
UnboundID® Metrics Engine
Administration Guide

Version 4.7.0

UnboundID Corp

13809 Research Blvd., Suite 500

Austin, Texas 78750

Tel: +1 512.600.7700

Email: support@unboundid.com

Copyright

Copyright © 2014 UnboundID Corporation

All rights reserved

This document constitutes an unpublished, copyrighted work and contains valuable trade
secrets and other confidential information belonging to UnboundID Corporation. None of the
foregoing material may be copied, duplicated, or disclosed to third parties without the express
written permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or
through such sites or resources. UnboundID will not be responsible or liable for any actual or
alleged damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such sites or
resources. “UnboundID” is a registered trademark of UnboundID Corporation. UNIX is a
registered trademark in the United States and other countries, licenses exclusively through
The Open Group. All other registered and unregistered trademarks in this document are the
sole property of their respective owners.

Table of Contents
Copyright i

Preface 1

About UnboundID 1

Audience 1

Documentation Included with the Metrics Engine 2

Metrics Reference Documentation 2

Related Documentation 3

Chapter 1: Introduction 1

Metrics Engine Overview 2

Metrics Engine Components 2

Data Collection 2

Performance Data 3

System and Status Data 3

Charts and Dashboards 4

PostgreSQL DBMS Details 4

Chapter 2: Installing the Metrics Engine 5

Supported Platforms 6

Install the JDK 7

Configure a Non-Root User 8

Optimize the Solaris Operating System 8

Restrict ZFS Memory Consumption 8

Limit ZFS Transaction Group Writes 8

Configure ZFS Access to Underlying Disks 9

Configure ZFS Compression 9

Optimize the Linux Operating System 9

Set the File Descriptor Limit 9

Set the Filesystem Flushes 10

Install sysstat and pstack on Red Hat 10

Install the dstat Utility on SUSE 10

Disable Filesystem Swapping 10

Configure Identity Servers to be Monitored 10

Disk Space Requirements and Monitoring Intervals 11

Tracked Applications 11

- ii -

Chapter 3

Install the Metrics Engine 12

Add Monitored Servers to the Metrics Engine 14

Using the monitored-servers Tool 14

Using the dsconfig Tool 14

Start and Stop the Metrics Engine Server 15

Start the Metrics Engine as a Background Process 15

Start the Metrics Engine as a Foreground Process 15

Start the Metrics Engine at Boot Time 15

Stop the Metrics Engine 16

Restart the Metrics Engine 16

Uninstall the Metrics Engine 16

Install the Metrics Engine Web Console 17

Configure the Web Console 18

Configure SSL or StartTLS for the Console 19

Configure a Truststore for the Console 19

Log Into the Console 20

Upgrade the Web Console 20

Uninstall the Console 21

Chapter 3: Managing the Metrics Engine 22

Metrics Engine Error Logging 23

Logging Retention Policies 23

Logging Rotation Policies 23

Create Log Publishers 23

Error Log Publisher 24

Backend Monitor Entries 25

Disk Space Usage Monitor 26

Notifications and Alerts 27

Configure Alert Handlers 28

The Alerts Backend 28

View Information in the Alerts Backend 28

Modify the Alert Retention Time 29

Configure Duplicate Alert Suppression 29

System Alarms and Gauges 29

Testing Alerts and Alarms 30

- iii -

To Test Alarms and Alerts 30

Back Up the Metrics Engine Database 32

Historical Data Storage 32

Planning the Backup 33

Start the DBMS Backup 33

Restore a DBMS Backup 34

Management Tools 34

Available Command-Line Utilities 34

The tools.property File 36

Tool-Specific Properties 36

Specify Default Properties Files 37

Server SDK Extensions 37

Chapter 4: Collecting Data and Metrics 39

Metrics Overview 40

Count Metrics 40

Continuous Metrics 40

Discrete Metrics 40

Dimensions 41

Query Overview 42

Select Query Data 43

Aggregate Query Results 43

Format Query Results 44

The query-metric Tool 44

Performance Data Collection 45

System Monitoring Data Collection 46

Stats Collector Plugin 47

System Utilization Monitors 47

External Collector Daemon 48

Server Clock Skew 48

Tune Data Collection 49

Reducing the Data Collected 49

Reducing the Frequency of Data Collection 49

Reducing the Frequency of Sample Block Creation 49

Reducing Metrics Engine Impact on Performance 49

Data Processing 50

- iv -

Chapter 3

Importing Data 50

Aggregating Data 51

Monitoring for Service Level Agreements 51

SLA Thresholds 52

Threshold Time Line 53

Configure an SLA Object 54

Chapter 5: Configuring Charts for Identity Servers 56

Available Dashboards 57

Customize the LDAP Dashboard 60

Debug Dashboard Customization 60

Preserve Customized Files 60

The Chart Builder Tool 61

Chart Presentation Details 62

Chart Builder Parameters 63

Chart Properties File 64

Available Charts for Identity Servers 64

Charts for All Servers 64

Data Store Charts 65

Proxy Server Charts 65

Sync Server Charts 65

Metrics Engine Server Charts 65

Identity Broker Charts 65

Configure Charts for the Identity Broker 66

Adding a Chart to the Identity Broker Dashboard 66

Adding the Broker Dashboard to the Identity Broker Console 67

Velocity Templates 67

Supporting Multiple Content Types 69

Velocity Context Providers 70

Velocity Tools Context Provider 71

Chapter 6: Security 72

Security Features 73

Certificates 74

Authentication Using Certificates 74

Create a Server Certificate with Keytool 75

- v -

Create a Client Certificate 77

Configure the Key and Trust Manager Providers 78

SSL and StartTLS Support 79

LDAP-over-SSL (LDAPS) Support 80

StartTLS Support 80

Configure SSL 80

Configure StartTLS 82

Authentication Mechanisms 83

Configure a SASL Mechanism Handler 83

Kerberos Configuration Considerations 91

GSSAPI Mechanism Handler Options 93

Configure Pass-Through Authentication 96

Add Attributes to Restrict Authentication 97

Configure Certificate Mappers 98

Configure the Subject Equals DN Certificate Mapper 99

Configure the Fingerprint Certificate Mapper 99

Configure the Subject Attribute to User Attribute Certificate Mapper 101

Configure the Subject DN to User Attribute Certificate Mapper 101

Chapter 7: Troubleshooting 103

Collect Support Data Tool 104

Enable JVM Debugging 104

Delays in Sample Data Availability 105

Slow Queries Based on Sample Cache Size 106

Performance Troubleshooting Example 106

Insufficient Memory Errors 109

Unexpected Query Results 109

Installation and Maintenance Issues 110

The setup Program will not Run 110

The Server will not Start 111

The Server has Shutdown 113

The Server will not Accept Client Connections 114

The Server is Unresponsive 115

Problems with the Web Console 115

Chapter 8: Metric Engine API Reference 117

Connection and Security 118

- vi -

Chapter 3

Response Codes 119

List Monitored Instances 119

EXAMPLES 120

Retrieve Monitored Instance 120

EXAMPLE: 121

List Available Metrics 121

EXAMPLES 123

Retrieve a Metric Definition 124

EXAMPLE 124

Perform a Metric Query 125

Data Set Structure 127

Chart Image 128

Google Chart Tools Datasource Protocol 130

Access Alerts 132

Retrieving Event Types 132

Retrieving Events 132

LDAP SLA 133

Retrieving the SLA Object 133

EXAMPLE 134

Pagination 135

Index 136

- vii -

Preface

The UnboundID Identity Proxy Server Guide provides procedures to install and manage an
Identity Proxy Server in a multi-client environment.

About UnboundID
UnboundID Corp is a leading identity infrastructure domain solutions provider with proven
experience in large-scale identity data solutions. The UnboundID solution set provides the
following:

l Secure End-to-End Customer Data Privacy Solution – A comprehensive identity
data platform with authorization and access controls to enforce privacy policies, control
user consent, and manage resource flows.

l Purpose-Built Identity Data Platform – Solutions to consolidate, secure, and
deliver customer consent-given identity data. The system provides security measures to
protect sensitive identity data and maintain its visibility. The broad range of platform
services include, policy management, cloud provisioning, federated authentication, data
aggregation, and directory services.

l Performance across Scale and Breadth – Support for the three pillars of per-
formance-at-scale: users, response time, and throughput. The system manages real-
time data at large-scale consumer facing service providers.

l Support for External APIs – Standards-based solutions that can interface with vari-
ous external APIs to access a broad range of services. APIs include XACML 3.0, SCIM,
LDAP, OAuth2, and OpenID Connect.

Audience
This guide is intended for administrators who are responsible for installing and managing
servers in an identity enterprise environment. Knowledge of the following is recommended:

- 1 -

Preface

l Identity platforms and LDAP concepts.

l General system administration and networking practices.

l Java VM optimization.

l Application performance monitoring.

l Statistics and metrics basics.

Documentation Included with the Metrics Engine
The following documents are installed with the Metrics Engine:

l UnboundID Metrics Engine Administration Guide (PDF) – provides installation, admin-
istration, and management tasks for the Metrics Engine.

l UnboundID Metrics Reference (HTML) – provides information about the metrics collected
by the Metrics Engine.

l UnboundID Metrics Configuration Reference (HTML) – provides information about the con-
figuration options available for the Metrics Engine server.

l UnboundID Metrics Command-Line Tool Reference (HTML) – provides information about
each of the command-line tools available with the Metrics Engine and their options and
use.

l UnboundID Metrics Engine Release Notes (HTML) – provides features and fixes included
in this release.

Metrics Reference Documentation
The Metrics Engine package contains online reference documentation that can be used to
implement custom charts. Access the documentation at the following URL:

https://<metrics-engine-host>:<port>/docs/index.html

The Metrics Engine Documentation page provides links to a Metrics Documentation page, a
reference file that details every metric available per product, a Metrics Engine REST API
documentation that explains the endpoints, and the Metrics Engine Chart Builder tool to
customize any chart.

The Metrics Reference link opens to a list of all of the metrics collected by the Metrics Engine
for each configured Identity server.

- 2 -

Related Documentation

The page displays the following columns:

l Name – Provides a link to a given metric. Click a name to launch the Chart Builder tool
and display a preview chart for that specific metric.

l Produced By – Indicates the UnboundID product source that is generating the metric.

l Enable – Provides the corresponding dsconfig command-line instruction to enable the
metric on the producing monitored server. Hover over the wrench icon to view the dscon-
fig command.

l Description – Provides a brief description of the metric.

l Dimensions – Displays the type of data on the chart.

l Statistics – Displays the type of measurement taken for the metric.

The Metrics documentation page also provides a Dimensions tab, showing the type of
dimensions available for a customized chart. This information is useful when configuring charts
and dashboards. See Configuring Charts for Identity Servers for more information.

Related Documentation
The following documents represent the rest of the UnboundID product set and may be
referenced in this guide:

l UnboundID Identity Data Store Reference (HTML)

l UnboundID Identity Data Store Administration Guide (PDF)

l UnboundID Data Sync Reference Guide (HTML)

l UnboundID Data Sync Administration Guide

l UnboundID Identity Proxy Reference (HTML)

l UnboundID Identity Proxy Administration Guide (PDF)

l UnboundID Identity Broker Reference (HTML)

- 3 -

Preface

l UnboundID Identity Broker Administration Guide (PDF)

l UnboundID Identity Broker Installation Guide (PDF)

l UnboundID Identity Broker Application Developer Guide (PDF)

l UnboundID Security Guide (PDF)

l UnboundID LDAP SDK (HTML)

l UnboundID Server SDK (HTML)

- 4 -

Chapter 1: Introduction

The Metrics Engine collects performance data from the UnboundID Identity environment.

This chapter provides the following information:

Metrics Engine Overview

Metrics Engine Components

Data Collection

Charts and Dashboards

PostgresSQL DBMS Details

- 1 -

Chapter 1: Introduction

Metrics Engine Overview
The Metrics Engine provides insight into the transactions and performance of the UnboundID
identity infrastructure. The Metrics Engine collects data from configured instances and replicas
of the Identity Data Store, the Identity Proxy Server, the Identity Data Sync Server, and the
Identity Broker Server. Data collected from the Metrics Engine enables:

l Measuring the performance of the identity infrastructure as a whole service, not a col-
lection of individual servers.

l Identifying client applications that require the greatest amount of resources.

l Determining which servers have the most available resources to handle requests.

l Predicting the capacity and needs of the identity infrastructure to plan for increased
traffic.

l Analyzing all aspects of the identity infrastructure for troubleshooting performance
issues.

Metrics Engine Components
The Metrics Engine consists of the following components:

Metrics Engine – A stand-alone server that relies on the PostgresSQL database for collected
metrics. The Metrics Engine gathers data for itself and configured Identity Data Store, Identity
Proxy Server, Identity Sync Server, and Identity Broker Servers.

Metrics API – A REST API that provides access to collected metrics data . The API is
accessible over HTTPS and supports multiple management parameters including filtering,
averaging, and setting ranges for multiple data sets.

query-metric tool – The primary command-line tool for metric data access. This tool can
also be used for scripted automation of extracting data from the Metrics Engine. An explore
option enables custom queries and additions to charts and dashboards.

SNMP access – System-level metrics can be accessed over SNMP.

Data Set – A proprietary data structure that is designed for interoperability with charting
libraries such as Highcharts, FusionCharts, or JFreeChart.

Charts, Chart Builder, and Dashboard Templates – Tools for customizable, web-based
metrics charts and dashboards.

Data Collection
The Metrics Engine collects data from all monitored servers through LDAP queries to the
server's backend. Each monitored server collects and stores a limited history of data locally.
Data includes system status and performance information. To collect data, the Metrics Engine
regularly polls all monitored servers for data that is stored in time-contiguous blocks, gathers

- 2 -

Data Collection

the recent data, and stores data in a PostgreSQL database. Polling has minimal impact on the
monitored servers.

Performance Data
The majority of information collected represents the performance of the monitored server.
Each monitored server should be configured to enable the Metrics Engine to adequately keep
up with the flow. Performance data represents multiple dimensions of a metric. For example, a
response time metric can represent the request type, time to respond, the application that
made the request, and the action that was taken.

System and Status Data
All servers configured to be monitored by the Metrics Engine store server and host system
data. Server and machine metrics are retrieved from the cn=monitor backend of the
monitored server.

The Stats Collector plugin is responsible for collecting performance data from the cn=monitor
backend. Data includes server responses, replication activity, local database activity, and host
system metrics. Stats Collector configuration defines:

l Data sample and collection intervals.

l The granularity of data collected (basic, extended, and verbose).

l The types of host system data collected such as CPU, disk, and network.

l The type of data aggregation that occurs for LDAP application statistics.

See Tuning Data Collection for more information. The following illustrates the data collection
process:

Data Collection

Data collection occurs in the following steps:

1. Data samples are taken and stored in time-contiguous blocks on the disk of the mon-
itored server.

2. The Metrics Engine collection service polls for new sample blocks.

3. The new sample blocks are queued to disk on the Metrics Engine.

4. The Metrics Engine import service loads new blocks into the database.

- 3 -

Chapter 1: Introduction

Charts and Dashboards
The Metrics Engine provides a number of charts and dashboards to view metrics information. A
Chart Builder tool enables configuring charts on an HTML page and saving the properties for
use in a dashboard. Several charts are provided for general system information and specific
Identity server functions. All dashboards are viewed from the Metrics Engine. The Identity
Broker dashboard can be surfaced in the Identity Broker Console interface.

PostgreSQL DBMS Details
The Metrics Engine uses a PostgreSQL DBMS to store data, which is included in the installation.
This is a traditional table-based DBMS best suited for tabular data. The Metrics Engine interacts
with the DBMS in four ways:

Data import – Import places steady write load on the DBMS and accounts for 80% of the
writes. This single-threaded interaction puts a lock on the target table. A Metrics Engine that
monitors 20 servers keeps a single 10K RPM disk 70% busy with this single interaction.

Data aggregation – Data aggregation places a less frequent read/write load on the DBMS.
This interaction is responsible for the aggregation of the data samples from one time resolution
to the next, reading from one set of tables and writing to another set. Sample aggregation uses
no table-level locks and the ratio of records between read:write is between 60:1 and 24:1.

Data sample age-out – Sample age-out occurs at regular intervals and results in a table
being dropped and/or added. Age-out occurs every 30 minutes, though some intervals may
drop and/or add more than one table.

Data query – Sample queries occur when clients request metric samples from the public API.
The API can aggregate multiple dimensions and multiple servers in a single request. A single
request may fetch several million rows from the DBMS, though it only returns a few hundred
data points to the client. Samples from previous queries are cached by the Metrics Engine, but
initial queries for a given metric may take several seconds and result in a large amount of disk
read activity.

Over time, the storage of samples in the data tables is optimized to match the access patterns
of the queries. However, the public API supports queries where the results are the aggregate
of thousands of different dimension sets, and each dimension set may have thousands of
samples within the time range of the query. For example, a query about the throughput of all
Data Store and Proxy Servers for all applications and all LDAP operations over the last 72
hours might result in 4 to 6 million DBMS records being read into memory, aggregated, and
finally reduced to 100 data values. The results from each query are cached so that a
subsequent request for the same data results in less DBMS activity. Both disk seek time and
rotational delay impact the performance of a first-time query, so disks with faster RPM speeds
provide a measurable improvement for first-time queries.

- 4 -

Chapter 2: Installing the Metrics Engine

Installation of the Metrics Engine includes the following tasks:

Supported Platforms

Installing Java

Creating a Non-Root user

Configuring the Operating System for Linux and Solaris

Configuring the Identity Servers to Gather Metrics

Installing the Metrics Engine

Adding Monitored Servers to the Metrics Engine

Installing the Web Console

- 5 -

Chapter 2: Installing the Metrics Engine

Supported Platforms
The following table lists the supported platforms and software versions.

l Reference – tested and confirmed that the system works as documented.

l Yes – the supported platform is included in UnboundID support agreements.

l Eval Use Only – the platform can be used to evaluate UnboundID software but should
not be used for production deployments.

It is recommended that all machine resources are dedicated to the Metrics Engine Server.

Environment Server RAM DBMS RAM Disk CPU

Small (1-6 monitored serv-
ers)

8 GB 4 GB 30 GB 4 cores

Medium (7-16 monitored
servers)

20 GB 8 GB 60 GB 6 cores

Large (17-50 monitored serv-
ers)

32 GB 16 GB 180 GB 8 cores

Hardware Requirements

For medium or large installations, a hardware RAID caching controller with a non-volatile write
cache is preferred. The DBMS data requires multiple disk spindles.

The use of SSD storage for the DBMS files changes the system I/O performance, reducing the
need to cache data or DBMS disk blocks in memory to maintain good performance. A Metrics
Engine monitoring 20 servers and storing the DBMS files on SSD needs 4GB of RAM for the
JVM, and 2GB of RAM for Postgres, so a system with 12GB of RAM total provides acceptable
performance.

Operating Systems Supported? Comments

RedHat Linux 5.9 Yes

RedHat Linux 6.4 Yes

RedHat Linux 6.5 Reference

Solaris 10 x86 update 10 Yes

Solaris 11.1 x86 Yes

Solaris 11 SPARC Yes

AIX 7.1 Yes

CentOS 5.9 Yes

CentOS 6.4 Yes

CentOS 6.5 Yes

Supported Platforms & Software

- 6 -

Install the JDK

Operating Systems Supported? Comments

SUSE Enterprise 11 SP2 Yes

Windows 2008 R2 Enterprise Yes

Windows Server 2012 Yes

MacOS Eval Use Only

JDKs Supported? Comments

IBM JDK 7.x 64-bit Yes

Oracle JDX 7.x 64-bit Yes

OpenJDK 7.x Reference

Java JDKs

Virtual Hosts/Platforms Supported? Comments

VMWare vSphere & ESX 5.x Yes

IBM AIX Virtualization (LPAR, PR/SM) Yes

Virtual Hosts/Platforms

App Servers/Servlet Containers Supported? Comments

Apache Tomcat 7.x Yes

JBoss 7.x Yes

Application Servers/Servlet Containers

Auxiliary Software Supported?

Internet Explorer 7.0+ Yes

Chrome 5.0+ Yes

Firefox 3.0+ Yes

Safari 5.0+ Yes

Browser Software

Install the JDK
The Java 64-bit JDK is required on the server. Even if Java is already installed, create a
separate Java installation for use by the server to ensure that updates to the system- wide
Java installation do not inadvertently impact the installation.

Solaris systems require both the 32-bit (installed first) and 64-bit versions. The 64-bit version
of Java on Solaris relies on a number of files provided by the 32-bit installation.

- 7 -

Chapter 2: Installing the Metrics Engine

Configure a Non-Root User
The Metrics Engine installer cannot be run as the root user, and generally the Metrics Engine
(and PostgreSQL) should not be run as root. As a non-root user, network port numbers below
1024 cannot be used.

In general, this account will need the ability to do the following:

l Listen on privileged network ports.

l Bypass restrictions on resource limits.

For security, the account should be restricted from the following:

l The ability to see processes owned by other users on the system.

l The ability to create hard links to files owned by other users on the system.

Optimize the Solaris Operating System
UnboundID recommends the use of ZFS™, which is provided with Solaris systems. All of the
Metrics Engine's components should be located on a single storage pool (zpool), rather than
having separate pools configured for different server components. Multiple filesystems can be
created inside the pool. ZFS's copy-on-write transactional model does not require isolating
I/O-intensive components. Therefore, all available disks should be placed in the same zpool.

The following configurations should be made to optimize ZFS for use with the Metrics Engine.
Most configuration changes require a reboot of the machine.

Restrict ZFS Memory Consumption
The Metrics Engine relies on database caching rather than filesystem caching for performance.
Configure the ZFS memory in the etc/system file to use no more than 2GB for caching, such
as:

set zfs:zfs_arc_max= 0x80000000

This property sets the maximum size of the ARC cache to 2GB (0x80000000 or 2147483648
bytes).

Limit ZFS Transaction Group Writes
To improve write throughput and latency, set the zfs_write_limit_override property in the
etc/system file to the size of the available disk cache on the system. For example, for a
system that has a 32MB cache per disk, set the following parameter:

set zfs:zfs_write_limit_override=0x2000000

- 8 -

Optimize the Linux Operating System

Configure ZFS Access to Underlying Disks
ZFS should be given direct access to the underlying disks that will be used to back the storage.
In this configuration, the zpool used for the Metrics Engine should have a RAID 1+0
configuration (a stripe across one or more 2-disk mirrors). Although this setup can reduce the
amount of available space when compared with other configurations, RAID 1+0 provides better
performance and reliability.

Configure ZFS Compression
ZFS should have compression enabled to improve performance. In most cases, the reduced
costs of the disk I/O outweighs the CPU cost of compressing and decompressing the data. Turn
on ZFS compression by running the zfs command:

zfs set compression=on <zfs-filesystem-name>

The changes take effect without a machine reboot.

Optimize the Linux Operating System
Configure the Linux filesystem by making the following changes.

Note
The Metrics Engine explicitly overrides environment variables like PATH, LD_LIBRARY_
PATH, and LD_PRELOAD to ensure that settings used to start the server do not inadvertently
impact its behavior. If these variables must be edited, set values by editing the set_
environment_vars function of the lib/_script-util.sh script. Stop and restart the
Metrics Engine for the change to take effect.

Set the File Descriptor Limit
1. Display the current hard limit of the system. The hard limit is the maximum server limit

that can be set without tuning the kernel parameters in the proc filesystem.

ulimit -aH

2. Edit the /etc/sysctl.conf file. If the fs.file-max property is defined in the file, make
sure its value is set to at least 65535. If the line does not exist, add the following to the
end of the file:

fs.file-max = 65535

3. Edit the /etc/security/limits.conf file. If the file has lines that set the soft and hard
limits for the number of file descriptors, make sure the values are set to 65535. If the
lines are not present, add the following lines to the end of the file (before #End of

file). Insert a tab between the columns.

* soft nofile 65535
* hard nofile 65535

- 9 -

Chapter 2: Installing the Metrics Engine

4. Reboot the system, and then use the ulimit command to verify that the file descriptor
limit is set to 65535 with the following command:

ulimit -n

Set the Filesystem Flushes
Linux systems running the ext3 filesystem only flush data to disk every five seconds. If the
server is on a Linux system, edit the mount options to include the following:

commit=1

This variable changes the flush frequency from five seconds to one. Also, set the flush
frequency in the /etc/fstab file to make sure the configuration remains after reboot.

Install sysstat and pstack on Red Hat
The server troubleshooting tool collect-support-data relies on the iostat, mpstat, and
pstack utilities to collect monitoring, performance statistics, and stack trace information on
the server’s processes. For Red Hat systems, make sure that these packages are installed.

Install the dstat Utility on SUSE
The dstat utility is used by the collect-support-data tool and can be obtained from the
OpenSuSE project website.

Disable Filesystem Swapping
Disable disk swapping on the filesystem to protect the Metrics Engine JVM process from an
overly aggressive filesystem cache. Run the following command:

sysctl -w vm.swappiness=0

Configure Identity Servers to be Monitored
Before installing the Metrics Engine, configure the servers to be monitored:

l Identity Data Store

l Identity Proxy

l Identity Data Sync

l Idenity Broker

The Metrics Engine requires all monitored servers to be version 3.5.0 or later. The monitored
servers require sufficient disk space to store the monitoring data, and can be configured with
Tracked Applications if there are specific application bind DNs that should be monitored. See
the UnboundID Data Store Administration Guide for information about tracked applications.

- 10 -

Configure Identity Servers to be Monitored

Disk Space Requirements and Monitoring Intervals
The metrics backend on the monitored servers is responsible for the temporary storage of
metric data and is configured to keep a maximum amount of metric history based on log
retention policies, which are configured with the dsconfig tool.

The default retention policies define a cap on disk space usage, which in turn determines the
amount of metric history retained. If the Metrics Engine is stopped for a period of time, the
monitored servers should be configured to retain enough metrics history to prevent gaps in
data when the Metrics Engine restarts. The amount of disk space required for metrics history
can also depend on the monitored server's Stats Collector Plugin settings. In general, 500MB is
enough to retain an eight hour span of metrics history.

The value of the sample-flush-interval property of the monitored server's metrics backend
determines the maximum delay between when a metric is captured and when it can be picked
up by the Metrics Engine. The flush interval can be set between 15 and 60 seconds, with longer
values resulting in less processing load on the Metrics Engine. However, this flush interval
increases the latency between when the metric was captured and when it becomes visible in a
chart or dashboard. Changing the sample-flush-interval attribute to 60 seconds, has the
Metrics Engine keep 2000 minutes of history.

The number of metrics produced per unit of time varies based on the configuration. No formula
can be provided to compute exact storage required for each hour of history. In general, 60MB
per hour is a standard estimate.

Tracked Applications
If the Metrics Engine will monitor clients application associated with the monitored servers, the
Tracked Applications feature should be configured for monitored servers as well. Activity
performed by a particular LDAP Bind DN can be associated with a Metrics Engine application-
name which in turn can be included in Metrics Engine SLA definitions.

The Processing Time Histogram plugin is configured on each Identity Data Store and Identity
Proxy server as a set of histogram ranges. These ranges should be defined identically across
all monitored servers. For each monitored server, set the separate-monitor-entry-per-
tracked-application property of the processing time histogram plugin to true. Per-
application monitoring information will appear under cn=monitor. The per-application-
ldap-stats property must also be set to per-application-only in the Stats Collector Plugin.
Refer to the UnboundID Identity Data Store Administration Guide for Tracked Application
configuration details.

The following sets the required properties of the Processing Time Histogram plugin:

$ bin/dsconfig set-plugin-prop --plugin-name "Processing Time Histogram" \
 --set separate-monitor-entry-per-tracked-application:true

The following example sets the required property of the Stats Collector plugin:

$ bin/dsconfig set-plugin-prop --plugin-name "Stats Collector" \
 --set per-application-ldap-stats:per-application-only

- 11 -

Chapter 2: Installing the Metrics Engine

Install the Metrics Engine
Use the setup tool to install the Metrics Engine.

Note
A Windows installation requires that the Visual Studio 2010 runtime patch be installed prior to running the
Metrics Engine setup command.

1. Log in as a user, other than root.

2. Obtain the latest zip release bundle from UnboundID and unpack it in a directory owned
by this user.

$ unzip UnboundID-Metrics-Engine-<version>.zip

3. Change to the server root directory.

$ cd UnboundID-Metrics-Engine

4. Run the setup command.

$./setup

5. Type yes to accept the End-User License Agreement and press Enter to continue.

6. Read the installation process and prerequisites. Type yes and press Enter to continue.

7. Type the port number of for the PostgreSQL database instance to use to store monitoring
data, or press Enter to accept the default port.

8. Enter the directory to be used for PostgreSQL data files, or press Enter to accept the
default (pgsql_data). If the name entered is a relative path name, it will be created in
the current working directory.

9. Enter a name for the database administrative account, or press Enter to accept the
default (postgres). The setup tool will create a user (role) and database to be used by
the Metrics Engine. These credentials are strictly for use by this tool during this session
and are not retained.

10. Enter and confirm a password for this account.

11. Specify the name of the PostgreSQL account to be associated with the Metrics Engine his-
torical monitoring data, or press Enter to accept the default (metricsengine). The tool
will create this user account using the administrative account specified in step 9.

12. The password generated for this account is metricsengine, press Enter to accept the
default, or type yes and provide and confirm a new password.

13. Enter the fully-qualified host name for the Metrics Engine, or press Enter to accept the
default.

14. Create the initial root user DN for the Metrics Engine, or press Enter to accept (cn=Di-
irectory Manager)

- 12 -

Install the Metrics Engine

15. Enter and confirm a password for this account.

16. Enter an option to enable HTTP support and press Enter.

How would you like to enable support for HTTP clients?

1) HTTP
2) HTTP with SSL
3) Both HTTP and HTTP with SSL

Enter option:

17. Based on the option selected, enter the ports for the Metrics Engine to accept HTTP,
HTTPS, or both client connections, or press Enter to accept the defaults:
a. HTTP: 8080

b. HTTPS: 8443

18. Enter the port on which the Metrics Engine will accept LDAP client connections, or press
Enter to accept the default (2389).

19. To enable LDAPS, type yes, or press Enter to accept the default no.

20. If LDAPS is enabled, enter the port on which the Metrics Engine will accept LDAPS client
connections, or press Enter to accept the default (2636).

21. To enable StartTLS, type yes, or press Enter to accept the default no.

22. Choose a certificate option for the server.

Certificate server options:

1) Generate self-signed certificate (recommended for testing purposes
only)
2) Use an existing certificate located on a Java KeyStore (JKS)
3) Use an existing certificate located on a PKCS12 KeyStore
4) Use an existing certificate on a PKCS11 token

Depending on the option chosen, other information may be needed. If the Java or the
PKCS#12 KeyStore is chosen, the KeyStore path and PIN is needed. If the PKCS#11
token is chosen, the key PIN is needed.

23. To specify particular addresses on which this server will listen for client connections,
type yes and press Enter. By default the server listens on all available network
interfaces. To keep the default behavior, press Enter for (no).

24. Choose an option to assign the amount of memory that the server should allocate to the
Metrics Engine and press Enter.
a. 1) Aggressive – The system is dedicated to running only this server (use 7g of

21g total memory)

b. 2) Minimal – Use the bare minimum memory (2G), which is useful for evaluating

- 13 -

Chapter 2: Installing the Metrics Engine

product functionality at a small scale only.

c. 3) Manual – Enter the amount of memory explicitly

25. Press Enter (yes) to start the server when configuration is complete.

26. Press Enter to install the Metrics Engine with the defined parameters.

Add Monitored Servers to the Metrics Engine
Configure the Metrics Engine to monitor servers using the monitored-servers tool or
configure them individually using the dsconfig tool.

Using the monitored-servers Tool
The monitored-servers command-line tool configures communication between the Identity
servers and the Metrics Engine, then adds external server definitions to the Metrics Engine
based on the server's administrative data. Before a server is added to the Metrics Engine
configuration, the system determines whether communication needs to be configured. If so,
the cn=Monitoring User root user account is created on the external server.

Running the tool with the add-servers subcommand creates an external server based on the
information discovered about the remote server. It also uses the information located in the
cn=admin data entry to discover other servers in the topology, which are also added to the
configuration.

The following examples use the monitored-servers tool:

l Run the monitored-servers tool with the add-servers subcommand. Specify con-
nection information for the Metrics Engine, as well as connection information for any
remote servers in use.

$ bin/monitored-servers add-servers --bindDN uid=admin,dc=example,dc=com \
 --bindPassword password --monitoringUserBindPassword password \
 --remoteServerHostname localhost --remoteServerPort 1389 \
 --remoteServerBindPassword password

l Use the --dry-run option to generate output detailing the work that would be done in a
live session without actually making changes to the server configuration.

$ bin/monitored-servers add-servers --bindDN uid=admin,dc=example,dc=com \
 --bindPassword password --monitoringUserBindPassword password \
 --remoteServerHostname localhost --remoteServerPort 1389 \
 --remoteServerBindPassword password --dry-run

Using the dsconfig Tool
Use the dsconfig tool to configure individual servers to be monitored by the Metrics Engine.
Only servers specified in the monitored-server property are actively monitored.

The following example uses the dsconfig tool for configuring a server.

- 14 -

Start and Stop the Metrics Engine Server

1. Run the dsconfig tool.

$ bin/dsconfig

2. Enter the host, connection type, connection port, and user bind DN account. The Con-
figuration Main Menu displays.

3. Select the Monitoring Configuration option.

4. Select the View and edit the Monitoring Configuration option.

5. Edit the monitored-server property. By default, the Metrics Engine server is the only
server listed after installation.

6. Select the Add one or more values option to add a new server.

7. Follow the prompts to add the new server.

Start and Stop the Metrics Engine Server
When the Metrics Engine starts for the very first time, it downloads new samples from the
monitored servers and adds data to the database. Until it has finished this first data collection,
the Metrics Engine will not be able to answer metric queries to the database. The Metrics
Engine processes samples from the oldest to the newest, so queries on more recent data may
require more start-up time. Note that if the monitored servers have been collecting samples
for several days, there may be a significant backlog of data to collect.

To determine if the server is ready to respond to metric queries, run the status tool. If the
Sample Import Backlog property is zero (0), the server is ready.

Start the Metrics Engine as a Background Process
Navigate to the server root directory, and run the following command:

$ bin/start-metrics-engine

For Windows systems:

$ bat/start-metrics-engine

Start the Metrics Engine as a Foreground Process
Navigate to the server root directory, and run the following command:

$ bin/start-metrics-engine --nodetach

Start the Metrics Engine at Boot Time
By default, the Metrics Engine does not start automatically when the system is booted. To
configure the monitoring server to start automatically when the system boots, use the create-
rc-script tool to create a run control script as follows:

- 15 -

Chapter 2: Installing the Metrics Engine

1. Create the startup script as the non-root Metrics Engine user. In this example ds is the
user.

$ bin/create-rc-script --outputFile UnboundID-ME.sh \
 --userName ds

2. Log in as root, move the generated UnboundID-ME.sh script into the /etc/init.d dir-
ectory, and create symlinks to it from the /etc/rc3.d (starting with an "S" to start the
server) and /etc/rc0.d directory (starting with a "K" to stop the server).

mv UnboundID-ME.sh /etc/init.d/
ln -s /etc/init.d/UnboundID-ME.sh /etc/rc3.d/S50-UnboundID-ME.sh
ln -s /etc/init.d/UnboundID-ME.sh /etc/rc0.d/K50-UnboundID-ME.sh

Stop the Metrics Engine
Navigate to the server root directory, and run the following command:

$ bin/stop-metrics-engine

Restart the Metrics Engine
Restart the Metrics Engine using the -- restart or -R option. Running this command is
equivalent to shutting down the server, exiting the JVM session, and then starting up again,
which requires a re-priming of the JVM cache.

To avoid destroying and re-creating the JVM, use an internal restart, which can be issued over
LDAP. The internal restart will keep the same Java process.

Navigate to the server root directory, and run the following command:

$ bin/stop-metrics-engine --restart \
 --hostname 127.0.0.1

Uninstall the Metrics Engine
Use the uninstall command-line utility to uninstall the Metrics Engine using in either
interactive or non-interactive modes. Interactive mode provides options, progress, and a list
of the files and directories that must be manually deleted if necessary.

Non-interactive mode, invoked with the --no-prompt option, suppresses progress
information, except for fatal errors. All options for the uninstall command are listed with the
--help option.

The uninstall command must be run as either the root user or the user account that installed
the Metrics Engine.

Perform the following steps to uninstall in interactive mode:

1. Navigate to the server root directory.

$ cd UnboundID-Metrics-Engine

- 16 -

Install the Metrics Engine Web Console

2. Start the uninstall command:

$./uninstall

3. Select the components to be removed, or press Enter to remove all components.

4. If the Metrics Engine is running, press Enter to shutdown the server before continuing.

5. Manually remove any remaining files or directories, if required.

Install the Metrics Engine Web Console
The Metrics Engine Web Console provides configuration and schema management functionality
in addition to monitoring and server information. Like the dsconfig configuration tool, all
changes made using the Web Console are recorded in logs/config-audit.log.

The Management Console must be deployed in a servlet container that supports the servlet API
2.5 or later.

Note TheManagement Console supports JBoss 7.1.1 or later.

The following steps use Apache Tomcat as the container.

1. Download and install the servlet container.

2. Using Tomcat, set the appropriate environment variables. The setclasspath.sh and
catalina.sh files are in the Tomcat bin directory.

$ echo "BASEDIR=/path/to/tomcat" >> setclasspath.sh
$ echo "CATALINA_HOME=/path/to/tomcat" >> catalina.sh

3. Download the Console ZIP file, metrics-web-console-<version>-GAimage.zip and
unzip the file. The following files are listed:

3RD-PARTY-LICENSE.TXT
LICENSE.TXT
README
metricsengconsole.war

4. Create a metricsengconsole directory in the apache-tomcat-<version>/webapps dir-
ectory and copy the metricsengconsole.war file to that directory. If the servlet is run-
ning and auto-deploy is enabled, the .war file will install in the directory.

$ mkdir apache-tomcat-<version>/webapps/metricsengconsole
$ cp metricsengconsole.war apache-tomcat-
<version>/webapps/metricsengconsole

5. Navigate to the apache-tomcat-<version>/webapps/metricsengconsole directory to
extract the contents of the console. The jar command is included with the JDK.

$ cd apache-tomcat-<version>/webapps/metricsengconsole
$ jar xvf metricsengconsole.war

- 17 -

Chapter 2: Installing the Metrics Engine

6. The WEB-INF/web.xml file can be edited to point to the correct Metrics Engine instance.
Uncomment the necessary parameters and change the host and port to match the
server. For example, the server or servers that the console uses to authenticate with can
be listed using the following parameters:

<context-param>
 <param-name>ldap-servers</param-name>
 <param-value>localhost:389</param-value>
</context-param>

If the ldap-servers parameter is not defined, a user logging into the web console must
enter the server host and port.

7. The session timeout value can also be changed by editing apache-tomcat-<ver-
sion>/conf/web.xml and adding a new value in minutes:

<session-config>
 <session-timeout>120</session-timeout>
</session-config>

8. Start the Metrics Engine if it is not already running, and then start the Console using the
apache-tomcat-<version>/bin/startup.sh script. (On Microsoft Windows, use star-

tup.bat.)

9. Set the JAVA_HOME environment variable to specify the location of the Java installation to
run the server.

$ env JAVA_HOME=/ds/java bin/startup.sh
Using CATALINA_BASE: /apache-tomcat-<version>
Using CATALINA_HOME: /apache-tomcat-<version>
Using CATALINA_TMPDIR: /apache-tomcat-<version>/temp
Using JRE_HOME: /ds/java

10. Open a browser to http://hostname:8080/metricsengconsole. By default, Tomcat
listens on port 8080 for HTTP requests.

Configure the Web Console
The Console uses a web.xml descriptor file for its configuration and deployment settings.
Configuration in this file includes defining one or more primary servers and configuring
security and truststore settings. If servers are defined in this file, the Console will
automatically attempt to connect to the server(s) in the order in which they are specified until
one of the servers can authenticate the username and password given on the login page. The
console also uses this server to "discover" other servers in the topology, making them
available for monitoring and management in the console.

Perform the following steps to add servers:

1. Open the metricsengconsole/WEB-INF/web.xml file in a text editor to specify the
server(s) that the console uses to authenticate.

- 18 -

Install the Metrics Engine Web Console

2. Remove the comment tags (<!-- -->) in the ldap-servers section.

3. Specify the servers as host:port (server1.example.com:389) or using the LDAPS pro-
tocol to specify security information (ldaps://server1.example.com:389). Separate
multiple servers with a space. For example, a server using standard LDAP com-
munication and another other using SSL would be listed as the following:

<context-param>
 <param-name>ldap-servers</param-name>
 <param-value>localhost:389 ldaps://svr1.example.com:389</param-value>
</context-param>

3. Save the file.

Configure SSL or StartTLS for the Console
Configure the console so that it will communicate with all of its servers over SSL or StartTLS.

1. Open the metricsengconsole/WEB-INF/web.xml file in a text editor.

2. Remove the comment tags (<!-- and -->) in the security section.

3. Specify none, ssl, or starttls for the type of security used to communicate with the Met-
rics Engine.

<context-param>
 <param-name>security</param-name>
 <param-value>ssl</param-value>
</context-param>

4. Save the file.

Configure a Truststore for the Console
For SSL and StartTLS communication, specify the truststore and its password (or password
file) in the web.xml file. If no truststore is specified, all server certificates are trusted.

1. Open the metricsengconsole/WEB-INF/web.xml file in a text editor.

2. Remove the comment tags (<!-- and -->) in the truststore section.

3. Specify the path to the truststore.

<context-param>
 <param-name>trustStore</param-name>
 <param-value>/path/to/truststore</param-value>
</context-param>

4. Specify the password or the path to the password pin file.

<context-param>
 <param-name>trustStorePassword</param-name>
 <param-value>password</param-value>
</context-param>

- 19 -

Chapter 2: Installing the Metrics Engine

<context-param>
 <param-name>trustStorePasswordFile</param-name>
 <param-value>/path/to/truststore/pin/file</param-value>
</context-param>

4. Save the file.

Log Into the Console
To log into the Console, use a DN (for example, cn=Directory Manager) or provide the name
of an administrator stored under cn=admin data. The dsframework command can be used to
create a global administrator, for example:

$ dsframework create-admin-user \
 --hostname server1.example.com \
 --port 1389 --bindDN "cn=Directory Manager" \
 --bindPassword secret \
 --userID someAdmin --set password:secret

Perform the following steps to log into the Web Console:

1. Navigate to the server root directory.

$ cd UnboundID-Metrics-Engine

2. Start the Metrics Engine.

$ start-metrics-engine

3. Start the Apache Tomcat application server.

$ /apache-tomcat-<version>/bin/startup.sh

4. Open a browser to http://hostname:8080/metricsengconsole/.

5. Type the root user DN (or any authorized administrator user name) and password, and
then click Login.

6. On the Management Console, click Configuration.

7. View the Configurationmenu. By default, the Basic object type properties are dis-
played. The complexity level of the object types is changed using the Object Types
drop-down list.

Upgrade the Web Console
Perform the following steps to upgrade the Console:

1. Shut down the console and servlet container.

2. In the current deployment of the Console, move the webapps/metricsengconsole/WEB-
INF/web.xml file to another location.

- 20 -

Install the Metrics Engine Web Console

3. Download and deploy the latest version of the Console. See Install the Metrics Engine
Web Console.

4. Apply any configuration changes from the previous version of the web.xml file to the new
file.

5. Start the servlet container.

Uninstall the Console
Perform the following steps to uninstall the Console:

1. Close the Console.

2. Shut down the servlet container with the following command (On Microsoft

3. Windows, use shutdown.bat):

$ apache-tomcat-<version>/bin/shutdown.sh

4. Remove the webapps/metricsengconsole directory with the following command:

$ rm -rf webapps/metricsengconsole

5. Restart the servlet container instance if running other applications.

- 21 -

Chapter 3: Managing the Metrics Engine

There are several ways to manage the Metrics Engine status and performance.

This section includes the following information:

Metrics Engine Error Logging

Backend Monitor Entries

Configure Alert Handlers

The Alerts Backend

System Alarms and Gauges

Backup the Metrics Engine Database

Management Tools

Server SDK Extensions

- 22 -

Chapter 3: Managing the Metrics Engine

Metrics Engine Error Logging
The Metrics Engine provides error loggers that provide warnings, errors, or significant events
that occur within the server. Log publishers rely on log rotation and retention policies.
Customization options for log publishers are available with the dsconfig command.

Each log publisher must have at least one log rotation policy and log retention policy
configured. Configure the log rotation policy for each log publisher. When a rotation limit is
reached, the Metrics Engine rotates the current log and starts a new log.

Log retention is only effective if a log rotation policy is configured. When a retention limit is
reached, the Metrics Engine removes the oldest archived log prior to creating a new log.

Logging Retention Policies
Select retention configuration from the following:

Time Limit Rotation Policy – Rotates the log based on the length of time since the last
rotation. Default implementations are provided for rotation every 24 hours and every 7 days.

Fixed Time Rotation Policy – Rotates the logs every day at a specified time (based on 24-
hour time). The default time is 2359.

Size Limit Rotation Policy – Rotates the logs when the file reaches the maximum size for
each log. The default size limit is 100MB.

Never Rotate Policy – Used in a rare event that does not require log rotation.

Logging Rotation Policies
Select rotation configuration from the following:

File Count Retention Policy – Sets the number of log files for the Metrics Engine to retain.
The default file count is 10 logs. If the file count is set to 1, then the log will continue to grow
indefinitely without being rotated.

Free Disk Space Retention Policy – Sets the minimum amount of free disk space. The
default free disk space is 500MB.

Size Limit Retention Policy – Sets the maximum size of the combined archived logs. The
default size limit is 500MB.

Custom Retention Policy – Create a new retention policy. This requires developing custom
code to implement the log retention policy.

Never Delete Retention Policy – Used in a rare event that does not require log deletion.

Create Log Publishers
Create a new log publisher with dsconfig, either from the command line or in interactive
mode (bin/dsconfig). Retention and rotation policies must be configured for the log
publisher. For more information about policy options, see Configure Logs.

- 23 -

Metrics Engine Error Logging

Note
Compression cannot be disabled or turned off once configured for the logger. Determine
logging requirements, prior to creating and configuring them.

Perform the following steps to create a log publisher:

1. The following creates a log publisher with the dsconfig command that logs disconnect
operations.

$ bin/dsconfig create-log-publisher \
 --type file-based-access --publisher-name "Disconnect Logger" \
 --set enabled:true \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set log-connects:false \
 --set log-requests:false --set log-results:false \
 --set log-file:logs/disconnect.log

To configure compression on the logger, add this option to the previous command:

--set compression-mechanism: gzip

2. To view log publishers, enter the following command:

$ bin/dsconfig list-log-publishers

Error Log Publisher
The Error Log reports errors, warnings, and informational messages about events that occur
during the course of the Metrics Engine’s operation. Each entry in the error log records the
following properties (some are disabled by default and must be enabled):

Time Stamp – Displays the date and time of the operation in the format
DD/Month/YYYY:HH:MM:SS <offset from UTC time>.

Category– Specifies the message category that is loosely based on the server components.

Severity – Specifies the message severity of the event, which defines the importance of the
message in terms of major errors that need to be quickly addressed. The default severity
levels are fatal-error, notice, severe-error, and severe-warning.

Message ID – Specifies the numeric identifier of the message.

Message – Stores the error, warning, or informational message.

The following displays an error log for the Metrics Engine. The log is enabled by default and is
accessible in the <server-root>/logs/errors file.

[21/Oct/2012:05:15:23.048 -0500] category=RUNTIME_INFORMATION severity=NOTICE
msgID=20381715 msg="JVM Arguments: '-Xmx8g', '-Xms8g', '-XX:MaxNewSize=1g',
'-XX:NewSize=1g', '-XX:+UseConcMarkSweepGC', '-XX:+CMSConcurrentMTEnabled',
'-XX:+CMSParallelRemarkEnabled', '-XX:+CMSParallelSurvivorRemarkEnabled',
'-XX:+CMSScavengeBeforeRemark', '-XX:RefDiscoveryPolicy=1',
'-XX:ParallelCMSThreads=4', '-XX:CMSMaxAbortablePrecleanTime=3600000',
'-XX:CMSInitiatingOccupancyFraction=80', '-XX:+UseParNewGC', '-XX:+UseMembar',

- 24 -

Chapter 3: Managing the Metrics Engine

'-XX:+UseBiasedLocking', '-XX:+UseLargePages', '-XX:+UseCompressedOops',
'-XX:PermSize=128M', '-XX:+HeapDumpOnOutOfMemoryError',
'-Dcom.unboundid.directory.server.scriptName=setup'"
[21/Oct/2012:05:15:23.081 -0500] category=EXTENSIONS severity=NOTICE
msgID=1880555611 msg="Administrative alert type=server-starting
id=4178daee-ba3a-4be5-8e07-5ba17bf30b71
class=com.unboundid.directory.server.core.MetricsEngine
msg='The Metrics Engine is starting'"
[21/Oct/2012:05:15:23.585 -0500] category=CORE severity=NOTICE
msgID=1879507338 msg="Starting group processing for backend api-users"
[21/Oct/2012:05:15:23.586 -0500] category=CORE severity=NOTICE
msgID=1879507339 msg="Completed group processing for backend api-users"
[21/Oct/2012:05:15:23.586 -0500] category=EXTENSIONS severity=NOTICE
msgID=1880555575 msg="'Group cache (2 static group(s) with 0 total
memberships and 0 unique members, 0 virtual static group(s),
1 dynamic group(s))' currently consumes 7968 bytes and can grow to a maximum
of an unknown number of bytes"
[21/Oct/2012:05:16:18.011 -0500] category=CORE severity=NOTICE
msgID=458887 msg="The Metrics Engine (UnboundID Metrics Engine 4.5.1.0
build 20121021003738Z, R12799) has started successfully"

Use dsconfig to modify the default File-Based Error Log, as in the following command:

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Error Logger" \
 --set include-product-name:true --set include-instance-name:true \
 --set include-startup-id:true

Backend Monitor Entries
The Metrics Engine exposes its monitoring information under the cn=monitor entry.
Administrators can use various means to monitor the servers, including the Metrics Engine,
through SNMP, the Management Console, JConsole, LDAP command-line tools, and the Periodic
Stats Logger.

The Monitor Backend contains an entry per component or activity being monitored. The list of
all monitor entries can be seen using the ldapsearch command as follows:

$ bin/ldapsearch --hostname server1.example.com --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" --bindPassword secret \
 --baseDN "cn=monitor" "(objectclass=*)" cn

The following table lists a subset of monitor entries.

Component Description

Active Operations Provides information about the operations currently being processed by the Metrics
Engine including the number of operations, information on each operation, and the
number of active persistent searches.

Backends Provides general information about the state of a Metrics Engine backend, includ-

Monitoring Components

- 25 -

Backend Monitor Entries

Component Description

ing the entry count. If the backend is a local database, there is a corresponding
database environment monitor entry with information on cache usage and on-disk
size.

Client Connections Provides information about all client connections to the Metrics Engine including a
name followed by an equal sign and a quoted value, such as connID="15",
connectTime="20100308223038Z".

Connection Handlers Provides information about the available connection handlers on the Metrics
Engine including the LDAP and LDIF connection handlers.

Disk Space Usage Provides information about the disk space available to various components of the
Metrics Engine.

General Provides general information about the state of the Metrics Engine, including
product name, vendor name, and server version.

Index Provides information on each index including the number of preloaded keys and
counters for read, write, remove, open-cursor, and read-for-search actions. These
counters provide insight into how useful an index is for a given workload.

HTTP/HTTPS Connection
Handler Statistics

Provides statistics about the interaction that the associated HTTP connection hand-
ler has had with its clients, including the number of connections accepted, average
requests per connection, average connection duration, total bytes returned, and
average processing time by status code.

JVM Stack Trace Provides a stack trace of all threads processing within the JVM.

LDAP Connection Handler
Statistics

Provides statistics about the interaction that the associated LDAP connection hand-
ler has had with its clients, including the number of connections established and
closed, bytes read and written, LDAP messages read and written, and operations
initiated, completed, and abandoned.

Processing Time Histogram Categorizes operation processing times into a number of user-defined buckets of
information, including the total number of operations processed, overall average
response time (ms), number of processing times between 0ms and 1ms, etc.

System Information Provides general information about the system and the JVM on which the Metrics
Engine is running, including system host name, operation system, JVM archi-
tecture, Java home, Java version, etc.

Version Provides information about the Metrics Engine version, including build ID, version,
revision number, etc.

Work Queue Provides information about the state of the Metrics Engine work queue, which
holds requests until they can be processed by a worker thread, including the
requests rejected, current work queue size, number of worker threads, number of
busy worker threads, etc.

Monitoring Components

Disk Space Usage Monitor
The disk space usage monitor provides information about the amount of usable disk space
available for Metrics Engine components. It also provides the ability to generate administrative
alerts, as well as take action if the amount of usable space drops below the defined thresholds.

All values must be specified as absolute values or as percentages. A mix of absolute values
and percentages cannot be used. The following thresholds are available:

- 26 -

Chapter 3: Managing the Metrics Engine

Low space warning – This threshold defines either a percentage or an absolute amount of
usable space. If the amount of usable space drops below this threshold, the Metrics Engine
generates an administrative alert. It generates alerts at regular intervals, based on
configuration settings, until the amount of usable space is increased, or as the amount of
usable space is further reduced.

Low space error – This threshold is also defined as either a percentage or an absolute size.
Once the amount of usable space drops below this threshold, the server will generate an alert
notification and will begin rejecting all operations requested by non-root users with
"UNAVAILABLE" results. Once the server enters this mode, some action must be taken before
the server will resume normal operations. This threshold must be less than or equal to the low
space warning threshold. If they are equal, the server will begin rejecting requests from non-
root users immediately upon detecting low usable disk space.

Out of space error – This threshold may also be defined as a percentage or an absolute size.
Once the amount of usable space drops below this threshold, the Metrics Engine will generate a
final administrative alert and will shut itself down. This threshold must be less than or equal to
the low space error threshold. If they are equal, the server will shut itself down rather than
rejecting requests from non-root users.

Notifications and Alerts
In addition to standard error logging, the Metrics Engine provides delivery mechanisms for
account status notifications and administrative alerts using SMTP, JMX, or SNMP. Alerts and
events reflect state changes within the server that may be of interest to a user or monitoring
service. Account status notifications are only delivered to the account owner.

The Metrics Engine provides a number of alert handler implementations, including:

Error Log Alert Handler – Sends administrative alerts to the configured server error logger
(s).

Exec Alert Handler – Executes a specified command on the local system if an administrative
alert matching the criteria for this alert handler is generated by the Metrics Engine.
Information about the administrative alert is made available to the executed application as
arguments provided by the command.

Groovy Scripted Alert Handler – Provides alert handler implementations defined in a
dynamically-loaded Groovy script that implements the ScriptedAlertHandler class defined
in the Server SDK.

JMX Alert Handler – Sends administrative alerts to clients using the Java Management
Extensions (JMX) protocol. UnboundID uses JMX for monitoring entries and requires that the
JMX connection handler be enabled.

SMTP Alert Handler – Sends administrative alerts to clients via email using the SMTP. The
server requires that one or more SMTP servers be defined in the global configuration.

SNMP Alert Handler – Sends administrative alerts to clients using the Simple Network
Monitoring Protocol (SNMP). The server must have an SNMP agent capable of communicating
through SNMP.

- 27 -

Configure Alert Handlers

SNMP Subagent Alert Handler – Sends SNMP traps to a master agent in response to
administrative alerts generated within the server.

Third Party Alert Handler – Provides alert handler implementations created in third-party
code using the Server SDK.

A complete listing of system alerts, alarms, and their severity is available in <server-
root>/docs/admin-alerts-list.csv

Configure Alert Handlers
Alert handlers can be configured with the dsconfig tool. The Metrics Engine supports JMX,
SMTP, and SNMP. Use the --help option for a list of configuration options. The following is a
sample command to create and enable an SMTP Alert handler from the command line:

$ bin/dsconfig create-alert-handler \
 --handler-name "SMTP Alert Handler" \
 --type smtp \
 --set enabled:true \
 --set "sender-address:alerts@example.com" \
 --set "recipient-address:administrators@example.com" \
 --set "message-subject:Directory Admin Alert \%\%alert-type\%\%" \
 --set "message-body:Administrative alert:\\n\%\%alert-message\%\%"

The Alerts Backend
The Metrics Engine stores recently generated administrative alerts under the cn=alerts
branch. The backend makes it possible to obtain admin alert information over LDAP for use
with remote monitoring. The backend's primary job is to process search operations for alerts.
It does not support add, modify, or modify DN operations of entries.

The alerts persist on disk in the config/alerts.ldif file so that they can survive server
restarts. By default, the alerts remain on disk for seven days before being removed. However,
administrators can configure the number of days for alert retention using the dsconfig tool.
The administrative alerts of Warning level or worse that have occurred in the last 48 hours are
viewable from the output of the status command-line tool and in the Metric's Engine Web
Console.

View Information in the Alerts Backend
Use ldapsearch to view the administrative alerts:

$ bin/ldapsearch --port 1389 --bindDN "cn=Directory Manager" \
 --bindPassword secret --baseDN cn=alerts "(objectclass=*)"
dn: cn=alerts
objectClass: top
objectClass: ds-alert-root
cn: alerts

dn: ds-alert-id=3d1857a2-e8cf-4e80-ac0e-ba933be59eca,cn=alerts

- 28 -

Chapter 3: Managing the Metrics Engine

objectClass: top
objectClass: ds-admin-alert
ds-alert-id: 3d1857a2-e8cf-4e80-ac0e-ba933be59eca
ds-alert-type: server-started
ds-alert-severity: info
ds-alert-type-oid: 1.3.6.1.4.1.32473.2.11.33
ds-alert-time: 20110126041442.622Z
ds-alert-generator: com.unboundid.directory.server.core.metrics.engine
ds-alert-message: The Metrics Engine has started successfully

Modify the Alert Retention Time
Use dsconfig to change the maximum time information about generated alerts retained in the
alerts backend. After this time, the information is purged from the Metrics Engine. The
minimum retention time is 0 milliseconds, which immediately purges the alert information.

$ bin/dsconfig set-backend-prop --backend-name "alerts" \
 --set "alert-retention-time: 2 weeks"

View the property using dsconfig:

$ bin/dsconfig get-backend-prop --backend-name "alerts" \
 --property alert-retention-time

Property : Value(s)
---------------------:---------
alert-retention-time : 2 w

Configure Duplicate Alert Suppression
Use dsconfig to configure the maximum number of times an alert is generated within a
particular time frame for the same condition. The duplicate-alert-time-limit property
specifies the length of time that must pass before duplicate messages are sent over the
administrative alert framework and the maximum number of messages should be sent.

$ bin/dsconfig set-global-configuration-prop \
 --set duplicate-alert-limit:2 \
 --set "duplicate-alert-time-limit:3 minutes"

System Alarms and Gauges
An alarm represents a stateful condition of the server or a resource that may indicate a
problem, such as low disk space or external server unavailability. A gauge defines a set of
threshold values with a specified severity that, when crossed, cause the server to enter or exit
an alarm state. Gauges are used for monitoring continuous values like CPU load or free disk
space (Numeric Gauge), or an enumerated set of values such as 'server available' or ‘server
unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity changes
due to changes in the monitored value. Like alerts, alarms have severity (NORMAL, WARNING,
MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a Condition

- 29 -

Testing Alerts and Alarms

property, and may have a Specific Problem or Resource property. If surfaced through SNMP, a
Probable Cause property and Alarm Type property are also listed. Alarms can be configured
to generate alerts when the alarm's severity changes.

There are two alert types supported by the server - standard and alarm-specific. The server
constantly monitors for conditions that may attention by administrators, such as low disk
space. For this condition, the standard alert is low-disk-space-warning, and the alarm-
specific alert is alarm-warning. The server can be configured to generate alarm-specific alerts
instead of, or in addition to, standard alerts. By default, standard alerts are generated for
conditions internally monitored by the server. However, gauges can only generate alarm-
alerts.

The server installs a set of gauges that are specific to the product and that can be cloned or
configured through the dsconfig tool. Existing gauges can be tailored to fit each environment
by adjusting the update interval and threshold values. Configuration of system gauges
determines the criteria by which alarms are triggered. The Stats Logger can be used to view
historical information about the value and severity of all system gauges.

The UnboundID servers are compliant with the International Telecommunication Union CCITT
Recommendation X.733 (1992) standard for generating and clearing alarms. If configured,
entering or exiting an alarm state can result in one or more alerts. An alarm state is exited
when the condition no longer applies. An alarm_cleared alert type is generated by the system
when an alarm's severity changes from a non-normal severity to any other severity. An
alarm_cleared alert will correlate to a previous alarm when Condition and Resource property
are the same. The Alarm Manager, which governs the actions performed when an alarm state
is entered, is configurable through the dsconfig tool and Web Console.

<p>Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores
information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over
time that can change in severity and be cleared when a monitored value returns to normal.
Alarms can be viewed with the status tool. As with other alert types, alert handlers can be
configured to manage the alerts generated by alarms. A complete listing of system alerts,
alarms, and their severity is available in <server-root>/docs/admin-alerts-list.csv.

Testing Alerts and Alarms
After alarms and alert handlers are configured, verify that the server takes the appropriate
action when an alarm state changes by manually increasing the severity of a gauge. Alarms
and alerts can be verified with the status tool.

To Test Alarms and Alerts
1. Configure a gauge with dsconfig and set the override-severity property to critical. The

following example uses the CPU Usage (Percent) gauge.

$ dsconfig set-gauge-prop \
 --gauge-name "CPU Usage (Percent)" \
 --set override-severity:critical

- 30 -

Chapter 3: Managing the Metrics Engine

2. Run the status tool to verify that an alarm was generated with corresponding alerts.
The status tool provides a summary of the server’s current state with key metrics and
a list of recent alerts and alarms. The sample output has been shortened to show just the
alarms and alerts information.

$ bin/status

 --- Administrative Alerts ---
Severity : Time : Message
---------:----------------:---

Error : 11/Aug/2014 : Alarm [CPU Usage (Percent). Gauge CPU Usage
(Percent)
 : 15:41:00 -0500 : for Host System has
 : : a current value of '18.583333333333332'.
 : : The severity is currently OVERRIDDEN in the
 : : Gauge's configuration to 'CRITICAL'.
 : : The actual severity is: The severity is
 : : currently 'NORMAL', having assumed this
severity
 : : Mon Aug 11 15:41:00 CDT 2014. If CPU use is
high,
 : : check the server's current workload and make
any
 : : needed adjustments. Reducing the load on the
system
 : : will lead to better response times.
 : : Resource='Host System']
 : : raised with critical severity
Shown are alerts of severity [Info,Warning,Error,Fatal] from the past 48
hours
Use the --maxAlerts and/or --alertSeverity options to filter this list

 --- Alarms ---
Severity : Severity : Condition : Resource : Details
 : Start Time : : :
---------:------------:-----------:-------------:-------------------------
--
Critical : 11/Aug/2014: CPU Usage : Host System : Gauge CPU Usage
(Percent) for
 : 15:41:00 : (Percent) : : Host System
 : -0500 : : : has a current value of
 : : : : '18.785714285714285'.
 : : : : The severity is
currently
 : : : : 'CRITICAL', having
assumed
 : : : : this severity Mon Aug 11
 : : : : 15:49:00 CDT 2014. If
CPU use
 : : : : is high, check the

- 31 -

Back Up the Metrics Engine Database

server's
 : : : : current workload and
make any
 : : : : needed adjustments.
Reducing
 : : : : the load on the system
will
 : : : : lead to better response
times
Shown are alarms of severity [Warning,Minor,Major,Critical
Use the --alarmSeverity option to filter this list

Back Up the Metrics Engine Database
The Metrics Engine stores all historical metric samples in the PostgreSQL DBMS, along with
several other data tables that are used for bookkeeping and normalization of the sample data.
Even a small Metrics Engine installation, which monitors three to four servers, will use sample
tables that occupy 95% of the total DBMS space . While a functional backup must capture a
consistent view of several tables, the size of the sample tables dictates the desired approach to
a regular backup strategy.

The historical samples enable:

l Diagnosing past performance problems.

l Capacity planning and historical reporting.

l Access to data needed for a revenue stream, such as data used for billing and charge
back.

Defining data that is important to the infrastructure will help determine the right backup
strategy. In the case of billing, the data needed is typically small compared to the total
population of the DBMS. The REST API can be used to extract the data on a regular basis and
archive it in a set of CSV files. This may be all the data needed, and the planning and resources
required to backup the DBMS will be minimal.

If it's not possible to determine what data will be important in the future, backing up all DBMS
data is the safest approach.

Historical Data Storage
The Metrics Engine DBMS stores all historical sample data. It can store time-aggregated data
for up to twenty years. The data in the DBMS is continually changing as long as the Metrics
Engine is running.

The system that feeds data to the Metrics Engine is designed to allow the Metrics Engine to be
offline for hours at a time without dropping any data. The collection points hold the data for
hours, giving the Metrics Engine time for maintenance tasks. The collection points do have a
limit on how long they hold data, so the Metrics Engine cannot be offline for an indeterminate
time.

- 32 -

Chapter 3: Managing the Metrics Engine

If the Metrics Engine is offline so long that the collection points start to delete data that has not
yet been captured, then there will be gaps in the data. Aggregation still works, even with these
gaps. If the data gap is four hours, four time samples will be missing in the one hour
aggregation level, and no data will be missing in the one day aggregation level. However, the
one day aggregation level will use only 20 hours of data rather than 24. By default, the Metrics
Engine can be offline for about eight hours before any data is lost.

The Metrics Engine responds to queries that result in data with time gaps. The resulting data
differentiates between data with zero value and missing data.

Planning the Backup
Choose a time window during which the Metrics Engine can be offline and ensure that you have
enough disk space to hold the new image. The exact size of a DBMS table and its corresponding
backup depends on the number of monitored servers, the number of tracked applications, the
collected metrics, and the retention duration for each of the aggregation levels. The following
table provides values from installations used during testing.

Data 25 Monitored Servers 50 Monitored Servers

Number of tracked applications 20 20

1 second data resolution 8 hours 8 hours

1 minute data retention 14 days 14 days

1 hour data retention 52 weeks 52 week

1 day data retention 20 years 20 years

1 second table size 22 G 42 G

1 minute table size 8 G 18 G

1 hour table size 4 G (estimated) 9 G (estimated)

1 day data retention 4 G (estimated) 7 G (estimated)

time to backup 15 minutes (estimated) 30 minutes (estimated)

time for import catchup 10 minutes 42 minutes

size of compressed backup image 3 G (estimated) 5.5 G (estimated)

time to restore 1 hour (estimated) 2 h (estimated)

Data From Sample Deployments

If no backups are performed and the DBMS is completely lost, reinitialize the DBMS, restart
the Metrics Engine, and start collecting data again. All collected metric and event data are lost,
but the configuration required to start collecting data again is retained.

Start the DBMS Backup
Shut down the Metrics Engine before a backup or restore.

To backup the entire DBMS use the following command:

$ tar -cf backup.tar <path-to-postgres-data-directory>

- 33 -

Management Tools

Restore a DBMS Backup
To restore the full backup to a new database, use the following command:

$ tar -xvf backup.tar

Run the command from the base directory of the PostgreSQL data directory.

For more information, documentation for PostgreSQL backup is provided at
http://www.postgresql.org/docs/9.2/static/backup-file.html.

Management Tools
The Metrics Engine provides several command-line tools to administer the server. The
command-line tools are available in the bin directory for UNIX or Linux systems and bat
directory for Microsoft Windows systems.

Each command-line utility provides a description of the subcommands, arguments, and usage
examples needed to run the tool. View detailed argument options and examples by typing --
help with the command.

bin/dsconfig --help

To list the subcommands for each command:

bin/dsconfig --help-subcommands

To list more detailed subcommand information:

bin/dsconfig list-log-publishers --help

Available Command-Line Utilities
The Metrics Engine provides the following command-line utilities, which can be run directly in
interactive, non-interactive, or script mode.

Command-Line Tool Description

backup Run full or incremental backups on one or more Metrics Engine backends. This utility
also supports the use of a properties file to pass predefined command-line arguments.
See Managing the tools.properties File for more information.

base64 Encode raw data using the base64 algorithm or decode base64-encoded data back to
its raw representation.

collect-support-data Collect and package system information useful in troubleshooting problems. The inform-
ation is packaged as a ZIP archive that can be sent to a technical support rep-
resentative.

create-rc-script Create an Run Control (RC) script that may be used to start, stop, and restart the Met-
rics Engine on UNIX-based systems.

dsconfig View and edit the Metrics Engine configuration.

dsframework Manage administrative server groups or the global administrative user accounts that

Command Line Tools

- 34 -

Chapter 3: Managing the Metrics Engine

Command-Line Tool Description

are used to configure servers within server groups.

dsjavaproperties Configure the JVM arguments used to run the Metrics Engine and associated tools.
Before launching the command, edit the properties file located in con-
fig/java.properties to specify the desired JVM options and JAVA_HOME envir-
onment variable.

ldapmodify Perform LDAP modify, add, delete, and modify DN operations in the Metrics Engine.

ldappasswordmodify Perform LDAP password modify operations in the Metrics Engine.

ldapsearch Perform LDAP search operations in the Metrics Engine.

ldif-diff Compare the contents of two LDIF files, the output being an LDIF file needed to bring
the source file in sync with the target.

ldifmodify Apply a set of modify, add, and delete operations against data in an LDIF file.

manage-extension Install or update extension bundles. An extension bundle is a package of extension(s)
that utilize the Server SDK to extend the functionality of the UnboundID Metrics Engine.
Extension bundles are installed from a zip archive or file system directory. The Metrics
Engine will be restarted if running to activate the extension(s).

metric-engine-schema Show current and required UnboundID Metrics Engine DBMS schema version inform-
ation.

monitored-servers Configure the set of servers to be monitored by this Metrics Engine and prepare
external servers for monitoring.

query-metric Explore collected monitoring data by forming queries for charts and data.

queryrate Execute metric queries.

restore Restore a backup of the Metrics Engine backend.

revert-update Returns a server to the version before the last update was performed.

review-license Review and/or indicate your acceptance of the product license.

server-state View information about the current state of the Metrics Engine process.

setup Perform the initial setup for the Metrics Engine instance.

start-metrics-engine Start the Metrics Engine.

status Display basic server information.

stop-metrics-engine Stop or restart the Metrics Engine.

sum-file-sizes Calculate the sum of the sizes for a set of files.

summarize-config Generate a configuration summary of either a remote or local Metrics Engine instance.
By default, only basic components and properties will be included. To include
advanced components, use the --advanced option.

uninstall Uninstall the Metrics Engine.

update Update the Metrics Engine to a newer version by downloading and unzipping the new
server install package on the same host as the server to update. Use the update tool
from the new server package to update the older version of the server. Before
upgrading a server, make sure that it is capable of starting without severe or fatal
errors. During the update process, the server is stopped if running, then the update is

Command Line Tools

- 35 -

Management Tools

Command-Line Tool Description

performed. A check is performed to determine if the newly updated server starts without
major errors. If it cannot start cleanly, the update is backed out and the server is
returned to its prior state. See the revert-update tool for information on reverting an
update.

Command Line Tools

The tools.property File
The tools.properties file simplifies command-line invocations by reading in a set of
arguments for each tool from a text file. Each property consists of a name/value pair for a
tool’s arguments.

The Metrics Engine supports two types of properties file: default properties files that can be
applied to all command-line utilities, or tool-specific properties file that can be specified using
the --propertiesFilePath option. All of the Metrics Engine's command-line utilities can be
over-written using the config/tools.properties file.

Create a properties file with a text editor or using the standard Java properties file format
(name=value). For example, create a simple properties file that defines a set of LDAP
connection parameters as follows:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
bindPassword=secret

Specify the location of the file using the --propertiesFilePath option. For example, specify
the path to the properties file with ldapsearch as follows:

$ bin/ldapsearch --propertiesFilePath bin/mytools.properties "(objectclass=*)"

Properties files do not allow quotation marks around values. Any spaces or special characters
should be escaped.

Tool-Specific Properties
The Metrics Engine also supports properties for specific tool options using the format:
tool.option=value. Tool-specific options have precedence over general options. For
example, the following properties file uses ldapsearch.port=2389 for ldapsearch requests
by the client.

All other tools that use the properties file use port=1389.

hostname=server1.example.com
port=1389
ldapsearch.port=2389
bindDN=cn=Directory\ Manager

Another example using the dsconfig configuration tool is as follows:

hostname=server1.example.com
port=1389

- 36 -

Chapter 3: Managing the Metrics Engine

bindDN=cn=Directory\ Manager
dsconfig.bindPasswordFile=/ds/config/password

Specify Default Properties Files
The Metrics Engine provides a default properties file, tools.properties, that applies to all
command-line utilities used in client requests. The file is located in the <server-root>/config
directory.

To use a file with a different filename in this default location, specify the path using the
--propertiesFilePath option.

Evaluation Order
The Metrics Engine uses the following evaluation ordering to determine options for a given
command-line utility:

l All options used with a utility on the command line take precedence over any options in
any properties file.

l If the --propertiesFilePath option is used with no other options, the Metrics Engine
takes its options from the specified properties file.

l If no options are used on the command line including the --propertiesFilePath option
(and --noPropertiesFile), the Metrics Engine searches for the tools.properties file
at <server-root>.

l If no default properties file is found and a required option is missing, the tool generates
an error.

l Tool-specific properties (for example, ldapsearch.port=3389) have precedence over
general properties (for example, port=1389).

Server SDK Extensions
Custom server extensions can be created with the UnboundID Server SDK. Extension bundles
are installed from a .zip archive or a file system directory. Use the manage-extension tool to
install or update any extension that is packaged using the extension bundle format. It opens
and loads the extension bundle, confirms the correct extension to install, stops the server if
necessary, copies the bundle to the server install root, and then restarts the server.

Note
The manage-extension tool must be used with Java extensions packaged using the extension bundle
format. For more information, see the "Building and Deploying Java-Based Extensions" section of the
Server SDK documentation.

The UnboundID Server SDK enables creating extensions for the Identity Data Store, Identity
Proxy, Metrics Engine, Identity Broker, and Identity Data Sync servers. Cross-product
extensions include:

- 37 -

Server SDK Extensions

l Access Loggers

l Alert Handlers

l Error Loggers

l Key Manager Providers

l Monitor Providers

l Trust Manager Providers

l OAuth Token Handlers

l Manage Extension Plugins

- 38 -

Chapter 4: Collecting Data and Metrics

The Metrics Engine polls all the monitored servers over LDAP to gather the following data:

l Status data indicates the most current status of each monitored server.

l Alert data reflects the alerts emitted by each server.

l Performance data exposes the cn=monitor subtree of each product server.

For a complete summary of the metrics and dimensions that can be exposed through the
RESTful Metrics API, see the reference files located in the docs/metrics-guide directory.
Most metrics have a count, minimum, maximum, and average.

This section includes the following information:

Metrics Overview

Query Overview

The query-metric Tool

Performance Data Collection

System Monitoring Data Collection

Server Clock Skew

Tune Data Collection

Data Processing

Monitoring for Service Level Agreements

- 39 -

Chapter 4: Collecting Data and Metrics

Metrics Overview
A metric corresponds to a single measurement made within the server. The Metrics Engine
collects three types of metrics:

l Count metrics – represent the number of times a specific event happens within the
server. Examples of count metrics include the number of LDAP operations performed,
network packets received, or new connections established.

l Discrete metrics – correspond to measurements that have both a value and a weight,
such as the duration of an LDAP operation or the average duration of a checkpoint.

l Continuous-valued metrics – measure things that always have a value. For example,
these metrics include the amount of free disk space, the current number of connected cli-
ents, and the number of operations pending in the work queue.

The statistics that can be applied to values depend on the metric type. Only count statistics are
available for count metrics. Discrete metrics have count, average, and histogram statistics
available, which expose a count of the values broken down into bucket ranges. Average,
minimum, and maximum statistics are available for continuous-valued metrics.

Count Metrics
A count metric indicates the number of times a specific event happens within the server. For
example, the number of packets received on a network interface during a measurement
interval is a count metric. Each measurement returns the count of the number of packets
received during that measurement interval only. The sample contains the number of
occurrences, whether the measurement interval is 5 seconds or 2 minutes.

Another example of a count metric is the number of megabytes of data written to a disk device
during a measurement interval. Using the COUNT statistic when querying for a count metric
will return the sum of the counts. Count metrics can often be converted into a rate.

Continuous Metrics
A continuous metric is a measurement of a value where the thing being measured always has a
valid value at each measurement point. For example, CPU percent busy is a continuous metric.
For every sample CPU interval, a valid CPU percent busy measurement can be taken. A
continuous metric differs from a count metric in that continuous metric samples cannot be
added across time in a meaningful way. Instead, continuous metric samples use average,
minimum, and maximum statistics. To determine how busy the CPU has been since midnight,
average, rather than sum, the samples since midnight.

Discrete Metrics
A discrete metric is a measurement that has both a value and a weight. Discrete metrics are
different from continuous metrics because each measurement is weighted. A discrete metric is

- 40 -

Metrics Overview

analogous to a weighted average and requires that multiple measurements be taken within a
single sample interval. For example, LDAP operation response time is a discrete metric, where
the actual response time of each operation is averaged and the number of LDAP operations is
provided as the weight. If no LDAP operations occur in a sample interval, the value would be
zero and the weight would be zero.

Some continuous and discrete metrics may also report a minimum/maximum value if the
measurement is composed of multiple sub-measurements. The minimum/maximum values
are aggregated by averaging, so the values reflect the median.

Some discrete metrics may also convey histogram data. Histogram data represents an
additional set of measurements that take individual measurements and place them into value
ranges. The Metrics Engine supports histograms with up to 15 value ranges. Histogram valued
samples are unique because they give a picture of the distribution of the values, and because
they more precisely answer the question of "How many samples are greater than X?"

Dimensions
Dimensions provide a means of aggregating and subdividing metric sample values in a way
that logically follows what is actually measured. For example, metrics that measure disk
activity have a disk-device dimension. Aggregating on the disk-device dimension shows the
average disk activity for all disks, where pivoting (splitting) by the disk-device dimension
shows the activity for specific disks.

Every metric has a logical instance dimension, which corresponds to the server on which the
sample was created. Each metric may have up to three dimensions, which are defined in the
metric definition.

For example, the sync-pipe-completed-ops metric has two dimensions, the pipe-name and
pipe-result. The pipe-name is the name of the sync pipe as configured for the
Synchronization Server. The pipe-result is one of the following values:

l exception

l failed

l failed-at-resource

l failed-during-mapping

l match-multiple-at-dest

l no-match-at-dest

l already-exists-at-dest

l no-change-needed

l out-of-scope

l success

l aborted-by-plugin

l failed-in-plugin

- 41 -

Chapter 4: Collecting Data and Metrics

At each measurement interval for each sync pipe on each Synchronization Server, there will be
a value for each of the pipe-result values. So, for a single Synchronization Server with two
sync pipes, pipe-one and pipe-two, the samples generated for each sample period look like
the following. Note that the timestamp is constrained to time-only for brevity.

08:15:05, sync-pipe-completed-ops, pipe-one, exception, 1
08:15:05, sync-pipe-completed-ops, pipe-one, failed, 7
08:15:05, sync-pipe-completed-ops, pipe-one, failed-at-resource, 1
08:15:05, sync-pipe-completed-ops, pipe-one, failed-during-mapping, 1
08:15:05, sync-pipe-completed-ops, pipe-one, match-multiple-at-dest, 3
08:15:05, sync-pipe-completed-ops, pipe-one, no-match-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-one, already-exists-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-one, no-change-needed, 1
08:15:05, sync-pipe-completed-ops, pipe-one, out-of-scope, 1
08:15:05, sync-pipe-completed-ops, pipe-one, success, 125
08:15:05, sync-pipe-completed-ops, pipe-one, aborted-by-plugin, 1
08:15:05, sync-pipe-completed-ops, pipe-one, failed-in-plugin, 0
08:15:05, sync-pipe-completed-ops, pipe-two, exception, 3
08:15:05, sync-pipe-completed-ops, pipe-two, failed, 9
08:15:05, sync-pipe-completed-ops, pipe-two, failed-at-resource, 2
08:15:05, sync-pipe-completed-ops, pipe-two, failed-during-mapping, 1
08:15:05, sync-pipe-completed-ops, pipe-two, match-multiple-at-dest, 4
08:15:05, sync-pipe-completed-ops, pipe-two, no-match-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-two, already-exists-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-two, no-change-needed, 1
08:15:05, sync-pipe-completed-ops, pipe-two, out-of-scope, 1
08:15:05, sync-pipe-completed-ops, pipe-two, success, 217
08:15:05, sync-pipe-completed-ops, pipe-two, aborted-by-plugin, 1
08:15:05, sync-pipe-completed-ops, pipe-two, failed-in-plugin, 0

Compare how busy pipe-one is to pipe-two by pivoting on pipe-name. This results in the
following:

pipe-one 141
pipe-two 239

Pivot by pipe-result, to get a set of counts that show the distribution of the counts of the
specific error types, as well as the success and failure. This data provides a quick way of
assessing the kinds of problems encountered by the sync pipes.

Dimensions provide a way to pivot or aggregate along a metric-specific axis. All metrics have
the instance pivot and the time pivot. Metrics that support the histogram statistic can also
have a histogram pivot.

Query Overview
A metric query consists of three components:

l The data used to calculate the query results

l The aggregation method used on the data to calculate the query result

- 42 -

Query Overview

l The format of the query result

Select Query Data
The data used to generate the results of a metric query are driven by the following factors:

l Metric and statistic

l Time range

l Server instances included in the result (optional)

l Included dimension values (optional)

l Histogram range (optional)

Every query returns results for a single statistic and of a single metric. A query must include
the time range used to generate the results. Time ranges can either be absolute dates (in ISO-
8601 format) or relative dates (such as -30m). A relative start time offset is relative to the end
time. A relative end time offset is relative to the current time. When no end time is specified,
the server includes results up to the current time.

The time range and the desired number of points (for pivot by time) dictates the resolution of
data used to process the query. For example, the finest granularity of data, one second
resolution, is only kept for a few hours. It will not be used to satisfy a query spanning multiple
days.

By default, all server instances that produce the metric are used to calculate the query results.
However, the metric query can be restricted to one of the following:

l A specific list of servers

l Servers of a given type, such as Identity Data Stores

l Servers within a specific location

For metrics that include one or more dimensions, a query can be evaluated across a subset of
dimension values. For example, the results returned for the response-time metric can be
restricted to just the search and modify values of the op-type dimension.

For discrete-valued metrics that break their values down into histogram ranges, a query can
count statistics applied to a subset of histogram buckets by specifying a minimum and/or
maximum histogram value. For example, a query on the response-time metric could return a
count of operations that took longer than 100 milliseconds.

Aggregate Query Results
A metric query can return the full, raw data that matches the query parameters, so that the
server can aggregate metric results across time, server instance, dimension value, or
histogram value. The server aggregates results, except when the query indicates not to, by
using a pivot. The mechanism for aggregating the data depends on the type of metric. A pivot
directs the query processor to not aggregate one component of the query data. A pivot can be
based on time, server instance, a specific dimension, or histogram ranges.

- 43 -

Chapter 4: Collecting Data and Metrics

l If no pivot is specified, the query returns a single number that represents the aggreg-
ation of all matched data. For example, a query with no pivot might return the total num-
ber of operations that have completed today.

l A single pivot results in one-dimensional data, such as a time-based chart with a single
line or a simple bar chart.

l Two pivots results in two-dimensional data, such as a time-based chart with a separate
line for each server instance, or a stacked bar chart that shows the number of completed
operations broken down by server and operation type.

l Three pivots results in three-dimensional data, such as a stacked, grouped bar chart that
shows completed operations broken down by server, operation type, and result.

Beyond aggregating multiple samples into one, the data returned by a metric query can be
further manipulated. For example, queries can be scaled on the count statistic to return the
count of events per second, per minute, or per hour. Counts of histogram values can be
returned by a percentage of the total. For example, instead of returning the raw count of
operations that took longer than 50 milliseconds to complete, the results could be returned as
the percentage of all operations that took longer than 50 milliseconds to complete. A value of
0.02% is more meaningful than a value of 40.

Format Query Results
The query results can be converted into the format requested by the client. Results can be
returned in one of the following formats:

l CSV spreadsheet

l PNG or a JPG chart

l XML format

l JSON format

The query-metric Tool
The query-metric tool enables access to all the metrics gathered by the server. The query-
metric tool is a client application of the Metrics Engine API. It includes subcommands that
facilitate creating data queries for listing metrics, server instances, and dimension values. This
tool runs in both interactive and non-interactive modes. Queries are formed using the following
subcommands:

l explore – Creates a series of hyper-linked HTML files containing charts for a broad
range of metrics. The tool generates these files by making a series of API queries for a
set of servers and metrics. The tool highlights the breadth of available metrics and pat-
terns or anomalies across multiple metrics. In interactive mode, the tool prompts for the
servers and the metrics.

- 44 -

Performance Data Collection

l query – Defines a query for specific data of interest. In interactive mode, the tool
prompts for the server, metrics, dimensions, statistics, and pivot values. The tool can be
used to request a server generated chart image file or data formatted in XML, JSON, or
CSV.

To start the tool in interactive mode, enter the following command:

$ query-metric

Or, specify a subcommand in interactive mode:

$ query-metric explore

In non-interactive mode, the tool generates charts based on command-line input. For example,
the following command requests information from the local Metrics Engine listening on port
8080 and generates response-time and throughput charts for Proxy Server instances in Austin
for the previous two weeks:

$ query-metric explore --httpPort 8080 --instanceType proxy \
 --instanceLocation Austin --metric response-time --metric throughput \
 --startTime -2w

The following command line obtains a JSON formatted data table that shows average
throughput for all Proxy Server instances, for a over time with 100 data points. Each line in the
chart represents either an application's search or modification throughput. Throughput values
are represented as operations per second:

$ query-metric query --hostname localhost --httpPort 8080 \
 --username cn=user1,cn=api-users --password secret --table json \
 --metric throughput --instanceType proxy --statistic average \
 --pivot op-type --pivot application-name \
 --dimension op-type:search,modify --rateScaling second \
 --maxIntervals 100 --startTime 2012-09-01T17:41Z \
 --endTime 2012-09-30T17:41Z

To see a list of all supported options, run the help option for the query-metric tool:

$ query-metric -?

Performance Data Collection
Performance data represents a majority of the data collected by the Metrics Engine. Each
server may produce hundreds of kilobytes of performance data per minute, though the amount
of data captured has little to no impact on the performance of the monitored system. By
default, the Metrics Engine stores performance data for 20 years. Configure the volume of
performance data collected by each monitored server so that the Metrics Engine can keep up
with the flow.

The performance data model is a dimensional data model. Measurements may be taken on
multiple simultaneous values that are distinguished by dimension values. For example, a
response time metric provides the time in milliseconds it took a server to respond to an LDAP

- 45 -

Chapter 4: Collecting Data and Metrics

request. This response-time metric has two dimensions: application name and operation
type. The application name reflects the connection criteria of the request. The operation type
corresponds to the LDAP operation, such as add, bind, or search. So, if a server has 20
different connection criteria, each response-time sample may have 140 different values, one
for each of the applications multiplied by the number of operation types.

The performance data captured on the monitored server has a record with the following fields:

Name Data Type Description

Timestamp Date Time of measurement, using clock on the monitored server

Metric String Name of metric

Dimension String Values of dimensions 1 - 3

Count Int Number of measurements represented by this sample

Average Double Average value of this sample

Minimum Double Optional minimum value of this sample

Maximum Double Optional maximum value of this sample

Buckets Int[] Optional histogram data associated with this sample

Performance Data Fields

When a performance record is imported into the Metrics Engine, it is normalized to reduce the
size of the record. The normalized record contains the following information:

Name Data Type Description

batchID Int The ID of the batch of data to which this record belongs

sampleTime Timestamp The time the sample was captured or equivalent information after aggregation

metric_qual Int The ID of a structure that reflects the metric and all dimension values

definitionID Int ID of the histogram definition, if the data belong to a histogram-valued sample

count Int Number of measurements represented by this sample

avg_val Real Average value for this sample

min_val Real Minimum value for this sample

max_val Real Maximum value for this sample

val1-15 Long Histogram bucket values

Normalized Record in the Metrics Engine

System Monitoring Data Collection
All Identity servers have the ability to monitor the health of the server and host system.
Servers do not collect any performance data until they are prepared by the Metrics Engine. All
of the important server and machine metrics are stored in the cn=monitor backend.

- 46 -

System Monitoring Data Collection

Stats Collector Plugin
The Stats Collector plugin is the primary driver of performance data collection for LDAP, server
response, replication, local JE databases, and host system machine metrics. Stats Collector
configuration determines the sample and collection intervals, granularity of data (basic,
extended, verbose), types of host system collection (cpu, disk, network) and the type of data
aggregation that occurs for LDAP application statistics. The Stats Collector plugin is configured
with the dsconfig tool and collects data using LDAP queries. For example, the --server-
info:extended option includes collection for the following:

l CPU

l JVM memory

l Memory

l Disk information

l Network information

The following are all options for the Stats Collector plugin:

>>>> Configure the properties of the Stats Collector Plugin
Property Value(s)
--
1) description -
2) enabled false
3) local-db-backend-info basic
4) replication-info basic
5) entry-cache-info basic
6) host-info cpu, disk, network
7) included-ldap-application If per-application LDAP stats is enabled,
 then stats will be included for all applic-
ations.
8) sample-interval 1 s
9) collection-interval 500 ms
10) ldap-info extended
11) server-info basic
12) per-application-ldap-stats aggregate-only

System Utilization Monitors
The System Utilization Monitors interface directly with the host operating system to gather
statistics about CPU utilization and idle states, memory consumption, disk input and output
rates, and queue depths, as well as network packet transmit and receive activity.

Utilization metrics are gathered with externally invoked operating system commands, such as
iostat and netstat, using platform-specific arguments and version-specific output parsing.

Enabling the Host System monitor provider automatically gathers CPU and memory utilization
but only optionally gathers disk and network information. Disk and network interfaces are
enumerated in the configuration by device names (such as eth0 or lo), and by disk device
names (such as sd1, sdab, sda2, scsi0).

- 47 -

Chapter 4: Collecting Data and Metrics

External Collector Daemon
The System Utilization monitor contains an embedded collector daemon that runs on systems
affected by a Java process fork memory issue (RFE 5049299). When a process attempts to fork
a child process, Solaris attempts to allocate the same amount of memory for the child process,
which will likely fail when the parent process consumes a large amount of memory.

The embedded collector daemon is started automatically for the server and inspects the Host
System Monitor provider configuration to conditionally determine whether the external
daemon process is required.

The external collector daemon operates by having an internal table of repeatable commands
that run on a schedule. The collector creates a simulated filesystem in the <server-
root>/logs directory for each command type so that the Host System Monitor Provider can
find the output of the most recently collected data.

Repeating commands use a subdirectory for each command type to keep results isolated from
other command types and to help organize file cleanup. The filename of the output contains the
sample timestamp, such as iostats-[sampletimestamp]. If the collector daemon fails for
any reason, the Host System Monitor provider is not left reading stale system data because the
expected timestamp files is missing. To handle clock-edge timing, the monitor sampler will
also look for data in a filename of the previous second. Timestamp files are deleted once their
data have been collected.

The collector daemon runs with no inter-process communication and can be stopped if no
longer necessary.

Server Clock Skew
Correlating metric samples from multiple servers requires that the timestamp associated with
each sample from each monitored server is in synchronized. The more time skew there is
between monitored servers and the Metrics Engine, the less accurate is the time correlation
across samples from different servers.

The Metrics Engine track system time information and makes it visible in the cn=Monitored
Server <servername>, cn=monitor entry.

The system-clock-skew-seconds attribute indicates the difference between the Metrics
Engine system clock and the monitored server clock, in seconds. The larger this skew value,
the less precision there is when comparing changes in data across servers.

While it is not necessary to keep the Metrics Engine clock synchronized with all of the
monitored servers, it can be convenient when issuing metric queries with time ranges specified
by offsets. Because the offset is computed using the Metrics Engine system clock, if this clock
is very different from the monitored servers' system clocks, the start/end time of a metric
query will not match the expected boundaries.

- 48 -

Tune Data Collection

Tune Data Collection
Collecting all of the performance data at the most granular level from all of the servers may
not be possible without a significant investment in hardware for the Metrics Engine. Instead,
you can tune your data collection to fit within the limits of your existing Metrics Engine
hardware.

The remainder of this section describes several strategies for tuning data collection.

Reducing the Data Collected
If not all information collected by the Metrics Engine is required, the the Stats Collector
Plugin’s entry-cache property can be tuned using the dsconfig command-line tool. For
example, to omit all metrics related to the entry cache set the entry-cache-info group on the
monitored server:

$ bin/dsconfig set-plugin-prop --plugin-name "Stats Collector" \
 --set entry-cache-info:none

The server collects information for eight different information groups. Limit data collection to
the devices of actual interest.

Reducing the Frequency of Data Collection
Monitored servers can produce metric samples every second, which is useful for short-duration
changes. These samples are less useful hours later, after the per-second data is aggregated to
per-minute data. Use the dsconfig tool to change the base sample production rate from the
default of 1 second to 10 seconds:

$ bin/dsconfig set-plugin-prop --plugin-name "Stats Collector" \
 --set "sample-interval:10 seconds"

This change reduces the total data volume by about 90 percent.

Reducing the Frequency of Sample Block Creation
The number of sample blocks processed by the Metrics Engine can also be reduced in a given
time. By default, the monitored servers produce a new block of samples every 30 seconds.
Increasing this to 60 seconds, while reducing the Metrics Engine’s polling rate to 60 seconds,
reduces the sample processing overhead. Change the frequency at which the monitored
servers create sample blocks using the following dsconfig command:

$ bin/dsconfig set-backend-prop --backend-name metrics \
 --set sample-flush-interval:60s

Reducing Metrics Engine Impact on Performance
Identity servers all expose performance data through the cn=monitor DN. Performance issues
occur when data is read, either directly by an LDAP client, or by enabling either the Periodic
Stats Logger or Stats Collector plugins.

- 49 -

Chapter 4: Collecting Data and Metrics

The Periodic Stats Logger plugin reads the configured monitors and writes the resulting values
to a CSV file. The Stats Collector plugin also reads the configured monitors and writes the
resulting values to a CSV file, but this file is made available for LDAP clients in cn=metrics DN.
The Stats Collector CSV files are suitable for use by the Metrics Engine, and contain one metric
value per line.

Both the Periodic Stats Logger and the Stats Collector plugins are disabled by default. When
enabled, each of these plugins adds an approximate 3% CPU utilization penalty, plus a
negligible amount of disk I/O and JVM heap usage.

To enable the Stats Collector plugin, use dsconfig as follows:

$ bin/dsconfig set-plugin-prop --plugin-name "Stats Collector" \
 --set enabled:true

The monitored-servers tool will enable the Stats Collector plugin on the monitored server.

Data Processing
When blocks of samples arrive in the Metrics Engine, they are queued on disk and loaded into
the database. Samples from a single server are processed in time-order, so that sample blocks
with older data are always processed before a sample block containing newer data. The
Metrics Engine does not do time-correlation between blocks coming from different servers. So,
server A samples from 2 hours ago may be loaded immediately after server B samples from
two minutes ago. This flexibility enables servers to be unavailable to the Metrics Engine,
without affecting the overall system monitoring. Also, a query for data from server A and B
may return data for server B but not server A, until the data queued for server A has been
collected and imported. Samples collected from the Metrics Engine itself are processed ahead
of all other servers.

Importing Data
The Metrics Engine polls all of the monitored servers at a regular interval. When new samples
are available, the Metrics Engine fetches them via LDAP. The Metrics Engine has one dedicated
thread taking sample blocks and converting them to the normalized form stored in the DBMS.
The import queue’s size is normally near zero, but under certain conditions it may become
large. When the Metrics Engine first starts, it will queue (for import) all sample blocks still on
disk. Blocks that are older than two hours are discarded.

For example, if a monitored server becomes unavailable for an extended period of time, it will
continue to queue blocks of samples locally. When it becomes available again, the Metrics
Engine collection poll of that server will capture hundreds or thousands of sample blocks. The
Metrics Engine captures the sample blocks at a much faster speed than it can import them,
causing the queue to grow for a period of time. If the Metrics Engine is stopped, this problem is
compounded because all monitored servers will then have a backlog of sample blocks to be
imported.

- 50 -

Monitoring for Service Level Agreements

Aggregating Data
To maintain a size-limited DBMS while accumulating data over a period of years, the Metrics
Engine aggregates data into four different levels. Each level contains data with less time
granularity, but covering a larger period of time. Data is aggregated from a lower (greater
time granularity) to a higher level as soon as enough data for aggregation is available. For
example, the level 0 data has one second granularity, and the level 1 data has 1 minute
granularity. After level 0 has collected one minute’s worth of data, the data from that minute
can be aggregated to level 1.

To keep the data tables for each aggregation level at a constrained size, each aggregation level
has a maximum age for the samples. When the samples are older than this age, they are
deleted from the level. While aggregation occurs soon after the samples arrive in the level,
pruning occurs only after all samples in a block have passed their age limit.

The Metrics Engine attempts to collect data from all configured servers as efficiently as
possible. However, Monitored Server availability, DBMS backlog, and Metrics Engine load can
all cause the data pipeline to slow down. The data aggregation system is designed to correctly
handle gaps in the data.

The resolution of the aggregation levels cannot be changed, but you can configure the
maximum age of each level. The following table describes the aggregation levels:

Level Resolution Default Maximum Age Maximum Age

0 1 second 2 hours 48 hours

1 1 minute 7 days 34 days

2 1 hour 12 months 5 years

3 1 day 20 years 20 years

Aggregation Levels

Monitoring for Service Level Agreements
The Metrics Engine provides the ability to aggregate and track performance data for one or
more service level agreements (SLAs). The server aggregates the data using an SLA object
that tracks the current and historical performance of LDAP operations (throughput and
response times) that are tied to specifically monitored applications. The SLA object consists of
a tracked application name, one or more LDAP operations to be considered, a set of servers
that contributes performance data to the SLA and optionally, thresholds to generate alerts
should the server exceed these limits.

Thresholds are optional configuration settings that enable the monitoring of performance data.
Each threshold sets a limit that indicates a warning condition where the server's performance
is nearing a limit and/or a critical condition. When the monitored server enters or ends a
warning or critical state, the Metrics Engine generates an alert. The generated alerts are the
same as those created by the Identity Data Store and Identity Proxy servers and can be routed
through the Alert Handler to a monitoring console or administrator.

- 51 -

Chapter 4: Collecting Data and Metrics

The SLA object can report the aggregate performance of all configured servers. The SLA object
is configured with the following:

l Designate Servers that Contribute to SLA Tracking. The SLA object includes a
Server Query component that is used to designate the servers that contribute to the SLA
measurements.

l REST API. A REST API enables listing configured SLA objects and their current status.
The Metrics Engine REST API also enables listing alerts generated by SLA thresholds, and
blending the alert information with the threshold information to provide a more con-
textual view of the tracked applications performance.

SLA Thresholds
The Metrics Engine uses a Monitoring Threshold mechanism that has two configuration
components:

l Spike Monitoring Threshold. Used to configure a set of operational performance lim-
its on a specific measurement, where the limit is specified as a percent change from the
most recent measurement average value. A Spike Monitoring Threshold has warning and
critical limits, and will enter or leave an alerted state when the monitored value exceeds
either of the limits. This threshold is useful when the valid range of the measurement is
not known in advance. This type of limit is useful in detecting short-term changes in a
measurement that fluctuates broadly over time. The limit is applied in both positive and
negative directions, so that this type of threshold can detect an upward or downward
spike in the value. The following chart shows a spike monitoring threshold, where the red
line is the average throughput/second and the green lines are the limits, showing the
average window for the throughput.

- 52 -

Monitoring for Service Level Agreements

l Static Level Monitoring Threshold. Used to configure performance limits on a spe-
cific measurement, where the specified limits are fixed values that do not change over
time. A Static Level Monitoring Threshold has warning and critical limits, and will enter
or leave an alerted state when the monitored value exceeds any of the limits. The Static
Level Monitoring Threshold is configured with static numeric limits, and is useful when
the expected valid range of the measurement is known in advance.

Threshold Time Line
The Metrics Engine periodically evaluates each threshold, computing current value, current
average, and alerted state. The default evaluation period is 30 seconds. Using the figure
below, a threshold is evaluated at time 'Now'. The most recent data that threshold uses is 1
minute old (Newest Data). Each threshold evaluation requires at least 1 minute of new data
(Minimum Data). At time 'Now,' the threshold is working with data that is between 1 and 2
minutes old (between Minimum Data and Newest Data).

- 53 -

Chapter 4: Collecting Data and Metrics

The one minute delay between 'Now' and 'Newest Data' is not configurable. This delay ensures
that the Metrics Engine has had enough time to poll the monitored servers and get the most
recent data. The one minute delay between 'Newest Data' and 'Minimum Data' is configurable
on a per-threshold basis for Spike-valued thresholds, but 1 minute is the minimum window.
Generally, time between when a monitored performance anomaly occurs on a monitored
system, and when an alert is created will be between 2 and 3 minutes.

Because the Metrics Engine can capture metrics data with a very fine time resolution (1 second
data is the default), the data is often very "noisy." By default, the data is time-averaged (using
5 consecutive 1-second samples to produce a single 5-second value), and time-averaging will
ultimately reduce the noise. However, "noisy" data can make it harder to choose an
appropriate threshold limit value. If the limit value is too close to the noise levels, the
threshold will alert due to values that have a very short time duration.

Each threshold is configured with a minimum-time-to-trigger property, which determines the
minimum time allowed to exceed the threshold before an alert is generated, and a minimum-
time-to-exist property that determines the time required for the threshold to exit an alerted
state.

Configure an SLA Object
The SLA object relies on existing performance metrics and only aggregates the data for
specific SLAs. Configure any number of SLA objects for monitored servers. For more
information, see the Metrics Engine Configuration Reference (HTML) documentation in the
<server-root>/docs directory.

The following steps use the dsconfig command-line tool. These tasks can also be done with
dsconfig in interactive mode.

1. Create a server query that specifies which servers will contribute to SLA monitoring. In
this example, the command specifies the proxy servers located in Austin.

$ bin/dsconfig create-server-query \
 --query-name "Austin Proxy Servers" \
 --set server-instance-type:proxy \
 --set server-instance-location:Austin

2. Create a static-level monitoring threshold. In this example, the alert condition is set
to entry, which means that the server will generate an alert if the server enters a warn-
ing state (alert-on-warn:true and warn-if-above:12) or critical state (critical-if-
above:15). When the server leaves its alerted state, an alert is generated (alert-
condition: exit). The minimum amount of time that the threshold can be exceeded
before an alert is generated is set to 15 seconds (min-time-for-trigger:15s).

$ bin/dsconfig create-monitoring-threshold \
 --threshold-name "15ms response time" \
 --type static-level \
 --set alert-condition:entry \
 --set alert-condition:exit \
 --set alert-on-warn:true \
 --set min-time-for-trigger:15s \

- 54 -

Monitoring for Service Level Agreements

 --set min-time-for-exit:15s \
 --set warn-if-above:12 \
 --set critical-if-above:15

3. Create another static-level monitoring threshold. In this example, the alert condition
is set to entry. The server generates an alert if the it enters a warning state (alert-on-
warn:true and warn-if-above:4000) or critical state (critical-if-above:5000).
When the server leaves its alerted state, an alert is generated (alertcondition:exit).
The minimum amount of time that the threshold can be exceeded before an alert is gen-
erated is set to 15 seconds.

$ bin/dsconfig create-monitoring-threshold \
 --threshold-name "5k ops/sec" \
 --type static-level \
 --set alert-condition:entry \
 --set alert-condition:exit \
 --set alert-on-warn:true \
 --set min-time-for-trigger:15s \
 --set min-time-for-exit:15s \
 --set warn-if-above:4000 \
 --set critical-if-above:5000

4. Create an SLA object that targets an SSO application and monitors the response and
throughput times for LDAP bind operations. The response time threshold is set to 15ms.
The throughput threshold is set to 5k operations per second. The targeted servers are the
set of proxy servers, located in Austin.

$ bin/dsconfig create-ldap-sla \
 --sla-name "SSO Application" \
 --set enabled:true \
 --set "application-name:SSO Application" \
 --set "response-time-threshold-ms:15ms response time" \
 --set "throughput-threshold-ops-per-second:5k ops/sec"
 --set ldap-op:bind \
 --set "sla-server-query:Austin Proxy Servers"

- 55 -

Chapter 5: Configuring Charts for Identity
Servers

The Metrics Engine provides a set of dashboards with series of charts for each configured
Identity server.

Charts can be built and customized with the Metrics Engine Chart Builder tool. Dashboards and
charts can be modified with Velocity templates.

This chapter includes the following information:

Available Dashboards

Available Charts for Identity Servers

The Chart Builder Tool

Configure Charts for Identity Broker

Velocity Templates

- 56 -

Chapter 5: Configuring Charts for Identity Servers

Available Dashboards
The Metrics Engine includes several dashboards that can be used to display information for all
servers in a data center, specific applications, or SLA specifics. The following dashboards are
available:

ldap-dashboard – Displays charts for Identity Data Store, Identity Proxy, and Identity Data
Sync servers configured with the monitored-servers command. Charts are also displayed for
the Metrics Engine server. This dashboard is viewed from a browser at http://<metrics-
host>:<port>/view/ldap-dashboard, and is easily customized. See Customize the LDAP
Dashboard. The charts can display information by:

l Individual server, server location, or server type.

l Varying level of detail adjusted by server type.

l Time scale, providing either a recent or more historical data view.

broker-dashboard – Displays charts for configured Identity Broker servers. Charts include
information for data consent, applications requesting access to data, authorization, and policy
activity. This dashboard is viewed from a browser at http://<metrics-
host>:<port>/view/broker-dashboard, and can also be displayed in the Identity Broker
Console. See Configure Charts for the Identity Broker.

- 57 -

Available Dashboards

sla-viewer – Displays throughput and response time graphs, and status for configured SLAs.
This dashboard is viewed from a browser at http://<metrics-host>:<port>/view/sla-
viewer. See Monitoring for Service Level Agreements for information about configuring SLAs.

sla-viewer-details – Displays SLA Viewer data and additional charts for response time and
time ranges from the sla-viewer dashboard. Data can be viewed per server and includes
server details.

- 58 -

Chapter 5: Configuring Charts for Identity Servers

demo-dashboard – Demonstrates how to display a set of charts for multiple servers and how
to vary that set of charts per server type. This dashboard is viewed from a browser at
http://<metrics-host>:<port>/view/demo-dashboard. This dashboard can be used as a
starting point for custom dashboards.

A dashboard readme file provides general instructions for customizing any dashboard, and is
located in:

<server-root>/config/dashboard/dashboard.README

Custom style sheets can be created and referenced in the dashboard template or styles can be
configured for all charts. See Chart Presentation Details for information. The Metrics Engine
default style sheets should not be modified.

- 59 -

Available Dashboards

Customize the LDAP Dashboard
Dashboards are defined by Velocity templates. After servers are configured, the LDAP
dashboard displays all metrics from monitored servers. See Velocity Templates for
information about templates and template components.

If Perform the following to configure the LDAP dashboard:

l The configuration file for the LDAP dashboard is <server-root>/-
config/velocity/templates/_ldap-dashboard-config.vm. This file should not be
changed, but can be used as a guide for customization.

Note
Files within this directory that begin with an underscore (_) are templates that are referenced by each of the
dashboards. The _ldap-dashboard-config.vm template is the only file that contains all of the
dashboard configuration inside the file. Configuration of other templates requires configuration of a
corresponding dashboard file as well.

l The _ldap-dashboard-config.vm file references a template file that can be customized
in <server-root>/velocity/templates/_ldap-dashboard-config-overrides.vm.
This is the file that can be customized .

l Both files contain configuration instructions. The following can be customized in the LDAP
dashboard overrides file:

o The charts that display for each server type and their styles. See Available Server
Charts.

o The charts that display for a data center and their styles.

o The charts that display for an application type and their styles.

o The default time resolution (two weeks, is the default for data displayed).

o The size of the charts.

Debug Dashboard Customization
A debug option can be used in any Velocity template for exploring available information in the
Velocity Context. This information includes the servers that are monitored and the metrics that
are available. This option is included in the ldap-dashboard and demo-dashboard files:

Uncomment this to have a window popup with detail of what's in the Velocity
Context.
##parse("_debug.vm")
##debug()

See Velocity Templates for more information.

Preserve Customized Files
Any files that are customized should be copied from the config/velocity subdirectories to
the same subdirectory of the velocity directory under the server root (<server-

- 60 -

Chapter 5: Configuring Charts for Identity Servers

root>/velocity). The files in config/velocity should not be modified. They are updated
when the product is updated.

By default, any file of the same name under <server-root>/velocity will be loaded in place
of <server-root>/config/velocity. This enables the preservation of customized files after a
product upgrade.

After a product upgrade, review the files in config/velocity to determine if any changes
should be incorporated into customized templates.

The Chart Builder Tool
The Chart Builder tool is used to create performance charts for all configured servers. The
Broker dashboard can be surfaced on the Identity Broker Console Metrics page. See Configure
Charts for Identity Broker for more information.

As the settings in the Chart Builder are changed, the builder gathers the data from the Metrics
Engine using the Metrics Engine REST API. Once configured, the dashboard page
asynchronously fetches metric data for all charts, with each chart rendering when its data is
returned. While most metric queries respond quickly (50-100ms), some queries may take
longer. If the lag seems too long, consider making changes to the query to reduce the amount
of data gathered.

Selecting specific instances and using dimension filters can decrease query time. The Chart
Builder tool and the underlying libraries constrain a chart to a single metric. The size of each
chart is determined by the library default size (300x300) and can be overridden in the chart
properties file. There are times when the legends and labeling of a chart dictate the minimum
size for a chart.

The Chart Builder tool (chart-builder.vm) is shipped with the Metrics Engine and is enabled
after installation at the following URL:

https://<metrics-engine-host>:<port>/view/chart-builder

- 61 -

The Chart Builder Tool

The metrics parameters used to build the chart can be saved to a properties file and added to a
dashboard. If not using the Chart Builder tool, the _chart-definition.template file in
<server-root>/config/dashboard/charts provides instructions about manually creating
charts and adding them to a dashboard.

Chart Presentation Details
Chart presentation details can be configured per chart or for all charts in the _chart-
definition.template file. A properties file can be created for common styes and referencing
in this file. Instructions for adding custom styles are included in the file.

The following is a sample of the chart parameters that are available:

l Colors used in the data series.

l Enable and disable a legend.

l Location (top/bottom/left/right) of the legend.

l Background color.

l Thickness of the time-series lines (absolute or as a function of the # of plotted series).

- 62 -

Chapter 5: Configuring Charts for Identity Servers

l Macro expansion in the specified title.

l Sub-title (with macro expansion that includes metric-name and current date/time).

Chart Builder Parameters
Use the Chart Builder tool to build or adjust system and performance charts. When the
configuration is set, copy the parameters into a properties file, and add the chart to a
dashboard.

Parameters Description

Metric Group Selects a specific group of metrics to be considered for charting.

Metric Displays the specific metric. If you open the drop-down list and hover over a metric, you can
view a description of the particular metric.

Pivot Splits the chart result into multiple series based on the pivot dimension chosen.

Dimension Filter Filters the data based on the dimension(s) entered, such as the type of operations that can be
viewed for an LDAP operations metric.

Statistic Displays the type of "measurement" that may exist for each metric. For example, each
response-time sample contains:

l number of operations (count)

l average time-per-op (average)

l histogram-of-operation-time (histogram)

On a per-sample basis, the Metrics Engine stores the following: count, average, minimum,
maximum, and histogram. Any metric can have one or more of five statistics, but not all
statistics are equally valuable. Note the following points:

l The minimum and maximum statistics may be of limited value, because as they are

time-averaged, they go to extremes (min of minimums and max of maximums).

l The count and histogram statistics have high fidelity over time because they time-

aggregate perfectly.

l The average statistic loses fidelity over time, because as the time-window for aver-

aging gets larger, the highs and lows are lost.

Number of Points If the number of points is set to 1, all chart types, except time series, may be used. If the num-
ber of points is > 1, then only time series charts may be used.

Chart Type Displays the chart based on the type:

l Area Time Series

l Bar Chart

l Column Chart

l Pie Chart

l Stacked Bar Chart

Chart Builder Parameters

- 63 -

Available Charts for Identity Servers

Parameters Description

l Stacked Column Chart

l Time Series

Chart Properties Displays the generated chart properties. Copy the query properties into a properties file.

Chart URL The URL to display a static image of the chart. This can be used to call the chart into a third-
party client application.

Data URL The API for getting the data. This can be used to call the chart into a third-party client applic-
ation.

Chart Builder Parameters

Chart Properties File
Each dashboard uses a Velocity template (<name>.vm) and a set of chart properties files to
render the charts. As charts are configured with the Chart Builder tool, the tool generates the
corresponding properties for each customized item. The metrics configuration can be copied
into a properties file and added to a dashboard. If no values are specified for a given property,
the property will use a default value from the <server-root>/config/dashboard/charts/_
chart-definition.template file. All properties and their descriptions are listed in this file.

The properties in the chart definition file are broken into two groups: properties that start with
display affect the display of the data, and properties that start with query affect the metric
query. When building a new chart, just copy the query parameters into a properties file. In
general, display options should be referenced from common styles defined in the _chart-
definition.template file, or the styles defined for a dashboard.

Available Charts for Identity Servers
The following are the default charts that display on the LDAP Dashboard for each configured
server. These and additional charts for server and system metrics reside in <server-
root>/config/dashboard/charts. They can be modified or used to create new charts.

Charts for All Servers
The following charts are displayed on the LDAP Dashboard for Data Store and Proxy servers:

l LDAP Read Operations Per Second l System CPU

l LDAP Write Operations Per Second l System Memory Percent Free

l LDAP Response Time l System Network Read MB

l LDAP Response Time Outliers l System Network Write MB

l LDAP Worker Thread Percent Busy l System Disk Busy

l LDAP Average Operations in Progress l System Disk Service Wait

l LDAP Average Queue Size l System Disk Read MB

- 64 -

Chapter 5: Configuring Charts for Identity Servers

l LDAP Open Connections l System Disk Write MB

l LDAP New Connections

Data Store Charts
The following charts are displayed on the LDAP Dashboard for the Data Store:

l Replication Backlog l Backend Cache Percent Full

l Replication Oldest Change l Backend Size on Disk

l Replication Unresolved Naming Conflicts l Backend Cleaner Backlog

l Backend Entry Count

Proxy Server Charts
The following charts are displayed on the LDAP Dashboard for the Proxy Server:

l External Server Total Operations l External Server Health

l External Server Failed Operations

Sync Server Charts
The following charts are displayed on the LDAP Dashboard for the Sync Server:

l Sync Pipe Unretrieved Changes l Sync Pipe Completed Operations Failed

l Sync Pipe Percent Busy l Sync Pipe Completed Operations By
Type

l Sync Pipe Completed Operations Success

Metrics Engine Server Charts
The following charts are displayed on the LDAP Dashboard for the Metrics Engine Server:

l Metrics Queries Per Minute l Metrics Cache Miss Count

l Metrics Query Time l Metrics Cache Expired Count

l Metrics Query Time Max l Metrics Cache Evicted Count

l Metrics Query Time Histogram l Metrics Import Delay

l Metrics Cache Entry Count l Metrics Load Time

l Metrics Cache Hit Count l Metrics DBMS Cluster Time

Identity Broker Charts
The following charts are displayed on the LDAP Dashboard for the Metrics Engine Server:

- 65 -

Configure Charts for the Identity Broker

l Consent Trend l Oauth Grant Types

l Invalid Requests l Most Accessed Data Types

l Authorization Requests l Most Active Applications

Configure Charts for the Identity Broker
Metrics charting and the Identity Broker Dashboard use the same library. When configured,
charts for the Broker dashboard display on the Identity Broker Console Metrics page. The
dashboard page asynchronously fetches metric data for all charts. While most metric queries
respond quickly (50-100ms), some queries may take longer. If a chart takes too long, consider
making changes to the query to reduce the amount of data it gathers.

Adding a Chart to the Identity Broker Dashboard
Perform the following steps to add a chart to the Identity Broker Console Metrics page:

1. On the Metrics Engine, start the chart builder tool:

https://<metrics-engine-host>:<port>/view/chart-builder

2. Configure the chart.

3. Create a properties file and copy and paste the Chart Properties on the Chart Builder
page into the file. The property file directly correlates the listed parameters to the Met-
rics Engine REST API DataSetResource.getDataSet method, which is accessed with a
GET request to /metrics/{metric-id}/dataset. If no values are specified for a prop-
erty, then the default values will be used. If you want to exclude a parameter, use
IGNORE as a value (e.g., display.title=IGNORE). Only the query.metric-id property is
required.

query.metric-id=metric-sample-query-qualifier-count
display.height=400
display.width=600
query.top-n=10
query.start-time=-4w
query.end-time=-1m
display.title=Throughput & Response Time
display.sub-title=For All Instances
display.y-axis-title=Metric Qualifier Count
display.series-color-map=throughput=#ff0000
display.show-legend=true
display.series-name-map=throughput=DS-Throughput,response-time=DS-
ResponseTime
display.series-colors=#008000,#ff00ff,#0000ff,#00ff00
query.pivot=metric
query.dimension=metric:throughput,response-time
query.max-intervals=25

- 66 -

Chapter 5: Configuring Charts for Identity Servers

4. Copy the broker-dashboard.vm file in the <server-root>/-
config/velocity/templates directory to <server-root>/velocity/templates. Files
that are saved to this location and customized are preserved after an upgrade.

5. Modify the following section by adding a file reference. For multiple charts, remove the
comments and add a chart name to the $includedCharts list. For this example, add a
single chart definition after the #end statement:

##
Only include the charts we want to render...
##

set ($includedCharts = ["oauth-token-request", "oauth-exceptions",
 "oauth-granttype", "my-chart"])

foreach($chartDefinitionFileName in $includedCharts)
set($chartDefinition =
 $dashboard.chartDefinitionsByFileName.get($chartDefinitionFileName))
parse("_chart.vm")
end

set($chartDefinitionFileName = "my-chart")
set($chartDefinition = $dashboard.chartDefinitionsByFileName.get

($chartDefinitionFileName))
parse("_chart.vm")

Adding the Broker Dashboard to the Identity Broker Console
Perform the following steps to add the Broker Dashboard to the Identity Broker Console
Metrics page:

1. On the Identity Broker server, change the dashboard_url property on the Identity
Broker Console web application to reference the template file:

$ bin/dsconfig set-web-application-extension-prop \
 --extension-name Broker-Admin-Console \
 --set dashboard-url:https://example.com:8443/view/my-broker-dashboard

2. Restart the Identity Broker server or disable and re-enable the Broker Apps Connection
Handler for changes to take affect.

Velocity Templates
The Metrics Engine exposes Velocity pages through an HTTP Servlet Extension. If the HTTP
Connection Handler is enabled, the Velocity extension is enabled.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \

--add http-servlet-extension:Velocity

- 67 -

Velocity Templates

Velocity template files contain presentation content and variables that are replaced when the
content is requested. Variables are expressed using a $ followed by an identifier that refers to
an object put into a context (VelocityContext) by the server.

Velocity extensions can be configured to expose a number of objects in the context using the
expose-* properties:

l expose-request-attributes – Indicates whether HTTP request attributes are accessible
to templates using the $ubid_request variable. In general, request attributes are added
by server components processing the HTTP request. Also the HTTP request parameters
map is available as $ubid_request.parameters. Request parameters are supplied by
the requester, usually in the request URL query string or in the body of the request itself.

l expose-session-attributes – Indicates whether HTTP session attributes are accessible
to templates using the $ubid_session variable. Like request attributes, session attrib-
utes are also added by server components processing the HTTP request. The lifetime of
these attributes persists until the user’s session has ended.

l expose-server-context – Indicates whether a Server SDK server context is accessible
to templates using the $ubid_server variable. The server context provides access to
properties and additional information about the server. See the Unbound ID Server SDK
documentation for more details.

The following are other properties of the Velocity HTTP Servlet Extension:

l description – A description of the extension.

l cross-origin-policy – Defines a cross origin policy for this extension.

l base-context-path – URL base context for the Velocity Servlet.

l static-content-directory – In addition to templates, the Velocity Servlet will serve mis-
cellaneous static content related to the templates. By default this is con-
fig/velocity/statics.

l static-custom-directory – If static content is customized, it resides in velo-
city/statics by default.

l template-directory – The template directory from which templates are read. By
default this is config/velocity/templates. This directory also serves as a default for
Template Loaders that do not have a template directory specified.

l static-context-path – URL path beneath the base context where static content can be
accessed.

l allow-context-override – Indicates whether context providers may override existing
context objects with new values.

l mime-types-file – Specifies a file that is used to map file extensions of static content to
a Content Type to be returned with requests.

- 68 -

Chapter 5: Configuring Charts for Identity Servers

l default-mime-type – The default Content Type for HTTP responses. Additional content
types are supported by defining on or more additional Velocity Template Loaders.

The VelocityContext object can be further customized by configuring additional Velocity context
providers. The dot notation used for context references can be extended arbitrarily to access
properties and methods of objects in context using Java Bean semantics. For example, if the
HTTP request URL includes a name query string parameter like:

http://example.com:8080/view/hello?name=Joe

An HTML template like the following could be used to generate a page containing a friendly
greeting to the requestor:

<html>
<body>

Hello $ubid_request.parameters.name
</body>

</html>

A pop-up window displays a table on the page that lists all variables that are in the Velocity
Context. References like $ubid_request can appear in the template file and be replaced when
the template is rendered. This information can be used to check which variables are permitted
to be in the template along with the variable values.

A debug option can be used in any Velocity template for verifying available information in the
Velocity Context:

parse("_debug.vm")
debug()

If a variable is added to a template for something that does not exist, the rendered page will
contain a literal string of the unfulfilled variable (for example $undefined_variable).

By default, the Velocity Servlet Extension expects to access content in subdirectories of the
server’s config/velocity directory:

l templates – This directory contains Velocity template files that are used to generate
pages in response to client requests.

l statics – This directory contains static content such as cascading style sheets, HTML,
and Javascript files as well as images and third-party libraries.

Supporting Multiple Content Types
By default, the Velocity Servlet Extension is configured to respond to HTTP requests with a
content type text/html. Change this request type by setting the default MIME type using
dsconfig. For example, the following can be used to set the default type to XML:

$ bin/dsconfig set-http-servlet-extension-prop \
--extension-name Velocity \
--set default-mime-type:application/xml

- 69 -

Velocity Templates

HTML requests can be supported as well as clients that seek content in other formats. Create
one or more Velocity Template Loaders to load templates for other content types like XML or
JSON.

The ability to serve multiple formats of a document to clients at the same URL is typically
called content negotiation. HTTP clients indicate the type of content desired using the Accept
header. A client may use a header like the following to indicate that they prefer content in XML
but will fallback to HTML if necessary:

Accept: application/xml,text/html;q=0.9

The following can be used to create a Velocity Template Loader for XML content:

$ bin/dsconfig create-velocity-template-loader \
--extension-name Velocity \
--loader-name XML \
-–set evaluation-order-index:502 \
--set mime-type-matcher:application/xml \
–-set mime-type:application/xml \
-–set template-suffix:.vm.xml

Upon receiving a request, the Velocity Servlet first creates an ordered list of requested media
types from most desired to least based on the value of the Accept header. Starting from the
most desired type, it will then iterate over the defined Template Loaders according to the
evaluation-order-index property from lowest value to highest.

A Template Loader can indicate that it can handle content for requested media type by
comparing the requested type to its mime-type-matcher property. A loader can be configured
to load templates from a specific directory or load template files having a particular suffix. For
example, XML templates are expected to be named using a .vm.xml suffix. If a loader
indicates it handles the requested content type and a template exists for the requested view,
the template is loaded and used to generate a response to the client. If no loaders are found
for the requested media type, the next most preferred media type (if any) is tried. If no
loaders indicated that they could satisfy the requested view, the client is sent an HTTP 404
(not found) error. If no loaders could provide acceptable media but the requested view exists
in some other format, the client is sent an HTTP 406 (not acceptable) error.

In this example, a template file called hello.vm.xml can be used to generate a response in
XML:

<hello name=”$ubid_request.parameters.name”/>

In this case, the response will contain an HTTP Content-Type header with the value of the
mime-type property of the Velocity Template Loader.

Velocity Context Providers
The previous examples use a value supplied as an HTTP request query string parameter to
form a response. The templates contain a variable $ubid_request.parameters.name that was
replaced at runtime with a value from the Velocity Context.

- 70 -

Chapter 5: Configuring Charts for Identity Servers

The Velocity Extension can be configured to make some information available in the Velocity
Context such as the HTTP request, session, and Server SDK Server Context. Velocity Context
Providers provide more flexibility in populating the Velocity Context for template use.

Here are some of the properties of a Velocity Context Provider:

l enabled – Indicates whether the provider will contribute content for any requests.

l object-scope – Indicates to the provider how often objects contributed to the Velocity
Context should be re-initialized. Possible values are: request, session, or
application.

l included-view/excluded-view – These properties can be used to restrict the views
for which a provider contributes content. A view name is the request URL’s path to the
resource without the Velocity Servlet’s context or a leading forward slash. If one or more
views are included, the provider will service requests for just the specified views. If one
or more views are excluded, the provider will service requests for all but the excluded
views.

Velocity Tools Context Provider
Apache’s Velocity Tools project is focused on providing utility classes useful in template
development. The Velocity Context can be configured by specifying Velocity Tool classes to be
automatically added to the Velocity Context for template development. For more information
about the Velocity Tools project, see http://velocity.apache.org/tools.

The following command can be used to list the set of Velocity Tools that are included in the
Velocity Context for general use by templates:

$ bin/dsconfig get-velocity-context-provider-prop \
--extension-name Velocity \
--provider-name "Velocity Tools" \

 --property request-tool \
 --property session-tool \
 --property application-tool \

- 71 -

Chapter 6: Security

UnboundID servers provide a full suite of security features to protect communication with
clients, to establish trust between server components (for example, for replication and
administration), and to secure data.

This section includes the following information:

Security Features

Certificates

SSL and StartTLS Support

Authentication Mechanisms

Configure Certificate Mappers

- 72 -

Chapter 6: Security

Security Features
The UnboundID servers support a strong set of cryptographic mechanisms to secure
communication and data. The following security-related features are available:

SSL/StartTLS Support – Used to encrypt communication between the client and the server.
Administrators can configure different certificates for each connection handler, or use the
same certificate for all connection handlers. Additionally, the server allows for more fine-
grained control of the key material used in connecting peers in SSL handshakes and trust
material for storing certificates.

Message Digest/Encryption Algorithms – One-way message digests (CRYPT, 128-bit MD5,
160-bit SHA-1, and 256-bit, 384-bit, and 512-bit SHA-2 digests with or without salt) as well as
a number of reversible encryption algorithms (BASE64, 3DES, AES, RC4, and Blowfish) used
for storing passwords. Passwords are not made available in unencrypted form. Encrypted
password storage should only be used if using an authentication mechanism that requires the
server to have access to the clear-text representation of passwords, like CRAM-MD5 or
DIGEST-MD5.

SASL Mechanism Support – Includes ANONYMOUS, CRAM-MD5, DIGEST-MD5, EXTERNAL,
PLAIN, and GSSAPI support. The server supports two types of one-time password (OTP)
mechanisms for multi-factor authentication: UNBOUNDID-TOTP SASL and UNBOUNDID-
DELIVEREDOTP SASL. The UNBOUNDID-TOTP SASL mechanism allows multi-factor
authentication to the server using the time-based one-time password (TOTP) code. The
UNBOUNDID-DELIVERED-OTP SASL mechanism allows multi-factor authentication to the
server by delivering a one-time password to the the end user through some out-of-band
channel, such as email or SMS.

Password Policy Support – Includes customizable password attributes, maximum password
age, maximum password reset age, multiple default password storage schemes, account
expiration, and idle account lockout. The server also supports a number of password storage
schemes such as one-way digests (CRYPT, MD5, SMD5, SHA, SSHA, SSHA256, SSHA384,
SSHA512) and reversible encryption (BASE64, 3DES, AES, RC4, BLOWFISH). Multiple password
validators can be used such as maximum password length, similarity to current password and
the set of characters used.

Full-Featured Access Control System – Used to determine whether a given operation is
allowable based on a wide range of criteria. The access control system allows administrators
to grant or restrict access to data, restrict the use of specific types of controls and extended
operations and provides strong validation for access control rules before accepting them.

Client Connection Policies Support – Controls which clients are connected to the server,
how they are connected, and what resources or operations are available to them. For example,
client connection criteria can be defined to block IP addresses or domains that are known to
attempt brute force attacks. Client connection policies can also be configured to restrict the
type of operations, controls, extended-operations, SASL mechanisms, search filters and
resource limits available to the client. For example, you can configure a client connection
policy that limits the number of concurrent connections or rejects all requests on unsecured
connections.

- 73 -

Certificates

Backup Protection – Protects the integrity of backup contents using cryptographic digests
and encryption. When generating a backup, a cryptographic digest of the backup contents can
be generated and digitally signed. The server also has options to compress and/or encrypt the
contents of the backup. When restoring the backup, the server can verify that the digest
matches the content of the backup and generates an error if the backup has been changed from
when it was initially written, making it tamper-evident. The server can also verify the integrity
of a backup before restoring it.

Certificates
Certificates can be generated and managed using a variety of commonly available tools, such
as the Java keytool utility provided with the Java SDK. The keytool utility can be used to create
keystores, which hold key material used in the course of establishing an SSL session, and
truststores, which are consulted to determine whether a presented certificate should be
trusted.

Many companies have their own certificate authorities or have existing certificates. Follow the
guidelines specific to your company’s implementation.

The UnboundID servers support the following three keystore types:

Java Keystore (JKS) – In most Java SE implementations, the JKS keystore is the default and
preferred keystore format.

PKCS#12 – This keystore type is a well-defined standard format for storing a certificate or
certificate chain, and may be used to hold certificates already in use for other types of servers.
Most other servers that provide a proprietary format for storing certificates provide a
mechanism for converting those certificates to PKCS#12.

PKCS#11 – Also, known as Cryptoki is a format for cryptographic token interfaces for
devices, such as cryptographic smart cards, hardware accelerators, and high performance
software libraries. PKCS#11 tokens may also offer a higher level of security than other types
of keystores, and many of them have been FIPS 140-2 certified.

Authentication Using Certificates
Two mechanisms for certificate-based authentication are supported:

Client Certificate Validation – The server can request that the client present its own
certificate for authentication during the SSL or StartTLS negotiation process. If the client
presents a certificate, then the server will use the trust manager provider configured for the
associated connection handler to determine whether to continue the process of establishing the
SSL or StartTLS session. If the client certificate is not accepted by the trust manager provider,
the server will terminate the connection. Even if the client provides its own certificate to the
server during the process of establishing an SSL or StartTLS session, the underlying LDAP
connection may remain unauthenticated until the client sends an LDAP bind request over that
connection.

SASL EXTERNAL Certificate Authentication – Enables a client to authenticate itself with
the server by presenting a certificate presented during SSL or StartTLS negotiation, outside of

- 74 -

Chapter 6: Security

the LDAP communication. Once the client has established a secure connection to the server, it
may send a SASL EXTERNAL bind request to the server to request that the server attempt to
identify the client based on information contained in that certificate. The server will then use a
certificate mapper to identify exactly one user entry that corresponds to the provided client
certificate, and it may perform additional verification, such as requiring the client certificate be
present in the userCertificate attribute of the user’s entry. If the certificate mapper cannot
identify exactly one user entry for that certificate, or if its additional validation is not satisfied,
then the bind attempt will fail and the client connection will remain unauthenticated.

Create a Server Certificate with Keytool
The keytool utility enables management of public/private key pairs, x509 certificate chains and
trusted certificates. The keys and certificates are stored in a keystore, which is a password-
protected file with a default format of JKS. Each key and trusted certificate in the keystore is
accessed by its unique alias.

The following procedure creates a keystore, generates a public/private key pair, and creates a
self-signed certificate based on the key pair. This certificate can be used as the server
certificate or it can be replaced by a CA-signed certificate chain with additional keytool
commands.

The -dname option is used to specify the certificate’s subject, which is generally a CN attribute
with a value equal to the fully-qualified name of the server. If the -dname option is omitted, the
utility prompts for input. The certificate is valid for 180 days.

Perform the following steps to create a server certificate using Keytool:

1. Change to the directory where the certificates will be stored.

$ cd /ds/UnboundID-<server>/config

2. Use the keytool utility to create a private/public key pair and a keystore. The keytool util-
ity is part of the Java SDK (${JAVA_HOME}/bin).

$ keytool -genkeypair \
 -dname "CN=server.example.com,ou=Metrics Engine Certificate,
 O=Example Company,C=US"\
 -alias server-cert \
 -keyalg rsa \
 -keystore keystore \
 -keypass changeit \
 -storepass changeit \
 -storetype JKS \
 -validity 180 \
 -noprompt

The -keypass and -storepass arguments can be omitted to cause the tool to interactively
prompt for the password. Also, the key password should match the keystore password.

3. View the keystore. Notice the entry type is privateKeyEntry which indicates that the
entry has a private key associated with it, which is stored in a protected format to pre-

- 75 -

Certificates

vent unauthorized access. Also note that the Owner and Issuer are the same, indicating
that this certificate is self-signed.

$ keytool -list -v -keystore keystore -storepass changeit

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: server-cert
Creation date: Sep 30, 2011
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=server.example.com, OU=Metrics Engine Certificate, O=Example
Company, C=US
Issuer: CN=server.example.com, OU=Metrics Engine Certificate, O=Example
Company, C=US
Serial number: 4ac3695f
Valid from: Wed Sep 30 09:21:19 CDT 2011 until: Mon Mar 29 09:21:19 CDT
2012
Certificate fingerprints:
MD5: 3C:7B:99:BA:95:A8:41:3B:08:85:11:91:1B:E1:18:00
SHA1: E9:7E:38:0F:1C:68:29:29:C0:B4:8C:08:2B:7C:DA:14:BF:41:DE:F5
Signature algorithm name: SHA1withRSA
Version: 3

4. If you are going to have your certificate signed by a Certificate Authority, skip to step 7.
Otherwise export the self-signed certificate. Then examine the certificate.

$ keytool -export -alias server-cert -keystore keystore -rfc -file
server.crt
Enter keystore password:
Certificate stored in file <server.crt>

5. Import the self-signed certificate into a truststore. When prompted, type yes to trust the
certificate.

$ keytool -importcert -alias server-cert -file server.crt \
 -keystore truststore -storepass changeit

6. View the truststore with the self-signed certificate. If using this certificate as the server
certificate, this is the final step.

$ keytool -list -v -keystore truststore -storepass changeit

7. To create a production-ready certificate, continue by creating the Certificate Signing
Request (CSR) by writing to the file server.csr. Follow the instructions of the third-party
Certificate Authority (CA), and submit the file to a CA. The CA authenticates you and then
returns a certificate reply, which you can save as signed.crt.

- 76 -

Chapter 6: Security

$ keytool -certreq -v -alias server-cert -keystore keystore \
 -storepass changeit -file server.csr

Certification request stored in file <server.csr>
Submit this to your CA

8. If working with a third-party CA, both the key and trust stores should include information
about the CA’s root certificate as well as any intermediate certificates used to sign the
server certificate. Obtain the CA root and any intermediate certificates to set up a chain
of trust in your keystore. View the trusted CA and intermediate certificates to check that
the displayed certificate fingerprints
match the expected ones.

$ keytool -v -printcert -file root.crt
$ keytool -v -printcert -file intermediate.crt

9. Import the CA’s root certificate in the keystore and truststore. If there are other inter-
mediate certificates, then import them using the same commands, giving them each dif-
ferent aliases in the key and trust stores.

$ keytool -importcert -v -trustcacerts -alias cacert \
 -keystore keystore -storepass changeit -file root.crt
$ keytool -importcert -v -trustcacerts -alias cacert -keystore truststore
\
 -storepass changeit -file root.crt

10. Import the server certificate signed by the CA into the keystore, which will replace the
existing self-signed certificate. When prompted, type yes to trust the certificate.

$ keytool -importcert -v -trustcacerts -alias server-cert -keystore
keystore

-storepass changeit -file signed.crt

11. Add the certificate to the truststore.

$ keytool -importcert -v -trustcacerts -alias server-cert \
 -keystore truststore -storepass changeit -file signed.crt

Create a Client Certificate
Client certificates can be used when stronger client authentication is desired but are not
required for SSL connections to be established. There are two important considerations when
using client certificates:

l If a client presents its own certificate to the server, the server must be configured to
trust that certificate.

l If the client certificates will be used for LDAP authentication via SASL EXTERNAL, then
the certificate must contain enough information to allow the server to associate it with

- 77 -

Certificates

exactly one user entry. The requirements for this are dependent upon the certificate map-
per configured for use in the server.

To create a PKCS#12 formatted client certificate with the Keytool utility, follow the steps in
Create a Server Certificate and use the following command:

$ keytool -genkeypair \
 -dname "CN=server.example.com,ou=Certificate,O=Example Company,C=US"\
 -alias server-cert -keyalg rsa -keystore keystore.p12 -keypass changeit \
 -storepass changeit -storetype pkcs12 -validity 180 -noprompt

Configure the Key and Trust Manager Providers
UnboundID servers support the following trust and key managers:

l JKS Key Manager Provider and Trust Manager Provider

l PKCS#11 Key Manager Provider and Trust Manager Provider

l PKCS#12 Key Manager Provider and Trust Manager Provider

Note A blind trust manager provider can be used for evaluation purposes, but is not recommended for a
production environment.

Perform the following steps to enable a key manager and trust manager and assign a
connection handler. this can be done with dsconfig interactively, or manually.

1. Change location to the server root:

$ cd /<UnboundID-server-root>

2. Create a text file containing the password for the certificate keystore. It is recommended
that file permissions (or filesystem ACLs) be configured so that the file is only readable
by the server user.

$ echo ’changeit’ > config/keystore.pin
$ chmod 0400 keystore.pin

3. Use the dsconfig tool to enable the key manager provider.

$ bin/dsconfig set-key-manager-provider-prop \
 --provider-name <JKS, PKCS11, or PKCS12>
 --set enabled:true
 --set key-store-file:/config/<Keystore.jks, keystore.p11 or
keystore.p12>
 --set key-store-type:<JKS, PKCS11 or PKCS12>
 --set key-store-pin-file:/config/keystore.pin

4. Use dsconfig to enable the trust manager provider.

$ bin/dsconfig set-trust-manager-provider-prop \
 --provider-name <JKS, PKCS11, or PKCS12> \
 --set enabled:true \

- 78 -

Chapter 6: Security

 --set trust-store-file:/config/<truststore.jks, truststore.p11, or
truststore.p12>

5. Use dsconfig to enable the LDAPS connection handler. Port 636 is typically reserved for
LDAPS. If the certificate alias differs from the default "server-cert", use the --set ssl-

cert-nickname:<aliasname> option to set it, or use the --reset sslcert-nickname

option for the server to set the alias.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "LDAPS Connection Handler" \
 --set listen-port:1636 \
 --set enabled:true \
 --set ssl-cert-nickname:1 \
 --set key-manager-provider:<JKS, PKCS11, or PKCS12> \
 --set trust-manager-provider:<JKS, PKCS11, or PKCS12>

6. Test the listener port for SSL-based client connection on port 1636 to return the Root
DSE. Type yes to trust the certificate.

$ bin/ldapsearch --port 1636 --useSSL --baseDN "" --searchScope base \
"(objectclass=*)"

The server is using the following certificate:
Subject DN: CN=179.13.201.1, OU=Server Certificate, O=Example Company,
L=Austin, ST=Texas, C=US
Issuer DN: EMAILADDRESS=whatever@example.com, CN=Cert Auth, OU=My
Certificate Authority, O=Example Company, L=Austin, ST=Texas, C=US
Validity: Fri Sep 25 15:21:10 CDT 2013 through Sat Sep 25 15:21:10 CDT
2014

Do you wish to trust this certificate and continue connecting to the
server?
Please enter 'yes' or 'no':yes

7. If necessary, disable the LDAP Connection Handler so that communication can only go
through SSL.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "LDAP Connection Handler" \
 --set enabled:false

SSL and StartTLS Support
SSL and/or StartTLS are used to secure communication with clients and other components. The
supported versions of SSL or StartTLS are determined by what the underlying JVM supports.
The server will automatically look at the supported protocols and attempt to determine the
best one to use.

When using Oracle Java SE 1.7, version TLSv1.2 is preferred by the server. A particular
protocol can be specified by setting the com.unboundid.util.SSLUtil.defaultSSLProtocol
property.

- 79 -

SSL and StartTLS Support

LDAP-over-SSL (LDAPS) Support
The server provides dedicated connection handlers for LDAPS connections. LDAPS enables the
client and server to establish an SSL session before messages are transferred.

StartTLS Support
StartTLS adds SSL encryption to an existing plain text LDAP connection. The client opens an
unencrypted TCP connection to the server and, after processing zero or more LDAP operations
over that clear-text connection, sends a StartTLS extended request to the server to indicate
that the client-server communication should be encrypted.

To require the use of SSL for client connections accepted by a connection handler, set use-ssl
to true for that connection handler. To allow clients to use StartTLS on a connection handler,
the administrator must configure that connection handler to allow StartTLS. Because SSL and
StartTLS are mutually exclusive, you cannot enable both SSL and StartTLS for the same
connection handler (although you can have some connection handlers configured to use SSL
and others configured to use StartTLS).

Configure SSL
If SSL was not configured at install time, then it may be enabled at any time using the
following process. These instructions assume that the certificate is available in a JKS-
formatted keystore, but a similar process may be used for certificates available through other
mechanisms like a PKCS#12 file or a PKCS#11 token.

Perform the following steps to configure SSL:

1. Change to the server root directory.

$ cd /ds/UnboundID-Metrics-Engine

2. Create a text file containing the password for the certificate keystore. It is recommended
that file permissions (or filesystem ACLs) be configured so that the file is only readable
by the Metrics Engine user.

$ echo ’changeit’ > config/keystore.pin
$ chmod 0400 config/keystore.pin

3. Run the dsconfig command in interactive mode (bin/dsconfig).

4. Enter the connection parameters when prompted.

5. On the Configuration Console main menu, enter o (lowercase letter "o") to change the
configuration objects menu.

6. Choose the Advancedmenu option.

7. On the Metrics Engine Configuration Console main menu, enter the number cor-
responding to the Key Manager Provider.

- 80 -

Chapter 6: Security

8. On the Key Manager Provider management menu, select the option to view and edit an
existing key manager.

9. On the Key Manager Provider menu, enter the option for JKS.

10. Make any necessary changes to the JKS key manager provider for the keystore. The pro-
vider must be enabled, and the locations of the key-store-file and key-store-pin-file
must be set.

>>>> Configure the properties of the File Based Key Manager Provider

Property Value(s)

1) description -
2) enabled true
3) key-store-file config/keystore
4) key-store-type JKS
5) key-store-pin -
6) key-store-pin-file config/keystore.pin
7) private-key-pin -
8) private-key-pin-file -

11. Type f to save and apply the changes.

12. Return to the Advanced main menu, and enter the number corresponding to Trust Man-
ager Provider.

13. On the Trust Manager Provider management menu, enter the option to view and edit an
existing trust manager provider.

14. On the Trust Manager Provider menu, enter the option for JKS.

15. Ensure that the JKS trust manager provider is enabled and that the trust-store-file prop-
erty has a value that reflects the path to the truststore file.

16. Type f to save and apply the changes.

17. Return to the Configuration (Standard) main menu, enter the number corresponding to
the Connection Handler option.

18. On the Connection Handler management menu, enter the option to view and edit and
existing connection handler.

19. On the Connection Handler menu, enter the option for LDAPS Connection Handler.

20. On the LDAP Connection Handler menu, make sure that the handler is enabled, the listen-
port property reflects the port on which to listen for SSL-based connections, and the ssl-
cert-nickname property reflects the alias for the target certificate in the selected key-
store.

21. Type f to save and apply the changes.

- 81 -

SSL and StartTLS Support

22. Verify that the server is properly configured to accept SSL-based client connections using
an LDAP-based tool like ldapsearch. For example:

$ bin/ldapsearch --port 1636 --useSSL --baseDN "" \
--searchScope base "(objectclass=*)"

The server is using the following certificate:
 Subject DN: CN=179.13.201.1, OU=Metrics Engine
 Certificate, O=Example Company, L=Austin, ST=Texas,
 C=US Issuer DN: EMAILADDRESS=whatever@example.com,
 CN=Cert Auth, OU=My Certificate Authority, O=Example
 Company, L=Austin, ST=Texas, C=US
 Validity: Fri Sep 25 15:21:10 CDT 2011 through Sat Sep 25 15:21:10 CDT
2012
Do you wish to trust this certificate and continue connecting to the
server?
Please enter 'yes' or 'no':yes

If necessary, disable the LDAP connection handler so only the LDAPS connection handler will
accept connections.

Configure StartTLS
The StartTLS extended operation is used to initiate a TLS-secured communication channel over
a clear-text connection, such as an insecure LDAP connection. StartTLS provides a way to use a
single connection handler for both secure and insecure communication, rather than requiring a
dedicated connection handler for secure communication.

1. Use dsconfig to configure the Connection Handler to allow StartTLS. The allow-
starttls property cannot be set if SSL is enabled. The connection handler must also be
configured with a key manager provider and a trust manager provider.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "LDAP Connection Handler" \
 --set allow-start-tls:true \
 --set key-manager-provider:JKS \
 --set trust-manager-provider:JKS

2. Use ldapsearch to test StartTLS.

$ bin/ldapsearch -p 1389 --useStartTLS -b "" -s base "(objectclass=*)"

The server is using the following certificate:
 Subject DN: CN=Server Cert, OU=Metrics Engine Certificate,
 O=Example Company, L=Austin, ST=Texas, C=US
 Issuer DN: EMAILADDRESS=whatever@example.com, CN=Cert Auth,
 OU=My Certificate Authority, O=Example Company, L=Austin, ST=Texas,
C=US

Validity: Thu Oct 29 10:29:59 CDT 2013 through Fri Oct 29 10:29:59 CDT
2014

Do you wish to trust this certificate and continue connecting to the

- 82 -

Chapter 6: Security

server?
Please enter 'yes' or 'no':yes
dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 6fa8f196-d112-40b4-b8d8-93d6d44d59ea

Authentication Mechanisms
UnboundID servers support the following authentication mechanisms:

Simple Authentication – Simple authentication allows a client to identify itself with a server
using the DN and password of the target user. Because the password is provided in the clear,
simple authentication is inherently insecure unless the client communication is encrypted using
a mechanism like SSL or StartTLS.

If both the DN and password of a simple bind request are empty (zero-length strings), the
server will process it as an anonymous bind. This will have no effect if the client is not already
authenticated, but it can be used to destroy any previous authentication session and revert the
connection to an unauthenticated state as if no bind had ever been performed on that
connection.

SASL Authentication – SASL (Simple Authentication and Security Layer, defined in RFC 4422)
provides an extensible framework that can be used to add support for a range of authentication
and authorization mechanisms. Several common SASL mechanisms are supported.

Configure a SASL Mechanism Handler
The dsconfig utility enables configuration of the following SASL mechanism handlers.
Configuration can be performed through the dsconfig interactive menu or from the command
line.

ANONYMOUS – Does not perform any authentication, but can be enabled for clients to include
a trace string to identify the purpose of a connection.

CRAM-MD5 – Performs password-based authentication through an MD5 digest. The client
sends a bind request to the server. The server responds with a randomly-generated challenge
to protect against replay attacks. The client responds with an answer to the challenge, a clear-
text password, and an authentication ID. The server encodes the password and requires that
any clients have a password policy that supports two-way, reversible encryption.

By default, SASL DIGEST-MD5 uses the Exact Match Identity Mapper, which returns a success
result if the authorization ID is an exact match for the value of the uid attribute. Other identity
mappers, such as the Regular Expression Identity Mapper or a custom Identity Mapper written
using the UnboundID Server SDK, can also be used.

DIGEST-MD5 – Provides authentication through a stronger MD5 digest that does not expose a
clear-text password. The client sends a bind request with credentials to the server. The server
sends the client a response with a set of authentication options and a special token. The client
sends an encrypted response with the chosen authentication method. The server then validates
the client's response. This is the required authentication mechanism for LDAP v3 servers.

- 83 -

Authentication Mechanisms

EXTERNAL – Allows a client to authenticate using information about the client, which is
available to the server, but is not directly provided over LDAP. On the server, SASL EXTERNAL
requires the use of a client certificate provided during SSL or StartTLS negotiation. This does
not require the use of passwords, although its use on a broad scale is generally only feasible in
environments with a PKI deployment.

GSSAPI – Provides authentication for LDAP clients using Kerberos V. User credentials are
stored in the Kerberos key distribution center (KDC) rather than the UnboundID server. When
an LDAP client attempts to authenticate with the server, a three-way exchange occurs that
allows the client to verify its identity to the server through the KDC.

UnboundID's support for GSSAPI is based on the Java Authentication and Authorization Service
(JAAS). By default, the server automatically generates a JAAS configuration that should be
appropriate for most use cases. For more complex deployments, a custom JAAS configuration
can be supplied.

UnboundID servers support GSSAPI only for authenticating clients, not for securing their
communication with the server.

PLAIN – Performs password-based authentication with an authentication ID, clear-text
password, and optional authorization ID.

UNBOUNDID-TOTP – Provides a proprietary multifactor authentication mechanism that
allows the server to use the Time-based One-Time Password (TOTP) algorithm, specified in
RFC 6238. The TOTP algorithm is an extension of the Hash-based Message Authentication Code
One-Time Password (HTOP) algorithm, specified in RFC 4226. The TOTP algorithm computes a
temporary code using the current time and a secret key that is shared between the client
application and the server.

UNBOUNDID-TOTP SASL issues a bind request that includes at least an authentication ID and a
TOTP code, but may also include an authorization ID and/or a static password. The server first
uses the authentication ID to identify the user that is authenticating and then retrieves the
shared secret from the user's entry (stored as a base32-encoded value in the ds-auth-totp-
sharedsecret operational attribute) and uses it with the current time to generate a TOTP code.
If that matches the code that the user entered, then that confirms that the client knows the
shared secret. If a static password was also provided, then the server will confirm that it
matches what is stored in the userPassword attribute (or that specified by the password
policy). By default, the server will require the client to provide a static password.

The Commercial Edition of the LDAP SDK for Java provides the necessary client-side support
for the UNBOUNDID-TOTP SASL mechanism, and provides a
com.unboundid.ldap.sdk.unboundidds.OneTimePassword class to generate HOTP and TOTP
codes for testing purposes.

UNBOUNDID-DELIVERED-OTP – Provides two-factor authentication, which uses one-time
passwords (OTPs) that are delivered to the end user through some out-of-band mechanism.
The server provides support for e-mail (through an external SMTP external server), SMS
(through the Twilio web service), and custom delivery mechanisms with the Server SDK.

The process for authenticating using this new mechanism involves two steps:

- 84 -

Chapter 6: Security

l The client sends a "deliver one-time password" extended request to the server. This
request includes an authentication ID, the user's static password, and an optional set of
allowed delivery mechanisms. If successful, the server generates a one-time password,
stores it in the user's entry, and sends it to the user through one of the allowed mech-
anisms.

l Once the user has received the one-time password, the client should perform an
UNBOUNDID-DELIVERED-OTP SASL bind (which may be on the same connection or a dif-
ferent connection used to send the "deliver one-time password" extended operation).
The credentials for this SASL mechanism include an authentication ID to identify the
user, an optional authorization ID (if operations performed by the client should be author-
ized as a different user), and the one-time password.

Unlike UNBOUNDID-TOTP SASL, there is no need to have a shared secret between the client
and the server, or any special client-side software to generate the one-time password, or a
need to worry about whether the client and server clocks are roughly in sync.

Configure SASL ANONYMOUS Mechanism
The LDAP client tools provided with UnboundID servers support the use of SASL ANONYMOUS.
The optional "trace" SASL option can be used to specify the trace string to include in the bind
request.

Perform the following steps to configure SASL ANONYMOUS:

1. Use dsconfig to enable the SASL ANONYMOUS mechanism.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
 --handler-name ANONYMOUS --set enabled:true

2. Use ldapsearch to view the root DSE and enter a trace string in the access log.

$ bin/ldapsearch --port 1389 --saslOption mech=ANONYMOUS \
 --saslOption "trace=debug trace string" --baseDN "" \
 --searchScope base "(objectclass=*)"

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 59bab79d-4429-49c8-8a88-c74a86792f26

3. View the access log using a text editor in the /ds/UnboundID-<server>/logs folder.

[26/Oct/2011:16:06:33 -0500] BIND RESULT conn=2 op=0 msgID=1 resultCode=0
additionalInfo="trace='debug trace string'" etime=345.663
clientConnectionPolicy="default"

Configure SASL PLAIN Mechanism
LDAP clients can use SASL PLAIN with the following SASL options:

authid – Specifies the authentication ID to use for the bind. This must be provided.

- 85 -

Authentication Mechanisms

authzid– Specifies an optional alternate authorization ID to use for the bind.

Perform the following steps to configure SASL PLAIN:

1. Use dsconfig to enable the SASL PLAIN mechanism.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
--handler-name PLAIN --set enabled:true

2. Use ldapsearch to view the root DSE using the authentication ID (authid) with the user-
name jdoe. Enter a password for the authentication ID.

$ bin/ldapsearch --port 1389 --saslOption mech=PLAIN \
--saslOption "authid=u:jdoe" --baseDN "" \
--searchScope base "(objectclass=*)"
Password for user 'u:jdoe':

Or specify the full DN of the user:

$ bin/ldapsearch --port 1389 --saslOption mech=PLAIN \
--saslOption "authid=dn:uid=jdoe,ou=People,dc=example,dc=com" \
--baseDN "" --searchScope base "(objectclass=*)"
Password for user 'dn:uid=jdoe,ou=People,dc=example,dc=com':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 59bab79d-4429-49c8-8a88-c74a86792f26

Configure SASL CRAM-MD5 Mechanism
CRAM-MD5 requires an authentication ID (authid) from the client to identify the authenticating
user. The format of that authentication ID can be either:

n dn: followed by the distinguished name of the target user (or just dn: to perform an
anonymous bind).

n u: followed by a username.

If using u:, an identity mapper is used to identify the target user based on that username.

Perform the following steps to configure CRAM-MD5:

1. Use dsconfig to enable the SASL CRAM-MD5 mechanism if it is disabled. By default, the
CRAM-MD5 mechanism is enabled.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
--handler-name CRAM-MD5 --set enabled:true

2. For this example, create a password policy for CRAM-MD5 using a reversible password
storage scheme, like 3DES.

$ bin/dsconfig create-password-policy \
--policy-name "Test UserPassword Policy" \
--set password-attribute:userpassword \
--set default-password-storage-scheme:3DES

- 86 -

Chapter 6: Security

3. Use ldapmodify to add the ds-pwp-password-policy-dn attribute to an entry to indic-
ate the Test UserPassword Policy should be used for that entry. When finished, press
CTRL-D to process the modify operation.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: ds-pwp-password-policy-dn
ds-pwp-password-policy-dn: cn=Test UserPassword Policy,cn=Password
Policies,cn=config

Processing MODIFY request for uid=jdoe,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=jdoe,ou=People,dc=example,dc=com

4. Use ldapmodify to change the userPassword to a reversible password storage scheme.
The password storage scheme is specified in the user’s password policy.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
replace: userPassword
userPassword: secret

5. Use ldapsearch to view the root DSE using the authentication ID (authid) option with
the username jdoe. Enter a password for the user.

$ bin/ldapsearch --port 1389 --saslOption mech=CRAM-MD5 \
--saslOption "authid=u:jdoe" --baseDN "" --searchScope base "
(objectclass=*)"
Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 50567aa3-acd2-4106-a077-37a092275363

Configure SASL DIGEST-MD5 Mechanism
DIGEST-MD5 requires an authentication ID (authid) from the client to identify the
authenticating user. The format of that authentication ID can be either:

n dn: followed by the distinguished name of the target user (or just dn: to perform an
anonymous bind).

n u: followed by a username. If using u:, an identity mapper is used to identify the target
user based on that username.

The client may also include the following properties:

l authzID – Specifies an optional authorization ID that should be used for operations pro-
cessed on the connection.

- 87 -

Authentication Mechanisms

l realm – The realm in which the authentication should be processed. This may or may
not be required, based on the server configuration.

l digest-uri – The digest URI that should be used for the bind. It should generally be
"ldap://" followed by the fully-qualified address for the Metrics Engine. If this is not
provided, then a value will be generated.

l qop – The quality of protection to use for the bind request. Only auth is supported (indic-
ating that the DIGEST-MD5 bind should only be used for authentication and should not
provide any subsequent integrity or confidentiality protection for the connection), and if
no value is provided then auth will be assumed.

Perform the following steps to configure CRAM-MD5:

1. Use dsconfig to enable the SASL DIGEST-MD5 mechanism if it is disabled. By default,
the DIGEST-MD5 mechanism is enabled.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
--handler-name DIGEST-MD5 --set enabled:true

2. For this example, create a password policy using a reversible password storage scheme,
like 3DES.

$ bin/dsconfig create-password-policy \
--policy-name "Test UserPassword Policy" \
--set password-attribute:userpassword \
--set default-password-storage-scheme:3DES

3. Use ldapmodify to add the ds-pwp-password-policy-dn attribute to an entry to indic-
ate the Test UserPassword Policy should be used for that entry. When finished, press
CTRL-D to process the modify operation.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: ds-pwp-password-policy-dn
ds-pwp-password-policy-dn: cn=Test UserPassword Policy,cn=Password
Policies,cn=config

Processing MODIFY request for uid=jdoe,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=jdoe,ou=People,dc=example,dc=com

4. Use ldapmodify to change the userPassword to a reversible password storage scheme.
The password storage scheme is specified in the user’s password policy.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
replace: userPassword
userPassword: secret

- 88 -

Chapter 6: Security

5. Use ldapsearch to view the root DSE using the authentication ID with the username
jdoe. Enter a password for the authentication ID.

$ bin/ldapsearch --port 1389 --saslOption mech=DIGEST-MD5 \
--saslOption "authid=u:jdoe" --baseDN "" \
--searchScope base "(objectclass=*)"
Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 2188e4d4-c2bb-4ab9-8e1c-848e0168c9de

6. The user identified by the authentication ID requires the proxied-auth privilege to allow it
to perform operations as another user.

$ bin/ldapmodify

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modifyadd: ds-privilege-name
ds-privilege-name: proxied-auth

5. Use ldapsearch with the authid (required) and authzid option to test the mechanism.

$ bin/ldapsearch --port 1389 --saslOption mech=DIGEST-MD5 \
--saslOption authid=u:jdoe \
--saslOption authzid=dn:uid=admin,dc=example,dc=com \
--base "" --searchScope base "(objectclass=*)"
Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 2188e4d4-c2bb-4ab9-8e1c-848e0168c9de

Configure SASL DIGEST-MD5 Mechanism
DIGEST-MD5 requires an authentication ID (authid) from the client to identify the
authenticating user. The format of that authentication ID can be either:

n dn: followed by the distinguished name of the target user (or just dn: to perform an
anonymous bind).

n u: followed by a username. If using u:, an identity mapper is used to identify the target
user based on that username.

The client may also include the following properties:

l authzID – Specifies an optional authorization ID that should be used for operations pro-
cessed on the connection.

l realm – The realm in which the authentication should be processed. This may or may
not be required, based on the server configuration.

- 89 -

Authentication Mechanisms

l digest-uri – The digest URI that should be used for the bind. It should generally be
"ldap://" followed by the fully-qualified address for the Metrics Engine. If this is not
provided, then a value will be generated.

l qop – The quality of protection to use for the bind request. Only auth is supported (indic-
ating that the DIGEST-MD5 bind should only be used for authentication and should not
provide any subsequent integrity or confidentiality protection for the connection), and if
no value is provided then auth will be assumed.

Perform the following steps to configure CRAM-MD5:

1. Use dsconfig to enable the SASL DIGEST-MD5 mechanism if it is disabled. By default,
the DIGEST-MD5 mechanism is enabled.

$ bin/dsconfig set-sasl-mechanism-handler-prop \
--handler-name DIGEST-MD5 --set enabled:true

2. For this example, create a password policy using a reversible password storage scheme,
like 3DES.

$ bin/dsconfig create-password-policy \
--policy-name "Test UserPassword Policy" \
--set password-attribute:userpassword \
--set default-password-storage-scheme:3DES

3. Use ldapmodify to add the ds-pwp-password-policy-dn attribute to an entry to indic-
ate the Test UserPassword Policy should be used for that entry. When finished, press
CTRL-D to process the modify operation.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: ds-pwp-password-policy-dn
ds-pwp-password-policy-dn: cn=Test UserPassword Policy,cn=Password
Policies,cn=config

Processing MODIFY request for uid=jdoe,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=jdoe,ou=People,dc=example,dc=com

4. Use ldapmodify to change the userPassword to a reversible password storage scheme.
The password storage scheme is specified in the user’s password policy.

$ bin/ldapmodify
dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
replace: userPassword
userPassword: secret

5. Use ldapsearch to view the root DSE using the authentication ID with the username
jdoe. Enter a password for the authentication ID.

$ bin/ldapsearch --port 1389 --saslOption mech=DIGEST-MD5 \
--saslOption "authid=u:jdoe" --baseDN "" \

- 90 -

Chapter 6: Security

--searchScope base "(objectclass=*)"
Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 2188e4d4-c2bb-4ab9-8e1c-848e0168c9de

6. The user identified by the authentication ID requires the proxied-auth privilege to allow it
to perform operations as another user.

$ bin/ldapmodify

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modifyadd: ds-privilege-name
ds-privilege-name: proxied-auth

5. Use ldapsearch with the authid (required) and authzid option to test the mechanism.

$ bin/ldapsearch --port 1389 --saslOption mech=DIGEST-MD5 \
--saslOption authid=u:jdoe \
--saslOption authzid=dn:uid=admin,dc=example,dc=com \
--base "" --searchScope base "(objectclass=*)"
Password for user 'u:jdoe':

dn:
objectClass: ds-root-dse
objectClass: top
startupUUID: 2188e4d4-c2bb-4ab9-8e1c-848e0168c9de

Configure SASL GSSAPI Mechanism
While the GSSAPI specification includes a provision for protecting client-server
communication, UnboundID servers currently support GSSAPI only for the purpose of
authenticating clients.

Kerberos Configuration Considerations

To implement GSSAPI authentication, a Kerberos V deployment must be configured. The
Kerberos deployment should take the following into consideration:

l It is recommended that the KDC be configured to use "aes128-cts" as the TKT and TGS
encryption type, which is supported by all Java VMs. In Kerberos environments using the
MIT libraries, make sure that the following lines are present in the [libdefaults] section
of the /etc/krb.conf configuration file on the KDC system:

default_tkt_enctypes = aes128-cts
default_tgs_enctypes = aes128-cts
permitted_enctypes = aes128-cts

l When a client uses Kerberos to authenticate to a server, the addresses of the target
server and the KDC are used in cryptographic operations. Make sure that all systems

- 91 -

Authentication Mechanisms

agree on the addresses of the server and KDC systems. Make sure that DNS is con-
figured so that the primary addresses for the KDC and server are addresses that clients
will use to communicate with them.

l Kerberos authentication is time-sensitive. If system clocks are not synchronized, authen-
tication may fail. Use NTP or some other form of time synchronization for all KDC,
server, and client systems.

To authenticate itself to the Kerberos environment, the KDC should include both host and
service principals for all servers. The host principal is in the form
host/directory.example.com, and the service principal should generally be
ldap/directory.example.com. In an MIT Kerberos environment, the kadmin utility can be
used to create these principals, as follows:

/usr/sbin/kadmin -p kws/admin
Authenticating as principal kws/admin with password.
Password for kws/admin@EXAMPLE.COM:
kadmin: add_principal -randkey host/directory.example.com
WARNING: no policy specified for host/directory.example.com@EXAMPLE.COM;
 defaulting to no policy
Principal "host/directory.example.com@EXAMPLE.COM" created.
kadmin: ktadd host/directory.example.com
Entry for principal host/directory.example.com with kvno 3, encryption type
AES-128
 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/kr-
b5/krb5.keytab.
kadmin: add_principal -randkey ldap/directory.example.com
WARNING: no policy specified for ldap/directory.example.com@EXAMPLE.COM;
 defaulting to no policy
Principal "ldap/directory.example.com@EXAMPLE.COM" created.
kadmin: quit

On each server, the service principal for that instance must be exported to a keytab file, using
a command such as:

/usr/sbin/kadmin -p kws/admin
Authenticating as principal kws/admin with password.
Password for kws/admin@EXAMPLE.COM:
kadmin: ktadd -k /ds/UnboundID-<server>/config/server.keytab ldap/
directory.example.com
Entry for principal ldap/directory.example.com with kvno 4, encryption type
AES-128
 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/ds/UnboundID-Met-
rics-Engine/
config/
 server.keytab.
kadmin: quit

- 92 -

Chapter 6: Security

Because this file contains the credentials that the server will use to authenticate to the KDC, it
is strongly recommended that appropriate protection be taken to ensure that it is only
accessible to the server itself.

GSSAPI Mechanism Handler Options

The GSSAPI SASL mechanism handler provides the following configuration options:

enabled – Indicates whether the GSSAPI SASL mechanism handler is enabled for use in the
server. By default, it is disabled.

kdc-address – Specifies the address that the server should use to communicate with the KDC.
If this is not specified, the server will attempt to determine it from the underlying system
configuration.

server-fqdn – Specifies the fully-qualified domain name that clients will use to communicate
with the server. If this is not specified, the server will attempt to determine it from the
underlying system configuration.

realm – Specifies the Kerberos realm that clients will use. If this is not specified, the server
will attempt to determine it from the underlying system configuration.

kerberos-service-principal – Specifies the service principal that the server will use to
authenticate with the KDC. If this is not specified, the service principal is "ldap/" followed by
the fully-qualified server address.

keytab – Specifies the path to the keytab file that holds the credentials for the Kerberos
service principal that the server uses to authenticate with the KDC. If this is not specified, the
server will use the system-wide keytab.

identify-mapper – Specifies the identify mapper that the server will use to map a client’s
Kerberos principal to the entry of the corresponding user account in the server. In the default
configuration, the server uses a regular expression identity mapper that looks for an entry with
a uid value equal to the username portion of the Kerberos principal. For example, for a
Kerberos principal of jdoe@EXAMPLE.COM, the identity mapper will perform an internal search
with a filter of (uid=jdoe).

enable-debug – Indicates whether the server should write debugging information about
Kerberos-related processing (including JAAS processing) that the server performs. If enabled,
this information will be written to standard error in the logs/server.out log file.

jaas-config file – Specifies the path to a JAAS configuration file that the server should use. If
this is not specified, the server will generate a JAAS configuration file based on the values of
the other configuration properties. It is recommended that this only be used in extraordinary
circumstances in which the server-generated JAAS configuration is not acceptable.

Configure SASL UNBOUNDID-TOTP Mechanism
Perform the following steps to configure the UNBOUNDID-TOTP mechanism:

1. Configure the server so that ds-auth-totp-shared-secret is a sensitive attribute that
can only be set over a secure connection and cannot ever be retrieved from the server.

- 93 -

Authentication Mechanisms

Create the sensitive attribute and reference it from the global configuration using dscon-
fig.

$ bin/dsconfig create-sensitive-attribute \
--attribute-name ds-auth-totp-shared-secret \
--set attribute-type:ds-auth-totp-shared-secret \
--set allow-in-returned-entries:suppress \
--set allow-in-filter:reject \
--set allow-in-compare:reject \
--set allow-in-add:secure-only \
--set allow-in-modify:secure-only

$ bin/dsconfig set-global-configuration-prop \
--add sensitive-attribute:ds-auth-totp-shared-secret

2. Update a user entry so that it contains a ds-auth-totp-shared-secret attribute with a
value that holds the base32-encoded shared secret that will be used for TOTP authen-
tication. This should be done over a secure connection (SSL or StartTLS). There is no
maximum limit for the ds-auth-totp-shared-secret string, but there is a minimum
length of 16 base32-encoded characters.

dn: uid=user.0,ou=People,dc=example,dc=com
changetype: modify
add: ds-auth-totp-shared-secret
ds-auth-totp-shared-secret: ONSWG4TFORRW6ZDF

3. Use ldapsearch to test the configuration.

$ bin/ldapsearch --saslOption mech=UNBOUNDID-TOTP \
--saslOption authID=u:user.0 \
--saslOption totpPassword=628094 \
--bindPassword password \
--baseDN "" \
--searchScope base \
"(objectClass=*)"

Configure SASL UNBOUNDID-DELIVERED-OTP Mechanism
Perform the following steps to configure the UNBOUNDID-DELIVERED-OTP mechanism:

1. Add support for one or more OTP delivery mechanisms. The following commands enable
an SMTP external server, associate it with the global configuration, and create the deliv-
ery mechanism.

$ bin/dsconfig create-external-server \
--server-name "Intranet SMTP Server" \
--type smtp \
--set server-host-name:server.example.com

$ bin/dsconfig set-global-configuration-prop \
--add "smtp-server:Intranet SMTP Server"

- 94 -

Chapter 6: Security

$ bin/dsconfig create-otp-delivery-mechanism \
--mechanism-name E-Mail \
--type email \
--set enabled:true \
--set 'sender-address:otp@example.com' \
--set "email-address-attribute-type:mail" \
--set "message-subject:Your one-time password" \
--set "message-text-before-otp:Your one-time password: "

2. With a Twilio account, configure the server to deliver one-time passwords over SMS.

dsconfig create-otp-delivery-mechanism \
--mechanism-name SMS \
--type twilio \
--set enabled:true
--set twilio-account-sid:xxxxx \
--set twilio-auth-token:xxxxx \
--set "sender-phone-number:xxxxx" \
--set phone-number-attribute-type:mobile \
--set "message-text-before-otp:Your one-time password: "

3. With OTP delivery mechanisms established, configure the extended operation handler.

$ bin/dsconfig create-extended-operation-handler \
--handler-name "Deliver One-Time Password" \
--type deliver-otp \
--set enabled:true \
--set "identity-mapper:Exact Match" \
--set "password-generator:One-Time Password Generator" \
--set default-otp-delivery-mechanism:SMS \
--set default-otp-delivery-mechanism:E-Mail

4. Configure the SASL mechanism handler.

$ bin/dsconfig create-sasl-mechanism-handler \
--handler-name UNBOUNDID-DELIVERED-OTP \
--type unboundid-delivered-otp \
--set enabled:true \
--set "identity-mapper:Exact Match" \
--set "otp-validity-duration:5 minutes"

5. Make sure the server contains a user account with the account needed to deliver the one-
time password to the user (i.e., a valid email address or mobile number).

6. Next, use the deliver one-time password extended operation to have the server generate
and send a one-time password to the user. The Commercial Edition of UnboundID LDAP
SDK contains support for the extended request and response needed to do this. In actual
production deployments, you can create a web form to allow the user to enter the inform-
ation and click a button. The server comes with a new deliver-one-time-password com-
mand-line tool that can achieve the same result.

$ bin/deliver-one-time-password \
--userName jdoe \

- 95 -

Authentication Mechanisms

--promptForBindPassword \
--deliveryMechanism SMS
Enter the static password for the user:

Successfully delivered a one-time password via mechanism 'SMS' to '123-
456-7890'

If processed successfully, a text message is recieved:

Your one-time password: 123456

7. Authenticate to the server using the UNBOUNDID-DELIVERED-OTP SASL mechanism. The
Commercial Edition of the LDAP SDK can help you accomplish this so that the user sees
an interface. Or, you can use ldapsearch or some other tool to accomplish the same res-
ult.

$ bin/ldapsearch \
-o mech=UNBOUNDID-DELIVERED-OTP \
-o authID=u:jdoe \
-o otp=123456 \
-b '' \
-s base '(objectClass=*)' \
ds-supported-otp-delivery-mechanism

The search returns:

dn:
ds-supported-otp-delivery-mechanism: E-Mail
ds-supported-otp-delivery-mechanism: SMS

Configure Pass-Through Authentication
Pass-through authentication (PTA) is a mechanism by which one Metrics Engine receives the
bind request and can consult another Metrics Engine to authenticate the bind request.
Implement this functionality by configuring a PTA plug-in that enables the server to accept
simple password-based bind operations.

Perform the following steps to configure PTA:

1. Use dsconfig to define external servers to perform the authentication. The bind DN is
set to uid=pass-throughuser, dc=example,dc=com, which is used to bind to the target
LDAP server for simple authentication. The verify-credentials-method property
ensures that a single set of connections for processing binds and all other types of oper-
ations is in place without changing the identity of the associated connection. Multiple
external servers can be configured in case one becomes unavailable.

$ bin/dsconfig create-external-server \
 --server-name "ds-with-pw-1.example.com:389" \
 --type unboundid-metrics-engine \
 --set server-host-name:ds-with-pw-1.example.com \
 --set server-port:389 \
 --set "bind-dn:uid=pass-through-user,dc=example,dc=com" \

- 96 -

Chapter 6: Security

 --set authentication-method:simple \
 --set verify-credentials-method:retain-identity-control

2. Create an instance of the PTA plug-in that will use the external server(s). The server will
first try to process a local bind as the target user (try-local-bind:true). The try-
local-bind:true with override-local-password:true means that if the local bind
fails, it will try sending the request to ds-with-pw-1.example.com:389 or another
server, if configured (server-access-mode:round-robin). If the bind succeeds against
the remote server, the local entry is updated to store the password that was used
(update-local-password:true). The number of connections to initially establish to the
LDAP external server is set to 10. The maximum number of connections maintained to
the LDAP external server is 10.

$ bin/dsconfig create-plugin \
 --plugin-name "Pass-Through Authentication" \
 --type pass-through-authentication \
 --set enabled:true \
 --set server:ds-with-pw-1.example.com:389 \
 --set server:ds-with-pw-2.example.com:389 \
 --set try-local-bind:true \
 --set override-local-password:true \
 --set update-local-password:true \
 --set server-access-mode:round-robin \
 --set initial-connections:10 \
 --set max-connections:10

Note
The try-local-bind property works with the override-local-password property. If try-
local-bind is true and override-local-password is set to its default value of false, then the
server attempts a local bind first. If it fails because no password is set, then it will forward the bind request
to a remote server. If the password was set but still fails, the server will not send the request to the remote
server.

If try-local-bind is true and override-local-password is true, then a local bind will be
attempted. The server will forward the request to the remote server if the local bind fails for any reason.

Add Attributes to Restrict Authentication
The UnboundID servers provide a number of operational attributes that can be added to user
entries to restrict the way those users can authenticate and the circumstances under which
they can be used for proxied authorization. The operational attributes are as follows:

l ds-auth-allowed-address – Indicates that the user should only be allowed to authen-
ticate from a specified set of client systems. Values are listed as individual IP addresses,
IP address patterns (using wildcards, CIDR notation, or subnet mask notation), individual
DNS addresses, or DNS address patterns (using wildcards). If no values are listed in a
user entry, no restrictions are enforced.

- 97 -

Configure Certificate Mappers

l ds-auth-allowed-authentication-type – Indicates that the user should only be
allowed to authenticate in certain ways. Values include simple , or sasl <mech>. If no
values are listed in a user entry, no restrictions are enforced.

l ds-auth-require-secure-authentication – Specifies whether the user should be
required to authenticate securely. If this attribute is present with a value of true, the
user can only authenticate over a secure connection or with a mechanism that does not
expose user credentials (CRAM-MD5, DIGEST-MD5, and GSSAPI SASL).

l ds-auth-require-secure-connection – Specifies whether the user is required to com-
municate with the server over a secure connection. If this attribute is present in a user
entry with a value of true, the user can only communicate with the server over a secure
connection (SSL or StartTLS).

l ds-auth-is-proxyable – Indicates whether the user can be used as the target of prox-
ied authorization (using proxied authorization v1 or v2 control, intermediate client con-
trol, or a SASL mechanism that allows an alternate authorization identity). If this
attribute is present in a user entry with a value of required, the user is not allowed to
authenticate directly with the server but only referenced by proxied authorization. If this
attribute is present with a value of prohibited, the user is not allowed to be the target
of proxied authorization but can only authenticate directly with the server. If this attrib-
ute is present with a value of allowed, or if it is not present, the user can authenticate
directly or be the target of proxied authorization.

l ds-auth-is-proxyable-by – Restricts the set of accounts that may target the user for
proxied authorization. If this attribute is present in a user's entry, its values must be the
distinguished names of the users that can target the user for proxied authorization (if
proxied authorization is allowed). If it is absent from the user's entry, then any account
with appropriate rights may target the user via proxied authorization.

Configure Certificate Mappers
SASL EXTERNAL requires that a certificate mapper be configured in the server. The certificate
mapper is used to identify the entry for the user to whom the certificate belongs. UnboundID
servers support a number of certificate mapping options including:

l Subject Equals DN – Specifies that the subject of the certificate exactly match the dis-
tinguished name of the associated user entry. This option is not often practical as cer-
tificate subjects (cn=jdoe,ou=Client Cert,o=Example
Company,c=Austin,st=Texas,c=US) are not typically in the same form as an entry (cn=-
=jdoe,ou=People,o=Example Company, or uid=jdoe,ou=People,dc=example,dc=com).

- 98 -

Chapter 6: Security

l Fingerprint – Specifies that the user's entry contain an attribute (ds-certficate-fin-
gerprint by default), with values SHA-1 or MD5 fingerprints of the certificate(s) that
they can use to authenticate. This attribute must be indexed for equality.

l Subject Attribute to User Attribute – Used to build a search filter to find the appro-
priate user entry based on information contained in the certificate subject. For example,
the default configuration expects the cn value from the certificate subject to match the
cn value of the user's entry, and the e value from the certificate subject to match the
mail value of the user's entry.

l Subject DN to User Attribute – Expects the user's entry to contain an attribute (ds-
certificate-subject-dn by default), whose values are the subjects of the certificate
(s) that they can use to authenticate. This multi-valued attribute can contain the subjects
of multiple certificates. The attribute must be indexed for equality.

Configure the Subject Equals DN Certificate Mapper
The Subject Equals DN Certificate Mapper is the default mapping option for the SASL EXTERNAL
mechanism. The mapper requires that the subject of the client certificate exactly match the
distinguished name of the corresponding user entry. The mapper, however, is only practical if
the certificate subject has the same format as the server's entries.

Perform the following steps to configure the Subject Equals DN Certificate Mapper:

Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
--handler-name EXTERNAL \
--set "certificate-mapper:Subject Equals DN"

Configure the Fingerprint Certificate Mapper
The Fingerprint Mapper causes the server to compute an MD5 or SHA-1 fingerprint of the
certificate presented by the client and performs a search to find that fingerprint value in a
user’s entry (ds-certificate-fingerprint by default). The ds-certificate-fingerprint attribute can
be added to the user’s entry together with the ds-certificate-user auxiliary object class. For
multiple certificates, the attribute can have separate values for each of the acceptable
certificates. If you decide to use this attribute, you must index the attribute as it is not indexed
by default.

The following example will use this certificate:

Alias name: client-cert
Creation date: Oct 29, 2011
Entry type: PrivateKeyEntry

Certificate chain length: 1 Certificate[1]:
Owner: CN=jdoe, OU=Client Cert, O=Example Company, L=Austin, ST=Texas, C=US
Issuer: EMAILADDRESS=whatever@example.com, CN=Cert Auth, OU=My Certificate

- 99 -

Configure Certificate Mappers

Authority,
O=Example Company, L=Austin, ST=Texas, C=US
Serial number: e19cb2838441dbcd
Valid from: Thu Oct 29 13:07:10 CDT 2011 until: Fri Oct 29 13:07:10 CDT 2012
Certificate fingerprints:
 MD5: 40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB
 SHA1: 2A:89:71:06:1A:F5:DA:FF:51:7B:3D:2D:07:2E:33:BE:C6:5D:97:13
 Signature algorithm name: SHA1withRSA
 Version: 1

Perform the following steps to configure the Fingerprint Certificate Mapper:

1. Create an LDIF file to add the ds-certificate-user object class and ds-cer-

tificate-fingerprint attribute to the target user’s entry.

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: ds-certificate-user
-
add: ds-certificate-fingerprint
ds-certificate-fingerprint:
40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

2. Then, apply the change to the entry using ldapmodify:

$ bin/ldapmodify --filename add-cert-attr.ldif
dn: uid=jdoe,ou=People,dc=example,dc=com
ds-certificate-fingerprint:40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

3. Check that the attribute was added to the entry using ldapsearch.

$ bin/ldapsearch --baseDN dc=example,dc=com "(uid=jdoe)" \
ds-certificate-fingerprint
dn:uid=jdoe,ou=People,dc=example,dc=com
ds-certificate-fingerprint:40:73:7C:EF:1B:4A:3F:F4:9B:09:C3:50:2B:26:4A:EB

4. Create an index for the ds-certificate-fingerprint attribute. If the server is con-
figured with multiple data backends, then the attribute should be indexed in each of
those backends.

$ bin/dsconfig create-local-db-index --backend-name userRoot \
--index-name ds-certificate-fingerprint --set index-type:equality

5. Use the rebuild-index tool to cause an index to be generated for this attribute.

$ bin/rebuild-index --task --baseDN dc=example,dc=com \
--index ds-certificate-fingerprint

[14:56:28] The console logging output is also available in
'/ds/UnboundID-Metrics-Engine/logs/tools/rebuild-index.log'
[14:56:29] Due to changes in the configuration, index
dc_example_dc_com_ds-certificate-fingerprint.equality is currently
operating in a degraded state and must be rebuilt before it can used
[14:56:29] Rebuild of index(es) ds-certificate-fingerprint started with

- 100 -

Chapter 6: Security

161 total records to process
[14:56:29] Rebuild complete. Processed 161 records in 0 seconds (average
rate 1125.9/sec)

6. Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
--handler-name EXTERNAL \
--set "certificate-mapper:Fingerprint Mapper"

Configure the Subject Attribute to User Attribute Certificate Mapper
The Subject Attribute to User Attribute Certificate Mapper maps common attributes from the
subject of the client certificate to the user’s entry. The generated search filter must match
exactly one entry within the scope of the base distinguished name for the mapper. If no match
is returned or if multiple machine entries are found, the mapping fails.

Given the subject of the client certificate:

Owner: CN=John Doe, OU=Client Cert, O=Example Company, L=Austin, ST=Texas,
C=US
We want to match to the following user entry:
dn: uid=jdoe,ou=People,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
uid: jdoe
givenName: John
sn: Doe
cn: John Doe
mail: jdoe@example.com

Perform the following to configure the Subject Attribute to User Attribute Certificate Mapper:

Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
--handler-name EXTERNAL \
--set "certificate-mapper:Subject Attribute to User Attribute"

Configure the Subject DN to User Attribute Certificate Mapper
The Subject DN to User Attribute Certificate mapper expects the user’s entry to contain an
attribute (ds-certificate-subject-dn by default) whose values match the subjects of the
certificates that the user can use to authenticate. The ds-certificate-subject-dn attribute
can be added to the user’s entry together with the ds-certificate-user auxiliary object
class. The attribute is multi-valued and can contain the subject distinguished names of multiple
certificates. The certificate mapper must match exactly one entry, or the mapping will fail.

If using this attribute, add an equality index for this attribute in all data backends.

Perform the following steps to configure the Subject DN to User Attribute Certificate Mapper:

- 101 -

Configure Certificate Mappers

1. Create an LDIF file to add the ds-certificate-user object class and ds-certificate-
subject-dn attribute to the target user’s entry.

dn: uid=jdoe,ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: ds-certificate-user
-
add: ds-certificate-subject-dn
ds-certificate-subject-dn:CN=John Doe,OU=Client Certificate,O=Example
Company,L=Austin,ST=Texas,C=US

2. Then, apply the change to the entry using ldapmodify:

$ bin/ldapmodify --filename add-cert-attr.ldif

3. Check that the attribute was added to the entry using ldapsearch.

$ bin/ldapsearch --baseDN dc=example,dc=com "(uid=jdoe)" \

ds-certificate-subject-dn
dn: uid=jdoe,ou=People,dc=example,dc=com
ds-certificate-fingerprint:CN=jdoe, OU=Client Cert, O=Example Company,
L=Austin, ST=Texas, C=US

4. Create an index to the ds-certificate-subject-dn attribute.

$ bin/dsconfig create-local-db-index --backend-name userRoot \
--index-name ds-certificate-subject-dn --set index-type:equality

5. Use the rebuild-index tool to ensure that the index is properly generated in all appro-
priate backends.

$ bin/rebuild-index --task --baseDN dc=example,dc=com \
--index ds-certificate-subject-dn

[15:39:19] The console logging output is also available in
'/ds/UnboundID-Metrics-Engine/logs/ tools/rebuild-index.log'
[15:39:20] Due to changes in the configuration, index
dc_example_dc_com_ds-certificate-subject-dn.equality is currently
operating in a degraded state and must be rebuilt before it can used
[15:39:20] Rebuild of index(es) ds-certificate-subject-dn started with 161
total records to process
[15:39:20] Rebuild complete. Processed 161 records in 0 seconds (average
rate 2367.6/sec)

6. Change the certificate mapper for the SASL EXTERNAL mechanism.

$ bin/dsconfig --no-prompt set-sasl-mechanism-handler-prop \
--handler-name EXTERNAL \
--set "certificate-mapper:Subject DN to User Attribute"

- 102 -

Chapter 7: Troubleshooting

There are several ways to troubleshoot issues with data gathering or with the Metrics Engine
itself.

This chapter includes the following information:

Collect Support Data Tool

Enable JVM Debugging

Performance Troubleshooting Example

Insufficient Memory Errors

Delays in Sample Data Availability

Slow Queries Based on Sample Cache Size

Unexpected Query Results

Installation and Maintenance Issues

- 103 -

Chapter 7: Troubleshooting

Collect Support Data Tool
The UnboundID servers provide information about their current state and any problems
encountered. If a problem occurs, run the collect-support-data tool in the /bin directory.
The tool aggregates all relevant support files into a zip file that can be sent to a support
provider for analysis. The tool also runs data collector utilities, such as jps, jstack, and jstat
plus other diagnostic tools for the operating system.

The tool may only archive portions of certain log files to conserve space, so that the resulting
support archive does not exceed the typical size limits associated with e-mail attachments.

The data collected by the collect-support-data tool may vary between systems. The data
collected includes the configuration directory, summaries and snippets from the logs
directory, an LDIF of the monitor and RootDSE entries, and a list of all files in the server root.

Perform the following steps to run the Collect Support Data tool:

1. Navigate to the server root directory.

2. Run the collect-support-data tool. Include the host, port number, bind DN, and bind
password.

$ bin/collect-support-data --hostname 127.0.0.1 --port 389 \
--bindDN "cn=Directory Manager" --bindPassword secret \
--serverRoot /opt/UnboundID-Metrics-Engine --pid 1234

3. Email the zip file to a support provider.

Enable JVM Debugging
Enable the JVM debugging options to track garbage collection data for the system. These
options can impact JVM performance, but provide valuable data to tune the server. While the
jstat utility with the -gc option can be used to obtain some information about garbage
collection activity, there are additional arguments that can be added to provide additional
detail, such as:

-XX:+PrintGCDetails
-XX:+PrintTenuringDistribution
-XX:+PrintGCApplicationConcurrentTime
-XX:+PrintGCApplicationStoppedTime
-XX:+PrintGCDateStamps

1. Perform the following steps to enable these options for the server:

2. On the Metrics Engine server, navigate to the config/java.properties file.

3. Edit the config/java.properties file. Add any additional arguments to the end of the
line that begins with start-metrics-engine.java-args.

4. Save the file.

- 104 -

Delays in Sample Data Availability

5. Run the following command for the new arguments to take effect the next time the
server is started:

$ bin/dsjavaproperties

Delays in Sample Data Availability
The time between when a metric sample is captured and when it is available in the Metrics
Engine is a combination of queuing and polling delays. The default configuration allows the
monitored server to queue samples in memory for up to 30 seconds before writing them to
disk.

The Metrics Engine polls each monitored server every 30 seconds by default. In a worst case, a
sample may have been captured on the monitored server 60 seconds before it has been
captured and queued for import on the Metrics Engine. When all servers are running normally,
60 seconds is the upper limit of a normal delay between when a sample is captured on the
monitored server and when it is available to a query on the Metrics Engine.

Use the following URL in a browser to chart the number of sample blocks queued by the Metrics
Engine as a function of time over the past hour. Estimate, using the downward slope of the
spike, how long it will take to clear the backlog.

http://<metrics-engine-host:port>/api/v1/metrics/monitor-import-queue-
depth/chart?maxIntervals=60&startTime=-1h

Below is a sample from a Metrics Engine that was shut down for 10 minutes. The spike that
occurs on startup results from the fact that all monitored servers continued to queue sample
blocks. When the Metrics Engine restarted, it fetched them and queued them for import. About
1500 sample blocks were queued and it took the Metrics Engine about three minutes to catch
up.

To monitor over LDAP, the following LDAP entry contains the equivalent information:

- 105 -

Chapter 7: Troubleshooting

dn: cn=Aggregation,cn=monitor
 Attribute: import-queue - number of sample blocks waiting for import
(should be close to zero)
 Attribute: import-load-delay-millis - milliseconds between when the sample
block arrived and when it was imported (should be less than 5 seconds)
 Attribute: import-load-millis - milliseconds to load the block to DBMS
(should be less than 50 milliseconds)
 Attribute: import-parse-millis - milliseconds to parse the block to a nor-
malized form ready for import (should be less than 75 milliseconds)

Slow Queries Based on Sample Cache Size
The evicted-count attribute of the sample cache sets the number of entries that have been
evicted from the cache due to a lack of space. The cache may not be large enough for the
query load placed on the server. Increase the size of the sample cache with the following
command, which sets the maximum size to 200000:

dsconfig set-monitoring-configuration-prop \
 --set sample-cache-max-cached-series:200000

Some queries are so infrequent that the cached data expires due to age. The default age is 10
minutes, but this can be increased up to one hour. If the expired-count monitor attribute is
increasing between queries, consider increasing the idle timeout as follows:

dsconfig set-monitoring-configuration-prop \
 --set sample-cache-idle-series-timeout:20m

Performance Troubleshooting Example
The Metrics Engine monitors itself at the same time it monitors other servers, so the historical
view of the status and performance of the Metrics Engine is captured in the DBMS and is
available for historical analysis.

The following example answers the question of why an application, which was performing well
30 minutes ago, now exhibits performance issues. The application in question is hosted on a
pair of Identity Proxy servers with both servers sharing the same pair of Identity Data Stores
in a round-robin configuration. All of the charts are generated with the query-metric tool.

A plot of the average Identity Proxy response time that covers the time frame of the issue is
captured using the following query-metric command:

$ bin/query-metric query --metric response-time --instanceType proxy \
 --startTime -1h

The command displays the following chart.

- 106 -

Performance Troubleshooting Example

This chart shows the application response time tripled. This could mean that either a few
requests took a long time, or everything slowed down. To get more information, use the
query-metric command to get a plot of the application response time histogram over the
same time. The result is the following graph.

This graph shows that no requests during the increased response time period took a long time.
It appears that all operations were slow. The next step might be to look at the external server
health.

- 107 -

Chapter 7: Troubleshooting

This chart displays an increase in response time that matches the decrease in external server
health on vm-02-nas:1389. The problem appears to be on that specific Identity Data Store. The
next step is to determine what each Identity Data Store was doing.

The chart shows that directory-11 (vm-02-nas:1389) stopped responding then corrected 30
minutes later. Finally, the most recent status for directory-11 is retrieved using the status
command. The following is displayed:

--- Administrative Alerts ---
Severity : Time : Message
---------:----------------------------:---------------------------------------

--

- 108 -

Insufficient Memory Errors

Error : 10/Sep/2012 11:47:39 -0500 : A severe backlog has been detected in the
Directory Server work queue. The operation currently at the head of the queue
has been waiting for 25785 milliseconds
Error : 10/Sep/2012 11:47:25 -0500 : A severe backlog has been detected in the
Directory Server work queue. The operation currently at the head of the queue
has been waiting for 11790 milliseconds
Warning : 10/Sep/2012 11:47:12 -0500 : The Directory Server has detected that
the amount of usable disk space is below the configured low disk space warning
threshold for the following path(s):
: : '/home/slj/deploy/ds2' (totalBytes: 18624344064, usableBytes: 1851559936,
usablePercent: 10),
'/home/slj/deploy/ds2/changelogDb' (totalBytes: 18624344064,
: : usableBytes: 1851559936, usablePercent:
10), '/home/slj/deploy/ds2/config' (totalBytes: 18624344064, usableBytes:
1851559936, usablePercent: 10),
: : '/home/slj/deploy/ds2/db/changelog' (totalBytes: 18624344064, usableBytes:
1851559936, usablePercent: 10),
'/home/slj/deploy/ds2/db/userRoot' (totalBytes:
: : 18624344064, usableBytes: 1851559936, usablePercent: 10), '/home/slj/de-
ploy/ds2/logs' (totalBytes: 18624344064, usableBytes: 1851559936, usablePer-
cent: 10)

Looking at the charts and server status above, the available disk space on directory-11 went
below the warning threshold for a period, resulting in the traffic shifting from two identity data
stores to only one for about 30 minutes. At the end of that time, both Identity Data Stores
resumed normal operations and the response time returned to normal.

Insufficient Memory Errors
If the Metrics Engine shuts down due to insufficient memory errors, it is possible that the
allocated heap size is not enough for the amount of data being returned by the metric queries.
Consider increasing the heap size, or reducing the number of request handler threads using the
following dsconfig command:

./dsconfig set-connection-handler-prop \
 --handler-name "HTTP Connection Handler" \
 --set num-request-handlers:<num-of-threads>

Unexpected Query Results
The query API aggregates data samples across servers and dimension values. The samples for
different servers, or even different dimension values, are imported into the Metrics Engine at
different times. All metric data is imported in time-order for each server. The ordering cannot
be set across servers, and samples for a specific time may arrive in stages. Therefore, a
metric query that aggregates across servers or dimensions may get partial data when the
query time range ends. This problem can be compounded when the monitored servers clocks

- 109 -

Chapter 7: Troubleshooting

are not synchronized (samples have the monitored server timestamp). The query looks at a
single time range. The more clock skew between the monitored servers, the higher the
probability of the results not being accurate for the range.

With the query API, the data can be pivoted (split) by server and dimension. The API enables
formatting the results as an HTML table. The following sequence of API URLs return the last
three minutes of data in 10-second increments:

http://<metrics-engine-host:port>/api/v1/metrics/throughput/datatable?
maxIntervals=30&startTime=-3m;&tqx=out:html&tz=US/Central

http://<metrics-engine-host:port>/api/v1/metrics/throughput/datatable?
maxIntervals=30&startTime=-3m;&tqx=out:html&tz=US/Central&pivot=instance

http://<metrics-engine-host:port>/api/v1/metrics/throughput/datatable?
maxIntervals=30&startTime=-3m;&tqx-
x=out:html&tz=US/Central&pivot=instance&pivot=op-type

l The first URL aggregates all servers and LDAP operations into a single number split
across time.

l The second URL splits out the data by server and time.

l The third URL splits out the data by server, LDAP operation, and time.

As dimension pivots (splits) are added, the results display more aggregations of partial data.

Installation and Maintenance Issues
The following are common installation and maintenance issues and possible solutions.

The setup Program will not Run
If the setup tool does not run properly, some of the most common reasons include the
following:

A Java Environment Is Not Available – The Metrics Engine requires that Java be installed
on the system prior to running the setup tool.

If there are multiple instances of Java on the server, run the setup tool with an explicitly-
defined value for the JAVA_HOME environment variable that specifies the path to the Java
installation. For example:

env JAVA_HOME=/ds/java ./setup

Another issue may be that the value specified in the provided JAVA_HOME environment variable
can be overridden by another environment variable. If that occurs, use the following command
to override any other environment variables:

env UNBOUNDID_JAVA_HOME="/ds/java" UNBOUNDID_JAVA_BIN="" ./setup

- 110 -

Installation and Maintenance Issues

Unexpected Arguments Provided to the JVM – If the setup tool attempts to launch the
java command with an invalid set of arguments, it may prevent the JVM from starting. By
default, no special options are provided to the JVM when running setup, but this might not be
the case if either the JAVA_ARGS or UNBOUNDID_JAVA_ARGS environment variable is set. If the
setup tool displays an error message that indicates that the Java environment could not be
started with the provided set of arguments, run the following command:

unset JAVA_ARGS UNBOUNDID_JAVA_ARGS

The Server Has Already Been Configured or Started – The setup tool is only intended to
provide the initial configuration for the Metrics Engine. It will not run if it detects that it has
already been run.

A previous installation should be removed before installing a new one. However, if there is
nothing of value in the existing installation, the following steps can be used to run the setup
program:

l Remove the config/config.ldif file and replace it with the con-
fig/update/config.ldif.{revision} file containing the initial configuration.

l If there are any files or subdirectories in the db directory, then remove them.

l If a config/java.properties file exists, then remove it.

l If a lib/setup-java-home script (or lib\set-java-home.bat file on Microsoft Win-
dows) exists, then remove it.

The Server will not Start
If the Metrics Engine does not start, then there are a number of potential causes.

The Server or Other Administrative Tool Is Already Running – Only a single instance of
the Metrics Engine can run at any time from the same installation root. Other administrative
operations can prevent the server from being started. In such cases, the attempt to start the
server should fail with a message like:

The Metrics Engine could not acquire an exclusive lock on file
/ds/UnboundID-Metrics-Engine/locks/server.lock:
The exclusive lock requested for file
/ds/UnboundID-Metrics-Engine/locks/ server.lock
was not granted, which indicates that another
process already holds a shared or exclusive lock on
that file. This generally means that another instance
of this server is already running.

If the Metrics Engine is not running (and is not in the process of starting up or shutting down),
and there are no other tools running that could prevent the server from being started, it is
possible that a previously-held lock was not properly released. Try removing all of the files in
the locks directory before attempting to start the server.

There Is Not Enough Memory Available – When the Metrics Engine is started, the JVM
attempts to allocate all memory that it has been configured to use. If there is not enough free

- 111 -

Chapter 7: Troubleshooting

memory available on the system, then the Metrics Engine generates an error message
indicating that the server could not be started.

There are a number of potential causes for this:

l If the amount of memory in the underlying system has changed, the Metrics Engine
might need to be re-configured to use a smaller amount of memory.

l Another process on the system is consuming memory and there is not enough memory to
start the server. Either terminate the other process, or reconfigure the Metrics Engine to
use a smaller amount of memory.

l The Metrics Engine just shut down and an attempt was made to immediately restart it. If
the server is configured to use a significant amount of memory, it can take a few
seconds for all of the memory to be released back to the operating system. Run the
vmstat command and wait until the amount of free memory stops growing before
restarting the server.

l For Solaris-based systems, if the system has one or more ZFS filesystems (even if the
Metrics Engine itself is not installed on a ZFS filesystem), it is possible that ZFS caching
is holding onto a significant amount of memory and cannot release it quickly enough to
start the Metrics Engine. Re-configure the system to limit the amount of memory that
ZFS is allowed to use.

l If the system is configured with one or more memory-backed filesystems (such as tmpfs
used for Solaris /tmp), determine if any large files are consuming a significant amount of
memory. If so, remove them or relocate them to a disk-based filesystem.

An Invalid Java Environment or JVM Option Was Used – If an attempt to start the
Metrics Engine fails with 'no valid Java environment could be found,' or 'the Java environment
could not be started,' and memory is not the cause, other causes may include the following:

l The Java installation that was previously used to run the server no longer exists. Update
the config/java.properties file to reference the new Java installation and run the
bin/dsjavaproperties command to apply that change.

l The Java installation has been updated, and one or more of the options that had worked
with the previous Java version no longer work. Re-configure the server to use the pre-
vious Java version, and investigate which options should be used with the new install-
ation.

l If an UNBOUNDID_JAVA_HOME or UNBOUNDID_JAVA_BIN environment variable is set, its
value may override the path to the Java installation used to run the server (defined in the
config/java.properties file). Similarly, if an UNBOUNDID_JAVA_ARGS environment vari-
able is set, then its value might override the arguments provided to the JVM. If this is the
case, explicitly unset the UNBOUNDID_JAVA_HOME, UNBOUNDID_JAVA_BIN, and UNBOUNDID_
JAVA_ARGS environment variables before starting the server.

- 112 -

Installation and Maintenance Issues

Any time the config/java.properties file is updated, the bin/dsjavaproperties tool must
be run to apply the new configuration. If a problem with the previous Java configuration
prevents the bin/dsjavaproperties tool from running properly, remove the lib/set-java-
home script (or lib\set-java-home.bat file on Microsoft Windows) and invoke the
bin/dsjavaproperties tool with an explicitly-defined path to the Java environment, such as:

env UNBOUNDID_JAVA_HOME=/ds/java bin/dsjavaproperties

An Invalid Command-Line Option was Used – There are a small number of arguments
that can be provided when running the bin/start-ds command. If arguments were provided
and are not valid, the server displays an error message. Correct or remove the invalid
argument and try to start the server again.

The Server Has an Invalid Configuration – If a change is made to the Metrics Engine
configuration using dsconfig or the Web Console, the server will validate the change before
applying it. However, it is possible that a configuration change can appear to be valid, but does
not work as expected when the server is restarted.

In most cases, the Metrics Engine displays (and writes to the error log) a message that
explains the problem. If the message does not provide enough information to identify the
problem, the logs/config-audit.log file provides recent configuration changes, or the
config/archived-configs directory contains configuration changes not made through a
supported configuration interface. The server can be started with the last valid configuration
using the --useLastKnownGoodConfig option:

$ bin/start-ds --useLastKnownGoodConfig

To determine the set of configuration changes made to the server since the installation, use the
config-diff tool with the arguments --sourceLocal --targetLocal --sourceBaseline.
The dsconfig --offline command can be used to make configuration changes.

Proper Permissions are Missing – The Metrics Engine should only be started by the user or
role used to initially install the server. However, if the server was initially installed as a non-
root user and then started by the root account, the server can no longer be started as a non-
root user. Any new files that are created are owned by root.

If the user account used to run the server needs to change, change ownership of all files in the
Metrics Engine installation to that new user. For example, if the Metrics Engine should be run
as the "ds" user in the "other" group, run the following command as root:

chown -R ds:other /ds/UnboundID-Metrics-Engine

The Server has Shutdown
Check the current server state by using the bin/server-state command. If the Metrics
Engine was previously running but is no longer active, then the potential reasons include the
following:

l Shut down by an administrator – Unless the server was forcefully terminated, then mes-
sages are written to the error and server logs stating the reason.

- 113 -

Chapter 7: Troubleshooting

l Shut down when the underlying system crashed or was rebooted – Run the uptime com-
mand on the underlying system to determine what was recently started or stopped.

l Process terminated by the underlying operating system – If this happens, a message is
written to the system error log.

l Shut down in response to a serious problem – This can occur if the server has detected
that the amount of usable disk space is critically low, or if errors have been encountered
during processing that left the server without worker threads. Messages are written to
the error and server logs (if disk space is available).

l JVM has crashed – If this happens, then the JVM should provide a fatal error log (a hs_

err_pid<processID>.log file), and potentially a core file.

The Server will not Accept Client Connections
Check the current server state by using the bin/server-state command. If the Metrics
Engine does not appear to be accepting connections from clients, reasons can include the
following:

l The Metrics Engine is not running.

l The underlying system on which the Metrics Engine is installed is not running.

l The Metrics Engine is running, but is not reachable as a result of a network or firewall
configuration problem. If that is the case, connection attempts should time out rather
than be rejected.

l If the Metrics Engine is configured to allow secure communication via SSL or StartTLS, a
problem with the key manager and/or trust manager configuration can cause connection
rejections. Messages are written to the server access log for each failed connection
attempt.

l The Metrics Engine may have reached its maximum number of allowed connections. Mes-
sages should be written to the server access log for each rejected connection attempt.

l If the Metrics Engine is configured to restrict access based on the address of the client,
then messages should be written to the server access log for each rejected connection
attempt.

l If a connection handler encounters a significant error, then it can stop listening for new
requests. A message should be written to the server error log with information about the
problem. Restarting the server can also solve the issue. Another option is to create an
LDIF file that disables and then re-enables the connection handler, create the con-
fig/auto-process-ldif directory if it does not already exist, and then copy the LDIF
file into it.

- 114 -

Installation and Maintenance Issues

The Server is Unresponsive
Check the current server state by using the bin/server-state command. If the Metrics
Engine process is running and appears to be accepting connections but does not respond to
requests received on those connections, then potential reasons for this behavior include:

l If all worker threads are busy processing other client requests, new requests are forced
to wait until a worker thread becomes available. A stack trace can be obtained using the
jstack command to show the state of the worker threads and the waiting requests.

If all worker threads are processing the same requests for a long time, the server sends
an alert that it might be deadlocked. All threads might be tied up processing unindexed
searches.

l If a request handler is busy with a client connection, other requests sent through that
request handler are forced to wait until it is able to read data. If there is only one request
handler, all connections are impacted. Stack traces obtained using the jstack command
will show that a request handler thread is continuously blocked.

l If the JVM in which the Metrics Engine is running is not properly configured, it can spend
too much time performing garbage collection. The affect on the Metrics Engine is similar
to that of a network or firewall configuration problem. A stack trace obtained with the
pstack utility will show that most threads are idle except the one performing garbage
collection. It is also likely that a small number of CPUs is 100% busy while all other CPUs
are idle. The server will also issue an alert after detecting a long JVM pause that will
include details.

l If the JVM in which the Metrics Engine is running has hung, the pstack utility should
show that one or more threads are blocked and unable to make progress. In such cases,
the system CPUs should be mostly idle.

l If a there is a network or firewall configuration problem, communication attempts with
the server will fail. A network sniffer will show that packets sent to the system are not
receiving TCP acknowledgment.

l If the host system is hung or lost power with a graceful shutdown, the Metrics Engine will
be unresponsive.

If it appears that the problem is with the Metrics Engine software or the JVM, work with a
support provider to diagnose the problem and potential solutions.

Problems with the Web Console
If a problem arises when trying to use the Web Console, reasons may include one of the
following:

l The web application container that hosts the Console is not running. If an error occurs
while trying to start it, consult the logs for the web application container.

- 115 -

Chapter 7: Troubleshooting

l If a problem occurs while trying to authenticate, make sure that the target Metrics
Engine is online. If it is, the access log may provide information about the authentication
failure.

l If a problem occurs while interacting with the Metrics Engine instance using the Console,
the access and error logs for that instance may provide additional information.

- 116 -

Chapter 8: Metric Engine API Reference

The Metrics Engine REST API can be used to build custom dashboards and other applications
for processing and viewing data. The API interface can be accessed using standard tools and
charting packages, such as the Google Chart Tools. The Metrics Engine API is also easily
accessed from a Web browser.

This section includes the following:

Connection and Security

Response Codes

List Monitored Instances

Retrieve Monitored Instance

List Available Metrics

Retrieve a Metric Definition

Perform a Metric Query

Data Set Structure

Chart Image

Google Chart Tools Datasource Protocol

Access Alerts

LDAP SLA

Pagination

- 117 -

Chapter 8: Metric Engine API Reference

Connection and Security
No sensitive user data is collected by the Metrics Engine and stored in the DBMS. If secure
access to the Metrics Engine REST API is required, enable secure HTTPS connections and
require authentication. A secure HTTPS Connection Handler and authentication can be enabled
using dsconfig, if not configured during setup.

Note By default, theMetrics Engine can open up to 20 simultaneous database connections. The HTTP
Connection handler that runs the REST API servlet has a default value of 15 connections. If theMetrics
Engine receives requests throughmultiple HTTP Connection Handlers, make sure that the total number of
request handlers does not exceed themaximum number of database connections.

When authentication is enabled, the REST API service requires HTTP basic authentication.
Requests are authenticated against entries in the api-users LDIF backend, or entries in
cn=Root DNs,cn=config. Root DN users have many privileges by default. To restrict access,
authenticate with users in the api-users backend instead, to prevent the unnecessary use of
more privileged account credentials.

Enable REST API authentication by setting the require-api-authentication property of the
Monitoring Configuration object. Set this property as follows:

$ bin/dsconfig set-monitoring-configuration-prop --set require-api-
authentication:true

Perform the following steps to add a REST API user:

1. Create a file name api-user1.ldif containing one or more user entries with no priv-
ileges. Below is a sample user entry.

dn: cn=app-user1,cn=api-users
changeType: add
objectClass: inetOrgPerson
objectClass: person
objectClass: top
cn: app-user1
uid: app-user1
sn: User1
userpassword: api1
ds-pwp-password-policy-dn: cn=Default Password Policy,cn=Password
Policies,cn=config

The password is in clear text. It will be encrypted in the next step.

2. Load the entry using ldapmodify.

$ bin/ldapmodify --filename api-user1.ldif

3. Authenticate using either the cn or the uid of the user added, in this case apiuser1.

- 118 -

Response Codes

Response Codes
The following response codes are available.

Response Code Description

200 0K The request was processed successfully and the requested data returned.

400 Bad Request The request contained an error. Refer to the error message to resolve the issue.

404 Not Found The requested resource is not found or no samples are collected for the metric.

500 Internal Server Error An unexpected server error occurred. Refer to the error message for more info.

503 Service Not Available The metric query service is temporary offline. Refer to the error message for
more info.

Response Body <?xml version="1.0" encoding="UTF-8"?>
<errorResponse>
 <message>There are no metrics defined with id response-
tme.
 Available metrics may be found at /metrics
 </message>
</errorResponse>

List Monitored Instances
Get a list of all monitored instances along with their current status. The default format is JSON.
The servlet will use the HTTP Accept header as a hint if no specific format is specified. Results
are filtered using the various instance query parameters.

URL /api/v1/instances
Method GET
Formats JSON, XML
Query Parameters instanceHostname – Hostname(s) of the servers to get data from.

Multiple values are evaluated as logical ORs.

instanceLocation – Location(s) of the servers to get data from.
Multiple values are evaluated as logical ORs.

instanceType – Types of server(s) to get data from. Possible values
are:

l directory

l proxy

l sync

l metrics-engine

instanceVersion – Version(s) of the servers to get data from. Multiple
values are evaluated as logical ORs.

- 119 -

Chapter 8: Metric Engine API Reference

EXAMPLES
All instances in JSON format.

curl \
-X GET \
https://<metricsEngineHost>:8080/api/v1/instances.json

All directory and proxy instances in XML format:

curl \
-X GET \
https://<metricsEngineHost>:8080/api/v1/instances.xml?
instanceType=directory&instanceType=proxy

Response Code 200 0K
Response Body {

 "found" : 2
 "offset" : 0,#
 "instances" : [{
 "type" : "directory",
 "id" : "unboundid4510",
 "hostname": "unboundid4510.example.com",
 "displayName" : "unboundid4510",
 "version": "UnboundID Directory Server 4.5.1.0",
 "operatingSystem": "Solaris",
 "status": {
 "state": "ONLINE"
 }
 }, {
 "type" : "directory",
 "id" : "unboundid3500",
 "hostname": "unboundid3500.example.com",
 "displayName" : "unboundid3500",
 "version": "UnboundID Directory Server 3.5.0.0",
 "operatingSystem": "Linux",
 "status": {
 "state": "DEGRADED",
 "unavailableAlerts": [

"replication-backlogged"
]
 }
}] }

Retrieve Monitored Instance
Get a specific monitored instance along with its status. The default format is JSON. The servlet
will use the HTTP Accept header as a hint if no specific format is specified.

URL /api/v1/instances/{instance}{.format}

- 120 -

List Available Metrics

Method GET
Formats JSON, XML
Query Parameters N/A
Server State The Metrics Engine returns the server state status of the monitored

instance, which is displayed by the status parameter. The status
parameter can have one of the following values:

OFFLINE – Server cannot be contacted.

STARTING_UP – Server is starting.

ONLINE – Server is available.

DEAD_LOCKED – Server is deadlocked and not able process more
operations.

UNAVAILABLE – Server is unavailable, but not offline. The server may
be in lock-down mode, but may be online.

DEGRADED – Server is available but is incapable of providing services.

CONNECTION_ERROR – Server could not connect or has lost connection to
the host.

EXAMPLE:
Instance with ID metrics-engine in JSON format.

curl \
-X GET \
https://<metricsEngineHost>:8080/api/v1/instances/metrics-engine.json

Response Code 200 0K
Response Body {

 "displayName": "metrics-engine",
 "hostname": "metrics-engine.example.com",
 "id" : "metrics-engine",
 "operatingSystem": "Solaris",
 "status" : {
 "state" : "ONLINE"
 },
 "type" : "metrics-engine",
 "version": "UnboundID Metrics Engine 4.5.1.0"
}

List Available Metrics
Get a list of metric definitions with their the units, dimensions, names, and other values. The
default format is JSON. The servlet will use the HTTP Accept header as a hint if no specific
format is specified.

- 121 -

Chapter 8: Metric Engine API Reference

URL /api/v1/metrics{.format}
Method GET
Formats JSON, XML
Query Parameters name – Limits the results to metrics whose names contain a matching

substring. The search is not case-sensitive.

type – Limits the results to the metrics of the specified type. Possible
values are:

l discreteValued

l continuousValued

l count

group – Limits the results to the metrics within the specified group.
Possible values are:

l Directory Backend

l Monitoring Data Cache

l Java Virtual Machine

l LDAP

l Entry Balancing

l Directory Entry Cache

l External Server

l Host System

l Metric Query

l Monitoring DBMS

l Monitoring Data Processing

l Replication

l Sync Pipe

instanceType – Limits the result to metrics that uses the specified
instance types as sources. Possible values are:

l directory

l proxy

l sync

l metrics-engine

statistic – Limits the results to metrics that provides the specified
statistics. Possible values are:

l count

- 122 -

List Available Metrics

l average

l maximum

l minimum

l histogram

EXAMPLES
All metrics in JSON format.

curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics.json

All count type metrics in the “directory backend” group providing either count or average
statistics:

curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics.json?type=count&group=direct-
ory
%20backend&statistic=count&statistic=average

Note
Spaces in parameter values may be encoded as %20 or t.

Response Code 200 0K
Response Body {

 "found": 7,
 "metrics": [

{
 "countUnit": {
 "abbreviatedName": "Chkpt",
 "pluralName": "Checkpoints",
 "singularName": "Checkpoint"
 },
 "description": "Number of database checkpoints
 performed by the backend",
 "dimensions": [

{
 "id": "backend",
 "values": [
 "userroot"
]
 }
],
 "group": "Directory Backend",
 "id": "backend-checkpoints",
 "instanceTypes": [
 "directory"

- 123 -

Chapter 8: Metric Engine API Reference

],
 "name": "Backend Checkpoints",
 "shortName": "Checkpoints",
 "statistics": [
 "count"
],
 "type": "count"
 },

...

Retrieve a Metric Definition
Get a specific metric definition. The default format will be JSON if none is specified. The servlet
will use the HTTP Accept header as a hint if no specific format is specified.

URL /api/v1/metrics/{metricId}{.format}
Method GET
Formats JSON, XML
Query Parameters N/A

EXAMPLE
Metric with ID backend-sequential-writes in XML format.

curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics/backend-sequential-
writes.xml

Response Code 200 0K
Response Body Count type metric.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<countMetric xmlns="com.unboundid.directory.mon.api.v1"
 id="backend-sequential-writes" name="Sequential Disk
Writes"
 shortName="Sequential Writes" group="Directory Backend">
 <description>Number of Sequential I/O Disk writes
 made by backend</description>
 <instanceTypes>
 <instanceType>directory</instanceType>
 </instanceTypes>
 <statistics>
 <statistic>count</statistic>
 </statistics>

 <dimensions>
 <dimension id="backend">

- 124 -

Perform a Metric Query

 <values>
 <value>userroot</value>
 </values>
 </dimension>
 </dimensions>
 <countUnit singularName="Sequential Write"
 pluralName="Sequential Writes" abbreviatedName="Seq Wr" />
</countMetric>

Perform a Metric Query
A metric query returns the collected sample data from the various monitored instances. The
data returned can be presented many ways, depending on client requirements.

Common Query Para-
meters

instanceType – Type(s) of instances to get data from. Possible values
are:

l directory

l proxy

l sync

l metrics-engine

instanceLocation – Location(s) of the instances from which data is
collected.

instanceHostname – Names of the machines hosting the instances.

instanceVersion – Version(s) of the instances providing the data.

instance (multi-valued) – ID(s) of the instances from which data is
collected. The instance ID is the cn of the external server and the same
name as listed by the status command.

startTime – Include samples on or after the specified time. The time is
either an absolute time in ISO 8601 format (such as 2012-08-
13T19:36:00Z) or a time relative to the endTime (such as -5m or -4h).
By default, the start time is -5m.

endTime – Include samples on or before this time. The end time is
either an absolute time in ISO 8601 format or a time relative to now
(such as -5m or -4h). The default end time is now. Offset time values
are relative to the current system clock time on the Metrics Engine.

maxIntervals – The number of separate intervals, between the start
and end times, returned. This is considered the “resolution” of the data
over time. By default, the maximum number of intervals is 1, which
means all samples collected between the start and end times will be
aggregated into one result according to the statistic selected.

statistic – Retrieve and apply this statistic to the data. Default for
count based metrics is count and average for other metric types.

- 125 -

Chapter 8: Metric Engine API Reference

Possible values are:

l count

l average

l minimum

l maximum

l histogram

dimension – Include only these dimension values. A colon separates
the dimension name and values, which are separated by commas (for
example, op-type:add,delete).

pivot – Pivot by these dimensions. A pivot keeps the data separated
along different dimensional values. The value “instance” may be used to
keep the data separate between different instances. For metrics that
have the histogram statistic, the histogram pivot may also be used to
keep the values of each histogram bucket separate.

tz – Specifies the timezone to be used when displaying dates. By
default, it is GMT. The timezone is specified in Java Time Zone format,
so "US/Central" is CST in the United States.

Sub-parameters for
the count and
average statistics

Both the count and average statistics of count type metrics may have a
rate scale applied to occurrences over a period of time using the per
sub-parameter. The valid rate scaling values are:

l s or second

l m or minute

l h or hour
Sub-parameters for
the histogram
statistic

The histogram statistic includes all buckets and keeps the raw value for
each bucket. Graphs can be configured to show the percentage of all
operations above a given threshold, such as 50 ms. These graphs are
useful for looking at a small percentage of operations in a given
category. If the value falls between histogram bucket boundaries, the
buckets where it falls will be included in the data. The possible values
are:

l min - Includes in the calculation only the histogram data above
the given threshold.

l max - Provides an upper bound on the histogram value

l percent - Allows the histogram values to be reported as a per-
centage of the overall values. Instead of returning raw counts, the
value is a fraction of the total. This percentage is calculated within
a pivot.

If both min and max are specified, the returned value is the sum of all
buckets between and including min and max.

- 126 -

Data Set Structure

Data Set Structure
The data set structure is a proprietary data structure that is space-optimized and designed to
work with charting libraries like Highcharts, FusionCharts, or JFreeChart. The default format is
JSON. The servlet will use the HTTP Accept header as a hint if no format is specified.

URL /api/v1/metrics/{metricId}/dataset{.format}
Method GET
Formats JSON, XML

Note
All of the CommonQuery parameters apply to this resource.

Get the average response time metric for add and delete operations from 7/7/2014 for all
identity data stores and identity proxies in two locations, Austin and Houston:

curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics/response-time/dataset?
instanceType=directory
 &instanceType=proxy&instanceLocation=austin&instanceLocation=houston&startTi-
me=-1d
 &endTime=2014-07-07&pivot=instance&dimension=op-type:add,delete

Get the new connections metric and scale the value per hour in the last 5 minutes:

curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics/new-connections/dataset?
statistic=count;per:hour

Get the percentage of all occurrences in the last hour where the response-time metric has a
value above 50ms:

curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics/response-time/dataset?
statistic=histogram;min:50;percent&startTime=-1h

Response Code 200 0K
Response Body When one time interval is requested, a category dataset is returned

where the first pivoted dimension values are listed as categories and
each data point corresponds to a category. Subsequent pivots and
histogram buckets are included as a series and subseries. This example
is the result of two pivots, op-type and instance:

{
 "type" : "category",

 "firstSampleTime" : 1344090300000,
 "lastSampleTime" : 1344090600000,

- 127 -

Chapter 8: Metric Engine API Reference

 "metric" : {
 "type" : "discreteValued",
 "id" : "response-time",
 "name" : "Response Time",
 "shortName" : "Response Time",
 "description" : "Time for server to process an LDAP
 operation and send a response to the client",
 "group" : "LDAP",
 "instanceTypes" : ["directory", "proxy"],
 "statistics" : ["average", "count", "histogram"],
 "dimensions" : [{
 "id" : "application-name"
 }, {
 "id" : "op-type",
 "values" : ["Search", "ModifyDN", "Add", "Delete",
 "Compare", "Bind", "Modify"]
 }],
 "countUnit" : {
 "singularName" : "Operation Response Time",
 "pluralName" : "Operation Response Time",
 "abbreviatedName" : "Response Time"
 },
 "valueUnit" : {
 "singularName" : "Millisecond",
 "pluralName" : "Milliseconds",
 "abbreviatedName" : "Msec"
 }
 },
 "series" : [{
 "label" : "unboundid35",
 "data" : ["0", "0", "0", "0", "0", "0", "0"]
 }, {
 "label" : "unboundid3",
 "data" : ["0", "0", "0", "0", "0", "0", "0"]
 }],

 "label" : "op-type",
 "categories" : ["Search", "Delete", "Bind", "Modify",
 "Add", "ModifyDN", "Compare"]
}

Chart Image
Retrieve and display the collected metrics data. The server will generate a chart of the query
result. PNG is the default format if no format is specified.

URL /api/v1/metrics/{metricId}/chart{.format}
Method GET
Formats PNG, JPEG

- 128 -

Chart Image

Query Parameters width – The width of the image. Default value is 800.

height –The height of the image. Default value is 600.

showLegend – Include a chart legend. Default value is true.

title – The input is a Velocity template and the $metric context can be
used to reference anything in the Metric object.

subTitle – Enables adding one or more sub-titles to the chart. Velocity
templates can be used.

tz –Specifies the time zone used for all date/times on the chart. Default is
GMT.

dateFormat – Specifies the format of the all date/times on the chart. It
uses the standard Java SimpleDateFormat strings.

useLogScale – Use a logarithmic scale for the range axis.

style – Allows customizations of various stylistic elements in the chart.
The format is a semi-colon separated list of rules, where the key and value
are separated by a colon. The following rules are implemented:

l series-color – A space separated list of colors to use for a different
series in the order specified. The standard 17 CSS named colors are
supported with the hex (#445566) and RGB (rgb(45, 100, 255)) nota-
tions. For example, series-color: blue red #221122 rgb

(234,255,255);.

l series-width – The width of the series lines in pixels. For example,
series-width: 5px;.

l background-color – The background color of the chart. For
example, background-color: white;.

l grid-line-width – The width of the gridlines. If only one value is
present, both the domain and range gridlines will use the same width.
Otherwise, the first value is for the domain and the second is for the
range. For example, grid-line-width: 4px 6px;.

l grid-line-color – The color of the gridlines. For example, grid-
line-color: red blue;.

l legend-position –The position of the legend, if present. For
example, legend-position: right;.

Note
All of the CommonQuery parameters apply to this resource.

For example, to get the percent CPU used by all servers over the last week, pivot by server
instance as follows:

- 129 -

Chapter 8: Metric Engine API Reference

curl -s -o chart.png https://<MetricsEngineHost>8080/api/v1/metrics/host-sys-
tem-cpuused/
chart?maxIntervals=50&startTime=-1w&pivot=instance:

Google Chart Tools Datasource Protocol
Metrics data can be presented with Google's Chart Tools Datasource protocol
(https://developers.google.com/chart/interactive/docs/dev/implementing_data_
source). The Google Visualization API query language (the tq request parameter) is not
supported. The Metrics Engine supports JSON, HTML, CSV, and TSV data formats as outlined by
the Datasource protocol.

URL /api/v1/metrics/{metricId}/datatable
Method GET
Formats JSON, HTML, CSV, and TSV
Query Para-
meters

tqx=out:html – HTML formatted output.

tqx=out:csv – CSV formatted output.

tqx=out:tsv-excel – TSV formatted output.

tz – Specifies the timezone to be used when displaying dates. The Google
Visualization API assumes that the times returned are in local time. The
Metrics Engine stores and returns all timestamps in GMT. This parameter
specifies how the Metrics Engine presents the time. Usually, the client will
pass the user's local timezone in IANA Time Zone Database format, such as
"US/Central."

Note
All CommonQuery parameters apply to this resource.

The following example gets the average response time metric for the last 5 minutes with 30
second (5 * 60 / 10) resolution and pivoted by op-type and then instance in CSV format:

curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics/response-time/datatable?
tqx=out:csv&maxIntervals=10
 &pivot=op-type&pivot=instance&tz=US/Central

Response Code 200 0K
Response Body When only one time interval is requested, the first pivoted dimension values

form the first column. For queries that request more than one time interval,
the start of each time interval forms the first column. Combinations of
subsequent pivoted dimension values and/or histogram buckets are included
as additional columns. All date and time values are under the GMT time
zone.

"Time","unboundid35 AVERAGE Milliseconds","unboundid3 AVERAGE
Milliseconds"
"2012-08-04T14:38:00Z","0","0"

- 130 -

Google Chart Tools Datasource Protocol

"2012-08-04T14:39:00Z","0","0"
"2012-08-04T14:40:00Z","0","0"
"2012-08-04T14:41:00Z","0","0"
"2012-08-04T14:42:00Z","0","0"

The following sample illustrates using Google chart tools:

<html>
 <head>
 <!--Load the AJAX API-->
 <script type="text/javascript" src-
c="https://www.google.com/jsapi"></script>
 <script type="text/javascript">

 // Load the Visualization API and the line chart package.
 google.load('visualization', '1.0', {'packages':['corechart']});
 // Set a callback to run when the Google Visualization API is loaded.
 google.setOnLoadCallback(drawChart);

 function drawChart() {
 var query = new google.visualization.Query

('https://<metricsEngineHost>:8080/
 api/v1/metrics/response-time/datatable?maxIntervals=10
 &pivot=optype&pivot=instance');
 query.send(handleQueryResponse);
 }
 function handleQueryResponse(response) {
 if (response.isError()) {
 alert('Error in query: ' + response.getMessage() + ' '
 + response.getDetailedMessage());
 return;
 }
 var data = response.getDataTable();

 var visualization = new
 google.visualization.LineChart(document.getElementById('chart_div'));
 visualization.draw(data, null);
 }
 </script>
 </head>
 <body>
 <!--Div that will hold the chart-->
 <div id="chart_div"></div>
 </body>
</html>

- 131 -

Chapter 8: Metric Engine API Reference

Access Alerts
The eventTypes and event APIs can be used to retrieve information and alerts from monitored
servers. The eventTypes API provides the range of alert types that have occurred. The events
API provides detail about individual alerts.

Retrieving Event Types
The range of alerts that have been generated by monitored servers can be retrieved, with
optional filtering, based on the following API definition.

URL /api/v1/eventTypes/[?query-parameters] - gets a list of event types
Method GET
Formats JSON, XML
Query Parameters instance, instanceType, startTime, and endTime. See Performing aMetric

Query for a description of each parameter.
Response Code 200 0K
Response Body ["health-check-available-to-degraded","health-check-degraded-

toavailable"]

Retrieving Events
The detailed information for one or more events can be retrieved, with optional filtering, based
on the following API definition.

URL /api/v1/events/[?query-parameters] - gets a list of events

/api/v1/events/{eventId} - gets a single event
Method GET
Formats JSON, XML
Query Parameters type – Limits the result to include only events of the specified types. See

the HTML API Reference for event types.

severity – Limits the result to include only events that have the
matching severity. Valid "severity" values are: INFO, WARNING, ERROR,
and FATAL.

instance, instanceType, instanceLocation, instanceHostname,
instanceVersion, startTime, and endTime. See Performing a Metric
Query for a description of each parameter.

limit, offset. See Pagination for a description of each parameter.

Response Code 200 0K
Response Body {

 "found" : 2,
 "offset" : 0,
 "events" : [

- 132 -

LDAP SLA

{"id":"9bdfd1b8-3811-4a84-b779-93553ff35f83",
 "creationDate":1351274815559,
 "eventType":"server-starting",
 "eventSeverity":"INFO",
 "sourceProductInstance":"lockdown-test",
 "summary":"Server Starting",
 "detail":"The Directory Server is starting"},

{"id":"9bdfd1b8-3811-4a84-b779-93553ff35f83",
 "creationDate":1351274815559,
 "eventType":"server-starting",
 "eventSeverity":"INFO",
 "sourceProductInstance":"directory-3",
 "summary":"Server Starting",
 "detail":"The Directory Server is starting"}
]
}

LDAP SLA
The LDAP SLA API lists the LDAP SLA objects (configuration data) and queries any single LDAP
SLA object. The query of an LDAP SLA object results in the aggregated LDAP SLA configuration,
scalar data containing current values for the LDAP SLA, and time-series data. Current data
comes from the Threshold object. Historical data comes from a metric query. Historical data is
more expensive to fetch and is only included if the client requests it. This allows an LDAP SLA
query to get the configuration and current data very efficiently for clients that only need the
current data. A client that needs both current and historical data can include the appropriate
query parameter and get all the data in a single call.

Retrieving the SLA Object
List the LDAP SLA objects (configuration data) and query any single LDAP SLA object. The
default format will be JSON if none is specified. The servlet will use the HTTP Accept header as
a hint if no specific format is specified.

URL /api/v1/sla/ldap – Returns a list of all LDAP SLA configuration objects in
name-order. This includes current values and status as held by the
Threshold objects, but will only include any historical data.

/api/v1/sla/ldap/{sla-name} – Returns a single LDAP SLA configuration
object plus optional historical data.

Method GET
Formats JSON, XML
Query Parameters For the 1st URL:

instance – Returns LDAP SLA's that reference the specified instance.

application-name – Returns LDAP SLA's that reference this application
name.

- 133 -

Chapter 8: Metric Engine API Reference

ldap-op – Returns LDAP SLA's that reference this LDAP operation.

For the 2nd URL:

historical (multi-valued, optional):

l time – Includes time series data.

l limits – Iincludes the percent of time thresholds limits that have
been exceeded. Requires Threshold.

l alerts – Includes all Threhold alerts. Requires Thresholding.

l histogram – includes response-time histogram as column data)

l nines – Includes response time values that correlate to 99%, 99.9%,
99.99%, and 99.999% response-time measurements)

startTime – (optional,). The time at which the historical data starts. The
default is 1hr.

endTime – (optional). The time at which the historical data ends. The
default is 5m.

pivot – (optional). Historical time-series pivots by this dimension.

l instance – pivot by producing server.

l ldap-op – pivot by LDAP operation.

l histogram – pivot response-time series by histogram buckets.

maxIntervals – (optional). Number of points to include in the historical
time series. The default is 100.

EXAMPLE
Retrieving an SLA object.

curl -X GET http://x3550-09:8080/ap-
i/v1/sla/ldap/Acme+Identity+Portal?historical=time
\&historical=nines\&pivot=instance\&startTime=-15m

Response Code 200 0K
Response Body

(JSON, sample is
abbreviated)

{
 "name":"Acme Identity Portal",
 "applicationName":"Application 5",
 "ldapOps":["search"],
 "servers":["x2270-08.unboundid.lab:1389"],
 "enabled":true,
 "responeTimeState":"NORMAL",
 "throughputState":"normal",
 "currentResponseTime":6.002752,

- 134 -

Pagination

 "currentThroughput":7032.794,
 "averageResponseTime":6.212055,
 "averageThroughput":5517.1323,
 "responseTimeWarnLimit":8.0,
 "responseTimeCriticalLimit":10.0,
 "throughputWarnLimit":8000.0,
 "throughputCriticalLimit":10000.0,
 "responseTimeSeries":{
 "type":"timeInterval",
 "firstSampleTime":1359045070000,
 "lastSampleTime":1359045970000,
 "rateScaling":"NONE",
 "statistic":"AVERAGE",
 "metric":{
 "type":"discreteValued",
 "id":"response-time",
 "name":"Response Time",
 "shortName":"Response Time",
 "description":"Time for server to process
 an LDAP operation and send a response to the client.",
 "group":"LDAP",
 "instanceTypes":["identity-data-store","proxy"],
 "statistics":["average","count","histogram"],
 "dimensions":[{"id":"application-name",
 "values":["unidentified directory application",
 "unidentified proxy application","application 9",
 "application 5","root user","admin user",
 "application 6"]},{"id":"op-type","values"

["search","modifydn","add","delete","compare",
 "bind","modify"]}],
 "countUnit":{"singularName":"Operation Response Time",
 "pluralName":"Operation Response Time",
 "abbreviatedName":"Response Time"},
 "valueUnit":{"singularName":"Millisecond",
 "pluralName":"Milliseconds","abbreviatedName":"Msec"}
 },
...

Pagination
Pagination is supported for both the metrics and instances listing URLs.

Query Para-
meters

limit – Specifies the maximum number of results to return. The default is to
return all results.

offset – Specifies how many results to skip for the first results to return.
Response Para-
meters

found – The number of results that satisfied the query parameters.

offset – The index into the total result set where the current response
begins.

- 135 -

Index

Index

A

aggregating data 51

alarms 29

testing setup 30

alerts

alarm_cleared alert type 30

configure alert handlers 28

list of system alerts 28, 30

notifications and alerts 27

testing setup 30

alerts backend

alert retention time 29

duplicate alert suppression 29

overview 28

view information 28

API

access alerts 132

add a REST user 118

chart image 128

connection and security 118

data set structure 127

LDAP SLA 133

list available metrics 121

list monitored instances 119

pagination 135

perform a metrics query 125

response codes 119

retrieve a metric definition 124

retrieve monitored instance 120

authentication mechanisms 83

- 136 -

Pagination

B

backend monitors

disk space usage 26

entries 25

backup command 34

base64 command 34

broker-dashboard 57

add charts 66

C

certificates

create with keytool 75

chart builder tool

overview 61

charts

add to broker-dashboard 66

available server charts 64

chart builder parameters 63

chart builder tool 61

chart image API 128

chart properties file 64

configure for Identity Broker 66

presentation details 62, 128

cn=monitor backend 46

collect-support-data tool 34, 104

command-line

available tools 34

default properties file 37

tools.properties file 36

create-rc-script command 34

D

dashboards

available dashboards 57

configure dashboards 60

- 137 -

Index

debug template files 60

save custom files 60

data collection

aggregating data 51

importing data 50

overview 2

performance data 45

reduce data collected 49

reduce frequency of collection 49

reduce sample blocks 49

system monitoring data 46

Data Store charts 65

demo-dashboard 59

disk space usage monitor 26

dsconfig command 34

dsframework command 34

dsjavaproperties command 35

E

error log publisher 24

external collector daemon 48

G

gauges 29

testing related alarms and alerts 30

H

host system monitor provider 48

I

Identity Broker charts 65

configure Identity Broker 67

J

Java

installing the JDK 7

JVM debugging 104

during setup 111

- 138 -

Pagination

invalid options 112

K

key manager 78

keytool 75, 77

L

ldap-dashboard 57

ldapmodify command 35

ldappasswordmodify command 35

ldapsearch command 35

ldif-diff command 35

ldifmodify command 35

Linux configuration

filesystem swapping 10

filesystem variables 9

install dstat 10

install sysstat and pstack 10

set file descriptor limit 9

set filesystem flushes 10

logs

create log publisher 23

error log publisher 24

overview 23

retention policies 23

rotation policies 23

M

manage-extension command 35

memory errors 109

metric-engine-schema command 35

metrics

continuous metrics 40

count metrics 40

dimensions 41

discrete metrics 40

- 139 -

Index

list available metrics 121

overview of metric types 40

performance impact 49

query overview 42

sample data delays 105

Metrics Engine

components 2

install 12

install web console 17

overview 2

start server 15

stop server 15

uninstall 16

Metrics Engine charts 65

monitored-servers command 35

monitored-servers tool 14

monitored servers

add servers 14

configure servers to monitor 10

dsconfig tool 14

monitored-servers tool 14

processing time histogram 11

stats collector 11

tracked applications 11

monitoring configuration object 118

monitoring entries 25

N

non-root user 8

normalized records 46

P

performance data

overview 3

performance data fields 46

- 140 -

Pagination

pivots 43

PostgreSQL

backup database 32

data storage 32

install 12

plan the backup 33

restore the backup 34

start the backup 33

processing time histogram plugin 11

Proxy Server charts 65

Q

query-metric command 35

access metrics 44

query data

aggregate query results 43

pivots 43

select query data 43

unexpected results 109

query overview 42

queryrate command 35

R

REST API

overview 2

restore command 35

revert-update command 35

review-license command 35

S

sample-flush-interval property 11

server-state command 35

server clock skew 48, 110

server status 121

example 108

- 141 -

Index

service level agreements 133

monitoring overview 51

SLA dashboard 58

SLA object 52

spike monitoring threshold 52-53

setup command 35

troubleshooting 110

sla-viewer-details dashboard 58

sla-viewer dashboard 58

SLA object 52

configure object 54

Solaris configuration

ZFS configuration 8

SSL support 79

start-metrics-engine command 35

start Metrics Engine server 15

StartTLS support 79

stats collector plugin 11, 47, 50

cn=monitor backend 46

status command 35

stop-metrics-engine command 35

stop Metrics Engine server 16

sum-file-sizes command 35

summarize-config command 35

supported platforms 6

application servers 7

browser requirements 7

hardware requirements 6

Java JDK requirements 7

operating systems 6

virtual hosts 7

Sync Server charts 65

system data

overview 3

- 142 -

Pagination

system utilization monitors 47

T

tools.property file 36

tracked applications 11

troubleshooting

client connections 114

collect support data 104

installation 110

JVM debugging 104

memory errors 109

performance example 106

sample data delays 105

server shutdown 113

server unresponsive 115

slow queries 106

unexpected query results 109

web console 115

trust manager 78

U

UnboundID

about 1

uninstall command 35

uninstall Metrics Engine 16

update command 35

V

Velocity templates

multiple content types 69

overview 67

save custom files 61

tools context provider 71

W

web console

configure security 19

- 143 -

Index

configure servers 18

configure Tomcat 17

install 17

log into 20

uninstall 21

upgrade 20

URL 18

Z

ZFS configuration 8

- 144 -

	Copyright
	Preface
	About UnboundID
	Audience
	Documentation Included with the Metrics Engine
	Metrics Reference Documentation
	Related Documentation

	Chapter 1: Introduction
	Metrics Engine Overview
	Metrics Engine Components
	Data Collection
	Performance Data
	System and Status Data

	Charts and Dashboards
	PostgreSQL DBMS Details

	Chapter 2: Installing the Metrics Engine
	Supported Platforms
	Install the JDK
	Configure a Non-Root User
	Optimize the Solaris Operating System
	Restrict ZFS Memory Consumption
	Limit ZFS Transaction Group Writes
	Configure ZFS Access to Underlying Disks
	Configure ZFS Compression

	Optimize the Linux Operating System
	Set the File Descriptor Limit
	Set the Filesystem Flushes
	Install sysstat and pstack on Red Hat
	Install the dstat Utility on SUSE
	Disable Filesystem Swapping

	Configure Identity Servers to be Monitored
	Disk Space Requirements and Monitoring Intervals
	Tracked Applications

	Install the Metrics Engine
	Add Monitored Servers to the Metrics Engine
	Using the monitored-servers Tool
	Using the dsconfig Tool

	Start and Stop the Metrics Engine Server
	Start the Metrics Engine as a Background Process
	Start the Metrics Engine as a Foreground Process
	Start the Metrics Engine at Boot Time
	Stop the Metrics Engine
	Restart the Metrics Engine

	Uninstall the Metrics Engine
	Install the Metrics Engine Web Console
	Configure the Web Console
	Configure SSL or StartTLS for the Console
	Configure a Truststore for the Console
	Log Into the Console
	Upgrade the Web Console
	Uninstall the Console

	Chapter 3: Managing the Metrics Engine
	Metrics Engine Error Logging
	Logging Retention Policies
	Logging Rotation Policies
	Create Log Publishers
	Error Log Publisher

	Backend Monitor Entries
	Disk Space Usage Monitor
	Notifications and Alerts

	Configure Alert Handlers
	The Alerts Backend
	View Information in the Alerts Backend
	Modify the Alert Retention Time
	Configure Duplicate Alert Suppression

	System Alarms and Gauges
	Testing Alerts and Alarms
	To Test Alarms and Alerts

	Back Up the Metrics Engine Database
	Historical Data Storage
	Planning the Backup
	Start the DBMS Backup
	Restore a DBMS Backup

	Management Tools
	Available Command-Line Utilities
	The tools.property File
	Tool-Specific Properties
	Specify Default Properties Files

	Server SDK Extensions

	Chapter 4: Collecting Data and Metrics
	Metrics Overview
	Count Metrics
	Continuous Metrics
	Discrete Metrics
	Dimensions

	Query Overview
	Select Query Data
	Aggregate Query Results
	Format Query Results

	The query-metric Tool
	Performance Data Collection
	System Monitoring Data Collection
	Stats Collector Plugin
	System Utilization Monitors
	External Collector Daemon

	Server Clock Skew
	Tune Data Collection
	Reducing the Data Collected
	Reducing the Frequency of Data Collection
	Reducing the Frequency of Sample Block Creation
	Reducing Metrics Engine Impact on Performance

	Data Processing
	Importing Data
	Aggregating Data

	Monitoring for Service Level Agreements
	SLA Thresholds
	Threshold Time Line
	Configure an SLA Object

	Chapter 5: Configuring Charts for Identity Servers
	Available Dashboards
	Customize the LDAP Dashboard
	Debug Dashboard Customization
	Preserve Customized Files

	The Chart Builder Tool
	Chart Presentation Details
	Chart Builder Parameters
	Chart Properties File

	Available Charts for Identity Servers
	Charts for All Servers
	Data Store Charts
	Proxy Server Charts
	Sync Server Charts
	Metrics Engine Server Charts
	Identity Broker Charts

	Configure Charts for the Identity Broker
	Adding a Chart to the Identity Broker Dashboard
	Adding the Broker Dashboard to the Identity Broker Console

	Velocity Templates
	Supporting Multiple Content Types
	Velocity Context Providers
	Velocity Tools Context Provider

	Chapter 6: Security
	Security Features
	Certificates
	Authentication Using Certificates
	Create a Server Certificate with Keytool
	Create a Client Certificate
	Configure the Key and Trust Manager Providers

	SSL and StartTLS Support
	LDAP-over-SSL (LDAPS) Support
	StartTLS Support
	Configure SSL
	Configure StartTLS

	Authentication Mechanisms
	Configure a SASL Mechanism Handler
	Kerberos Configuration Considerations
	GSSAPI Mechanism Handler Options

	Configure Pass-Through Authentication
	Add Attributes to Restrict Authentication

	Configure Certificate Mappers
	Configure the Subject Equals DN Certificate Mapper
	Configure the Fingerprint Certificate Mapper
	Configure the Subject Attribute to User Attribute Certificate Mapper
	Configure the Subject DN to User Attribute Certificate Mapper

	Chapter 7: Troubleshooting
	Collect Support Data Tool
	Enable JVM Debugging
	Delays in Sample Data Availability
	Slow Queries Based on Sample Cache Size
	Performance Troubleshooting Example
	Insufficient Memory Errors
	Unexpected Query Results
	Installation and Maintenance Issues
	The setup Program will not Run
	The Server will not Start
	The Server has Shutdown
	The Server will not Accept Client Connections
	The Server is Unresponsive
	Problems with the Web Console

	Chapter 8: Metric Engine API Reference
	Connection and Security
	Response Codes
	List Monitored Instances
	EXAMPLES

	Retrieve Monitored Instance
	EXAMPLE:

	List Available Metrics
	EXAMPLES

	Retrieve a Metric Definition
	EXAMPLE

	Perform a Metric Query
	Data Set Structure
	Chart Image
	Google Chart Tools Datasource Protocol
	Access Alerts
	Retrieving Event Types
	Retrieving Events

	LDAP SLA
	Retrieving the SLA Object
	EXAMPLE

	Pagination

	Index

