is packaged using the extension bundle format. It opens and loads
the extension bundle, confirms the correct extension to install, stops the server if necessary,
copies the bundle to the server install root, and then restarts the server.

Note
The manage-extension tool must be used with Java extensions packaged using the extension bundle

- 54 -

Server SDK extensions

format. For more information, see the "Building and Deploying Java-Based Extensions" section of the
Server SDK documentation.

The Server SDK enables creating extensions for all PingData servers. Cross-product extensions
include:

l Access Loggers

l Alert Handlers

l Error Loggers

l Key Manager Providers

l Monitor Providers

l Trust Manager Providers

l OAuth Token Handlers

l Manage Extension Plugins

- 55 -

Chapter 4: Collecting Data and Metrics

The Data Metrics Server polls all the monitored servers over LDAP to gather the following
data:

l Status of each server.

l Alerts emitted by each server.

l Performance data exposed in the cn=monitor subtree of each server.

For a complete summary of the metrics and dimensions that can be exposed through the
RESTful Metrics API, see the reference files located in the docs/metrics-guide directory.
Most metrics have a count, minimum, maximum, and average.

Topics include:

Metrics Overview

Query Overview

The query-metric Tool

Performance Data Collection

System Monitoring Data Collection

Server Clock Skew

Tune Data Collection

Data Processing

Monitoring for Service Level Agreements

- 56 -

Chapter 4: Collecting Data and Metrics

Metrics Overview
A metric corresponds to a single measurement made within the server. The Data Metrics
Server collects three types of metrics:

l Count metrics – represent the number of times a specific event happens within the
server. Examples of count metrics include the number of LDAP operations performed,
network packets received, or new connections established.

l Continuous-valued metrics – measure things that always have a value. For example,
these metrics include the amount of free disk space, the current number of connected
clients, and the number of operations pending in the work queue.

l Discrete metrics – correspond to measurements that have both a value and a weight,
such as the duration of an LDAP operation or the average duration of a checkpoint.

The statistics that can be applied to values depend on the metric type. Only count statistics are
available for count metrics. Discrete metrics have count, average, and histogram statistics
available, which expose a count of the values broken down into bucket ranges. Average,
minimum, and maximum statistics are available for continuous-valued metrics.

Count Metrics
A count metric indicates the number of times a specific event happens within the server. For
example, the number of packets received on a network interface during a measurement
interval is a count metric. Each measurement returns the count of the number of packets
received during that measurement interval only. The sample contains the number of
occurrences, whether the measurement interval is five seconds or two minutes.

Another example of a count metric is the number of megabytes of data written to a disk device
during a measurement interval. Using the COUNT statistic when querying for a count metric
will return the sum of the counts. Count metrics can often be converted into a rate.

Continuous Metrics
A continuous metric is a measurement of a value where the thing being measured always has a
valid value at each measurement point. For example, CPU percent busy is a continuous metric.
For every sample CPU interval, a valid CPU percent busy measurement can be taken. A
continuous metric differs from a count metric in that continuous metric samples cannot be
added across time in a meaningful way. Instead, continuous metric samples use average,
minimum, and maximum statistics. To determine how busy the CPU has been since midnight,
average, rather than sum, the samples since midnight.

Discrete Metrics
A discrete metric is a measurement that has both a value and a weight. Discrete metrics are
different from continuous metrics because each measurement is weighted. A discrete metric is

- 57 -

Metrics Overview

analogous to a weighted average and requires that multiple measurements be taken within a
single sample interval. For example, LDAP operation response time is a discrete metric, where
the actual response time of each operation is averaged, and the number of LDAP operations is
provided as the weight. If no LDAP operations occur in a sample interval, the value would be
zero and the weight would be zero.

Some continuous and discrete metrics may also report a minimum/maximum value if the
measurement is composed of multiple sub-measurements. The minimum/maximum values
are aggregated by averaging, so the values reflect the median.

Some discrete metrics may also convey histogram data. Histogram data represents an
additional set of measurements that take individual measurements and place them into value
ranges. The Data Metrics Server supports histograms with up to 15 value ranges. Histogram
valued samples are unique because they give a picture of the distribution of the values, and
because they more precisely answer the question of "How many samples are greater than X?"

Dimensions
Dimensions provide a means of aggregating and subdividing metric sample values in a way
that logically follows what is actually measured. For example, metrics that measure disk
activity have a disk-device dimension. Aggregating on the disk-device dimension shows the
average disk activity for all disks, where pivoting (splitting) by the disk-device dimension
shows the activity for specific disks.

Every metric has a logical instance dimension, which corresponds to the server on which the
sample was created. Each metric may have up to three dimensions, which are defined in the
metric definition.

For example, the sync-pipe-completed-ops metric has two dimensions, the pipe-name and
pipe-result. The pipe-name is the name of the sync pipe as configured for the Data Sync
Server. The pipe-result is one of the following values:

l exception

l failed

l failed-at-resource

l failed-during-mapping

l match-multiple-at-dest

l no-match-at-dest

l already-exists-at-dest

l no-change-needed

l out-of-scope

l success

l aborted-by-plugin

l failed-in-plugin

- 58 -

Chapter 4: Collecting Data and Metrics

At each measurement interval for each sync pipe on each Data Sync Server, there will be a
value for each of the pipe-result values. So, for a single Data Sync Server with two Sync
Pipes, pipe-one and pipe-two, the samples generated for each sample period look like the
following. The timestamp is constrained to time-only for brevity.

08:15:05, sync-pipe-completed-ops, pipe-one, exception, 1
08:15:05, sync-pipe-completed-ops, pipe-one, failed, 7
08:15:05, sync-pipe-completed-ops, pipe-one, failed-at-resource, 1
08:15:05, sync-pipe-completed-ops, pipe-one, failed-during-mapping, 1
08:15:05, sync-pipe-completed-ops, pipe-one, match-multiple-at-dest, 3
08:15:05, sync-pipe-completed-ops, pipe-one, no-match-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-one, already-exists-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-one, no-change-needed, 1
08:15:05, sync-pipe-completed-ops, pipe-one, out-of-scope, 1
08:15:05, sync-pipe-completed-ops, pipe-one, success, 125
08:15:05, sync-pipe-completed-ops, pipe-one, aborted-by-plugin, 1
08:15:05, sync-pipe-completed-ops, pipe-one, failed-in-plugin, 0
08:15:05, sync-pipe-completed-ops, pipe-two, exception, 3
08:15:05, sync-pipe-completed-ops, pipe-two, failed, 9
08:15:05, sync-pipe-completed-ops, pipe-two, failed-at-resource, 2
08:15:05, sync-pipe-completed-ops, pipe-two, failed-during-mapping, 1
08:15:05, sync-pipe-completed-ops, pipe-two, match-multiple-at-dest, 4
08:15:05, sync-pipe-completed-ops, pipe-two, no-match-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-two, already-exists-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-two, no-change-needed, 1
08:15:05, sync-pipe-completed-ops, pipe-two, out-of-scope, 1
08:15:05, sync-pipe-completed-ops, pipe-two, success, 217
08:15:05, sync-pipe-completed-ops, pipe-two, aborted-by-plugin, 1
08:15:05, sync-pipe-completed-ops, pipe-two, failed-in-plugin, 0

Compare how busy pipe-one is to pipe-two by pivoting on pipe-name. This results in the
following:

pipe-one 141
pipe-two 239

Pivot by pipe-result, to get a set of counts that show the distribution of the counts of the
specific error types, as well as the success and failure. This data provides a quick way of
assessing the kinds of problems encountered by the Sync Pipes.

Dimensions provide a way to pivot or aggregate along a metric-specific axis. All metrics have
the instance pivot and the time pivot. Metrics that support the histogram statistic can also
have a histogram pivot.

Query Overview
A metric query consists of three components:

l The data used to calculate the query results.

l The aggregation method used on the data to calculate the query result.

- 59 -

Query Overview

l The format of the query result.

Select Query Data
The data used to generate the results of a metric query are driven by the following factors:

l Metric and statistic

l Time range

l Server instances included in the result (optional)

l Included dimension values (optional)

l Histogram range (optional)

Every query returns results for a single statistic and of a single metric. A query must include
the time range used to generate the results. Time ranges can either be absolute dates (in ISO-
8601 format) or relative dates (such as -30m). A relative start time offset is relative to the end
time. A relative end time offset is relative to the current time. When no end time is specified,
the server includes results up to the current time.

The time range and the desired number of points (for pivot by time) dictates the resolution of
data used to process the query. For example, the finest granularity of data, one second
resolution, is only kept for a few hours. It will not be used to satisfy a query spanning multiple
days.

By default, all server instances that produce the metric are used to calculate the query results.
However, the metric query can be restricted to one of the following:

l A specific list of servers

l Servers of a given type, such as Directory Server

l Servers within a specific location

For metrics that include one or more dimensions, a query can be evaluated across a subset of
dimension values. For example, the results returned for the response-time metric can be
restricted to just the search and modify values of the op-type dimension.

For discrete-valued metrics that break their values down into histogram ranges, a query can
count statistics applied to a subset of histogram buckets by specifying a minimum and/or
maximum histogram value. For example, a query on the response-time metric could return a
count of operations that took longer than 100 milliseconds.

Aggregate Query Results
A metric query can return the full, raw data that matches the query parameters, so that the
server can aggregate metric results across time, server instance, dimension value, or
histogram value. The server aggregates results, except when the query indicates not to, by
using a pivot. The mechanism for aggregating the data depends on the type of metric. A pivot
directs the query processor to not aggregate one component of the query data. A pivot can be
based on time, server instance, a specific dimension, or histogram ranges.

- 60 -

Chapter 4: Collecting Data and Metrics

l If no pivot is specified, the query returns a single number that represents the
aggregation of all matched data. For example, a query with no pivot might return the
total number of operations that have completed today.

l A single pivot results in one-dimensional data, such as a time-based chart with a single
line or a simple bar chart.

l Two pivots results in two-dimensional data, such as a time-based chart with a separate
line for each server instance, or a stacked bar chart that shows the number of completed
operations broken down by server and operation type.

l Three pivots results in three-dimensional data, such as a stacked, grouped bar chart that
shows completed operations broken down by server, operation type, and result.

Beyond aggregating multiple samples into one, the data returned by a metric query can be
further manipulated. For example, queries can be scaled on the count statistic to return the
count of events per second, per minute, or per hour. Counts of histogram values can be
returned by a percentage of the total. For example, instead of returning the raw count of
operations that took longer than 50 milliseconds to complete, the results could be returned as
the percentage of all operations that took longer than 50 milliseconds to complete. A value of
0.02% is more meaningful than a value of 40.

Format Query Results
The query results can be converted into a format requested by the client, such as:

l CSV spreadsheet

l XML format

l JSON format

The query-metric Tool
The query-metric tool is a client application of the Data Metrics Server API that enables
access to all the metrics gathered by the server. It includes subcommands that facilitate
creating data queries for listing metrics, server instances, and dimension values. This tool runs
in both interactive and non-interactive modes. Queries are formed using the following
subcommands:

l explore – Creates a series of hyper-linked HTML files for a broad range of metrics. The
tool generates these files by making a series of API queries for a set of servers and
metrics. The tool highlights the breadth of available metrics and patterns or anomalies
across multiple metrics. In interactive mode, the tool prompts for the servers and the
metrics.

- 61 -

The query-metric Tool

l query – Defines a query for specific data of interest. In interactive mode, the tool
prompts for the server, metrics, dimensions, statistics, and pivot values. The tool can be
used to request a data formatted in XML, JSON, or CSV.

To start the tool in interactive mode, enter the following command:

$ query-metric

Or, specify a subcommand in interactive mode:

$ query-metric explore

In non-interactive mode, the tool generates a data table based on command-line input. For
example, the following command requests information from the local Data Metrics Server
listening on port 8080 and generates response-time and throughput data tables for Proxy
Server instances in Austin for the previous two weeks:

$ query-metric explore \
 --httpPort 8080 \
 --instanceType proxy \
 --instanceLocation Austin \
 --metric response-time \
 --metric throughput \
 --startTime -2w

The following command line obtains a JSON formatted data table that shows average
throughput for all Directory Proxy Server instances, over time with 100 data points. Each line
in the table represents either an application's search or modification throughput. Throughput
values are represented as operations per second:

$ query-metric query \
 --hostname localhost \
 --httpPort 8080 \
 --username cn=user1,cn=api-users \
 --password secret \
 --table json \
 --metric throughput \
 --instanceType proxy \
 --statistic average \
 --pivot op-type \
 --pivot application-name \
 --dimension op-type:search,modify \
 --rateScaling second \
 --maxIntervals 100 \
 --startTime 2012-09-01T17:41Z \
 --endTime 2012-09-30T17:41Z

To see a list of all supported options, run the help option for the query-metric tool:

$ query-metric -?

- 62 -

Chapter 4: Collecting Data and Metrics

Performance Data Collection
Performance data represents a majority of the data collected by the Data Metrics Server. Each
server may produce hundreds of kilobytes of performance data per minute, though the amount
of data captured has little to no impact on the performance of the monitored system. By
default, the Data Metrics Server stores performance data for 20 years. Configure the volume
of performance data collected by each monitored server so that the Data Metrics Server can
keep up with the flow.

The performance data model is a dimensional data model. Measurements can be taken on
multiple simultaneous values that are distinguished by dimension values. For example, a
response time metric provides the time in milliseconds it took a server to respond to an LDAP
request. This response-time metric has two dimensions:

Application name – reflects the connection criteria of the request.

Operation type – corresponds to the LDAP operation, such as add, bind, or search.

If a server has 20 different connection criteria, each response-time sample may have 140
different values, one for each of the applications multiplied by the number of operation types.

The performance data captured on the monitored server has a record with the following fields.

Name Data Type Description

Timestamp Date Time of measurement, using clock on the monitored server

Metric String Name of metric

Dimension String Values of dimensions 1 - 3

Count Int Number of measurements represented by this sample

Average Double Average value of this sample

Minimum Double Optional minimum value of this sample

Maximum Double Optional maximum value of this sample

Buckets Int Optional histogram data associated with this sample

Performance Data Fields

When a performance record is imported into the Data Metrics Server, it is normalized to
reduce the size of the record. The normalized record contains the following information.

Name Data Type Description

batchID Int The ID of the batch of data to which this record belongs

sampleTime Timestamp The time the sample was captured or equivalent information after aggregation

metric_qual Int The ID of a structure that reflects the metric and all dimension values

definitionID Int ID of the histogram definition, if the data belong to a histogram-valued sample

count Int Number of measurements represented by this sample

avg_val Real Average value for this sample

min_val Real Minimum value for this sample

Normalized Record in the Data Metrics Server

- 63 -

System Monitoring Data Collection

Name Data Type Description

max_val Real Maximum value for this sample

val1-15 Long Histogram bucket values

Normalized Record in the Data Metrics Server

System Monitoring Data Collection
All servers have the ability to monitor their health and that of the host system. Servers do not
collect any performance data until they are prepared by the Data Metrics Server. All of the
important server and machine metrics are stored in the cn=monitor backend.

Stats Collector Plugin
The Stats Collector plugin is the primary driver of performance data collection for LDAP, server
response, replication, local JE databases, and host system machine metrics. Stats Collector
configuration determines the sample and collection intervals, granularity of data (basic,
extended, verbose), types of host system collection (cpu, disk, network) and the type of data
aggregation that occurs for LDAP application statistics. The Stats Collector plugin is configured
with the dsconfig tool and collects data using LDAP queries. For example, the --server-
info:extended option includes collection for the following:

l CPU

l JVM memory

l Memory

l Disk information

l Network information

The following are all options for the Stats Collector plugin:

>>>> Configure the properties of the Stats Collector Plugin
Property Value(s)
--
1) description -
2) enabled false
3) local-db-backend-info basic
4) replication-info basic
5) entry-cache-info basic
6) host-info cpu, disk, network
7) included-ldap-application If per-application LDAP stats is enabled,
 then stats will be included for all
applications.
8) sample-interval 1 s
9) collection-interval 500 ms
10) ldap-info extended
11) server-info basic
12) per-application-ldap-stats aggregate-only

- 64 -

Chapter 4: Collecting Data and Metrics

System Utilization Monitors
The System Utilization Monitors interface directly with the host operating system to gather
statistics about CPU utilization and idle states, memory consumption, disk input and output
rates, and queue depths, as well as network packet transmit and receive activity.

Utilization metrics are gathered with externally invoked operating system commands, such as
iostat and netstat, using platform-specific arguments and version-specific output parsing.

Enabling the Host System monitor provider automatically gathers CPU and memory utilization,
but only optionally gathers disk and network information. Disk and network interfaces are
enumerated in the configuration by device names (such as eth0 or lo), and by disk device
names (such as sd1, sdab, sda2, scsi0).

External Collector Daemon
The System Utilization monitor contains an embedded collector daemon that runs on systems
affected by a Java process fork memory issue (RFE 5049299). When a process attempts to fork
a child process, Solaris attempts to allocate the same amount of memory for the child process,
which will likely fail when the parent process consumes a large amount of memory.

The embedded collector daemon is started automatically for the server and inspects the Host
System Monitor provider configuration to conditionally determine whether the external
daemon process is required.

The external collector daemon operates by having an internal table of repeatable commands
that run on a schedule. The collector creates a simulated filesystem in the <server-
root>/logs directory for each command type so that the Host System Monitor Provider can
find the output of the most recently collected data.

Repeating commands use a subdirectory for each command type to keep results isolated from
other command types and to help organize file cleanup. The filename of the output contains the
sample timestamp, such as iostats-[sampletimestamp]. If the collector daemon fails for
any reason, the Host System Monitor provider is not left reading stale system data because the
expected timestamp files is missing. To handle clock-edge timing, the monitor sampler will
also look for data in a filename of the previous second. Timestamp files are deleted once their
data have been collected.

The collector daemon runs with no inter-process communication and can be stopped if no
longer necessary.

Server Clock Skew
Correlating metric samples from multiple servers requires that the timestamp associated with
each sample from each monitored server is synchronized. The Data Metrics Server tracks
system time information and makes it visible in the cn=Monitored Server <servername>,
cn=monitor entry.

- 65 -

Tune Data Collection

The system-clock-skew-seconds attribute indicates the difference between the Data Metrics
Server system clock and the monitored server clock, in seconds. The larger this skew value,
the less precision there is when comparing changes in data across servers.

While it is not necessary to keep the Data Metrics Server clock synchronized with all of the
monitored servers, it can be convenient when issuing metric queries with time ranges specified
by offsets. Because the offset is computed using the Data Metrics Server system clock, if this
clock is very different from the monitored servers' system clocks, the start and end time of a
metric query will not match the expected boundaries.

Tune Data Collection
Collecting all of the performance data at the most granular level from all of the servers may
not be possible without a significant investment in hardware for the Data Metrics Server.
Instead, tune data collection to fit within the limits of the existing Data Metrics Server
hardware.

The remainder of this section describes several strategies for tuning data collection.

Reducing the Data Collected
If not all information collected by the Data Metrics Server is required, the Stats Collector
Plugin’s entry-cache property can be tuned using the dsconfig command-line tool. For
example, to omit all metrics related to the entry cache set the entry-cache-info group on the
monitored server:

$ bin/dsconfig set-plugin-prop --plugin-name "Stats Collector" \
 --set entry-cache-info:none

The server collects information for eight different information groups. Limit data collection to
the devices of actual interest.

Reducing the Frequency of Data Collection
Monitored servers can produce metric samples every second, which is useful for short-duration
changes. These samples are less useful hours later, after the per-second data is aggregated to
per-minute data. Use the dsconfig tool to change the base sample production rate from the
default of 1 second to 10 seconds:

$ bin/dsconfig set-plugin-prop --plugin-name "Stats Collector" \
 --set "sample-interval:10 seconds"

This change reduces the total data volume by about 90 percent.

Reducing the Frequency of Sample Block Creation
The number of sample blocks processed by the Data Metrics Server can also be reduced in a
given time. By default, the monitored servers produce a new block of samples every 30
seconds. Increasing this to 60 seconds, while reducing the Data Metrics Server’s polling rate to

- 66 -

Chapter 4: Collecting Data and Metrics

60 seconds, reduces the sample processing overhead. Change the frequency at which the
monitored servers create sample blocks using the following dsconfig command:

$ bin/dsconfig set-backend-prop --backend-name metrics \
 --set sample-flush-interval:60s

Reducing Data Metrics Server Impact on Performance
All Ping Identity servers expose performance data through the cn=monitor DN. Performance
issues occur when data is read, either directly by an LDAP client, or by enabling either the
Stats Logger or Stats Collector plugins.

The Stats Logger plugin reads the configured monitors and writes the resulting values to a CSV
file. The Stats Collector plugin also reads the configured monitors and writes the resulting
values to a CSV file, but this file is made available for LDAP clients in cn=metrics DN. The
Stats Collector CSV files are suitable for use by the Data Metrics Server, and contain one
metric value per line.

Both the Stats Logger and the Stats Collector plugins are disabled by default. When enabled,
each of these plugins adds an approximate 3% CPU utilization penalty, plus a negligible
amount of disk I/O and JVM heap usage.

To enable the Stats Collector plugin, use dsconfig as follows:

$ bin/dsconfig set-plugin-prop --plugin-name "Stats Collector" \
 --set enabled:true

The monitored-servers tool will enable the Stats Collector plugin on the monitored server.

Data Processing
When blocks of samples arrive in the Data Metrics Server, they are queued on disk and loaded
into the database. Samples from a single server are processed in time-order, so that sample
blocks with older data are always processed before a sample block containing newer data. The
Data Metrics Server does not do time-correlation between blocks coming from different
servers. So, server A samples from two hours ago may be loaded immediately after server B
samples from two minutes ago. This flexibility enables servers to be unavailable to the Data
Metrics Server, without affecting the overall system monitoring. Also, a query for data from
server A and B may return data for server B but not server A, until the data queued for server
A has been collected and imported. Samples collected from the Data Metrics Server itself are
processed ahead of all other servers.

Importing Data
The Data Metrics Server polls all of the monitored servers at a regular interval. When new
samples are available, the Data Metrics Server fetches them through LDAP. The Data Metrics
Server has one dedicated thread taking sample blocks and converting them to the normalized
form stored in the DBMS. The import queue’s size is normally near zero, but under certain

- 67 -

Monitoring for Service Level Agreements

conditions it may become large. When the Data Metrics Server starts, it will queue (for import)
all sample blocks still on disk. Blocks that are older than two hours are discarded.

For example, if a monitored server becomes unavailable for an extended period of time, it will
continue to queue blocks of samples locally. When it becomes available again, the Data Metrics
Server collection poll of that server will capture hundreds or thousands of sample blocks. The
Data Metrics Server captures the sample blocks at a much faster speed than it can import
them, causing the queue to grow for a period of time. If the Data Metrics Server is stopped,
this problem is compounded because all monitored servers will then have a backlog of sample
blocks to be imported.

Aggregating Data
To maintain a size-limited DBMS while accumulating data over a period of years, the Data
Metrics Server aggregates data into four different levels. Each level contains data with less
time granularity, but covering a larger period of time. Data is aggregated from a lower
(greater time granularity) to a higher level as soon as enough data for aggregation is
available. For example, the level 0 data has one second granularity, and the level 1 data has
one minute granularity. After level 0 has collected one minute’s worth of data, the data from
that minute can be aggregated to level 1.

To keep the data tables for each aggregation level at a constrained size, each aggregation level
has a maximum age for the samples. When the samples are older than this age, they are
deleted from the level. While aggregation occurs soon after the samples arrive in the level,
pruning occurs only after all samples in a block have passed their age limit.

The Data Metrics Server attempts to collect data from all configured servers as efficiently as
possible. However, Monitored Server availability, DBMS backlog, and Data Metrics Server load
can all cause the data pipeline to slow down. The data aggregation system is designed to
correctly handle gaps in the data.

The resolution of the aggregation levels cannot be changed, but the maximum age of each
level can be configured. The following table lists the aggregation levels.

Level Resolution Default Maximum Age Maximum Age

0 1 second 2 hours 48 hours

1 1 minute 7 days 34 days

2 1 hour 12 months 5 years

3 1 day 20 years 20 years

Aggregation Levels

Monitoring for Service Level Agreements
The Data Metrics Server provides the ability to aggregate and track performance data for one
or more service level agreements (SLAs). The server aggregates the data using an SLA object
that tracks the current and historical performance of LDAP operations (throughput and
response times) that are tied to specifically monitored applications. The SLA object consists of
a tracked application name, one or more LDAP operations to be considered, a set of servers

- 68 -

Chapter 4: Collecting Data and Metrics

that contribute performance data to the SLA, and optionally, thresholds to generate alerts
should the server exceed these limits.

Thresholds are optional configuration settings that enable the monitoring of performance data.
Each threshold sets a limit that indicates a warning condition where the server's performance
is nearing a limit and/or a critical condition. When the monitored server enters or ends a
warning or critical state, the Data Metrics Server generates an alert. The generated alerts are
the same as those created by the Directory Server and Directory Proxy Servers and can be
routed through the Alert Handler to a monitoring console or administrator.

The SLA object can report the aggregate performance of all configured servers. The SLA object
is configured with the following:

l Designate Servers that Contribute to SLA Tracking – The SLA object includes a
Server Query component that is used to designate the servers that contribute to the SLA
measurements.

l REST API – A REST API enables listing configured SLA objects and their current status.
The Data Metrics Server REST API also enables listing alerts generated by SLA
thresholds, and blending the alert information with the threshold information to provide a
more contextual view of the tracked applications performance.

SLA Thresholds
The Data Metrics Server uses a Monitoring Threshold mechanism that has two components:

l Spike Monitoring Threshold – Used to configure a set of operational performance
limits on a specific measurement, where the limit is specified as a percent change from
the most recent measurement average value. A Spike Monitoring Threshold has warning
and critical limits, and will enter or leave an alerted state when the monitored value
exceeds either of the limits. This threshold is useful when the valid range of the
measurement is not known in advance. This type of limit is useful in detecting short-term
changes in a measurement that fluctuates broadly over time. The limit is applied in both
positive and negative directions, so that this type of threshold can detect an upward or
downward spike in the value. The following chart shows a spike monitoring threshold,
where the red line is the average throughput/second and the green lines are the limits,
showing the average window for the throughput.

- 69 -

Monitoring for Service Level Agreements

l Static Level Monitoring Threshold – Used to configure performance limits on a
specific measurement, where the specified limits are fixed values that do not change
over time. A Static Level Monitoring Threshold has warning and critical limits, and will
enter or leave an alerted state when the monitored value exceeds any of the limits. The
Static Level Monitoring Threshold is configured with static numeric limits, and is useful
when the expected valid range of the measurement is known in advance.

- 70 -

Chapter 4: Collecting Data and Metrics

Threshold Time Line
The Data Metrics Server periodically evaluates each threshold, computing current value,
current average, and alerted state. The default evaluation period is 30 seconds. Using the
figure below, a threshold is evaluated at time 'Now.' The most recent data that threshold uses
is one minute old (Newest Data). Each threshold evaluation requires at least one minute of new
data (Minimum Data). At time 'Now,' the threshold is working with data that is between one
and two minutes old (between Minimum Data and Newest Data).

The one minute delay between 'Now' and 'Newest Data' is not configurable. This delay ensures
that the Data Metrics Server has had enough time to poll the monitored servers and get the
most recent data. The one minute delay between 'Newest Data' and 'Minimum Data' is
configurable on a per-threshold basis for Spike-valued thresholds, but one minute is the
minimum window. Generally, time between when a monitored performance anomaly occurs on
a monitored system, and when an alert is created will be between two and three minutes.

Because the Data Metrics Server can capture metrics data with a very fine time resolution (one
second data is the default), the data is often very "noisy." By default, the data is time-
averaged (using five consecutive one-second samples to produce a single five-second value),
and time-averaging will ultimately reduce the noise. However, "noisy" data can make it harder
to choose an appropriate threshold limit value. If the limit value is too close to the noise levels,
the threshold will alert due to values that have a very short time duration.

Each threshold is configured with a minimum-time-to-trigger property, which determines the
minimum time allowed to exceed the threshold before an alert is generated, and a minimum-
time-to-exist property that determines the time required for the threshold to exit an alerted
state.

Configure an SLA Object
The SLA object relies on existing performance metrics and only aggregates the data for
specific SLAs. Configure any number of SLA objects for monitored servers. For more
information, see the Ping Identity Data Metrics Server Configuration Reference (HTML)
documentation in the <server-root>/docs directory.

The following steps use the dsconfig command-line tool:

- 71 -

Monitoring for Service Level Agreements

1. Create a server query that specifies which servers will contribute to SLA monitoring. In
this example, the command specifies the Directory Proxy Servers located in Austin.

$ bin/dsconfig create-server-query \
 --query-name "Austin Proxy Servers" \
 --set server-instance-type:proxy \
 --set server-instance-location:Austin

2. Create a static-level monitoring threshold. In this example, the alert condition is set
to entry, which means that the server will generate an alert if the server enters a
warning state (alert-on-warn:true and warn-if-above:12) or critical state
(critical-if-above:15). When the server leaves its alerted state, an alert is
generated (alertcondition: exit). The minimum amount of time that the threshold
can be exceeded before an alert is generated is set to 15 seconds (min-time-for-
trigger:15s).

$ bin/dsconfig create-monitoring-threshold \
 --threshold-name "15ms response time" \
 --type static-level \
 --set alert-condition:entry \
 --set alert-condition:exit \
 --set alert-on-warn:true \
 --set min-time-for-trigger:15s \
 --set min-time-for-exit:15s \
 --set warn-if-above:12 \
 --set critical-if-above:15

3. Create another static-level monitoring threshold. In this example, the alert condition
is set to entry. The server generates an alert if it enters a warning state (alert-on-
warn:true and warn-if-above:4000) or critical state (critical-if-above:5000).
When the server leaves its alerted state, an alert is generated (alertcondition:exit).
The minimum amount of time that the threshold can be exceeded before an alert is
generated is set to 15 seconds.

$ bin/dsconfig create-monitoring-threshold \
 --threshold-name "5k ops/sec" \
 --type static-level \
 --set alert-condition:entry \
 --set alert-condition:exit \
 --set alert-on-warn:true \
 --set min-time-for-trigger:15s \
 --set min-time-for-exit:15s \
 --set warn-if-above:4000 \
 --set critical-if-above:5000

4. Create an SLA object that targets an SSO application and monitors the response and
throughput times for LDAP bind operations. The response time threshold is set to 15ms.

- 72 -

Chapter 4: Collecting Data and Metrics

The throughput threshold is set to 5k operations per second. The targeted servers are the
set of Directory Proxy Servers, located in Austin.

$ bin/dsconfig create-ldap-sla \
 --sla-name "SSO Application" \
 --set enabled:true \
 --set "application-name:SSO Application" \
 --set "response-time-threshold-ms:15ms response time" \
 --set "throughput-threshold-ops-per-second:5k ops/sec"
 --set ldap-op:bind \
 --set "sla-server-query:Austin Proxy Servers"

- 73 -

Chapter 5: Configuring Charts and
Dashboards

The Data Metrics Server provides a set of dashboards with series of charts for each configured
PingData server.

Charts can be built and customized with the Data Metrics Server Chart Builder tool.
Dashboards and charts can be modified with Velocity templates.

Topics include:

Available Dashboards

Available Charts for Identity Servers

The Chart Builder Tool

Velocity Templates

- 74 -

Chapter 5: Configuring Charts and Dashboards

Available Dashboards
The Data Metrics Server includes several dashboards that can be used to display information
for all servers in a data center, specific applications, or SLA specifics. The following
dashboards are available:

ldap-dashboard – Displays charts for Directory Server, Directory Proxy Server, and Data
Sync Servers configured with the monitored-servers command. Charts are also displayed for
the Data Metrics Server server. This dashboard is viewed from a browser at
http://<metrics-host>:<port>/view/ldap-dashboard, and is easily customized. See
Customize the LDAP Dashboard. The charts can display information by:

l Individual server, server location, or server type.

l Varying level of detail adjusted by server type.

l Time scale, providing either a recent or more historical data view.

oath2-dashboard – Displays charts for configured Data Governance Broker servers. Charts
include information for data consent, applications requesting access to data, authorization, and
policy activity. This dashboard is viewed from a browser at http://<metrics-
host>:<port>/view/oauth2-dashboard.

- 75 -

Available Dashboards

sla-viewer – Displays throughput and response time graphs, and status for configured SLAs.
This dashboard is viewed from a browser at http://<metrics-host>:<port>/view/sla-
viewer. See Monitoring for Service Level Agreements for information about configuring SLAs.

sla-viewer-details – Displays SLA Viewer data and additional charts for response time and
time ranges from the sla-viewer dashboard. Data can be viewed per server and includes
server details.

- 76 -

Chapter 5: Configuring Charts and Dashboards

demo-dashboard – Demonstrates how to display a set of charts for multiple servers and how
to vary that set of charts per server type. This dashboard is viewed from a browser at
http://<metrics-host>:<port>/view/demo-dashboard. This dashboard can be used as a
starting point for custom dashboards.

A dashboard readme file provides general instructions for customizing any dashboard, and is
located in:

- 77 -

Available Dashboards

<server-root>/config/dashboard/dashboard.README

Custom style sheets can be created and referenced in the dashboard template or styles can be
configured for all charts. See Chart Presentation Details for information. The Data Metrics
Server default style sheets should not be modified.

Customize the LDAP Dashboard
Dashboards are defined by Velocity templates. After servers are configured, the LDAP
dashboard displays all metrics from monitored servers. See Velocity Templates for
information about templates and template components.

Perform the following to configure the LDAP dashboard:

l The configuration file for the LDAP dashboard is <server-
root>/config/velocity/templates/_ldap-dashboard-config.vm. This file should not
be changed, but can be used as a guide for customization.

Note
Files within this directory that begin with an underscore (_) are templates that are referenced by each of the
dashboards. The _ldap-dashboard-config.vm template is the only file that contains all of the
dashboard configuration inside the file. Configuration of other templates requires configuration of a
corresponding dashboard file as well.

l The _ldap-dashboard-config.vm file references a template file that can be customized
in <server-root>/velocity/templates/_ldap-dashboard-config-overrides.vm.
This is the file that should be customized.

l Both files contain configuration instructions. The following can be customized in the LDAP
dashboard overrides file:

o The charts that display for each server type and their styles. See Available Server
Charts.

o The charts that display for a data center and their styles.

o The charts that display for an application type and their styles.

o The default time resolution (two weeks, is the default for data displayed).

o The size of the charts.

Debug Dashboard Customization
A debug option can be used in any Velocity template for exploring available information in the
Velocity Context. This information includes the servers that are monitored and the metrics that
are available. This option is included in the ldap-dashboard and demo-dashboard files:

Uncomment this to have a window popup with detail of what's in the Velocity
Context.
##parse("_debug.vm")
##debug()

See Velocity Templates for more information.

- 78 -

Chapter 5: Configuring Charts and Dashboards

Preserve Customized Files
Any files that are customized should be copied from the config/velocity subdirectories to
the same subdirectory of the velocity directory under the server root (<server-
root>/velocity). The files in config/velocity should not be modified. They are updated
when the product is updated.

By default, any file of the same name under <server-root>/velocity will be loaded in place
of <server-root>/config/velocity. This enables the preservation of customized files after a
product upgrade.

After a product upgrade, review the files in config/velocity to determine if any changes
should be incorporated into customized templates.

The Chart Builder Tool
The Chart Builder tool is used to create performance charts for all configured servers. As the
settings in the Chart Builder are changed, the builder gathers the data from the Data Metrics
Server using the Data Metrics Server REST API. Once configured, the dashboard page
asynchronously fetches metric data for all charts, with each chart rendering when its data is
returned. While most metric queries respond quickly (50-100ms), some queries may take
longer. If the lag seems too long, consider making changes to the query to reduce the amount
of data gathered.

Selecting specific instances and using dimension filters can decrease query time. The Chart
Builder tool and the underlying libraries constrain a chart to a single metric. The size of each
chart is determined by the library default size (300x300) and can be overridden in the chart
properties file. There are times when the legends and labeling of a chart dictate the minimum
size for a chart.

The Chart Builder tool (chart-builder.vm) is shipped with the Data Metrics Server and is
enabled after installation at the following URL:

https://<metricshost>:<port>/view/chart-builder

- 79 -

The Chart Builder Tool

The metrics parameters used to build the chart can be saved to a properties file and added to a
dashboard. If not using the Chart Builder tool, the _chart-definition.template file in
<server-root>/config/dashboard/charts provides instructions about manually creating
charts and adding them to a dashboard.

Chart Presentation Details
Chart presentation details can be configured per chart or for all charts in the _chart-
definition.template file. A properties file can be created for common styes and referenced
in this file. Instructions for adding custom styles are included in the file.

The following is a sample of the chart parameters that are available:

l Colors used in the data series.

l Enable and disable a legend.

l Location (top/bottom/left/right) of the legend.

l Background color.

l Thickness of the time-series lines (absolute or as a function of the # of plotted series).

- 80 -

Chapter 5: Configuring Charts and Dashboards

l Macro expansion in the specified title.

l Sub-title (with macro expansion that includes metric-name and current date/time).

Chart Builder Parameters
Use the Chart Builder tool to build or adjust system and performance charts. When the
configuration is set, copy the parameters into a properties file, and add the chart to a
dashboard.

Parameters Description

Metric Group Selects a specific group of metrics to be considered for charting.

Metric Displays the specific metric. Open the drop-down list and hover over a metric to view a
description of the particular metric.

Pivot Splits the chart result into multiple series based on the pivot dimension chosen.

Dimension Filter Filters the data based on the dimension(s) entered, such as the type of operations that can be
viewed for an LDAP operations metric.

Statistic Displays the type of "measurement" that may exist for each metric. For example, each
response-time sample contains:

l number of operations (count)

l average time-per-op (average)

l histogram-of-operation-time (histogram)

On a per-sample basis, the Data Metrics Server stores the following: count, average, minimum,
maximum, and histogram. Any metric can have one or more of five statistics, but not all
statistics are equally valuable. Note the following points:

l The minimum and maximum statistics may be of limited value, because as they are

time-averaged, they go to extremes (min of minimums and max of maximums).

l The count and histogram statistics have high fidelity over time because they time-

aggregate perfectly.

l The average statistic loses fidelity over time, because as the time-window for

averaging gets larger, the highs and lows are lost.

Number of Points If the number of points is set to 1, all chart types, except time series, may be used. If the
number of points is > 1, then only time series charts may be used.

Chart Type Displays the chart based on the type:

l Area Time Series

l Bar Chart

l Column Chart

l Pie Chart

l Stacked Bar Chart

Chart Builder Parameters

- 81 -

Available Charts for PingData Servers

Parameters Description

l Stacked Column Chart

l Time Series

Chart Properties Displays the generated chart properties. Copy the query properties into a properties file.

Data URL The API for getting the data. This can be used to call the chart into a third-party client
application.

Chart Builder Parameters

Chart Properties File
Each dashboard uses a Velocity template (<name>.vm) and a set of chart properties files to
render the charts. As charts are configured with the Chart Builder tool, the tool generates the
corresponding properties for each customized item. The metrics configuration can be copied
into a properties file and added to a dashboard. If no values are specified for a given property,
the property will use a default value from the <server-root>/config/dashboard/charts/_
chart-definition.template file. All properties and their descriptions are listed in this file.

The properties in the chart definition file are broken into two groups: properties that start with
display affect the display of the data, and properties that start with query affect the metric
query. When building a new chart, just copy the query parameters into a properties file. In
general, display options should be referenced from common styles defined in the _chart-
definition.template file, or the styles defined for a dashboard.

Available Charts for PingData Servers
The following are the default charts that display on the LDAP Dashboard for each configured
server. These and additional charts for server and system metrics reside in <server-
root>/config/dashboard/charts. They can be modified or used to create new charts.

Charts for All Servers
The following charts are displayed on the LDAP Dashboard for Directory Server and Directory
Proxy Servers:

l LDAP Read Operations Per Second l System CPU

l LDAP Write Operations Per Second l System Memory Percent Free

l LDAP Response Time l System Network Read MB

l LDAP Response Time Outliers l System Network Write MB

l LDAP Worker Thread Percent Busy l System Disk Busy

l LDAP Average Operations in Progress l System Disk Service Wait

l LDAP Average Queue Size l System Disk Read MB

l LDAP Open Connections l System Disk Write MB

l LDAP New Connections

- 82 -

Chapter 5: Configuring Charts and Dashboards

Directory Server Charts
The following charts are displayed on the dashboard for the Directory Server:

l Replication Backlog l Backend Cache Percent Full

l Replication Oldest Change l Backend Size on Disk

l Replication Unresolved Naming Conflicts l Backend Cleaner Backlog

l Backend Entry Count

Directory Proxy Server Charts
The following charts are displayed on the dashboard for the Directory Proxy Server:

l External Server Total Operations l External Server Health

l External Server Failed Operations

Data Sync Server Charts
The following charts are displayed on the dashboard for the Data Sync Server:

l Sync Pipe Unretrieved Changes l Sync Pipe Completed Operations Failed

l Sync Pipe Percent Busy l Sync Pipe Completed Operations By
Type

l Sync Pipe Completed Operations Success

Data Metrics Server Charts
The following charts are displayed on the dashboard for the Data Metrics Server:

l Metrics Queries Per Minute l Metrics Cache Miss Count

l Metrics Query Time l Metrics Cache Expired Count

l Metrics Query Time Max l Metrics Cache Evicted Count

l Metrics Query Time Histogram l Metrics Import Delay

l Metrics Cache Entry Count l Metrics Load Time

l Metrics Cache Hit Count l Metrics DBMS Cluster Time

Data Governance Broker Charts
The following charts are displayed on the dashboard for the Data Governance Broker:

l Consent Trend l Oauth Grant Types

l Invalid Requests l Most Accessed Data Types

l Authorization Requests l Most Active Applications

- 83 -

Velocity Templates

Velocity Templates
The Data Metrics Server exposes Velocity pages through an HTTP Servlet Extension. If the
HTTP Connection Handler is enabled, the Velocity extension is enabled.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \

--add http-servlet-extension:Velocity

Velocity template files contain presentation content and variables that are replaced when the
content is requested. Variables are expressed using a $ followed by an identifier that refers to
an object put into a context (VelocityContext) by the server.

Velocity extensions can be configured to expose a number of objects in the context using the
expose-* properties:

l expose-request-attributes – Indicates whether HTTP request attributes are accessible
to templates using the $ubid_request variable. In general, request attributes are added
by server components processing the HTTP request. Also the HTTP request parameters
map is available as $ubid_request.parameters. Request parameters are supplied by
the requester, usually in the request URL query string or in the body of the request itself.

l expose-session-attributes – Indicates whether HTTP session attributes are accessible
to templates using the $ubid_session variable. Like request attributes, session
attributes are also added by server components processing the HTTP request. The
lifetime of these attributes persists until the user’s session has ended.

l expose-server-context – Indicates whether a Server SDK server context is accessible
to templates using the $ubid_server variable. The server context provides access to
properties and additional information about the server. See the Server SDK
documentation for details.

The following are other properties of the Velocity HTTP Servlet Extension:

l description – A description of the extension.

l cross-origin-policy – Defines a cross origin policy for this extension.

l base-context-path – URL base context for the Velocity Servlet.

l static-content-directory – In addition to templates, the Velocity Servlet will serve
miscellaneous static content related to the templates. By default this is
config/velocity/statics.

l require-authentication – Requires credentials to access Velocity content.

l identity-mapper – Maps user credentials to backend entries. If the require-
authentication property is set, use this property to map bind credentials from a users
backend. This is set to Exact Match by default. Data Metrics Server Velocity template
authentication should share the api-users LDIF backend used by the REST API. Details

- 84 -

Chapter 5: Configuring Charts and Dashboards

are available in the Data Metrics Server REST API servlet configuration, and in the
Connection and Security section of the Data Metrics Server REST API Reference chapter.

l static-custom-directory – If static content is customized, it resides in
velocity/statics by default.

l template-directory – The template directory from which templates are read. By
default this is config/velocity/templates. This directory also serves as a default for
Template Loaders that do not have a template directory specified.

l static-context-path – URL path beneath the base context where static content can be
accessed.

l allow-context-override – Indicates whether context providers may override existing
context objects with new values.

l mime-types-file – Specifies a file that is used to map file extensions of static content to
a Content Type to be returned with requests.

l default-mime-type – The default Content Type for HTTP responses. Additional content
types are supported by defining one or more additional Velocity Template Loaders.

The VelocityContext object can be further customized by configuring additional Velocity context
providers. The dot notation used for context references can be extended to access properties
and methods of objects in context using Java Bean semantics. For example, if the HTTP
request URL includes a name query string parameter like:

http://example.com:8080/view/hello?name=Joe

An HTML template like the following could be used to generate a page containing a friendly
greeting to the requestor:

<html>
<body>

Hello $ubid_request.parameters.name
</body>

</html>

A pop-up window displays a table on the page that lists all variables that are in the Velocity
Context. References like $ubid_request can appear in the template file and be replaced when
the template is rendered. This information can be used to check which variables are permitted
to be in the template along with the variable values.

Note
For security, all template substitutions are HTML escaped by default. To substitute unescaped content, a
variable name ending with "WithHtml" must be used. For example, $addressWithHtml, would
substitute the contents of the $addressWithHtml variable into the page generated from the HTML
template without escaping it.

A debug option can be used in any Velocity template for verifying available information in the
Velocity Context:

parse("_debug.vm")
debug()

- 85 -

Velocity Templates

If a variable is added to a template for something that does not exist, the rendered page will
contain a literal string of the unfulfilled variable (for example $undefined_variable).

By default, the Velocity Servlet Extension expects to access content in subdirectories of the
server’s config/velocity directory:

l templates – This directory contains Velocity template files that are used to generate
pages in response to client requests.

l statics – This directory contains static content such as cascading style sheets, HTML,
and Javascript files as well as images and third-party libraries.

Supporting Multiple Content Types
By default, the Velocity Servlet Extension is configured to respond to HTTP requests with a
content type text/html. Change this request type by setting the default MIME type using
dsconfig. For example, the following can be used to set the default type to XML:

$ bin/dsconfig set-http-servlet-extension-prop \
--extension-name Velocity \
--set default-mime-type:application/xml

HTML requests can be supported as well as clients that seek content in other formats. Create
one or more Velocity template loaders to load templates for other content types like XML or
JSON.

The ability to serve multiple formats of a document to clients at the same URL is typically
called content negotiation. HTTP clients indicate the type of content desired using the Accept
header. A client may use a header like the following to indicate that they prefer content in XML
but will fallback to HTML if necessary:

Accept: application/xml,text/html;q=0.9

The following can be used to create a Velocity template loader for XML content:

$ bin/dsconfig create-velocity-template-loader \
--extension-name Velocity \
--loader-name XML \
-–set evaluation-order-index:502 \
--set mime-type-matcher:application/xml \
–-set mime-type:application/xml \
-–set template-suffix:.vm.xml

Upon receiving a request, the Velocity Servlet first creates an ordered list of requested media
types from most desired to least based on the value of the Accept header. Starting from the
most desired type, it will then iterate over the defined template loaders according to the
evaluation-order-index property from lowest value to highest.

A template loader can indicate that it can handle content for requested media type by
comparing the requested type to its mime-type-matcher property. A loader can be configured
to load templates from a specific directory or load template files having a particular suffix. For
example, XML templates are expected to be named using a .vm.xml suffix. If a loader
indicates it handles the requested content type and a template exists for the requested view,

- 86 -

Chapter 5: Configuring Charts and Dashboards

the template is loaded and used to generate a response to the client. If no loaders are found
for the requested media type, the next most preferred media type (if any) is tried. If no
loaders indicated that they could satisfy the requested view, the client is sent an HTTP 404
(not found) error. If no loaders could provide acceptable media but the requested view exists
in some other format, the client is sent an HTTP 406 (not acceptable) error.

In this example, a template file called hello.vm.xml can be used to generate a response in
XML:

<hello name=”$ubid_request.parameters.name”/>

In this case, the response will contain an HTTP Content-Type header with the value of the
mime-type property of the Velocity template loader.

Velocity Context Providers
The previous examples use a value supplied as an HTTP request query string parameter to
form a response. The templates contain a variable $ubid_request.parameters.name that was
replaced at runtime with a value from the Velocity Context.

The Velocity Extension can be configured to make some information available in the Velocity
Context such as the HTTP request, session, and Server SDK Server Context. Velocity Context
Providers provide more flexibility in populating the Velocity Context for template use.

Here are some of the properties of a Velocity Context Provider:

l enabled – Indicates whether the provider will contribute content for any requests.

l object-scope – Indicates to the provider how often objects contributed to the Velocity
Context should be re-initialized. Possible values are: request, session, or
application.

l included-view/excluded-view – These properties can be used to restrict the views
for which a provider contributes content. A view name is the request URL’s path to the
resource without the Velocity Servlet’s context or a leading forward slash. If one or more
views are included, the provider will service requests for just the specified views. If one
or more views are excluded, the provider will service requests for all but the excluded
views.

Velocity Tools Context Provider
Apache’s Velocity Tools project is focused on providing utility classes useful in template
development. The Velocity Context can be configured by specifying Velocity Tool classes to be
automatically added to the Velocity Context for template development. For more information
about the Velocity Tools project, see the Velocity website.

The following command can be used to list the set of Velocity Tools that are included in the
Velocity Context for general use by templates:

$ bin/dsconfig get-velocity-context-provider-prop \
--extension-name Velocity \

- 87 -

Velocity Templates

--provider-name "Velocity Tools" \
 --property request-tool \
 --property session-tool \
 --property application-tool \

- 88 -

Chapter 6: Troubleshooting

There are several ways to troubleshoot issues with data gathering or with the Data Metrics
Server itself.

Topics include:

Collect Support Data Tool

Enable JVM Debugging

Slow Queries Based on Sample Cache Size

Insufficient Memory Errors

Unexpected Query Results

Conditions for Automatic Server Shutdown

Problems with SSL Communication

Installation and Maintenance Issues

- 89 -

Chapter 6: Troubleshooting

Use the collect-support-data tool
PingData servers provide information about their current state and any problems encountered.
If a problem occurs, run the collect-support-data tool in the /bin directory. The tool
aggregates all relevant support files into a zip file that can be sent to a support provider for
analysis. The tool also runs data collector utilities, such as jps, jstack, and jstat plus other
diagnostic tools for the operating system.

The tool may only archive portions of certain log files to conserve space, so that the resulting
support archive does not exceed the typical size limits associated with e-mail attachments.

The data collected by the collect-support-data tool may vary between systems. The data
collected includes the configuration directory, summaries and snippets from the logs
directory, an LDIF of the monitor and RootDSE entries, and a list of all files in the server root.

Perform the following steps to run this tool:

1. Navigate to the server root directory.

2. Run the collect-support-data tool. Include the host, port number, bind DN, and bind
password.

$ bin/collect-support-data \
 --hostname 100.0.0.1 --port 389 \
 --bindDN "cn=Directory Manager"
 --bindPassword secret \
 --serverRoot /opt/PingData<server> \
 --pid 1234

3. Email the zip file to a support provider.

Slow Queries Based on Sample Cache Size
The evicted-count attribute of the sample cache sets the number of entries that have been
evicted from the cache due to a lack of space. The cache may not be large enough for the
query load placed on the server. Increase the size of the sample cache with the following
command, which sets the maximum size to 200000:

$ dsconfig set-monitoring-configuration-prop \
 --set sample-cache-max-cached-series:200000

Some queries are so infrequent that the cached data expires due to age. The default age is 10
minutes, but this can be increased up to one hour. If the expired-count monitor attribute is
increasing between queries, consider increasing the idle timeout as follows:

$ dsconfig set-monitoring-configuration-prop \
 --set sample-cache-idle-series-timeout:20m

- 90 -

Insufficient memory errors

Insufficient memory errors
If the server shuts down due to insufficient memory errors, it is possible that the allocated
heap size is not enough for the amount of data being returned. Consider increasing the heap
size, or reducing the number of request handler threads using the following dsconfig
command:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTP Connection Handler" \
 --set num-request-handlers:<num-of-threads>

Unexpected Query Results
The query API aggregates data samples across servers and dimension values. The samples for
different servers, or even different dimension values, are imported into the Data Metrics
Server at different times. All metric data is imported in time-order for each server. The
ordering cannot be set across servers, and samples for a specific time may arrive in stages.
Therefore, a metric query that aggregates across servers or dimensions may get partial data
when the query time range ends. This problem can be compounded when the monitored
servers clocks are not synchronized (samples have the monitored server timestamp). The
query looks at a single time range. The more clock skew between the monitored servers, the
higher the probability of the results not being accurate for the range.

With the query API, the data can be pivoted (split) by server and dimension. The API enables
formatting the results as an HTML table. The following sequence of API URLs return the last
three minutes of data in 10-second increments:

http://<metrics-server-host:port>/api/v1/metrics/throughput/datatable?
maxIntervals=30&startTime=-3m&tqx=out:html&tz=US/Central

http://<metrics-server-host:port>/api/v1/metrics/throughput/datatable?
maxIntervals=30&startTime=-3m&tqx=out:html&tz=US/Central&pivot=instance

http://<metrics-server-host:port>/api/v1/metrics/throughput/datatable?
maxIntervals=30&startTime=-
3m&tqx=out:html&tz=US/Central&pivot=instance&pivot=op-type

l The first URL aggregates all servers and LDAP operations into a single number split
across time.

l The second URL splits out the data by server and time.

l The third URL splits out the data by server, LDAP operation, and time.

As dimension pivots (splits) are added, the results display more aggregations of partial data.

- 91 -

Chapter 6: Troubleshooting

Conditions for automatic server shutdown
All PingData servers will shutdown in an out of memory condition, a low disk space error state,
or for running out of file descriptors. The Directory Server will enter lockdown mode on
unrecoverable database environment errors, but can be configured to shutdown instead with
this setting:

$ dsconfig set-global-configuration-prop \
--set unrecoverable-database-error-mode:initiate-server-shutdown

Problems with SSL communication
Enable TLS debugging in the server to troubleshoot SSL communication issues:

$ dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name
com.unboundid.directory.server.extensions.TLSConnectionSecurityProvider \
 --set debug-level:verbose \
 --set include-throwable-cause:true

$ dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true \
 --set default-debug-level:disabled

In the java.properties file, add -Djavax.net.debug=ssl to the start-ds line, and run
bin/dsjavaproperties to make the option take effect on a scheduled server restart.

Installation and maintenance issues
The following are common installation and maintenance issues and possible solutions.

The setup program will not run
If the setup tool does not run properly, some of the most common reasons include the
following:

A Java Environment Is Not Available – The server requires that Java be installed on the
system prior to running the setup tool.

If there are multiple instances of Java on the server, run the setup tool with an explicitly-
defined value for the JAVA_HOME environment variable that specifies the path to the Java
installation. For example:

$ env JAVA_HOME=/ds/java ./setup

Another issue may be that the value specified in the provided JAVA_HOME environment variable
can be overridden by another environment variable. If that occurs, use the following command
to override any other environment variables:

- 92 -

Installation and maintenance issues

$ env UNBOUNDID_JAVA_HOME="/ds/java" UNBOUNDID_JAVA_BIN="" ./setup

Unexpected Arguments Provided to the JVM – If the setup tool attempts to launch the
java command with an invalid set of arguments, it may prevent the JVM from starting. By
default, no special options are provided to the JVM when running setup, but this might not be
the case if either the JAVA_ARGS or UNBOUNDID_JAVA_ARGS environment variable is set. If the
setup tool displays an error message that indicates that the Java environment could not be
started with the provided set of arguments, run the following command:

$ unset JAVA_ARGS UNBOUNDID_JAVA_ARGS

The Server Has Already Been Configured or Started – The setup tool is only intended to
provide the initial configuration for the server. It will not run if it detects that it has already
been run.

A previous installation should be removed before installing a new one. However, if there is
nothing of value in the existing installation, the following steps can be used to run the setup
program:

l Remove the config/config.ldif file and replace it with the
config/update/config.ldif.{revision} file containing the initial configuration.

l If there are any files or subdirectories in the db directory, then remove them.

l If a config/java.properties file exists, then remove it.

l If a lib/setup-java-home script (or lib\set-java-home.bat file on Microsoft
Windows) exists, then remove it.

The server will not start
If the server does not start, then there are a number of potential causes.

The Server or Other Administrative Tool Is Already Running – Only a single instance of
the server can run at any time from the same installation root. Other administrative operations
can prevent the server from being started. In such cases, the attempt to start the server
should fail with a message like:

The <server> could not acquire an exclusive lock on file
/ds/PingData<server>/locks/server.lock:
The exclusive lock requested for file
/ds/PingData<server>/locks/ server.lock
was not granted, which indicates that another
process already holds a shared or exclusive lock on
that file. This generally means that another instance
of this server is already running.

If the server is not running (and is not in the process of starting up or shutting down), and
there are no other tools running that could prevent the server from being started, it is possible
that a previously-held lock was not properly released. Try removing all of the files in the locks
directory before attempting to start the server.

- 93 -

Chapter 6: Troubleshooting

There Is Not Enough Memory Available – When the server is started, the JVM attempts to
allocate all memory that it has been configured to use. If there is not enough free memory
available on the system, the server generates an error message indicating that it could not be
started.

There are a number of potential causes for this:

l If the amount of memory in the underlying system has changed, the server might need
to be re-configured to use a smaller amount of memory.

l Another process on the system is consuming memory and there is not enough memory to
start the server. Either terminate the other process, or reconfigure the server to use a
smaller amount of memory.

l The server just shut down and an attempt was made to immediately restart it. If the
server is configured to use a significant amount of memory, it can take a few seconds for
all of the memory to be released back to the operating system. Run the vmstat
command and wait until the amount of free memory stops growing before restarting the
server.

l For Solaris-based systems, if the system has one or more ZFS filesystems (even if the
server itself is not installed on a ZFS filesystem), it is possible that ZFS caching is
holding onto a significant amount of memory and cannot release it quickly enough to
start the server. Re-configure the system to limit the amount of memory that ZFS is
allowed to use.

l If the system is configured with one or more memory-backed filesystems (such as tmpfs
used for Solaris /tmp), determine if any large files are consuming a significant amount of
memory. If so, remove them or relocate them to a disk-based filesystem.

An Invalid Java Environment or JVM Option Was Used – If an attempt to start the
server fails with 'no valid Java environment could be found,' or 'the Java environment could
not be started,' and memory is not the cause, other causes may include the following:

l The Java installation that was previously used to run the server no longer exists. Update
the config/java.properties file to reference the new Java installation and run the
bin/dsjavaproperties command to apply that change.

l The Java installation has been updated, and one or more of the options that had worked
with the previous Java version no longer work. Re-configure the server to use the
previous Java version, and investigate which options should be used with the new
installation.

l If an UNBOUNDID_JAVA_HOME or UNBOUNDID_JAVA_BIN environment variable is set, its
value may override the path to the Java installation used to run the server (defined in the
config/java.properties file). Similarly, if an UNBOUNDID_JAVA_ARGS environment
variable is set, then its value might override the arguments provided to the JVM. If this is

- 94 -

Installation and maintenance issues

the case, explicitly unset the UNBOUNDID_JAVA_HOME, UNBOUNDID_JAVA_BIN, and
UNBOUNDID_JAVA_ARGS environment variables before starting the server.

Any time the config/java.properties file is updated, the bin/dsjavaproperties tool must
be run to apply the new configuration. If a problem with the previous Java configuration
prevents the bin/dsjavaproperties tool from running properly, remove the lib/set-java-
home script (or lib\set-java-home.bat file on Microsoft Windows) and invoke the
bin/dsjavaproperties tool with an explicitly-defined path to the Java environment, such as:

$ env UNBOUNDID_JAVA_HOME=/ds/java bin/dsjavaproperties

An Invalid Command-Line Option was Used – There are a small number of arguments
that can be provided when running the bin/start-server command. If arguments were
provided and are not valid, the server displays an error message. Correct or remove the
invalid argument and try to start the server again.

The Server Has an Invalid Configuration – If a change is made to the server configuration
using dsconfig or the Administrative Console, the server will validate the change before
applying it. However, it is possible that a configuration change can appear to be valid, but does
not work as expected when the server is restarted.

In most cases, the server displays (and writes to the error log) a message that explains the
problem. If the message does not provide enough information to identify the problem, the
logs/config-audit.log file provides recent configuration changes, or the config/archived-
configs directory contains configuration changes not made through a supported configuration
interface. The server can be started with the last valid configuration using the --
useLastKnownGoodConfig option:

$ bin/start-server --useLastKnownGoodConfig

To determine the set of configuration changes made to the server since the installation, use the
config-diff tool with the arguments --sourceLocal --targetLocal --sourceBaseline.
The dsconfig --offline command can be used to make configuration changes.

Proper Permissions are Missing – The server should only be started by the user or role
used to initially install the server. However, if the server was initially installed as a non-root
user and then started by the root account, the server can no longer be started as a non-root
user. Any new files that are created are owned by root.

If the user account used to run the server needs to change, change ownership of all files in the
installation to that new user. For example, if the server should be run as the "ds" user in the
"other" group, run the following command as root:

$ chown -R ds:other /ds/PingData<server>

The server has shutdown
Check the current server state by using the bin/server-state command. If the server was
previously running but is no longer active, potential reasons may include:

l Shut down by an administrator – Unless the server was forcefully terminated, then
messages are written to the error and server logs stating the reason.

- 95 -

Chapter 6: Troubleshooting

l Shut down when the underlying system crashed or was rebooted – Run the uptime
command on the underlying system to determine what was recently started or stopped.

l Process terminated by the underlying operating system – If this happens, a message is
written to the system error log.

l Shut down in response to a serious problem – This can occur if the server has detected
that the amount of usable disk space is critically low, or if errors have been encountered
during processing that left the server without worker threads. Messages are written to
the error and server logs (if disk space is available).

l JVM has crashed – If this happens, then the JVM should provide a fatal error log (a hs_

err_pid<processID>.log file), and potentially a core file.

The server will not accept client connections
Check the current server state by using the bin/server-state command. If the server does
not appear to be accepting connections from clients, reasons can include the following:

l The server is not running.

l The underlying system on which the server is installed is not running.

l The server is running, but is not reachable as a result of a network or firewall
configuration problem. If that is the case, connection attempts should time out rather
than be rejected.

l If the server is configured to allow secure communication through SSL or StartTLS, a
problem with the key manager or trust manager configuration can cause connection
rejections. Messages are written to the server access log for each failed connection
attempt.

l The server may have reached its maximum number of allowed connections. Messages
should be written to the server access log for each rejected connection attempt.

l If the server is configured to restrict access based on the address of the client, messages
should be written to the server access log for each rejected connection attempt.

l If a connection handler encounters a significant error, it can stop listening for new
requests. A message should be written to the server error log with information about the
problem. Restarting the server can also solve the issue. Another option is to create an
LDIF file that disables and then re-enables the connection handler, create the
config/auto-process-ldif directory if it does not already exist, and then copy the
LDIF file into it.

The server is unresponsive
Check the current server state by using the bin/server-state command. If the server
process is running and appears to be accepting connections but does not respond to requests

- 96 -

Installation and maintenance issues

received on those connections, potential reasons for this include:

l If all worker threads are busy processing other client requests, new requests are forced
to wait until a worker thread becomes available. A stack trace can be obtained using the
jstack command to show the state of the worker threads and the waiting requests.

If all worker threads are processing the same requests for a long time, the server sends
an alert that it might be deadlocked. All threads might be tied up processing unindexed
searches.

l If a request handler is busy with a client connection, other requests sent through that
request handler are forced to wait until it is able to read data. If there is only one request
handler, all connections are impacted. Stack traces obtained using the jstack command
will show that a request handler thread is continuously blocked.

l If the JVM in which the server is running is not properly configured, it can spend too
much time performing garbage collection. The effect on the server is similar to that of a
network or firewall configuration problem. A stack trace obtained with the pstack utility
will show that most threads are idle except the one performing garbage collection. It is
also likely that a small number of CPUs is 100% busy while all other CPUs are idle. The
server will also issue an alert after detecting a long JVM pause that will include details.

l If the JVM in which the server is running has hung, the pstack utility should show that
one or more threads are blocked and unable to make progress. In such cases, the
system CPUs should be mostly idle.

l If a there is a network or firewall configuration problem, communication attempts with
the server will fail. A network sniffer will show that packets sent to the system are not
receiving TCP acknowledgment.

l If the host system is hung or lost power with a graceful shutdown, the server will be
unresponsive.

If it appears that the problem is with the server software or the JVM, work with a support
provider to diagnose the problem and potential solutions.

Problems with the Administrative Console
If a problem occurs when trying to use the Administrate Console, reasons may include one of
the following:

l The web application container that hosts the console is not running. If an error occurs
while trying to start it, consult the logs for the web application container.

l If a problem occurs while trying to authenticate, make sure that the target server is
online. If it is, the access log may provide information about the authentication failure.

l If a problem occurs while interacting with the server instance using the Administrative
Console, the access and error logs for that instance may provide additional information.

- 97 -

Chapter 7: Data Metrics Server API
Reference

The Data Metrics Server REST API can be used to build custom dashboards and other
applications for processing and viewing data. The API interface can be accessed using
standard tools and charting packages. The Data Metrics Server API is also easily accessed
from a Web browser.

Topics include:

Connection and Security

List Monitored Instances

Retrieve Monitored Instance

List Available Metrics

Retrieve a Metric Definition

Perform a Metric Query

Data Set Structure

Google Chart Tools Datasource Protocol

Access Alerts

LDAP SLA

Pagination

- 98 -

Chapter 7: Data Metrics Server API Reference

Connection and Security
No sensitive user data is collected by the Data Metrics Server and stored in the DBMS. If
secure access to the Data Metrics Server REST API is required, enable secure HTTPS
connections and require authentication. A secure HTTPS Connection Handler and authentication
can be enabled using dsconfig, if not configured during setup.

Note By default, the DataMetrics Server can open up to 20 simultaneous database connections. The
HTTP Connection handler that runs the REST API servlet has a default value of 15 connections. If the
DataMetrics Server receives requests throughmultiple HTTP Connection Handlers, make sure that the
total number of request handlers does not exceed themaximum number of database connections.

When authentication is enabled, the REST API service requires HTTP basic authentication.
Requests are authenticated against entries in the api-users LDIF backend, or entries in
cn=Root DNs,cn=config. Root DN users have many privileges by default. To restrict access,
authenticate with users in the api-users backend instead, to prevent the unnecessary use of
more privileged account credentials.

Enable REST API authentication by setting the require-api-authentication property of the
Metrics HTTP Servlet Extension Configuration object as follows:

$ bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Data Metrics Server REST API Servlet" \
--set require-api-authentication:true

Perform the following steps to add a REST API user:

1. Create a file name api-user1.ldif containing one or more user entries with no
privileges. Below is a sample user entry.

dn: cn=app-user1,cn=api-users
changeType: add
objectClass: inetOrgPerson
objectClass: person
objectClass: top
cn: app-user1
uid: app-user1
sn: User1
userpassword: api1
ds-pwp-password-policy-dn: cn=Default Password Policy,cn=Password
Policies,cn=config

The password is in clear text. It will be encrypted in the next step.

2. As a privileged user that can add API users, load the entry using ldapmodify:

$ bin/ldapmodify --filename api-user1.ldif

3. Authenticate using either the full DN of the user added (cn=app-user1,cn=api-users)
or the UID (app-user1). The user name to DN map is governed by the identity-

- 99 -

Connection and Security

mapper setting of the Metrics REST HTTP Servlet Extension configuration object.

4. Enable Velocity Template authentication as well:

$ bin/dsconfig set-http-servlet-extension-prop \
 --extension-name Velocity \
 --set require-authentication:true

Secure Error Messages
When developing an application that uses the Data Metrics Server API, error messages should
not be delivered from the API directly to a user. Also, the application should not depend on
error messages or reason text. These messages may change over time, and their presence
may depend on server configuration. Use the HTTP return code and the context of the request
to create a client error message that is displayed to the user.

The Data Metrics Server API has an omit-error-message-details Metrics HTTP Servlet
Extension Configuration object, that when enabled, restricts error messages to the typical
reason phrase associated with the HTTP return code (such as, 'Not Found' for an HTTP 404
error). This prevents the server from inadvertently revealing information about itself or its
data. Set this property as follows:

$ bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Data Metrics Server REST API Servlet" \
--set omit-error-message-details:true

Response Codes
The following response codes are available:

Response Code Description

200 0K The request was processed successfully and the requested data returned.

400 Bad Request The request contained an error. Refer to the error message to resolve the issue.

404 Not Found The requested resource is not found or no samples are collected for the metric.

500 Internal Server Error An unexpected server error occurred. Refer to the error message for more info.

503 Service Not Available The metric query service is temporary offline. Refer to the error message for
more info.

The following is a sample response:

Response Body <?xml version="1.0" encoding="UTF-8"?>
<errorResponse xmlns="com.unboundid.directory.mon.api.v1.models">
 <errors reason="unknown_data_source_id" message="There are
 no metrics defined with id connections"/>
</errorResponse>

- 100 -

Chapter 7: Data Metrics Server API Reference

List Monitored Instances
Get a list of all monitored instances along with their current status. The default format is JSON.
The servlet will use the HTTP Accept header as a hint if no specific format is specified. Results
are filtered using the various instance query parameters.

URL /api/v1/instances
Method GET
Formats JSON, XML
Query Parameters instanceHostname – Hostname(s) of the servers from which data is

gathered. Multiple values are evaluated as logical ORs.

instanceLocation – Location(s) of the servers from which data is
gathered. Multiple values are evaluated as logical ORs.

instanceType – Types of server(s) to get data from. Possible values
are:

l ds

l proxy

l sync

l metrics-server

instanceVersion – Version(s) of the servers to get data from. Multiple
values are evaluated as logical ORs.

EXAMPLES
All instances in JSON format.

curl \
-X GET \
https://<metricsHost>:8080/api/v1/instances.json

All Directory Server and Directory Proxy Server instances in XML format:

curl \
-X GET \
https://<metricsHost>:8080/api/v1/instances.xml?
instanceType=data-store&instanceType=proxy

Response Code 200 0K
Response Body {

 "found" : 2
 "offset" : 0,#
 "instances" : [{
 "type" : "ds",
 "id" : "pingidentity4510",
 "hostname": "pingidentity5200.example.com",

- 101 -

Retrieve Monitored Instance

 "displayName" : "pingidentity4510",
 "version": "Directory Server 6.0.1.0.0",
 "operatingSystem": "Solaris",
 "status": {
 "state": "ONLINE"
 }
 }, {
 "type" : "ds",
 "id" : "unboundid3500",
 "hostname": "unboundid3500.example.com",
 "displayName" : "directory3500",
 "version": "UnboundID Directory Server 3.5.0.0",
 "operatingSystem": "Linux",
 "status": {
 "state": "DEGRADED",
 "unavailableAlerts": [

"replication-backlogged"
]
 }
}] }

Retrieve Monitored Instance
Get a specific monitored instance along with its status. The default format is JSON. The servlet
will use the HTTP Accept header as a hint if no specific format is specified.

URL /api/v1/instances/{instance}{.format}
Method GET
Formats JSON, XML
Query Parameters N/A
Server State The Data Metrics Server returns the server state status of the

monitored instance, which is displayed by the status parameter. The
status parameter can have one of the following values:

OFFLINE – Server cannot be contacted.

STARTING_UP – Server is starting.

ONLINE – Server is available.

DEAD_LOCKED – Server is deadlocked and not able process more
operations.

UNAVAILABLE – Server is unavailable, but not offline. The server may
be in lock-down mode, but may be online.

DEGRADED – Server is available but is incapable of providing services.

CONNECTION_ERROR – Server could not connect or has lost connection to
the host.

- 102 -

Chapter 7: Data Metrics Server API Reference

EXAMPLE:
Instance with ID metrics-server in JSON format.

curl \
-X GET \
https://<metricsServerHost>:8080/api/v1/instances/metrics-server.json

Response Code 200 0K
Response Body {

 "displayName": "metrics-server",
 "hostname": "metrics-server.example.com",
 "id" : "metrics-server",
 "operatingSystem": "Solaris",
 "status" : {
 "state" : "ONLINE"
 },
 "type" : "metrics-server",
 "version": "PingData Data Metrics Server 6.0.1.0"
}

List Available Metrics
Get a list of metric definitions with their units, dimensions, names, and other values. The
default format is JSON. The servlet will use the HTTP Accept header if no specific format is
specified.

URL /api/v1/metrics{.format}
Method GET
Formats JSON, XML
Query Parameters name – Limits the results to metrics whose names contain a matching

substring. The search is not case-sensitive.

type – Limits the results to the metrics of the specified type. Possible
values are:

l discreteValued

l continuousValued

l count

group – Limits the results to the metrics within the specified group.
Possible values are:

l Directory Server Backend

l Monitoring Data Cache

l Java Virtual Machine

l LDAP

- 103 -

List Available Metrics

l Entry Balancing

l Directory Server Entry Cache

l External Server

l Host System

l Metric Query

l Monitoring DBMS

l Monitoring Data Processing

l Replication

l Sync Pipe

instanceType – Limits the result to metrics that uses the specified
instance types as sources. Possible values are:

l ds

l proxy

l sync

l metrics-server

statistic – Limits the results to metrics that provides the specified
statistics. Possible values are:

l count

l average

l maximum

l minimum

l histogram

EXAMPLES
All metrics in JSON format.

curl \
 -X GET \
 https://<metricsServerHost>:8080/api/v1/metrics.json

All count type metrics in the “Directory Server Backend” group providing either count or
average statistics:

curl \
 -X GET \
 https://<metricsServerHost>:8080/api/v1/metrics.json?type=count&group=ds
%20backend&statistic=count&statistic=average

- 104 -

Chapter 7: Data Metrics Server API Reference

Note
Spaces in parameter values may be encoded as %20 or t.

Response Code 200 0K
Response Body {

 "found": 7,
 "metrics": [

{
 "countUnit": {
 "abbreviatedName": "Chkpt",
 "pluralName": "Checkpoints",
 "singularName": "Checkpoint"
 },
 "description": "Number of database checkpoints
 performed by the backend",
 "dimensions": [

{
 "id": "backend",
 "values": [
 "userroot"
]
 }
],
 "group": "Directory Server Backend",
 "id": "backend-checkpoints",
 "instanceTypes": [
 "ds"
],
 "name": "Backend Checkpoints",
 "shortName": "Checkpoints",
 "statistics": [
 "count"
],
 "type": "count"
 },

...

Retrieve a Metric Definition
Get a specific metric definition. The default format will be JSON if none is specified. The servlet
will use the HTTP Accept header as a hint if no specific format is specified.

URL /api/v1/metrics/{metricId}{.format}
Method GET
Formats JSON, XML
Query Parameters N/A

- 105 -

Perform a Metric Query

EXAMPLE
Metric with ID backend-sequential-writes in XML format.

curl \
 -X GET \
 https://<metricsServerHost>:8080/api/v1/metrics/backend-sequential-
writes.xml

Response Code 200 0K
Response Body <?xml version="1.0" encoding="utf-8" standalone="yes"?>

<countMetric xmlns="com.unboundid.directory.mon.api.v1"
 id="backend-sequential-writes" name="Sequential Disk Writes"
 shortName="Sequential Writes" group="Directory Server Backend">
 <description>Number of Sequential I/O Disk writes
 made by backend</description>
 <instanceTypes>
 <instanceType>ds</instanceType>
 </instanceTypes>
 <statistics>
 <statistic>count</statistic>
 </statistics>

 <dimensions>
 <dimension id="backend">
 <values>
 <value>userroot</value>
 </values>
 </dimension>
 </dimensions>
 <countUnit singularName="Sequential Write"
 pluralName="Sequential Writes" abbreviatedName="Seq Wr" />
</countMetric>

Perform a Metric Query
A metric query returns the collected sample data from the various monitored instances. The
data returned can be presented many ways, depending on client requirements.

Common Query
Parameters

instanceType – Type(s) of instances to get data from. Possible values
are:

l ds

l proxy

l sync

l metrics-server

instanceLocation – Location(s) of the instances from which data is
collected.

- 106 -

Chapter 7: Data Metrics Server API Reference

instanceHostname – Names of the machines hosting the instances.

instanceVersion – Version(s) of the instances providing the data.

instance (multi-valued) – ID(s) of the instances from which data is
collected. The instance ID is the cn of the external server and the same
name as listed by the status command.

startTime – Include samples on or after the specified time. The time is
either an absolute time in ISO 8601 format (such as 2016-08-
13T19:36:00Z) or a time relative to the endTime (such as -5m or -4h).
By default, the start time is -5m.

endTime – Include samples on or before this time. The end time is
either an absolute time in ISO 8601 format or a time relative to now
(such as -5m or -4h). The default end time is now. Offset time values
are relative to the current system clock time on the Data Metrics Server.

maxIntervals – The number of separate intervals, between the start
and end times, returned. This is considered the “resolution” of the data
over time. By default, the maximum number of intervals is 1, which
means all samples collected between the start and end times will be
aggregated into one result according to the statistic selected.

statistic – Retrieve and apply this statistic to the data. Default for
count based metrics is count and average for other metric types.
Possible values are:

l count

l average

l minimum

l maximum

l histogram

dimension – Include only these dimension values. A colon separates
the dimension name and values, which are separated by commas (for
example, op-type:add,delete).

pivot – Pivot by these dimensions. A pivot keeps the data separated
along different dimensional values. The value “instance” may be used to
keep the data separate between different instances. For metrics that
have the histogram statistic, the histogram pivot may also be used to
keep the values of each histogram bucket separate.

tz – Specifies the timezone to be used when displaying dates. By
default, it is GMT. The timezone is specified in Java Time Zone format,
so "US/Central" is CST in the United States.

Sub-parameters for
the count and
average statistics

Both the count and average statistics of count type metrics may have a
rate scale applied to occurrences over a period of time using the per
sub-parameter. The valid rate scaling values are:

- 107 -

Data Set Structure

l s or second

l m or minute

l h or hour
Sub-parameters for
the histogram
statistic

The histogram statistic includes all buckets and keeps the raw value for
each bucket. Graphs can be configured to show the percentage of all
operations above a given threshold, such as 50 ms. These graphs are
useful for looking at a small percentage of operations in a given
category. If the value falls between histogram bucket boundaries, the
buckets where it falls will be included in the data. The possible values
are:

l min - Includes in the calculation only the histogram data above
the given threshold.

l max - Provides an upper bound on the histogram value

l percent - Allows the histogram values to be reported as a
percentage of the overall values. Instead of returning raw counts,
the value is a fraction of the total. This percentage is calculated
within a pivot.

If both min and max are specified, the returned value is the sum of all
buckets between and including min and max.

Data Set Structure
The data set structure is a proprietary data structure that is space-optimized and designed to
work with charting libraries like Highcharts or FusionCharts. The default format is JSON. The
servlet will use the HTTP Accept header as a hint if no format is specified.

URL /api/v1/metrics/{metricId}/dataset{.format}
Method GET
Formats JSON, XML

Note
All of the CommonQuery parameters apply to this resource.

Get the average response time metric for add and delete operations from 7/7/2015 for all
Directory Server and Directory Proxy Server in Austin and Houston:

curl \
 -X GET \
 https://<metricsServerHost>:8080/api/v1/metrics/response-time/dataset?
instanceType=directory-server
 &instanceType=proxy&instanceLocation=austin&instanceLocation=houston&startTi
me=-1d
 &endTime=2015-07-07&pivot=instance&dimension=op-type:add,delete

Get the new connections metric and scale the value per hour in the last 5 minutes:

- 108 -

Chapter 7: Data Metrics Server API Reference

curl \
 -X GET \
 https://<metricsServerHost>:8080/api/v1/metrics/new-connections/dataset?
statistic=count;per:hour

Get the percentage of all occurrences in the last hour where the response-time metric has a
value above 50ms:

curl \
 -X GET \
 https://<metricsserverHost>:8080/api/v1/metrics/response-time/dataset?
statistic=histogram;min:50;percent&startTime=-1h

Response Code 200 0K
Response Body When one time interval is requested, a category dataset is returned

where the first pivoted dimension values are listed as categories and
each data point corresponds to a category. Subsequent pivots and
histogram buckets are included as a series and subseries. This example
is the result of two pivots, op-type and instance:

{
 "type" : "category",

 "firstSampleTime" : 1344090300000,
 "lastSampleTime" : 1344090600000,
 "metric" : {
 "type" : "discreteValued",
 "id" : "response-time",
 "name" : "Response Time",
 "shortName" : "Response Time",
 "description" : "Time for server to process an LDAP
 operation and send a response to the client",
 "group" : "LDAP",
 "instanceTypes" : ["ds", "proxy"],
 "statistics" : ["average", "count", "histogram"],
 "dimensions" : [{
 "id" : "application-name"
 }, {
 "id" : "op-type",
 "values" : ["Search", "ModifyDN", "Add", "Delete",
 "Compare", "Bind", "Modify"]
 }],
 "countUnit" : {
 "singularName" : "Operation Response Time",
 "pluralName" : "Operation Response Time",
 "abbreviatedName" : "Response Time"
 },
 "valueUnit" : {
 "singularName" : "Millisecond",
 "pluralName" : "Milliseconds",
 "abbreviatedName" : "Msec"

- 109 -

Google Chart Tools Datasource Protocol

 }
 },
 "series" : [{
 "label" : "unboundid35",
 "data" : ["0", "0", "0", "0", "0", "0", "0"]
 }, {
 "label" : "unboundid3",
 "data" : ["0", "0", "0", "0", "0", "0", "0"]
 }],

 "label" : "op-type",
 "categories" : ["Search", "Delete", "Bind", "Modify",
 "Add", "ModifyDN", "Compare"]
}

Google Chart Tools Datasource Protocol
Metrics data can be presented with Google's Chart Tools Datasource protocol. The Google
Visualization API query language (the tq request parameter) is not supported. The Data
Metrics Server supports JSON, HTML, CSV, and TSV data formats as outlined by the Datasource
protocol.

URL /api/v1/metrics/{metricId}/datatable
Method GET
Formats JSON, HTML, CSV, and TSV
Query
Parameters

tqx=out:html – HTML formatted output.

tqx=out:csv – CSV formatted output.

tqx=out:tsv-excel – TSV formatted output.

tz – Specifies the timezone to be used when displaying dates. The Google
Visualization API assumes that the times returned are in local time. The Data
Metrics Server stores and returns all timestamps in GMT. This parameter
specifies how the Data Metrics Server presents the time. Usually, the client
will pass the user's local timezone in IANA Time Zone Database format, such
as "US/Central."

Note
All CommonQuery parameters apply to this resource.

The following example gets the average response time metric for the last 5 minutes with 30
second (5 * 60 / 10) resolution and pivoted by op-type and then instance in CSV format:

curl \
 -X GET \
 https://<metricsServerHost>:8080/api/v1/metrics/response-time/datatable?
tqx=out:csv&maxIntervals=10
 &pivot=op-type&pivot=instance&tz=US/Central

Response
Code

200 0K

- 110 -

Chapter 7: Data Metrics Server API Reference

Response
Body

When only one time interval is requested, the first pivoted dimension values form
the first column. For queries that request more than one time interval, the start of
each time interval forms the first column. Combinations of subsequent pivoted
dimension values and/or histogram buckets are included as additional columns. All
date and time values are under the GMT time zone.

"Time","server35 AVERAGE Milliseconds","server3 AVERAGE Milliseconds"
"2012-08-04T14:38:00Z","0","0"
"2012-08-04T14:39:00Z","0","0"
"2012-08-04T14:40:00Z","0","0"
"2012-08-04T14:41:00Z","0","0"
"2012-08-04T14:42:00Z","0","0"

The following sample illustrates using Google chart tools:

<html>
 <head>
 <!--Load the AJAX API-->
 <script type="text/javascript"
src="https://www.google.com/jsapi"></script>
 <script type="text/javascript">

 // Load the Visualization API and the line chart package.
 google.load('visualization', '1.0', {'packages':['corechart']});
 // Set a callback to run when the Google Visualization API is loaded.
 google.setOnLoadCallback(drawChart);

 function drawChart() {
 var query = new google.visualization.Query

('https://<MetricsHost>:8080/
 api/v1/metrics/response-time/datatable?maxIntervals=10
 &pivot=optype&pivot=instance');
 query.send(handleQueryResponse);
 }
 function handleQueryResponse(response) {
 if (response.isError()) {
 alert('Error in query: ' + response.getMessage() + ' '
 + response.getDetailedMessage());
 return;
 }
 var data = response.getDataTable();

 var visualization = new
 google.visualization.LineChart(document.getElementById('chart_div'));
 visualization.draw(data, null);
 }
 </script>
 </head>
 <body>
 <!--Div that will hold the chart-->
 <div id="chart_div"></div>

- 111 -

Access Alerts

 </body>
</html>

Access Alerts
The eventTypes and event APIs can be used to retrieve information and alerts from monitored
servers. The eventTypes API provides the range of alert types that have occurred. The events
API provides detail about individual alerts.

Retrieving Event Types
The range of alerts that have been generated by monitored servers can be retrieved, with
optional filtering, based on the following API definition.

URL /api/v1/eventTypes/[?query-parameters] - gets a list of event types
Method GET
Formats JSON, XML
Query Parameters instance, instanceType, startTime, and endTime. See Performing a

Metric Query for a description of each parameter.
Respons
e Code

200 0K

Respons
e Body

["health-check-available-to-degraded","health-check-degraded-
toavailable"]

Retrieving Events
The detailed information for one or more events can be retrieved, with optional filtering, based
on the following API definition.

URL /api/v1/events/[?query-parameters] - gets a list of events

/api/v1/events/{eventId} - gets a single event
Method GET
Formats JSON, XML
Query Parameters type – Limits the result to include only events of the specified types.

See the HTML API Reference for event types.

severity – Limits the result to include only events that have the
matching severity. Valid "severity" values are: INFO, WARNING,
ERROR, and FATAL.

instance, instanceType, instanceLocation, instanceHostname,
instanceVersion, startTime, and endTime. See Performing a Metric
Query for a description of each parameter.

limit, offset. See Pagination for a description of each parameter.

Response Code 200 0K

- 112 -

Chapter 7: Data Metrics Server API Reference

Response Body {
 "found" : 2,
 "offset" : 0,
 "events" : [

{"id":"9bdfd1b8-3811-4a84-b779-93553ff35f83",
 "creationDate":1351274815559,
 "eventType":"server-starting",
 "eventSeverity":"INFO",
 "sourceProductInstance":"lockdown-test",
 "summary":"Server Starting",
 "detail":"The Directory Server is starting"},

{"id":"9bdfd1b8-3811-4a84-b779-93553ff35f83",
 "creationDate":1351274815559,
 "eventType":"server-starting",
 "eventSeverity":"INFO",
 "sourceProductInstance":"directory-3",
 "summary":"Server Starting",
 "detail":"The Directory Server is starting"}
]
}

LDAP SLA
The LDAP SLA API lists the LDAP SLA objects (configuration data) and queries any single LDAP
SLA object. The query of an LDAP SLA object results in the aggregated LDAP SLA configuration,
scalar data containing current values for the LDAP SLA, and time-series data. Current data
comes from the Threshold object. Historical data comes from a metric query. Historical data is
more expensive to fetch and is only included if the client requests it. This allows an LDAP SLA
query to get the configuration and current data very efficiently for clients that only need the
current data. A client that needs both current and historical data can include the appropriate
query parameter and get all the data in a single call.

Retrieving the SLA Object
List the LDAP SLA objects (configuration data) and query any single LDAP SLA object. The
default format will be JSON if none is specified. The servlet will use the HTTP Accept header as
a hint if no specific format is specified.

URL /api/v1/sla/ldap – Returns a list of all LDAP SLA configuration objects in
name-order. This includes current values and status as held by the
Threshold objects, but will only include any historical data.

/api/v1/sla/ldap/{sla-name} – Returns a single LDAP SLA configuration
object plus optional historical data.

Method GET
Formats JSON, XML
Query Parameters For the 1st URL:

- 113 -

LDAP SLA

instance – Returns LDAP SLA's that reference the specified instance.

application-name – Returns LDAP SLA's that reference this application
name.

ldap-op – Returns LDAP SLA's that reference this LDAP operation.

For the 2nd URL:

historical (multi-valued, optional):

l time – Includes time series data.

l limits – Includes the percent of time thresholds limits that have
been exceeded. Requires Threshold.

l alerts – Includes all Threshold alerts. Requires Thresholding.

l histogram – includes response-time histogram as column data)

l nines – Includes response time values that correlate to 99%, 99.9%,
99.99%, and 99.999% response-time measurements)

startTime – (optional). The time at which the historical data starts. The
default is 1hr.

endTime – (optional). The time at which the historical data ends. The
default is 5m.

pivot – (optional). Historical time-series pivots by this dimension.

l instance – pivot by producing server.

l ldap-op – pivot by LDAP operation.

l histogram – pivot response-time series by histogram buckets.

maxIntervals – (optional). Number of points to include in the historical
time series. The default is 100.

EXAMPLE
Retrieving an SLA object.

curl -X GET http://x3550-
09:8080/api/v1/sla/ldap/Acme+Identity+Portal?historical=time
\&historical=nines\&pivot=instance\&startTime=-15m

Response Code 200 0K
Response Body

(JSON, sample is
abbreviated)

{
 "name":"Acme Identity Portal",
 "applicationName":"Application 5",
 "ldapOps":["search"],
 "servers":["x2270-08.pingidentity.lab:1389"],

- 114 -

Chapter 7: Data Metrics Server API Reference

 "enabled":true,
 "responeTimeState":"NORMAL",
 "throughputState":"normal",
 "currentResponseTime":6.002752,
 "currentThroughput":7032.794,
 "averageResponseTime":6.212055,
 "averageThroughput":5517.1323,
 "responseTimeWarnLimit":8.0,
 "responseTimeCriticalLimit":10.0,
 "throughputWarnLimit":8000.0,
 "throughputCriticalLimit":10000.0,
 "responseTimeSeries":{
 "type":"timeInterval",
 "firstSampleTime":1359045070000,
 "lastSampleTime":1359045970000,
 "rateScaling":"NONE",
 "statistic":"AVERAGE",
 "metric":{
 "type":"discreteValued",
 "id":"response-time",
 "name":"Response Time",
 "shortName":"Response Time",
 "description":"Time for server to process
 an LDAP operation and send a response to the client.",
 "group":"LDAP",
 "instanceTypes":["directory-server","proxy"],
 "statistics":["average","count","histogram"],
 "dimensions":[{"id":"application-name",
 "values":["unidentified directory application",
 "unidentified proxy application","application 9",
 "application 5","root user","admin user",
 "application 6"]},{"id":"op-type","values"

["search","modifydn","add","delete","compare",
 "bind","modify"]}],
 "countUnit":{"singularName":"Operation Response Time",
 "pluralName":"Operation Response Time",
 "abbreviatedName":"Response Time"},
 "valueUnit":{"singularName":"Millisecond",
 "pluralName":"Milliseconds","abbreviatedName":"Msec"}
 },
...

Pagination
Pagination is supported for both the metrics and instances listing URLs.

Query
Parameters

limit – Specifies the maximum number of results to return. The default is to
return all results.

- 115 -

Pagination

offset – Specifies how many results to skip for the first results to return.
Response
Parameters

found – The number of results that satisfied the query parameters.

offset – The index into the total result set where the current response
begins.

- 116 -

Index: administrative account – dashboards

Index

A

administrative account

adding a root user account 20

Administrative Console

URL 15

administrative password 20

aggregating data 68

alarms 29

testing setup 30

alerts

alarm_cleared alert type 29

configure alert handlers 27

list of system alerts 27, 30

notifications and alerts 26

overview 29

testing setup 30

alerts backend

alert retention time 28

duplicate alert suppression 29

overview 27

view information 28

API

access alerts 112

add a REST user 99

connection and security 99

data set structure 108

LDAP SLA 113

list available metrics 103

list monitored instances 101

pagination 115

perform a metrics query 106

response codes 100

retrieve a metric definition 105

retrieve monitored instance 102

authentication

server authentication with a SASL
External Certificate 53

B

backend monitors

disk space usage 26

entries 24

backup command 34

base64 command 34

C

chart builder tool

overview 79

charts

available server charts 82

chart builder parameters 81

chart builder tool 79

chart properties file 82

presentation details 80

cn=monitor backend 64

collect-support-data tool 10, 34, 90

command-line

available tools 33

default properties file 36

tools.properties file 35

config-diff tool 34

create-rc-script command 34

D

dashboards

available dashboards 75

- 117 -

Index: data collection – logs

configure dashboards 78

debug template files 78

metrics landing page 14

save custom files 79

data collection

aggregating data 68

importing data 67

overview 2

performance data 63

reduce data collected 66

reduce frequency of collection 66

reduce sample blocks 66

system monitoring data 64

Data Governance charts 83

Data Metrics Server

components 2

overview 2

start server 18

stop server 18

Data Sync Server charts 83

demo-dashboard 77

Directory Proxy Server charts 83

Directory Server charts 83

disk space usage monitor 26

DNS caching 51

dsconfig command 34

dsframework command 34

dsjavaproperties command 34

E

error log publisher 23

external collector daemon 65

G

gauges 29

testing related alarms and alerts 30

H

host system monitor provider 65

HTTP Servlet Extension object 99-100

I

IP address reverse name lookup 52

J

Java

installing the JDK 7

JVM debugging

during setup 93

invalid options 94

L

landing page 14

ldap-dashboard 75

ldapmodify command 34

ldappasswordmodify command 34

ldapsearch command 34

ldif-diff command 34

ldifmodify command 34

Linux configuration

filesystem swapping 10

filesystem variables 8

install dstat 10

install sysstat and pstack 10

set file descriptor limit 9

set filesystem flushes 10

load balancers 52

logs

create log publisher 22

- 118 -

Index: manage-extension command – root user DN

error log publisher 23

overview 22

retention policies 22

rotation policies 22

M

manage-extension command 34

manage-extension tool 54

memory errors 91

metric-engine-schema command 34

metrics

continuous metrics 57

count metrics 57

dimensions 58

discrete metrics 57

list available metrics 103

overview of metric types 57

performance impact 67

query overview 59

Metrics Server charts 83

monitored-servers command 34

remove a server 17

monitored-servers tool 17

monitored servers

add servers 16

configure servers to monitor 11

monitored-servers tool 17

processing time histogram 12

stats collector 12

tracked applications 12

monitoring entries 24

N

non-root user 7

normalized records 63

O

oauth2-dashboard 75

P

performance data

overview 3

performance data fields 63

pivots 60

PostgreSQL

backup database 31

data storage 32

install 13

plan the backup 32

restore the backup 33

start the backup 33

processing time histogram plugin 12

pstack utility 97

Q

query-metric command 34

access metrics 61

query data

aggregate query results 60

pivots 60

select query data 60

unexpected results 91

query overview 59

queryrate command 34

R

REST API

overview 2

restore command 34

revert-update command 34

review-license command 35

root user DN 15

- 119 -

Index: sample-flush-interval property – ZFS configuration

S

sample-flush-interval property 12

server-state command 35

server clock skew 65, 91

server install 12

server SDK

extension types 54

server shutdown 92

server status 102

service level agreements 113

monitoring overview 68

SLA dashboard 76

SLA object 69

spike monitoring threshold 69-70

setup command 35

troubleshooting 92

setup tool 93

sla-viewer-details dashboard 76

sla-viewer dashboard 76

SLA object 69

configure object 71

Solaris configuration

ZFS configuration 7

start-server command 35

start Data Metrics Server 18

stats collector plugin 12, 64, 67

cn=monitor backend 64

status command 35

stop-server command 35

stop Data Metrics Server 19

sum-file-sizes command 35

supported platforms 7

system data

overview 3

system entropy 10

system utilization monitors 65

T

tools.property file 35

tracked applications 12

troubleshooting

client connections 96

collect support data 90

console 97

installation 92

memory errors 91

server shutdown 92, 95

server unresponsive 96

slow queries 90

SSL 92

unexpected query results 91

U

uninstall command 35

uninstall server 19

update command 35

V

Velocity templates

multiple content types 86

overview 84

save custom files 79

tools context provider 87

X

X-Forwarded values 52

Z

ZFS configuration 7-8

- 120 -

	Copyright
	Preface
	Audience
	Documentation Included with the Data Metrics Server
	Metrics Reference Documentation
	Related documentation

	Chapter 1: Introduction
	Data Metrics Server Overview
	Data Metrics Server Components
	Data Collection
	Performance Data
	System and Status Data

	Charts and Dashboards
	PostgreSQL DBMS Details

	Chapter 2: Installing the Data Metrics Server
	Supported Platforms
	Install the JDK
	Configure a Non-Root User
	Optimize the Solaris Operating System
	Restrict ZFS Memory Consumption
	Limit ZFS Transaction Group Writes
	Configure ZFS Access to Underlying Disks
	Configure ZFS Compression

	Optimize the Linux Operating System
	Set the file descriptor limit
	Set the filesystem flushes
	Install sysstat and pstack on Red Hat
	Install the dstat utility
	Disable filesystem swapping
	Manage system entropy
	Enable the server to listen on privileged ports

	Configure Servers to be Monitored
	Disk Space Requirements and Monitoring Intervals
	Tracked Applications

	Install the Server
	Log into the Administrative Console
	Server folders and files
	Add Monitored Servers to the Data Metrics Server
	Using the monitored-servers Tool

	Remove Monitored Servers
	Start and Stop the Server
	Start the Data Metrics Server as a Background Process
	Start the Data Metrics Server as a Foreground Process
	Start the Data Metrics Server at Boot Time
	Stop the Data Metrics Server
	Restart the Data Metrics Server

	Uninstall the server
	Administrative accounts
	Change the administrative password

	Chapter 3: Managing the Data Metrics Server
	Data Metrics Server Error Logging
	Logging Retention Policies
	Logging Rotation Policies
	Create Log Publishers
	Error Log Publisher

	Backend Monitor Entries
	Disk Space Usage Monitor
	Notifications and Alerts

	Configure alert handlers
	The Alerts Backend
	View Information in the Alerts Backend
	Modify the Alert Retention Time
	Configure Duplicate Alert Suppression

	System alarms, alerts, and gauges
	Test alerts and alarms
	Back Up the Data Metrics Server Database
	Historical Data Storage
	Planning the Backup
	Start the DBMS Backup
	Restore a DBMS Backup

	Management Tools
	Available Command-Line Utilities
	The tools.property File
	Tool-Specific Properties
	Specify Default Properties Files

	Use the Configuration API
	Authentication and authorization
	Relationship between the Configuration API and the dsconfig tool
	API paths
	Sorting and filtering configuration objects
	Update properties
	Administrative actions
	Update servers and server groups
	Configuration API Responses

	Domain Name Service (DNS) caching
	IP address reverse name lookups
	Configure traffic through a load balancer
	Configure authentication with a SASL external certificate
	Server SDK extensions

	Chapter 4: Collecting Data and Metrics
	Metrics Overview
	Count Metrics
	Continuous Metrics
	Discrete Metrics
	Dimensions

	Query Overview
	Select Query Data
	Aggregate Query Results
	Format Query Results

	The query-metric Tool
	Performance Data Collection
	System Monitoring Data Collection
	Stats Collector Plugin
	System Utilization Monitors
	External Collector Daemon

	Server Clock Skew
	Tune Data Collection
	Reducing the Data Collected
	Reducing the Frequency of Data Collection
	Reducing the Frequency of Sample Block Creation
	Reducing Data Metrics Server Impact on Performance

	Data Processing
	Importing Data
	Aggregating Data

	Monitoring for Service Level Agreements
	SLA Thresholds
	Threshold Time Line
	Configure an SLA Object

	Chapter 5: Configuring Charts and Dashboards
	Available Dashboards
	Customize the LDAP Dashboard
	Debug Dashboard Customization
	Preserve Customized Files

	The Chart Builder Tool
	Chart Presentation Details
	Chart Builder Parameters
	Chart Properties File

	Available Charts for PingData Servers
	Charts for All Servers
	Directory Server Charts
	Directory Proxy Server Charts
	Data Sync Server Charts
	Data Metrics Server Charts
	Data Governance Broker Charts

	Velocity Templates
	Supporting Multiple Content Types
	Velocity Context Providers
	Velocity Tools Context Provider

	Chapter 6: Troubleshooting
	Use the collect-support-data tool
	Slow Queries Based on Sample Cache Size
	Insufficient memory errors
	Unexpected Query Results
	Conditions for automatic server shutdown
	Problems with SSL communication
	Installation and maintenance issues
	The setup program will not run
	The server will not start
	The server has shutdown
	The server will not accept client connections
	The server is unresponsive
	Problems with the Administrative Console

	Chapter 7: Data Metrics Server API Reference
	Connection and Security
	Secure Error Messages
	Response Codes

	List Monitored Instances
	EXAMPLES

	Retrieve Monitored Instance
	EXAMPLE:

	List Available Metrics
	EXAMPLES

	Retrieve a Metric Definition
	EXAMPLE

	Perform a Metric Query
	Data Set Structure
	Google Chart Tools Datasource Protocol
	Access Alerts
	Retrieving Event Types
	Retrieving Events

	LDAP SLA
	Retrieving the SLA Object
	EXAMPLE

	Pagination

	Index

