UnboundID® Security Guide
Version 5.2.0.2

UnboundID Corp

13809 Research Blvd., Suite 500
Austin, Texas 78750

Tel: +1 512.600.7700

Support: http://support.unboundid.com

Copyright

Copyright © 2016 UnboundID Corporation
All rights reserved.

This document constitutes an unpublished, copyrighted work and contains valuable trade
secrets and other confidential information belonging to UnboundID Corporation. None of the
foregoing material may be copied, duplicated, or disclosed to third parties without the express
written permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or
through such sites or resources. UnboundID will not be responsible or liable for any actual or
alleged damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such sites or
resources. UnboundID and the UnboundID Logo are trademarks or registered trademarks of
UnboundID Corp. in the United States and foreign countries. All other marks referenced are
those of their respective owners.

Table of Contents

CoPY Gt . i
Preface il viil
About Unboundl D .l ix
AU N L iX
Related Documentation . . iX
Chapter 1: Introduction .. il 1
Security Risks in an Identity Environment 2
Financial and Reputation Costsl 2
Common Attack Models . 2
UnboundID Security Features 3
Chapter 2: Client ACCESS 6
Identifying Potential Clients 7
Clients Requiring Privileged Ports ... o L 7
Identifying Data SeCUrity 7
Chapter 3: Mitigating System Attacks 9
Denial of Service Prevention 10
Monitoring TOOlS o 10
SV S M Al S 11
System Alarms and GaUGeS L 11
Enforcing Resource Limits ... 12
Restricting Request Types with Client Connection Policies 16
Allowing and Denying Client IP Addresses 16
Data Breach Prevention 17
Global Configuration Options for On-Disk Encryption 18
Implementing Sensitive Attributes 18
Password Storage SChemes .. . 21
Limiting Search ReSUITS .. L 23
Restricting Access to Certain Controls 25

Restricting Access to the Directory Information Tree with Client Connection Policies .. 25
LDAP Injection AttacKS ... 26

Man-in-the-Middle Attack Prevention 27
Securing System-to-System Network Connections 27
Features that Reduce the Risk of Network Address-Spoofing 28

Chapter 3

Chapter 4: Protecting the Host System 29
The UnboundID Environment on Multiple Operating Systems ... 30
Minimizing Software and Running Services 30
Keeping Systems PatChed 30
Using Virtualization ..o L 31
Maintaining the Java Virtual Machine ... 31
Configuring Strong Authentication for Administrators 31
Minimizing Administrative Account Capabilities 32
Using System Logging and Auditing L 32

Chapter 5: Securing the Filesystem .. . 33
Filesystem ProteCtioNs ..o 34
Removing Java Encryption Security Restrictions 34
Managing the Encryption Settings Database 34
Supported Cipher Stream Providers 35
Configuring Data Encryplion .. L 35
Devising Backup and Restore Strategies 36

ENCrypting BacKuUps . . 36
Securing LDIF EXPOItS ... 37

Chapter 6: Protecting the UnboundID Platform 39

Separate User and Administrator ACCOUNES 40
Using a Limited Account to Run Identity Server Services 40
Considerations for RoOt Users il 40

Centralized and Remote Logging 42

Securing the Configuration using Privileges 42
Safe Use of dsconfig and the Web Console 43
Maintaining Consistent Server Configurations 43

Data SecUrity AUdITS ... 44
Viewing Data Security Audit Reports 44
Data Security Auditors . 45
Configuring the Data Security Auditors 45
The audit-data-security Tool 46

Proxy Server Considerations 46

Data Sync Server Considerations 47

Chapter 7: Data Integrity L 49

Stored Entry ChaCKSUMIS .o 50
Cryptographic Digests 50
Entry Checksum Operational Attribute 50

Schema Integrity o 51

Limiting Exposure of Stale Data 52

Time SynChronization . 53

Creating a Read-Only Instance of the Data Store 54

Server Lock-Down Mode 54

Storing Reversible Changes in the Log 55

Chapter 8: Client Connection and Password Policies 56

Associating a Client Connection Policy with a Client Connection 57

Recommendations for Creating Client Connection Policies 57

PassWoOrd POliCieS . L 58

Password Validators .. L 59

Password EXpiration 61

Password Changes and Administrative Reset 62

Account Lockout, Expiration, and Disablement 63

Last Login Time and Last Login IP Address Tracking i........... 64

Password GeNeratOrsS . il 65

Account Status Notification Handlers .. 66

Per-User Password PoliCies 67

Additional Password Policy Properties il 67

Password Encoding during LDIF Import 68

Password Policies and the Proxy Server 69

Chapter 9: Access Control 70

Overview of Access CoNtrol ... o . 71
Validation and SeCUNitY . . 71
Global ACTS L 71
Access Controls for Public or Private Backends 72

General Format of the Access Control Rules 72

Examples of Common Access Control Rules 73
AdmIiNiStrator ACCESS .. L 73
Anonymous and Authenticated Access i 74
Delegated Access to a Managero 74

iv

Chapter 3

Proxy AUthorization .. . 74
Validating ACIs Before Migrating Data 75
Working With Privileges ... 75
Available Privileges 75
Chapter 10: Authentication Mechanisms 78
Configuring Authentication Ty Pes i 79
Using SASL Authentication Mechanisms 79
Controlling Authentication with Client Connection Policies 79
Controlling Authentication with Password Policies 80
Rejecting or Limiting Unauthenticated Requests 80
Restricting Authentication with Operational Attributes 81
Using Certificate-based Authentication 82
Certificate MapPerS . 82
Configure a SASL Mechanism Handler ... 83
Configure SASL ANONYMOUS Mechanism 85
Configure SASL CRAM-MD5 Mechanism ... L 85
Configure SASL DIGEST-MD5 Mechanism 87
Configure SASL EXTERNAL Mechanism 89
Configure SASL GSSAPI MeChanism 90
Configure SASL PLAIN Mechanism ... 92
Configure SASL UNBOUNDID-TOTP Mechanism 93
Configure SASL UNBOUNDID-DELIVERED-OTP Mechanism 94
Configure Certificate Mappers 96
Configure the Subject Equals DN Certificate Mapper 96
Configure the Fingerprint Certificate Mapper 97
Configure the Subject Attribute to User Attribute Certificate Mapper 98
Configure the Subject DN to User Attribute Certificate Mapper 99
Configure Pass-Through Authentication i, 100
Preventing Bind Information Leak 101
Chapter 11: Monitoring, Alerts, Alarms, and Notifications 103
MoNitoring ComMPONENES 104
About the Metrics ENGINe ... oo 104

Securing the Metrics ENGiNe ... o 104

Monitoring Using SNMP L 104

Monitoring With IMX L 105
Monitoring Using the LDAP SDK . 105
MONItOriNG OV LD AP 106
Profiling Server Performance Using the Stats Logger Plugin 106
Working with Administrative Alert Handlers 106
The Alerts Backend L 107
View Information in the Alerts Backend 107
Modify the Alert Retention Time ... 108
Configure Duplicate Alert SUPPressioN 108
System Alarms and GauUges 108
Testing Alerts and Alarms 109
To Test Alarms and Alerts 109
Working with Account Status Notifications 110
Account Status Notification TYPeS 111
Chapter 12: Logging SecuUrity 112
Configuring Log Rotation and Retention Policies i, 113
AboUt LOg SigNiNg ol 113
Configuring Access LOggingo 114
Configuring Filtered LOgging ... L 117
Configuring Change Logging o 119
Configuring Error LOgQing ..o 121
Configuring Debug Logging i 122
Configuring Data Sync Server Loggingo oo 123
Options for Centralized Logging o L 124
Parsing and Analyzing Log Messages i 125
Chapter 13: Network Security 127
Using SSL and StartTLS 128
CoNfigUIre SO L 128
Configure StartTLS 130
Configuring Key Manager Providers ... 131
Configuring Trust Manager Providerso 131
Configure the Key and Trust Manager Providers 132
Securing LDAP Communication ... 133
Configuring LDAP Connection Handlers 135

Vi

Chapter 3

Configuring External Server Communication L. 136
Preventing Communication over Insecure Connections .. 136
Allowing or Denying Connections from Specific Clients 137
Securing Replication Communication 138
Securing HTTP CommuUNIiCatiON .o 138
Securing SNMP CommuUNiCatioN .. 138
Securing JMX CommUNICatiON L 138
Securing Database Communication 139
Securing Syslog CommuUNICatiON L. 139
Other Network Security Configuration Options 139

Limit the Max Time for JVM Cache el 140

Appendix A: SSL Details 141
Asymmetric and Symmetric ENCry ption .o 142
CertifiCates il 142

Appendix B: About the Java Keytool 145
Using the Java Keytool Uity ... o L 146

Create a Server Certificate 146

Create a Client Certificate 148

Appendix C: Understanding Criteria 150
Criteria OV eIV W L 151
Simple Connection Criteria .. .o 151
Simple Request Criteria ..o 153
Simple ReSUIT Criteria oo 156
Simple Search Entry Criteria ..o oo 159
Simple Search Reference Criteria oL 160
Aggregate Criteria . . 161

INAeX L 162

- vii -

Preface

The UnboundID Security Guide provides concepts and procedures to secure and manage the
UnboundID Platform. This guide is intended for any UnboundID product deployment.

- viii -

Preface

About UnboundID

UnboundID Corp is a leading identity infrastructure domain solutions provider with proven
experience in large-scale identity data solutions. The UnboundID Platform provides the
following:

« Secure End-to-End Customer Data Privacy Solution - A comprehensive identity
platform with authorization and access controls to enforce privacy policies, control user
consent, and manage resource flows.

« Purpose-Built Platform - Solutions to consolidate, secure, and deliver customer
consent-given identity data. The system provides security measures to protect sensitive
identity data and maintain its visibility. The broad range of platform services include,
policy management, cloud provisioning, federated authentication, data aggregation, and
directory services.

« Performance across Scale and Breadth - Support for the three pillars of
performance-at-scale: users, response time, and throughput. The system manages real-
time data at large-scale consumer facing service providers.

« Support for External APIs - Standards-based solutions that can interface with various
external APIs to access a broad range of services. APIs include XACML 3.0, SCIM, LDAP,
OAuth2, and OpenID Connect.

Audience

This guide is intended for administrators who are responsible for installing and managing
servers in an enterprise identity environment. Knowledge of the following is recommended:

« Identity platforms and LDAP concepts.
« General system administration and networking practices.
- Java VM optimization.

« Application performance monitoring.

Related Documentation

The following documents represent the rest of the UnboundID product set and may be
referenced in this guide:

« UnboundID Data Store Reference (HTML)

« UnboundID Data Store Administration Guide (PDF)
« UnboundID Data Sync Reference Guide (HTML)

« UnboundID Data Sync Administration Guide

iX

UnboundID Proxy Server Reference (HTML)

UnboundID Proxy Server Administration Guide (PDF)
UnboundID Data Broker Reference (HTML)

UnboundID Data Broker Administration Guide (PDF)
UnboundID Data Broker Installation Guide (PDF)
UnboundID Data Broker Application Developer Guide (PDF)
UnboundID Metrics Engine Administration Guide (PDF)
UnboundID LDAP SDK (HTML)

UnboundID Server SDK (HTML)

Related Documentation

Chapter 1: Introduction

Storing and handling consumer identity data requires taking appropriate steps to safeguard it,
while continuing to provide fast, real-time, and highly-available services for the consumers
who consent to its use.

Topics include:

Security in an Identity Environment

UnboundID Security Features

Chapter 1: Introduction

Security Risks in an Identity Environment

The UnboundID Platform serves as the authentication repository for a wide variety of network
applications, sensitive user information, and application data. Hackers that obtain user
credentials can cause extensive damage to individuals, systems, and businesses. News of
companies suffering from a data breach is more common and more concerning for consumers.

Financial and Reputation Costs

Business costs to secure and monitor identity deployments can be large, but the total cost is
small compared to the cost of a security breach. A security breach requires resources to
investigate the incident, assess the scope of damage, and identify and fix any compromised
data. Businesses face compensating users for downtime and for costs incurred from the
exposure of their personal data. But, the damage to a company’s reputation is the most costly
result.

Common Attack Models

Directories are the central component within identity management systems. They streamline
the authentication, authorization, and privilege granting across system boundaries. Whether
for user, account, or subscriber provisioning, directory services systems must be properly
secured so that sensitive information is not accessible by unauthorized individuals externally
or internally.

This guide describes procedures to mitigate three broad classes of security threats.

Common Attack Models

Ease of

Attack Model Description . Potential Loss
Detection

Man-in-the-Middle The communication between systems is Difficult to Generally results in the loss of
Attacks compromised, allowing the attacker to insert detect. specific data.

himselfin the conversation, undetected by

the legitimate systems.
Denial-of-Service An attacker (or a poorly coded client Easy to detect. Limited data loss, but severe
Attacks application) swamps the system with disruption to normal business

requests that cripple its ability to operate and operations.

serve legitimate clients.
Data Breach and The attacker gains access to data they Difficult to Often results in the loss of a
Data Trawling should not have. detect. large amount of datain a
Attacks single event.

UnboundID Security Features

UnboundID Security Features

The UnboundID Platform provides the following security and monitoring components:

Network Encryption with SSL and StartTLS. UnboundID servers support SSL and StartTLS
to encrypt communication with clients. Administrators can configure different certificates for
each connection handler, or use the same certificate for all connection handlers. SSL or
StartTLS can also be configured to secure communication between server components.
Replication between Data Stores uses SSL. The server also enables fine-grained control of the
key material used in connecting peers in SSL handshakes and trust material for storing
certificates.

SASL Authentication Mechanism Support. UnboundID servers support SASL mechanisms
including Anonymous, Cram-MD5, Digest-MD5, External, Plain, and GSSAPI. Directory servers
using Cram-MD5 and Digest-MD5 require access to the clear-text password for a user. In this
case, the Data Store supports reversible encryption to store passwords with more secure
encoding. The Data Store server also supports two types of one-time password (OTP)
mechanisms for multi-factor authentication: UnboundID-TOTP SASL and UnboundID-
Delivered-OTP SASL. The proprietary UnboundID-TOTP SASL mechanism allows multi-factor
authentication to the server using time-based one-time password (TOTP) code. The proprietary
UnboundID-Delivered-OTP SASL mechanism allows multi-factor authentication to the server by
delivering a one-time password to the end user through some out-of-band channel, such as
email or SMS.

Another component is the UnboundID Certificate Plus Password SASL mechanism, which is
used to perform multifactor authentication against the Data Store using both a client
certificate, presented during SSL/TLS negotiation, and a static password.

Certificate-based Authentication. UnboundID servers support client-based authentication,
which uses a client certificate as the set of credentials for LDAP authentication during SSL or
StartTLS negotiation.

Password Policies. UnboundID servers provide extensive password policy support including:
« Mmaximum password age
« maximum password reset age
« configurable password warning intervals
« grace logins
. ability to disallow password changes after expiration
« forcing passwords to be changed when accounts are added or reset
« preventing password reuse by time or number of old passwords
« account lock-outs based on failed login attempts
« preset account expiration time (for temporary accounts)

« idle time log-outs

Chapter 1: Introduction

« a password generator
« multiple default password storage schemes

« account expiration

Password Storage Schemes. UnboundID servers support password storage schemes such
as one-way digests (CRYPT, MD5, SMD5, SHA, SSHA, SSHA256, SSHA384, SSHA512) and
reversible encryption (BASE64, 3DES, AES, RC4, BLOWFISH). Password Policies can also
require a specific authentication mechanisms for users associated with the policy.

Message Digests & Encryption Algorithms for Passwords. UnboundID servers support
the use of one-way message digests (CRYPT, 128-bit MD5, 160-bit SHA-1, and 256-bit, 384-bit,
and 512-bit SHA-2), and a number of reversible encryption algorithms (BASE64, 3DES, AES,
RC4, and Blowfish) for storing passwords. Even if passwords are encoded using reversible
encryption, that encryption is intended for use only within the server. Passwords are not made
available to administrators in unencrypted form. Encrypted password storage should only be
used if using an authentication mechanism that requires the server to have access to clear-text
passwords, like CRAM-MD5 or DIGEST-MD5.

Client Connection Policies. UnboundID servers can control which clients get connected to
the server, how they are connected, and what resources or operations are available to them.
For example, client connection criteria can be defined to block specific IP addresses or
domains.

When a client establishes a connection to the server, the server assigns a policy for that
connection. If the client performs a bind, which can change the identity of that connection, or
uses the StartTLS extended operation, which can change an insecure connection to a secure
one, the server re-evaluates the connection and assigns it a different policy.

Full-Featured Access Control System. UnboundID servers provide an access control
subsystem that determines whether a given operation is allowed based on specified criteria.
The access control system is used to grant or restrict access to data, restrict the use of specific
types of controls and extended operations and provides strong validation for access control
rules before accepting them.

Privileges. UnboundID servers include a privilege subsystem that works with the access
control subsystem. Operations are only allowed if both privilege and access control criteria are
met.

Encrypted Backups. UnboundID servers protect the integrity of backup contents using
cryptographic digests and encryption. When restoring the backup, servers verify that the
digest matches the content of the backup and generates an error if the backup has been

changed.

Global Settings. Key security features are configured globally, and apply to the service as a
whole. These features include schema validation, authentication and authorization constraint
policies, limiting resource consumption (to defend against denial-of-service attacks), data
protection, and encryption controls.

Lock-Down Mode. UnboundID servers can automatically enter lockdown mode when certain
events are triggered, and only allow requests from users who have the lockdown-mode
privilege.

UnboundID Security Features

Sensitive Attributes. UnboundID servers support sensitive attributes used to prevent access
or restrict access to secure connections. Sensitive attributes can also restrict access to those
users who are not subject to access control processing (those users with the bypass-acl or
bypass-read-acl privilege), but for which access should still be restricted.

Operational Attributes. The Data Store provides a number of operational attributes that can
be added to user entries in order to restrict the way those users can authenticate and the
circumstances under which they can be used for proxied authorization.

System and Audit Logging. UnboundID servers provide extensive logging and auditing
capabilities that can detect attacks and assess potential damage.

Plug-Ins and SDK Extensions. UnboundID servers provide plug-in points and extensions for
custom certificate mappers, trust manager providers, post-connect and post-disconnect for
client connections and many others.

Chapter 2: Client Access

Mitigating the risk of data exposure requires understanding the expected uses of the directory
service, the nature of the data stored, and the clients that can access it. Knowing what data
clients need to access and the ways they need to interact with it can help define security
policies.

Topics include:

Identifying Potential Clients

Clients Requiring Privileged Ports

Identifying Data Security

Chapter 2: Client Access

Identifying Potential Clients

The capabilities of the clients using UnboundID services will determine the security features
used. For example, if some clients do not support SSL or StartTLS, a less secure type of
communication maybe required. If some clients can only perform simple binds, SASL
authentication may not be an option.

If the set of clients is known ahead of time, the server can be configured based on their
capabilities. Even if some clients are not known in advance, the client connection policies
enable separating and restricting unknown or insecure clients. Things to consider when tuning
security options for clients include:

« Is the set of clients for the directory service well defined, or an arbitrary or diverse set

of clients? If the answer is not known, is it possible to enforce a minimum set capabilities
for all clients to use?

« Do all clients support the use of SSL and/or StartTLS? If so, the server can be configured
to accept only secure requests.

« Do any clients require unauthenticated access to the server? If not, configure the server
to accept only authenticated requests. If some unauthenticated requests are required,
create a client connection policy specifically for those clients that limits the kinds of
operations they can request.

« If the set of clients that will interact with the server fit into well defined groups, create
separate client connection policies for each group.

Clients Requiring Privileged Ports

Many operating systems consider ports 1 through 1024 to be “privileged” ports. By default only
processes owned by (or initially started by) the root user can listen on them. Though
UnboundID servers can be configured to listen on any set of ports, running the Data Store (or
any network process) under a root user account is not recommended.

The vast majority of LDAP client applications make it possible to configure the ports that they
should use to communicate with an LDAP server. If all applications in this environment provide
this support, run all server instances on unprivileged ports (such as 1389 and 1636).

If there are client applications that can only use privileged ports (such as 389 and 636),
configure the operating system to allow servers to use those ports.

Identifying Data Security

Understanding how to secure data requires knowing what data will be stored and how it will be
accessed. Even if all of the data in the directory environment is considered sensitive to some
extent, some elements are more sensitive, or may have different requirements for client
interaction. For example, although passwords are critical for authentication and must be

Identifying Data Security

changed over LDAP, well-designed LDAP clients should not need to retrieve them from the
server.

Answer the following questions for attributes that will be stored in the server:

« What do clients need to retrieve the attribute from the server? Do any clients need to
access it over insecure connections?

« What attributes do clients need to be able to use in search filters for searches with a
baseObject scope? Searches with a baseObject scope do not require any attribute
indexes.

« What attributes do clients need to be able to use in search filters for searches with a
scope other than baseObject?

Most of the attributes in an entry will fit into the same category. It is not necessary (and
generally not recommended) to specify different access control rules and/or sensitive attribute
definitions for each individual attribute. Create one rule for each class of similar attributes.
Attributes that exist in multiple classes can be governed by the most restrictive of those
classes.

Answer the following questions for the client applications that will access attributes:
« What kinds of operations do they perform?
« What indexes are required?
« Isthere any need for insecure client access?
« Does the application need to perform any updates?

« Does the application access or store sensitive data?

Chapter 3: Mitigating System Attacks

There are three main system attack types:

Denial of Service Attacks - Malicious clients or rogue programs that continuously perform
expensive operations that exhaust the available resources of the server. The primary goal of
this attack is to take the system down and impede user access.

Data Breach Attacks - An attacker accesses and steals private data. Data breaches often
lead to data trawling attacks and unauthorized bulk downloads of data.

Man-in-the-Middle Attacks - A connection is established between the Identity server and a
client by an intermediary host that relays messages between them. The client and target
server are unaware of this eavesdropping attack, which can be used to intercept sensitive
data, manipulate data transmission, or inject malicious code to compromise security.

Topics include:

Denial of Service Prevention

Data Breach Prevention

Man-in-the-Middle Attack Prevention

Chapter 3: Mitigating System Attacks

Denial of Service Prevention

The UnboundID Platform provides a number of features that can help avoid denial of service
attacks:

« Server's monitoring tools detect attacks.
« Resource limits enforced on all clients to prevent a denial of service attack.
« Restrictions on the types of operations that clients can request.

« Cllient type access restrictions.

The Data Store and the Proxy Server can restrict the type of operations that clients can
request, the rate at which clients can issue requests, the number of concurrent requests per
connection, and the number of concurrent connections per client. For example, access to
expensive unindexed searches can be limited, including restricting access to specific users and
limiting the number of concurrent unindexed searches. Search requests can be limited by the
number of entries returned, the length of time they are allowed to take, and the number of
entries that can be examined during processing. The Proxy Server also provides health
checking and load balancing capabilities that can detect servers that are slow or unresponsive
and route requests to healthy servers.

If a malicious client is discovered, associated connection(s) can be terminated and future
connections prevented. If one or more clients are able to consume all available worker
threads, work queue monitoring can immediately notify administrators, and the servers can
provide additional worker threads that are reserved for processing administrative requests.

Monitoring Tools

There are three methods of monitoring the performance of UnboundID servers. Each of these
can be used to examine server performance and compare suspicious levels of activity with
normal patterns. In conjunction with other tools, they can provide alerts and alarms:

. Metrics Engine - A data collection and aggregation server that collects performance
and event data from a set of UnboundID servers. It can report the overall performance
of the entire directory service, as well as report on individual servers. The Metrics
Engine normalizes and aggregates this data and makes it available through a REST API
and chart output. Both historical and current data is available.

« cn=monitor Entry - The entry used by each UnboundID server to expose monitoring
information. The cn=monitor data is also available through SNMP Management
Information Bases (MIBs), including the Processing Time MIB, the System Status MIB,
and the LDAP Statistics MIB. Data can be accessed with tools like the servers' Web
Console, JConsole, LDAP command-line tools, and JMX.

. Stats Logger - A built-in tool for all UnboundID servers that is useful for profiling
server performance for a given configuration. When enabled, the Stats Logger writes

-10 -

Denial of Service Prevention

server statistics to a log file in a comma separated format (.csv) at a specified interval.
The logger has a negligible impact on server performance unless the log-interval
property is set to a very small value (less than 1 second).

System Alerts
The system also supports a number of alert handlers:

. Error Log Alert Handler - Sends administrative alerts to the configured server error
logger(s).

« Exec Alert Handler - Executes a specified command on the local system if an
administrative alert matching the criteria for this alert handler is generated by the
directory server. Information about the administrative alert will be made available to the
executed application as arguments provided by the command.

« SNMP, JMX, and SMTP (mail) Alert Handlers - Send administrative alerts via their
respective protocols.

« Groovy Scripted Alert Handler - Provides alert handler implementations defined in a
dynamically-loaded Groovy script that implements the ScriptedAlertHandler class
defined in the Server SDK.

« Third Party Alert Handler - Provides alert handler implementations created in third-
party code using the Server SDK.

System Alarms and Gauges

Each UnboundID server installs a set of gauges that are specific to the product and that can be
cloned or configured through the dsconfig tool. Existing gauges can be tailored to fit each
environment by adjusting the update interval and threshold values. Configuration of system
gauges determines the criteria by which alarms are triggered. The Stats Logger can be used to
view historical information about the value and severity of all system gauges.

An alarm represents a stateful condition of the server or a resource that may indicate a
problem, such as low disk space or external server unavailability. A gauge defines a set of
threshold values with a specified severity that, when crossed, cause the server to enter or exit
an alarm state. Gauges are used for monitoring continuous values like CPU load or free disk
space (Numeric Gauge), or an enumerated set of values such as 'server available' or ‘server
unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity changes
due to changes in the monitored value. Like alerts, alarms have a severity (NORMAL,
WARNING, MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a
Condition property, and may have a Specific Problem Or Resource property. If surfaced
through SNMP, a Probable Cause property and Alarm Type property are also listed. Alarms
can be configured to generate alerts when the alarm's severity changes.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores
information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over
time that can change in severity and be cleared when a monitored value returns to normal.

-11 -

Chapter 3: Mitigating System Attacks

Alarms can be viewed with the status tool. As with other alert types, alert handlers can be
configured to manage the alerts generated by alarms. A complete listing of system alerts,
alarms, and their severity is available in <server-root>/docs/admin-alerts-list.csv.

Enforcing Resource Limits

The UnboundID product family provides methods to enforce resource limits to protect against
denial-of-service attacks. These include setting global configuration properties, configuring the
limits in Client Connection Policies, or configuring operational attributes. For details about
these properties, see the administration guide for the specific server.

Enforcing Resource Limits with Global Configuration Options

These properties of the Global Configuration are relevant for protection against denial of
service attacks:

« Limit the Max Number of Connections - Includes a number of properties that can be
used to control the maximum number of connections established with the server. This
includes maximum-concurrent-connections, maximum-concurrent-connections-per-
ip-address, and maximum-concurrent-connections-per-bind-dn. If any connection

limit is reached, any subsequent connections are terminated.

. allowed-task - Specifies the task classes that the server can run. Tasks allow LDAP
clients to request operations, including shutting down or restarting the server, importing
data from LDIF, restoring data from a backup, rebuilding a database index, or forcing a
JVM garbage collection. The Server SDK also supports custom Java-based or Groovy-
based tasks.

. disabled-privilege - Specifies privileges that should be disabled. If a privilege is
disabled, it is assumed that all users have that privilege. The user will still be required to
satisfy any other requirements (such as access control permissions) that the server has
in place for that operation.

« size-limit - Specifies the maximum number of entries that a user can retrieve in a
single search operation. This limit can be overridden on a per-user basis with the ds-
rlim-size-limit operational attribute in the user's entry (in a real or virtual attribute),
which is reserved for users that need to retrieve many entries.

« time-limit - Specifies the maximum length of time that the server is allowed to spend
on any user-requested search operation. This limit can be overridden on a per-user basis
using the ds-rlim-time-1imit operational attribute (in a real or virtual attribute) in the
user's entry.

« lookthrough-limit - Specifies the maximum number of entries that the server can

examine while processing a single search. This count can include entries that don't match
the search criteria or that the user doesn't have permission to access. The ds-rlim-

-12 -

Denial of Service Prevention

lookthrough-1limit operational attribute (as a real or virtual attribute) can be used to
set an alternate limit.

idle-time-limit - Specifies the maximum length of time that a client can maintain a
connection without any active operations. This is useful for dealing with applications that
establish connections, and then fail to close those connections when no longer needed.
This can be overridden on a per-user basis with the ds-rlim-idle-time-1limit
operational attribute in a user's entry (as a real or virtual attribute).

maximum-concurrent-connections - Specifies the maximum number of connections
that can be established with the server at one time. If the limit is reached, new
connection attempts are rejected until existing ones are closed. However, the maximum
number of connections is ultimately determined by the number of file descriptors
available to the JVM (minus the number of descriptors needed for interacting with local
files).

maximum-concurrent-connections-per-ip-address - Specifies the maximum
number of connections that can be established with the server at one time from a single
IP address. If a client has the maximum connections established, additional attempts
from that client are rejected until existing connections are closed.

maximum-concurrent-connections-per-bind-dn - Specifies the maximum number
of connections that can be established concurrently while authenticated as a given user.
If this limit is reached, any connection attempts to authenticate as that user will be
terminated.

maximum-concurrent-unindexed-searches - Specifies the maximum number of
unindexed searches that can be processed at one time. Unindexed searches can tie up
worker threads for a significant length of time.

duplicate-error-log-limit - Specifies the maximum number of duplicate messages
that can be written to the server error log within a specified time period (defined by the
duplicate-error-log-time-1limit property). This prevents a frequently-encountered
problem from filling the server error log. If this limit is exceeded, a message is recorded
at the end of that time period stating the number of messages that were suppressed.

duplicate-error-log-time-limit - Specifies the duration for which the duplicate-
errorlog-limit property will be in effect.

duplicate-alert-limit - Specifies the maximum number of administrative alerts of the
same type that can be generated within a specified time period (defined by the
duplicate-alert-time-limit property). This limits the number of administrative
alerts generated if a recurring problem exists within the server. If this limit is exceeded,
an alert is generated at the end of the specified time period stating the number of alerts
that were suppressed.

-13-

Chapter 3: Mitigating System Attacks

« duplicate-alert-time-limit - Specifies the duration for which the duplicate-alert-
limit property will be in effect.

Enforcing Resource Limits with Client Connection Policies

Configuration properties in client connection policy objects enforce restrictions on the
resources that clients can consume. A policy is associated with each connection to the server.
If multiple policies exist, they are evaluated in ascending order of the assigned evaluation
order index. Policies with a lower index humber are evaluated first. The first policy that the
server finds whose criteria match the client connection will be associated with that connection.
If no client connection policy is found with criteria matching the connection, then the
connection is terminated.

Properties include:

« maximum-concurrent-connections - Specifies the maximum number of client
connections allowed at one time per policy. If the maximum number of connections have
already been assigned through the policy, the new connection is terminated.

« maximum-connection-duration - Specifies the maximum length of time that a client
connection is allowed to remain, regardless of the level of activity on that client
connection. If a connection associated with this policy exceeds the value, it is
terminated.

« maximum-idle-connection-duration - Specifies the maximum length of time that a
client connection can remain established without any active requests in progress. If the
connection associated with this policy exceeds this value, it is terminated.

« maximum-operation-count-per-connection - Specifies the maximum number of
operations that a client connection can request over the life of that connection. If the
client submits more than the value, the connection is terminated.

« maximum-concurrent-operations-per-connection - Specifies the maximum
number of operations a connection can have in progress at one time. If the client reaches
the limit, any additional request will either be rejected or delayed before a timeout
(specified through the maximum-concurrent-operation-wait-time-before-rejecting
property).

« maximum-concurrent-operation-wait-time-before-rejecting - Specifies the
maximum length of time that the server should allow a client request to wait for an
operation to complete, before it can be processed within the maximum-concurrent-

operations-per-connection limit.

« maximum-connection-operation-rate - Specifies the maximum rate at which a client
connection associated with the policy can submit operation requests. Values are
specified as "100/s" for a limit of one hundred operations in a one-second period, or
"1000/5m" for a limit of one thousand operations in a five-minute period. Multiple

-14 -

Denial of Service Prevention

operation rate limits can be specified. For example, specifying values of "100/s" and
"50000/h" will allow clients to burst up to 100 operations per second, but not more than
50,000 operations in an hour.

. connection-operation-rate-exceeded-behavior - Specifies the action that the
server should take if a client exceeds any of the maximum-connection-operation-rate
values. By default, the server will reject the operation with a result code of 51 (busy). An
option to terminate the client connection is also available.

« maximum-policy-operation-rate - Specifies the maximum operation rate across all
connections associated with the client connection policy. This is useful in cases where a
policy is dedicated to clients associated with a particular application for the purpose of
limiting the aggregate request rate for that application.

. policy-operation-rate-exceeded-behavior - Specifies the behavior that the server
should exhibit if the maximum-policy-operation-rate is exceeded. This has the same
set of options as the connection-operation-rate-exceeded-behavior property.

Enforcing Search Limits with Client Connection Policies

The following settings are used to limit the search parameters of clients for which the client
connection policy applies:

. maximum-search-size-limit - Specifies the maximum search size limit (the
maximum number of entries that can be returned by a search operation). This can be
used to enforce a smaller limit for clients, but will not increase a client's size limit.

« maximum-search-time-limit - Specifies the maximum length of time that the server
can spend processing a client search operation. This can be used to enforce a smaller
time limit for clients than they would otherwise have, but will never increase a client's
time limit.

« maximum-search-lookthrough-limit - Specifies the maximum search lookthrough
limit (the maximum number of entries that the server can examine during the course of
processing a search, regardless of whether those entries are actually returned to the
client). This can be used to enforce a smaller lookthrough limit, but will not increase a
client's lookthrough limit.

. allow-unindexed-searches - Allows clients to request unindexed search operations.
Unindexed searches can occupy worker threads for long periods of time. They can also
be used to retrieve large amounts of data from the server. It is generally recommended
that access to request unindexed searches be limited to administrators, or operations
requested from a specific set of systems.

- 15 -

Chapter 3: Mitigating System Attacks

Restricting Request Types with Client Connection Policies

Client Connection Policies provide a number of properties that can be used to restrict the type
of requests that clients are allowed to issue. They include:

allowed-operation - Specifies the operations that are allowed for clients associated
with the policy. Allowed values include abandon, add, bind, compare, delete, extended,
modify, modify-dn, and search.

allowed-request-control - Specifies object IDs of controls that clients are allowed to
use in requests. Any request containing one or more controls not in this list is rejected. If
NO allowed-request-control values and no denied-request-control values are
specified, clients can request any controls.

denied-request-control - Specifies object IDs of controls that clients are not allowed
to use in requests. If a client request includes a control with an object ID that matches a
denied value, that request is rejected. If no allowed-request-control values and no-
denied-request-control values are specified, clients are allowed to request any
controls.

allowed-extended-operation - Specifies object IDs of extended requests that clients
are allowed to send. If one or more values are specified, any extended request not
contained in this list is rejected. If no allowed-extended-operation and NnoO denied-
extended-operation values are specified, clients are allowed to submit any extended
request.

denied-extended-operation - Specifies object IDs of extended requests that clients
are not allowed to send. If a client sends an extended request listed as denied, that
request is rejected. If no allowed-extended-operation and No denied-extended-
operation values are specified, clients can submit any extended request.

required-operation-request-criteria - Specifies a request criteria object that is
required to match any request submitted by the client. If a value is specified, and the
client submits a request that does not match that criteria, the request is rejected.

prohibited-operation-request-criteria - Specifies a request criteria object that must
not match requests submitted by the client. If a value is specified and the client submits
a request that matches that criteria, the request is rejected.

Allowing and Denying Client IP Addresses

The Data Store provides several means to limit client access using connection handlers, client
connection policies, or operational attributes.

Allowing and Denying Client IP Addresses using Connection Handlers

Limit the client IP addresses using the LDAP or LDAPS connection handlers. The connection
handlers provide two properties that can be used to mitigate denial-of-service attacks:

-16 -

Data Breach Prevention

. allowed-client - Specifies the set of allowable address masks that can establish
connections to the handler.

. denied-client - Specifies the set of address masks that are not allowed to establish
connections to the handler.

Allowing and Denying Client IP Addresses using Client Connection Policies

Access can be restricted by configuring a new client connection policy, then creating a new
connection criteria and associating it with the connection policy. Connection criteria define sets
of criteria for grouping and describing client connections based on a number of properties,
including the protocol, client address, connection security, and authentication state for the
connection.

Limit client IP addresses by specifying the following properties in client connection policies:

. included-client-address - Specifies an address mask that identifies a set of clients
that should be included in the connection criteria.

. excluded-client-address - Specifies an address mask that can be used to specify a set
of clients that should be excluded from the connection criteria.

Allowing and Denying Client IP Addresses using an Operational Attribute
Specified address masks can be limited using the following operational attribute:

ds-auth-allowed-address - Specifies the set of addresses from which a user is allowed to
authenticate. Values can be address masks, which can include individual IP addresses or
resolvable names, addresses with wildcards, CIDR address ranges, or IP addresses with
subnet masks. This attribute can also be used to ensure that accounts used by external
systems are only used by those external systems.

Data Breach Prevention

The UnboundID Platform provides features that mitigate data breach/trawling attacks such as
on-disk encryption, sensitive attributes, password storage schemes, access control rules, and
client connection policies. Flexible logging capabilities make it possible to record operations
that involve large amounts of data, which can be investigated after a breach.

Client connection policies are effective against trawling attacks, limiting the resource
capabilities for certain clients using connection criteria. For example, limits can be enforced on
the number of requests a client can issue, the rate at which the client can make requests, the
types of filters clients are allowed to issue, and on substring length. Server-wide or per-user
constraints can be defined on the number of entries that can be examined and/or returned per
search, the length of time the server spends processing a search, and whether to process
expensive unindexed searches.

-17 -

Chapter 3: Mitigating System Attacks

Global Configuration Options for On-Disk Encryption

A number of Global Configuration properties can set on-disk encryption to protect against data
breach and trawling attacks. Data encryption is only applied to the on-disk storage for a Data
Store instance. It does not automatically protect information accessed or replicated between
servers, although other mechanisms provide that protection (SSL, StartTLS, SASL). Client
communication using either SSL or StartTLS encryption ensures that the data is protected from
individuals or applications able to eavesdrop on network communication. This communication
security can be enabled independently of data encryption.

The global configuration properties designed to set up on-disk encryption include the following:

. encrypt-data - Specifies whether data encryption should be enabled in the server for
all components that support it, including certain backends, like the LDAP changelog
backends, and the replication database. If this is enabled, the server must be configured
with at least one encryption setting definition.

. encryption-settings-cipher-stream-provider - Specifies the cipher stream provider
used to read from and write to the encryption settings database, which is also encrypted.
If no cipher stream provider is configured, the server uses a hard-coded algorithm for
accessing encrypted data. If data encryption is enabled, a custom cipher stream provider
should be defined so that it uses a non-default mechanism for accessing the contents of
the encryption settings database.

« verify-entry-digests - Specifies whether the server should automatically verify any
cryptographic digests that can exist in the encoded representation of entries during the
course of decoding them. The generation of entry digests is controlled by the hash-
entries configuration property in backends that support this capability. The process of
generating these digests can be controlled independently of their verification.
Verification can be enabled only if database corruption is suspected.

Implementing Sensitive Attributes

Some attributes contained in user data need additional protection beyond what access controls
provide. This is important for those users who are not subject to access control processing
(those users with the bypass-acl or bypass-read-acl privilege), but for which access to
certain attributes should still be restricted. The Data Store's sensitive attribute mechanism can
be used to accomplish this.

Sensitive attributes are used to restrict certain kinds of access to a specified set of attributes,
or to ensure that they can only be accessed over a secure connection. Sensitive attributes can
be defined as part of the global configuration or in client connection policies.

. Global sensitive attributes - Are applied across all client connection policies, except
those that explicitly exclude them using the sensitive-attribute property.
Administrators can configure this setting using the dsconfig tool.

-18 -

Data Breach Prevention

. Sensitive attributes - Are configured using the sensitive-attribute property in the
client connection policy configuration object. The exclude-global-sensitive-
attribute property can be used to indicate that certain global sensitive attributes should
not be in effect for clients associated with that client connection policy. It is possible for
the same attribute type to be referenced in multiple sensitive attribute definitions. In this
case, the server enforces the most restrictive combination of these sensitive attribute
definitions during processing.

Global Configuration for Sensitive Attributes

The global configuration property available for use with sensitive attributes include the
following:

sensitive-attribute - In the global configuration, specifies the set of sensitive attribute
definitions, which is automatically applied across all client connection policies. However,
individual client connection policies can exclude one or more global sensitive attribute
definitions if desired. See the section on sensitive attributes for more information.

Client Connection Policy Properties for Sensitive Attributes
The client connection policy properties available for sensitive attributes include the following:

. sensitive-attribute - Specifies the set of sensitive attribute definitions that are in
effect for clients associated with the client connection policy. Sensitive attributes can be
used to prevent access to specified attributes, or to restrict them so that they can only be
accessed over secure connections.

. exclude-global-sensitive-attribute - Specifies the set of global sensitive attribute
definitions that is excluded for clients associated with the policy. For example, if most
clients should be prevented from retrieving passwords, but the Data Sync Server needs
to be able to retrieve encoded passwords over a secure connection, a global sensitive
attribute can prevent password access, and the policy used by the Data Sync Server can
exclude that global policy.

Configuration Properties for Sensitive Attribute Definitions

There are a number of properties used to configure sensitive attributes with the dsconfig
command-line tool:

. attribute-type - Specifies the names of the attributes targeted by this definition.

. include-default-sensitive-operational-attributes - Specifies whether the server
should consider certain operational attributes to be sensitive. This includes the ds-sync-
hist attribute, which is used for holding information for replication conflict resolution
processing. Since this attribute can include previous values for attributes, it could

-19 -

Chapter 3: Mitigating System Attacks

contain values for sensitive attributes, and therefore it needs to provide the same level
of protection as explicitly-defined sensitive attributes.

. allow-in-returned-entries - Specifies whether the server should allow sensitive
attribute values to be returned to the client in search result entries. The value for this
property can be one of the following:

o allow - Include this attribute in search result entries if it is permitted by access
control and other parameters.

o suppress - Exclude this attribute in search result entries, regardless of whether
the user has permission to access it in other ways.

o secure-only - Include this attribute in search result entries, but only for clients
communicating with the server over a secure connection.

. allow-in-filter - Specifies whether the server should allow clients to request search
operations with a filter that targets any of the sensitive attributes. The value for this
property can be one of the following:

o allow - Allow any search containing a filter targeting a sensitive attribute.

o reject - Reject any search containing a filter targeting a sensitive attribute.

o secure-only - Allow any search containing a filter targeting a sensitive attribute,
but only for clients communicating with the server over a secure connection.

. allow-in-add - Specifies whether the server should allow clients to attempt to create
entries that include the sensitive attribute. The value can be one of the following:
o allow - Allow any add requests.

o reject - Reject any add requests.

o secure-only - Allow any add requests for clients communicating with the server
over a secure connection.

. allow-in-compare - Specifies whether the server should allow clients to attempt to
perform a compare operation which targets the sensitive attribute. The value can be one
of the following:

o allow - Allow any compare requests.

o reject - Reject any compare requests.

o secure-only - Allow any compare requests for clients communicating with the
server over a secure connection.

. allow-in-modify - Specifies whether the server should allow clients to attempt to
modify sensitive attributes. The value can be one of the following:
o allow - Allow any modify operations.
o reject - Reject any modify.

o secure-only - Allow any modify operations for clients communicating with the
server over a secure connection.

-20 -

Data Breach Prevention

Password Storage Schemes

Many news-worthy security breaches center around stealing large numbers of stored, encoded
passwords. To protect passwords, the Data Store enables a variety of password storage
schemes. Password storage schemes are used to perform encoding, and to verify that clear-
text passwords provided in a bind request match the encoded representation stored in a user's
entry.

There are a number of different password storage scheme implementations to obscure user
passwords. Many of them use one-way digests that encode passwords in a manner that cannot
be reversed, so that even if someone discovers the encoded representation of a password,
they cannot easily determine the clear-text value used to generate it. Many of them use salts
to provide better resistance to attacks using pre-encoded dictionaries. Others use reversible
encryption that makes it possible for the server to determine the clear-text value, but it is still
difficult for users to determine the clear-text version of that password.

Some implementations use trivial encodings that do not offer any real protection and are only
supported for compatibility with third-party applications. Schemes that use reversible
encryption should be avoided unless clients need to perform SASL authentication with the
DIGEST-MD5 or CRAM-MD5 mechanisms. Storage schemes using one-way digests are
recommended for best security.

The password storage schemes supported by the Data Store include:
« AES - Uses the AES reversible encryption algorithm.

« Baseb64 - Uses base64 encoding, which obscures password values but does not provide
any real level of protection.

« Blowfish - Uses the Blowfish reversible encryption algorithm.

« Bcrypt and scrypt - Uses thousands of cryptographic computations in the course of
encoding a password to make the process of encoding a password relatively expensive.
These require the free, open source Bouncy Castle cryptographic library available at
https://bouncycastle.org/. The jar file can be obtained from

https://www.unboundid.com/r/bouncycastle.

« Clear - Stores the clear-text representation of the password with no encoding or
obfuscation.

o Crypt - Uses the UNIX crypt mechanism. The server supports three variants of this
mechanism: the "classic" crypt digest which is weak, and two stronger 256-bit and 512-
bit SHA-2 digests, which are extremely resistant to attacks.

« MD5 - Uses the 128-bit MD5 one-way digest, which is widely supported but no longer
considered particularly secure. There are salted and unsalted versions of this digest.

« PBKDF2 - Uses PBKDF2 key derivation function as described in the PKCS#5
specification (RFC2898). PBKDF?2 is the preferred option for a strong password storage
scheme that involves multiple rounds of cryptographic processing, and does not require
third-party components (like Bcrypt and scrypt).

-21 -

Chapter 3: Mitigating System Attacks

« RC4 - Uses the RC4 reversible encryption algorithm.

. Salted MD5 - Uses a salted form of the MD5 message digest algorithm.

« Salted SHA1 - Uses a salted form of the SHA-1 message digest algorithm.

« Salted SHA256 - Uses a salted form of the 256-bit SHA-2 message digest algorithm.
. Salted SHA384 - Uses a salted form of the 384-bit SHA-2 message digest algorithm.
. Salted SHA512 - Uses a salted form of the 512-bit SHA-2 message digest algorithm.

« SHA-1 - Uses the 168-bit SHA-1 one-way digest, which is considered relatively secure.
There are salted and unsalted versions of this digest.

« Third-Party Enhanced - Created in third-party code using the UnboundID server SDK.
These storage schemes may have access to the user entry so that content from that
entry can be used in the password encoding and/or validation process if needed.

« Third-Party - Created in third-party code using the UnboundID server SDK.
« 3DES - Uses the 3DES reversible encryption algorithm.

Strongest Supported Password Storage Schemes

The strongest of the supported storage schemes are the PBKDF2, Bcrypt, and scrypt schemes.
Each of these schemes performs thousands of cryptographic computations in the course of
encoding a password (and the scrypt scheme also relies on memory consumption and memory
access latency) to make the process of encoding a password relatively expensive. In most
cases, this expense is not significant for normal authentication processing, but it is very
effective at impeding brute force and dictionary attacks, even if the attacker has access to the
encoded representation of a password. The Bcrypt and scrypt password storage schemes
requires the free and open source Bouncy Castle cryptographic library, which is not included
with the server. The PBKDF2 scheme does not require any additional library to be installed.

The SHA-2 variants of the crypt password storage scheme use similar techniques for encoding
passwords that are resistant to attack. However, the crypt scheme also supports substantially
weaker variants that may permit the inadvertent use of weakly-encoded passwords. It is
recommended that the crypt scheme only be used if it is necessary for compatibility with other
systems. If that compatibility is only needed for migrating data, the crypt scheme can be
marked as deprecated so that passwords encoded with it are automatically re-encoded with a
stronger scheme the first time the user authenticates with that password.

The password storage schemes that use salted variants of the 256-bit, 384-bit, and 512-bit
SHA-2 digests are also considered strong, although these schemes only apply the digest one
time when encoding a password. Brute force and dictionary attacks against passwords encoded
with these schemes can be conducted much more quickly than with the PBKDF2, Bcrypt, or
scrypt schemes. However, with strong passwords, these attacks are still very expensive to
conduct.

-22 -

Data Breach Prevention

Formats for Encoded Passwords

The Data Store supports two different formats for representing encoded passwords:
userPassword and authPassword. The userPassword syntax is widely supported by directory
servers. It contains the name of the scheme in curly braces followed by an encoded
representation of a password, like {SSHA}7z9Lzvdk3ACwIITe/yEV5iES5ADCcbdZcy3PFZQ==.
The authPassword syntax, as described in RFC 3112, looks like
SHA1$wrOlEecRfV0=$3asl1EB+TkA85WWcOugSLsoghU90=, and is not supported by all directory
servers.

Each Password Policy must have at least one default password storage scheme. When the
server is asked to store a password provided in clear-text, it encodes it using each of the
storage schemes before actually storing it in the database. Multiple default schemes can be
used, but this should only be done for cases in which clients need to retrieve the encoded
password from the server and verify it themselves rather than using an LDAP bind operation,
or if there are multiple clients that require conflicting schemes for offline verification.

Deprecated Password Storage Schemes

Password Policies can also be configured with zero or more deprecated password storage
schemes. Deprecated storage schemes provide a mechanism for retiring old password
schemes that had previously been used but are no longer needed and are not considered
secure. When a user authenticates to the server with a password encoded in any of the
deprecated storage schemes, the deprecated encodings are removed and the password is re-
encoded with the current password storage scheme.

Limiting Search Results

Data trawling attacks are characterized by broad searches that attempt to retrieve as much
data in one operation as possible. Allowed searches can be limited and the server can be
prevented from returning suspiciously large result sets.

Global Configuration Property that Limits Search Results

The Data Store provides a global configuration property that limits search results to mitigate
against data trawling attacks:

size-limit - Specifies the maximum number of entries returned in a single search operation.
This limit can be overridden on a per-user basis by including the ds-rlim-size-1limit
operational attribute in the user's entry (in a real or virtual attribute), and should be reserved
for users that have a legitimate need to retrieve large numbers of entries.

Client Connection Policies that Limit Search Results

The Data Store provides Client Connection Policies that limit search results to mitigate against
data trawling attacks:

. allowed-filter-type - Specifies the kinds of filter components that clients are allowed
to use in search operations. If a client sends a search filter containing one or more

-23-

Chapter 3: Mitigating System Attacks

components with a filter type that is not allowed, the search is rejected.

. minimum-substring-length - Specifies the minimum number of consecutive non-
wildcard characters that must be present in a substring search filter component in order
for a search request to be allowed. If a search request contains a filter with a substring
component that does not have at least this many consecutive non-wildcard characters,
the search is rejected.

« maximum-search-size-limit - Specifies the maximum search size limit (the
maximum number of entries that can be returned by any search operation) for clients
using the policy. This property can be used to enforce a smaller limit for clients than they
already have, but will never increase a client's size limit.

« maximum-search-time-limit - Specifies the maximum length of time that the server
can spend processing any search operation for clients using the policy. This property can
be used to enforce a smaller time limit for clients than they already have, but will never
increase a client's time limit.

« maximum-search-lookthrough-limit - Specifies the maximum search lookthrough
limit (the maximum number of entries that the server can examine during the course of
processing a search, regardless of whether those entries are actually returned to the
client) for clients using the policy. This property can be used to enforce a smaller
lookthrough limit for clients than they already have, but will never increase a client's
lookthrough limit.

Operational Attributes that Limit Search Results

The Data Store provides operational attributes that limit search results to mitigate against data
trawling attacks:
« ds-rlim-size-limit - Specifies the search size limit that should be enforced for the user.
If a value is not specified, the user inherits the default size limit specified in the global
configuration.

« ds-rlim-time-limit - Specifies the search time limit (in seconds) that should be
enforced for the user. If a value is not specified, the user inherits the default time limit
specified in the global configuration.

« ds-rlim-lookthrough-limit - Specifies the search lookthrough limit that should be
enforced for the user. A value of zero indicates that no lookthrough limit should be
enforced for that user. If this is not specified, the user inherits the default lookthrough
limit specified in the global configuration.

Searches Involving Sensitive Attributes

The Data Store supports additional restrictions that can be applied to specific attributes.
Several of these are useful in the context of making search requests more secure, such as

-24 -

Data Breach Prevention
allow-in-returned-entries and allow-in-filter.

Restricting Access to Certain Controls

Another way to protect against a data breach is to limit large searches spanning multiple
requests, which is a risk if an attacker has access to certain controls, such as the simple paged
results and virtual list view. The simple paged results control can be used with a search
operation to iterate sequentially through the search results a page at a time. The virtual list
view control is similar, except that the results are presented in sort order that enables the
server to return a subset of entries.

Using Client Connection Policies to Restrict Access to Controls

By default, these controls are granted to users specifically through access control rules or for
those users who have the bypass-acl privilege. Access to these controls can be limited by
configuring restrictions on what controls are allowed through the Client Connection Policy. The
properties that limit access to controls are as follows:

. allowed-request-control - Specifies the object IDs of the controls that clients can
include in requests. Only specified controls can be included in the requests.

. denied-request-control - Specifies the object IDs of the controls that clients are not
allowed to include in requests.

. required-operation-request-criteria - Specifies a request criteria object that is
required to match all requests submitted by clients. If a client submits a request that
does not satisfy this request criteria object, that request is rejected.

. prohibited-operation-request-criteria - Specifies a request criteria object that must
not match requests submitted by clients. If a client submits a request that satisfies this
request criteria object, that request is rejected.

Note
These properties do not grant a user the ability to use these controls, which is done using
access control rules. They do provide more granular control over circumstances in which they
can be used, and also enforce these restrictions for users with the bypass-ac1 privilege.

Restricting Access to the Directory Information Tree with Client
Connection Policies

Client Connection Policies can control the portions of the Directory Information Tree (DIT) that
clients can access. This is configured through the set of subtree views associated with the
policy. Subtree views associate a base DN with the logic used to process requests within that
portion of the DIT. Some of these subtree views can be automatically created by the server for
those associated with local backends, but some of them can be manually created by
administrators, especially in the Proxy Server, for views that pass through operations to
backend servers.

The configuration properties used to limit access to portions of the DIT include:

-25-

Chapter 3: Mitigating System Attacks

. include-backend-subtree-views - Indicates whether the policy should automatically
include subtree views for local backends defined within the server. This should only be
set to false inthe Proxy Server, so that it only allows access to proxied data but
prevents access to local content like the server root DSE, schema, configuration, and
monitor data.

« included-backend-base-dn - Specifies the base DNs for backends whose information
should be made available to clients. If base DNs are specified, clients associated with the
policy are only allowed to access data within those DNs. If no backend base DNs are
specified as included or excluded, clients can access all content in all backends.

. excluded-backend-base-dn - Specifies the backend base DNs for content that clients
should be prevented from accessing. If no backend base DNs are specified as included or
excluded, clients can access all content in all backends.

« included-backend-server-pass-through-subtree-views - Used in the Proxy Server
to expose access to each of the backend servers. This can be useful for administrators
who can only access the backend servers through the Proxy Server but need to interact
with a specific server without worrying about how requests are routed through load
balancing and entry balancing. If enabled, each backend server is available through ds-
backend-server={serverID}. For example, for a server with ID
dsl.example.com:389, the cn=monitor entry could be accessed with a DN of

cn=monitor,ds-backendserver= dsl.example.com:389.

. subtree-view - Used in the Proxy Server to control access to proxied data sets for
clients. It can be useful for accessing data sets through proxying, entry balancing, and
failover request processors.

LDAP Injection Attacks

LDAP Injection attacks are used to manipulate the search filters from a client application to
gain access to an underlying directory database. Where a SQL query can be used to destroy or
alter data, LDAP injection only offers the possibility of providing unexpected read access to the
data. Also, the LDAP syntax used for expressing search filters prevents many kinds of injection
attacks so that an attacker cannot increase the scope of data returned.

To prevent injection attacks, make sure that all clients sanitize the user input that can be
included in search requests. Many LDAP client APIs (including the UnboundID LDAP SDK for
Java) provide ways of creating search filters that do not require using the string
representation, and therefore do not allow unexpected input to turn into one or more additional
search filter components.

If a client succeeds in performing an LDAP injection, the intended result will be either to get the
server to reveal a large amount of data, or to reveal specific sensitive information. The first
scenario is considered a data trawling attack, which can be prevented with any of the
previously listed configuration options. The second scenario can be addressed by processing

-26 -

Man-in-the-Middle Attack Prevention

requests with an appropriate authorization identity, and by ensuring that the server is
configured (through the use of access controls, sensitive attributes, client connection policy
restrictions) to only return information that users have a right to retrieve.

Man-in-the-Middle Attack Prevention

The man-in-the-middle attack works by establishing connections between the Data Store and
the client and relaying messages between them as an intermediary host. The client and target
Data Store are unaware of this eavesdropping attack, as each believes it is communicating
with the other. This attack can intercept sensitive data, manipulate data transmission, and
inject malicious code.

UnboundID servers can mitigate these attacks by ensuring that all connections are secure. For
example, clients can connect to the Data Store over SSL or StartTLS, which enables
determining if the certificate presented can be trusted. Secure naming services like DNSSEC
can also help prevent the kinds of DNS hijacking attacks that are frequently used to trick
clients into establishing connections to the wrong systems.

Securing System-to-System Network Connections

Another critical aspect of network security lies in making sure that communication occurs
between the intended systems. If a client can be tricked into establishing a connection with an
untrusted system, then it could compromise the client’s credentials or enable a man-in-the-
middle attack, in which the untrusted system could alter traffic between the client and server
or inject completely new requests.

Consider using the following external tools (they are not UnboundID features) to mitigate these
problems:
. Use DNSSEC - If available, DNSSEC should be used to prevent DNS hijacking in a way
that could cause clients to receive the wrong addresses for servers.

« Strong TCP sequence numbers - Use strong TCP sequence humbers to avoid existing
sessions from being hijacked.

« Reject source-routed packets - Though rarely used, source routing allows the sender
of a packet to specify which route the packet should take to its destination.

« Reject ICMP redirects - Internet Control Message Protocol (ICMP) redirects are used
by routers to notify host systems that a better path is available to its destination. Reject
ICMP redirects avoid traffic routed through untrusted systems.

. Prevent Eavesdropping - Any inter-system communication should be encrypted to
ensure data integrity and confidentiality. For UnboundID servers, internal configuration
options address this concern. However, communication to remote filesystems can also
include sensitive data that needs to be protected. Encryption for these services can be
configured on an individual basis, or IPsec can be configured to ensure that all

-27-

Chapter 3: Mitigating System Attacks

communication between systems is encrypted. IPsec can also encrypt communication for
services that do not provide their own encryption support.

Features that Reduce the Risk of Network Address-Spoofing

The UnboundID product family provides a number of features that reduce the risk of network
address-spoofing:
« Use a Global Configuration Property - The global configuration property,
networkaddress-cache-ttl, specifies the maximum length of time that the JVM should
cache the IP address for a resolved hostname.

« Use Custom Post-Connect and Post-Disconnect Plug-ins - The UnboundID Server
SDK can be used to develop custom post-connect and post-disconnect plug-ins. Post-
connect plug-ins are invoked when the server accepts a new client connection and are
used to terminate that connection if it is determined that it should not be allowed. Post-
disconnect plug-ins are invoked just after an existing connection is closed, whether that
closure is initiated by a client or by the server.

« Set Up Credentials for External Servers - If the directory must access content on
an external server, credentials for that server must be supplied. These credentials can
be in the form of a password, or a certificate. Because these credentials are often for
accounts with elevated privileges, they need to be protected. The Data Store encrypts
the passwords it uses to access external systems and the PINs used to interact with a
certificate keystore. Access to the configuration file, archived configurations, and the
configuration audit log should be carefully protected.

Credentials used to authenticate to external servers should not be shared by other
applications. If possible, the target server should also be configured to accept those
credentials only from UnboundID servers. This ensures that even if those credentials are
compromised, they can only be usable from UnboundID servers.

- 28 -

Chapter 4: Protecting the Host System

Securing a directory environment requires securing the systems and networks on which the
servers are running. Even if a server is locked down, someone who has access to the system
on which the server is running may still be able to obtain sensitive data.

There is much information available about how to secure systems and networks. Work with
operating system vendors to understand the security features and best practices specific to
those platforms.

Most UnboundID server deployments exist on UNIX-based operating systems like Solaris,
Linux, and AIX. The principles addressed in this guide are suitable for any operating system,
but some content is more relevant for UNIX-based operating systems.

Topics include:

The UnboundID Environment on Multiple Operating Systems

Minimizing Software and Running Services

Keeping Systems Patched

Using Virtualization

Maintaining the Java Virtual Machine

Configuring Strong Authentication for System Administrators

Minimizing Administrative Account Capabilities

Using System Logging and Auditing

- 29 -

Chapter 4: Protecting the Host System

The UnboundID Environment on Multiple Operating
Systems

In many environments, selecting an operating system is a relatively straightforward process.
Most modern operating systems can be configured securely. UnboundID servers are well-
suited to deployments installed across multiple operating systems because they do not include
system-specific dependencies. The server software itself is pure Java. The data that it stores
does not depend on whether the CPU is bigendian or little-endian, the operating system
specifics, or what end-of-line sequence is used. A backup taken on one operating system can
be restored on another operating system, and in most cases, an entire server instance can be
moved from one operating system to another.

Some operating systems include extensions that add additional security capabilities, including
Solaris Trusted Extensions and SELinux. These can provide advanced security features,
including mandatory access control, role-based access control, and labeled security. In
addition, many of the security concepts from these operating systems have been incorporated
into the UnboundID server products.

Minimizing Software and Running Services

Operating systems often come with a large amount of software installed. Each application or
command on a system is potentially a security hole that could provide unauthorized users a
way to get into the system. Software that is not needed to run the JVM or UnboundID server
software can be safely removed. Consult the operating system(s) documentation to determine
the applications that can be removed.

For software that cannot be removed from the system, reduce the likelihood that it can be
exploited. Any unnecessary network services should be disabled, and any network daemons
which must run, but are not needed outside the system, should be configured so that they are
not accessible to external clients. When possible, services should be configured to run as a
non-root user with as few rights as possible.

All nonessential network services should be disabled, and firewall software should be used to
ensure that a service that is disabled cannot be accessed.

Keeping Systems Patched

For software that cannot be removed from the system, it should be updated regularly so that
vulnerabilities are fixed as quickly as possible. However, there have been instances in which
security patches caused unforeseen problems. It is strongly recommended that a testing
environment be used to test patches and updates prior to production.

Monitor security-related or operating system mailing lists. These offer timely security
information based on a wide range of use. It can take a significant length of time for an
operating system vendor to prepare and test a patch for a problem, leaving systems
vulnerable during the duration. The sooner these problems are known, the sooner corrective

-30 -

Using Virtualization

action can be taken. After fixes are released, review industry reports for any problems
introduced by the patches.

Using Virtualization

In environments that run multiple network services on the same system, it may be useful to
use virtualization to separate those services. In some cases (like the zones support that
Solaris offers), it can be useful to isolate a service from the rest of the operating system.

The primary advantage of separation is that it limits the effects of a vulnerability in one of the
services. A second advantage is that if an attacker does gain control over a service, the
compartmentalization can prevent the breach from escaping the boundaries of the container.

A third advantage to virtualization is that it can separate security monitoring tools from the
containers in which the servers are running. If an attacker gains access to the container in
which an UnboundID server is running, the attacker will not have access to the monitoring
process. This can also be useful for server logging. If a syslog daemon is run in one container
and the Data Store in another, the server log can be run over a private network available
between those containers.

For a heavy virtualization option like VMware or hardware partitions like LDOMs, each
container will be required to have its own operating system installed, which must be secured
and maintained. Lightweight virtualization options that use only one operating system instance
may be more efficient.

Maintaining the Java Virtual Machine

A recent version of the JVM should be used to ensure that known security holes have been
patched. However, there are known problems with some recent JVM versions, and it is best to
contact an authorized support provider for assistance in selecting the best version.

Just as with operating systems, consider running JVMs from different vendors to mitigate the
risk of bugs and security holes that can be discovered. On some operating systems, there may
not be many options.

Configuring Strong Authentication for Administrators

The mechanism for authenticating to the system should be as secure as possible. Consider who
really needs access to the system to minimize the number of credentials that could be
compromised. Each authorized user should have a distinct set of credentials, so that the
actions of each can be audited. If one leaves or no longer needs access to the system, that
account access can be easily revoked without impacting others. This also makes it easier to
enforce policies that require individuals to change their credentials on a regular basis without
having to coordinate the change among multiple users.

If possible, consider credentials either instead of, or in addition to passwords. SSH keys work
well. They are relatively straightforward to set up and use, do not need to be remembered, and
cannot be guessed. The keys themselves can be protected with passwords, adding another

-31-

Chapter 4: Protecting the Host System

layer of security. If passwords alone must be used, configure the system to require strong
passwords and ensure that passwords are encoded with a mechanism that is resistant to
attacks.

If a user account is compromised or its owner leaves, the account should be terminated as
soon as possible. Normally, this is best left to a centralized naming service like LDAP, but this
is not recommended for the systems responsible for providing the directory service itself.
Local file-based accounts are most reliable. Keep a current list of all users with access to these
systems, and all systems they can access with those credentials, so they can all be quickly
accessed and revoked if necessary.

Minimizing Administrative Account Capabilities

Each system account should be as limited as possible while still allowing its owner to
accomplish necessary tasks. System administrators need full access to the system, but
administrative accounts should not be allowed to directly authenticate to the system.

The accounts of users authorized to log into the system and assume the administrative role
should be restricted to authentication, and assuming the administrative identity. Ideally, they
should have limited access to the server filesystem, and should not be able to see processes
owned by other users. Restrict the set of commands they can execute using profiles or a
restricted shell.

Using System Logging and Auditing

Most operating systems provide an audit mechanism that records detailed information about
system events. This can include coarse information, like recording user login and logout
events, or more detailed information like recording each time a user opens or closes a file.
Auditing can provide vital information to diagnose problems or investigate security breaches.
Make sure auditing and logging are tuned properly to avoid saving too much data, which can
hamper problem solving and reduce system performance.

-32-

Chapter 5: Securing the Filesystem

If an attacker does gain access to a server system, the next line of defense is the restrictions
the system enforces for access to data on the server. This includes database content,
configuration files, log files, backups, LDIF exports, and other information.

Topics include:

Filesystem Protections

Removing Java Encryption Security Restrictions

Managing the Encryption Settings Database

Supported Cipher Stream Providers

Configuring Data Encryption

Devising Backup and Restore Strategies

Securing LDIF Exports

-33-

Chapter 5: Securing the Filesystem

Filesystem Protections

The most basic forms of filesystem protection are file permissions and filesystem encryption.
Any portion of the filesystem containing sensitive data should be accessible only to the account
used to run the server. In the default installation, all components of the server reside in server
root. When the server archive is unzipped, which should be done with the account used to run
the server, the server root directory will have 0700 permission. The content below it cannot be
accessed by any other account on the system, except those not subject to filesystem access
restrictions, like root. Further, directories used to hold database files have permissions of
0700, and access and error log files are given permissions of 0600. If some components of the
server are moved to other filesystems, then permissions and ownership should be set on those
paths to ensure that it is appropriately protected.

Another form of security is filesystem encryption. Although UnboundID servers provide the
ability to encrypt some content, an additional level of protection may be obtained by
encrypting the entire filesystem. Encryption generally does not add much value for a mounted
filesystem, since it appears unencrypted to applications that use it.

Filesystem auditing software can also be used to identify questionable use of file permissions
and SUID/SGID bits, and keep a record of all filesystem content changes. This is valuable for
files that are part of UnboundID server installations. Though log and database files change
frequently, changes to jar and configuration files are less frequent. Any change in operating
system binaries and configuration files should be tracked.

Removing Java Encryption Security Restrictions

Although the Java runtime environment includes the Java Cryptography Extensions (JCE)
library for performing encryption, hashing, signing, and other kinds of cryptographic
operations, the strength of the encryption that can be used is limited by default. This restriction
is enforced for legal reasons, because U.S. law forbids exporting strong encryption capabilities
to some countries. If possible, update the installation to remove these restrictions.

To do this, search for and download the "Java Cryptography Extension (JCE) Unlimited Strength
Policy Files 6." Follow the instructions in the README . txt file included with the package.

Managing the Encryption Settings Database

Before enabling data encryption, create an encryption-settings definition to specify the cipher
transformation that should be used to encrypt the data, and encapsulate the encryption key.
The encryption-settings command-line tool can be used to manage the encryption-settings
database.

Because the encryption-settings database contains the encryption keys used to protect server
data, the encryption-settings database is itself encrypted. By default, the server will derive a
key to use for this purpose, but the logic used to access the encryption-settings database with
a cipher stream provider should be customized. The UnboundID Server SDK provides an API
that can be used to create custom cipher stream provider implementations, but the server also
provides one that will obtain the key from a custom PIN file.

-34 -

Supported Cipher Stream Providers

Each server in a replicated environment will maintain its own encryption-settings database. If
data encryption is enabled, each replica uses its own encryption settings to encrypt updated
entries. Though it is not necessary for servers to share the same encryption-settings
definitions, it is necessary if the server needs to be able to restore a backup containing
encrypted data on a different instance than the server from which it was originally created. It
is recommended that an encryption-settings definition be created on one server, exported, and
imported on all other servers.

Supported Cipher Stream Providers

The Data Store supports four Cipher Stream Providers, which are used to obtain cipher input
and output streams to read and write encrypted data. These are advanced configuration
properties, listed in the UnboundID Data Store Reference.

Cipher Stream Providers

Cipher Stream

. Description

Providers P

Default Default cipher stream provider using a hard-coded default key.

File-Based Used to read a specified file in order to obtain a password used to generate cipher
streams for reading and writing encrypted data.

Third-Party Used to provide cipher stream provider implementations created in third-party code
using the UnboundID server SDK.

Wait-for-Paraphrase Causes the server to wait for an administrator to enter a passphrase that will be used

to derive the key for cipher streams. Supply the passphrase to the server by running
the encryption-settings supply-passphrase command.

Configuring Data Encryption

By default, the server stores information in the database in a compact encoded form, intended
to minimize the amount of space required to hold that data on disk and in memory. Although
this encoding makes the data harder to extract, it is still possible for an attacker to get the
data, and potentially decode the database files on a different server.

To address this problem, the Data Store enables encrypting the data after it has been encoded,
so that only an individual with access to both the database files and the encryption key can
determine the content. As long as the encryption keys are carefully protected, the database
content remains secure.

The Data Store relies on data encryption rather than attribute encryption. Instead of indicating
which attributes should be encrypted, the server is enabled to encrypt all data. This has
several advantages over encrypting individual attributes, including:
« Simplicity - Enable data encryption in the global configuration, and it will be applied
where the server supports it. This includes user data, the replication database, and LDAP
changelog.

-35-

Chapter 5: Securing the Filesystem

. Better Protection - The problem of selecting attributes and omitting something that
can contain sensitive information is eliminated. This is especially true for operational
attributes, which can contain portions of user data in non-obvious ways. For example,
attributes used for replication conflict resolution can have data from any attribute in the
entry.

« Smaller Database Size - Encrypting everything makes the encoded representation
smaller than if the database contained a mix of encrypted and unencrypted content.

« Efficiency - Encrypting all of the data as a single encryption operation is more efficient
than performing multiple encryption operations for individual attributes.

Once the server has been configured with at least one encryption settings definition, data
encryption can be enabled with the following:

$ dsconfig set-global-configuration-prop \
--set encrypt-data:true

Data encryption can be enabled at any time, and any writes performed after that time will be
encrypted. Existing entries remain unencrypted until they are updated. To ensure that all data
is immediately encrypted, it is recommended that the server is stopped, the data is exported
to LDIF (optionally encrypting that LDIF file as described below), and the data is re-imported
into the server. This process can also be used to re-encrypt the data if the server is updated
with a new preferred encryption settings definition.

Devising Backup and Restore Strategies

Regularly-tested backup and restore strategies ensure that directory data is safe, correct, and
usable. Beyond the basic data backup mechanisms that the server provides, make sure that
the entire server installation is archived on a regular basis. This ensures that supporting
content like encryption keys, certificate databases, and PIN files are properly backed up.
Encrypted data cannot be used without them, and signed data cannot be trusted.

A security breach may result in altered data. It is important to have copies of data to identify
what has changed. In the event that an attacker might have had access to a system for a long
period of time, archived log data may be critical to understanding how the breach occurred and
the extent of the damage.

Encrypting Backups

Even if data encryption is enabled, someone accessing database files may be able to determine
information about the database environment, such as indexes defined and unique values
contained in the data. This applies not only to copies of the database on the server filesystem,
but also for copies such as server backups.

The server provides the ability to encrypt the backup contents, including index and database
structure information, which is not covered by data encryption. The server uses a different
encryption mechanism for backups and LDIF exports than it does for data encryption, and
automatically uses an encryption key shared across all servers in a replicated environment.

- 36 -

Securing LDIF Exports

Creating or restoring an encrypted backup requires that the server be online. For example, the
following command performs an encrypted backup of all server backends:

$ bin/backup --task \
--hostname directory.example.com \
--port 389 \
--bindDN "uid=admin,dc=example, dc=com" \
--bindPasswordFile admin.password \
—--backupDirectory bak \
—-backUpAll \
—-—encrypt

Note
If data encryption is enabled, make sure that the encryption settings definitions are backed up
with the encrypted data. An attempt to restore a backend containing encrypted data without the
necessary encryption settings definitions, will result in inaccessible data. If all backends (as in
the example above) are included in the backup, the server automatically includes the
encryption settings database. If any backends contain encrypted data, include the encryption
settings backend to make sure that the necessary keys needed to access that data are
available.

When a backup is performed, a backup.info file is created in the backup directory. This file
provides information about the settings for that backup, including whether the backup is
encrypted. The process for restoring a backup generated with or without the --encrypt
argument is the same. For example:

$ bin/restore --task \
-—-hostname directory.example.com \
--port 389 \
--bindDN "uid=admin,dc=example, dc=com" \
--bindPasswordFile admin.password \
--backupDirectory bak/userRoot

If restoring a backend that contains encrypted data, first restore any applicable encryption
settings definitions that may be in use before restoring the data itself. The restore process for
most backends completely eliminates any existing content. The resulting data set is only that
which is contained in the backup. Restoring a backup of the encryption settings database
preserves all definitions contained within, and adds any new definitions that are contained in
the backup.

Securing LDIF Exports

LDIF exports provide an additional backup mechanism that offers protection against latent
corruption in the database, can iterate across every entry to discover corruption, and can also
apply data encryption to an existing data set. LDIF exports may also be a more efficient way of
generating indexes for a large number of attributes.

LDIF exports can contain sensitive data. The server provides the ability to encrypt LDIF
exports similar to binary backups, using the --encryptLDIF argument. To encrypt the data,
perform the export with the server online. For example:

$ bin/export-1dif --task \
--hostname directory.example.com \

-37-

Chapter 5: Securing the Filesystem

-—port 389 \

--bindDN "uid=admin,dc=example,dc=com" \
--bindPasswordFile admin.password \
--backendID userRoot \

--1difFile /ds/ldif/userRoot.ldif \
——encryptLDIF

Although backups generate a descriptor file with information about the settings used for that
backup, that is not available for LDIF files. When performing an import, it is necessary to
explicitly indicate that the data is encrypted, using the --isEncrypted argument. For
example:

$ bin/import-1dif --task \
--hostname directory.example.com \
--port 389 \
--bindDN "uid=admin, dc=example,dc=com" \
--bindPasswordFile admin.password \
—--backendID userRoot \
--1difFile /ds/ldif/userRoot.ldif \
-—-isEncrypted

- 38 -

Chapter 6: Protecting the UnboundID
Platform

Protecting the UnboundID Platform refers to protecting all of the server components that
manage or store valuable user data. The Proxy Server can front the Data Store backends,
providing efficient load-balancing or entry-balancing deployments. The Data Sync Server can
be deployed to provide synchronization capabilities between disparate system databases.

Topics include:

Separate User and Administrator Accounts

Centralized and Remote Logging

Securing the Configuration using Privileges

Proxy Considerations

Data Sync Server Considerations

-39 -

Chapter 6: Protecting the UnboundID Platform

Separate User and Administrator Accounts

Accounts used to perform system or software administration should not be allowed to
authenticate directly to the system. Only a set of users that have already authenticated to the
system using limited individual accounts should be allowed to act as administrator.

This is best accomplished with a mechanism like Solaris roles, or through the use of the sudo
command. Only users with a legitimate need should be allowed to access those accounts.

In some organizations, the individuals responsible for managing systems are different from
those responsible for installing them. If there is overlap between these roles, it may be helpful
for those individuals to have separate accounts for each task. This may help in tracking the
actions performed by each account.

Installing or managing UnboundID software as a user other than the server user account, can
cause files to be created with incorrect ownership, which will interfere with subsequent
attempts to run the software using the server account. UnboundID server software can detect
and prevent attempts to start the server or use certain administrative tools with an unexpected
user account, but it may still be possible to cause some problems by attempting to manage the
server with an unexpected user account. By maintaining a hard separation between the
accounts for system and service administration, problems arising from mistakes like this are
easier to avoid.

Using a Limited Account to Run Identity Server Services

UnboundID software should run under a user account that has a minimal set of capabilities.
The account must be able to perform the following:

o Perform network communication.

« Read and write files at least below the server root, and potentially in other locations if
components like log and database files are to be spread across multiple filesystems.

« Execute commands in at least the bin and usr/bin directories, as well as those in the
bin directories below the server and JVM installations.

The account may need additional capabilities not normally granted to regular users, including
the ability to listen on a privileged network port and the ability to use a greater number of file
descriptors.

If running multiple instances of UnboundID server software on the same system, consider
running each under a separate account. This provides a degree of isolation that can help
minimize exposure if one of the accounts is compromised.

Considerations for Root Users

A directory root user is an all-powerful account that cannot be limited by access control or
password policy restrictions, and in some cases is only allowed to authenticate through
relatively insecure means. With UnboundID servers, there is very little difference between

-40 -

Separate User and Administrator Accounts

root users and regular users, with the exception that root user entries exist in the server
configuration rather than in user data, and root users can be configured to automatically inherit
certain privileges.

Many directories support only a single root user, which can cause several problems. First, it
requires all administrators to share the same credentials, which makes it difficult to coordinate
users to change those credentials. In addition, the need to share credentials among multiple
individuals increases the risk that those credentials will be exposed, and also makes it difficult
or impossible to audit the activities of individual administrators.

UnboundID servers can have any number of root users with their own credentials (including
non-simple credentials, like a certificate for SASL EXTERNAL), individual privilege sets, and
password policy restrictions. Since the special rights that root users have are granted through
privileges and operational attributes, it is possible to create a non-root user that is just as
powerful as a root user. The only real difference between a root user and a similarly defined
non-root user is that the root user exists in the server configuration, and will be available even
when other users may not be (if a backend containing user data is taken offline or temporarily
unavailable). It is strongly recommended that root user accounts only be created for server
administrators. If a non-administrator needs elevated privileges, create a normal user account
with only those privileges needed to accomplish the desired tasks.

Root user accounts exist as user entries in the server configuration, below cn=Root

DNs, cn=config. These entries should have a regular user structural object class, such as
inetOrgPerson, and should also include the ds-cfg-root-dn-user auxiliary class. Other
attributes to include in root user entries are:

« ds-cfg-alternate-bind-dn — Specifies an alternate DN that can be used to reference
the root user when authenticating. For example, the default configuration has a single
root user with a DN of cn=Directory Manager,cn=Root DNs, cn=config, butitis also
possible to authenticate as that user with a DN of just cn=Directory Manager.

e ds-cfg-inherit-default-root-privileges — Indicates whether the root user
automatically inherits the set of default root privileges as defined in the default-root-
privilege-name property of the root DN configuration object. If this attribute is included
in a root user's entry with a value of false, then that root user will only have an
explicitly-designed set of privileges.

« ds-privilege-name — Explicitly configures individual privileges for the user. It can be
used in conjunction with the ds-cfg-inherit-default-root-privileges attribute to
add additional privileges on top of the default root privileges, or by prefixing the
privilege name with a minus sign to indicate that privilege should not be granted to the
user. For example, a value of -unindexed-search indicates that the root user should not
have the unindexed-search privilege, even through it would normally be inherited as a
default root privilege. It can also be used to specify the entire set of privileges for a user
if ds-cfg-inherit-default-root-privileges is false.

« ds-pwp-password-policy-dn — Specifies which password policy should be applied to the
root user. If no value is specified, the root user is subject to the server's default

-41 -

Chapter 6: Protecting the UnboundID Platform

password policy. The server provides a special root password policy (in the "cn=Root
Password Policy,cn=Password Policies, cn=config" configuration entry) that can be
configured independently of the default policy. With the exception of ds-cfg-
alternate-bind-dn and ds-cfg-inherit-default-root-privileges, all of these
attributes can be included in the entries for any user in the server.

The ds-auth-allowed-address, ds—auth-allowed-authentication-types, ds—auth-
require-secure-authentication, ds-auth-require-secure-connection, ds-auth-is-
proxyable, and ds-auth-is-proxyable-by operational attributes can be used in both root
user entries and normal entries. They can be assigned as either real or virtual attributes.

The ds-rlim-size-limit, ds-rlim-time-limit, ds-rlim-lookthrough-limit and ds-rlim-
idle-time-1limit operational attributes can be applied to prevent root user accounts from
being used to perform denial of service attacks. See Denial-of-Service Prevention.

Centralized and Remote Logging

Directory syslog events should be written to a remote system. Logging to a remote server can
be a vital aspect of security because it is much more difficult for an attacker to alter that
content and compromise multiple systems. Also consider the use of WORM (write once, read
many) drives or filesystems, which offer support for an append-only mode of operationin
which data cannot be altered once it has been written.

UnboundID server products offer capabilities for logging to remote systems, such as:

« UDP-based Protocol - The Data Store only supports the UDP-based syslog protocol,
which alone lacks communication security. Therefore, it is recommended that the server
only communicate with a syslog daemon running on the local system over the loopback
interface.

« Loopback Communication - To have the log messages delivered to a remote system,
use loopback communication, to have the local syslog daemon simply act as an
encrypted relay to a remote server. Open source and commercial syslog software
(including rsyslog and syslog-ng) provide the ability to act as a syslog relay for the
purpose of securely logging to a centralized server.

« Custom Logging using the Server SDK - The UnboundID Server SDK can be used to
create custom loggers to send messages to a centralized system using another
mechanism, such as publishing them to a message queue.

Securing the Configuration using Privileges

The following are recommended steps to limit access and restrict changes to the system’s
configuration settings. This makes it more difficult for attackers to undo protections that are in
place, or to grant themselves additional access:

-42 -

Securing the Configuration using Privileges

« Access to the configuration requires the config-read privilege.

« Modifying the configuration requires the config-write privilege.

« Modifying the server schema requires the update-schema privilege.

« Modifying the server's access control configuration requires the modi fy-acl privilege.

« All configuration access is subject to access control evaluation. Users must have access
control rights to perform the requested operations (or have the bypass-acl privilege).

« Access to the configuration can be restricted by client connection policy through the
include-dbackend-base-dn and excluded-backend-base-dn properties. Criteria can
also be defined to indicate which clients are allowed access to the configuration from
specific IP addresses, only over secure connections, or only with specific authentication
methods.

« Configuration changes made with the server online are recorded in the config.audit
log. Configuration changes also generate administrative alerts. Configuration changes
made with the server offline are detected and an alert is generated when the server
starts.

Safe Use of dsconfig and the Web Console

The following points should be considered when making server configuration changes with the
dsconfig tool and the Web Console:
« Using dsconfig with No Arguments - When launching dsconfig with no arguments,
only LDAP simple authentication (optionally secured with SSL or StartTLS) is supported.
SASL authentication is available when using command-line arguments (and if providing
arguments needed for SASL in interactive mode).

« Use SSH on Remote Systems - When running dsconfig on a remote system, make
sure that the communication is encrypted so that any credentials or other sensitive
information provided to dsconfig are protected.

o Use SSL or StartTLS - Communication between dsconfig or the Web Console and the
target servers, should use LDAP over SSL or StartTLS.

« Use HTTPS - When accessing the Web Console, use HTTPS rather than HTTP to make
sure that any credentials or other sensitive information is encrypted.

Maintaining Consistent Server Configurations

For deployments with multiple servers, make sure that each server is configured identically.
This prevents a configuration difference that may open one of the servers up to an attacker.
The following global configuration property can be used to specify a server group:

configuration-server-group - Specifies a group (in the administrative data repository) of
servers related to the current server. This is used by tools like dsconfig and the Web

- 43 -

Chapter 6: Protecting the UnboundID Platform

Console, so that changes can be applied to all servers in the group. This ensures that the
configuration of all servers in the environment remains synchronized.

Data Security Audits

The Data Store provides an audit-data-security command-line tool that invokes a set of
data security auditors to identify the audit type performed, current account, password, and
privilege settings. Each data security auditor generates a time-stamped report. Reports from
consecutive runs can be compared to determine if changes resolve one or more identified
issues.

The audit-data-security tool enables specifying the backends to audit as well as the specific
severity and verbosity levels for each event. The tool can execute on the Local DB, LDIF, and
Configuration backends. Only one data security audit can run on any Local DB backend at any
given time. If multiple backends are audited, the data security auditors scan these
simultaneously. If scheduled for a specific time, the tool invokes an Data Store task that runs
one or more auditors on the selected backends.

Only administrators with the audit-data-security privilege can run data security audits.

Viewing Data Security Audit Reports

Each data security audit generates a detailed report file named after the type of auditor used.
By default, the security audit report files are saved in LDIF format to the <server-
root>/reports/audit-data-security/<timestamp> directory. In the top-level reports
directory, a summary.1dif file provides an overview of the audit results. Sub directories for
each backend store the detailed report files.

Open a report file using a text editor. The following command opens the entries-with-
acis.ldif report for the userrRoot backend.

S cat /UnboundID-DS/reports/audit-data-security/20110811201049Z/userRoot/entries-with—-
acis.ldif
dn: dc=example,dc=com

objectClass: ds-audit-report-aci-entry
objectClass: extensibleObject
ds-audit-severity: notice
ds-audit-reason: presence of access control information
aci: (targetattr!="userPassword")
(version 3.0; acl "Allow anonymous read access for anyone";
allow (read,search,compare) userdn="ldap:///anyone";)
aci: (targetattr="*")
(version 3.0; acl "Allow users to update their own entries";
allow (write) userdn="ldap:///self";)
aci: (targetattr="*")
(version 3.0; acl "Grant full access for the admin user";
allow (all) userdn="ldap:///uid=admin,dc=example,dc=com";)

-44 -

Data Security Audits

Data Security Auditors

The following table lists the available data security auditors in the Data Store. Each auditor is
enabled by default, but can be disabled or modified using the dsconfig command.

Data Security Auditors

Auditor

Description

ACCESS-CONTROL

Reports all entries with access control information.

DISABLED-ACCOUNT

Reports all disabled accounts.

EXPIRED-PASSWORD

Reports all accounts with expired passwords, accounts with passwords about to expire,
as well as accounts with passwords exceeding a specified age.

LOCKED-ACCOUNT

Reports locked accounts including the reason for locking.

MULTIPLE-PASSWORD

Reports entries with multiple password values. It is possible to configure the auditor to
only report those entries that have multiple passwords using different password storage
schemes.

PRIVILEGE

Reports entries with privileges. The report distinguishes between directly assigned
privileges and privileges assigned by a virtual attribute.

WEAKLY-ENCODED-
PASSWORDS

Reports all entries that use one of the specified weak password storage schemes.

Configuring the Data Security Auditors

Data security auditors can be configured using the dsconfig tool. Each auditor can be
independently enabled or disabled. They may also be configured to include one or more
attributes from the audited entry in the detailed report.

Each auditor can be configured to report events at a specific severity and verbosity level. The
three possible severity values are: Error, Warning, and Verbose. If the Warning level is
selected, then both Error and warning events are included in the reports. Similarly, if the
Verbose level is selected, the report will include events with any severity. By default, all
auditors are configured with the warning audit severity.

Perform the following steps to configure the data security auditors:

1. Runthe dsconfig command and enter the connection parameters for the server.

2. Change to the Advanced menu.

3. On the Configuration Console main menu, enter the number corresponding to Data

Security Auditor.

4. On the Data Security Auditor management menu, choose to View and Edit an existing

Data Auditor.

5. From the displayed list, choose a Data Auditor to modify.

6. For the specific Data Auditor, add or change any properties to be included in the audit.

7. Enter f to apply the changes.

- 45 -

Chapter 6: Protecting the UnboundID Platform

The audit-data-security Tool

The audit-data-security tool runs in either interactive mode or non-interactive mode. By
default, the tool executes security audits on all enabled data security auditors on all supported
backends (Local DB, LDIF, and Configuration).

Perform the following steps to run the audit-data-security tool:
1. Runthe audit-data-security tool to perform a full audit of the Data Store.
$ bin/audit-data-security

2. Openthe summary.1dif to view the summary audit report, which will be in the time-
stamped directory created by the audit.

$ cat UnboundID-DS/reports/audit-data-security/201108112010497

3. To view a specific audit report, open the report in the backend sub directory.

To run a security audit on a subset of entries, run the audit-data-security tool on a subset
of entries in the userrRoot backend, but do not report on entries having privileges:

$ bin/audit-data-security —--backendID userRoot \
--excludeAuditor PRIVILEGE \
—--reportFilter " (employeeType=contactor)"

Proxy Server Considerations

Most of the Data Store security features are also available in the Proxy Server, such as global
configuration options, client connection policy restrictions, and connection handler options.

Security recommendations specifically for the Proxy Server are:

« Use SSL or StartTLS - Make sure that communication with backend servers is secured
with SSL or StartTLS, so that third parties cannot access them.

« Protect the Proxy User Account - Make sure that the account used by the Proxy
Server to authenticate to the backend Data Store instances is sufficiently protected. It
should have strong credentials, and should not be used by any application other than the
Proxy Server.

« Prevent Direct Access to Backend Servers - Consider preventing clients from
directly accessing the backend Data Store instances and only allow access through the
Proxy Server. It may be necessary to allow some degree of direct administrative access
to the Data Store instances, but all general client access should pass through the Proxy
Server.

« Use Proxy Transformations - Consider installing proxy transformations, such as
suppress attribute/suppress entry, to restrict what data is accessible through the Proxy
Server.

-46 -

Data Sync Server Considerations

Use a Generic User Account for Entry-Balancing Deployments - If using entry
balancing, consider configuring a generic user account with the same rights as various
classes of users. If a user needs to perform an operation that requires processing in a
backend set that does not contain the user's entry, use an authorization identity of the
closest acceptable generic account.

Data Sync Server Considerations

The Data Sync Server shares many of the same security features as the Data Store and Proxy
Server. However, because the Data Sync Server does not store any data, most of the security
considerations involve securing data transmission from the Sync Source to the Sync
Destination.

Security recommendations specifically for the Data Sync Server are:

Use SSL or StartTLS with Endpoint Servers - Make sure that communication with
the endpoint servers is secured.

Use SSL or StartTLS with Client Communication - Make sure that client
communication with the Data Sync Server is secured.

Make the Encryption Key Sufficiently Complex - When using the Changelog
Password Encryption Plugin in the Data Store to synchronize passwords to a non-
UnboundID endpoint, make sure that the encryption key is complex and is handled
securely. The actual decryption key is derived from the user-configured key using a
proprietary method, so it is unlikely that hackers could decrypt passwords stored in the
changelog, even with access to the key.

Consider Access Control Filters for Notification Mode - For deployments using
notification mode, administrators can configure a Sync Pipe that performs access control
filtering on the changelog data as it comes back from the source Data Store. The access
controls filter out attributes that the user does not have the privileges to see before they
are returned. This is configurable using the filter-changes-by-user property on the
Sync Pipe configuration.

Consider Obfuscating Attributes - To secure sensitive user data, the Data Sync
Server is capable of fully synchronizing test or stage servers with production servers
while also obfuscating sensitive customer information, such as social security numbers
and passwords. This is configurable using the scramble-value property on the Direct
Attribute Mapping configuration.

Set the Appropriate Log Detail Levels - The Sync Log Publisher provides
information about synchronization operations that are processed. The level of detail can
be specified by setting the 1ogged-message-type property. There are three values that
are useful for debugging, but can potentially expose sensitive information in the sync
log: change-detected-detailed, entry-mapping-details, change-applied-

-47 -

Chapter 6: Protecting the UnboundID Platform

detailed. The Data Sync Server is not aware which attributes are sensitive while they
are in transit, so using one of these detailed log levels may be a security risk. However,
passwords always appear in the sync log in hashed form, regardless of the log detail
level.

- 48 -

Chapter 7: Data Integrity

The server can be configured to require secure communication with all clients, but that does
not provide protection for individuals that can access the server filesystem and may be able to
interact with the database files. The database files should be protected, as well as alternate
representations of that data including the live database files, database backups, and LDIF
exports of the data).

Topics include:

Stored Entry Checksums

Schema Integrity

Limiting Exposure of Stale Data

Time Synchronization

Creating a Read-Only Instance of the Data Store

Server Lock-Down Mode

Storing Reversible Changes in the Log

- 49 -

Chapter 7: Data Integrity

Stored Entry Checksums

The Data Store provides two checksum features that can be used to help ensure data integrity:
cryptographic digests and entry checksum operational attributes.

Cryptographic Digests

Cryptographic digests can be included in the encoded representation of an entry stored in the
database. This can help detect database corruption, for example if a bit gets flipped between
the time the server tries to store an entry in the database and the time the data is actually
written to disk. The server provides an option to write these checksums when storing entries.
Another available option enables the server to look for and validate that the entry content still
matches the digest from which it was retrieved. If validation fails, the server generates an
administrative alert.

The following two options can be used to control cryptographic digests in entry contents:

« hash-entries - In JE backends, the hash-entries property is used to indicate whether
the server should include cryptographic digests in entries when they are written. If set to
true, any entry created or updated after that time will be stored with an MD5 digest of
the contents of that entry.

« verify-entry-digests - In the global configuration, indicates whether the server should
automatically verify any cryptographic digests that exist in the encoded representation
of entries when decoding them. Whether entry digests should be generated is controlled
by the hash-entries configuration property in backends that support this capability
(including JE backends). The process of generating these digests can be controlled
independently of their verification, so that verification can be enabled only if there may
be a database corruption.

Because there are separate properties that control generating digests and verifying them,
entry digests can be generated when entries are written to the database, reducing the added
cost of generating the digest. Periodically enable digest validation before performing an
operation that requires retrieving each entry from the database (the export-1dif , verify-
index, or audit-data-security tools). This identifies any entries whose encoded
representation does not match the stored digest.

If data encryption is enabled, the encryption performed when storing entries also serves as a
method for verifying the integrity of encoded entries. If an encrypted entry becomes
corrupted, the server cannot decrypt it, and an administrative alert is generated. If data
encryption is enabled, storing cryptographic digests is redundant.

Entry Checksum Operational Attribute

The Data Store provides the ability to include a ds-entry-checksum operational attribute in
entries returned to clients, whose value will be a checksum of the attributes contained in that

- 50 -

Schema Integrity

entry.

This is useful in conjunction with the LDAP assertion control to ensure that an entry has not
been altered since it was last retrieved. The process to use both would be to retrieve an entry,
including the value of the ds-entry-checksum attribute, and then issue a modify request that
includes an LDAP assertion control with a filter that ensures that the entry's current ds-entry-
checksum value matches the value that was retrieved. If the entry had been altered by another
client between the time the entry was retrieved and the time the modify request was sent, the
assertion filter will not match and the modify operation is not performed.

The ds-entry-checksum attribute includes a checksum of all attributes in the entry except for
those listed in the excluded-attribute property of the virtual attribute configuration.
However, a similar process without the ds-entry-checksum attribute, would be creating an
assertion filter with the values of a specified set of attributes from that entry. This ensures that
those attributes have not been altered since the entry was last retrieved, but enables updates
to other attributes without causing the assertion to fail. If only concerned about a specified set
of attributes rather than the entire entry, this approach may be used to reduce the likelihood of
an operation failure due to a conflicting update. It can also be used in environments containing
non-UnboundID servers.

Schema Integrity

The Data Store supports schema validation, including features such as DIT content rules, DIT
structure rules, name forms, and matching rule uses that many servers do not support. It also
ensures that attribute values conform to the constraints of the associated attribute syntax.

Some servers perform better for operations (like LDIF import) with schema checking disabled,
and administrators opt for performance over integrity. This is not a trade-off that needs to be
made in the Data Store, because it actually performs better with schema validation enabled.

There are several security implications when schema validation is disabled. For example, a
client can inadvertently store data in an incorrect attribute. If an ACI or sensitive attribute
definition is configured to deny access, information intended for the specified attribute, but
stored with the wrong name, may not be protected. If that attribute is used for some
operational configuration (for defining access control rules or privileges), the server would not
apply the intended restrictions. Similarly, clients attempting to find that information would not
be able to find it and may behave incorrectly.

Even if the client uses the correct attribute name, supplying a value that violates the
associated syntax may cause unintended behavior. For example, if schema checking or syntax
validation is disabled during an LDIF import, the server will not detect or reject malformed
access control rules. The server can detect malformed access control rules at start up or after
an online import, but it is better to have these problems detected during import rather than at
startup.

The Global Configuration Properties contain these two controls for enforcing schema
validation:

-51 -

Chapter 7: Data Integrity

« check-schema — Specifies whether the server should enforce compliance with the
defined schema. Schema checking is highly recommended.

e invalid-attribute-syntax-behavior — Specifies the behavior that the server should
exhibit when encountering attribute values that violate the associated attribute syntax.
The value should be one of the following:

o reject - Specifies that the server reject any values that violate the syntax.

o accept - Specifies that the server silently accept such values.

o warn - Specifies that the server accept malformed values, but log a warning
message when these values are encountered.

Note
It is strongly recommended that invalid values be rejected.

Limiting Exposure of Stale Data

Another security concern is the possibility of serving stale data to clients. If one or more
servers have fallen behind in replication, changes to data that impact the security of the
environment may not propagate as quickly, which can leave a window of vulnerability.

The Data Store detects if there are missed changes and enters lock-down mode if the missed
changes are no longer stored on any other Data Store. This typically occurs after the server
has been offline or isolated on the network for a period of time longer than the replication-
purge-delay. While in lockdown mode, only Root DN access is allowed.

For example, if an employee leaves the company, his or her account should be removed or
disabled as quickly as possible to remove the ability to authenticate to applications that use the
directory. If one Data Store instance has fallen behind in replication, that former employee
account still has access until the update to the account is propagated. The same could be the
case for changes that grant or revoke privileges, change group membership, or otherwise
impact the level of access that a given individual might have.

The Data Store offers the following global configuration properties to avoid exposing stale
data:

e startup-min-replication-backlog-count — Specifies the minimum number of
outstanding replication changes that causes server startup to be delayed until replication
can complete. A server that has been offline for a period of time may have stale data.
Delaying startup until replication has finished prevents stale data from being served to
clients.

e replication-backlog-count-alert-threshold — Specifies the minimum number of
outstanding replication changes that will cause the server send an alert that it has a
significant replication backlog.

-52 -

Time Synchronization

e replication-backlog-duration-alert-threshold - Specifies the minimum age of
any outstanding replication changes that will cause the server to generate an alert that it
has a significant replication backlog and may be serving stale data to clients.

The previous properties are applicable only to the Data Store. Stale data can also be an issue
for the Proxy and the Data Sync Server. Each have features for addressing this problem:

« In the Proxy, the replication backlog LDAP health check can be used to monitor the
replication state of each Data Store, and can de-prioritize or stop using a given server if
it falls too far behind, based on either the absolute number of outstanding changes, or
the age of those changes.

« Inthe Data Sync Server, the sync-backlog-alert-threshold property for Sync
Source objects (for UnboundID and Sun/Oracle Data Store instances) can be used to
generate an alert if the Data Sync Server detects a significant number of unprocessed
changes.

In addition, the systems expose replication metrics in two ways:

« Replication MIB - Within the SNMP monitoring feature, each server exposes a
standards compliant Replication MIB containing metrics related to the current state of
replication, which can help diagnose how much outstanding work replication may have to
do.

« Replication Metrics available in the Metrics Engine - Within the Metrics Engine,
there are 25-30 metrics that deal specifically with replication, such as send/receive
windows, current backlog, and conflict counts.

Time Synchronization

All systems that participate in an UnboundID server environment should have time
synchronization enabled, preferably with Network Time Protocol (NTP). Servers should be
synchronized to an atomic clock so that they are accurate as well. Time synchronization is
important for replication conflict resolution, proper handling of password expiration, proper
handling of account expiration and account lockout, proper handling of certificate expiration,
and proper handling of GSSAPI authentication. It is also important to have accurate
timestamps in log messages to correlate events across multiple systems, and potentially with
logs maintained by clients.

If the clocks of one or more systems are out of synchronization by a relatively small amount
(within hours of each other), it is recommended that NTP be used to synchronize them. NTP
synchronization works by adjusting the rate at which the system clock advances gradually to
synchronize it, rather than using a massive jump that can disrupt replication and other server
components like JVM pause. This is important for cases in which a system clock is too fast.
Time changes that cause the clock to move backward could result in unexpected behavior from
replication conflict resolution.

-53-

Chapter 7: Data Integrity

If the system clocks are significantly out of synchronization (more than a couple of days), work
with an authorized support provider to determine the best course of action for correcting the
problem without introducing risk of replication problems, accounts being unexpectedly locked,
passwords prematurely expired, or other issues pertaining to state information.

Creating a Read-Only Instance of the Data Store

The UnboundID product family provides configuration properties that disable all write access to
the data. This can be useful when exposing the directory service publicly, such as an
authentication service, while blocking malicious attempts to alter the data.

The writability-mode property indicates whether the server will allow write operations. The
value may be one of the following:

« enabled - Write operations are allowed for properly authorized clients.
e disabled — No write operations are allowed.

« internal-only — Allows writes invoked by internal operations or received from
replication, but rejects any write request received from an external client.

Some environments may want to make a server (one located in a DMZ) read-only, but still
allow replicated operations from internal servers, as in the following illustration:

Internal R/W \ Read s External
Client —_— A A X<_ Client
Applications Applications
: No Writes

e—— e— —— —

Users and Primary Data Read-Only Clients
Clients within Store Service Data Store in outside the
the Firewall DMz Firewall

Note
Itis also possible to configure the writability mode for individual backends.

Server Lock-Down Mode

An UnboundID server will place itself into lockdown mode to protect data in the following
circumstances:
« Lockdown for ACI Integrity - The UnboundID product family examines and validates
all ACIs stored in the data whenever a backend is brought online. If any malformed ACIs
are found in the backend, the server generates an alert to notify administrators of the

-54 -

Storing Reversible Changes in the Log

problem and places itself in lockdown mode. While in lockdown mode, the server only
allows requests from users who have the 1ockdown-mode privilege. This enables
administrators to correct the malformed ACI while ensuring that no sensitive data is
inadvertently exposed. When the problem has been corrected, the administrator can use
the leave-lockdown-mode tool or restart the server to enable it to resume normal
operation.

« Lockdown for Data Integrity — The Data Store detects if there are missed changes
and enters lock-down mode if the missed changes are no longer stored on any other Data
Store. This typically occurs after the server has been offline or isolated on the network
for a period of time longer than the configured replication-purge-delay. While in
lockdown mode, only Root DN access is allowed..

Storing Reversible Changes in the Log

This configuration option is available for the Changelog backend:

use-reversible-form — Indicates whether changelog entries for modify operations should
record information about the change in a way that will allow it to be reverted, restoring the
entry to the way it appeared before the change was applied. If reversible form is enabled, then
delete changelog records will automatically include all deleted entry attributes.

- 55 -

Chapter 8: Client Connection and
Password Policies

Client connection policies provide a way to segregate client connections based on similar
characteristics, and configure the ways they can interact with the server.

The password policy system can assign, manage, or remove password policies for root and
non-root users. The password policy contains configurable properties for password expiration,
failed login attempts, account lockout and other aspects of password and account maintenance
on the Data Store.

Topics include:

Associating a Client Connection Policy with a Client Connection

Tips on Creating Custom Client Connection Policies

Password Policies

Password Validators

Password Expiration

Password Changes and Administrative Reset

Account Lockout, Expiration, and Disablement

Last Login Time and Last Login IP Address Tracking

Password Generators

Account Status Notification Handlers

Per-User Password Policies

Password Encoding during LDIF Import

Password Policies and the Proxy Server

- 56 -

Chapter 8: Client Connection and Password Policies

Associating a Client Connection Policy with a Client
Connection

When a client establishes a connection to the server, the server assigns a Client Connection
Policy for that connection. If the client performs a bind (which can change the identity of that
connection) or uses the StartTLS extended operation (which can change an insecure connection
to a secure one), the server will re-evaluate the connection and may assign it a different

policy.
The policy properties that the server uses to select a Client Connection Policy for a client
connection are:

. enabled - If a policy is enabled, it is eligible to be selected.

. evaluation-order-index - The evaluation order index controls the order in which
policies are examined to determine whether they are appropriate for a connection. Each
Client Connection Policy must have a unique evaluation order index value. Policies are
evaluated in ascending order based on this index. The evaluation order index values do
not need to be in sequential order.

. connection-criteria - If a policy is associated with connection criteria, then a
connection must match that criteria for it to be associated with the Client Connection
Policy. If a policy does not have any connection criteria, it will match any connection.

When evaluating Client Connection Policies, the server selects the enabled policy with the
lowest evaluation-order-index that either has or does not have criteria that matches that
connection. If none of the enabled policies match the client connection (either at the time the
connection is established, or after performing a bind or StartTLS operation), that connection is
terminated. Similarly, if the Client Connection Policy that is selected has a terminate-
connection value of true, the connection is terminated.

Recommendations for Creating Client Connection
Policies

If using Client Connection Policies to enforce restrictions for different classes of clients,
consider the following:

« Client Connection Policies for Unauthenticated Clients - Make sure that a policy
exists that will allow unauthenticated clients. When a new connection is established to
the server, it will be unauthenticated, and remains that way until the client has
successfully completed a bind operation. A Client Connection Policy is selected for the
connection when it is established, so at least one policy must allow unauthenticated
clients by not having a connection-criteria value, or having a connection-criteria

-57 -

Password Policies

value that references a criteria with a user-auth-type that includes none.

. Client Connection Policies for Authenticated Connections - To have a policy that
only applies to authenticated connections, the policy must have a connection-criteria
object, and the referenced criteria must have a user-auth-type value that does not
include none.

« Client Connection Policies for StartTLS - To allow the use of the StartTLS extended
operation, have a client connection policy that allows insecure connections. StartTLS
converts an existing insecure operation into a secure connection, so it is necessary to
have a client connection policy that allows the initially insecure connection and allows it
to issue the StartTLS extended request.

. Multiple Client Connection Policies - If configuring multiple client connection
policies, it is possible for a connection to match the criteria for more than one policy.
Make sure that the evaluation order indexes of those policies are configured so that the
most appropriate policy for a given connection will have a lower evaluation order index
than any other policy that could be selected for that connection.

Password Policies

Password Policies are used to make sure that a password provided during authentication is
correct, that password changes use strong formats, and that a user can't continue using the
same password for too long. Password Policies also provide features that aren't strictly
password-related, including locking accounts if there are too many failed authentication
attempts, keeping track of the last time that a client authenticated, and enforcing constraints
around the kinds of authentication that are allowed. The server also provides support for
account status notification handlers, which can be used to notify end users or administrators
when significant password policy events occur.

There may be some users that have different Password Policy requirements than others. For
example:

« Administrative accounts provide a greater level of access than normal user accounts and
may warrant additional forms of protection that are not considered necessary for normal
users.

« Account lockout can be enabled after a certain number of failed attempts for most users.
However, administrative accounts should not be locked out because that might enable an
attacker to orchestrate a denial-of-service attack.

« A small set of users may need to use a particular application, which requires the use of a
weaker password storage scheme than required for most accounts.

The Data Store provides the ability to define multiple password storage schemes, which can be
configured to reflect the needs of different groups of users. One of those password policies is
configured as the default policy for the server through the default-password-policy
property in the global configuration. It is applied to any user for which no alternate policy is

- 58 -

Chapter 8: Client Connection and Password Policies

configured. To apply an alternate password policy for a user, add the ds-pwp-password-
policy-dn attribute to that user's entry with a value equal to the password policy that should
be enforced for that user. If a user's entry contains a ds-pwp-password-policy-dn attribute
that references a password policy that does not exist, that user will not be allowed to
authenticate to the server.

An alternate password policy can also be assigned by creating a virtual attribute that generates
a ds-pwp-password-policy-dn value in entries for users that match certain criteria. The
user-defined virtual attribute type is ideal for this. For example, the following command can
be used to assign the password policy defined in configuration entry cn=Secure Password
Policy,cn=Password Policies,cn=config to any user thatis a member of the cn=Secure
Users, ou=Groups, dc=example,dc=com group:
$ bin/dsconfig create-virtual-attribute \

-—-name "Assign Secure Password Policy" \

-—-type user-defined \

--set enabled:true \

--set attribute-type:ds-pwp-password-policy-dn \

--set "value:cn=Secure Password Policy,cn=Password Policies,cn=config" \

--set "group-dn:cn=Secure Users,ou=Groups,dc=example,dc=com" \

--set "conflict-behavior:real-overrides-virtual"

The real-overrides-virtual conflict behavior means that if any member of that group
already has an explicitly-assigned alternate password policy, that assignment takes
precedence over the virtual attribute. If multiple virtual attributes attempt to assign different
values for the same attribute in the same entry, only one of those values is selected. The
process for selecting which virtual attribute is used is undefined. If virtual attributes are used
to assign a password policy, do not configure virtual attributes that may overlap.

Password Validators

Password storage schemes can encode passwords to protect the clear-text password used to
generate that encoding using an algorithmic approach. To protect against attacks that try to
guess passwords, make sure that users have passwords that are complex, and use password
validators to ensure that new passwords are strong.

When a new password is assigned to a user through an add operation, modify operation, or
password modify extended operation, that password must be considered acceptable by all
password validators configured in the password policy for that user. If any password validator
considers the password to be unacceptable, then the attempt to assign that password is
rejected.

The password-validator configuration property controls the set of password validators that
should be used for a given policy. Create a password validator configuration entry in the server
and update one or more password policies to make use of that validator.

The Data Store supports several password validators, including:

« Attribute value password validator - Ensures that the proposed password does not
match the value of any attribute in the user's entry, such as the user's name, telephone
number, or address. It can be configured to match all attributes in the user's entry or a

- 590 -

Password Validators

subset. It can check both forward and reversed versions of the password. It can also
check for cases in which the password is a substring of an attribute value or an attribute
value is a substring of the password.

Character set password validator - Ensures that the proposed password includes
characters from a number of character sets such as one lowercase letter, one uppercase
letter, one numeric digit, and one symbol. The character sets can be defined, including
the minimum number of characters from each set, and whether passwords can include
characters that are not in any of the defined sets.

Commonly-Used passwords dictionary validator - Ensures that the proposed
password is not one of 10,000 commonly used passwords. These are words that are
common for attackers to use when trying to access user accounts. The Commonly-Used
Passwords validator is invoked by the Secure Password Policy by default. The word list is
located in <server-root>/config/commonly-used-passwords.txt, and can be used to
create a custom validator, but should not be modified.

Dictionary password validator - Ensures that the proposed password is not
contained in a specified dictionary file, to prevent common words from being used as
passwords. The server comes with a dictionary file, but an alternate dictionary can be
selected. The validator can also perform case-sensitive validation and look to see if the
reversed password is present in the dictionary.

Haystack Password validator - Ensures that the proposed password is secure based
on a combination of its length and the types of characters that it contains. For example, a
longer password containing only lowercase letters may be stronger than a shorter
password containing a mix of uppercase and lowercase letters, numbers, and symbols.
This is based on the Gibson Research Corporation Password Haystacks concept.

Length-based password validator - Ensures that the proposed password meets
certain length constraints.

Regular expression password validator - Ensures that the proposed password
either matches or does not match a given regular expression.

Repeated characters password validator - Ensures that the proposed password
does not contain any character repeated more than a specified number of times in a row.
The maximum number of times a character can appear consecutively and case-sensitive
validation can be configured.

Similarity-based password validator - Ensures that the proposed password is not
too similar to the user's current password. It uses the Levenshtein Distance algorithm to
compute the number of changes (where a change may include inserting a character,
removing a character, or replacing a character). To use this validator, make sure that
the password-change-requires-current-password option is enabled in the password
policy, which requires users to supply the current password when setting a new one.

- 60 -

Chapter 8: Client Connection and Password Policies

« Unique characters password validator - Ensures that the proposed password
contains at least a specified number of different characters. The minimum number of
unique characters and whether to use case-sensitive validation can be defined.

« Custom Password Validator - The UnboundID Server SDK can also be used to create
custom password validators in Java classes or Groovy scripts. Any number of password
validators can be configured. For example, one dictionary validator can be enabled with
the default wordlist.txt dictionary, and another with an additional set of words that
should be forbidden.

By default, password validation is applied for users changing their own passwords and for
administrators resetting the passwords for other users. If administrators are able to set
temporary passwords that are weak or easily guessable, that may allow an attacker to request
a password reset for another user, creating an avenue to gain access to that user's account.
However, if for some reason a user's password must be reset without password validator
restrictions, the skip-validation-for-administrators property can be set.

Password Expiration

Given enough time, a dedicated attacker may be able to guess a user's password. If someone
has access to the encoded representation of a password, with enough time and computing
power they will be able to break the password by trying every possible combination of
characters. There are a number of factors that may impact the time required to accomplish
this, including the length of the password, the set of characters that may be included in it, and
the storage scheme used to encode it.

If using passwords to authenticate, the best ways to mitigate risk is to increase the cost of a
brute force attack by choosing an expensive password storage scheme (like the 512-bit SHA-2
variant of the crypt algorithm and increase the number of digest rounds), and/or to reduce the
length of time that a password can remain valid. The latter can be enforced with password
expiration, which may require that users change their passwords on a regular basis.

Several configuration properties can be used to configure password expiration, including:

« max-password-age — Specifies the maximum length of time that a user can continue to
use a password before it expires. Password expiration is not enabled in the default
password policy.

e password-expiration-warning-interval — Specifies the length of time before a user
receives warnings about a password expiration. Warnings are delivered with LDAP
response controls, but account status notification handlers can also be used to deliver
warnings in other forms, such as e-mail.

e expire-passwords-without-warning — Indicates whether a user's password should be
allowed to expire even if that user has not received a warning about an upcoming
expiration. For example, if there is a relatively short warning interval (such as 5 days)
and a user has been on vacation and has not received the warning. If expire-

-61 -

Password Changes and Administrative Reset

passwords-without-warning is setto false (which is the default), the server sends at
least one warning before the password is considered expired.

« grace-login-count - Indicates that a user is given a humber of grace logins. If a user's
password has expired, a grace login can enable a user to authenticate, but that user
cannot do anything until the password is changed. By default, no grace logins are
granted.

e allow-expired-password-changes — Indicates whether a user should be allowed to
change his or her password after it has expired, using the password modify extended
operation. In the default password policy, this is not allowed. The user can use the
account again is to have an administrator reset the password.

If password expiration is enabled, make sure that LDAP clients can look for and consume the
bind response controls that indicate that a password is about to expire, so that clients can
display those warnings to users. A regular auditing process can also be used to periodically
identify and notify clients whose passwords are about to expire.

Password Changes and Administrative Reset

The Data Store differentiates between user password changes and administrative password
reset based on whether the user issuing the request is the same as the user whose password is
being changed. If a user is changing his or her own password, that is considered a self
password change. If a user changes someone else's password, that is considered an
administrative password reset. For either password change, the requester must have the
necessary access control permissions to make the change. For administrative password reset,
the requester must also have the password-reset privilege.

The server may be configured to enforce a different set of restrictions for administrative
password reset operations than it does for self password changes. For self password changes,
the following configuration properties may be in effect:
« allow-user-password-changes — Specifies whether users can change their own
passwords. Even if this is set to true, the user must have permission by the access
control subsystem.

o password-change-requires-current-password — Specifies whether users are required
to supply their current password when choosing a new password. If this is set to true, the
current password may be provided in a modify operation by deleting the old password
value and adding the new password. The password modify operation has a dedicated
field for providing the current password.

« min-password-age — Specifies the minimum length of time before a user is allowed to
change his or her password.

Configuration properties that apply to administrative password reset operations include:

-62 -

Chapter 8: Client Connection and Password Policies

force-change-on-add — Specifies whether users are required to change their password
the first time they authenticate. If so, no actions can be performed by the user until the
password is changed.

force-change-on-reset — Specifies whether users are required to change their
password after it has been reset by an administrator. If so, no actions can be performed
until the password is changed.

max-password-reset-age — Specifies the maximum length of time that a user has to
change his or her password after their account has been created (if force-change-on-
add is true) or their password has been reset (if force-change-on-reset is true). If
specified, this can limit the length of time that the administrator-supplied password can
be used to authenticate, which limits the time that an attacker could use that password to
gain control of the user's account.

An additional set of configuration properties apply to both user password changes and
administrative reset, including:

Note

allow-pre-encoded-passwords — Specifies whether clients are allowed to provide
passwords in a pre-encoded form in add operations, modify operations, or password
modify extended operations. By default, pre-encoded passwords are not allowed
because they cannot be interpreted by the server to invoke password validators, check
them against password history, and perform other necessary checks. Pre-encoded
passwords should only be allowed for clients that can only provide new passwords in that
format. Clients will never be allowed to use pre-encoded passwords for authentication.

password-history-count — Specifies the maximum number of previous passwords to
retain in the password history.

password-history-duration — Specifies the maximum length of time to retain a history
of previous passwords. This can be useful if password history should be based on a
period of time rather than a fixed number of passwords.

If password history is enabled (by setting a password-history-count, @ password-
history-duration, or both), users cannot choose a new password that is the same as any
password in the history.

Account Lockout, Expiration, and Disablement

To prevent an attacker from sending repeated LDAP bind requests in an attempt to guess user
passwords, the server provides the ability to lock accounts after too many failed attempts. The
lockout can persist until an administrator resets the user's password, or the account can be
automatically unlocked after a period of time without any administrative action required.

The configuration properties related to account lockout include:

- 63 -

Last Login Time and Last Login IP Address Tracking

lockout-failure-count — Specifies the maximum number of failed authentication
attempts allowed before an account is locked. A value of zero disables account lockout.

lockout-duration — Specifies the length of time that an account should remain locked
before it is automatically unlocked. A duration of zero seconds indicates that locked
accounts are not unlocked until an administrator resets the user's password.

lockout-failure-expiration-interval — Specifies the length of time that information
about a failed authentication attempt is retained by the server. The record of previous
authentication failures for a user is automatically cleared when that user successfully
authenticates, but information about failed authentication attempts can be configured to
expire after a period of time even without a successful authentication.

ignore-duplicate-password-failures — Specifies whether the server should consider
repeated authentication failures with the same incorrect password as a single failure.
Repeatedly trying the same wrong password is obviously not an attack designed to guess
a user's password, and is more likely the case that the user's password has recently
changed and a client is still trying to use the old password. This feature can prevent the
user's account from being inadvertently locked if the failure looks like an honest
mistake.

In addition to locking an account, the Data Store provides other features that can be used to
disable accounts. These are not configured in the password policy, but are used by setting
operational attributes in the user's entry.

Those attributes include:

e ds-pwp-account-disabled — When presentin a user's entry with a value of true, that
user account is disabled and cannot be used to authenticate. The user's account can be
re-enabled by either changing the value to false or removing the entire attribute.

ds-pwp-account-expiration-time — When present in a user's entry, the value must be
a timestamp (in generalized time format). The account is not allowed to authenticate
after that time. This can be useful when creating temporary accounts. Once an account
expires, it can be made usable again by changing or removing the account expiration
time.

Last Login Time and Last Login IP Address Tracking

The Data Store can track information about a user's authentication behavior in that user's
entry, including the time that the user last authenticated and the IP address of the client
system. These features can be configured using the following properties:

o last-login-time-attribute — Specifies the name of the attribute in which the time of
the user's last login may be recorded. The server schema includes the ds-pwp-last-
logintime operational attribute which can be used for this purpose.

- 64 -

Chapter 8: Client Connection and Password Policies

e last-login-time-format — Specifies the format in which the last login time value
should be recorded. This should be given in the format supported by the
java.text.SimpleDateFormat class, like yyyyMMddHHmmss.SSS'Z' (which will report
values in the generalized time format, including millisecond accuracy). An alternate
format with less accuracy can be used, because the server will only update the value in
the user's entry if it is different from the existing value. For example, a value of
yyyyMMdd has only day-level accuracy, which means that the value will be updated once
per day.

e previous-last-login-time-format — Used to hold previous values used by the 1ast-
logintime-format. This allows the server to parse old last login time values for the
purposes of evaluating them for the idle lockout interval.

e idle-lockout-interval — Specifies the maximum length of time allowed to pass
without a user authentication (as determined by the 1ast-login-time attribute) or
password change before that account is locked due to inactivity. If an account is locked
because the user has not authenticated in a period of time greater than the idle lockout
interval, it can be unlocked by an administrative password reset.

e last-login-ip-address-attribute — Specifies the name of the attribute in which the
server will record the IP address of the system from which the client last authenticated.
The server schema includes the ds-pwp-last-login-ip-address attribute, which may
be used for this purpose.

Password Generators

When using the password modify extended operation, the client can either supply a new
password or have the server generate a new password for the user included in the extended
response. If the client does not provide the new password, the server uses a password
generator to create one.

The password generators available for use in the server include:

« Random password generator - Can be used to construct passwords from characters
selected at random from one or more character sets. The character sets and patterns
can be defined, specifying which character sets to use and the number of characters
from each. For example, the default instance of the random password generator is
configured to generate eight-character passwords comprised of three alphabetic
characters, two numeric digits, and three more alphabetic characters.

« Custom password generators - The UnboundID Server SDK also provides the ability
to define custom password generators, using either Java classes or Groovy scripts.

- 65 -

Account Status Notification Handlers

Account Status Notification Handlers

The Data Store includes the following account status notification handlers:

« Error log account status notification handler - Cause messages to appear in the
server error log for selected account status notification events.

« SMTP account status notification handler - Cause e-mail messages to be sent to
end users (and optionally administrators) for selected account status notification events.

Account status notification handlers can be used to make information available to
administrators and/or end users about significant events related to password policy
processing. These events include:
e account-temporarily-locked — Indicates that a user's account has been locked due to
too many failed authentication attempts, but will automatically be unlocked after a
period of time.

e account-permanently-locked — Indicates that a user's account has been locked due to
too many failed authentication attempts, and will require a password reset to be
unlocked.

« account-unlocked - Indicates that a user's account has been unlocked by an
administrator.

e account-idle-locked - Indicates that a user authentication attempt failed because the
account remained idle for too long.

« account-reset-locked - Indicates that a user authentication attempt failed because the
user failed to change the password in a timely manner, after an administrative password
reset.

e account-disabled - Indicates that an administrator disabled a user account.

e« account-enabled - Indicates that an administrator enabled an account that was
disabled.

« account-expired — Indicates that a user authentication attempt failed because the
user's account expired.

« password-expired — Indicates that a user authentication attempt failed because the
user's password expired.

« password-expiring — Indicates that a user's password is about to expire. This
notification will only be used the first time that a warning is sent before an upcoming
expiration. Subsequent authentication attempts during the warning interval will not
result in this notification.

« password-reset — Indicates that an administrator reset the password for another user.

« password-changed — Indicates that a user changed his or her own password.

- 66 -

Chapter 8: Client Connection and Password Policies

Per-User Password Policies

To apply an alternate password policy for a particular user, add the ds-pwp-password-
policy-dn attribute to that user's entry with a value equal to the password policy that should
be enforced.

Note
If a user's entry contains a ds-pwp-password-policy-dn attribute that references a
password policy that does not exist, that user will not be allowed to authenticate to the server.

An alternate password policy can be assigned by creating a virtual attribute that generates a
ds-pwp-password-policy-dn value in entries for users that match certain criteria. The user-
defined virtual attribute type is ideal for this. For example, the following command can be used
to assign the password policy defined in configuration entry cn=Secure Password
Policy,cn=Password Policies,cn=config to any user thatis a member of the cn=Secure
Users, ou=Groups, dc=example, dc=com group:
$ bin/dsconfig create-virtual-attribute \

-—-name "Assign Secure Password Policy" \

-—type user-defined \

--set enabled:true \

--set attribute-type:ds-pwp-password-policy-dn \

--set "value:cn=Secure Password Policy,cn=Password Policies,cn=config" \

--set "group-dn:cn=Secure Users,ou=Groups,dc=example,dc=com" \

--set "conflict-behavior:real-overrides-virtual"

The real-overrides-virtual conflict behavior means that if any member of that group
already has an explicitly-assigned alternate password policy, that assignment will take
precedence over the virtual attribute. If multiple virtual attributes attempt to assign different
values for the same attribute in the same entry, only one value is selected, and the process for
selecting which virtual attribute is currently undefined. If virtual attributes are used to assign a
password policy, make sure that virtual attributes are not configured to overlap for users.

Additional Password Policy Properties

UnboundID password policies also provide support for a number of additional configuration
properties that do not fit into the previous categories. They include:

« password-attribute — Specifies the name or object ID of the attribute that should hold
password values in user entries. The attribute type must be defined in the schema and
must have a syntax of either 1.3.6.1.4.1.30221.1.3.1 (for values in the
userPassword syntax)or1.3.6.1.4.1.4203.1.1.2 (for values in the authPassword
syntax).

e require-secure-authentication — Specifies whether users associated with this policy
are required to authenticate in a secure manner (either over a secure connection, or
using a secure authentication mechanism that does not expose user credentials).

-67 -

Password Encoding during LDIF Import

e require-secure-password-changes — Specifies whether password changes (including
administrative password reset) for users associated with this policy must be processed
over a secure connection.

e allow-multiple-password-values — Specifies whether users are allowed to have
multiple passwords. Although this is technically permitted, it is difficult to maintain
multiple passwords and not recommended.

e require-change-by-time — Requires all users with this password policy to change their
passwords at least once before the specified date and time. It is similar to password
expiration, but it is a one-time event and does not require password expiration to be
enabled.

o state-update-failure-policy — Specifies how the server should behave if a failure
occurred while attempting to update password policy state information in a user's entry
during an authentication attempt. The value can be one of the following:

o proactive - Specifies that a bind request is rejected if it is known that password
policy state information cannot be updated, for example if the associated backend
is operating in read-only mode.

o reactive - Specifies that an otherwise successful bind should be rejected if an
error occurs while attempting to update password policy state information.

o ignore - Specifies that a successful bind should still be successful even if an error
is encountered while attempting to update password policy state information.

Password Encoding during LDIF Import

When performing an LDIF import, if the data being imported contains clear-text passwords, the
server needs to make sure that they are properly encoded before adding them into the
database. If an entry to import includes an explicit value for the ds-pwp-passwordpolicy-dn
attribute, that password policy is retrieved and its default storage schemes are used to encode
the password. For entries that do not have an explicit ds-pwp-password-policy-dn value,
they may either be governed by the default password policy or they are governed by a policy
assigned by a virtual attribute (which is not computed during import processing).

To make sure that passwords are encoded for users without an explicitly assigned policy, the
server provides a password policy import plugin. For users with an explicitly-defined policy,
encoding uses the default schemes for their policy. For other users, it will use the schemes
configured in the plugin itself. It will automatically encode any clear-text values found in
attributes with either the userpPassword or authPassword syntax. Different schemes can be
configured for use with each syntax.

- 68 -

Chapter 8: Client Connection and Password Policies

Password Policies and the Proxy Server

Both the Data Store and Proxy Server share the same password policy feature set. However,
bind requests sent to an Proxy Server are handled differently based on whether the request
uses simple or SASL authentication.

For bind requests using simple authentication, the Proxy Server can easily determine whether
the target user is local or remote, and will always forward simple bind requests for remote
users to an appropriate backend server. For SASL bind requests, it is not possible to determine
the identity of the target user until much later in the bind processing, and therefore SASL binds
will always be processed by the Proxy Server itself (although it may use information from
backend servers in the process). This means that password policy processing for simple bind
requests is delegated to backend servers, but for SASL bind requests it will be performed by
the Proxy Server itself. Make sure that Data Store and Proxy Server password policies are
configured identically.

- 69 -

Chapter 9: Access Control

The Data Store provides a fine-grained access control model to ensure that users are able to
access the information they need, but are prevented from accessing information that they
should not be allowed to see. It also includes a privilege subsystem that provides even greater
flexibility and protection in many key areas.

This chapter presents the access control model and provides examples of key access control
functionality.

Topics include:

Overview of Access Control

General Format of the Access Control Rules

Examples of Common Access Control Rules

Validating ACIs Before Migrating Data

Working with Privileges

-70 -

Chapter 9: Access Control

Overview of Access Control

The access control model uses access control instructions (ACIs), which are stored in the aci
operational attribute, to determine what a user or a group of users can do with a set of entries,
down to the attribute level. The operational attribute can appear on any entry and affects the
entry or any sub-entries within that branch of the directory information tree (DIT).

Access control instructions specifies four items:

« Resources - Resources are the targeted items or objects that specify the set of entries
and/ or operations to which the access control instruction applies. For example, access
can be given to certain attributes, such as the cn or userpPassword password.

« Name - Name is the descriptive label for each access control instruction. Typically,
there are multiple access control instructions for a given branch of your DIT. The access
control name helps describe its purpose. For example, configure an access control
instruction labeled "ACI to grant full access to administrators."

« Clients - Clients are the users or entities to which access is granted or denied. Specify
individual users or groups of users using an LDAP URL, such as:

groupdn="1ldap:///cn=admins, ou=groups, dc=example, dc=com.

« Rights - Rights are permissions granted to users or client applications. Access to certain
branches or operations can be denied or granted. For example, read or write permission
can be granted to a telephoneNumber attribute.

Validation and Security

The Data Store provides an access control model with strong validation to make sure that
invalid ACIs are not allowed. For example, the Data Store ensures that all access control rules
added over LDAP are valid and can be fully parsed. Any operation that attempts to store one or
more invalid ACIs are rejected. The same validation is applied to ACIs contained in data
imported from an LDIF file. Any entry containing a malformed ACI value is rejected.

As an additional level of security, the Data Store examines and validates all ACIs stored in the
data whenever a backend is brought online. If any malformed ACIs are found in the backend,
the server generates an alert to notify administrators of the problem and places itself in
lockdown mode. While in lockdown mode, the server only allows requests from users who
have the lockdown-mode privilege. This action enables administrators to correct the
malformed ACI while ensuring that no sensitive data is inadvertently exposed. When the
problem is corrected, the administrator can use the 1eave-lock down-mode tool or restart the
server to resume normal operation.

Global AClIs

Global ACIs are a set of ACIs that can apply to entries anywhere in the server (although they
can also be scoped so that they only apply to a specific set of entries). They work in

-71 -

General Format of the Access Control Rules

conjunction with access control rules stored in user data and provide a convenient way to
define ACIs that span disparate portions of the DIT.

In the Data Store, global ACIs are defined within the server configuration, in the global-aci
property of configuration object for the access control handler. They can be viewed and
managed using configuration tools like dsconfig and the web administration console.

The global ACIs available by default in the Data Store include:

« Allow anyone (including unauthenticated users) to access key attributes of the root DSE,
including: namingContexts, subschemaSubentry, supportedAuthPasswordSchemes,
supportedControl, supportedExtension, supportedFeatures,

supportedLDAPVersion, supportedSASLMechanisms, vendorName, and vendorVersion.

« Allow anyone (including unauthenticated users) to access key attributes of the
subschema subentry, including: attributeTypes, dITContentRules,
dITStructureRules, 1dapSyntaxes, matchingRules, matchingRuleUse, nameForms,

and objectClasses.

« Allow anyone (including unauthenticated users) to include the following controls in
requests made to the server: authorization identity request, manage DSA IT, password
policy, real attributes only, and virtual attributes only.

« Allow anyone (including unauthenticated users) to request the following extended
operations: get symmetric key, password modify request, password policy state,
StartTLS, and Who Am I?

Access Controls for Public or Private Backends

The Data Store classifies backends as either public or private. A private backend is one whose
content is generated by the Data Store itself, is used in the operation of the server (for
example, the configuration, schema, task, and trust store backends), or whose content is
maintained by the server (for example, the LDAP changelog backend). A public backend is
intended to hold user-defined content, such as user accounts, groups, application data, and
device data.

The Data Store access control model also supports the distinction between public backends and
private backends. Many private backends do not allow writes of any kind from clients, and
some of the private backends that do allow writes only allow changes to a specific set of
attributes. As a result, any access control instruction intended to permit or restrict access to
information in private backends should be defined as global ACIs, rather than attempting to
add those instructions to the data for that private backend.

General Format of the Access Control Rules

Access control instructions (ACIs) are represented as strings that are applied to one or more
entries within the Directory Information Tree (DIT). Typically, an ACI is placed on a subtree,
and applies to that base entry and all entries below it in the tree.

-72 -

Chapter 9: Access Control

The Data Store iterates through the DIT to compile the access control rules into an internally-
used list of denied and allowed targets and their permissable operations. When a client
application, such as 1dapsearch, enters a request, the Data Store checks that the user who
binds with the server has the necessary access rights to the requested search targets. ACIs are
cumulatively applied, so that a user who has an ACI at an entry, may also have other access
rights available if ACIs are defined higher in the DIT.

In most environments, ACIs are defined at the root of a main branch or a subtree, and not on
individual entries unless absolutely required.

dc=example,dc=com

aci: (targetattr!="userPassword")(version 3.0; acl "Allow anonymous read access for anyone"; allow (read,search,compare) userdn="ldap:///anyone";)
aci: (targetattr="*")(version 3.0; acl "Allow users to update their own entries”; allow (write) userdn="ldap:///self";)
aci: (targetattr="*")(version 3.0; acl "Grant full access for the admin user"; allow (all) userdn="Idap:///cn=dir-admins,ou=Groups,dc=example,dc=com”;)

ou=Groups,dc=example,dc=com ou=People,dc=example,dc=com

An access control rule has the following syntax:

aci : (targets) (version 3.0; acl "name"; permissions bind rules;)

Access Control Components

Access Control

Description

Component P

targets Specifies the set of entries and/or attributes to which an access control rule applies.
Syntax: (target keyword = || I= expression)

name Specifies the name of the ACI.

permissions Specifies the type of operations to which an access control rule might apply. Syntax:
allow||deny (permission)

bind rules Specifies the criteria that indicate whether an access control rule should apply to a

given requestor. Syntax: bind rule keyword = ||!= expression;. The bind rule syntax

requires that it be terminated with a ";".

Examples of Common Access Control Rules

The following examples demonstrate access controls that are commonly used. To be able to
alter access control definitions in the server, a user must have the modify-acl privilege.

Administrator Access

The following ACI can be used to enable any member of the
"ecn=admins, ou=groups, dc=example, dc=com" group to add, modify and delete entries, reset
passwords and read operational attributes such as isMember0Of and password policy state:

-73 -

Examples of Common Access Control Rules

aci: (targetattr="+") (version 3.0; acl "Administrators can read, search
or compare operational attributes";
allow (read,search,compare) groupdn="ldap:///cn=admins, ou=groups,dc=example,dc=com";)
aci: (targetattr="*") (version 3.0; acl "Administrators can add,
modify and delete entries";
allow (all) groupdn="ldap:///cn=admins, ou=groups,dc=example,dc=com";)

Anonymous and Authenticated Access

The following ACI allows anonymous read, search, and compare on select attributes of
inetOrgPerson entries while authenticated users can access several more. The authenticated
user will inherit the privileges of the anonymous ACI. In addition, the authenticated user can
change userpPassword:

aci: (targetattr="objectclass || uid || cn || mail || sn || givenName")
(targetfilter=" (objectClass=inetorgperson)")
(version 3.0; acl "Anyone can access names and email addresses of
entries representing people";

allow (read,search,compare) userdn="ldap:///anyone";)

aci: (targetattr="departmentNumber || manager || isMemberOf")
(targetfilter=" (objectClass=inetorgperson)")
(version 3.0; acl "Authenticated users can access these fields for entries
representing people";

allow (read,search,compare) userdn="ldap:///all";)

aci: (targetattr="userPassword") (version 3.0; acl "Authenticated users
can change password";

allow (write) userdn="ldap:///all";)

If no unauthenticated access should be allowed to the Data Store, the preferred method for
preventing unauthenticated, or anonymous access is to set the Global Configuration property
reject-unauthenticated-requests to true.

Delegated Access to a Manager

The following ACI can be used to allow an employee's manager to edit the value of the
employee's telephoneNumber attribute. This ACI uses the userattr keyword with a bind type
of USERDN, which indicates that the target entry’s manager attribute must have a value equal to
the DN of the authenticated user:

aci: (targetattr="telephoneNumber")
(version 3.0; acl "A manager can update telephone numbers of her direct reports";
allow (read,search,compare,write) userattr="manager#USERDN";)

Proxy Authorization

The following ACIs can be used to allow the application

"cn=0OnBehalf, ou=applications,dc=example, dc=com" to use the proxied authorization v2
control to request that operations be performed using an alternate identity. The application
user is also required to have the proxied-auth privilege:

aci: (version 3.0;acl "Application OnBehalf can proxy as another entry";
allow (proxy) userdn="ldap:///cn=0OnBehalf, ou=applications,dc=example,dc=com";)

-74 -

Chapter 9: Access Control

Validating ACls Before Migrating Data

Rather than unexpectedly exposing sensitive data, the UnboundID Data Store rejects any ACls
that it cannot interpret, which ensures data access is properly limited. However, problems can
arise when migrating data with existing access control rules to the Data Store.

To validate an access control instruction, the Data Store provides a validate-acis tool in the
bin directory (UNIX or Linux systems) or bat directory (Windows systems) that identifies any
ACI syntax problems before migrating data. The tool can examine access control rules
contained in either an LDIF file or an LDAP directory, and write its result in LDIF with
comments about problems that were identified. Each entry in the output contains a single ACI.
Therefore, if an entry in the input contains multiple ACIs, it may be present multiple times in
the output, each time with a different ACI value. The entries contained in the output contains
only ACI values, and all other attributes are ignored.

Working with Privileges

In addition to the access control implementation, the Data Store includes a privilege
subsystem that can also be used to control what users are allowed to do. Privileged operations
are only allowed if they are allowed by the access control configuration and the user has all of
the necessary privileges.

Privileges can be used to grant normal users the ability to perform certain tasks that, in most
other directories, would only be allowed for the root user. In fact, the capabilities extended to
root users in the UnboundID Data Store are all granted through privileges. A normal user
account can be created with the ability to perform some or all of the same actions as root
users. Multiple root users can be defined in the server with different sets of privileges so that
the capabilities that they have are restricted to only the tasks that they need to be able to
perform.

Available Privileges

The following privileges are defined in the Data Store.

Summary of Privileges

Privilege Description

audit-data- Required to initiate a data security audit on the server, which is invoked by the audit-

security data-security tool.

backend-backup Required to initiate an online backup through the tasks interface. The server's access
control configuration must also allow the user to add the corresponding entry in the tasks
backend.

backend-restore Required to initiate an online restore through the tasks interface. The server's access
control configuration must also allow the user to add the corresponding entry in the tasks
backend.

bypass-acl Allows a user to bypass access control evaluation. For a user with this privilege, any

access control determination is allowed. This does not bypass privilege evaluation. The
user must have the appropriate set of privileges to perform any privileged operation.

-75 -

Working with Privileges

Summary of Privileges

Privilege

Description

bypass-pw-policy

Allows a user entry to bypass password policy evaluation. This privilege is intended for
cases where external synchronization might require passwords that violate the password
validation rules. The privilege is not evaluated for bind operations so that password policy
evaluation will still occur.

bypass-read-acl

Allows a user to bypass access control checks performed by the server for bind, search,
and compare operations. Access control evaluation may still be enforced for other types of
operations.

config-read

Required for a user to access the server configuration. Access control evaluation is still
performed and can be used to restrict the set of configuration objects that the useris
allowed to see.

config-write

Required for a user to alter the server configuration. The user is also required to have the
config-read privilege. Access control evaluation is still performed and can be used to
restrict the set of configuration objects that the user is allowed to alter.

disconnect-client

Required for a user to request that an existing client connection be terminated through the
disconnect client task. The server's access control configuration must also allow the user to
add the corresponding entry to the tasks backend.

Jjmx-notify

Required for a user to subscribe to JMX notifications generated by the Data Store. The
user is also required to have the jmx-read privilege.

Jjmx-read

Required for a user to access any information provided by the Data Store through the Java
Management Extensions (JMX).

Jjmx-write

Required for a user to update any information exposed by the Data Store through the Java
Management Extensions (JMX). The user is also required to have the jmx-read privilege.
Currently, all of the information exposed by the server over JMX is read-only.

ldif-export

Required to initiate an online LDIF export through the tasks interface. The server's access
control configuration must also allow the user to add the corresponding entry in the Tasks
backend. To allow access to the Tasks backend, set up a global ACI that allows access to
members of an Administrators group as follows:

$ dsconfig set-access-control-handler-prop \
--add 'global-aci: (target="ldap:///cn=tasks") (targetattr="*||+")
(version 3.0; acl "Access to the tasks backend for administrators";
allow (all) groupdn="ldap:///
cn=admins, ou=groups,dc=example,dc=com";) "'

ldif-import

Required to initiate an online LDIF import through the tasks interface. The server's access
control configuration must also allow the user to add the corresponding entry in the Tasks
backend. To allow access to the Tasks backend, configure the global ACI as shown in the
previous description of the 1di f-export privilege.

lockdown-mode

Allows the associated user to request that the server enter or leave lockdown mode, or to
perform operations while the server is in lockdown mode.

modify-acl

Required for a user to add, modify, or remove access control rules defined in the server.
The server's access control configuration must also allow the user to make the
corresponding change to the aci operational attribute.

password-reset

Required for one user to change another user’s password. This privilege is not required for
a user to change his or her own password. The user must also have the access control
instruction privilege to write the userPassword attribute to the target entry.

-76 -

Chapter 9: Access Control

Summary of Privileges

Privilege

Description

privilege-change

Required for a user to change the set of privileges assigned to a user, including the set of
privileges, which are automatically granted to root users. The server's access control
configuration must also allow the user to make the corresponding change to the ds-

privilege-name operational attribute.

proxied-auth

Required for a user to request that an operation be performed with an alternate
authorization identity. This privilege applies to operations that include the proxied
authorization v1 or v2 control operations that include the intermediate client request
control with a value set for the client identity field, or for SASL bind requests that can
include an authorization identity different from the authentication identity.

server-restart

Required to initiate a server restart through the tasks interface. The server's access control
configuration must also allow the user to add the corresponding entry in the Tasks
backend.

server-shutdown

This privilege is required to initiate a server shutdown through the tasks interface. The
server's access control configuration must also allow the user to add the corresponding
entry in the Tasks backend.

soft-delete-read

Required for a user to access a soft-deleted-entry.

stream-values

Required for a user to perform a stream values extended operation, which obtains all entry
DNs and/or all values for one or more attributes for a specified portion of the DIT.

unindexed-search

Required for a user to be able to perform a search operation in which a reasonable set of
candidate entries cannot be determined using the defined index and instead, a significant
portion of the database needs to be traversed to identify matching entries. The server's
access control configuration must also allow the user to request the search.

update-schema

Required for a user to modify the server schema. The server's access control configuration
must allow the user to update the operational attributes that contain the schema elements.

-77 -

Chapter 10: Authentication Mechanisms

One of the most common uses of LDAP directory environments is as an authentication
repository. This chapter highlights some properties that can be used for client authentication
and authorization.

Topics include:

Configuring Allowed Authentication Types

Preventing Bind Information Leakage

-78 -

Chapter 10: Authentication Mechanisms

Configuring Authentication Types

The Data Store supports two kinds of authentication: simple and SASL.

Simple authentication allows a client to identify itself to the Data Store using the DN and
password of the target user. Because the password is provided in the clear, simple
authentication is inherently insecure, unless the client communication is encrypted using a
mechanism like SSL or StartTLS.

Using SASL Authentication Mechanisms

SASL (the Simple Authentication and Security Layer, as defined in RFC 4422) is an extensible
framework that includes a number of mechanisms that can use very different kinds of
credentials and ways of authenticating clients. Each supported SASL mechanism is associated
with a SASL mechanism handler configuration object.

» To disable certain SASL mechanisms on a server-wide basis, modify the configuration to
disable the associated SASL mechanism handler.

« To disable one or more SASL mechanisms for only certain clients or to disable simple
authentication for some or all clients, use the allowed-auth-type, allowed-sasl-
mechanism, and/or denied-sasl-mechanism properties provided by Client Connection
Policy configuration objects.

Controlling Authentication with Client Connection Policies
The following Client Connection Policy properties can be used to enforce secure authentication:

e allowed-auth-type — Specifies the authentication that clients are allowed to use in bind
requests. Allowed values are simple and sasl. A bind request with any other type is
rejected.

« allowed-sasl-mechanism — Specifies the names of SASL mechanisms that clients are
allowed to use when authenticating. If one or more allowed-sasl-mechanism values are
specified, then any SASL bind request that attempts to use a mechanism not included in
this list is rejected. If no allowed-sasl-mechanism and no denied-sasl-mechanism
values are specified, clients are allowed to use any mechanism.

e denied-sasl-mechanism — Specifies the names of SASL mechanisms that clients will not
be allowed to use when authenticating. If a client sends a SASL bind request with a
mechanism that matches one of the denied values, it is rejected. If no allowed-sasl-
mechanism and no denied-sasl-mechanism values are specified, clients can use any
mechanism.

-79 -

Configuring Authentication Types

Controlling Authentication with Password Policies
The following Password Policy properties can be used to enforce secure authentication:

e« require-secure-authentication — Indicates whether users associated with this policy
are required to authenticate either over a secure connection, or using a secure
authentication mechanism that does not expose user credentials.

e require-secure-password-changes — Indicates whether password changes including
administrative password reset for users associated with this policy are required to be
processed over a secure connection.

Rejecting or Limiting Unauthenticated Requests

The more information that the server provides to an unauthenticated user, the greater the risk
that information will be compromised. If the needs of supported client applications makes it
possible, configure the server to reject all requests from unauthenticated clients.

. Limiting Access by Global Configuration Properties - Two global configuration
properties are available to limit access to unauthenticated requests.

o reject-unauthenticated-requests — Indicates whether the server should reject
any requests received from a client that has not yet authenticated to the server. If
enabled, the only requests that are allowed from unauthenticated clients are bind
requests (to allow clients to authenticate), the StartTLS extended request, which
can be used to enable secure communication before authenticating, and any
requests defined in allowed-unauthenticated-request-criteria. If the server
does not need to accept any requests from unauthenticated clients, this should be
enabled.

o allowed-unauthenticated-request-criteria — A set of criteria that may be
used to match LDAP requests that may be permitted over an unauthenticated
connection even if reject-unauthenticated-requests is true. Some types of
requests will always be permitted, including bind, StartTLS, and start
administrative session requests.

. Custom Client Connection Policies for Unauthenticated Users - If
unauthenticated client applications do need to perform a limited set of operations prior to
authenticating, create a custom Client Connection Policy for unauthenticated users that
allows requests for those operations. After they authenticate and are assigned a different
Client Connection Policy, they can be granted a greater number of operations.

. Limiting Access by Unauthenticated Users using Access Controls - Limiting
access by unauthenticated users can also be accomplished through access control
configuration. The server's default access control policy provides limited access
(including the ability to retrieve selected attributes from the root DSE or server schema,

- 80 -

Chapter 10: Authentication Mechanisms

and the ability to issue certain extended requests like StartTLS and Who Am I?), and
does not allow any access to user data unless that data itself contains ACIs that allow it.

Restricting Authentication with Operational Attributes

Authentication type restrictions can be enforced globally or through Client Connection Policies.
Operational attributes associated with individual user account entries can also be used to
enforce a number of constraints. The following operational attributes can restrict
authentication. They can either be implemented as explicitly-provided values or as virtual
attributes.

e ds-auth-allowed-address — Specifies the set of addresses from which that user is
allowed to authenticate. Values can be specified address masks including individual IP
addresses or resolvable names, addresses with wildcards, CIDR address ranges, or IP
addresses with subnet masks.

e ds-auth-allowed-authentication-type — Specifies the kinds of authentication that is
allowed for that user, which can be simple and sasl {mechanism}.

e ds-auth-require-secure-authentication — Specifies whether the user is required to
authenticate in a secure manner that ensures credentials are not exposed to anyone with
the ability to observe network communication. If this attribute exists in a users' entry
with a value of true, that user can only authenticate over a secure connection or using
an authentication mechanism (like CRAM-MD5, DIGEST-MDS5, or GSSAPI) that does not
expose the client's credentials.

e ds-auth-require-secure-connection — Specifies whether the user is required to
access the server in a secure manner. If this attribute exists in a user's entry with a
value of true, that user can only issue requests over a connection secured with SSL or
StartTLS.

« ds-auth-is-proxyable — Specifies whether the user can be specified as an alternate
authorization identity through the use of the proxied authorization control, intermediate
client control, or a SASL mechanism that supports specifying an alternate authorization
identity. The value can be one of the following:

o allowed - Indicates that the account can be accessed either by direct
authentication or as an alternate authorization identity.

o required - Indicates that the account can only be accessed as an alternate
authorization identity, and is not allowed to directly authenticate.

o prohibited - Indicates that the account can only be accessed through direct
authentication but not as an alternate authorization identity.

« ds-auth-is-proxyable-by- Indicates which users are allowed to access a user in the
form of an alternate authorization identity. If this attribute is present in a user's entry,

-81 -

Configuring Authentication Types

users whose DNs are included in the value of that attribute are allowed to specify that
user as an alternate authorization identity.

Using Certificate-based Authentication

UnboundID servers provide the ability to use a client certificate presented to the server during
SSL or StartTLS negotiation as the set of credentials for LDAP authentication. There are two
ways that this can be accomplished:

« The client application can send a SASL EXTERNAL bind request to the server.

« The client application can present a certificate to the server (the LDAP connection
handler that accepts the connection must have the auto-authenticate-using-client-
certificate property setto true.)

In either case, the authentication is processed as if the client had requested SASL EXTERNAL
authentication, and the SASL EXTERNAL mechanism handler is used to process the
authentication. Refer to the UnboundID Data Store Administration Guide for information about
the certificate mapper configuration properties. The SASL mechanism handler includes the
following configuration properties:

o certificate-mapper — Specifies which certificate mapper should be used to identify the
user to be authenticated.

e certificate-validation-policy — Specifies whether the server should attempt to find
the certificate presented by the client in the user's entry. Values are:
o always - The server must find the presented certificate in the user's entry for
authentication to succeed.

o never - The server will not look in the user entry for the certificate.

o ifpresent - Ifthe user's entry contains one or more certificates, one of them
must match the certificate presented by the client, but authentication will be
allowed if the user's entry does not have any certificates.

e« certificate-attribute — Specifies the name of the attribute that will be checked for
certificates if the certificate-validation-policy property has a value of always or

ifpresent.

Certificate Mappers

Certificate mappers are used to identify the user attempting to authenticate based on
information contained in the certificate presented to the server. The certificate mapper can
make use of any information contained in the certificate, including the subject, extensions, or
certificate fingerprint. The server provides a number of certificate mapper implementations:

-82-

Chapter 10: Authentication Mechanisms

« Subject equals DN - Matches a user whose DN is the same as the certificate subject.

« Subject DN to user attribute - Matches a user whose entry contains a specified
attribute with a value equal to the subject of the presented certificate. If this mapper is
used, the attribute holding the certificate subjects must be indexed for equality.

. Subject attribute to user attribute - Takes attributes from the presented certificate
and uses them to generate a filter for an internal search to identify the target user. Itis
possible to customize the mapping between subject attributes and user entry attributes
(for example, "E" in the certificate subject may map to "mail" in the user's entry).

. Fingerprint - Performs an internal search to find a user entry in which the value of a
specified attribute matches the SHA-1 or MD5 fingerprint of the presented certificate. If
this mapper is to be used, the attribute holding the fingerprint in user entries must be
indexed for equality.

« Custom - The UnboundID Server SDK can also be used to develop custom certificate
mappers.

Configure a SASL Mechanism Handler

The dsconfig utility enables configuration of the following SASL mechanism handlers:

ANONYMOUS - Does not perform any authentication, but can be enabled for clients to include
a trace string to identify the purpose of a connection.

CRAM-MD5 - Performs password-based authentication through an MD5 digest. The client
sends a bind request to the server. The server responds with a randomly-generated challenge
to protect against replay attacks. The client responds with an answer to the challenge, a clear-
text password, and an authentication ID. The server encodes the password and requires that
any clients have a password policy that supports two-way, reversible encryption.

By default, SASL DIGEST-MD5 uses the Exact Match Identity Mapper, which returns a success
result if the authorization ID is an exact match for the value of the uid attribute. Other identity
mappers, such as the Regular Expression Identity Mapper or a custom mapper, can also be
used.

DIGEST-MDS5 - Provides authentication through a stronger MD5 digest that does not expose a
clear-text password. The client sends a bind request with credentials to the server. The server
sends the client a response with a set of authentication options and a special token. The client
sends an encrypted response with the chosen authentication method. The server then validates
the client's response. This is the required authentication mechanism for LDAP v3 servers.

EXTERNAL - Allows a client to authenticate using information about the client, which is
available to the server, but is not directly provided over LDAP. On the server, SASL EXTERNAL
requires the use of a client certificate provided during SSL or StartTLS negotiation. This does
not require the use of passwords, although its use on a broad scale is generally only feasible in
environments with a PKI deployment.

-83 -

Configure a SASL Mechanism Handler

GSSAPI - Provides authentication for LDAP clients using Kerberos V. User credentials are
stored in the Kerberos key distribution center (KDC) rather than the UnboundID server. When
an LDAP client attempts to authenticate with the server, a three-way exchange occurs that
allows the client to verify its identity to the server through the KDC.

UnboundID's support for GSSAPI is based on the Java Authentication and Authorization Service
(JAAS). By default, the server automatically generates a JAAS configuration that should be
appropriate for most use cases. For more complex deployments, a custom JAAS configuration
can be supplied.

UnboundID servers support GSSAPI only for authenticating clients, not for securing their
communication with the server.

PLAIN - Performs password-based authentication with an authentication ID, clear-text
password, and optional authorization ID.

UNBOUNDID-TOTP - Provides a proprietary multifactor authentication mechanism that
allows the server to use the Time-based One-Time Password (TOTP) algorithm, specified in
RFC 6238. The TOTP algorithm is an extension of the Hash-based Message Authentication Code
One-Time Password (HTOP) algorithm, specified in RFC 4226. The TOTP algorithm computes a
temporary code using the current time and a secret key that is shared between the client
application and the server.

UNBOUNDID-TOTP SASL - Issues a bind request that includes at least an authentication ID
and a TOTP code, but may also include an authorization ID and/or a static password. The
server first uses the authentication ID to identify the user that is authenticating and then
retrieves the shared secret from the user's entry (stored as a base32-encoded value in the ds-
auth-totp-sharedsecret operational attribute) and uses it with the current time to generate
a TOTP code. If that matches the code that the user entered, then that confirms that the client
knows the shared secret. If a static password was also provided, then the server will confirm
that it matches what is stored in the userPassword attribute (or that specified by the
Password Policy). By default, the server will require the client to provide a static password.

The Commercial Edition of the LDAP SDK for Java provides the necessary client-side support
for the UNBOUNDID-TOTP SASL mechanism, and provides a
com.unboundid.ldap.sdk.unboundidds.OneTimePassword class to generate HOTP and TOTP
codes for testing purposes.

UNBOUNDID-DELIVERED-OTP - Provides two-factor authentication, which uses one-time
passwords (OTPs) that are delivered to the end user through an out-of-band mechanism. The
server provides support for e-mail (through an external SMTP external server), SMS (through
the Twilio web service), and custom delivery mechanisms with the Server SDK.

The process for authenticating using this new mechanism involves two steps:

« The client sends a "deliver one-time password" extended request to the server. This
request includes an authentication ID, the user's static password, and an optional set of
allowed delivery mechanisms. If successful, the server generates a one-time password,
stores it in the user's entry, and sends it to the user through one of the allowed
mechanisms.

-84 -

Chapter 10: Authentication Mechanisms

« Once the user has received the one-time password, the client should perform an
UNBOUNDID-DELIVERED-OTP SASL bind (which may be on the same connection or a
different connection used to send the "deliver one-time password" extended operation).
The credentials for this SASL mechanism include an authentication ID to identify the
user, an optional authorization ID (if operations performed by the client should be
authorized as a different user), and the one-time password.

Unlike UNBOUNDID-TOTP SASL, there is no need to have a shared secret between the client
and the server, or any special client-side software to generate the one-time password, or a
need to worry about whether the client and server clocks are synchronized.

Configure SASL ANONYMOUS Mechanism

The LDAP client tools provided with UnboundID servers support the use of SASL ANONYMOUS.
The optional "trace" SASL option can be used to specify the trace string to include in the bind
request.

Perform the following steps to configure SASL ANONYMOUS:
1. Use dsconfig to enable the SASL ANONYMOUS mechanism.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
--handler—-name ANONYMOUS \
—--set enabled:true

2. Use ldapsearch to view the root DSE and enter a trace string in the access log.

$ bin/ldapsearch —--port 1389 \
--saslOption mech=ANONYMOUS \
--saslOption "trace=debug trace string" --baseDN "" \
—--searchScope base " (objectclass=*)"

dn:

objectClass: ds-root-dse

objectClass: top

startupUUID: 59bab79d-4429-49c8-8a88-c74a86792f26

3. View the access log using a text editor in the /ds/UnboundID-<server>/logs folder.

[26/0ct/2011:16:06:33 -0500] BIND RESULT conn=2 op=0 msglID=1
resultCode=0

additionalInfo="trace='debug trace string'" etime=345.663
clientConnectionPolicy="default"

Configure SASL CRAM-MD5 Mechanism

CRAM-MDS5 requires an authentication ID (authid) from the client to identify the authenticating
user. The format of that authentication ID can be either:

m dn: followed by the distinguished name of the target user (or just dn: to perform an
anonymous bind).

-85 -

Configure a SASL Mechanism Handler

m u: followed by a username.

If using u:, an identity mapper is used to identify the target user based on that username.

Perform the following steps to configure CRAM-MD5:

1.

Use dsconfig to enable the SASL CRAM-MD5 mechanism if it is disabled. By default, the
CRAM-MD5 mechanism is enabled.

S bin/dsconfig set-sasl-mechanism-handler-prop \
—--handler-name CRAM-MD5 \
--set enabled:true

For this example, create a password policy for CRAM-MDS5 using a reversible password
storage scheme, like 3DES.

S bin/dsconfig create-password-policy \
--policy-name "Test UserPassword Policy" \
--set password-attribute:userpassword \
--set default-password-storage-scheme:3DES

Use 1dapmodify to add the ds-pwp-password-policy-dn attribute to an entry to
indicate the Test UserPassword Policy should be used for that entry. When finished,
press CTRL-D to process the modify operation.

$ bin/ldapmodify

dn: uid=jdoe, ou=People,dc=example, dc=com

changetype: modify

add: ds-pwp-password-policy-dn

ds-pwp-password-policy-dn: cn=Test UserPassword Policy,cn=Password
Policies,cn=config

Processing MODIFY request for uid=jdoe,ou=People,dc=example, dc=com
MODIFY operation successful for DN uid=jdoe, ou=People,dc=example,dc=com

Use ldapmodify to change the userPassword to a reversible password storage scheme.
The password storage scheme is specified in the user’s password policy.

$ bin/ldapmodify

dn: uid=jdoe, ou=People,dc=example, dc=com
changetype: modify

replace: userPassword

userPassword: secret

Use ldapsearch to view the root DSE using the authentication ID (authid) option with
the username jdoe. Enter a password for the user.

$ bin/ldapsearch --port 1389 \
--saslOption mech=CRAM-MD5 \
--saslOption "authid=u:jdoe" --baseDN "" \
—-searchScope base " (objectclass=*)"
Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse

- 86 -

Chapter 10: Authentication Mechanisms

objectClass: top
startupUUID: 50567aa3-acd2-4106-a077-37a092275363

Configure SASL DIGEST-MD5 Mechanism

DIGEST-MDS5 requires an authentication ID (authid) from the client to identify the
authenticating user. The format of that authentication ID can be either:

« dn: followed by the distinguished name of the target user (or just dn: to perform an
anonymous bind).

« u: followed by a username. If using u:, an identity mapper is used to identify the target
user based on that username.

The client may also include the following properties:

« authzID - Specifies an optional authorization ID that should be used for operations
processed on the connection.

e« realm — The realm in which the authentication should be processed. This may or may
not be required, based on the server configuration.

« digest-uri - The digest URI that should be used for the bind. It should generally be
"Idap://" followed by the fully-qualified address for the Metrics Engine. If this is not
provided, then a value will be generated.

« gop - The quality of protection to use for the bind request. Only auth is supported
(indicating that the DIGEST-MD5 bind should only be used for authentication and should
not provide any subsequent integrity or confidentiality protection for the connection),
and if no value is provided then auth will be assumed.

Perform the following steps to configure CRAM-MD5:

1. Use dsconfig to enable the SASL DIGEST-MD5 mechanism if it is disabled. By default,
the DIGEST-MD5 mechanism is enabled.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
--handler—-name DIGEST-MD5 \
--set enabled:true

2. For this example, create a password policy using a reversible password storage scheme,
like 3DES.

$ bin/dsconfig create-password-policy \
--policy-name "Test UserPassword Policy" \
--set password-attribute:userpassword \
--set default-password-storage-scheme:3DES

3. Use ldapmodify to add the ds-pwp-password-policy-dn attribute to an entry to
indicate the Test UserPassword Policy should be used for that entry. When finished,
press CTRL-D to process the modify operation.

- 87 -

Configure a SASL Mechanism Handler

$ bin/ldapmodify

dn: uid=jdoe, ou=People,dc=example, dc=com

changetype: modify

add: ds-pwp-password-policy-dn

ds-pwp-password-policy-dn: cn=Test UserPassword Policy,cn=Password
Policies,cn=config

Processing MODIFY request for uid=jdoe,ou=People,dc=example, dc=com
MODIFY operation successful for DN uid=jdoe, ou=People,dc=example,dc=com

4. Use ldapmodify to change the userpPassword to a reversible password storage scheme.
The password storage scheme is specified in the user’s password policy.

$ bin/ldapmodify

dn: uid=jdoe, ou=People,dc=example, dc=com
changetype: modify

replace: userPassword

userPassword: secret

5. Use ldapsearch to view the root DSE using the authentication ID with the username
jdoe. Enter a password for the authentication ID.

$ bin/ldapsearch --port 1389 \
--saslOption mech=DIGEST-MD5 \
--saslOption "authid=u:jdoe" --baseDN "" \
—--searchScope base " (objectclass=*)"
Password for user 'u:jdoe':

dn:

objectClass: ds-root-dse

objectClass: top

startupUUID: 2188e4d4-c2bb-4ab9-8elc-848e0168c9de

6. The user identified by the authentication ID requires the proxied-auth privilege to allow
it
to perform operations as another user.

$ bin/ldapmodify

dn: uid=jdoe, ou=People,dc=example,dc=com
changetype: modifyadd: ds-privilege-name
ds-privilege-name: proxied-auth

7. Use ldapsearch with the authid (required) and authzid option to test the
mechanism.

$ bin/ldapsearch --port 1389 \
--saslOption mech=DIGEST-MD5 \
--saslOption authid=u:jdoe \
--saslOption authzid=dn:uid=admin, dc=example,dc=com \
--base "" \
—--searchScope base " (objectclass=*)"
Password for user 'u:jdoe':

- 88 -

Chapter 10: Authentication Mechanisms

dn:

objectClass: ds-root-dse
objectClass: top
startupUUID: 2188e4d4-c2bb-4ab9-8elc-848e0168c9de

Configure SASL EXTERNAL Mechanism

Prior to the SASL EXTERNAL session exchange, the client should have successfully established
a secure communication channel using SSL or StartTLS, and the client must have presented its
own certificate to the server. The SASL EXTERNAL bind request does not contain any
credentials. The server only uses the information contained in the provided client certificate to
identify the target user.

The configuration settings for SASL EXTERNAL includes three required properties:

e certificate-validation-policy — Checks if the certificate presented by the client is
present in the target user’s entry. Possible values are:

o

always - Always require the peer certificate to be present in the user’s entry.
Authentication will fail if the user’s entry does not contain any certificates, or if it
contains one or more certificates and the certificate presented by the client is not
included in the user’s entry.

ifpresent - (Default) If the user’s entry contains one or more certificates,
require that one of them match the peer certificate. Authentication will succeed if
the user’s entry does not have any certificates, but will fail if the user’s entry has
one or more certificates that do not match the certificate provided by the client.

never - Do notlook for the peer certificate to be present in the user’s entry.
Authentication will succeed if the user’s entry does not contain any client
certificates, or if it contains certificates that do not match the certificate provided
by the client.

« certificate-attribute — Specifies the attribute that holds user certificates to be
examined if the certificate-validation-policy attribute has a value of ifpresent
or always. The name must be a valid attribute type defined in the server schema. The
default value is usercCertificate. LDAP generally requires certificate values to use the

;binary attribute modifier. Certificates should be stored in user entries using the
attribute userCertificate;binary.

« certificate-mapper — Specifies the certificate mapper that will be used to identify the
target user based on the certificate presented by the client.

Perform the following to configure the EXTERNAL mechanism:

1. Change to the server root directory.

$ cd /ds/UnboundID-<server>

- 89 -

Configure a SASL Mechanism Handler

2. Determine the certificate-validation-policy property. If not storing the DER-
encoded representation of the client’s certificate in the user’s entry, skip to the next
step.

If always is chosen, make sure that the user’s entry has a valid value. If i fpresent is
selected, the userCertificate attribute can also be present. The client’s certificate
can be stored in the user entry using 1dapmodify.

S bin/ldapmodify

dn: uid=jdoe, ou=People,dc=example, dc=com
changetype: modify
add: userCertificate;binary
userCertificate;binary:<file:///path/to/client.der

3. If using an attribute other than userCertificate, specify it using the certificate-
attribute property. Make sure that the schema is updated to support the attribute.

4. Determine the certificate-mapper property. For more information about certificate
mappers, see Configure Certificate Mappers.

5. Use dsconfig to enable the SASL EXTERNAL mechanism if it is disabled. By default, the
SASL mechanism is enabled. For this example, set the certificate-mapper property to
Subject Attribute to User Attribute. All other defaults are kept.

S bin/dsconfig set-sasl-mechanism-handler-prop \
--handler-name EXTERNAL \
--set enabled:true \
—--set "certificate-mapper:Subject Attribute to User Attribute"

6. Use ldapsearch to test SASL EXTERNAL.

$ bin/ldapsearch --port 1636 \
--useSSL \
-—-keyStorePath /path/to/clientkeystore \
--keyStorePasswordFile /path/to/clientkeystore.pin \
--trustStorePath /path/to/truststore \
--saslOption mech=EXTERNAL \
--baseDN "" \
—-—-searchScope base " (objectClass=*)

Configure SASL GSSAPI Mechanism

While the GSSAPI specification includes a provision for protecting client-server
communication, UnboundID servers currently support GSSAPI only for the purpose of
authenticating clients.

Kerberos Configuration Considerations

To implement GSSAPI authentication, a Kerberos V deployment must be configured. The
Kerberos deployment should take the following into consideration:

-90 -

Chapter 10: Authentication Mechanisms

« Itis recommended that the KDC be configured to use "aes128-cts" as the TKT and TGS
encryption type, which is supported by all Java VMs. In Kerberos environments using the
MIT libraries, make sure that the following lines are present in the [libdefaults]
section of the /etc/krb.conf configuration file on the KDC system:

default tkt enctypes = aesl28-cts
default tgs enctypes = aesl28-cts
permitted enctypes = aesl28-cts

« When a client uses Kerberos to authenticate to a server, the addresses of the target
server and the KDC are used in cryptographic operations. Make sure that all systems
agree on the addresses of the server and KDC systems. Make sure that DNS is
configured so that the primary addresses for the KDC and server are addresses that
clients will use to communicate.

« Kerberos authentication is time-sensitive. If system clocks are not synchronized,
authentication may fail. Use NTP or some other form of time synchronization for all KDC,
server, and client systems.

To authenticate itself to the Kerberos environment, the KDC should include both host and
service principals for all servers. The host principal is in the form
host/directory.example.com, and the service principal should generally be
ldap/directory.example.com. In an MIT Kerberos environment, the kadmin utility can be
used to create these principals, as follows:

/usr/sbin/kadmin -p kws/admin

Authenticating as principal kws/admin with password.

Password for kws/admin@EXAMPLE.COM:

kadmin: add principal -randkey host/directory.example.com

WARNING: no policy specified for host/directory.example.com@EXAMPLE.COM;
defaulting to no policy

Principal "host/directory.example.com@EXAMPLE.COM" created.

kadmin: ktadd host/directory.example.com

Entry for principal host/directory.example.com with kvno 3, encryption type AES-128
CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin: add principal -randkey ldap/directory.example.com

WARNING: no policy specified for ldap/directory.example.com@EXAMPLE.COM;
defaulting to no policy

Principal "ldap/directory.example.com@EXAMPLE.COM" created.

kadmin: quit

On each server, the service principal for that instance must be exported to a keytab file, using
a command such as:

/usr/sbin/kadmin -p kws/admin

Authenticating as principal kws/admin with password.

Password for kws/admin@EXAMPLE.COM:

kadmin: ktadd -k /ds/UnboundID-<server>/config/server.keytab ldap/

directory.example.com

Entry for principal ldap/directory.example.com with kvno 4, encryption type AES-128
CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/ds/UnboundID-Metrics-Engine/

config/

-901 -

Configure a SASL Mechanism Handler

server.keytab.
kadmin: quit

Because this file contains the credentials that the server will use to authenticate to the KDC,
make sure that it is only accessible by the server.

GSSAPI Mechanism Handler Options
The GSSAPI SASL mechanism handler provides the following configuration options:

e enabled - Indicates whether the GSSAPI SASL mechanism handler is enabled for use in
the server. By default, it is disabled.

o kdc-address — Specifies the address that the server uses to communicate with the KDC.
If this is not specified, the server uses the underlying system configuration.

« server-fgdn — Specifies the fully-qualified domain name that clients use to
communicate with the server. If this is not specified, the server uses the underlying
system configuration.

« realm - Specifies the Kerberos realm that clients use. If this is not specified, the server
uses the underlying system configuration.

o kerberos-service-principal - Specifies the service principal that the server uses to
authenticate with the KDC. If this is not specified, the service principal is 1dap/
followed by the fully-qualified server address.

« keytab — Specifies the path to the keytab file that holds the credentials for the Kerberos
service principal that the server uses to authenticate with the KDC. If this is not
specified, the server uses the system-wide keytab.

« identify-mapper — Specifies the identify mapper that the server uses to map a client’s
Kerberos principal to the entry of the corresponding user account in the server. In the
default configuration, the server uses a regular expression identity mapper that looks for
an entry with a uid value equal to the username portion of the Kerberos principal. For
example, for a Kerberos principal of jdoe@REXAMPLE . COM, the identity mapper will
perform an internal search with a filter of (uid=jdoe).

« enable-debug - Indicates whether the server should write debugging information about
Kerberos-related processing (including JAAS processing) that the server performs. If
enabled, this information is written to standard error in the 1ogs/server.out logfile.

« jaas-config file — Specifies the path to a JAAS configuration file that the server should
use. If this is not specified, the server generates a JAAS configuration file based on the
values of the other configuration properties. This should only be used when the server-
generated JAAS configuration is not acceptable.

Configure SASL PLAIN Mechanism
LDAP clients can use SASL PLAIN with the following SASL options:

-92 -

Chapter 10: Authentication Mechanisms

« authid - Specifies the authentication ID to use for the bind. This must be provided.

« authzid- Specifies an optional alternate authorization ID to use for the bind.

Perform the following steps to configure SASL PLAIN:

1. Use dsconfig to enable the SASL PLAIN mechanism.

$

bin/dsconfig set-sasl-mechanism-handler-prop \
--handler-name PLAIN \
--set enabled:true

2. Use ldapsearch to view the root DSE using the authentication ID (authid) with the
username jdoe. Enter a password for the authentication ID.

$

bin/ldapsearch --port 1389 \

--saslOption mech=PLAIN \

--saslOption "authid=u:jdoe" --baseDN "" \
--searchScope base " (objectclass=*)"
Password for user 'u:jdoe':

Or specify the full DN of the user:

$

bin/ldapsearch --port 1389 \

--saslOption mech=PLAIN \

--saslOption "authid=dn:uid=jdoe, ou=People,dc=example,dc=com" \
--baseDN "" \

--searchScope base " (objectclass=*)"

Password for user 'dn:uid=jdoe,ou=People,dc=example,dc=com’:

dn:

objectClass: ds-root-dse

objectClass: top

startupUUID: 59bab79d-4429-49c8-8a88-c74a86792f26

Configure SASL UNBOUNDID-TOTP Mechanism
Perform the following steps to configure the UNBOUNDID-TOTP mechanism:

1. Configure the server so that ds-auth-totp-shared-secret is a sensitive attribute that
can only be set over a secure connection and not retrieved from the server. Create the
sensitive attribute and reference it from the global configuration using dsconfig:

$

bin/dsconfig create-sensitive-attribute \
-—attribute-name ds-auth-totp-shared-secret \
--set attribute-type:ds-auth-totp-shared-secret \
--set allow-in-returned-entries:suppress \

--set allow-in-filter:reject \

--set allow-in-compare:reject \

--set allow-in-add:secure-only \

--set allow-in-modify:secure-only

bin/dsconfig set-global-configuration-prop \
--add sensitive-attribute:ds-auth-totp-shared-secret

-03 -

Configure a SASL Mechanism Handler

2. Update a user entry so that it contains a ds-auth-totp-shared-secret attribute with a
value that holds the base32-encoded shared secret that will be used for TOTP
authentication. This should be done over a secure connection (SSL or StartTLS). There is
no maximum limit for the ds-auth-totp-shared-secret string, but there is a minimum
length of 16 base32-encoded characters.

dn: uid=user.(0,ou=People, dc=example,dc=com
changetype: modify

add: ds-auth-totp-shared-secret
ds-auth-totp-shared-secret: ONSWGATFORRW6ZDF

3. Use ldapsearch to test the configuration.

$

bin/ldapsearch --saslOption mech=UNBOUNDID-TOTP \
--saslOption authID=u:user.0 \

--saslOption totpPassword=628094 \

--bindPassword password \

--baseDN "" \

--searchScope base \

" (objectClass=*)"

Configure SASL UNBOUNDID-DELIVERED-OTP Mechanism
Perform the following steps to configure the UNBOUNDID-DELIVERED-OTP mechanism:

1. Add support for one or more OTP delivery mechanisms. The following commands enable
an SMTP external server, associate it with the global configuration, and create the
delivery mechanism.

$

bin/dsconfig create-external-server \
--server—-name "Intranet SMTP Server" \
--type smtp \

--set server-host-name:server.example.com

bin/dsconfig set-global-configuration-prop \
—-—-add "smtp-server:Intranet SMTP Server"

bin/dsconfig create-otp-delivery-mechanism \
--mechanism-name E-Mail \

-—-type email \

--set enabled:true \

--set 'sender-address:otp@example.com' \

--set "email-address-attribute-type:mail" \

--set "message-subject:Your one-time password" \

—--set "message-text-before-otp:Your one-time password: "

2. With a Twilio account, configure the server to deliver one-time passwords over SMS.

dsconfig create-otp-delivery-mechanism \

--mechanism-name SMS \

-—-type twilio \

—--set enabled:true

--set twilio-account-sid:xxxxx \

-94 -

Chapter 10: Authentication Mechanisms

--set twilio-auth-token:xxxxx \

--set "sender-phone-number:xxxxx" \

-—-set phone-number-attribute-type:mobile \

--set "message-text-before-otp:Your one-time password: "

3. With OTP delivery mechanisms established, configure the extended operation handler.

$ bin/dsconfig create-extended-operation-handler \
--handler-name "Deliver One-Time Password" \
--type deliver-otp \
--set enabled:true \
--set "identity-mapper:Exact Match" \
--set "password-generator:0ne-Time Password Generator™ \
--set default-otp-delivery-mechanism:SMS \
--set default-otp-delivery-mechanism:E-Mail

4. Configure the SASL mechanism handler.

$ bin/dsconfig create-sasl-mechanism-handler \
--handler-name UNBOUNDID-DELIVERED-OTP \
--type unboundid-delivered-otp \
-—-set enabled:true \
--set "identity-mapper:Exact Match" \
--set "otp-validity-duration:5 minutes"

5. Make sure the server contains a user account with the information needed to deliver the
one-time password, such as a valid email address or mobile humber.

6. Use the deliver one-time password extended operation to have the server generate and
send a one-time password to the user. The Commercial Edition of UnboundID LDAP SDK
contains support for the extended request and response needed to do this, or use the
deliver-one-time-password command-line tool:

$ bin/deliver-one-time-password \
—-userName jdoe \
—-—-promptForBindPassword \
--deliveryMechanism SMS
Enter the static password for the user:

Successfully delivered a one-time password via mechanism 'SMS' to '123-
456-7890"
If processed successfully, a text message is received:

Your one-time password: 123456

7. Authenticate to the server using the UNBOUNDID-DELIVERED-OTP SASL mechanism. The
Commercial Edition of the LDAP SDK can be used, or the 1dapsearch tool:

$ bin/ldapsearch \
-0 mech=UNBOUNDID-DELIVERED-OTP \
-0 authID=u:jdoe \
-0 otp=123456 \
-b "'\

-0§ -

Configure Certificate Mappers

-s base ' (objectClass=*)" \
ds-supported-otp-delivery-mechanism
The search returns:

dn:
ds-supported-otp-delivery-mechanism: E-Mail
ds-supported-otp-delivery-mechanism: SMS

Configure Certificate Mappers

SASL EXTERNAL requires that a certificate mapper be configured in the server. The certificate
mapper is used to identify the entry for the user to whom the certificate belongs. UnboundID
servers support a number of certificate mapping options including:

« Subject Equals DN - Specifies that the subject of the certificate exactly match the
distinguished name of the associated user entry. This option is not often practical as
certificate subjects (cn=jdoe, ou=Client Cert, o=Example
Company, c=Austin, st=Texas, c=US) are not typically in the same form as an entry
(cn=jdoe, ou=People, o=Example Company, or

uid=jdoe, ou=People,dc=example, dc=com).

. Fingerprint - Specifies that the user's entry contain an attribute (ds-certficate-
fingerprint by default), with values SHA-1 or MD5 fingerprints of the certificate(s) that
they can use to authenticate. This attribute must be indexed for equality.

« Subject Attribute to User Attribute - Used to build a search filter to find the
appropriate user entry based on information contained in the certificate subject. For
example, the default configuration expects the cn value from the certificate subject to
match the cn value of the user's entry, and the e value from the certificate subject to
match the mail value of the user's entry.

« Subject DN to User Attribute - Expects the user's entry to contain an attribute (ds-
certificate-subject-dn by default), whose values are the subjects of the certificate
(s) that they can use to authenticate. This multi-valued attribute can contain the subjects
of multiple certificates. The attribute must be indexed for equality.

Configure the Subject Equals DN Certificate Mapper

The Subject Equals DN Certificate Mapper is the default mapping option for the SASL EXTERNAL
mechanism. The mapper requires that the subject of the client certificate exactly match the
distinguished name of the corresponding user entry. The mapper, however, is only practical if
the certificate subject has the same format as the server's entries.

Perform the following to change the certificate mapper for the SASL EXTERNAL mechanism and
configure the Subject Equals DN Certificate Mapper:

- 06 -

Chapter 10: Authentication Mechanisms

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
--handler-name EXTERNAL \
--set "certificate-mapper:Subject Equals DN"

Configure the Fingerprint Certificate Mapper

The Fingerprint Mapper causes the server to compute an MD5 or SHA-1 fingerprint of the
certificate presented by the client and performs a search to find that fingerprint value in a
user’s entry (ds-certificate-fingerprint by default). The ds-certificate-fingerprint
attribute can be added to the user’s entry together with the ds-certificate-user auxiliary
object class. For multiple certificates, the attribute can have separate values for each of the
acceptable certificates. Make sure this attribute is indexed, if used.

The following example uses this certificate:

Alias name: client-cert
Creation date: Oct 29, 2011
Entry type: PrivateKeyEntry

Certificate chain length: 1 Certificate[l]:
Owner: CN=jdoe, OU=Client Cert, O=Example Company, L=Austin, ST=Texas, C=US
Issuer: EMAILADDRESS=whatever@example.com, CN=Cert Auth, OU=My Certificate Authority,
O=Example Company, L=Austin, ST=Texas, C=US
Serial number: e€19cb2838441dbcd
Valid from: Thu Oct 29 13:07:10 CDT 2011 until: Fri Oct 29 13:07:10 CDT 2012
Certificate fingerprints:
MD5: 40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB
SHAl: 2A:89:71:06:1A:F5:DA:FF:51:7B:3D:2D:07:2E:33:BE:C6:5D:97:13
Signature algorithm name: SHAlwithRSA
Version: 1

Perform the following steps to configure the Fingerprint Certificate Mapper:

1. Create an LDIF file to add the ds-certificate-user object class and ds-
certificate-fingerprint attribute to the target user’s entry.

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify

add: objectClass

objectClass: ds-certificate-user

add: ds-certificate-fingerprint
ds-certificate-fingerprint:
40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

2. Apply the change to the entry using 1dapmodify:

$ bin/ldapmodify —--filename add-cert-attr.ldif

dn: uid=jdoe, ou=People,dc=example, dc=com
ds-certificate-
fingerprint:40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

3. Check that the attribute was added to the entry using 1dapsearch.

-97 -

Configure Certificate Mappers

$ bin/ldapsearch --baseDN dc=example,dc=com " (uid=jdoe)" \
ds-certificate-fingerprint
dn:uid=jdoe, ou=People, dc=example, dc=com
ds-certificate-
fingerprint:40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

4, Create anindex for the ds-certificate-fingerprint attribute. If the server is
configured with multiple data backends, the attribute should be indexed in each of those
backends.

$ bin/dsconfig create-local-db-index --backend-name userRoot \
--index-name ds-certificate-fingerprint \
—--set index-type:equality

5. Use the rebuild-index tool to cause an index to be generated for this attribute.

$ bin/rebuild-index --task --baseDN dc=example,dc=com \
—-—-index ds-certificate-fingerprint

[14:56:28] The console logging output is also available in
'/ds/UnboundID-Metrics-Engine/logs/tools/rebuild-index.log"

[14:56:29] Due to changes in the configuration, index

dc_example dc_com ds-certificate-fingerprint.equality is currently
operating in a degraded state and must be rebuilt before it can used
[14:56:29] Rebuild of index(es) ds-certificate-fingerprint started with
161 total records to process

[14:56:29] Rebuild complete. Processed 161 records in 0 seconds (average
rate 1125.9/sec)

6. Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
--handler—-name EXTERNAL \
—--set "certificate-mapper:Fingerprint Mapper"

Configure the Subject Attribute to User Attribute Certificate Mapper

The Subject Attribute to User Attribute Certificate Mapper maps common attributes from the
subject of the client certificate to the user’s entry. The generated search filter must match
exactly one entry within the scope of the base distinguished name for the mapper. If no match
is returned or if multiple machine entries are found, the mapping fails.

Given the subject of the client certificate:

Owner: CN=John Doe, OU=Client Cert, O=Example Company, L=Austin, ST=Texas, C=US
We want to match to the following user entry:

dn: uid=jdoe, ou=People,dc=example, dc=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

uid: jdoe

givenName: John

sn: Doe

- 08 -

Chapter 10: Authentication Mechanisms

cn: John Doe
mail: jdoel@example.com

Perform the following to change the certificate mapper for the SASL EXTERNAL mechanism and
configure the Subject Attribute to User Attribute Certificate Mapper:
$ bin/dsconfig —--no-prompt set-sasl-mechanism-handler-prop \

--handler-name EXTERNAL \
--set "certificate-mapper:Subject Attribute to User Attribute"

Configure the Subject DN to User Attribute Certificate Mapper

The Subject DN to User Attribute Certificate mapper expects the user’s entry to contain an
attribute (ds-certificate-subject-dn by default) whose values match the subjects of the
certificates that the user can use to authenticate. The ds-certificate-subject-dn attribute
can be added to the user’s entry together with the ds-certificate-user auxiliary object
class. The attribute is multi-valued and can contain the subject distinguished names of multiple
certificates. The certificate mapper must match exactly one entry, or the mapping will fail.

If using this attribute, add an equality index for this attribute in all data backends.
Perform the following steps to configure the Subject DN to User Attribute Certificate Mapper:

1. Create an LDIF file to add the ds-certificate-user object class and ds-certificate-
subject-dn attribute to the target user’s entry.

dn: uid=jdoe, ou=People,dc=example,dc=com

changetype: modify

add: objectClass

objectClass: ds-certificate-user

add: ds-certificate-subject-dn

ds-certificate-subject-dn:CN=John Doe,OU=Client Certificate,O=Example
Company, L=Austin, ST=Texas, C=US

2. Then, apply the change to the entry using 1dapmodify:
$ bin/ldapmodify —--filename add-cert-attr.ldif
3. Check that the attribute was added to the entry using 1dapsearch.

$ bin/ldapsearch --baseDN dc=example,dc=com " (uid=jdoe)" \
ds-certificate-subject-dn
dn: uid=jdoe,ou=People,dc=example,dc=com
ds-certificate-fingerprint:CN=jdoe, OU=Client Cert, O=Example Company,
L=Austin, ST=Texas, C=US

4. Create anindex to the ds-certificate-subject-dn attribute.

$ bin/dsconfig create-local-db-index --backend-name userRoot \
--index-name ds-certificate-subject-dn \
--set index-type:equality

- 99 -

Configure Pass-Through Authentication

5. Use the rebuild-index tool to ensure that the index is properly generated in all
appropriate backends.

$ bin/rebuild-index --task --baseDN dc=example,dc=com \
—-index ds-certificate-subject-dn

[15:39:19] The console logging output is also available in
'/ds/UnboundID-Metrics-Engine/logs/ tools/rebuild-index.log'

[15:39:20] Due to changes in the configuration, index

dc_example dc _com ds-certificate-subject-dn.equality is currently
operating in a degraded state and must be rebuilt before it can used
[15:39:20] Rebuild of index(es) ds-certificate-subject-dn started with
161 total records to process

[15:39:20] Rebuild complete. Processed 161 records in 0 seconds (average
rate 2367.6/sec)

6. Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig —--no-prompt set-sasl-mechanism-handler-prop \
--handler—-name EXTERNAL \
--set "certificate-mapper:Subject DN to User Attribute"

Configure Pass-Through Authentication

Pass-through authentication (PTA) is a mechanism by which one server receives the bind
request and can consult another server to authenticate the bind request. Implement this
functionality by configuring a PTA plug-in that enables the server to accept simple password-
based bind operations.

Perform the following steps to configure PTA:

1. Use dsconfig to define external servers to perform the authentication. The bind DN is
set to uid=pass-throughuser, dc=example,dc=com, which is used to bind to the target
LDAP server for simple authentication. The verify-credentials-method property
ensures that a single set of connections for processing binds and all other types of
operations is in place without changing the identity of the associated connection. Multiple
external servers can be configured.

$ bin/dsconfig create-external-server \
--server—-name "ds-with-pw-1.example.com:389" \
--type unboundid-metrics-engine \
--set server-host-name:ds-with-pw-1.example.com \
--set server-port:389 \
--set "bind-dn:uid=pass-through-user,dc=example,dc=com" \
--set authentication-method:simple \
—--set verify-credentials-method:retain-identity-control

2. Create an instance of the PTA plug-in that will use the external server(s). The server will
first try to process a local bind as the target user (try-local-bind:true). The try-
local-bind:true With override-local-password:true means that if the local bind

- 100 -

Chapter 10: Authentication Mechanisms

fails, it will try sending the request to ds-with-pw-1.example.com:389 or another
server, if configured (server-access-mode: round-robin). If the bind succeeds against
the remote server, the local entry is updated to store the password that was used
(update-local-password:true). The number of connections to initially establish to the
LDAP external server is set to 10. The maximum number of connections maintained to
the LDAP external server is 10.

$ bin/dsconfig create-plugin \
--plugin-name "Pass-Through Authentication™ \
--type pass-through-authentication \
-—set enabled:true \
--set server:ds-with-pw-1.example.com:389 \
--set server:ds-with-pw-2.example.com:389 \
--set try-local-bind:true \
--set override-local-password:true \
--set update-local-password:true \
--set server-access-mode:round-robin \
--set initial-connections:10 \
--set max-connections:10

Note
The try-local-bind property works with the override-local-password property. If try-
local-bindistrue and override-local-password is set to its default value of false, the
server attempts a local bind first. If it fails because no password is set, it forwards the bind
request to a remote server. If the password was set but still fails, the server will not send the
request to the remote server.

If try-local-bindistrue and override-local-password is true, a local bind is attempted.
The server forwards the request to the remote server, if the local bind fails.

Preventing Bind Information Leak

For most operations, if a problem prevents the operation from completing successfully, the
server attempts to return a detailed diagnostic message, appearing in the server's access log.
However, for bind operations, returning a diagnostic message could be intercepted by an
attacker. To avoid this, the server does not return diagnostic messages for a humber of
authentication failures. The information is included in access log messages in the
authFailureReason element, so itis available to administrators, but not returned to the
client.

If it is deemed that the value of providing this information to clients outweighs the risk of an
attacker using the diagnostic information, the server can be configured to return those
messages. This is controlled by the return-bind-error-messages property.

The following Global Configuration properties help prevent bind information leak:

e« return-bind-error-messages — Indicates whether the server should include diagnostic
messages in responses for unsuccessful bind operations. This feature has a value of

- 101 -

Preventing Bind Information Leak

false by default for a more secure configuration, but it can be changed to true if the
benefit of providing these messages to clients is believed to outweigh their risk.
Regardless of the setting, the reason for the authentication failure is indicated in the
server access log.

bind-with-dn-requires-password — Indicates whether the server should reject any
simple bind request that contains a non-empty DN with an empty password. Although
this is allowed by LDAP standards (as an anonymous simple bind), security problems can
arise from poorly written clients that don't check whether an empty password is
provided, and merely checks the bind operation result code. If this is enabled (default
setting), the server rejects these type of bind requests. Simple bind requests with an
empty DN and an empty password are still allowed, so this option should only be
disabled if clients are allowed to perform legitimate anonymous binds that include a non-
empty DN in the bind request.

- 102 -

Chapter 11: Monitoring, Alerts, Alarms,
and Notifications

The UnboundID servers support a flexible monitoring framework that enables administrators
to detect unusual activity. Each server exposes its monitoring information under the
cn=monitor entry, and provides interfaces through JMX, the Web Console, over LDAP, over
SNMP, and through the UnboundID Metrics Engine.

UnboundID servers also provide delivery mechanisms for alarms, alerts, and notifications that
can be sent to end users, operators, and directory administrators, such as account status
notifications and administrative alerts using SMTP, JMX, SNMP or standard error logging.

Topics include:

Monitoring Components

Profiling Server Performance Using the Stats Logger

Working with Administrative Alert Handlers

Working with Alarms and Gauges

Working with Account Status Notifications

- 103 -

Chapter 11: Monitoring, Alerts, Alarms, and Notifications

Monitoring Components

The UnboundID product family exposes its monitoring information under the cn=monitor entry
for easy access to its information. Administrators can use various means to monitor the
server’s information including the Directory Management Console, JConsole, LDAP
commandline tools, JMX, through SNMP, and using the Metrics Engine.

About the Metrics Engine

The UnboundID Metrics Engine collects performance and event data from a set of UnboundID
Data Store, Proxy, and/or Data Sync servers. A single Metrics Engine instance can collect data
from up to 50 servers. The Metrics Engine normalizes and aggregates this data and makes it
available to users through a RESTful API.

The Metrics Engine consists of a web application that collects data from known Data Store,
Proxy, Data Broker, and Data Sync servers and imports them into a database. It also contains
a query-metric tool that enables exploring the data.

For more information, see the UnboundID Metrics Engine Administration Guide.

Securing the Metrics Engine

The Metrics Engine can be secured, if desired, by setting the require-api-authentication
property of the Monitoring Configuration object using the dsconfig command-line tool.

The HTTPS Connection Handler can also be configured for accessing the API to encrypt traffic
over the wire.

Monitoring Using SNMP

The Data Store supports real-time monitoring using SNMP. The Data Store provides an
embedded SNMPv3 subagent plugin that, when enabled, sets up the server as a managed
device and exchanges monitoring information with a master agent based on the AgentX
protocol.

MIBS

The Data Store provides SMIv2-compliant MIB definitions (RFC 2578, 2579, 2580) for distinct
monitoring statistics. These MIB definitions are found in text files under resource/mib
directory under the server root directory.

Each MIB provides managed object tables for each specific SNMP management information as
follows:
. LDAP Remote Server MIB - Provides information related to the health and status of
the LDAP servers to which the Proxy Server connects, and statistics about the operations
invoked by the Proxy Server on those LDAP servers.

- 104 -

Monitoring Components

. LDAP Statistics MIB - Provides a collection of connection-oriented performance data
that is based on a connection handler in the Data Store. A server typically contains only
one connection handler and therefore supplies only one table entry.

. Local DB Backend MIB - Provides key metrics related to the state of the local
database backends contained in the server.

« Processing Time MIB - Provides a collection of key performance data related to the
processing time of operations broken down by several criteria but reported as a single
aggregated data set.

« Replication MIB - Provides key metrics related to the current state of replication.

. System Status MIB - Provides a set of critical metrics for determining the status and
health of the system in relation to its work load.

For information on the available monitoring statistics for each MIB available on the Data Store
and the Proxy Server, see the text files provided in the resource/mib directory in the server
installation.

The Data Store generates an extensive set of SNMP traps for event monitoring. The traps
display the severity, description, name, object ID, and summary. For information about the
available alert types for event monitoring, see the resource/mib/UNBOUNDID-ALERT-MIB. txt
file.

Monitoring with JMX

The Data Store supports monitoring the JVM through a Java Management Extensions (JMX)
management agent, which can be accessed using JConsole or a JMX client. The JMX interface
provides JVM performance and resource utilization information for applications running Java.
Generic metrics exposed by the JVM itself can be monitored, including memory pools, threads,
loaded classes, and MBeans, as well as all the monitor information that the Data Store
provides. JMX notifications for any administrative alerts that are generated within the server
can also be received.

Monitoring Using the LDAP SDK

Use the monitoring API to retrieve monitor entries. For example, retrieve all monitor entries
published by the Data Store and print the information contained in each using the generic API
for accessing monitor entry data as follows:

for (MonitorEntry e : MonitorManager.getMonitorEntries (connection))
{
System.out.println ("Monitor Name: " + e.getMonitorName ()) ;
System.out.println ("Monitor Type: " + e.getMonitorDisplayName ());
System.out.println ("Monitor Data:");
for (MonitorAttribute a : e.getMonitorAttributes() .values())
{
for (Object value : a.getValues())
{
System.out.println(" " + a.getDisplayName() + ": " + String.valueOf (value));
}

- 105 -

Chapter 11: Monitoring, Alerts, Alarms, and Notifications

}
System.out.println() ;

}

For more information about the LDAP SDK and the methods in this example, see the
UnboundID LDAP SDK documentation.

Monitoring over LDAP

The UnboundID servers expose a majority of their information under the cn=monitor entry.
Access these entries over LDAP using the 1dapsearch tool.

$ bin/ldapsearch --hostname serverl.example.com \
—--port 1389 \
--bindDN "uid=admin, dc=example, dc=com" \
--bindPassword secret \
--baseDN "cn=monitor" " (objectclass=*)"

Profiling Server Performance Using the Stats Logger
Plugin

Each server ships with a built-in Stats Logger Plugin (disabled by default) that is useful for
profiling server performance for a given configuration. At a specified interval, the Stats logger
writes server statistics to a log file in a comma-separated format (.csv), which can be read by
spreadsheet applications. The logger has a negligible impact on server performance unless the
log-interval property is set to a very small value (less than 1 second). The statistics that are
logged and their verbosity can be configured with the dsconfig tool.

Working with Administrative Alert Handlers

UnboundID servers provide mechanisms to send alert notifications to administrators when
significant problems or events occur. Several alert handler implementations are available,
including:

. Error Log Alert Handler - Sends administrative alerts to the configured server error
logger(s).

. Exec Alert Handler - Executes a specified command on the local system if an
administrative alert matching the criteria for this alert handler is generated by the Data

Store. Information about the administrative alert is made available to the executed
application as arguments provided by the command.

« Groovy Scripted Alert Handler - Provides alert handler implementations defined in a
dynamically-loaded Groovy script that implements the ScriptedalertHandler class
defined in the Server SDK.

- 106 -

The Alerts Backend

« JMX Alert Handler - Sends administrative alerts to clients using the Java Management
Extensions (JMX) protocol. UnboundID uses JMX for monitoring entries and requires that
the JMX connection handler be enabled.

« SMTP Alert Handler - Sends administrative alerts to clients by email using SMTP. The
server requires that one or more SMTP servers be defined in the global configuration.

« SNMP Alert Handler - Sends administrative alerts to clients using the Simple Network
Monitoring Protocol (SNMP). The server must have an SNMP agent capable of
communicating via SNMP 2c.

« SNMP Subagent Alert Handler - Sends SNMP traps to a master agent in response to
administrative alerts generated within the server.

« Third Party Alert Handler - Provides alert handler implementations created in third-
party code using the Server SDK.

The Alerts Backend

UnboundID servers store recently generated administrative alerts under the cn=alerts
branch. The backend makes it possible to obtain alert information over LDAP for use with
remote monitoring. The backend's primary job is to process search operations for alerts. It
does not support add, modify, or modify DN operations of entries.

The alerts persist on disk in the config/alerts.1dif file so that they can survive server
restarts. By default, the alerts remain on disk for seven days before being removed. However,
administrators can configure the number of days for alert retention using the dsconfig tool.
The administrative alerts of Warning level or worse that have occurred in the last 48 hours are
viewable from the output of the status command-line tool and in the Web Console.

View Information in the Alerts Backend

Use ldapsearch to view the administrative alerts:

$ bin/ldapsearch --port 1389 --bindDN "cn=Directory Manager" \
--bindPassword secret --baseDN cn=alerts " (objectclass=*)"

dn: cn=alerts

objectClass: top
objectClass: ds-alert-root
cn: alerts

dn: ds-alert-id=3d1857a2-e8cf-4e80-acl0e-ba933be5%eca,cn=alerts
objectClass: top

objectClass: ds-admin-alert

ds-alert-id: 3d1857a2-e8cf-4e80-acOe-ba933be59%eca

ds-alert-type: server-started

ds-alert-severity: info

ds-alert-type-oid: 1.3.6.1.4.1.32473.2.11.33

ds-alert-time: 20110126041442.6227%

ds-alert-generator: com.unboundid.directory.server.core.metrics.engine
ds-alert-message: The Metrics Engine has started successfully

- 107 -

Chapter 11: Monitoring, Alerts, Alarms, and Notifications

Modify the Alert Retention Time

Use dsconfig to change the maximum time information about generated alerts retained in the
alerts backend. After this time, the information is purged from the server. The minimum
retention time is 0 milliseconds, which immediately purges the alert information.

$ bin/dsconfig set-backend-prop \

--backend-name "alerts" \
--set "alert-retention-time: 2 weeks"

View the property using dsconfig:

$ bin/dsconfig get-backend-prop \
--backend-name "alerts" \
—--property alert-retention-time

Property : Value (s)

alert-retention-time : 2 w

Configure Duplicate Alert Suppression

Use dsconfig to configure the maximum number of times an alert is generated within a
particular time frame for the same condition. The duplicate-alert-time-1limit property
specifies the length of time that must pass before duplicate messages are sent over the
administrative alert framework and the maximum number of messages should be sent.

$ bin/dsconfig set-global-configuration-prop \
--set duplicate-alert-limit:2 \
--set "duplicate-alert-time-limit:3 minutes"

System Alarms and Gauges

An alarm represents a stateful condition of the server or a resource that may indicate a
problem, such as low disk space or external server unavailability. A gauge defines a set of
threshold values with a specified severity that, when crossed, cause the server to enter or exit
an alarm state. Gauges are used for monitoring continuous values like CPU load or free disk
space (Numeric Gauge), or an enumerated set of values such as 'server unavailable' or ‘server
unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity changes
due to changes in the monitored value. Like alerts, alarms have severity (NORMAL, WARNING,
MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a Condition
property, and may have a Specific Problem or Resource property. If surfaced through SNMP, a
Probable Cause property and Alarm Type property are also listed. Alarms can be configured
to generate alerts when the alarm's severity changes.

There are two alert types supported by the server - standard and alarm-specific. The server
constantly monitors for conditions that may attention by administrators, such as low disk
space. For this condition, the standard alertis 1ow-disk-space-warning, and the alarm-
specific alert is alarm-warning. The server can be configured to generate alarm-specific alerts
instead of, or in addition to, standard alerts. By default, standard alerts are generated for

- 108 -

Testing Alerts and Alarms

conditions internally monitored by the server. However, gauges can only generate alarm-
alerts.

The server installs a set of gauges that are specific to the product and that can be cloned or
configured through the dsconfig tool. Existing gauges can be tailored to fit each environment
by adjusting the update interval and threshold values. Configuration of system gauges
determines the criteria by which alarms are triggered. The Stats Logger can be used to view
historical information about the value and severity of all system gauges.

The UnboundID servers are compliant with the International Telecommunication Union CCITT
Recommendation X.733 (1992) standard for generating and clearing alarms. If configured,
entering or exiting an alarm state can result in one or more alerts. An alarm state is exited
when the condition no longer applies. An alarm cleared alert type is generated by the system
when an alarm's severity changes from a non-normal severity to any other severity. An

alarm cleared alert will correlate to a previous alarm when the Condition property is the
same. The Alarm Manager, which governs the actions performed when an alarm state is
entered, is configurable through the dsconfig tool and Web Console.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores
information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over
time that can change in severity and be cleared when a monitored value returns to normal.
Alarms can be viewed with the status tool. As with other alert types, alert handlers can be
configured to manage the alerts generated by alarms. A complete listing of system alerts,
alarms, and their severity is available in <server-root>/docs/admin-alerts-list.csv.

Testing Alerts and Alarms

After alarms and alert handlers are configured, verify that the server takes the appropriate
action when an alarm state changes by manually increasing the severity of a gauge. Alarms
and alerts can be verified with the status tool.

To Test Alarms and Alerts

1. Configure a gauge with dsconfig and set the override-severity property to critical. The
following example uses the CPU Usage (Percent) gauge.
S dsconfig set-gauge-prop \

--gauge-name "CPU Usage (Percent)" \
--set override-severity:critical

2. Runthe status tool to verify that an alarm was generated with corresponding alerts.
The status tool provides a summary of the server’s current state with key metrics and
a list of recent alerts and alarms. The sample output has been shortened to show just the
alarms and alerts information.

S bin/status

-—- Administrative Alerts ---
Severity : Time : Message

Info : 11/Aug/2014 : A configuration change has been made in the

- 109 -

Chapter 11: Monitoring, Alerts, Alar

15:48:46-0500

Info : 11/Aug/2014
: 15:47:32-0500

Error : 11/Aug/2014
: 15:41:00-0500

Shown are alerts of severit
Use the --maxAlerts and/or

Severity : Severity : Con
: Start Time

ms, and Notifications

Data Store:

[11/Aug/2014:15:48:46.054 -0500]

conn=17 op=73 dn='cn=Directory Manager, cn=Root
DNs,cn=config' authtype=[Simple] from=127.0.0.1
to=127.0.0.1 command='dsconfig set-gauge-prop
--gauge-name 'Cleaner Backlog (Number Of Files)'
--set warning-value:-1"'

A configuration change has been made in the

Data Store: [11/Aug/2014:15:47:32.547 -0500]
conn=4 op=196 dn='cn=Directory Manager, cn=Root
DNs,cn=config' authtype=[Simple] from=127.0.0.1
to=127.0.0.1 command='dsconfig set-gauge-prop
-—-gauge-name 'Cleaner Backlog (Number Of Files)'
--set warning-value:0'

Alarm [CPU Usage (Percent). Gauge CPU Usage

for Host System Recent CPU and Memory has

a current value of '18.583333333333332"'.

The severity is currently OVERRIDDEN in the
Gauge's configuration to 'CRITICAL'.

The actual severity is: The severity is
currently 'NORMAL', having assumed this severity
Mon Aug 11 15:41:00 CDT 2014. If CPU use is high,
check the server's current workload and make any
needed adjustments. Reducing the load on the system
will lead to better response times.
Resource='"'Host System Recent CPU and Memory']
raised with critical severity

y [Info,Warning,Error,Fatal] from the past 48 hours
--alertSeverity options to filter this list

-—— Alarms ---
dition : Resource : Details

Critical : 11/Aug/2014: CPU Usage : Host System : Gauge CPU Usage (Percent) for

15:41:00 : (Pe
-0500

Shown are alarms of severit

rcent) : : Host System
has a current value of
'18.785714285714285".
The severity is currently
'CRITICAL', having assumed
this severity Mon Aug 11
15:49:00 CDT 2014. If CPU use
is high, check the server's
current workload and make any
needed adjustments. Reducing
the load on the system will
lead to better response times

y [Warning,Minor,Major,Critical]

Use the --alarmSeverity option to filter this list

Working with Account Status Notifications

UnboundID servers support notification handlers that can be used to notify users and/or

administrators of significant change

s related to Password Policy state for user entries. The

- 110 -

Working with Account Status Notifications

following two notification handlers are available:

. Error Log Account Status Notification Handler - Enabled by default. The handlers
send alerts to the error log when an account event occurs.

« SMTP Account Status Notification Handler - Sends notifications to designated email
addresses, when enabled. The SMTP Handler can be enabled with the dsconfig
command.

Account Status Notification Types

The handlers send alerts when one of the account status events described in the following table
occurs during password policy processing.

Account Status Notification Types

Account Status Notification

Types Description

account-disabled Generates a notification when a user account is disabled by an administrator.

account-enabled Generates a notification when a user account is enabled by an administrator.

account-expired Generates a notification when a user authentication attempt fails because the
account has expired.

account-idle-locked Generates a notification when a user authentication attempt fails because the

account has been locked after idling for too long.

account-permanently-locked Generates a notification when a user account is permanently locked
(requiring administrative action to unlock the account) after too many failed
attempts.

account-reset-locked Generates a notification when an authentication attempt fails because the
user accountis locked due to a failure to change the password within the
required interval set by the administrator.

account-temporarily-locked Generates a notification whenever a user account is temporarily locked after
too many failed attempts.

account-unlocked Generates a notification whenever a user account is unlocked by an
administrator.

password-changed Generates a notification whenever a user changes his or her own password.

password-expired Generates a notification whenever a user authentication fails because the

password has expired.

password-expiring Generates a notification the first time that a password expiration warning is
encountered for a user password.

password-reset Generates a notification whenever a user's password is reset by an
administrator.

- 111 -

Chapter 12: Logging Security

UnboundID servers provide logging capabilities to parse and analyze any situational event or
problem that may occur. This chapter summarizes the logging features available on the
servers.

Topics include:

Configuring Log Rotation and Retention Policies

About Log Signing

Configuring Access Logging

Configuring Filtered Logging

Configuring Change Logging

Configuring Error Logging

Configuring Debug Logging

Configuring Data Sync Server Logging

Options for Centralized Logging

Parsing and Analyzing Log Messages

-112 -

Chapter 12: Logging Security

Configuring Log Rotation and Retention Policies

Because disks do not have unlimited space, file-based loggers provide options for log file
rotation and retention. Log file rotation is the process by which the active log file is closed and
renamed, and a new file is created in its place. For example, the default access logger uses a
file named access. When rotation occurs, the current access file is renamed to include a
timestamp such as access.20110102030405Z, and a new empty access file is started. The
primary purpose of log file rotation is to ensure that no individual log file grows too large.

There are a few different kinds of log rotation policies, including:
. Size limit rotation policy - Starts rotation when the log file reaches a given size.

. Time limit rotation policy - Starts rotation based on the length of time since the last
rotation.

. Fixed time rotation policy - Starts rotation at specified times in the day.

« Never rotate policy - Prevents log rotation from occurring.

Each file-based logger must have at least one rotation policy. If there are multiple policies, any
of them can trigger a rotation. For example, the default access logger is configured with two
rotation policies: one that will trigger a rotation if the log file reaches 100MB in size, and
another that will trigger a rotation if it's been 24 hours since the previous rotation. Therefore,
there will be one rotation per day, or more if more than 100MB is written in the course of a
day.
Log retention policies are used to determine when rotated log files should be removed from the
system (with older files deleted before newer files). Available types of log retention policies
include:

« File count retention policy - Deletes rotated log files as necessary to ensure that the

number of rotated files does not exceed a given count.

. Size limit retention policy - Deletes rotated log files as necessary to ensure that the
total size of rotated files (for a particular logger) does not exceed a given threshold.

. Free disk space retention policy - Deletes rotated log files if the amount of
remaining usable disk space on the volume holding those files drops below a given
threshold.

« Never delete retention policy - Causes a log file deletion to never be triggered. Each
file-based logger must have at least one retention policy.

About Log Signing

Logs can be cryptographically signed to ensure that they have not been modified. For example,
financial institutions require audit logs for all transactions to check for correctness. Tamper-
proof files are needed to ensure that these transactions can be properly validated and that they

- 113 -

Configuring Access Logging

have not been modified by any third-party. Use the dsconfig tool to enable the sign-1log
property on a Log Publisher to turn on cryptographic signing.

When enabling signing for a logger that already exists and was enabled without signing, the
first log file will not be completely verifiable because it still contains unsigned content. Only log
files whose entire content was written with signing enabled is considered completely valid. For
the same reason, if a log file is still open for writing, then signature validation will not indicate
that the log is completely valid because the log will not include the necessary "end signed
content" indicator at the end of the file.

To validate log file signatures, use the validate-file-signature tool provided in the bin
directory of the server (or the bat directory for Windows systems).

Once this property is enabled, disable and then re-enable the Log Publisher for the changes to
take effect.

Configuring Access Logging

Access loggers can be used to record information whenever a connection is established and/or
closed, when the server receives a request from a client, and/or when the server sends a
response to a client. Access loggers are a useful way of understanding the processing that the
server has actually performed.

By default, the server configuration includes these access loggers:

. File-Based Access Logger - Logs information about all operations processed by the
server (one message per operation combining both request and response details), as
well as connects and disconnects. This logger is enabled by default and writes to the

logs/access file.

. Failed Operations Access Logger - Logs information about operations that did not
complete successfully. It does this using a result criteria object configured to only match
operations with a result code other than success, compare true, compare false, referral,
SASL bind in progress, and no operation. This logger is enabled by default and writes to
the logs/failed-ops file.

. Expensive Operations Access Logger - Logs operations that took at least 1000
milliseconds to complete. This is useful to determine if a client is issuing requests the
server isn't optimally configured to handle, if searches are returning an unusually large
number of entries, or if the server is under exceptionally heavy load. This logger is
disabled by default. When enabled it writes to the logs/expensive-ops file.

. File-Based Audit Logger - Writes information about successful add, delete, modify,
and modify DN operations. The content of the changes are represented in LDIF form,
which makes it possible to determine exactly what change was requested by the client.
Alternately, it can be configured to log changes in reversible form, which enables a
change to be undone if it was made in error. This logger is disabled by default. If
enabled, it writes to the 1ogs/audit file.

- 114 -

Chapter 12: Logging Security

« Successful Searches with no Entries Found - Writes information about successful
search requests including requestor information, search information, and request and
result criteria. This logger is disabled by default. If enabled, it writes to the

logs/searches-returning-no-entries file.

The UnboundID Server SDK can be used to create additional access loggers. All types of access
loggers provide a number of common options, including:
e suppress-replication-operations — Indicates whether the logger should be used to
record information about operations initiated by replication in addition to those
requested by external clients.

e log-connects — Indicates whether the logger should record information about new
connections established to the server.

« log-disconnects - Indicates whether the logger should record information about
existing connections that are closed.

e« log-client-certificates - Indicates whether the logger should record information
about certificates that clients present to the server during SSL or StartTLS negotiation.

« log-requests — Indicates whether the logger should record information about operation
requests sent to the server.

« log-forwards — Indicates whether the logger should record information about requests
forwarded on to one or more backend servers. This is primarily applicable to the Proxy
Server.

e log-forward-failures — Indicates whether the logger should record information about
failures encountered while attempting to process an operation in a backend server. This
is primarily applicable to the Proxy Server.

« log-results - Indicates whether the logger should record information about the
outcome of operation processing.

« log-search-entries - Indicates whether the logger should record information about
each search result entry returned to clients.

« log-search-references — Indicates whether the logger should record information about
each search result reference returned to clients.

e log-intermediate-responses — Indicates whether the logger should record information
about each intermediate response returned to clients.

Several loggers other configuration properties to further customize their behavior, including:

e include-request-details-in-result-messages — Indicates whether the server should
include all of the content that it would provide in request messages in the log message
for the result of that operation. When this is combined with setting 1og-requests to
false, this makes it possible to write only a single log message per operation rather than

-115-

Configuring Access Logging

separate messages for the request and the result. This also makes it easier to interpret
log messages, because information between request and result messages doesn't need
to be correlated.

include-request-details-in-search-entry-messages — Same effect as include-
request-details-in-result-messages, except that it applies to log messages
generated for search result entries returned to clients.

include-request-details-in-search-reference-messages — Same effect as
include-request-details-in-result-messages, except that it applies to log
messages generated for search result references returned to clients.

include-request-details-in-intermediate-response-messages — Same effect as
include-request-details-in-result-messages, except that it applies to log
messages generated for intermediate response messages returned to clients.

include-extended-search-request-details — Indicates whether log messages for
search requests should include additional information about the request, including the
requested size limit, time limit, alias dereferencing behavior, and types only flag.

include-add-attribute-names — Indicates whether log messages for add requests
(and/or add result messages if request details should be included in result messages)
should include a field with the names of the attributes included in the add request.

include-modify-attribute-names — Indicates whether log messages for modify
requests (and/or modify result messages if request details should be included in result
messages) should include a field with the names of the attributes targeted by the modify
request.

include-search-entry-attribute-names — Indicates whether search result entry
messages should include a field with the names of the attributes in the entry returned to
the client.

include-product-name — Indicates whether log messages should include the name of
the product that logged the message. This is helpful for logging messages from multiple
products, which may be combined.

include-instance-name — Indicates whether log messages should include the name of
the server instance that logged the message. The instance name can be specified in the
global configuration, but the server can generate its own instance name (which will
generally contain the address and port on which it is listening for client connections).
This can be helpful for cases in which log messages from multiple instances are
combined.

include-startup-id — Indicates whether log messages should include a compact
unique identifier that is generated at the time the server is started. This can help
differentiate log messages from the same instance across server restarts. When the

-116 -

Chapter 12: Logging Security

server is restarted, connection IDs are reset to zero, so without a startup ID it may be
difficult to distinguish between operations with the same connection ID and operation ID
before and after the restart.

e include-requester-ip-address — Indicates whether log messages should include the
IP address of the client from which the request was received. The client address will be
included in the message logged when a connection is established, but including the IP
address in request and result messages can avoid the need to locate the connect
message to determine the address of a given client.

e include-requester-dn - Indicates whether log messages should include the DN of the
user authenticated on the connection on which the request was received. The DN of the
authenticated user is included in bind result messages, but it can be useful to include the
requester DN in other kinds of log messages as well.

e include-request-controls — Indicates whether log messages should include the OIDs
of any controls included in the request received from the client.

e include-response-controls — Indicates whether log messages should include the OIDs
of any controls included in responses returned to the client.

e include-replication-change-id - Indicates whether log messages for write
operations should include the replication change ID for an operation. This can be used for
debugging and correlating a replicated change as it is processed across multiple servers.

« max-string-length — Specifies the maximum length of any string allowed for a field
included in an access log message. This ensures that long log elements are truncated
(with an indication of the number of bytes removed) to save space.

« timestamp-precision — Indicates whether to log timestamps with an accuracy of
seconds or milliseconds. Although log message timestamps have traditionally only used
second-level accuracy, when servers are capable of processing hundreds of thousands of
operations per second per instance, timestamp precision can be useful.

« compression-mechanism — Indicates whether the contents of the log file should be
compressed. A compressed log file consumes less space, which makes it possible to
store more data. This setting cannot be changed after a logger has been created. To use
compressed logging, create a new logger and enable compression.

Configuring Filtered Logging

Servers under heavy load can easily generate hundreds of megabytes or more of log content
every minute. While it is useful to have a full log of all operations processed by the server, the
sheer volume of content (and the frequency with which files may be rotated or removed) can
make it difficult to debug certain problems in real time. Further, storage space constraints may
make it difficult to archive the entire history of operations.

-117 -

Configuring Filtered Logging

UnboundID servers provide a criteria subsystem that make it easy to filter log contents. When
this is combined with the server's ability to have any number of active access loggers, this
makes it possible to have loggers dedicated to a particular purpose.

Many access loggers (including those that don't log to files) support filtering. The kinds of
messages to include can be customized. For example, to create an access log with only
operations requested by root users, use the "Requests by Root Users" connection criteria
with a change like:

$ bin/dsconfig create-log-publisher \
-—-publisher-name "Operations by Root Users" \
--type file-based-access \
--set enabled:true \
-—-set "connection-criteria:Requests by Root Users" \
--set log-file:logs/root-operations \
--set include-requester-ip-address:true \
--set include-requester-dn:true \
--set "rotation-policy:24 Hours Time Limit Rotation Policy" \
-—set "rotation-policy:Size Limit Rotation Policy" \
-—-set "retention-policy:File Count Retention Policy" \
--set "retention-policy:Size Limit Retention Policy"

A similar process can be used to log operations from a particular client (based on its address).
In that case, choose a different connection criteria. For example, the following criteria can be
used to match any request from client with IP address "1.2.3.4":

$ bin/dsconfig create-connection-criteria \
-—-criteria-name "Clients from IP 1.2.3.4" \
-——type simple \
--set included-client-address:1.2.3.4

To create an access logger that records every time the server returns a search result entry
containing the userpPassword attribute, create a search result entry criteria object that will
match those entries, and then create a logger to use that criteria and configured to log only
search result entry messages, such as:

$ bin/dsconfig create-search-entry-criteria \
--criteria-name "Search Entries Containing Passwords" \
-—type simple \
--set "any-included-entry-filter: (userPassword=*)"

$ bin/dsconfig create-log-publisher \
—-—-publisher-name "Password Retrieval" \
-—type file-based-access \
-—-set enabled:true \
--set log-client-certificates:false \
--set log-results:false \
--set log-search-entries:true \
--set "search-entry-criteria:Search Entries Containing Passwords" \
--set include-request-details-in-search-entry-messages:true \
-—-set include-search-entry-attribute-names:true \
--set include-requester-ip-address:true \
--set include-requester-dn:true \
--set log-file:logs/password-retrieval \
--set "rotation-policy:24 Hours Time Limit Rotation Policy" \
-—set "rotation-policy:Size Limit Rotation Policy" \

-118 -

Chapter 12: Logging Security

--set "retention-policy:File Count Retention Policy" \
--set "retention-policy:Size Limit Retention Policy

Configuring Change Logging

The Data Store provides an audit log (which is implemented as a specialized access log) that
records information about changes processed in the server using LDIF representations. The
Data Store also provides support for an LDAP changelog, which makes this information
available to LDAP clients in a form that can be consumed using APIs such as the UnboundID
LDAP SDK for Java. This information can be used to help synchronize changes between multiple
systems, and it can also provide additional information about entries that have been updated
but not included in the audit log.

The LDAP changelog is implemented as a special backend in the Data Store. The server
configuration includes a changelog backend, which is disabled by default. The configuration
object provides a humber of properties that can be used to customize its behavior, including:

e changelog-maximum-age — Specifies the maximum length of time for which the
changelog should hold records. The changelog automatically purges records older than
this to ensure that the database does not grow too large. By default, changelog records
are kept for two days.

e« changelog-include-attribute — Restricts the set of changelog entries created for add
and modify operations. If one or more include attributes are defined, changelog entries
are only created for add operations, if the entry to add contains one or more of the
specified attributes. Changelog entries are created for modify operations if one or more
of those attributes was updated by the change. Only those attributes are listed in the
changes attribute of the changelog entry. This setting does not impact modify or modify
DN operations.

e« changelog-exclude-attribute — Restricts the set of changelog entries created for add
and modify operations. It is similar to the changelog-include-attribute property,
except that it excludes the named attributes.

e changelog-deleted-entry-include-attribute — Indicates that changelog entries
should contain the values of the specified attributes from entries that have been deleted.
If no include or exclude attributes are specified, then no deleted entry attribute
information is included.

e changelog-deleted-entry-exclude-attribute — Indicates that changelog entries
should contain the values of all except the specified attributes from entries that have
been deleted. If no include or exclude attributes are specified, no deleted entry attribute
information is included.

e changelog-include-key-atttribute — Indicates that changelog entries should include
the values of the specified attributes at the time of the update, regardless of whether
those attributes were altered by the operation. For add, modify, and modify DN

- 119 -

Configuring Change Logging

operations, this reflects the values of those attributes after the operation completes. For
delete operations, this reflects the values of those attributes just before the entry was
removed.

changelog-max-before-after-values — Indicates that changelog entries should include
the values of attributes updated by the operation, both before and after the operation is
processed. This applies to both modify and modify DN operations. This option specifies
the maximum number of values to report, which prevents including too many entries for
bulk operations.

index-include-attribute — Indicates that the changelog should maintain indexes for
each of the specified attributes. This tracks changelog records in which the specified
attribute was included in the change that was processed. This can improve performance
with the get changelog batch extended operation when change filtering is requested.

index-exclude-attribute — Indicates that the changelog should maintain indexes for
all attributes except those specified. This cannot be used with the index-include-
attribute property.

use-reversible-form — Indicates whether changelog entries for modify operations
should record information about the change that enable it to be reverted. If enabled,
delete changelog records include all deleted entry attributes.

include-virtual-attributes - Indicates whether to include information about virtual
attributes held in the entry at the time the change was made. Values for this property
include:
o add-attributes - Include information about virtual attributes as they would
appear in the resulting entry after the add completed.

o before-and-after-values — Include information about virtually-generated values
that would be included in the entry before and after the change was applied, for
modify and modify DN operations.

o deleted-entry-attributes — Include virtual attribute values for the entry at the
time it was removed).

o key-attribute-values - Include virtual attribute values for key attributes in the
entry).

apply-access-controls-to-changelog-entry-contents — Indicates whether the
server should apply access control restrictions to information contained in changelog
entries before they are returned to clients. If true, this removes references to any
attributes that the requester does not have permission to see from the changelog
entries, before returning them to the client. This can be useful if changelog entries are
accessible to non-administrators.

report-excluded-changelog-attributes— Indicates whether changelog entries
returned to the client should include information about any attributes that were removed

-120 -

Chapter 12: Logging Security

as a result of access control processing. Values include:
o none - Include no information about excluded attributes.

o attribute-counts - Include the number of user and operational attributes that
were excluded.

o attribute-names — Include the names of the user and operational attributes that
were excluded.

The UnboundID LDAP SDK for Java supports parsing the information contained in changelog
entries. The com.unboundid.ldap.sdk.ChangeLogEntry class interacts with changelog
entries using the specification in the draft-good-ldap-changelog IETF draft, while the
com.unboundid.ldap.sdk.unboundidds.UnboundIDChangeLogEntry class provides enhanced
support for changelog entries in the Data Store, including key attributes, before and after
values, and virtual attributes.

Configuring Error Logging

Error loggers publish information about warnings, errors, and significant events encountered
during processing. In addition to Server SDK support for creating custom error loggers,
servers provide error loggers that can write messages to local files, a relational database
(JDBC), or to a syslog server.

All error loggers provide support for the following configuration properties:

« default-severity — Specifies the log severities for messages that should be published
by the error logger for all categories for which no override-severity is defined. Values
include fatal-error, severe-error, mild-error, severe-warning, mild-warning,
notice, info, debug, all, and none. Severities are not inherently hierarchical. Specify
all severities for messages that should be included.

« override-severity — Indicates that log messages with a given category should use a
set of severities that differ from those specified by the default-severity property.
Values have a format of category=severity-list, where category is the name of a
log message category (such as access-control, admin, or backend), and severity-list
is @ comma-separated list of the severities that should be used for that category. For
example, a value of third-party:fatal-error, severe-error,mild-error indicates
that all errors from third-party components should be logged.

Any number of error loggers can be configured. Logging can be enabled for multiple targets
(log to both local files and to a remote database), and for short-term debugging purposes. To
diagnose a problem, create a temporary error logger with a broader range of severities,
without polluting the primary error log with a greater volume of less important content.

-121 -

Configuring Debug Logging

Configuring Debug Logging

The debug logging subsystem can access detailed information about internal processing within
a server. This content is useful for developers with access to the underlying source code.
However, if the server is running with one or more custom extensions written with the
UnboundID Server SDK, then the debugging framework may be useful for diagnosing problems
within that code.

By default, debug logging is disabled. Enabling debug logging for a long period of time may
degrade performance due to the volume of debug code. It is recommended that debug logging
remain disabled unless it is needed to solve a particular problem.

Note
Unlike other loggers, the server only provides the ability to record debug information to local
files. There is no support for debugging to targets such as syslog or relational databases, nor is
it possible to implement custom debug loggers in the UnboundID Server SDK.

The file-based debug logger includes the following configuration properties:

« default-debug-level — Specifies the level of debug messages to be published. Levels
are hierarchical, with the following values from least verbose to most verbose:

disabled, error, warning, info, verbose, and all.

o default-debug-category — Specifies the categories for debug messages to be
published. By default, messages from all categories are eligible for publishing.
Categories include:

o caught - For exceptions caught within the server.

o constructor - For new object creation.

o data - For data read or written.

o database-access — For reads from and writes to a database.
o enter — For method entry.

o exit - For method return.

o message - For general-purpose debugging.

o protocol - For parsed communication with clients.

o thrown - For exceptions thrown within the server.

e default-omit-method-entry-arguments — Indicates whether debug messages for
constructor and method invocation should exclude information about the arguments
provided.

e default-omit-method-return-value — Indicates whether debug messages for a
method return should exclude the return value for that method.

-122 -

Chapter 12: Logging Security

e default-include-throwable-cause — Indicates whether debug messages for
exceptions and errors should include information about exceptions caught that triggered
the exception.

e default-throwable-stack-frames — Specifies the number of stack frames that should
be included in debug messages for exceptions and errors.

The debug level and category options offer only a coarse level of control over what is
published. The server also offers a debug target mechanism that provides fine-grained control,
down to the package, class, or even method from which the debug messages are generated.
The debug scope controls the code locations to which the debug target applies, and may be a
fully-qualified class or package name or a fully-qualified class name followed by an octothorpe
(#) and the name of a method within that class (such as
"com.unboundid.directory.server.core.DirectoryServer#startUp" covers only debug
messages generated from the startUp method in the DirectoryServer class).

Each debug target has its own level and category configuration, and those settings override the
settings of the associated debug logger for messages matching that scope. For example, the
"Server SDK Extension Debug Logger" is configured so that it will not generate any debug
messages, but has a debug target that matches all messages generated from Server SDK
extensions.

Note
Effective use of debug logging requires specific knowledge of the server source code. Unless
debugging custom extensions written with the Server SDK, debug logging be used with the
assistance of UnboundID support.

Configuring Data Sync Server Logging

The Data Sync Server provides two loggers used to keep track of the synchronization
operations. The first of these is the sync logger, a file-based sync log publisher that provides a
general record of all synchronization activity for the following events:
« change-detected — Provides general information about a change detected in a Sync
Source.

o change-detected-detailed — Provides detailed information about a change detected in
a Sync Source.

« change-applied — Provides general information about a change applied to a Sync
Destination.

e change-applied-detailed - Provides detailed information about a change applied to a
Sync Destination.

e« change-failed — Provides general information about a failure encountered while
attempting to apply a change to a Sync Destination that will not be re-tried by the Data
Sync Server.

-123 -

Options for Centralized Logging

change-failed-detailed — Provides detailed information about a failure encountered
while attempting to apply a change to a Sync Destination that will not be re-tried by the
Data Sync Server.

intermediate-failure — Provides information about a failure encountered while
attempting to apply a change to a Sync Destination, but that will be re-tried by the Data
Sync Server.

synchronizing-out-of-date-change — Indicates that the server synchronized a stale
change that no longer reflects the current state of the Sync Source and may be updated
by a later change that has already been applied. By default, the Data Sync Server does
not synchronize these changes.

no-change-needed - Indicates that the server did not synchronize a change made in a
Sync Source because the Sync Destination already had that change applied.

dropped-out-of-scope — Indicates that a change detected in a Sync Source will not be
applied to a destination because it is out of the scope of any Sync Class.

dropped-op-type-not-synchronized — Indicates that a change detected in a Sync
Source will not be applied to a destination because its change type is not one that should
be synchronized.

entry-mapping-details — Provides detailed information about any attribute and/or DN
mapping applied to an entry in the course of preparing it to be applied to a Sync
Destination.

plugin - Provides a general message generated by a synchronization plugin.

plugin-error - Provides information about an error encountered during processing
within a synchronization plugin.

aborted-by-plugin — Indicates that a synchronization plugin has aborted processing for
a change.

The Data Sync Server also provides a "Sync Failed Ops Log Publisher" logger that records
information about failures encountered during synchronization processing. This primarily
contains the DN of the source entry (or an entry constructed from data in the Sync Source),
and may include additional information about the problem encountered.

Options for Centralized Logging

Servers are configured so that all logging is written to files on the local filesystem. In some
environments, it may be convenient to have content from multiple servers appear in the same
place for easier analysis. Centralized logging can be accomplished with one of the following
options:

. File-based logging to a network filesystem - Each server instance can be

configured to use a separate directory, or can be configured to use a different filename

- 124 -

Chapter 12: Logging Security

in the same directory. In either case, each instance maintains its own separate set of
files, but those files are in the same location for easier analysis.

. Logging to a relational database through JDBC - All servers can be configured to
log to separate databases, separate tables in the same database, or the same table in
the same database.

« Logging to a syslog server - The server does not provide any native support for a
secure syslog mechanism. If this option is used, each instance should be configured to
log to a local daemon configured to act as a secure syslog relay.

« Custom Logging using the Server SDK - Use the UnboundID Server SDK to create
custom loggers to send messages to a centralized system.

If not using centralized logging, or if log files from separate instances can be mixed, configure

those loggers so that the product name and instance nhame are included. This ensures that each
message can be identified. The startup ID field can also be included, so that messages coming

from the same server instance, with the same connection and operation ID values, can still be

distinguished.

If centralized logging is enabled, local logging should also be enabled. If a problem occurs with
the centralized system, that content is still recorded in local files.

Parsing and Analyzing Log Messages

Log messages generated by UnboundID servers are intended to be easy to read and
understand, and easy to parse by tools for more automated analysis. The UnboundID LDAP
SDK for Java includes APIs (in the com.unboundid.ldap.sdk.unboundidds.logs package)
for parsing access and error log messages generated by the Data Store, Proxy Server, and
Data Sync Server. In addition, because audit log records are in LDIF form, the LDAP SDK's
LDIF support (in the com.unboundid.1dif package) can be used to consume those messages.

Note
Because of the nature of messages written to the sync logger or the failed ops sync logger,
there are currently no APIs capable of parsing their content.

The summarize-access-1og tool, which is provided with the Data Store and Proxy Servers,
can be used to parse log content and identify a number of interesting elements, including:
« The total number of operations processed (overall and per operation type), the
percentage of the total each operation type constitutes, and the average rate per second
for those operations.

« The average duration for operations processed (overall and per operation type), in
milliseconds with microsecond accuracy. Processing times are broken out into a
histogram with buckets below 1ms, 1-2ms, 2-3ms, 3-5ms, 5-10ms, 10-20ms, 20-30ms,
30-50ms, 50-100ms, 100-1000ms, and over 1000ms.

« The most popular result codes for each type of operation.

- 125 -

Parsing and Analyzing Log Messages

« The number of unindexed search attempts, as well as the numbers of successful and
failed unindexed searches.

o The most common search result entry counts.

« The most common filters used in non-base search requests. These filters are
represented in generic form, like " (uid=2)" for any equality filter targeting the uid
attribute with any value.

The source code for the summarize-access-1log tool is provided as an example in the LDAP
SDK for Java and can be used as the starting point for writing a tool.

-126 -

Chapter 13: Network Security

Client-Server communication is one of the most critical points in securing a directory
environment. This chapter addresses this issue.

Topics include:
Using SSL and StartTLS

Configuring Key Manager Providers

Configuring Trust Manager Providers

Securing LDAP Communication

Preventing Communication over Insecure Connections

Allowing/Denying Connections from Specific Clients

Securing Replication Communication

Securing HTTP Communication

Securing SNMP Communication

Securing JMX Communication

Securing SMTP Communication

Securing Database Communication

Securing Syslog Communication

Other Network Security Configuration Options

-127 -

Chapter 13: Network Security

Using SSL and StartTLS

The most popular way of securing network communication is through the use of SSL. The
protection that StartTLS offers is the same as SSL, except the time in which the negotiation is
performed.

When an SSL-based connection is established, the client and server immediately begin the
negotiation process so that there is never any unencrypted communication. With StartTLS, the
client establishes an initially-insecure connection, and may optionally issue unencrypted
requests over that connection (such as a request to retrieve the server's root DSE to determine
StartTLS extended operation support). When the client wishes to convert the insecure
connection to a secure one, it sends a StartTLS extended request to the server. If the server
returns a response of "success," the negotiation will start the same way as an SSL-based
connection.

Note
Once a connection has been secured using StartTLS, it will generally remain encrypted for the
duration of that connection. While it is technically possible to end an SSL session without
terminating the connection, many servers (including the UnboundID server products) do not
support this, because there is no standard way for either the client or the server to indicate that
they want to end the secure communication phase but continue with unencrypted
communication.

Configure SSL

If SSL was not configured during installation, it can be enabled with the following steps. This
procedure assumes that a certificate is available in a JKS-formatted keystore.

Perform the following steps to configure SSL:
1. Change to the server root directory.
$ cd /ds/UnboundID-<server>

2. Create a text file containing the password for the certificate keystore. The file
permissions (or filesystem ACLs) should be configured so that the file is only readable by
the server user account.

$ echo ’changeit’ > config/keystore.pin
$ chmod 0400 config/keystore.pin

Run the dsconfig command in interactive mode (bin/dsconfig).
Enter the connection parameters when prompted.
On the Configuration Console main menu, switch to the Advanced menu.

Enter the option for the Key Manager Provider.

N o v k~uw

On the Key Manager Provider management menu, select the option to view and edit an
existing key manager.

- 128 -

10.
11.
12.

13.
14.

15.
16.
17.

18.
19.

20.
21.

Using SSL and StartTLS

On the Key Manager Provider menu, enter the option for JKS.

Make any necessary changes to the JKS key manager provider for the keystore. The
provider must be enabled, and the locations of the key-store-file and key-store-
pin-file must be set.

>>>> Configure the properties of the File Based Key Manager Provider

Property Value (s)

description -

enabled true

key-store-file config/keystore
key-store-type JKS
key-store-pin =
key-store-pin-file config/keystore.pin
private-key-pin =

0 J o U w N

private-key-pin-file =
Type f to save and apply the changes.
Return to the main menu, and enter the option for the Trust Manager Provider.

On the Trust Manager Provider management menu, enter the option to view and edit an
existing trust manager provider.

On the Trust Manager Provider menu, enter the option for JKS.

Make sure that the JKS trust manager provider is enabled and that the trust-store-
file property has a value that reflects the path to the truststore file.

Type f to save and apply the changes.
Return to the main menu, and enter the option for the Connection Handler option.

On the Connection Handler management menu, enter the option to view and edit and
existing connection handler.

On the Connection Handler menu, enter the option for LDAPS Connection Handler.

On the LDAP Connection Handler menu, make sure that the handler is enabled, the
listen-port property reflects the port on which to listen for SSL-based connections. The
ssl-cert-nickname property should reflect the alias for the target certificate in the
selected keystore.

Type f to save and apply the changes.

Verify that the server is properly configured to accept SSL-based client connections using
ldapsearch. For example:

$ bin/ldapsearch \
—--port 1636 \
--useSSL \
—--baseDN "" \
—--searchScope base " (objectclass=*)"

-129 -

Chapter 13: Network Security

The server is using the following certificate:

Subject DN: CN=179.13.201.1, OU=Server

Certificate, O=Example Company, L=Austin, ST=Texas,

C=US Issuer DN: EMAILADDRESS=whatever@example.com,

CN=Cert Auth, OU=My Certificate Authority, O=Example

Company, L=Austin, ST=Texas, C=US

Validity: Fri Sep 25 15:21:10 CDT 2011 through Sat Sep 25 15:21:10 CDT
2012
Do you wish to trust this certificate and continue connecting to the
server?
Please enter 'yes' or 'no':yes

If necessary, disable the LDAP connection handler so only the LDAPS connection handler will
accept connections.

Configure StartTLS

The StartTLS extended operation is used to initiate a TLS-secured communication channel over
a clear-text connection, such as an LDAP connection. StartTLS provides a way to use a single
connection handler for both secure and insecure communication, rather than requiring a
dedicated connection handler for secure communication.

1. Use dsconfig to configure the Connection Handler to allow StartTLS. The allow-
starttls property cannot be set if SSL is enabled. The connection handler must also be
configured with a key manager provider and a trust manager provider.

$ bin/dsconfig set-connection-handler-prop \
--handler-name "LDAP Connection Handler" \
--set allow-start-tls:true \
--set key-manager-provider:JKS \
--set trust-manager-provider:JKS

2. Use ldapsearch to test StartTLS.

$ bin/ldapsearch -p 1389 --useStartTLS -b "" -s base " (objectclass=*)"

The server is using the following certificate:
Subject DN: CN=Server Cert, OU=Server Certificate,
O=Example Company, L=Austin, ST=Texas, C=US
Issuer DN: EMAILADDRESS=whatever@example.com, CN=Cert Auth,
OU=My Certificate Authority, O=Example Company, L=Austin, ST=Texas,
C=US
Validity: Thu Oct 29 10:29:59 CDT 2013 through Fri Oct 29 10:29:59
CDT 2014

Do you wish to trust this certificate and continue connecting to the
server?

Please enter 'yes' or 'no':yes

dn:

objectClass: ds-root-dse

objectClass: top

startupUUID: 6£fa8f196-d112-40b4-b8d8-93d6d44d59%¢ea

- 130 -

Configuring Key Manager Providers

Configuring Key Manager Providers

When a server needs to provide a certificate to another system, it will use a key manager
provider to access that certificate. The server offers a key manager provider type for each of
the supported keystore types, and the UnboundID Server SDK can also be used to add support
for accessing certificates in other ways if desired.

For each of the key manager provider types provided with the server, a PIN is required to
access the keystore content. That PIN can be made available using one of the following
properties:
« key-store-pin — Specifies the PIN used to access the keystore contents. It will be
obscured, but a dedicated attacker with access to the configuration may be able to
determine the clear-text value.

o key-store-pin-file - Specifies the path to a file containing the keystore PIN. The PIN
must be stored in clear text, but filesystem permissions and/or access controls can be
used to limit access.

e key-store-pin-property — Specifies the name of a Java property that holds the
keystore PIN in clear text. This is not recommended, because anyone with access to JVM
information or server monitor output may be able to determine the keystore PIN.

e key-store-pin-environment-variable — Specifies the name of a system environment
variable that will hold the clear-text keystore PIN. This is not recommended, because
anyone with access to the JVM process or server monitor output may be able to
determine the keystore PIN.

For the PKCS#11 key manager provider, the keystore PIN is the only configuration element
that needs to be provided. For the JKS and PKCS# 12 key manager providers, itis also
necessary to specify the path to the keystore file, and it may also be necessary to specify a
PIN to use to access the private key (also specified using one of the four methods listed
above). It is not necessary to specify a private key PIN if the value is the same as the keystore
PIN.

Configuring Trust Manager Providers

When a server is presented with a certificate, it must determine whether that certificate should
be trusted. This determination is made by a trust manager provider. The server provides
support for three trust manager providers by default:
« Blind trust - Automatically accepts any certificate that is presented. This can be helpful
for testing and/or debugging purposes, but is discouraged in production environments.

« JKS - Consults a JKS-format truststore file in order to determine whether to accept a
given certificate. In order for a presented certificate to be trusted, either that certificate,
or a certificate in its chain of issuers, must be present in the truststore file.

-131-

Chapter 13: Network Security

« PKCS#12 - Operates in much the same way as the JKS trust manager provider, except
that it consults a file in PKCS#12 format rather than a file in JKS format.

The UnboundID Server SDK can be used to create additional trust manager providers.

Configure the Key and Trust Manager Providers

UnboundID servers support the following trust and key managers:
« JKS Key Manager Provider and Trust Manager Provider.
o PKCS#11 Key Manager Provider and Trust Manager Provider.
« PKCS#12 Key Manager Provider and Trust Manager Provider.

Perform the following steps to enable a key manager and trust manager and assign a
connection handler with dsconfig:

1. Change location to the server root:
$ cd /<UnboundID-server-root>

2. Create a text file containing the password for the certificate keystore. It is recommended
that file permissions (or filesystem ACLs) be configured so that the file is only readable
by the server user.

$ echo ’changeit’ > config/keystore.pin
$ chmod 0400 keystore.pin

3. Use the dsconfig to enable the key manager provider.

$ bin/dsconfig set-key-manager-provider-prop \
—--provider-name <JKS, PKCS11l, or PKCS12> \
-—-set enabled:true \
--set key-store-file:/config/<Keystore.jks, keystore.pll or
keystore.pl2> \
--set key-store-type:<JKS, PKCS11l or PKCS12> \
--set key-store-pin-file:/config/keystore.pin

4. Use dsconfig to enable the trust manager provider.

$ bin/dsconfig set-trust-manager-provider-prop \

—--provider-name <JKS, PKCS11l, or PKCS12> \

-—set enabled:true \

-—set trust-store-file:/config/<truststore.jks, truststore.pll, or
truststore.pl2>

5. Use dsconfig to enable the LDAPS connection handler. Port 636 is typically reserved for
LDAPS. If the certificate alias differs from the default server-cert, use the --set ssl-
cert-nickname:<aliasname> option to setit, or use the --reset sslcert-nickname
option for the server to set the alias.

$ bin/dsconfig set-connection-handler-prop \
--handler-name "LDAPS Connection Handler" \

-132 -

Securing LDAP Communication

--set listen-port:1636 \

--set enabled:true \

--set ssl-cert-nickname:1 \

--set key-manager-provider:<JKS, PKCS11l, or PKCS12> \
--set trust-manager-provider:<JKS, PKCS11l, or PKCS12>

6. Test the listener port for SSL-based client connection on port 1636 to return the Root
DSE. Type yes to trust the certificate.

$ bin/ldapsearch --port 1636 —--useSSL --baseDN "" --searchScope base \
" (objectclass=*)"

The server is using the following certificate:

Subject DN: CN=179.13.201.1, OU=Server Certificate, O=Example Company,
L=Austin, ST=Texas, C=US

Issuer DN: EMAILADDRESS=whateverlexample.com, CN=Cert Auth, OU=My
Certificate Authority, O=Example Company, L=Austin, ST=Texas, C=US
Validity: Fri Sep 25 15:21:10 CDT 2013 through Sat Sep 25 15:21:10 CDT
2014

Do you wish to trust this certificate and continue connecting to the
server?
Please enter 'yes' or

1

no':yes
7. If necessary, disable the LDAP Connection Handler so that communication can only pass
through SSL.

$ bin/dsconfig set-connection-handler-prop \
—--handler-name "LDAP Connection Handler" \
—--set enabled:false

Securing LDAP Communication

There are four primary ways to secure communication with UnboundID server products:
« Provide an LDAP connection handler configured to accept SSL-based connections.
« Provide an LDAP connection handler configured to allow StartTLS.

« Configure an alternate mechanism, like IPSec, for securing communication between
client and server systems.

« Run clients on the same systems as the target server so that communication can occur
over the loopback interface.

Note
This section discusses configuring the server for SSL or StartTLS security. Configuring IPSec
or other forms of network encryption are beyond the scope of this documentation. Itis
recommended that the number of processes running on server be limited to minimize risks
from a local attack. In addition, SSL and StartTLS are the only ways to ensure end-to-end
encryption between the client and server.

-133-

Chapter 13: Network Security

To configure an LDAP connection handler to require all incoming connections to use SSL, set its
use-ssl property to true. Or, to allow it to support the use of StartTLS, set allow-start-tls
to true. The same connection handler cannot be configured to use both SSL and StartTLS.
However, multiple LDAP connection handlers are supported to allow both SSL and StartTLS.

If a connection handler is configured for either SSL or StartTLS, the following properties are
used to customize its behavior:

key-manager-provider — Specifies the key manager provider to access certificates that
are presented to clients. This is required for either SSL or StartTLS.

trust-manager-provider — Specifies the trust manager provider to determine whether
to trust client certificates that are presented to the server. This is required for either SSL
or StartTLS.

ssl-cert-nickname — Specifies the nickname of the certificate that the key manager
should use for SSL or StartTLS communication. If this is not provided, the key manager
picks the first suitable certificate it finds in the keystore.

ssl-client-auth-policy — Specifies whether the server will ask clients to provide their
own certificates, and whether to continue communication with clients if they don't
provide a certificate. Allowed values are:

o disabled - The server will not request a client certificate.

o optional - The server will request a client certificate, but will allow clients that
don't provide one). The default value is optional.

o required - The server will request a client certificate, and will terminate the
connection of any client that does not provide one.

ssl-protocol — Specifies the names of the SSL protocol versions that the server will
accept. The set of supported protocols depends on the underlying JVM. Protocol names
may include ssLv3, TLSv1, or SSLv2Hello. If no values are specified, the JVM's default
set of supported protocols is used.

ssl-cipher-suite - Specifies the names of the SSL cipher suites that the server will
accept. The set of supported cipher suites depends on the underlying JVM. Suite names
may include SSL_ RSA WITH RC4 128 SHA, TLS RSA WITH AES 128 CBC_ SHA, Or SSL_
RSA WITH 3DES_EDE CBC_ SHA. If no values are specified, the JVM's default set of
supported cipher suites is used.

disable-tls-renegotiation — Indicates whether to allow clients to request TLS
renegotiation. This enables a client to request repeating the process of negotiating the
SSL protocol, cipher, and symmetric key. This option is rarely used, and may present
security vulnerabilities in some SSL implementations.

auto-authenticate-using-client-certificate — Indicates whether the connection
handler should attempt to authenticate the client connection if the client provides a

- 134 -

Securing LDAP Communication

certificate during SSL or StartTLS negotiation. Normally, a client certificate is not used
for LDAP authentication unless the client explicitly sends a SASL EXTERNAL bind request.

In addition to accepting connections from LDAP clients, servers can attempt to establish LDAP
connections to other servers. This is particularly true for the Proxy Server and Data Sync
Server, but it may also be the case for the Data Store. LDAP external server configuration
objects are used to provide the settings to use for communicating with those servers, and they
have a set of properties for configuring communication security, including:

e connection-security — Specifies the mechanism to secure communication with the
target server. Values are none, SSI, Or StartTLS.

« key-manager-provider — Specifies the key manager provider used to obtain a client
certificate to present to the server, if one is requested during SSL or StartTLS
negotiation.

« trust-manager-provider — Specifies the trust manager provider used to determine
whether to trust the server's certificate during SSL or StartTLS negotiation.

Configuring LDAP Connection Handlers

To configure an LDAP connection handler to require all incoming connections to use SSL, set its
use-ssl property to true. To support the use of StartTLS, set allowstart-tls to true.

If a connection handler is configured for either SSL or StartTLS, then the following properties
can be used to customize its behavior:

« key-manager-provider — Specifies the key manager provider to access the certificates
presented to clients. This is required for either SSL or StartTLS.

« trust-manager-provider — Specifies the trust manager provider used to determine
whether to trust client certificates presented to the server. This is required for either SSL
or StartTLS.

o ssl-cert-nickname - Specifies the nickname of the certificate that the key manager
should use for SSL or StartTLS communication. If this is not provided, the key manager
picks the first suitable certificate it finds in the keystore.

e ssl-client-auth-policy — Specifies whether the server will ask clients to provide their
own certificates, and whether to continue communication with clients if they don't
provide a certificate. Allowed values are:

o disabled - The server will not request a client certificate.

o optional — The server will request a client certificate, but will allow clients that
don't provide one. The default value is optional.

o required - The server will request a client certificate, and will terminate the
connection of any client that does not provide one.

-135-

Chapter 13: Network Security

« ssl-protocol — Specifies the names of the SSL protocol versions that the server will
accept. The set of supported protocols depends on the underlying JVM. If no values are
specified, the JVM's default set of supported protocols is used.

e ssl-cipher-suite — Specifies the names of the SSL cipher suites that the server will
accept. The set of supported cipher suites depends on the underlying JVM. Suite names
may include sSI, RSA WITH RC4 128 SHA, TLS RSA WITH AES 128 CBC SHA, Or SSL
RSA WITH 3DES EDE CBC_SHA. If no values are specified, the JVM's default set of
supported cipher suites is used.

o disable-tls-renegotiation — Indicates whether to allow clients to request TLS
renegotiation. This enables a client to request repeating the process of negotiating the
SSL protocol, cipher, and symmetric key. This option is rarely used, and may present
security vulnerabilities in some SSL implementations.

e auto-authenticate-using-client-certificate — Indicates whether the connection
handler should attempt to authenticate the client connection if the client provides a
certificate during SSL or StartTLS negotiation. Normally, a client certificate is not used
for LDAP authentication, unless the client explicitly sends a SASL EXTERNAL bind request.

Configuring External Server Communication

In addition to accepting connections from LDAP clients, servers can attempt to establish LDAP
connections to other servers. This is particularly true for the Proxy and Data Sync Server, but
it may also be the case for the Data Store in certain circumstances. LDAP external server
configuration objects are used to provide the settings to use for communicating with those
servers. Properties for configuring communication security include:
e connection-security — Specifies the mechanism used to secure communication with
the target server. Allowed values are none, SSL, or StartTLS.

« key-manager-provider — Specifies the key manager provider used to obtain a client
certificate to present to the server if one is requested during SSL or StartTLS negotiation.

e« trust-manager-provider — Specifies the trust manager provider used to determine
whether to trust the server's certificate during SSL or StartTLS negotiation.

Preventing Communication over Insecure Connections

The server should be configured to accept connections from clients that communicate with the
server only over a secure connection. There are two simple ways to accomplish this:

« Use LDAPS - If all clients support the ability to use LDAP over SSL, disable any LDAP
connection handlers not configured to use SSL communication.

« Use StartTLS - If some clients only support the ability to use StartTLS over an initially
insecure connection, use the reject-insecure-requests global configuration property

- 136 -

Allowing or Denying Connections from Specific Clients

to reject any request other than a StartTLS extended request received over an insecure
connection. If the server does not need to accept any requests from insecure clients,
then this should be enabled. For more granular control, set the allowed-insecure-
request-criteria global configuration property, which specifies a set of criteria to
match LDAP requests that may be permitted over an insecure connection, even if
reject-insecure-requests is true. Some types of requests will always be permitted,
including StartTLS and start administrative session requests.

There may be some cases in which clients either cannot communicate securely or require
insecure communication before using StartTLS. In these instances, quarantine those
connections using a custom Client Connection Policy that only allows a minimal set of
operations, and another policy that allows a broader range of operations once that client has
used StartTLS. Also, consider the use of sensitive attribute definitions to prevent access to
certain attributes over insecure connections, or block their access entirely.

Allowing or Denying Connections from Specific Clients

Three mechanisms can be used to configure the set of clients that are allowed to establish
connections to the server:

« Client Connection Policies can be associated with connection criteria, and simple
connection criteria objects provide included-client-address and excluded-client-
address specify the set of clients that match that criteria. If no policy has criteria that
matches a given connection, or if policy matches a client and has the terminate-
connection property set to true, any connection for which that policy is selected is
terminated.

« Each connection handler provides allowed-client and denied-client properties that
can be used to restrict the set of clients allowed to establish connections to that
connection handler.

« User entries caninclude a ds-auth-allowed-address operational attribute that can be
used to specify the addresses of client systems from which that user is allowed to
authenticate.

In each of these cases, address masks are used to target client systems. Address masks can
be used to specify clients in the following ways:

« Anindividual IPv4 or IPv6 address, suchas "1.2.3.4" or
"1234:5678:90ab:cdef:1234:5678:90ab:cdef."

« AnIPv4 address with one or more elements replaced with an asterisk as a wildcard, such
as"1.2.3.%."

« An IPv4 address range using CIDR notation, which follows a base address with a slash to
specify the number of significant bits, suchas"1.2.3.0/24."

-137 -

Chapter 13: Network Security

« AnIPv4 address followed by a slash and a subnet mask, suchas"1.2.3.0/
255.255.255.0".

« As individual resolvable hostname, such as "host.example.com."

« As a resolvable name with one or more components replaced with an asterisk, such as
"* example.com." The asterisk will match exactly one component, so "*.example.com"
will match "a.example.com," but not "a.b.example.com."

« As a resolvable domain (or sub-domain) name preceded by a period, such as
".example.com." This will match any number of components before the given domain, so
".example.com" will match both "a.example.com" and "a.b.example.com."

Securing Replication Communication

Replication between Data Stores requires SSL authentication and encryption on a separate port
(default 8989), on which the Data Store replication server component listens. Each server has
a private key created at startup and stored in the config/ads-truststore JKS KeyStore. This
key is used to authenticate to other replication servers.

Securing HTTP Communication

Some components of the directory environment, including the Web Console, DSML gateway,
and the SCIM server, use HTTP for communication. The most common way to secure this
communication is to use HTTP over SSL (HTTPS). Refer to the documentation for the web
container used for these components to determine how to enable SSL support.

Securing SNMP Communication

The Data Store can expose some monitoring information over SNMP, and generate alerts as
SNMP traps. If secure SNMP communication is needed, configure the server to operate as an
SNMP subagent, and communicate with a master agent on the same system over the loopback
interface. The SNMP master agent should also be configured to require SNMPv3 using the
authPriv security level, which provides authentication and encryption for SNMP clients.

Securing JMX Communication

The Data Store can also make monitor information and administrative alerts available over
JMX. If JMX is used, it can be secured with SSL. It will also require authentication, and only
users with the ymx-read privilege will be allowed to retrieve any information over JMX. Only
users with the ymx-notify privilege will be allowed to subscribe to receive administrative
alerts as JMX notifications.

- 138 -

Securing Database Communication

Securing Database Communication

All products can be configured to write access and error log messages to a relational database,
and the Data Sync Server can use them as sync sources and/or destinations.

When communicating with a relational database, the security features used to protect that
communication depend on the type of database being used, and the JDBC driver used to
interact with it. Many JDBC drivers support the use of SSL, which can be configured using
arguments provided in the JDBC URL. See the documentation for the specific database and
JDBC driver for details on how to configure this or other security features.

Securing Syslog Communication

The Data Store can be configured to deliver access and/or error log messages to a network
syslog server over the standard UDP-based protocol. This communication does not allow for
encryption, so the server should be configured to use a syslog server running on the local
system where communication only occurs over the loopback interface.

To have the log messages delivered to a remote system, use loopback communication, but
have the local syslog daemon act as an encrypted relay to a remote server. Open source and
commercial syslog software (including rsyslog and syslog-ng) provide the ability to act as a
syslog relay for this purpose.

Other Network Security Configuration Options

Some of the other configuration options related to securing network communication include:

« Limit the Max Time for JVM Cache - The global configuration includes a network-
address-cache-ttl property, which can be used to control the maximum length of time
that the JVM should cache the IP address for which a given hostname resolves. Setting a
reasonable timeout (such as one hour) allows the server to recognize network changes
which assign a different IP address to a given name in a timely manner.

« Limit the Max Number of Connections - The global configuration includes a number
of properties that can be used to control the maximum number of connections that can
be established to the server. This includes maximum-concurrent-connections (the
absolute maximum number of connections allowed to the server at any time), maximum-
concurrent-connections-per-ip-address (the maximum number of connections
allowed from any individual IP address at any time), and maximum-concurrent-
connections-per-bind-dn (the maximum number of connections allowed to be
authenticated as any individual user at any time). If any connection limit has already
been reached, then any subsequent connections are terminated.

« Use Custom Post-Connect and Post-Disconnect Plug-ins - The UnboundID Server
SDK can be used to develop custom post-connect and post-disconnect plug-ins. Post-

-139 -

Chapter 13: Network Security

connect plug-ins are invoked when the server accepts a new client connection, and may
be used to terminate that connection if it is determined that it should not be allowed.
Post-disconnect plug-ins are invoked just after an existing connection is closed, whether
that closure is initiated by a client or by the server.

Limit the Max Time for JVM Cache

The global configuration includes a network-address-cache-ttl property, which specifies the
maximum length of time that the JVM is allowed to cache the IP address associated with a
system hostname. Setting a reasonable time-to-live value allows the server to detect cases in
which a network administrator changes the IP address with which a given hostname is
associated. If no time-out is defined, the JVM can cache these mappings indefinitely, and it
may be necessary to restart the server to detect such changes.

The global configuration also includes a number of properties that can be used to control the
maximum number of connections established to the server. This includes maximum-
concurrent-connections (the maximum number of connections allowed to the server at one
time), maximum-concurrent-connections-per-ip-address (the maximum number of
connections allowed from any individual IP address at any time), and maximum-concurrent-
connections-per-bind-dn (the maximum number of connections allowed to be authenticated
as any individual user at one time). If any connection limit is reached, any subsequent
connections are terminated.

- 140 -

Appendix A: SSL Details

SSL provides a relatively simple way for clients to establish a secure connection to servers
without ever having communicated with those systems in the past.

Topics include:
Asymmetric and Symmetric Encryption
About Certificates

- 141 -

Appendix A: SSL Details

Asymmetric and Symmetric Encryption

There are two basic kinds of encryption: symmetric encryption, and asymmetric encryption.
With symmetric encryption, the same key is used for both encryption and decryption.
Asymmetric encryption uses a different key to encrypt data than it does to decrypt it.
Symmetric encryption is generally less expensive than asymmetric, but it requires both the
sender and receiver to have the same key. It also requires that no one else have that key.
Asymmetric encryption is more expensive, but the encryption key (the public key) can be
made available to anyone as long as the decryption key (the private key) is carefully protected
and known only to its owner. Anyone can use the public key to encrypt a message, but only the
one holding the private key can decrypt it.

When using asymmetric encryption, the encryption and decryption keys are mathematically
related, but in a way that makes it extremely difficult to derive one from the other. One
interesting property of some kinds of asymmetric encryption is that not only is it possible to
encrypt messages using the public key in a way that can only be decrypted with the private
key, but it is also possible to encrypt messages using the private key in a way that can only be
decrypted with the public key. Since the public key can be widely available, this isn't useful for
protecting the encrypted data from unintended observers, but it does make it possible to prove
that it was encrypted by the private key, and therefore it can be used as a type of digital
signature.

SSL uses a combination of symmetric and asymmetric encryption. When a client establishes an
SSL-based connection to a server, there is an initial negotiation in which the following occurs:

« The client tells the server that it wants to use SSL and provides information about how
that communication should proceed, including information about the SSL protocol version
and cipher types that it supports.

« The server compares what the client supports with what the server supports, and
informs the client what SSL version and cipher should be used for the rest of the
communication.

« If the client and server can't agree on an SSL version and cipher suite, the negotiation
will fail.

Certificates

The server sends information about its certificate to the client. This includes the public key, the
subject (which is like a DN for the certificate), the time period for which that the certificate
should be considered valid, and information about the certification authority (CA) that issued
the certificate. The client can look at this information to determine whether to trust the
certificate presented by the server. If not trusted, the server can cancel the negotiation.

The server can request that the client provide its own certificate to the server. If the client
receives this type of request, it can send its certificate to the server. If the client does send a
certificate to the server, the server uses it to decide whether to trust the client. If the client

- 142 -

Certificates

does not send a certificate, the server can decide to continue communicating with the client or
not.

The client generates a symmetric encryption key, and then encrypts that through asymmetric
encryption using the server's public key. This ensures that only the client and server know that
key. The client and server will then switch to symmetric encryption using that newly-generated
key.

As described, SSL has an element of trust in addition to providing encryption. Encryption isn't
very useful if communicating with the wrong system, particularly when SSL is designed to
make it easy for clients to communicate with servers with minimal knowledge of the server
ahead of time. Although it is possible to configure clients so that they trust only the specific
certificates configured for use by servers in the directory environment, much of the time this
trust is based on a combination of the following elements:

« The certification authority (CA) that issued the certificate - Unless a certificate
is self-signed, it will contain information about the CA that issued the certificate. Most
clients are configured so that if they trust a certification authority, they will trust any
certificate issued by that authority. Clients can be configured with information about a
small number of CAs that are considered trustworthy, and have some process so that
they will only issue a certificate for an organization after confirming that it was
requested by an authorized representative.

. The validity dates for the server certificate - Nearly all clients will reject a
certificate if it is expired (or not yet valid). It is important for administrators to be aware
of when their server certificates expire so that a replacement certificate can be installed
prior to the expiration.

. Agreement between the address of the system to which the connection has
been established and the address contained in the certificate - Most server
certificates include information about the address of the system for which it is intended,
either in the CN attribute of the certificate's subject, or in a subjectAltName extension.
If the connection does not match an address contained in the certificate, many clients
will reject that certificate because it may have come from an alternate system. Many
clients do support wildcard certificates in which the server address contains a wildcard
(such as "*.example.com") that can legitimately be used across multiple systems in the
same organization, but these certificates are often very expensive.

Some clients may use a validation service, like checking certificate revocation lists (CRLs) or
using the online certificate status protocol (OCSP), to determine whether a previously-valid
certificate was revoked. If a certificate is compromised, mechanisms like CRLs or OCSP may
be the easiest way to indicate that clients should no longer trust it. It is important to carefully
protect the private portion of all server certificates to prevent the need to revoke them.

The process that the client uses to determine whether to trust the certificate presented by the
server is called "server authentication." If the client presents its own certificate to the server,
the server can also decide whether to trust that certificate and continue communicating with

- 143 -

Appendix A: SSL Details

the client ("client authentication"). This doesn't necessarily mean that the client's certificate
will actually be associated with a user in the directory and used for the purpose of LDAP
authentication. It is possible to use the client certificate as a means of performing LDAP
authentication using SASL EXTERNAL, or by configuring the connection handler to try to
automatically authenticate the client using the certificate, but this is not done by default.

- 144 -

Appendix B: About the Java Keytool

Java Keytool is a key and certificate management utility, allowing users to manage their own
public/private key pairs and certificates. The keytool utility comes with the standard JDK
distribution and is located in the JAVA HOME/bin directory.

Topics include:

Using the Java Keytool Utility

Creating a Server Certificate with Keytool

Creating a Client Certificate

- 145 -

Appendix B: About the Java Keytool

Using the Java Keytool Utility

If using a Java JKS KeyStore to hold server certificates, obtain a certificate to include. Most
deployments will want to use a certificate that is signed by a certification authority so that
clients can merely trust that CA and trust certificates signed by that CA.

Maintaining a CA can provide the greatest degree of flexibility, and can be significantly cheaper
than using a commercial CA. However, it can also have a notable management overhead, and
may require updating every client to trust the private CA certificate. A commercial certification
authority can be used, which is relatively straightforward and likely already trusted by most
clients.

Regardless of which certification authority used, a certificate signing request (CSR) must be
generated that can be signed by the CA.

Create a Server Certificate

The Keytool utility enables management of public/private key pairs, x509 certificate chains and
trusted certificates. The keys and certificates are stored in a keystore, which is a password-
protected file with a default format of JKS. Each key and trusted certificate in the keystore is
accessed by its unique alias.

The following procedure creates a keystore, generates a public/private key pair, and creates a
self-signed certificate based on the key pair. This certificate can be used as the server
certificate or it can be replaced by a CA-signed certificate chain with additional Keytool
commands.

The -dname option is used to specify the certificate’s subject, which is usually a CN attribute
with a value equal to the fully-qualified name of the server. If the -dname option is omitted, the
utility prompts for input. The certificate is valid for 180 days.

Perform the following steps to create a server certificate using Keytool:
1. Change to the directory where the certificates will be stored.
$ cd /ds/UnboundID-<server>/config

2. Use the keytool utility to create a private/public key pair and a keystore. The keytool
utility is part of the Java SDK (${JAVA HOME}/bin).

$ keytool -genkeypair \

-dname "CN=server.example.com,ou=Metrics Engine Certificate,
O=Example Company,C=US"\

-alias server-cert \
-keyalg rsa \
-keystore keystore \
-keypass changeit \
-storepass changeit \
-storetype JKS \
-validity 180 \
—noprompt

- 146 -

Using the Java Keytool Utility

The -keypass and -storepass arguments can be omitted to cause the tool to
interactively prompt for the password. Also, the key password should match the
keystore password.

3. View the keystore. The entry type is privateKeyEntry, which indicates that the entry
has a private key associated with it, which is stored in a protected format to prevent
unauthorized access. Also note that the Owner and Issuer are the same, indicating that
this certificate is self-signed.

S keytool -list -v -keystore keystore -storepass changeit

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: server-cert

Creation date: Sep 30, 2011

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[l]:

Owner: CN=server.example.com, OU=Server Certificate, O=Example Company,
C=US

Issuer: CN=server.example.com, OU=Server Certificate, O=Example Company,
C=US

Serial number: 4ac3695f

Valid from: Wed Sep 30 09:21:19 CDT 2011 until: Mon Mar 29 09:21:19 CDT
2012

Certificate fingerprints:

MD5: 3C:7B:99:BA:95:A8:41:3B:08:85:11:91:1B:E1:18:00

SHAl: E9:7E:38:0F:1C:68:29:29:C0:B4:8C:08:2B:7C:DA:14:BF:41:DE:F5
Signature algorithm name: SHAlwithRSA

Version: 3

4. If having a certificate signed by a Certificate Authority, skip to step 7. Otherwise export
the self-signed certificate. Then examine the certificate.
S keytool -export -alias server-cert -keystore keystore -rfc -file
server.crt
Enter keystore password:
Certificate stored in file <server.crt>
5. Import the self-signed certificate into a truststore. When prompted, type yes to trust the
certificate.
S keytool -importcert -alias server-cert —-file server.crt \
-keystore truststore -storepass changeit
6. View the truststore with the self-signed certificate. If using this certificate as the server
certificate, this is the final step.

S keytool -list -v -keystore truststore -storepass changeit

- 147 -

Appendix B: About the Java Keytool

10.

11.

To create a production-ready certificate, continue by creating the Certificate Signing
Request (CSR) by writing to the file server.csr. Follow the instructions of the third-party
CA, and submit the file to a CA. The CA authenticates then returns a certificate reply,
which can be saved as signed.crt.

$ keytool -certreq -v -alias server-cert -keystore keystore \
-storepass changeit -file server.csr

Certification request stored in file <server.csr>
Submit this to your CA

If working with a third-party CA, both the key and trust stores should include information
about the CA’s root certificate as well as any intermediate certificates used to sign the
server certificate. Obtain the CA root and any intermediate certificates to set up a chain
of trust in your keystore. View the trusted CA and intermediate certificates to check that
the displayed certificate fingerprints
match the expected ones.
$ keytool -v -printcert -file root.crt
$ keytool -v -printcert -file intermediate.crt
Import the CA’s root certificate in the keystore and truststore. If there are other
intermediate certificates, then import them using the same commands, giving them each
different aliases in the key and trust stores.
$ keytool -importcert -v -trustcacerts -alias cacert \
-keystore keystore -storepass changeit -file root.crt
$ keytool -importcert -v -trustcacerts -alias cacert -keystore
truststore \
-storepass changeit -file root.crt
Import the server certificate signed by the CA into the keystore, which will replace the
existing self-signed certificate. When prompted, type yes to trust the certificate.
$ keytool -importcert -v -trustcacerts -alias server-cert -keystore

keystore
-storepass changeit -file signed.crt

Add the certificate to the truststore.

$ keytool -importcert -v -trustcacerts -alias server-cert \
-keystore truststore -storepass changeit -file signed.crt

Create a Client Certificate

Client certificates can be used when stronger client authentication is desired, but is not
required for SSL connections to be established. There are two important considerations when
using client certificates:

- 148 -

Using the Java Keytool Utility

. If a client presents its own certificate to the server, the server must be configured to
trust that certificate.

« If the client certificates are used for LDAP authentication through SASL EXTERNAL, the
certificate must contain enough information to allow the server to associate it with
exactly one user entry. The requirements for this are dependent upon the certificate
mapper configured for use in the server.

To create a PKCS# 12 formatted client certificate with the Keytool utility, follow the steps in
Create a Server Certificate and use the following command:

$

keytool —-genkeypair \

—-dname "CN=server.example.com,ou=Certificate,O=Example Company, C=US"\
-alias server-cert -keyalg rsa —-keystore keystore.pl2 -keypass changeit \
-storepass changeit -storetype pkcsl2 -validity 180 -noprompt

- 149 -

Appendix C: Understanding Criteria

The criteria subsystem provides a simple and powerful mechanism for classifying connections
and operations. Understanding how to use criteria is an integral part of maintaining a secure
directory environment.

Topics include:

Criteria Overview

Simple Connection Criteria

Simple Request Criteria

Simple Result Criteria

Simple Search Entry Criteria

Simple Search Reference Criteria

Aggregate Criteria

- 150 -

Appendix C: Understanding Criteria

Criteria Overview

The criteria subsystem is an integral part of many security-related features of UnboundID
server products. Client Connection Policies use connection criteria to classify clients, and
request criteria in the course of determining which requests should be allowed. The access
logging subsystem uses all types of criteria to provide filtering support, which provides control
over the kinds of messages that should be handled by each logger. Extensions like plug-ins,
change subscription handlers, and virtual attributes can use criteria to identify connections and
operations for which processing should be performed.

There are a number of criteria types in the server, including:
. Connection criteria - Used to classify client connections.
« Request criteria - Used to classify operation requests.
« Result criteria - Used to classify operation results.

« Search entry criteria - Used to classify search result entries encountered while
processing a search.

« Search reference criteria - Used to classify search result references encountered
while processing a search.

For each kind of criteria, there are multiple subtypes that can be used. Each kind of criteria has
two subtypes:

« Simple criteria objects that provide a number of properties for use in the classification.

« Aggregate criteria objects that provide the ability to combine other criteria objects with
Boolean logic.

Simple Connection Criteria

Simple connection criteria objects provide support for a number of properties that can be used
to classify client connections. Some aspects deal with the method in which the client is
communicating with the server, while others are based on the authenticated identity of the
client.

Those properties dealing with the way the client communicates with the server include:

e included-client-address — Defines the client's IP address or resolved nhame that must
match one of the given patterns.

e excluded-client-address — Defines the client's IP address or resolved name that must
not match any of the given patterns.

e included-connection-handler — Specifies that the client's connection must have been
accepted by one of the specified connection handlers.

- 151 -

Simple Connection Criteria

o excluded-connection-handler — Specifies that the client's connection must not have
been accepted by any of the specified connection handlers.

o included-protocol - Specifies that the name of the protocol that the client is using to
communicate with the server must match one of the given values.

« excluded-protocol - Specifies that the protocol that the client is using to communicate
with the server must not match any of the given values.

e communication-security-level — If defined, it may be used to perform matching
based on whether the client is communicating with the server in a secure manner. Values
include:

o secure-only — The client must use secure communication.

o insecure-only — The client must not use secure communication.

o any - The client can use either secure or insecure communication.

The simple connection criteria properties that deal with the client's authentication state are
listed below. All except user-auth-type are evaluated for authenticated client connections,
and will be ignored for unauthenticated clients.

« user-auth-type — Performs matching based on whether, and possibly how, the client
has authenticated. Values are none (matches unauthenticated clients), simple
(matches clients authenticated with simple authentication), and sas1 (matches clients
authenticated with SASL authentication). To match only authenticated clients, include
values simple and sasl but not none.

e internal-authentication-security-level — Performs matching based on whether
the client authenticated in a secure manner. Values are secure-only (the client must
have authenticated in a secure manner), insecure-only (the client must have
authenticated in an insecure manner), or any (in which the client may have
authenticated in either a secure or insecure manner).

e included-user-sasl-mechanism - If the client used SASL authentication, it will only
match client connections in which the client authenticated using one of the specified SASL
mechanisms. This is ignored for clients that have not performed SASL authentication.

o excluded-user-sasl-mechanism — If the client used SASL authentication, it will only
match client connections in which the client did not authenticate using one of the
specified SASL mechanisms. This is ignored for clients that have not performed SASL
authentication.

e included-user-base-dn — Matches client connections in which the authenticated user's
entry is equal to or subordinate to one of the provided DNs.

« excluded-user-base-dn — Matches client connections in which the authenticated user's
entry is not equal to or subordinate to one of the provided DNs.

- 152 -

Appendix C: Understanding Criteria

e all-included-user-group-dn — Matches client connections in which the authenticated
user is a member of all of the specified groups.

e any-included-user-group-dn — Matches client connections in which the authenticated
user is a member of at least one of the specified groups.

e« not-all-included-user-group-dn — Matches client connections in which the
authenticated user is not a member of at least one of the specified groups. The
authenticated user can be a member of zero or more of the groups, but must not be a
member of all of them.

e none-included-user-group-dn — Matches client connections in which the authenticated
user is not a member of any of the specified groups.

e all-included-user-filter — Matches client connections in which the authenticated
user's entry matches all of the provided filters.

e any-included-user-filter — Matches client connections in which the authenticated
user's entry matches at least one of the provided filters.

e not-all-included-user-filter — Matches client connections in which the
authenticated user's entry does not match at least one of the provided filters. The
authenticated user's entry may match zero or more of the provided filters, but must not
match all of them.

e« none-included-user-filter — Matches client connections in which the authenticated
user's entry does not match any of the provided filters.

e all-included-user-privilege — Matches client connections in which the authenticated
user has all of the specified privileges.

e« any-included-user-privilege — Matches client connections in which the authenticated
user has at least one of the specified privileges.

e not-all-included-user-privilege — Matches client connections in which the
authenticated user does not have all of the specified privileges. The user may have zero
or more of the privileges, but not all of them.

e none-included-user-privilege — Matches client connections in which the
authenticated user does not have any of the specified privileges.

Simple Request Criteria

Simple request criteria objects provide support for matching a number of different kinds of
requests. Some of the properties are based on the entry targeted by the requested operation.

« For add operations, this is the entry to be added.

« For bind operations, this is the specified bind DN (it will not look at SASL credentials to
attempt to determine the target identity).

- 153 -

Simple Request Criteria

For compare operations, this is the entry to be compared.

For delete operations, this is the entry to be deleted.

For modify operations, this is the original entry before any changes have been applied.
For modify DN operations, this is the original entry before the DN has been altered.

For search operations, this is the entry specified as the base DN.

Any properties referencing the target entry are ignored for abandon, extended, and unbind
operations (and no attempt is made to look inside any extended request value).

Some properties reference a target attribute.

For add operations, this is any of the attributes included in the entry to be added.
For compare operations, this is the target attribute type.

For modify operations, this is any of the attributes to be altered.

For modify DN operations, this is any of the attributes included in the new RDN.

For search operations, this is any of the attributes included in the search filter.

Any properties referencing the target attribute are ignored for abandon, bind, delete,
extended, and unbind operations (and no attempt is made to look inside any extended request
value).

operation-type — Matches requests based on the type of operation requested.

operation-origin — Matches requests based on the way the request was initiated.
Values include external-request for requests initiated by an external client,
replicated-operation for requests received through replication, or internal-
operation for internal operations invoked by a plugin, or some other type of extension.

connection-criteria — Matches requests based on information about the client that
issued the request. At most, one connection criteria can be provided, but it may be an
aggregate connection criteria, which combines multiple connection criteria objects.

all-included-request-control — Matches requests in which the client included
request controls with all of the specified object IDs. The request can include additional
controls not included in this list.

any-included-request-control — Matches requests in which the client included at least
one request control with one of the specified object IDs. The request can include
additional controls not included in this list.

not-all-included-request-control — Matches requests in which the client did not
include request controls with all of the specified object IDs. The request can include
controls with zero or more of the specified object IDs, but not all of them.

none-included-request-control — Matches requests in which the client did not include
any request control with any of the specified object IDs. It can include control.

- 154 -

Appendix C: Understanding Criteria

e included-target-entry-dn — Matches requests in which the target entry has a DN
equal to or subordinate to one of the given values.

« excluded-target-entry-dn — Matches requests in which the target entry does not have
a DN equal to or subordinate to any of the given values.

e all-included-target-entry-filter — Matches requests in which the target entry
matches all of the provided filters.

e any-included-target-entry-filter — Matches requests in which the target entry
matches at least one of the provided filters.

e not-all-included-target-entry-filter — Matches requests in which the target entry
does not match all of the provided match filters.

e« none-included-target-entry-filter — Matches requests in which the target entry
does not match any of the provided filters.

e all-included-target-entry-group-dn — Matches requests in which the target entry is
a member of all of the specified groups.

e any-included-target-entry-group-dn — Matches requests in which the target entry is
a member of at least one of the specified groups.

e« not-all-included-target-entry-group-dn — Matches requests in which the target
entry is not a member of all of the specified groups. The target entry may be a member
of zero or more of the specified groups, but not all of them.

e« none-included-target-entry-group-dn — Matches requests in which the target entry
is not a member of any of the specified groups.

e target-bind-type — Matches bind requests in which the authentication type matches
one of the given values. Values are simple and sasl. This property is ignored for all
operation types except bind.

e included-target-sasl-mechanism — Matches SASL bind requests in which the specified
SASL mechanism is equal to one of the given values. This property will be ignored for
non-bind requests, as well as for simple bind requests.

o excluded-target-sasl-mechanism — Matches SASL bind requests in which the specified
SASL mechanism is not equal to any of the given values.

e included-target-attribute — Matches requests that target at least one of the
specified attributes.

e excluded-target-attribute — Matches requests that do not target any of the specified
attributes.

e included-extended-operation-oid — Matches extended requests in which the request
object ID is equal to one of the given values. This property is ignored for non-extended
requests.

- 155 -

Simple Result Criteria

o excluded-extended-operation-oid — Matches extended requests in which the request
object ID is not equal to any of the given values. This property is ignored for non-
extended requests.

e using-administrative-session-worker-thread — Performs matching based on
whether the request is being processed using a dedicated administrative session worker

thread. Values include:

[e]

[e]

true — Only match requests processed using an administrative session worker
thread.

false — Only match requests not processed using an administrative session
worker thread.

any — Use of an administrative session worker thread is not considered relevant.

Simple Result Criteria

Simple result criteria objects can be used to perform matching based on the result code of the
operation, the length of time required to process that operation, the length of time the request
remained on the work queue before being picked up for processing by a worker thread,
controls included in the response, attempts to use privileges, and any entries or references
returned during processing.

o request-criteria — Matches results for operations matching the provided request
criteria. Only one request criteria object can be specified, but it may be an aggregate
request criteria object, which combines multiple request criteria objects.

e result-code-criteria — Matching is performed based on the result code for the

associated operation. Values include:

[¢]

all-result-codes — The result code is not considered.

o non-failure-result-codes — The associated operation must have completed

successfully.

failure-result-codes - The associated operation must not have completed
successfully.

selected-result-codes — The result code must match one of the values of the
result-code-value property. For this property, the following result codes are
considered successful: success, compare-true, compare-false, referral, sasl-

bind-in-progress, and no-operation.

o result-code-value — Matches only operations with one of the specified result codes.
This is only used if the result-code-criteria property has a value of selected-

result-codes.

e processing-time-criteria — Matching is performed based on the length of time
required for the worker thread to process the operation. Values include:

- 156 -

Appendix C: Understanding Criteria

o any - The processing time is not considered.

o less-than-or-equal-to- The processing time must be less than or equal to the

processing-time-value.

o greater-than-or-equal-to- The processing time must be greater than or equal

to the processing-time-value.

e processing-time-value — Performs matching based on the worker thread processing
time for an operation. Itis only used if a processing-time-criteria value of less-
than-or-equal-to OF greater-than-or-equal-to was specified.

e« queue-time-criteria — Matching is performed based on the length of time the request
was required to wait in the work queue before being picked up for processing by a
worker thread. If this property has a value other than any, queue time monitoring must
be enabled. Values include:

o any — The queue time is not considered.

o less-than-or-equal-to — The queue time must be less than or equal to the
queue-time-value.

o greater-than-or-equal-to — The queue time must be greater than or equal to
the queue-time-value.

« queue-time-value — Matching is based on the queue time for an operation. Itis only
used if @ queue-time-criteria value of less-than-or-equal-to Or greater-than-
or-equal-to is set.

e« referral-returned — Matching is performed based on whether any referral URLs were
included in the result. Values are:

o required - The result mustinclude one or more referral URLs.
o prohibited - The result must not include any referral URLs.
o optional - The inclusion of referral URLs is not considered.

e all-included-response-control — Matches results which contained response controls
with all of the specified object IDs.

e any-included-response-control — Matches results that contain at least one response
control with one of the given object IDs.

e« not-all-included-response-control — Matches results that do not contain response
controls with all of the given object IDs. It may contain response controls with zero or
more of the given object IDs, but not all of them.

e none-included-response-control — Matches results that do not contain response
controls with any of the given object IDs.

e used-alternate-authzid — Matching is performed based on whether the operation was
processed using an authorization identity that differs from the authentication identity

- 157 -

Simple Result Criteria

(the client used the proxied authorization or intermediate client controls, or a SASL
alternate authorization identity). Values include:
o required - The operation must have been processed with an alternate
authorization identity.

o prohibited - The operation must not have been processed with an alternate
authorization identity.

o optional - The use of an alternate authorization identity is not considered.

used-any-privilege — Matching is performed based on whether the client made use of
any privileges during processing. Values include required (the client must have used at
least one privilege), prohibited (the client must not have used any privileges), or
optional (the use of privileges is not considered).

used-privilege — The client must have used at least one of the specified privileges.

missing-any-privilege — Matching is performed based on whether the client attempted
to perform any operation for which it did not have at least one required privilege. Values
include:
o required - The client must have been missing at least one privilege needed for
the operation.

o prohibited — The client must not have been missing any of the required
privileges.
o optional — Missing privileges are not considered.

missing-privilege — At least one of the specified privileges was required for
processing the operation, but the client did not have the necessary privilege.
search-entry-returned-criteria — Matching is performed based on the number of
matching entries returned to the client during search processing. This is ignored for non-
search operations. Values include:
o any — The number of entries returned is not considered.
o equal-to — The number of entries returned must match the search-entry-
returned-count value.
o not-equal-to — The number of entries returned must not match the search-
entry-returned-count value.
o less-than-or-equal-to — The number of entries returned must be less than or
equal to the search-entry-returned-count value.

o greater-than-or-equal-to — The number of entries returned must be greater
than or equal to the search-entry-returned-count value.

search-entry-returned-count — Specifies the number of search result entries to use
when performing matching based on the search-entry-returned-criteria property.

- 158 -

Appendix C: Understanding Criteria

search-reference-returned-criteria — Matching is performed based on the number
of search result references returned to the client during search processing. This is
ignored for non-search operations. Values include:

o any — The number of references returned is not considered.

o equal-to — The number of references returned must match the search-

reference-returned-count value.

o not-equal-to — The number of references returned must not match the search-

reference-returned-count value.

o less-than-or-equal-to — The number of references returned must be less than
or equal to the search-reference-returned-count value.

o greater-than-or-equal-to — The number of references returned must be greater
than or equal to the search-reference-returned-count value.

search-reference-returned-count — Specifies the number of search result references
to use when performing matching based on the search-reference-returned-criteria
property.

Simple Search Entry Criteria

Simple search entry criteria objects may be used to perform matching based on the contents of
search result entries returned to the client. Note that for properties used to perform matching
based on a filter, that filter will be evaluated against the entry actually being returned to the
client rather than the complete entry contained in the server.

request-criteria — If specified, only matches search result entries for search
operations matching the provided request criteria. Only one request criteria object can
be specified, but it may be an aggregate request criteria object, with multiple request
criteria objects.

all-included-entry-control — If specified, only matches search result entries
containing controls with all of the specified object IDs.

any-included-entry-control — If specified, only matches search result entries
containing at least one control with one of the specified object IDs.

not-all-included-entry-control — If specified, only matches search result entries
that do not contain controls with all of the specified object IDs. It may contain controls
with zero or more of the specified object IDs, but not all of them.

none-included-entry-control — If specified, only matches search result entries that
do not contain any controls with any of the specified object IDs.

included-entry-base-dn — If specified, only matches search result entries in which the
DN of that entry is equal to or subordinate to one of the given base DN values.

- 159 -

Simple Search Reference Criteria

o excluded-entry-base-dn — If specified, only matches search result entries in which the
DN of that entry is not equal to or subordinate to one of the given base DN values.

e all-included-entry-filter — If specified, only matches search result entries in which
the pared-down entry matches all of the provided filters.

e any-included-entry-filter — If specified, only matches search result entries in which
the pared-down entry matches at least one of the provided filters.

e not-all-included-entry-filter — If specified, only matches search result entries in
which the pared-down entry does not match all of the provided filters. It can match zero
or more of the provided filters, but must not match all of them.

o none-included-entry-filter - If specified, only matches search result entries in
which the pared-down entry does not match any of the provided filters.

e all-included-entry-group-dn - If specified, only matches search result entries in
which the entry is a member of all of the specified groups.

e any-included-entry-group-dn — If specified, only matches search result entries in
which the entry is a member of at least one of the specified groups.

e not-all-included-entry-group-dn — If specified, only matches search result entries
in which the entry is not a member of at least one of the specified groups. The entry may
be a member of zero or more of the specified groups, but not all of them.

e none-included-entry-group-dn - If specified, only matches search result entries in
which the entry is not a member of any of the specified groups.

Simple Search Reference Criteria

Simple search reference criteria objects can perform matching based on the contents of search
result references returned to the client. Properties for this type of criteria include:
« request-criteria — Matches search result references for search operations matching
the provided request criteria. Only one request criteria object can be specified, but it
may be an aggregate, with multiple request criteria objects.

e all-included-reference-control — Matches search result references containing
controls with all of the specified object IDs.

e any-included-reference-control — Matches search result references containing at
least one control with one of the specified object IDs.

e not-all-included-reference-control — Matches search result references that do not
contain controls with all of the specified object IDs. It may contain controls with zero or
more of the specified object IDs, but not all of them.

e none-included-reference-control — Matches search result references that do not
contain any controls with any of the specified object IDs.

- 160 -

Appendix C: Understanding Criteria

Aggregate Criteria

Each kind of criteria has an aggregate subtype that can be used to create logical ANDs, ORs,
and NOTs of other criteria objects. For example, an aggregate connection criteria type can
include the following properties:

e all-included-connection-criteria — Identifies client connections that match all of
the referenced connection criteria objects. If one or more of the referenced criteria
objects do not match a client connection, the aggregate connection criteria will not match
that connection.

e any-included-connection-criteria — Identifies client connections that match at least
one (but possibly more) of the referenced connection criteria objects. If none of the
referenced criteria objects do not match a client connection, the aggregate connection
criteria will not match that connection.

e not-all-included-connection-criteria — Identifies client connections that do not
match at least one (and possibly none of) the referenced connection criteria objects.
Connections may match one or more of the referenced connection criteria objects, as
long as at least one of the referenced connection criteria objects does not match the
connection.

e none-included-connection-criteria — Identifies client connections that do not match
any of the referenced connection criteria objects. If one or more of the referenced
criteria objects do match a client connection, then the aggregate connection criteria will
not match that connection.

Other criteria types have an aggregate subtype with similar sets of all1-included, any-
included, not-all-included, and none-included properties.

- 161 -

Index: access control instructions (ACIs) - client connection policies

Index

A

access control instructions (ACIs) 71
examples 73
rule format 72
validate ACIs 75
access control system 4
account 110
Data Store account 40
lockout, expiration, disablement 63
separate user and administrator 40
status notification 66
address masks 137
administrative accounts
limit capabilities 32
strong authentication for 31
alarms 11, 108
testing setup 109
alert handler 11, 106
alerts
alarm_cleared alert type 109
list of system alerts 12, 109
testing setup 109
alerts backend
alert retention time 107-108
duplicate alert suppression 108
overview 107
view information 107
attack models 2
data breach 17

denial of service 10

man-in-the-middle 27
attributes
entry checksum attribute 50

global configuration for sensitive
attributes 18

limit search results 24

operational 5

sensitive 5
audit-data-security tool 46
auditors for data security 45
authenticatin types 79

control with client connection
policies 79

authentication mechanisms

pass-through authentication 100
B

backup strategies 36

Bcrypt and scrypt password storage
schemes 22

bind information leak 101
C

certificate-based authentication 3
certificate mapper
fingerprint 97
subject DN to user attribute 99
subject equals DN 96
subject to user attribute 98
certificates 142
create with keytool 146
Cipher stream providers 35
client connection policies 4
control authentication 79
criteria subsystem 151

enforce resource limits 14

- 162 -

Index: client IP addresses - gauges

enforce search limits 15 simple search entry criteria 159
limit search results 23 simple search reference criteria 160
properties for sensitive attributes 19 D

recommendations for creating 57 data access 8

restrict access to controls 25 data breach 17

restrict access to directory information
tree 25

limit search results 23

) password storage schemes 21
restrict request types 16
o restrict access to controls 25
restricting IP addresses 17
] data encryption 35
client IP addresses 16
] data security audits 44
clients
]]) Data Sync Server considerations 47
identify client access 7
database communication 139
identify data to be accessed 8
]] o denial of service attacks 10
identify privileged ports 7
_ dsconfig
cn=monitor 10
o usage considerations 43
communication

aggregate criteria 161 E

allow or deny clients 137
secure connections 136

secure database 139

secure HTTP 138

secure JMX 138

secure replication 138

secure SNMP 138

secure syslog 139

simple connection criteria 151
simple request criteria 153, 156

simple search entry criteria 159

simple search reference criteria 160

criteria subsystem 151

aggregate criteria 161
simple connection criteria 151
simple request criteria 153

simple result criteria 156

encoded passwords 23
encrypt LDIF exports 37
encrypted backups 4
encryption settings database 34
encryption types 142
entry checksums 50
error log handler 11
F
filesystem
Java encryption 34
protection 34
fingerprint certificate mapper 97

G
gauges 11, 108

testing related alarms and alerts 109

- 163 -

Index: global configuration options — password encryption

global configuration options
limit search results 23
limit stale data 52
on-disk encryption 18
options for resource limits 12
prevent bind information leak 101
read-only server instance 54

global settings 4
H

HTTP 138

J

Java encryption security 34
Java KeyStore 131, 138

Java Management Extension 105
JDBC driver 139

JMX 138

K
key manager 132

key manager providers 131
keytool 146, 148

L

LDAP communication 133
LDAP connection handler 135
restrict client IP addresses 16
LDAP injection attacks 26
LDAPcommunication
configure external server 136
LDAPS 136
LDIF exports 37
LDIF import password encoding 68

lock-down mode 4, 54

logging 5
central and remote 42
centralized logging 124
configure access logging 114
configure change logging 119
configure debug logging 122
configure error logging 121
configure filtered logging 117
Data Sync Server logging 123
log signing 113
parse and analyze logs 125
rotation and retention policies 113
store reversible changes 55

login tracking 64

M

man-in-the-middle attack 27

reduce risk of network address
spoofing 28

Metrics Engine 10, 104
monitoring components 104
monitoring tools 10
multi-factor authentication 3
multi-OS environments 30

N

network encryption 3

network security options 139
Network Time Protocol 53

o

one-time password mechanisms 3
operational attributes 24

P

pass-through authentication 100

password encryption 4

- 164 -

Index: password expiration — UnboundID security features

password expiration 61
password generators 65
password policies 3
password policy 58, 62
per-user 67
properties 67
password storage 4, 21
strongest schemes 22
password validators 59
periodic stats logger 10
PKCS#11 key manager provider 131
privileges 4, 42, 75
available privileges 75
Proxy Server considerations 46
password policy 69
R
replication
secure communication 138
replication metrics 53
reports for data security audits 44
resource limits 12
client connection policies 14
restore strategies 36

root user considerations 40
S
SASL authentication 3

schema integrity 51
SDK extensions 5
search limits
client connection policies 15
security risks 2
sensitive attribute definitions 19, 24

server authentication 142

server consistency 43
SNMP 104, 138
SSL 128, 138

asymmetric and symmetric
encryption 142

configure 128

stale data 52

StartTLS 128, 136
configure 130

Stats Logger Plugin 106

subject DN to user attribute certificate
mapper 99

subject equals DN certificate mapper 96

subject to user attribute certificate
mapper 98

syslog communication 139
system
auditing and logging 32
maintain JVM 31
software and services 30
update patches 30
virtualization 31
system alerts 11
system clocks 53
T
time synchronization 53
trust manager 132
trust store providers 131
V)
UnboundID
about ix

UnboundID security features 3

- 165 -

	Copyright
	Preface
	About UnboundID
	Audience
	Related Documentation

	Chapter 1: Introduction
	Security Risks in an Identity Environment
	Financial and Reputation Costs
	Common Attack Models

	UnboundID Security Features

	Chapter 2: Client Access
	Identifying Potential Clients
	Clients Requiring Privileged Ports
	Identifying Data Security

	Chapter 3: Mitigating System Attacks
	Denial of Service Prevention
	Monitoring Tools
	System Alerts
	System Alarms and Gauges
	Enforcing Resource Limits
	Restricting Request Types with Client Connection Policies
	Allowing and Denying Client IP Addresses

	Data Breach Prevention
	Global Configuration Options for On-Disk Encryption
	Implementing Sensitive Attributes
	Password Storage Schemes
	Limiting Search Results
	Restricting Access to Certain Controls
	Restricting Access to the Directory Information Tree with Client Connection P...

	LDAP Injection Attacks
	Man-in-the-Middle Attack Prevention
	Securing System-to-System Network Connections
	Features that Reduce the Risk of Network Address-Spoofing

	Chapter 4: Protecting the Host System
	The UnboundID Environment on Multiple Operating Systems
	Minimizing Software and Running Services
	Keeping Systems Patched
	Using Virtualization
	Maintaining the Java Virtual Machine
	Configuring Strong Authentication for Administrators
	Minimizing Administrative Account Capabilities
	Using System Logging and Auditing

	Chapter 5: Securing the Filesystem
	Filesystem Protections
	Removing Java Encryption Security Restrictions
	Managing the Encryption Settings Database
	Supported Cipher Stream Providers
	Configuring Data Encryption
	Devising Backup and Restore Strategies
	Encrypting Backups

	Securing LDIF Exports

	Chapter 6: Protecting the UnboundID Platform
	Separate User and Administrator Accounts
	Using a Limited Account to Run Identity Server Services
	Considerations for Root Users

	Centralized and Remote Logging
	Securing the Configuration using Privileges
	Safe Use of dsconfig and the Web Console
	Maintaining Consistent Server Configurations

	Data Security Audits
	Viewing Data Security Audit Reports
	Data Security Auditors
	Configuring the Data Security Auditors
	The audit-data-security Tool

	Proxy Server Considerations
	Data Sync Server Considerations

	Chapter 7: Data Integrity
	Stored Entry Checksums
	Cryptographic Digests
	Entry Checksum Operational Attribute

	Schema Integrity
	Limiting Exposure of Stale Data
	Time Synchronization
	Creating a Read-Only Instance of the Data Store
	Server Lock-Down Mode
	Storing Reversible Changes in the Log

	Chapter 8: Client Connection and Password Policies
	Associating a Client Connection Policy with a Client Connection
	Recommendations for Creating Client Connection Policies
	Password Policies
	Password Validators
	Password Expiration
	Password Changes and Administrative Reset
	Account Lockout, Expiration, and Disablement
	Last Login Time and Last Login IP Address Tracking
	Password Generators
	Account Status Notification Handlers
	Per-User Password Policies
	Additional Password Policy Properties
	Password Encoding during LDIF Import
	Password Policies and the Proxy Server

	Chapter 9: Access Control
	Overview of Access Control
	Validation and Security
	Global ACIs
	Access Controls for Public or Private Backends

	General Format of the Access Control Rules
	Examples of Common Access Control Rules
	Administrator Access
	Anonymous and Authenticated Access
	Delegated Access to a Manager
	Proxy Authorization

	Validating ACIs Before Migrating Data
	Working with Privileges
	Available Privileges

	Chapter 10: Authentication Mechanisms
	Configuring Authentication Types
	Using SASL Authentication Mechanisms
	Controlling Authentication with Client Connection Policies
	Controlling Authentication with Password Policies
	Rejecting or Limiting Unauthenticated Requests
	Restricting Authentication with Operational Attributes
	Using Certificate-based Authentication
	Certificate Mappers

	Configure a SASL Mechanism Handler
	Configure SASL ANONYMOUS Mechanism
	Configure SASL CRAM-MD5 Mechanism
	Configure SASL DIGEST-MD5 Mechanism
	Configure SASL EXTERNAL Mechanism
	Configure SASL GSSAPI Mechanism
	Configure SASL PLAIN Mechanism
	Configure SASL UNBOUNDID-TOTP Mechanism
	Configure SASL UNBOUNDID-DELIVERED-OTP Mechanism

	Configure Certificate Mappers
	Configure the Subject Equals DN Certificate Mapper
	Configure the Fingerprint Certificate Mapper
	Configure the Subject Attribute to User Attribute Certificate Mapper
	Configure the Subject DN to User Attribute Certificate Mapper

	Configure Pass-Through Authentication
	Preventing Bind Information Leak

	Chapter 11: Monitoring, Alerts, Alarms, and Notifications
	Monitoring Components
	About the Metrics Engine
	Securing the Metrics Engine
	Monitoring Using SNMP
	Monitoring with JMX
	Monitoring Using the LDAP SDK
	Monitoring over LDAP

	Profiling Server Performance Using the Stats Logger Plugin
	Working with Administrative Alert Handlers
	The Alerts Backend
	View Information in the Alerts Backend
	Modify the Alert Retention Time
	Configure Duplicate Alert Suppression

	System Alarms and Gauges
	Testing Alerts and Alarms
	To Test Alarms and Alerts

	Working with Account Status Notifications
	Account Status Notification Types

	Chapter 12: Logging Security
	Configuring Log Rotation and Retention Policies
	About Log Signing
	Configuring Access Logging
	Configuring Filtered Logging
	Configuring Change Logging
	Configuring Error Logging
	Configuring Debug Logging
	Configuring Data Sync Server Logging
	Options for Centralized Logging
	Parsing and Analyzing Log Messages

	Chapter 13: Network Security
	Using SSL and StartTLS
	Configure SSL
	Configure StartTLS

	Configuring Key Manager Providers
	Configuring Trust Manager Providers
	Configure the Key and Trust Manager Providers

	Securing LDAP Communication
	Configuring LDAP Connection Handlers
	Configuring External Server Communication

	Preventing Communication over Insecure Connections
	Allowing or Denying Connections from Specific Clients
	Securing Replication Communication
	Securing HTTP Communication
	Securing SNMP Communication
	Securing JMX Communication
	Securing Database Communication
	Securing Syslog Communication
	Other Network Security Configuration Options
	Limit the Max Time for JVM Cache

	Appendix A: SSL Details
	Asymmetric and Symmetric Encryption
	Certificates

	Appendix B: About the Java Keytool
	Using the Java Keytool Utility
	Create a Server Certificate
	Create a Client Certificate

	Appendix C: Understanding Criteria
	Criteria Overview
	Simple Connection Criteria
	Simple Request Criteria
	Simple Result Criteria
	Simple Search Entry Criteria
	Simple Search Reference Criteria
	Aggregate Criteria

	Index

