
UnboundID® Metrics Engine
Administration Guide

Version 4.5.0

UnboundID Corp
13809 Research Blvd, Suite 500

Austin, Texas, 78750
Tel: +1 512.600.7700

Email: support@unboundid.com

Copyright

This document constitutes an unpublished, copyrighted work and contains valuable trade secrets
and other confidential information belonging to UnboundID Corporation. None of the foregoing
material may be copied, duplicated, or disclosed to third parties without the express written
permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or through
such sites or resources. UnboundID will not be responsible or liable for any actual or alleged
damage or loss caused or alleged to be caused by or in connection with use of or reliance on any
such content, goods, or services that are available on or through such sites or resources.

“UnboundID” is a registered trademark of UnboundID Corporation. UNIX is a registered
trademark in the United States and other countries, licenses exclusively through The Open
Group. All other registered and unregistered trademarks in this document are the sole property
of their respective owners.

The contents of this publication are presented for information purposes only and is provided “as
is”. While every effort has been made to ensure the accuracy of the contents, the contents are
not to be construed as warranties or guarantees, expressed or implied, regarding the products or
services described herein or their use or applicability. We reserve the right to modify or improve
the design or specifications of such products at any time without notice.

Copyright 2013 UnboundID Corporation

All Rights Reserved

Published: 2013-11-20

Contents

i

Contents

Preface... v
Purpose of This Guide..v
Audience..v
Related Documentation...v
Document Conventions..vi

Chapter 1: Overview of the Metrics Engine... 1

Overview of the Metrics Engine.. 2
About Data Collection..3

Chapter 2: Installing the Server...5

Before You Begin...6
Supported Operating Platforms.. 6
Software Requirements...7
Installing Java... 7
About the PostgreSQL DBMS... 8
Preparing the Operating System (Solaris)..9
Preparing the Operating System (Linux)... 12
Running as a Non-Root User... 16

Installation Process Overview.. 18
Configuring the External Servers...18

Preparing the Servers Monitored by the Metrics Engine...18
Configuring the Processing Time Histogram Plugin... 19
Setting the Connection Criteria to Collect SLA Statistics by Application...................................... 20
Updating the Global Configuration..20

Notes on the PostgreSQL Database Setup...20
About Setting Up the PostgreSQL DBMS Database...21
Tuning the PostgreSQL Configuration...21

Installing the Metrics Engine... 22
To Install the Metrics Engine...22

Configuring the Metrics Engine...24
About the monitored-servers Tool... 24
About Adding Individual Servers Using dsconfig... 24
To Configure the Metrics Engine...24
To Add Individual Monitored Servers Using dsconfig..25

Running the Metrics Engine...25
Starting the Metrics Engine..25
To Stop the Metrics Engine... 27
To Restart the Metrics Engine... 27

Installing the Management Console... 27
To Install the Management Console Out of the Box...28
Logging into the Management Console... 29
Fine-Tuning the Management Console.. 30
Upgrading the Management Console... 31

Backing Up the Metrics Engine DBMS.. 32
About Backing Up DBMS Data.. 32
Before You Begin Your Backup..35
How to Backup the Database...35

Contents

ii

How to Restore the Database...36
Performing a Full Backup.. 37
How to Export and Import the Database... 37

Uninstalling the Metrics Engine...37
To Uninstall the Metrics Engine in Interactive Mode... 38
Uninstalling the Metrics Engine in Non-Interactive Mode..38
Uninstalling the Management Console.. 39
Cleaning Up the PostgreSQL DBMS After Uninstall... 39

Chapter 3: Configuring Charts...41

Customizing the Identity Broker Dashboard..42
About the Metrics Engine Documentation...43
About the Chart Builder Tool.. 45
About the Dashboard Files...55
About the Chart Properties File... 56
To Create a New Dashboard Chart Definition...57
Testing the Dashboard Changes...59

Chapter 4: Data Collection and Metrics..61

Overview of Metrics Concepts...62
About Analyzing Aggregated Data.. 62
About the Types of Metrics... 64
About Dimensions.. 65

Overview of Query Concepts...69
Selecting Query Data..69
Aggregating the Query Result..70
Formatting the Query Result.. 71

About the Data Collection Process.. 71
About Performance Data.. 71

About the Collection of System Monitoring Data...72
About the External Collector Daemon...73

About Monitored Server Clock Skew..74
Tuning Data Collection.. 75

Reducing the Data Collected..75
Reducing the Frequency of Data Collection..75
Reducing the Frequency of Sample Block Creation..76
Reducing Metrics Engine Impact on Performance.. 76

About Data Processing on the Metrics Engine.. 76
Data Importing.. 77
Data Aggregation.. 77

Accessing Monitoring Data.. 79
Monitoring Service Level Agreements.. 79

About the Monitoring Thresholds.. 80
To Configure a Service Level Agreement (SLA)..84

Chapter 5: Accessing the Metrics Engine Data... 87

About the query-metric tool... 88
Using the Query Metric Tool...88

About the Query Metric Explore Command HTML Pages... 89
About the Metrics Engine API...91
Metrics Engine API Reference...91

Connection Security and Authentication..91

Contents

iii

Tuning the RESTful API Service...92
Listing Monitored Instances... 93
Retrieving a Monitored Instance.. 94
Listing Available Metrics... 95
Retrieving a Metric Definition... 99
Performing a Metric Query.. 100
Accessing Alerts Collected by the Metrics Engine..107
LDAP SLA API..109
Pagination..113
Response Codes.. 113

Chapter 6: Managing the Metrics Engine... 115

Working With Logs..116
Creating New Log Publishers.. 116
Configuring Log Rotation.. 117
Configuring Log Retention...118
Managing the File-Based Error Log Publisher.. 118

Monitoring the Metrics Engine.. 119
Monitoring Disk Space Usage..121

Monitoring with JMX...122
Running JConsole... 122
Monitoring the Metrics Engine Using JConsole..122

Managing Notifications and Alerts.. 123
Working with Administrative Alert Handlers..123
Configuring the JMX Connection Handler and Alert Handler.. 127
Configuring the SMTP Alert Handler..128
Configuring the SNMP Subagent Alert Handler... 128
Working with the Alerts Backend..129

Command-Line Tools... 130
Using the Help Option... 130
Available Command-Line Utilities...131
Managing the tools.properties File...132

Chapter 7: Troubleshooting the Metrics Engine..137

Debugging the Metrics Engine...138
Working with the Troubleshooting Tools.. 138

Working with the Collect Support Data Tool..138
Metrics Engine Troubleshooting Tools..139

Server Version Information.. 139
Embedded Profiler.. 139

Troubleshooting Resources for Java Applications...140
Java Troubleshooting Documentation (Oracle/Sun JDK)..140
Java Troubleshooting Tools (Oracle/Sun JDK)... 141
Java Diagnostic Information...144
Java Troubleshooting Tools (IBM JDK)..144

Troubleshooting Resources in the Operating System.. 145
Identifying Problems with the Underlying System..145
Examining CPU Utilization..145
Examining Disk Utilization.. 146
Examining Process Details... 147
Tracing Process Execution... 148
Examining Network Communication... 149

Troubleshooting Performance Problems.. 150

Contents

iv

Example of Interpreting Performance Data to Troubleshoot Problems... 150
Long Time Before Samples Appear in Queries...153
Slow Queries for a Particular Metric... 154
All Metric Queries are Slow.. 155
Strange Query Results for Time Ranges Ending Now.. 156
Optimizing the Layout of the Sample Data Table... 157

Troubleshooting the Metrics Engine API.. 157
Common Problems and Potential Solutions...157

The Server Will Not Run Setup...157
The Server Will Not Start.. 159
The Server Has Crashed or Shut Itself Down... 162
The Server Will Not Accept Client Connections...163
The Server is Unresponsive..164
Problems with the Management Console...165
Providing Information for Support Cases.. 165

Contents

v

Preface

This guide presents the procedures and reference material necessary to install, administer and
troubleshoot the UnboundID Metrics Engine in multi-client, high-load production environments.

Purpose of This Guide

The purpose of this guide is to provide valuable procedures and concepts that can be used
to manage the UnboundID® Metrics Engine in a multi-client environment. It also provides
information to monitor and set up the necessary logs needed to troubleshoot the server’s
performance.

Audience

The guide is intended for administrators responsible for installing, maintaining, and monitoring
servers in large-scale, high load production environments. It is assumed that the reader has the
following background knowledge:

➢ Identity Platforms and LDAPv3 concepts
➢ System administration principles and practices
➢ Understanding of Java VM optimization and garbage collection processes
➢ Application performance monitoring tools

Related Documentation

The following list shows the full documentation set that may help you manage your deployment:

➢ UnboundID® Identity Data Store Administration Guide
➢ UnboundID® Identity Data Store Reference Guide (HTML)
➢ UnboundID® Identity Proxy Administration Guide
➢ UnboundID® Identity Proxy Reference Guide (HTML)
➢ UnboundID® Identity Data Sync Administration Guide
➢ UnboundID® Identity Data Sync Reference Guide (HTML)
➢ UnboundID® Metrics Engine Administration Guide
➢ UnboundID® Identity Broker Administration Guide
➢ UnboundID Security Guide
➢ UnboundID® LDAP SDK
➢ UnboundID® Server SDK

Contents

vi

Document Conventions

The following table shows the document convention used in this guide.

Convention Usage

Monospace Commands, filenames, directories, and file paths

Monospace Bold User interface elements, menu items and buttons

Italic Identifies file names, doc titles, terms, variable names, and
emphasized text

Overview of the Metrics Engine

1

Chapter

1 Overview of the Metrics Engine

The UnboundID® Metrics Engine provides collection and storage of performance data from your
UnboundID server topology. This chapter introduces the concepts and applications associated
with the UnboundID Metrics Engine.

Topics:

• Overview of the Metrics Engine
• About Data Collection

Overview of the Metrics Engine

2

Overview of the Metrics Engine

In any large-scale user identity infrastructure, there are expectation and service levels to meet
for uptime, scalability transaction response time and throughput. The UnboundID Metrics
Engine gives you insight into how your identity infrastructure is performing. It collects data
from the internal instrumentation of the UnboundID Identity Data Store, UnboundID Identity
Proxy, UnboundID Identity Data Sync, and UnboundID Identity Broker across the instances,
replicas, and data centers in your environment.

Using the instantaneous and historical data available from the Metrics Engine, you can now:

• Measure and visualize the performance of the identity infrastructure as a whole service, not
just as a collection of individual servers. This data provides the ability to justify and measure
the achievement of service-level agreements.

• Identify those client applications and request types that are responsible for the largest
resource loads, so that improvement efforts can be applied where they have the greatest
impact.

• Determine which servers have the most available capacity, so that requests or request types
can be reallocated accordingly.

• Discover a server instance that is under-performing due to resource limitations or
misconfiguration.

• Predict the capacity of your infrastructure to accommodate growth in request traffic and
identity data.

• Produce detailed analysis of all measurement taken around any abnormal performance event
to quickly identify the root cause.

The following diagram illustrates the components of the Metrics Engine and how they interact.

Figure 1: Key Components of the Metrics Engine

The diagram contains the following key components:

Overview of the Metrics Engine

3

• Metrics Engine. The Metrics Engine itself is a stand-alone server, just like the other
products of the UnboundID Identity Platform. It includes versions of the same configuration,
management, and logging tools as the other components of the suite. The Metrics Engine
relies on a captive PostgreSQL data store for the collected metrics.

• Metrics API. A RESTful API, accessible over HTTPS, gives easy access to the collected
metrics and to information about the systems they represent. The API supports parameters
for complete control over the data being returned, including filtering, minimum/maximum,
average, server types, multiple data series (pivots), historical time periods, units, and
histogram data.

• query-metric tool. This tool is the primary command-line tool for access to the metric data.
In the interactive mode, use the tool to investigate the performance of the service. The query
metrics tool also has a parameter-driven command-line mode for automating the extraction of
data from the Metrics Engine, ideal for use with shell scripts. It includes an explore option
that allows you to generate queries that drive the Metrics API, such as adding a specific chart
or tabular result to a custom dashboard. It can also generate HTML page output.

• SNMP access. Similar to the other UnboundID servers, the Metrics Engine makes its own
system-level metrics available over SNMP.

• Data set. The Metrics Engine proprietary data set structure is space-optimized and designed
for easy interoperability with charting libraries like Highcharts, FusionCharts, or JFreeChart.

• Charts, Chart Builder and Dashboard Templates. The Metrics Engine now provides the
means to easily produce a user-defined, web-based page of metric charts.

Our customers use a variety of commercial application performance monitoring tools. The
Metrics Engine supports integration with third-party products through any of these data access
mechanisms:

➢ Metrics REST API, accessed over HTTP
➢ SNMP
➢ Scripted use of query-metric tool
➢ Entries in cn=monitor available over LDAP

About Data Collection

The Metrics Engine provides collection and storage of performance data for a set of UnboundID
Identity Data Store, UnboundID Identity Proxy, UnboundID Identity Data Sync, and
UnboundID Identity Broker servers. The current value of some of this data is accessible via
LDAP at cn=monitor on the monitored servers. Each monitored server collects and locally
stores a limited history of performance data through the use of the Stats Collector plug-in. This
history is organized into time-contiguous blocks available via LDAP at cn=metrics.

To collect the performance data, the Metrics Engine continuously polls all monitored product
servers, fetching any new data and keeping it in a PostgreSQL DBMS. This polling incurs a
small load on the product servers, so you should understand the value of collecting the data to
make an informed cost/benefit decision. For an in-depth discussion of the data collected by the
Metrics Engine and the metrics available, see “Data Collection and Metrics”.

Overview of the Metrics Engine

4

The following figure illustrates the data collection pipeline.

Figure 2: Data Collection Pipeline

Data collection flows in the diagram as follows. The expected delay between steps one and four
is about 60 seconds.

1. Samples are taken and stored in time-contiguous blocks on the disk by the monitored server.
2. The Collection Service polls for new sample blocks.
3. New sample blocks are queued to disk on the Metrics Engine.
4. The Import Service loads new blocks into the DBMS.

Installing the Server

5

Chapter

2 Installing the Server

This section describes how to install and configure the Metrics Engine.

Topics:

• Before You Begin
• Installation Process Overview
• Configuring the External Servers
• Notes on the PostgreSQL Database Setup
• Installing the Metrics Engine
• Configuring the Metrics Engine
• Running the Metrics Engine
• Installing the Management Console
• Backing Up the Metrics Engine DBMS
• Uninstalling the Metrics Engine

Installing the Server

6

Before You Begin

This section describes prerequisites for installing the Metrics Engine, including hardware and
software requirements.

Supported Operating Platforms

Multi-Platform Support. The UnboundID Metrics Engine is a pure Java application. It is
intended to run within the Java Virtual Machine on any Java 6 or 7 Standard Edition (SE) or
Enterprise Edition (EE) certified platform. For the list of supported platforms and Java versions,
access your Customer Support Center portal or contact your authorized support provider.

The Metrics Engine runs both a Java Application Server and a PostgreSQL® RDBMS. Any
additional RAM that can be used by PostgreSQL will improve the performance of the query-
metric tool or the Metrics Engine RESTful API by allowing PostgreSQL to cache data in
memory, reducing disk input and output.

Your topology should meet the following hardware requirements:

Table 1: Hardware Requirements

Topology Type Metrics
Engine RAM

DBMS RAM Disk CPU Notes

Small (1 to 6
monitored servers)

8 GB 4 GB 30 GB 4 cores

Medium (7 to 16
monitored servers)

20 GB 8 GB 60 GB 6 cores A hardware RAID caching controller with
a non-volatile write cache is desirable.
Multiple disk spindles is helpful for
DBMS data.

Large (17 to 50
monitored servers)

32 GB 16 GB 180 GB 8 cores A hardware RAID caching controller with
a non-volatile write cache is required.
Multiple disk spindles is necessary for
DBMS data.

The filesystem buffer cache can use any additional system RAM not allocated to the Metrics
Engine JVM or PostgreSQL DBMS to cache recently read disk pages. Running other processes
on this system will have a detrimental effect on query performance.

The large RAM requirements of the Metrics Engine can be significantly reduced if the DBMS
data is kept on SSD-based storage. SSD storage provides sufficient I/O bandwidth that the RAM
uses to cache query results and DBMS pages can be reduced without significant performance
loss. The Metrics Engine DBMS write data rates are significant and should be a deployment
consideration due to the limited number of writes available to SSD devices.

The Metrics Engine installer provides an embedded PostgreSQL server that is installed by
default. This server is only available for a limited set of platforms. If you need to run the
Metrics Engine on an unsupported platform, you will need to install and configure an external
PostgreSQL server and use special arguments in the Metrics Engine installer. We strongly
recommend that you use a platform supported by the installer.

Installing the Server

7

Table 2: Support Platforms for the Metrics Engine Installer

Platform Type CPU

Linux x86 64 bit

Solaris 10 x86 64 bit

Solaris 11 x86 64 bit

Solaris 10 sparc 64 bit

Solaris 11 sparc 64 bit

Windows1 x86 64 bit

OSX2 x86 64 bit

Software Requirements

Before you install the Metrics Engine, you need the following:

• Java 6 or Java 7. For more about this requirement, see “Java Software Requirements.”

Installing Java

For optimized performance, the UnboundID Metrics Engine requires Java for 64-bit
architectures. You can view the minimum required Java version on your Customer Support
Center portal or contact your authorized support provider for the latest software versions
supported.

Even if your system already has Java installed, you may want to create a separate Java
installation for use by the UnboundID Metrics Engine to ensure that updates to the system-wide
Java installation do not inadvertently impact the Metrics Engine. This setup requires that the
JDK, rather than the JRE, for the 64-bit version, be downloaded.

On Solaris systems, if you want to use the 64-bit version of Java, you need to install both
the 32-bit and 64-bit versions. The 64-bit version of Java on Solaris is not a full stand-alone
installation, but instead relies on a number of files provided by the 32-bit installation. Therefore,
the 32-bit version should be installed first, and then the 64-bit version installed in the same
location with the necessary additional files.

On other platforms (for example, Linux and Microsoft Windows), the 64-bit version of Java
contains a complete installation. If you only want to run the 64-bit version of Java, then it is not
necessary to install the 32-bit JDK. If you want to have both versions installed, then they should
be installed in separate directories, because the files cannot co-exist in the same directory as they
can on Solaris systems.

To Install Java (Oracle/Sun)

1. Open a browser and navigate to the following Oracle download site:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

1 Available in the installer but not supported in production.
2 Available in the installer but not supported in production.

Installing the Server

8

2. Download the latest version Java JDK. Click the JDK Download button corresponding to the
latest Java update.

3. On the Java JDK page, click the Accept Licence Agreement button, then download the
version based on your operating system.

To Install Java (IBM)

1. Open a browser and navigate to the following IBM download site:

http://www.ibm.com/developerworks/java/jdk/

2. Select the Java version for your operating system. Currently, the minimum supported version
for the UnboundID Metrics Engine is IBM Java6 SR-12.

About the PostgreSQL DBMS

The Metrics Engine uses a PostgreSQL DBMS to store the sample data. A traditional table-
based DBMS serves the needs of the Metric Engine better than the attribute-based DBMS used
by the UnboundID Identity Data Store because the sample data is tabular and the RDBMS
system aggregates data efficiently.

To determine the storage requirements of the DBMS, you need to understand the expected data
access patterns. The Metrics Engine interacts with the DBMS in four ways:

➢ Sample import
➢ Sample aggregation
➢ Sample age-out
➢ Sample query

Sample import places a very predictable and steady write load on the DBMS. This single-
threaded interaction puts a table-level lock on the target table. Sample imports account for 80%
of the writes to the DBMS, so performance benefits from a server-class RAID disk controller
with a non-volatile write cache. A Metrics Engine that monitors 20 servers keeps a single 10K
RPM disk 70% busy with this single interaction.

Sample aggregation places a very predictable but less frequent read/write load on the DBMS.
This interaction is responsible for the aggregation of samples from one time resolution to the
next, so it reads from one set of tables and writes to another set. Sample aggregation uses no
table-level locks and the ratio of records between read:write is between 60:1 and 24:1. This
DBMS interaction is negligible when sample imports are taking place.

Sample age-out occurs at regular intervals and results in a table being dropped and/or added.
Age-out occurs every 30 minutes, though some intervals may drop and/or add more than one
table.

Sample queries are the least predictable, because they result from clients hitting the public API
requesting metric samples. The API allows you to aggregate multiple dimensions and multiple
servers in a single request, so a single request may fetch several million rows from the DBMS,
though it only returns a few hundred data points to the client. Samples from previous queries are

Installing the Server

9

cached by the Metrics Engine, but initial queries for a given metric may be as slow as several
seconds and result in a large amount of disk read activity.

Over time, the storage of samples in the data tables is optimized to match the access patterns
of the sample queries. However, the public API supports queries where the results are the
aggregate of thousands of different dimension sets, and each dimension set may have thousands
of samples within the time range of the query. For example, a query about the throughput of all
directory and proxy servers for all applications and all LDAP operations over the last 72 hours
might result in 4 to 6 million DBMS records being read into memory, aggregated, and finally
reduced to 100 data values. Predicting what samples a future query may want is impossible,
and the results from previous queries are cached such that a subsequent request for the same
data results in very little DBMS activity. Both disk seek time and rotational delay impact the
performance of a first-time query, so disks with faster RPM speeds provide a measurable
improvement for first-time queries.

The use of SSD storage for the DBMS files changes the system I/O performance, reducing the
need to cache data or DBMS disk blocks in memory to maintain good performance. A Metrics
Engine monitoring 20 servers and storing the DBMS files on SSD needs 4GB of RAM for the
JVM and 2GB of RAM for Postgres, so a system with 12GB of RAM total provides acceptable
performance.

Preparing the Operating System (Solaris)

The UnboundID Metrics Engine has been extensively tested on multiple operating systems. We
have found that serveral operating system optimizations lead to improved performance. These
optimizations include using the ZFS filesystem on Solaris systems, restricting ZFS memory
consumption, limiting transaction group writes, using compression and disabling access time
updates.

Using ZFS

UnboundID strongly recommends the use of ZFS™ as the underlying filesystem on Solaris
10 and OpenSolaris systems. ZFS is a 128-bit filesystem that can store billions of times more
data than traditional 64-bit systems. Based on a storage pool model, ZFS aggregates devices
(mirrors, RAID-Z with single or double parity, concatenated or striped storage) into a virtual
data source from which filesystems can be constructed. ZFS provides excellent performance,
end-to-end data integrity, simple administration management, and unmatched scalability. It also
provides many useful features, such as automatic checksum, dynamic striping, variable block
sizes, compression, and unlimited constant-time snapshots. ZFS is part of the Solaris 10 and
OpenSolaris operating systems.

All of the Metrics Engine's components should be located on a single storage pool (zpool),
rather than having separate pools configured for different server components (for example, one
pool for the database and a second for log files). Single zpool configurations are the simplest
and easiest to manage. From there, you can create multiple filesystems inside the pool and
optionally reserve space for one or more of the filesystems.

ZFS's copy-on-write transactional model does not require isolating I/O-intensive components.
Therefore, all available disks should be placed in the same zpool, so that as many underlying

Installing the Server

10

spindles as possible can be used to provide the configuration with the greatest number of I/O
operations per second.

To Restrict ZFS Memory Consumption

Despite its excellent performance, ZFS does not release memory fast enough for some LDAP
operations that might need it. This delay could cause some processes to fail to start while
attempting to allocate a large amount of memory for a JVM heap.

To curb memory allocation problems, make sure that the system is configured to limit the
amount of memory for caching (for example, up to two gigabytes). The Metrics Engine relies
on database caching rather than filesystem caching for its performance. Thus, the underlying
system should be configured, so that the memory used by ZFS will not interfere with the
memory used by the Metrics Engine. In most environments, we recommend that systems be
configured to allow ZFS to use no more than 2 GB of memory for caching.

1. Open the /etc/system file.

2. ZFS caches data from all active storage pools in the ARC cache. We can limit its memory
consumption by setting the maximum size of the ARC caches using the zfs_arc_max
property. For example, add the following line to the end of the /etc/system file.

set zfs:zfs_arc_max= 0x80000000

This property sets the maximum size of the ARC cache to 2 GB (0x80000000 or 2147483648
bytes) for ZFS. Note that your system may require a different value.

3. If your system processes large write operations, see the section on Limiting ZFS Transaction
Group Writes. Otherwise, reboot the machine for the change to take effect. Also note that this
operation requires Solaris 10 update 4 (08/07) and Nevada (build 51) release or later.

To Limit ZFS Transaction Group Writes

UnboundID has found that the Metrics Engine can exhibit uneven throughput performance
during continuous write loads for Oracle Berkeley DB Java Edition backends on ZFS systems.
We have found that the ZFS Write Throttle feature stalls write operations when transaction
groups are flushed to disk. During these periods, operation throughput can drop significantly
with these large I/O bursts.

To smooth out write throughput and improve latency, we recommend setting the
zfs_write_limit_override property in the etc/system file to the size of the available disk
cache on the system.

1. Open the /etc/system file.

2. Add the following line to the end of the file. Set the value to the size of your onboard cache.
For example, for a system that has a 32MB cache per disk, set the following parameter:

set zfs:zfs_write_limit_override=0x2000000

3. For the change to take effect, reboot the machine. Also note that this operation requires
Solaris 10 update 4 (08/08) or later.

Installing the Server

11

ZFS Access to Underlying Disks

Storage requirements vary depending on whether ZFS has access to the underlying disks. If
possible, ZFS should be given direct access to the underlying disks that will be used to back the
storage. Direct access to the underlying disks makes it possible to configure the system with the
greatest degree of reliability and flexibility.

To configure the system, ZFS should be given direct access to the underlying disks that will
be used to back the storage. In this configuration, the zpool used for the Metrics Engine should
have a RAID 1+0 configuration (a stripe across one or more 2-disk mirrors). Although this setup
reduces the amount of available space when compared with other configurations, like RAID-Z
(ZFS data-parity scheme with full dynamic stripe width) or RAID-Z2 (ZFS dual parity RAID-
Z), RAID 1+0 provides dramatically better performance and reliability.

If ZFS cannot get direct access to the underlying disks (for example, the system only has
access to a logical unit number, LUN, on a storage area network, SAN), then the provided
storage should already include some level of redundancy. Again, the RAID 1+0 configuration is
recommended over other schemes like, RAID 5 or RAID 6. If the storage includes redundancy,
then the zpool should be created with only that LUN and should not add any additional
redundancy. In such a configuration, ZFS is not able to take advantage of its advanced self-
healing capabilities when it detects any corruption at the filesystem level. However, ZFS check-
summing can still detect those types of problems.

Configuring ZFS Compression

The ZFS filesystem should have compression enabled to improve performance as it reduces the
amount of data that needs to be written or read from the underlying disks. In most cases, the
reduced costs of the disk I/O outweighs the CPU cost of compressing and decompressing the
data.

The following procedure assumes that the ZFS filesystem is named ds. The changes take effect
immediately with no need to reboot or perform any other action.

Caution:

Knowing the actual size of files is useful when you need to back up files to a
non-ZFS filesystem or estimate the amount of memory dedicated to caching.
On traditional UNIX filesystems, the du command reports the sum of all the
specified file sizes. However, on ZFS, du reports the amount of disk space
consumed, which might not equal the sum of the file sizes if features like
compression or multiple copies are enabled. Administrators should be aware
of this difference when determining the database size using du.

Instead of using du, UnboundID Metrics Engine provides a utility, bin/sum-
file-sizes, that determines the size (in bytes, kilobytes, megabytes, or
gigabytes) of the sum of a set of files even if ZFS compression or multiple
copies are enabled.

Installing the Server

12

To Configure ZFS Compression

• Turn on ZFS compression by running the zfs command.

zfs set compression=on ds

Preparing the Operating System (Linux)

The UnboundID Metrics Engine has been extensively tested on multiple operating systems. We
have found that several operating system optimizations lead to improved performance. These
optimizations include increasing the file descriptor limit on Linux systems, setting filesystem
flushes, editing OS-level environment variables, downloading some useful monitoring tools for
Redhat Linux systems, and configuring for Huge Page support.

To Set the File Descriptor Limit (Linux)

The Metrics Engine allows for an unlimited number of connections by default but is restricted
by the file descriptor limit on the operating system. Many Linux distributions have a default file
descriptor limit of 1024 per process, which may be too low for the server if it needs to handle a
large number of concurrent connections.

1. Display the current hard limit of your system. The hard limit is the maximum server limit
that can be set without tuning the kernel parameters in the proc filesystem.

ulimit -aH

2. Edit the /etc/sysctl.conf file. If there is a line that sets the value of the fs.file-max
property, make sure its value is set to at least 65535. If there is no line that sets a value for
this property, add the following to the end of the file:

fs.file-max = 65535

3. Edit the /etc/security/limits.conf file. If the file has lines that sets the soft and hard
limits for the number of file descriptors, make sure the values are set to 65535. If the lines are
not present, add the following lines to the end of the file (before “#End of file”). Also note
that you should insert a tab, rather than spaces, between the columns.

* soft nofile 65535
* hard nofile 65535

4. Reboot your system, and then use the ulimit command to verify that the file descriptor limit
is set to 65535.

ulimit -n

To Set the Filesystem Flushes

With the out-of-the-box settings on Linux systems running the ext3 filesystem, the data is only
flushed to disk every five seconds. If the Metrics Engine is running on a Linux system using the
ext3 filesystem, consider editing the mount options for that filesystem to include the following:

Installing the Server

13

commit=1

This variable changes the flush frequency from five seconds to one second.

You should also set the flush frequency to the /etc/fstab file. Doing the change via the mount
command alone will not survive across reboots.

About Editing OS-Level Environment Variables

Certain environment variables can impact the Metrics Engine in unexpected ways. This is
particularly true for environment variables that are used by the underlying operating system to
control how it uses non-default libraries.

For this reason, the Metrics Engine explicitly overrides the values of key environment variables
like PATH, LD_LIBRARY_PATH, and LD_PRELOAD to ensure that something set in the
environments that are used to start the server does not inadvertently impact its behavior.

If there is a legitimate need to edit any of these environment variables, the values of those
variables should be set by manually editing the set_environment_vars function of the lib/
_script-util.sh script. You will need to stop (stop-metrics-engine) and re-start (start-metrics-
engine) the server for the change to take effect.

Install sysstat and pstack (Red Hat)

For Red Hat® Linux systems, you should install a couple of packages, sysstat and pstack, that
are disabled by default, but are useful for troubleshooting purposes in the event that a problem
occurs. The troubleshooting tool collect-support-data uses the iostat, mpstat, and pstack
utilities to collect monitoring, performance statistics, and stack trace information on the server’s
processes.

Install dstat (SUSE Linux)

The dstat utility is used by the collect-support-data tool and can be obtained from the
OpenSuSE project website. The following example shows how to install the dstat utility on
SuSE Enterprise Linux 11 SP2:

1. Login as Root.
2. Add the appropriate repository using the zypper tool.

$ zypper addrepo http://download.opensuse.org/repositories/server:/monitoring/
SLE_11_SP2 Monitoring

3. Install the dstat utility.

$ zypper install dstat

To Disable Filesystem Swapping

For all deployments, we recommend disabling disk swapping on the filesystem to protect the
Metrics Engine JVM process from an overly aggressive filesystem cache.

Installing the Server

14

• Run the following command:

% sysctl -w vm.swappiness=0

To Set noatime on ext3 and ext 4 Systems

If you are using an ext3 or ext4 filesystem, it is recommended that you set noatime, which
turns off any atime updates during read accesses to improve performance. You should also set
the flush frequency to the /etc/fstab file. Doing the change via the mount command alone will
not survive across reboots.

• Run the following command on an ext3 system.

mount -t ext3 -o noatime /dev/fs1

• Run the following command on an ext34 system.

mount -t ext4 -o noatime /dev/fs1

Configuring Huge Page Support (Linux)

We recommend configuring Huge Page support to provide a performance gain for your system
of about 5–10 percent. Typically, on Linux systems, memory is managed in page sizes of 4096
bytes per page. RedHat Enterprise Linux Server introduced the concept of huge pages, where
memory is managed in page sizes of 2M or 1 GB per page. Huge Page support is especially
useful for virtualized environments using VMWare. If you are configuring a VMWare-based
system, you will need to calculate the memory configurations for your particular system. Follow
the recommended VMWare Tuning Guidelines presented on their web site.

As a general guideline, on RedHat Enterprise Linux Server 5.x versions, you should ensure that
the size of the huge page is set slightly higher than the maximum size of your JVM settings. For
example, for a total system memory of 96 GB, you could set the JVM memory to 80GB, then
configure your system to provide ~85GB of Huge Page support.

RedHat Enterprise Linux Server 6.0 or later introduces Transparent Huge Pages, which is an
abstraction layer that simplifies the management of huge pages. By default, Transparent Huge
Page support is enabled on RedHat Enterprise Linux Server 6.0 or later and CentOS 6.0 or later.

To Configure Huge Page Support on Releases Prior to Redhat Enterprise Linux
Server 6.0

1. Log in as root. For this example, we assume you are using at least Redhat Enterprise Linux
Server 5.5.

2. Verify that your kernel supports huge pages. If the contents of /proc/meminfo contains
"HugePage_Total," "HugePages_Free" or "HugePagesize," then your kernel supports huge
pages. Make note of the huge page size of your system, which is dependent on your system
architecture.

$ cat /proc/meminfo | grep Huge
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0

Installing the Server

15

HugePagesize: 2048 kB

3. Set the maximum amount of memory on the server. For 64-bit JVMs that support huge
pages, you need to set the kernel for shared memory to be slightly higher than the maximum
size of your JVM. This memory is "pinned" or reserved for the application once the JVM
is started. For this example, set the maximum shared memory to 85 GB. In the /etc/
sysctl.conf file, you need to add a line as follows:

kernel.shmmax = <number of bytes>

For example, for 85 GB, add the line:

kernel.shmmax = 91268055040

4. Next, set a virtual memory kernel parameter to tell the OS how many huge pages you want to
set aside. In the /etc/sysctl.conf file, you need to add the following line:

vm.nr_hugepages = <number of pages>

For example, we want to set the virtual memory to 85 GB (89128960 kB), which is 85 GB/ 2
MB (obtained in step 2 as the size of each huge page). Thus, 89128960 kB/2048 kB = 43520,
which is the number of huge pages we want to reserve. This setting only takes effect at boot
time.

vm.nr_hugepages = 43520

To set it without reboot, run one of the following commands:

sysctl -w vm.nr_hugepages=43520

If you want the setting to be present after reboot, then you have to modify the /etc/
sysctl.conf file.

5. Reboot the machine. Repeat step 2 to ensure that huge page memory is configured.

$ cat /proc/meminfo | grep Huge
HugePages_Total: 44564
HugePages_Free: 44564
HugePages_Rsvd: 0
HugePagesize: 2048 kB

6. Finally, go to the Metrics Engine root. Assuming you are using Sun JVM, set the -XX:
+UseLargePages JVM option in the Metrics Engine’s config/java.properties file for the
start-ds tool and import-ldif tools. Note that each command should be on a single line.
The command options are listed on separate lines for readability purposes.

These JVM arguments can be used to run the Metrics Engine with an
aggressive memory tuning:

start-ds.java-args=-d64 -server -Xmx80g -Xms80g -XX:+UseConcMarkSweepGC
-XX:+CMSConcurrentMTEnabled -XX:+CMSParallelRemarkEnabled
-XX:+CMSParallelSurvivorRemarkEnabled -XX:+CMSScavengeBeforeRemark
-XX:RefDiscoveryPolicy=1 -XX:ParallelCMSThreads=1
-XX:CMSMaxAbortablePrecleanTime=3600000 -XX:CMSInitiatingOccupancyFraction=80
-XX:+UseParNewGC -XX:+UseMembar -XX:+UseBiasedLocking -XX:+UseCompressedOops
-XX:PermSize=64M -XX:+HeapDumpOnOutOfMemoryError -XX:+UseLargePages

These JVM arguments can be used to do an offline LDIF import with an aggressive
memory tuning:
import-ldif.offline.java-args=-d64 -server -Xmx80g -Xms80g
-XX:+UseParallelGC -XX:+UseMembar -XX:NewRatio=8 -XX:+UseNUMA
-XX:+UseCompressedOops -XX:+UseNUMA -XX:+HeapDumpOnOutOfMemoryError

Installing the Server

16

-XX:+UseLargePages

7. On the Metrics Engine, run the dsjavaproperties tool to save the JVM settings.

$ bin/dsjavaproperties

You have successfully set up Huge Page Support on your Linux system.

Running as a Non-Root User

The Metrics Engine installer cannot be run as the root user, and generally the Metrics Engine
(and PostgreSQL) should not be run as root. The drawback to not running as root is the inability
to use network port numbers below 1024. Some operating system provide workarounds for this
limitation, but the best practice is to install and run the Metrics Engine as a user, other than root,
and select port numbers greater than 1024.

On systems running Solaris 10 and OpenSolaris, you can use the User and Process Rights
Management subsystem with the Role-Based Access Control (RBAC) mechanisms to grant
users or roles only the privileges necessary to accomplish a specific task. Using RBAC avoids
the assignment of full super-user (root) privileges to the user. For example, you can grant the
net_privaddr privilege to a non-root user, or role, that gives him or her the ability to listen on
privileged ports (for example, on ports 1024 or below). Similarly, granting the sys_resource
privilege allows a user to bypass restrictions on resource limits, such as the number of file
descriptors a process might use.

The Solaris User and Process Rights Management system can also be used to remove
capabilities from users. For example, removing the proc_info privilege from a user prevents the
user from seeing processes owned by other users. Removing the file_link_any privilege can
prevent users from creating hard links to files owned by other users. Hard links are not needed
by the Metrics Engine and can represent a security risk under certain conditions. The following
table summarizes the Solaris privileges that you may want to assign to non-root users.

Privilege Description

net_privaddr Provides the ability to listen on privileged network ports.

sys_resource Provides the ability to bypass restrictions on resource limits (including the number of
available file descriptors).

proc_info Provides the ability for users to see processes owned by other users on the system. This
privilege is available to all users by default, but it can pose a security risk in some cases.
UnboundID recommends that it be removed from the role used by the Metrics Engine.

file_link_any Provides the ability to create hard links to files owned by other users on the system. This
privilege is available to all users by default, but it can pose a security risk in some cases.
UnboundID recommends that it be removed from the role used by the Metrics Engine.

Running as a Non-Root User (Linux)

Linux systems do not provide a direct analog to the Solaris User and Process Rights
Management subsystems. As a result, there is no easy way to allow a non-root user to listen on a
privileged port.

To run as a non-root user but still allow connections on a privileged port, two options are
available:

Installing the Server

17

• Use a Load-Balancer or Proxy Server. In many environments, the server can be run on a
non-privileged port but can be hidden by a hardware load-balancer or LDAP proxy server.

• Use netfilter. The netfilter mechanism, exposed through the iptables command, can
be used to automatically redirect any requests from a privileged port to the unprivileged port
on which the server is listening.

Creating a Solaris Role

To give multiple administrators access to the Metrics Engine, UnboundID Metrics Engine
recommends that a Solaris role be created to run the server and that all necessary administrators
be added to that role. The Solaris role provides an audit trail that can be used to identify which
administrator performed a given action, while still allowing administrators to run the server,
to view and edit files used by the server, and to execute commands as that same user. As
with normal user accounts, roles can be assigned privileges. The role used for the Metrics
Engine should include the net_privaddr and sys_resource privileges and should exclude the
proc_info and file_link_any privileges for improved security (that is, to eliminate the need
for root access).

To Create a Solaris Role for Multiple Administrators

To give multiple administrators access to the Metrics Engine, UnboundID Metrics Engine
recommends that a Solaris role be created to run the server and that all necessary administrators
be added to that role. The Solaris role provides an audit trail that can be used to identify which
administrator performed a given action, while still allowing administrators to run the server,
to view and edit files used by the server, and to execute commands as that same user. As
with normal user accounts, roles can be assigned privileges. The role used for the Metrics
Engine should include the net_privaddr and sys_resource privileges and should exclude the
proc_info and file_link_any privileges for improved security (that is, to eliminate the need
for root access).

1. Create a Solaris role. Assume the role is named ds with all of the appropriate privileges
needed to run the Metrics Engine. Make sure to enter the whole command on a single line.

roleadd -d /export/home/ds -m -s /usr/bin/bash \
 -K defaultpriv=basic,net_privaddr,sys_resource,-prov_info,-file_link_any ds

2. Assign a password.

passwd ds

3. For each administrator who is allowed to manage the Metrics Engine, assign the role with the
usermod command. For example, to give someone with a user name of “john” the ability to
assume the ds role, issue the following command:

usermod -R ds john

If a user is already a member of one or more roles, then the entire list of existing roles,
separated by commas, must also be provided or the user will be removed from those roles.
For example, if the root account is also a role and the user “john” is also a member of that
role, then the command would be:

usermod -R root,ds john

Installing the Server

18

4. Log in using a normal user account and then use the bin/su command to assume the role
created for the Metrics Engine. You cannot log directly into a system as a role. Only users
that have been explicitly assigned to a role will be allowed to assume it.

Installation Process Overview

The process for setting up and installing a Metrics Engine involves the following steps:

• Configuring the External Servers: UnboundID Identity Data Store, UnboundID Identity
Proxy, and UnboundID Identity Data Sync servers.

• Installing the Metrics Engine using the setup tool.

• Configuring the Metrics Engine using the monitored-servers tool.

The remainder of this chapter describes each of these steps in detail.

Configuring the External Servers

Before you install the Metrics Engine, you need to configure the servers you will be monitoring:
UnboundID Identity Data Store, UnboundID Identity Proxy, and UnboundID Identity Data
Sync. The Metrics Engine requires all servers to be version 3.5.0 or later. See the administration
guides for each product for installation instructions.

Once you have installed the Metrics Engine, you can use the dsconfig tool to make
configuration changes for the Metrics Engine. When using the dsconfig tool interactively, set
the complexity level to Advanced, so that you can make all the necessary configuration changes.

Preparing the Servers Monitored by the Metrics Engine

The Metrics Backend manages the storage of metrics and provides access to the stored blocks
of metrics via LDAP. The Metrics Backend is configured to keep a maximum amount of metric
history based on log retention policies. The default retention policy uses the Default Size Limit
Retention Policy, Free Disk Space Retention Policy, and the File Growth Limit Policy, limiting
the total disk space used to 500 MB. This amount of disk typically contains more than 24 hours
of metric history, which is ample. The Metrics Engine keeps a metric history so that the Metrics
Engine can be down for a period and then catch up when it comes back online.

The following two commands create a Retention Policy that limits the number of files to 2000,
and sets the Metrics Backend to flush data to a new file every 30 seconds.

$ bin/dsconfig create-log-retention-policy \
 --policy-name StatsCollectorRetentionPolicy \
 --type file-count --set number-of-files:2000

$ bin/dsconfig set-backend-prop \
 --backend-name metrics --set sample-flush-interval:30s \
 --set retention-policy:StatsCollectorRetentionPolicy

Installing the Server

19

These commands configure the Metrics Backend to keep 16 hours of metric history, which
consumes about 250 MB of disk, ensuring that captured metrics are available to the Metrics
Engine within 30 seconds of when the metric was captured. The value of the sample-flush-
interval attribute determines the maximum delay between when a metric is captured and when
it can be picked up by the Metrics Engine.

The flush interval can be set between 15 seconds and 60 seconds, with longer values resulting
in less processing load on the Metrics Engine. However, this flush interval increases the
latency between when the metric was captured and when it becomes visible in the Dashboard
Application. If you change the sample-flush-interval attribute to 60 seconds in the example
above, then the Metrics Engine keeps 2000 minutes of history. Because the number of metrics
produced per unit of time can vary depending on the configuration, no exact formula can be
used to compute how much storage is required for each hour of history. However, 20 MB per
hour is a good estimate.

Configuring the Processing Time Histogram Plugin

The Processing Time Histogram plugin is configured on each Metrics Engine and Identity Proxy
as a set of histogram bucket ranges. When the bucket ranges for a histogram change, the Metrics
Engine notices the change and marks samples differently. This process allows for histograms
with the same set of bucket definitions to be properly aggregated and understood when returned
in a query. If different servers have different bucket definitions, then a single metric query
cannot return histogram data from the servers.

You should try to keep the Processing Time Histogram bucket definitions the same on all
servers. Having different definitions restricts the ability of the Metrics Engine API to aggregate
histogram data across servers and makes the results of a query asking "What percentage of the
search requests took less than 12 milliseconds?" harder to understand.

For each server in your topology, you must set the separate-monitor-entry-per-tracked-
application property of the processing time histogram plugin to true. This property must be
set to expose per-application monitoring information under cn=monitor. When the separate-
monitor-entry-per-tracked-application property is set to true, then the per-application-
ldap-stats property must be set to per-application-only on the Stats Collector Plugin and
vice versa.

For example, the following dsconfig command line sets the required properties of the
Processing Time Histogram plugin:

$ bin/dsconfig set-plugin-prop --plugin-name “Processing Time Histogram” \
 --set separate-monitor-entry-per-tracked-application:true

The following dsconfig command line sets the per-application-ldap-stats property of the
Stats Collector plugin to per-application-only:

$ bin/dsconfig set-plugin-prop --plugin-name “Stats Collector” \
 --set per-application-ldap-stats:per-application-only

Installing the Server

20

Setting the Connection Criteria to Collect SLA Statistics by Application

If you want to collect data about your SLAs, you need to configure connection criteria for each
Service Level Agreement that you want to track. The connection criteria are used in many
areas within the server. They are used by the client connection policies, but they can also be
used when the server needs to perform matching based on connection-level properties, such
as filtered logging. For assistance using connection criteria, contact your authorized support
provider.

For example, imagine that we are interested in collecting statistics on data that is accessed by
clients authenticating as the Directory Manager. We need to create connection criteria on the
Metrics Engine that identifies any user authenticating as the Directory Manager. The connection
criteria name corresponds to the application-name dimension value that clients will specify
when accessing the data via the API. When you define the Connection Criteria, change the
included-user-base-dn property to include the Directory Manager’s full LDIF entry.

The following dsconfig command line creates connection criteria for the Directory Manager:

$ bin/dsconfig create-connection-criteria \
 --criteria-name “Directory Manager” \
 --type simple \
 --set “included-user-base-dn:cn=Directory Manager,cn=Root DNs,cn=config”

Updating the Global Configuration

You also need to create Global Configuration-tracked applications for each app (connection
criteria) you intend to track. The tracked-application property allows individual applications
to be identified in the server by connection criteria. The name of the tracked application is the
same as the name you defined for the connection criteria.

For example, the following dsconfig command line adds the connection criteria we created in
the previous step to the list of tracked applications:

$ bin/dsconfig set-global-configuration-prop \
 --set "tracked-application:Directory Manager”

The value of the tracked-application field corresponds to the value of the application-
name dimension value that clients will specify when accessing the data via the API.

Notes on the PostgreSQL Database Setup

The Metrics Engine uses an embedded PostgreSQL DBMS database to store and to aggregate
server data. The PostgreSQL DBMS server is started and stopped automatically by the Metrics
Engine.

Installing the Server

21

About Setting Up the PostgreSQL DBMS Database

The PostgreSQL DBMS imposes its organizational structure on all users of the DBMS:

Figure 3: PostgreSQL DBMS Organizational Structure

A PostgreSQL DBMS server is a set of cooperating PostgreSQL processes listening on a single
TCP port. The DBMS server is partitioned into one or more databases, and each database
is partitioned into one or more schema. Tables are associated with exactly one schema,
and indexes are associated with exactly one table. A user (or role, as they are referred to in
PostgreSQL) is associated with a database and can be granted access to one or more schema
within a database. When a user authenticates to the DBMS server, the resulting session is
automatically assigned to a default schema, where each user can specify their own default
schema.

The Metrics Engine treats the schema and the users as the same logical idea, creating a schema
and a user/role with the same name and assigning the schema as the user's default schema. This
is done for the sake of simplicity, not necessity. However, the Metrics Engine requires that the
user connecting to the DBMS have the Metrics Engine Schema as the default schema.

The DBMS may be vulnerable to attacks from other processes on the same server. Since the
DBMS is only listening on the loopback address, any attack must originate from the same host.
If the Metrics Engine and PostgreSQL DBMS are the only processes on this host other than
OS processes, then the security risk is greatly diminished. And even if an attacker gets access
to the DBMS directly, the Metrics Engine DBMS only contains performance metrics about
the operations of the monitored servers and basic configuration information; none of the data
stored in the userRoot backend is present in the DBMS An attacker could modify histogram
sample data and alter performance history but could not affect directory data. Finally, even with
LDAP hostname and port information for the monitored servers, an attacker would still need to
overcome LDAP authentication, and no credential data is stored in the DBMS.

Tuning the PostgreSQL Configuration

The Metrics Engine installer creates the postgresql.conf configuration file and the security
file, pg_hba.conf file. These two files are in the PostgreSQL data directory specified during the
install. Based on the size of the monitored installation and the RAM available to PostgreSQL,

Installing the Server

22

you may want to modify two configuration variables to tune the Metrics Engine for optimal
performance: shared_buffers and maintenance_work_mem. The following table provides some
guidelines to help you tune your PostgreSQL configuration:

Table 3: Tuning Recommendations Based on Total System Memory

Variable Name < 4 GB < 6 GB < 8 GB > 8 GB

shared_buffers 128 MB 256MB 512 MB 1 GB

maintenance_work_mem 128 MB 256MB 1 GB 2 GB

Installing the Metrics Engine

Use the setup tool for initial setup of the Metrics Engine.

To Install the Metrics Engine

1. Become a user, other than root.

2. To begin the installation process, obtain the latest zip release bundle from UnboundID
and unpack it in a folder of your choice. In this example, the release bundle unpacks in the
UnboundID-Metrics-Engine directory.

$ unzip UnboundID-Metrics-Engine-4.5.0.0.zip

3. Change to the server root directory.

$ cd UnboundID-Metrics-Engine

4. Use the setup command with the appropriate JAVA_HOME environment variable.

$ env JAVA_HOME=/ds/java ./setup

Note: If your JAVA_HOME environment variable is set to an older version
of Java, you must explicitly specify the path to the Java JDK installation
during setup. You can either set the JAVA_HOME environment variable with
the Java JDK path or execute the setup command in a modified Java
environment using the env command.

5. Read the UnboundID End-User License Agreement. If you agree to its terms, type yes to
continue.

6. The tool describes the installation process and the prerequisites. Type yes to continue.

7. Type the port number of your local PostgreSQL instance or press Enter to accept the default
port, which is 5432.

8. Enter the password for the administrative account configured when installing PostgreSQL.

Installing the Server

23

9. Next, enter the name and credentials for the user account the Metrics Engine uses to connect
to the database. By default, the account name is metricsengine. If you want to change the
password, select yes

10.Enter the name of the PostgreSQL database where the Metrics Engine will store its data. By
default, the name is metricsengine.

11.Type the root user DN, or press Enter to accept the default (cn=Directory Manager), and
then type and confirm the root user password.

12.If you want to enable support for HTTP clients, enter 1. If you want to enable HTTPS
support, enter 2. To enable both, select 3.

Enter the port number or numbers depending upon the type of HTTP support you select, or
press Enter to accept the defaults.

13.Type the LDAP port number of your Metrics Engine, or press Enter to accept the default
port, 1389.

Note: The Metrics Engine process needs special privileges to listen on a
port less than 1024.

14.Type yes to enable LDAPS. Otherwise, press Enter to accept the default value of no.

If you answered yes, you will be prompted for certificate options. If you use the Java or the
PKCS#12 key store, you will be asked for the key store path, and the key store PIN. If you
use the PKCS#11 token, you will be asked for only the key PIN.

15.Type yes to enable StartTLS. Otherwise, press Enter to accept the default value of no. As in
the previous step, if you answered yes, you will be prompted for certificate options.

16.If you want to specify a particular address on which the server listens for client connections,
enter yes. Otherwise, accept the default of no.

17.Enter whether you want to tune the JVM to maximize memory use. By default, the value is
no.

18.Type yes, or press Enter to accept the default to start the Metrics Engine after the
configuration has completed.

If you plan to configure additional settings or import data, you can type no to keep the server
in shutdown mode.

19.When you have finished entering your settings, press 1 to configure the Metrics Engine.

Installing the Server

24

Configuring the Metrics Engine

Once you have finished running the setup tool, you need to configure the servers monitored
by the Metrics Engine. You can configure the set of monitored servers using the monitored-
servers tool or configure them individually using dsconfig.

About the monitored-servers Tool

The monitored-servers command-line tool configures communication between the monitored
servers and the Metrics Engine and then bulk adds external server definitions to the Metrics
Engine configuration based on a server's administrative data. Before a server is added to the
Metrics Engine configuration, the system examines it to determine whether communication
needs to be configured. If so, the cn=Monitoring User root user is created on the external
server with a password you supply.

This tool may be run against the same external server repeatedly, meaning that the server can go
through the preparation process again to update the user account or password.

When you run the tool with the add-servers subcommand, it creates an external server based
on the information discovered about the remote server. It also uses the information located in
the cn=admin data entry to discover other servers in the topology, which are also added to the
configuration.

About Adding Individual Servers Using dsconfig

Use the dsconfig tool to configure individual servers to be monitored by the Metrics Engine.
Only the servers that you specify in the monitored-server property of the Monitoring
Configuration configuration object will be actively monitored, though historical data may exist
for disabled servers. If you want to temporarily disable monitoring and stop the Metrics Engine
from collecting statistics, remove the external server from this property. Do not delete the
external server object. Add the external server back to the monitored-server property when
you are ready to re-enable monitoring of the server.

To Configure the Metrics Engine

1. Run the monitored-servers tool with the add-servers subcommand.

Specify connection information for the Metrics Engine, as well as connection information
for any remote servers in use. The engine creates an external server based on the
information discovered about the remote server. It also uses the information located in the
cn=admin data entry to discover other servers in the topology, which are also added to the
configuration.

$ bin/monitored-servers add-servers --bindDN uid=admin,dc=example,dc=com \
 --bindPassword password --monitoringUserBindPassword password \
 --remoteServerHostname localhost --remoteServerPort 1389 \
 --remoteServerBindPassword password

Installing the Server

25

2. Use the --dry-run option so that the tool generates output detailing the work that would be
done in a live session without actually making changes to the server configuration.

$ bin/monitored-servers add-servers --bindDN uid=admin,dc=example,dc=com \
 --bindPassword password --monitoringUserBindPassword password \
 --remoteServerHostname localhost --remoteServerPort 1389 \
 --remoteServerBindPassword password --dry-run

To Add Individual Monitored Servers Using dsconfig

1. Run the dsconfig tool.

$ bin/dsconfig

2. Select Monitoring Configuration to edit the Metrics Engine configuration.

3. Edit the monitored-server property, then enter 2 to add a new server. Only servers specified
in this property are monitored.

4. Create a new LDAP external server, and then select they type of server you want to create
from the list.

5. Enter the name of the new server.

6. Enter the host name of the server you will monitor. For example, server.example.com.

7. Specify the DN used to bind to the target LDAP server. Enter 5 to specify the password used
to bind to the server.

8. When you are satisfied with the properties of the external server, enter f to create the new
external server.

9. When you have finished adding servers to be monitored, enter 1 to accept the new values

10.Enter f when you have finished making changes.

Running the Metrics Engine

To start the Metrics Engine, run the bin/start-metrics-engine command on UNIX® or
Linux systems. Run the bat/start-metrics-engine command on Windows systems. The
start-metrics-engine command starts the Metrics Engine as a background process when
no options are specified. To run the Metrics Engine as a foreground process, use the start-
metrics-engine command with the --nodetach option.

Starting the Metrics Engine

When the Metrics Engine starts for the very first time, it downloads new samples from the
monitored servers and adds data to the database. Until it has finished this first data collection,
the Metrics Engine will not be able to answer metric queries to the database. The Metrics Engine

Installing the Server

26

processes samples from the oldest to the newest, so queries on more recent data may require
more start-up time. Note that if the monitored servers have been collecting samples for several
days, there may be a significant backlog of data to collect.

To determine if your server is ready to respond to metric queries, you can check the Sample
Import Backlog using the status tool. The following output shows that the server is available,
because the Sample Import Backlog is zero:

-- Server Status ---
Server Run Status: Started 22/Aug/2012:10:35:36.000 -0500
Operational Status: Available
Open Connections: 2
Sample Import Backlog: 0
Sample Import Delay (ms): 7
Max Connections: 2
Total Connections: 1188

 --- Server Details ---
Host Name: host.example.com
Administrative Users: cn=Directory Manager
Installation Path: /UnboundID-Metrics-Engine
Server Version: UnboundID Metrics Engine 3.6.0.0
Java Version: 1.6.0_31

Once the server’s Sample Import Backlog is relatively low compared to the number of servers
being monitored (no more than five times the number of monitored server), it can answer metric
queries for recent data on a particular server, and you can begin to analyze the data.

To Start the Metrics Engine as a Background Process

• Go to the server root directory, and then use start-metrics-engine.

$ bin/start-metrics-engine

To Start the Metrics Engine as a Foreground Process

1. Type start-metrics-engine to launch the Metrics Engine as a foreground process.

$ bin/start-metrics-engine --nodetach

2. You can stop the Metrics Engine by pressing Ctrl+C in the terminal window where the
server is running or by running the stop-metrics-engine utility from another window.

To Start the Metrics Engine at Boot Time

By default, the Metrics Engine does not start automatically when the system is booted. Instead,
you must manually start it with the bin/start-metrics-engine command. To configure the
monitoring server to start automatically when the system boots, use the create-rc-script tool
to create a run control (RC) script as follows:

1. Create the startup script.

$ bin/create-rc-script --outputFile UnboundID-ME.sh \
--userName ds

Installing the Server

27

2. As root, move the generated UnboundID-ME.sh script into the /etc/init.d directory, and
create symlinks to it from the /etc/rc3.d (starting with an "S" to ensure that the server is
started) and /etc/rc0.d directory (starting with a "K" to ensure that the server is stopped).

mv UnboundID-ME.sh /etc/init.d/
ln -s /etc/init.d/UnboundID-ME.sh /etc/rc3.d/S50-UnboundID-ME.sh
ln -s /etc/init.d/UnboundID-ME.sh /etc/rc0.d/K50-UnboundID-ME.sh

3. Log out as root, and re-assume the ds role if you are on a Solaris system.

To Stop the Metrics Engine

Change to the server root directory and use stop-metrics-engine.

$ bin/stop-metrics-engine

To Restart the Metrics Engine

You can restart the Metrics Engine using the stop-metrics-engine command with the --
restart or -R option. Running this command is equivalent to shutting down the server, exiting
the JVM session, and then starting up again, which requires a re-priming of the JVM cache.
To avoid destroying and re-creating the JVM, use an internal restart, which can be issued over
LDAP. The internal restart will keep the same Java process and avoid any changes to the JVM
options.

Go to the server root directory. Using a loopback interface, run the stop-metrics-engine
command with the -R or --restart options.

$ bin/stop-metrics-engine --restart \
 --hostname 127.0.0.1

Installing the Management Console

The UnboundID Metrics Engine provides a graphical web application tool, the UnboundID
Management Console. The Management Console provides configuration and schema
management functionality in addition to monitoring and server information. Like the
dsconfig configuration tool, all changes made using the Management Console are recorded
in logs/config-audit.log. In addition, anytime a configuration is made to the system, the
configuration backend is automatically updated and saved as gzip-compressed files. You can
access the changes in the config/archived-configs folder.

The Management Console is a web application that must be deployed in a servlet container that
supports the servlet API 2.5 or later. An installation using Apache Tomcat is described below
for illustration purposes only.

Installing the Server

28

Note: The Management Console supports JBoss 7.1.1 or later. Refer to
the JBoss Compatibility section in the WEB-INF/web.xml file for specific
configuration steps.

To Install the Management Console Out of the Box

1. Download and install the servlet container. For example, download apache-tomcat-
<version>.zip from http://tomcat.apache.org/, and then unzip this file in a location of your
choice.

2. Set the appropriate Apache Tomcat environment variables. The setclasspath.sh and
catalina.sh files are in the tomcat bin directory.

$ echo "BASEDIR=/path/to/tomcat" >> setclasspath.sh
$ echo "CATALINA_HOME=/path/to/tomcat" >> catalina.sh

3. Download the Management Console ZIP file, metrics-web-console-4.5.0.0-GA-
image.zip and unzip the file on your local host. You should see the following files:

3RD-PARTY-LICENSE.TXT
LICENSE.TXT
README
metricsengconsole.war

4. Create a metricsengconsole directory in apache-tomcat-<version>/
webapps/metricsengconsole. Then, copy the metricsengconsole.war file to apache-
tomcat-<version>/webapps/metricsengconsole. If the servlet is running and auto-deploy
is enabled, copy the .war file to the /webapps directory and it will install in the directory.

$ mkdir apache-tomcat-<version>/webapps/metricsengconsole
$ cp metricsengconsole.war apache-tomcat-<version>/webapps/metricsengconsole

5. Go to the apache-tomcat-<version>/webapps/metricsengconsole directory to extract the
contents of the console. The jar command is included with the JDK.

$ cd apache-tomcat-<version>/webapps/metricsengconsole
$ jar xvf metricsengconsole.war

6. Optional. Edit the WEB-INF/web.xml file to point to the correct Metrics Engine instance.
Change the host and port to match your server. The parameters in the web.xml file appear
between <!-- and --> as comments. Uncomment the parameters you need to use. For
example, you can specify the server or servers that the console uses to authenticate using the
following parameters:

<context-param>
 <param-name>ldap-servers</param-name>
 <param-value>localhost:389</param-value>
</context-param>

Note: If the ldap-servers parameter is left as-is (i.e., undefined by
default), the web console displays a form field for the user to enter the
server host and port.

Installing the Server

29

7. Optional. With the default configuration, Tomcat will time out sessions after 30 minutes of
inactivity, forcing the user to log back in again. This can be changed on a servlet container
wide basis by editing apache-tomcat-<version>/conf/web.xml, and updating the value of
this configuration parameter:

<session-config>
 <session-timeout>120</session-timeout>
</session-config>

The session expires after the specified number of minutes. Changing the value to 120, for
example, will extend the expiration to two hours. Changes to this setting might not take
effect until the servlet container is restarted, so consider changing the value before starting
the server for the first time.

8. Start the Metrics Engine if it is not already running, and then start the Management Console
using the apache-tomcat-<version>/bin/startup.sh script. Use shutdown.sh to stop
the servlet container. (On Microsoft Windows, use startup.bat and shutdown.bat.) Note
that the JAVA_HOME environment variable must be set to specify the location of the Java
installation to run the server.

$ env JAVA_HOME=/ds/java bin/startup.sh
Using CATALINA_BASE: /apache-tomcat-<version>
Using CATALINA_HOME: /apache-tomcat-<version>
Using CATALINA_TMPDIR: /apache-tomcat-<version>/temp
Using JRE_HOME: /ds/java

9. Open a browser to http://hostname:8080/metricsengconsole. By default, Tomcat listens
on port 8080 for HTTP requests.

Note: If you re-start the Metrics Engine, you must also log out of the
current Management Console session and then log back in to start a new
console session.

Logging into the Management Console

To log into the console, you can either use a DN (for example, cn=Directory Manager) or
provide the name of an administrator, which is stored under cn=admin data. The dsframework
command can be used to create a global administrator, for example:

$ dsframework create-admin-user \
 --hostname server1.example.com \
 --port 1389 --bindDN "cn=Directory Manager" \
 --bindPassword secret \
 --userID someAdmin --set password:secret

To Log into the Management Console

1. Go to the server root directory.

$ cd UnboundID-Metrics-Engine

2. Start the Metrics Engine.

Installing the Server

30

$ start-metrics-engine

3. Start the Apache Tomcat application server.

$ /apache-tomcat-<version>/bin/startup.sh

4. Open a browser to http://hostname:8080/metricsengconsole/.

5. Type the root user DN (or any authorized administrator user name) and password, and then
click Login.

6. On the Management Console, click Configuration.

7. View the Configuration menu. By default, the console displays the Basic object type
properties. You can change the complexity level of the object types using the Object Types
drop-down list.

Fine-Tuning the Management Console

The Management Console uses a web.xml descriptor file for its configuration and deployment
settings. Instead of specifying the host name and port on the Login page, you can configure one
or more primary servers in the web.xml file as well as configure security and truststore settings
for your Metrics Engine console. If you specify any servers using the web.xml file, the Login
page will no longer display the LDAP Server field. It will automatically attempt to connect
to the primary server(s) specified in the web.xml file in the order in which they are specified
until one of the servers can authenticate the username and password. The console also uses this
server to "discover" other servers in the topology, making them available for monitoring and
management in the console.

To Configure One or More Primary Servers for the Console

1. Open the metricsengconsole/WEB-INF/web.xml file in a text editor to specify the server(s)
that the console uses to authenticate. First, remove the comment tags (<!-- and -->) in the
ldap-servers section.

2. Next, specify the servers as host:port (e.g., server1.example.com:389) or using the LDAPS
protocol to specify security information (e.g., ldaps://server1.example.com:389). If you
specify more than one server, you must separate them using a space. For example, if you
have two servers: one using standard LDAP communication, the other using SSL, you would
see the following:

<context-param>
 <param-name>ldap-servers</param-name>
 <param-value>localhost:389 ldaps://svr1.example.com:389</param-value>
</context-param>

3. Save the file.

Installing the Server

31

To Configure SSL for the Primary Console Server

You can configure the console so that it will communicate with all of its primary servers over
SSL or StartTLS. See the previous section on how to specify one or more primary servers.

1. Open the metricsengconsole/WEB-INF/web.xml file in a text editor to specify the type of
communication to authenticate. First, remove the comment tags (<!-- and -->) in the security
section.

2. Specify none, ssl, or starttls for the type of security that you are using to communicate
with the Metrics Engine.

<context-param>
 <param-name>security</param-name>
 <param-value>ssl</param-value>
</context-param>

3. Save the file.

To Configure a Truststore for the Console

For SSL and StartTLS communication, you can specify your truststore and its password (or
password file) in the web.xml file. If no truststore is specified, all server certificates will be
blindly trusted.

1. Open the metricsengconsole/WEB-INF/web.xml file in a text editor to specify the
truststore. First, remove the comment tags (<!-- and -->) in the truststore section.

2. Specify the path to your truststore.

<context-param>
 <param-name>trustStore</param-name>
 <param-value>/path/to/truststore</param-value>
</context-param>

3. Next, specify the password or the path to the password pin file.

<context-param>
 <param-name>trustStorePassword</param-name>
 <param-value>password</param-value>
</context-param>

<context-param>
 <param-name>trustStorePasswordFile</param-name>
 <param-value>/path/to/truststore/pin/file</param-value>
</context-param>

4. Save the file.

Upgrading the Management Console

You can easily upgrade the Management Console by first moving the web.xml file to another
location, unpacking the latest Management Console distribution, and then replacing the newly
deployed web.xml file with the previous build.

Installing the Server

32

To Upgrade the Management Console

1. Shut down the console and servlet container.

2. In the current deployment of the Management Console, move the
webapps/metricsengconsole/WEB-INF/web.xml file to another location.

3. Download and deploy the latest version for the Management Console. Follow steps 2–5
outlined in the section "To Install the Console Out of the Box".

4. Assuming you had not renamed the .war file when you originally deployed the Management
Console, run a diff between the previous and newer version of the web.xml file to determine
any changes that should be applied to the new web.xml file. Make those changes to
the new file, and then replace the newly deployed Management Console’s web.xml to
webapps/metricsengconsole/WEB-INF/web.xml.

5. Start the servlet container.

Backing Up the Metrics Engine DBMS

This section provides information about why you may need to backup the DBMS, and then
how to plan and execute your backup strategy. Understanding what happens during the backup
process is important because executing a DBMS backup requires taking the Metrics Engine
offline for the duration of the backup.

About Backing Up DBMS Data

The Metrics Engine stores all historical metric samples in the PostgreSQL DBMS, along with
several other data tables that are used for bookkeeping and normalization of the sample data.
Even a small Metrics Engine installation, which monitors three to four servers, will use sample
tables that occupy 95% of the total DBMS space used. While a functional backup must capture a
consistent view of several tables, the size of the sample tables dictates the desired approach to a
regular backup strategy.

The historical samples allow you to:

➢ Diagnose performance problems that occurred in the past.
➢ Provide historical data for capacity planning and historical reporting.
➢ Provide the data needed for a revenue stream, such as when Metrics Engine data is used for

billing and chargeback.

Evaluating the parts of the data that are important to you determines your backup strategy.
For example, in the case of billing and chargeback, the data needed for these sorts of tasks
is typically small compared to the total population of the DBMS, and you can use the API
to extract the data on a regular basis and archive it in a set of CSV files. This may be all the
data you need, and the planning and resources required to backup the DBMS will be minimal.

Installing the Server

33

However, in other circumstances, you may not be able to determine what data will be important
to you in the future, in which case backing up all DBMS data is the safest approach.

About Historical Data Storage

The Metrics Engine DBMS stores all historical sample data starting from when the Metrics
Engine first started collecting sample data. It can store time-aggregated data for up to twenty
years, and the data in the DBMS is continually changing as long as the Metrics Engine is
running.

The system that feeds data to the Metrics Engine is designed to allow the Metrics Engine to
be offline for hours at a time without dropping any data. The collection points hold the data
for hours, giving the Metrics Engine ample time for maintenance tasks. The collection points
do have a limit on how long they hold data, so the Metrics Engine cannot be offline for an
indeterminate time.

If the Metrics Engine is offline so long that the collection points start to delete data that has
not yet been captured, then there will be gaps in the data. Aggregation still works, even with
these gaps. If the data gap is four hours, four time samples will be missing in the one hour
aggregation level, and no data will be missing in the one day aggregation level. However, the
one day aggregation level will use only 20 hours of data rather than 24.

The Metrics Engine responds to queries that result in data with time gaps. The resulting data
differentiates between data with zero value and missing data.

By default, the Metrics Engine can be offline for about eight hours before any data is lost. If you
target a backup that lasts less than two hours, you do not compromise the data.

Determining What Data to Backup

Sample data comprises about 95% of the DBMS by volume. It is broken evenly into four
groups:

➢ One Second
➢ One Minute
➢ One Hour
➢ One Day

Each of these groups changes over time, with new samples flowing in and being aggregated and
with old samples being deleted. The data in the One Second group data changes much faster
than the other groups. Using the default settings, 100% of the data in this group is replaced
every 8 hours. So, even if you have a backup of this group, it will be completely out of date
eight hours after you completed the backup. With such a short period of usefulness, we have
omitted this group from the backup, saving both time and space.

The group that contains One Minute data changes every seven days by default, though it can
be as long as every five weeks. The data from this group can be useful if you back it up every
week. Remember that if the One Minute tables fully age out every week, then a backup from 5
days ago is not very useful.

Installing the Server

34

The One Hour data ages out every year by default, and the One Day data never ages out. Both of
these groups are good candidates for backup.

From a planning perspective, we need to backup three of the four sample groups, if we backup
at a frequency between daily and weekly. If we backup less often, then we may want to exclude
the One Minute data as well, and back up only the One Hour and One Day data groups.

Implications of Restoring Data

If you have a catastrophic storage failure, when you restore the data that was captured and
aggregated between the most recent backup and now will be lost. For example, imagine we take
weekly backups on Sunday night. If we have to restore from backup on the following Friday in
a worst-case scenario, we will have a six day gap in our data. This gap represents six samples
from the one day group, 144 samples from the one hour group, and 8640 samples for the one
minute group. The collection points are still caching samples, so after the backup is restored, the
Metrics Engine will immediately reclaim the most recent eight hours of data.

However, configuring the collection points to retain the data for an entire backup period, while
providing 100% recovery of the data, comes at a high price. The Metrics Engine has a modest
upper limit on how fast it can get data into the DBMS, approximately 500k samples per minute.
If you presented a seven day backlog of data to the Metrics Engine, it will take several days for
it to process the backlog, and the Metrics Engine would be unable to answer queries for current
data until the backlog finished processing.

We recommend having a gap in the data rather than losing the ability to use the data at all for
an extended period of time. Avoid any approach that results in more than two hours of catchup
time.

Planning for Periodic Backups

When you plan for a periodic backup, you must choose a time window during which the Metrics
engine can be offline and ensure that you have enough disk space to hold the new backup
image. The exact size of a DBMS table and its corresponding backup is difficult to predict
be because it depends on factors that change at each installation. These factors include the
number of monitored servers, the number of tracked applications, the collected metrics, and
the retention duration for each of the aggregation levels. The following table provides values
from installations used during testing. These values reflect backing up three of the four sample
groups: one minute, one hour, and one day data.

Table 4: Data from Sample Deployments

Data For 25 Monitored Servers For 50 Monitored Servers

Number of tracked applications 20 20

1 second data resolution 8 hours 8 hours

1 minute data retention 14 days 14 days

1 hour data retention 52 weeks 52 week

1 day data retention 20 years 20 years

1 second table size 22 G 42 G

1 minute table size 8 G 18 G

1 hour table size 4 G (estimated) 9 G (estimated)

Installing the Server

35

Data For 25 Monitored Servers For 50 Monitored Servers

1 day data retention 4 G (estimated) 7 G (estimated)

time to backup 15 minutes (estimated) 30 minutes (estimated)

time for import catchup 10 minutes 42 minutes

size of compressed backup image 3 G (estimated) 5.5 G (estimated)

time to restore 1 hour (estimated) 2 h (estimated)

If you choose to not make a backup and you lose your DBMS completely, you can always re-
initialize the DBMS, restart the Metrics Engine, and start collecting data again. You will lose
all collected metric data and all collected event data, but retain the configuration required to
start collecting data again. If you have a fixed set of metrics that are historically important,
simply taking snapshots of these metrics periodically (using the Metric engine RESTful API)
and saving them as .csv files protects you if the DBMS is lost.

Before You Begin Your Backup

Before you attempt a backup or restore, you must shut down the Metrics Engine. If you
backup or restore with the Metrics Engine running, you will end up with a corrupted backup or
corrupted database.

You need the following information to complete a backup:

• Database name. This name was specified during Metrics Engine installation and is available
through the dsconfig tool. The default value is metricsengine.

• Schema name. This name was specified during Metrics Engine installation and is available
through the dsconfig tool. The default value is metricsengine.

• PostgreSQL data base administrator login. This value is set during the Metrics Engine
setup and defaults to postgres.

• PostgreSQL data base administrator password. This information was provided during the
Metrics Engine setup and has no default.

The PostgreSQL login and password must have DBA superuser level privileges. Because you
are running PostgreSQL tools from the command line, you need to know how to authenticate to
the DBMS using these tools. Typically, you can use the following options to authenticate and
prompt for the password:

-U dbms login -W

These options are omitted from the following examples to improve clarity.

How to Backup the Database

To backup the entrie DBMS, excluding the one second data, use the following command:

$ pg_dump -v -c -n schema --no-unlogged-table-data database > backup-file-name

If you installed the Metrics Engine with the default settings, the command appears as follows:

Installing the Server

36

$ pg_dump -v -c -n metricsengine --no-unlogged-table-data metricsengine > backup-file-
name

The backup command takes the following arguments and options:

• schema The schema name used. By default, the value is unboundid.

• database The database name used. By default, the value is unboundid.

• backup-file-name The name of the file where the backup is stored.

• -n This option specifies that only the schema we are using be backed up.

• -v This option specifies to use the verbose mode.

Note: You cannot backup and restore parts of the schema beyond the sample
tables. The Metrics Engine application code creates implicit relationships
between different tables that are not enforced by the DBMS. If you backup
the DBMS with the Metrics Engine running, restoring that backup may
corrupt the sample tables, aligning sample data with the wrong metric meta
data. The backup must be on a DBMS that has been stopped, and it must
capture all of the tables you intend to restore. Any tables not included in the
backup must be truncated when you restore from the backup, otherwise these
implicit relationships will be broken.

How to Restore the Database

Use the following command to restore the backup created above:

$ psql -d database < backup-file-name

Executing this command takes between 10 minutes and two hours, depending on the size of the
backup. The command drops and recreates each backed up table and index, and then reloads all
data for the table stored in the backup.

Excluding Data from Specific Aggregation Levels

The default backup command skips only the unlogged tables, which is the one second data we
concluded should not be backed up because it would be stale before the backup could be used.
However, you can skip other aggregation levels. To skip an aggregation level, the -T option of
the pg_dump tool should be used. For example,the following command skips the one second and
one minute data:

$ pg_dump -v -c -n schema --no-unlogged-table-data \
 -T schema.histo_l1 -T schema.histo_d* \
 -T schema.scalar_l1 -T schema.scalar_d* \
 schema > backup-file-name

The following tables describe the names of the specific aggregation levels

Installing the Server

37

Table 5: Aggregation Level Table Names

Aggregation Level Table Names

1 second histo_10, histo_h*, scalar_l0, scalar_h*

1 minute histo_l1, histo_d*, scalar_l1, scalar_d*

1 hour histo_l2, histo_m*, scalar_l2, scalar_m*

1 day histo_l3, histo_y*, scalar_l3, scalar_y*

If you explicitly use the -T option, then you must prepare the DBMS before you can restore,
otherwise the restore will report errors. Every table that is excluded by the -T option during
backup must be dropped before the restore is attempted.

Performing a Full Backup

You may want a full DBMS backup and restore, rather than exclude the most recent data tables.
A full DBMS backup can be used to load the data into a different DBMS server or into another
database in the current server. Or, you may want to send the DBMS image to your support
provider for analysis of a performance problem.

To create a full backup, use the following command:

$ pg_dump -v -c -n schema database > backup-file-name

To restore the full backup to a new database, use the following command:

$ psql -d new-database-name < backup-file-name

How to Export and Import the Database

You may want to export the full database, including the tables that should normally be excluded.
For example, you may want to export the database to import the entire schema into another
database, perhaps to do further analysis on it without the Metrics Engine continuing to import,
aggregate, and trim the data. Below are the commands to export the full database, and then to
import it into a new database for further processing or analysis:

$ pg_dump -n schema -Fc database > full-backup-file-name
$ createdb -T template0 new-database-name
$ pg_restore -d new-database-name full-backup-file-name

You may also want to export the full database if you need to send a Metrics Engine database
image in for support to analyze.

Uninstalling the Metrics Engine

The Metrics Engine provides an uninstall command-line utility for quick and easy removal of
the code base. You can uninstall the Metrics Engine using one of the following modes:

• Interactive command-line mode. This mode is a text-based interface. The utility prompts
you for input if more data is required.

Installing the Server

38

• Non-interactive command-line mode. This mode suppresses progress information from
being provide in standard output during processing, except for fatal errors. This mode is
convenient for scripting and is invoked with the --no-prompt option.

To Uninstall the Metrics Engine in Interactive Mode

Interactive mode uses a text-based, command-line interface to help you remove your Metrics
Engine instance. If uninstall cannot remove all of the Metrics Engine files, the server
generates a message with a list of the files and directories that must be manually deleted. The
uninstall command must be run as either the root user or the same user (or role) that installed
the Metrics Engine.

1. Go to the server root directory.

$ cd UnboundID-Metrics-Engine

2. Use the uninstall command.

$./uninstall

3. Select the components to be removed. If you want to remove all components, press Enter to
accept the default.

4. If the Metrics Engine is running, press Enter to shutdown the server before continuing the
uninstall process.

5. Complete the uninstall, and view the logs for any remaining files. Manually remove any
remaining files or directories, if required.

Uninstalling the Metrics Engine in Non-Interactive Mode

The uninstall utility provides a --no-prompt option that you can enter on the command line or
use in a script. Use the --forceOnError option to continue the uninstall process even when an
error is encountered. If an option is incorrectly entered or if a required option is omitted and the
--forceOnError option is not used, the command will fail and abort.

To Uninstall the Metrics Engine in Non-Interactive Mode

1. Go to the server root directory.

$ cd UnboundID-Metrics-Engine

2. Use the uninstall command.

$./uninstall

3. Use uninstall with the --remove-all option to remove all of the Metrics Engine’s
libraries. The --quiet option suppresses output information and is optional.

Installing the Server

39

$./uninstall --remove-all --no-prompt --forceOnError

4. If any files or directories remain, manually remove them.

To Uninstall Selected Components in Non-Interactive Mode

1. Go to the server root directory.

$ cd UnboundID-Metrics-Engine

2. Use uninstall with the --backup-files option to remove the Metrics Engine’s backup
files. Use the uu--help or -H option to view the other options available to remove specific
components.

$./uninstall \
 --backup-files \
 --no-prompt \
 --quiet \
 --forceOnError

Uninstalling the Management Console

You can easily remove the existing Management Console by removing the
webapps/metricsengconsole directory when no longer needed on your system.

To Uninstall the Management Console

1. Close the Management Console, and shut down the servlet container. (On Microsoft
Windows, use shutdown.bat).

$ apache-tomcat-<version>/bin/shutdown.sh

2. Remove the webapps/metricsengconsole directory.

$ rm -rf webapps/metricsengconsole

3. Restart the servlet container instance if necessary. Alternatively, if no other applications are
installed in the servlet instance, then the entire servlet installation can be removed by deleting
the servlet container directory.

Cleaning Up the PostgreSQL DBMS After Uninstall

The Metrics Engine stores metric samples and bookkeeping information in the DBMS. After the
Metrics Engine has been uninstalled this data may no longer be useful. If there is a chance that
the Metrics Engine may be reinstalled and the existing metric sample data may be useful, then
you do not need to cleanup the DBMS. However, if the Metrics Engine will not be reinstalled, or
if you just want to get rid of all of the old data before you reinstall, use this procedure.

• Shutdown the Metrics Engine.

Installing the Server

40

$ bin/stop-metrics-engine

Configuring Charts

41

Chapter

3 Configuring Charts

This chapter presents procedures to configure Metrics Engine charts, whether appearing on the
Metrics Engine or on the UnboundID Identity Broker Dashboard.

Topics:

• Customizing the Identity Broker Dashboard

Configuring Charts

42

Customizing the Identity Broker Dashboard

The UnboundID Identity Broker is a high-performance, highly-scalable, highly secure server,
providing a centralized Policy engine, OAuth2 authentication/authorization service, and OpenID
Connect service to power your identity infrastructure. The Identity Broker provides a Metrics
Tab on its Broker Console that displays a dashboard that tracks key performance metrics (image
shown below).

The Metrics Dashboard page is powered by an UnboundID Metrics Engine instance, monitoring
activity on the UnboundID Identity Broker. Each chart itself is fully customizable in terms of its
data collection and its look-and-feel. Any configuration of the Identity Broker's dashboard charts
can made using the Chart Builder tool, and then editing a properties file on the Metrics Engine.

Figure 4: UnboundID Identity Broker Dashboard

Metrics charting in the Chart Builder and the Identity Broker Dashboard use the same library,
so that a chart rendered in the Chart Builder will render exactly the same in the Dashboard if
the properties produced by the Chart Builder are used. As you change the settings in the Chart
Builder, the builder will re-fetch the metric data from the Metrics Engine using the Metrics
Engine REST API.

When the Identity Broker Dashboard displays a set of charts, the dashboard page will
asynchronously fetch the metric data for all charts in parallel, with each chart rendering when
its data is returned. While most metric queries respond quickly (50-100ms), some queries may
take longer, which will result in a longer lag between making a change in the Chart Builder (or

Configuring Charts

43

refreshing the Identity Broker dashboard) and the chart being rendered. If the lag seems too
long, consider making changes to the query to reduce the amount of data it needs to gather.
Selecting specific Instances and using Dimension Filters often helps with slow queries.

The Chart Builder tool and the underlying libraries constrain a chart to a single metric. This
constraint is in place to simplify the configuration of the chart and the dashboard. When two
different metrics need to be compared, the best solution is to produce a chart for each metric
and place them in proximity to each other in the dashboard. The layout of charts in the Identity
Broker dashboard uses a left-to-right, top-to-bottom flow with a minimum viewport size. The
size of each chart is determined by the library default size (300x300) and overridden by values
in the chart properties file. Sometimes the legends and labeling of a chart dictate the minimum
size for a chart, especially when the values in the legend are long. When certain data values
result in charts that are unwieldy, the actual labels used for specific data series can be overridden
to be shorter, improving the use of dashboard screen real estate.

About the Metrics Engine Documentation

The Metrics Engine comes with a complete online reference documentation that developers or
administrators can use to implement their custom charts. This Documentation page is designed
to be a configuration starting point for those wanting to customize their metric charts. After you
have successfully installed the UnboundID Identity Broker, backend data store servers, and the
UnboundID Metrics Engine, you can access the documentation at the following URL:

https://<metrics-engine-host>:<port>/docs/doc-index.html

The Metrics Engine Documentation page provides links to a Metrics Documentation page,
a reference file that details every metric available per product, a Metrics Engine REST API
documentation that explains the endpoints, and the Metrics Engine Chart Builder tool to
customize any chart.

Figure 5: Metrics Engine Documentation

Configuring Charts

44

The Metric Documentation link opens to a reference file that lists all of the metrics available on
the system. The page displays the following columns:

➢ The Name column provides a link to a given metric, which you can click to launch the Chart
Builder tool. The Chart Builder tool will display a preview chart for that specific metric. For
example, if you click the backend-active-cleaner-threads link, you will see the chart for
that parameter.

➢ The Produced By column indicates the UnboundID product source that is generating the
metric.

➢ The Enable column provides the corresponding dsconfig command-line instruction to
enable the metric on the producing monitored server. Simple hover over the icon (i.e., the
wrench icon) to view the dsconfig command.

➢ The Description column provides a brief description of the metric.
➢ The Dimensions column displays the type of data on the chart.
➢ The Statistics column displays the type of measurement taken for the metric.

Figure 6: Metric Documentation

The Metrics page also provides a Dimensions tab, showing the type of dimensions available for
a customized chart.

Configuring Charts

45

Figure 7: Metric Dimensions Tab

About the Chart Builder Tool

The UnboundID Metrics Engine provides a Chart Builder user interface (UI) to preview and
customize any type of chart. Each chart is supported by underlying Velocity Template files that
generate the Metrics Dashboard on the UnboundID Identity Broker.

The Chart Builder tool (chart-builder.vm) is shipped with the UnboundID Metrics Engine
distribution and is enabled by default at the following URL (after you have installed the Metrics
Engine):

https://<metrics-engine-host>:<port>/view/chart-builder

Once you have launched the Chart Builder tool, you will see a web page that allows you to
configure the specific metric chart that you want to track. You can adjust the chart parameters
to suit your tastes and deployment, then you can simply copy-and-paste the generated Chart
Properties, shown on the bottom left of the page, into your own properties file. The instructions
on how to customize a chart is presented at To Create a New Dashboard Chart Definition on
page 57.

Table 6: Chart Builder Parameters

Parameters Description

Metric Group Selects a specific group of metrics to be considered for
charting.

Metric Displays the specific metric. If you open the drop-down list
and hover over a metric, you can view a description of the
particular metric.

Pivot Splits the chart result into multiple series based on the
pivot dimension chosen.

Dimension Filter Filters the data based on the dimension(s) entered.

Statistic Displays the type of "measurement" that may exist for
each metric. For example, each response-time sample
contains:

Configuring Charts

46

Parameters Description

➢ # of operations (count)

➢ average time-per-op (average)

➢ histogram-of-operation-time (histogram)

On a per-sample basis, the Metrics Engine stores the
following: count, average, minimum, maximum, and
histogram. Any metric can have all five statistics but not all
statistics are equally valuable. Note the following points:

➢ The minimum and maximum statistics may be of
limited value, because as you time-average them,
they go to extremes (min of minimums and max of
maximums).

➢ The count and histogram statistics have high fidelity
over time because they time-aggregate perfectly.

➢ The average statistic loses fidelity over time, because
as the time-window for averaging gets larger, the
highs and lows get clipped.

You must determine the applicability of these statistics for
your particular chart.

Number of Points If the number of points is set to 1, all chart types, except
time series, may be used. If the number of points is > 1,
then only time series charts may be used.

Chart Type Displays the chart based on the type:

➢ Area Time Series

➢ Bar Chart

➢ Column Chart

➢ Pie Chart

➢ Stacked Bar Chart

➢ Stacked Column Chart

➢ Time Series

Chart Properties Displays the generated chart properties for your
customization. You must then manually copy-and-paste
these properties into your properties files.

For example, in the figure below, the Metric Query Qualifier Count metric is selected to display
an aggregated set of query results to monitor the backend servers. Each set has a unique set of
data for each dimension in the query. If you select the "metric" pivot and hover your cursor over
a specific point on the graph, you can see the set of dimensions in the query.

Configuring Charts

47

Figure 8: Chart Builder Pivot Metric View

You can filter the set of dimensions using the Dimension Filter field on the right of the chart.
For example, if you enter "metric:throughput, response-time," you can filter out the other
dimensions to only show the throughput and response-time series. Compare the chart above with
the one below, you can see that the dimension filter allowed two of the data series in the upper
chart to remain. Again, if you hover your cursor over some point, you can see the dimensions
and their values for that sampling point as seen below.

Figure 9: Chart Builder Dimension Filter

Configuring Charts

48

Chart Builder alows you to view the metrics data in a variety of different formats, depending
your requirements. For example, if you set the number of points to "1" and remove the
dimension filter, you can change the chart type to "Area Time Series" on the Chart Type drop-
down list (shown below).

Note: If the Number of Points field is set to any value other than 1, a time
series chart is produced. You must choose "1" point to try charts other than
the Time Series chart.

Figure 10: Chart Builder Area Time Series View

The Chart Type drop-down list also provides options to change the chart type to a Bar Chart
(shown below) or a Stacked Bar Chart (not shown).

Configuring Charts

49

Figure 11: Chart Builder Bar Chart View

You can change the chart type to a Column Chart (shown below) or a Stacked Column Chart
(not shown).

Figure 12: Chart Builder Column Chart View

You can also change the chart type to a Pie Chart.

Configuring Charts

50

Figure 13: Chart Builder Pie Chart View

Or, you can change the chart type to a Time Series chart.

Figure 14: Chart Builder Time Series View

The Chart Builder tool also provides an editor to customize the number of displayed series, the
time line and range for each series as well as customizable chart labels and colors. If you click
the Chart Builder icon (i.e., the wrench icon), you can make more customizations to your default
chart. The following image shows the Chart Builder Editor page and its fields.

Configuring Charts

51

Figure 15: Chart Builder Editor

You can edit the chart title, add a sub-title, and label the X-Axis and Y-Axis. For example,
change the chart title to "Throughput & ResponseTime," add a Sub Title "For All
Instances," label the Y-Axis as "Metric Qualifier Count" and click the Show Legend box to
show a description of the displayed metrics.

Figure 16: Adding a New Title, Sub-Title, Axis Labels & Legend

After you click the Apply button, the resulting changes appear on the chart.

Configuring Charts

52

Figure 17: Adding a New Title, Sub-Title, Axis Labels & Legend Resulting Page

You can customize the color of the given chart series line by using the "<dimension-
name>=#<Hex RGB Color>" format in the Series Color Override field. For example,
change the color of the throughput line from the default maroon color to red (i.e.,
throughput=#ff0000) in the Series Color Override field. The hover text for that particular
dimension also changes to the specified color. The result is shown after the following figure.

Figure 18: Series Color Override

Configuring Charts

53

Figure 19: Chart Builder Series Color Override Resulting Page

The Series Name Override field allows you to change the series label. For example, you
can change the throughput series to "DS-Throughput" and the response-time series to "DS-
ResponseTime" by entering "throughput=DS-Throughput,response-time=DS-ResponseTime"
in the Series Name Override field.

Figure 20: Series Name Override

Configuring Charts

54

Figure 21: Chart Builder Series Name Override Resulting Page

The Series Colors field allows you to set up a pre-determined set of colors for each series line.
For example, you can enter the colors, green, fuchsia, blue and lime (#00ff00, #ff00ff, #0000ff,
#32cd32) in the Series Colors field. The resulting page is displayed in the next figure. Because
there are only two series lines, the first two colors, green and fuchsia, are used.

Figure 22: Chart Builder Series Colors

Configuring Charts

55

Figure 23: Chart Builder Series Colors Resulting Page

After you have configured a specific chart to suit your taste, you can simply copy-and-paste the
chart properties in a properties file on the Metrics Engine. See the section on how to customize a
chart at To Create a New Dashboard Chart Definition on page 57.

About the Dashboard Files

Charts on the UnboundID Identity Broker Dashboard can be created using the Chart Builder
previewing tool to customize a particular chart that you want to change. The Chart Builder Tool
generates the parameters needed for administrators to copy-and-paste into a properties file.
The properties files are located in the config/dashboard of the Metrics Engine installation.
Although you can directly edit these property files yourself, we recommend that you use the
Chart Builder tool exclusively to customize your chart, and then copy the generated parameters
into the properties file.

The following is a description of the files present in this directory:

In the config/dashboard/charts directory:

• _chart-definition.template -- The properties file for creating new chart definitions with
descriptions of the available parameters.

• .properties files -- The chart definitions that specify their parameter
values. These definition files are read in by the DashboardConfiguration
VelocityContextProvider object and made available to the Velocity templates using the
$dashboard.chartDefinitionsByFileName accessor.

Configuring Charts

56

In the config/velocity/statics directory:

• js/dashboard.js -- Contains the reusable dashboard JavaScript logic. This file is
customizable using an extension but should be used as is, out-of-the-box by most templates.

• css/dashboard.css -- The default dashboard template styles.

• vendor/highcharts-2.3.3/js/highcharts.js -- The Highcharts JavaScript charting package
used to render the charts.

In the config/velocity/templates directory:

• broker-dashboard.vm -- The out-of-the-box Identity Broker Dashboard Velocity template.

• chart_builder.vm -- The Chart Builder tool that constructs a chart.

• _builder-user-input.vm -- Configuration controls used by the Chart Builder too.

• _chart.vm -- The chart definition partial view Velocity template. This file is customizable
but should be used as is, out-of-the-box by most dashboard templates.

• _user-input.vm -- Provides controls that affect all charts in the Dashboard, unless a chart
specifically overrides the value.

About the Chart Properties File

The Identity Broker Dashboard uses a Velocity template (broker-dashboard.vm) and a set of
chart properties files to render the chart. When you use the Chart Builder tool to create your
metrics charts, the tool generates the corresponding properties for each customized item in your
chart, which you then copy-and-paste into your properties file. If no values are specified, the
property will use a default value.

The properties in the chart definition file are broken into two groups: properties that start with
"chart" affect the display of the data, and properties that start with "query" affect the metric
query.

Table 7: Default Dashboard Properties

Property Default Value

display.title Metric "short name display"

display.height CSS defined chart height

display.width CSS defined chart width

display.y-axis-title Metric count or value units

display.y-axis-min Auto-calculated value

display.y-axis-max Auto-calculated value

display.show-legend true/false. Defaults to false for time intervals and
true for category

display.line-type line, spline, area (time interval only). Defaults to spline.

query.metric-id Required. Displays the type of metric used for the chart.

query.instance-type The product instance types to match. If not specified all
instance types are matched. To match more than one
instance type, specify this parameter multiple times. A
list of valid instance types will be returned in an error
message if an invalid value is provided.

Configuring Charts

57

Property Default Value

query-instance-group The product instance groups to match. If not specified all
instance groups are matched. This parameter is currently
not implemented.

query-instance-location The product instance locations to match. If not specified
all instance locations are matched. To match more than
one location, specify this parameter multiple times. Valid
locations are contained in the location attribute of the
result from resource InstancesResource.

query.instance-hostname The product instance hostnames to match. If not specified
all instance hostnames are matched. To matched more
than one hostname, specify this parameter multiple times.
Valid hostnames are contained in the hostname attribute
of the result from resource InstancesResource.

query.instance-version The product instance versions to match or null to match
all instance versions. Valid version strings are contained
in the version attribute of the result from resource
InstancesResource.

query.instance The specific product instance IDs to match. If not
specified all instances are used. Valid instance IDs are
contained in the id attribute of the result from resource
InstancesResource.

query.start-time Start time relative to the query.end-time. Format is -
NmhdwMy (e.g., -2h starts two hours from the end-time) or
absolute in ISO8601 format YYYY-MM-DDThh:mm:ss
(where fields at the right are optional)

query.end-time End time relative to the current time. Format is -
NmhdwMy (e.g., -2d starts two hours ago) or absolute as
described in query.start-time.

query.max-intervals An integer that specifies the maximum number of time
intervals to include in the result, which controls how much
time each data point in the result represents.

query.statistic Defaults to the primary statistic for the metric (typically
average or count)

query.dimension Chart dimension. For example, application-name:SSO
Application,ERP Application

query.pivot instance, histogram, or dimension name

query.top-n An integer limit on the number of data series in the chart.
Positive values will limit the results to the series with the
N largest average value, negative values will be limited to
the N smallest.

To Create a New Dashboard Chart Definition

For this example procedure, it is assumed that you have properly installed an UnboundID
Metrics Engine and UnboundID Identity Broker and its backend external servers.

1. Open a browser and go to: https://<metrics-engine-host>:<port>/docs/doc-index.html

2. On the Metrics Engine Documentation page, click the Metric Documentation link, and select
a metric to chart, or click the Metrics Engine Chart Builder tool to create a chart.

3. On the Chart Builder tool, configure your chart to meet your requirements. Once you are
done, make note of the Chart Properties on the bottom left of the page. You will need to
copy-and-paste these properties into a properties file.

4. Create a properties file and copy-and-paste the Chart Properties on the Chart Builder
page into the file, and then save the file with a descriptive name, for example, my-

Configuring Charts

58

chart.properties. The property file directly correlates the listed parameters to the Metrics
Engine REST API DataSetResource.getDataSet method, which is accessed via GET
at "/metrics/{metric-id}/dataset". If no values are specified for a property, then the
default values will be used. If you want to exclude a parameter, use IGNORE as a value (e.g.,
display.title=IGNORE). Only the query.metric-id property is required.

query.metric-id=metric-sample-query-qualifier-count
display.height=400
display.width=600
query.top-n=10
query.start-time=-4w
query.end-time=-1m
display.title=Throughput & Response Time
display.sub-title=For All Instances
display.y-axis-title=Metric Qualifier Count
display.series-color-map=throughput=#ff0000
display.show-legend=true
display.series-name-map=throughput=DS-Throughput,response-time=DS-ResponseTime
display.series-colors=#008000,#ff00ff,#0000ff,#00ff00
query.pivot=metric
query.dimension=metric:throughput,response-time
query.max-intervals=25

Note: All edits to existing files may be overwritten in future upgrades. To
ensure your edits are preserved, create new files with the prefix "my_".

5. Change to the <server-root>/config/velocity/templates directory, and copy the
broker-dashboard.vm file to my-broker-dashboard.vm. Modify the following section by
adding your file reference. For multiple charts, you can remove the comments and add your
chart name to the $includedCharts list. For this example, add a single chart definition after
the #end statement shown below:

##
Only include the charts we want to render...
##

#set ($includedCharts = ["oauth-token-request", "oauth-exceptions", "oauth-grant-
type", "my-chart"])

#foreach($chartDefinitionFileName in $includedCharts)
set($chartDefinition =
 $dashboard.chartDefinitionsByFileName.get($chartDefinitionFileName))
parse("_chart.vm")
#end

set($chartDefinitionFileName = "my-chart")
set($chartDefinition =
 $dashboard.chartDefinitionsByFileName.get($chartDefinitionFileName))
parse("_chart.vm")

6. Change the dashboard_url property on the Broker Admin Console web application to
reflect the new template name from step 3.

$ bin/dsconfig set-web-application-extension-prop \
 --extension-name Broker-Admin-Console \
 --set dashboard-url:https://example.com:8443/view/my-broker-dashboard

7. If you make more changes, reload the Dashboard page to see the changes. You do not have to
restart the server for the changes to take effect.

Configuring Charts

59

Testing the Dashboard Changes

After you make edits to the chart definition files and the dashboard template file, you can
quickly test your changes using a browser. Open a browser and point to URL:

https://<metrics-engine>:<https-port>/view/<template-file-name>

The URL renders the dashboard in a browser (where <template-file-name> does not
include the .vm file suffix). This approach allows testing of new charts and chart options
without impacting the dashboard currently used by the Identity Broker Console web app,
assuming <template-file-name> is not the same template referenced in the dashboard-url
configuration property for the web app.

Configuring Charts

60

Data Collection and Metrics

61

Chapter

4 Data Collection and Metrics

This chapter describes how data is collected, how to tune the data collection, and how to access
the data.

Topics:

• Overview of Metrics Concepts
• Overview of Query Concepts
• About the Data Collection Process
• About the Collection of System Monitoring Data
• About Monitored Server Clock Skew
• Tuning Data Collection
• About Data Processing on the Metrics Engine
• Accessing Monitoring Data
• Monitoring Service Level Agreements

Data Collection and Metrics

62

Overview of Metrics Concepts

A metric corresponds to a single measurement made within the server. The Metrics Engine
collects three types of metrics:

• Count metrics. These metrics represent the number of times a specific event happens within
the server. Examples of count metrics include number of LDAP operations performed,
network packets received, or new connections established.

• Discrete metrics. These metrics correspond to measurements that have both a value and
a weight. For exampe, the duration of an LDAP operation or the average duration of a
checkpoint.

• Continuous-valued metrics. These metrics measure things that always hae a value.
For example, these metrics include the amount of free disk space, the current number of
connected clients, and the number of operations pending in the work queue.

Each metric collected by the Metrics Engine is of only one of these types, and the type is
determined by what is measured and how it is measured. The statistics that can be applied when
reading values depend on the metric type. Only count statistics are available for count metrics.
Discrete metrics have count, average, and histogram statistics available, which expose a count
of the values broken down into bucket ranges. Average, minimum, and maximum statistics are
available for continuous-valued metrics.

The metric type also plays a role in how samples are aggregated. Aggregation occurs when
multiple metric samples taken over time are collapsed into a single sample.

About Analyzing Aggregated Data

We think of metrics as having dimension because the dimension are a convenient way to
organize the fact that a single metric may have several different values at the same time.
Another way to think of the sample data is as independent data values, where each value is
associated with exactly one set of dimensions. It can be more convenient to examine the data
with certain dimensions aggregated, rather than pivoted or split. The aggregation helps us form a
more simplified mental image of the data, which in turn helps us understand it more quickly.

Because the sample data stored in the DBMS is actually unaggregated, we need to understand
the mathematics of aggregation. The following table shows data for a one-dimensional example:

Table 8: Example One-Dimensional Data

Dimension
Value

T0 T1 T2 T3 T4 T5 T6 T7

a 5.0 5.0 5.1 5.2 5.1 5.2 5.1 NaN

b 5.0 5.0 NaN 5.2 5.1 5.2 5.1 NaN

c 5.0 5.0 5.1 5.2 5.1 5.2 5.1 NaN

d 6.0 6.0 6.1 6.2 5.1 6.2 6.1 NaN

Data Collection and Metrics

63

If we aggregate dimension value (a:d) at time T0, we get different values depending on what
statistic we request:

MINIMIM(aggregate((a:d)@T0) == 5.0
MAXIMUM(aggregate((a:d)@T0) == 6.0
AVERAGE(aggregate((a:d)@T0) == 21.0/4
COUNT(aggregate((a:d)@T0) == 21.0

If we aggregate dimension value (a:d) at time T2, we get different values depending on what
statistic we requested:

MINIMIM(aggregate((a:d)@T2) == 5.1
MAXIMUM(aggregate((a:d)@T2) == 6.1
AVERAGE(aggregate((a:d)@T2) == 16.3/3
COUNT(aggregate((a:d)@T2) == 16.3

Note that the NaN values do not count as a zero, so missing data does not adversely affect
aggregation. However, the COUNT statistic looks very different at T2 than it did at T0, even
though the raw data only changed by 25%.

If we aggregate dimension value (a:d) at time T7, we get different values again. Here, we have
no data to work with, so the aggregates are all NaN.

MINIMIM(aggregate((a:d)@T7) == NaN
MAXIMUM(aggregate((a:d)@T7) == NaN
AVERAGE(aggregate((a:d)@T7) == NaN
COUNT(aggregate((a:d)@T7) == NaN

The second axis of aggregation is across time. Normally, you would not think of time as an
aggregation, but the DBMS only contains four different time resolutions for the samples. So,
unless you want one of those four resolutions, you have to aggregate time. Using the same data
as above, we aggregate time into two samples, such that T0-T3 are sample 1 and T4-T7 are
sample 2. We will not aggregate by dimension. The results are given in the following table.

Table 9: Example Time Aggregation Data

Dimension Value S1 S2

a 20.3/4 15.4/3

b 15.2/3 15.4/2

c 20.3/4 15.4/3

d 24.3/4 17.4/3

Note how again the NaN values do not affect the computations, and that the time aggregation is
always the average of all actual values.

Next, we aggregate over time where the samples do not fit evenly into the new time intervals. In
this example, we aggregate our eight time intervals into three as follows:

T0,T1,T2 -> S1
T3,T4,T5 -> S2
T6,T7 -> S3

The resulting aggregation follows.

Table 10: Aggregating Over Time with Uneven Samples

Dimension Value S1 S2 S3

a 15.1/3 15.4/3 5.1

Data Collection and Metrics

64

Dimension Value S1 S2 S3

b 10/2 15.5/3 5.1

c 15.1/3 15.5/d 5.1

d 18.1/3 17.5/3 6.1

However, the results can be skewed if you have an outlier value in the wrong place. If the
dimension value d at time T6 was 1.0, then the dim value d at sample time S3 would be 1.0
because it would not have any other data to average with.

Averaging that occurs during aggregation can result in misleading data when taken out of
context. Generally, it is not wise to aggregate the raw data, isolate a single point in the aggregate
results, and draw any conclusions. An outlier value in an aggregate should be examined along
the different pivot dimensions before you can infer real meaning from the data, as missing data
can influence the aggregates.

About the Types of Metrics

A count metric indicates the number of times a specific event happens within the server.
The exact length of the measurement interval is not important. For example, the number of
packets received on a network interface during a measurement interval is a count metric. Each
measurement returns the count of the number of packets received during that measurement
interval only. The sample contains the number of occurrences, whether the measurement interval
is 5 seconds or 2 minutes. Another example of a count metric is the number of megabytes of
data written to a disk device during the measurement interval. Using the COUNT statistic when
querying for a count metric will return the sum of the counts. If the query has a time-based
pivot, then it returns the sum of the counts split into time quanta. Count metrics can often be
converted into a rate. Using the examples above, the per-minute rates would be packets per
minute and Megabytes per minute, which ensures that the time quant is 1 minute in duration.

A continuous metric is a measurement of a value where the thing being measured always has a
valid value at each measurement point. For example, CPU percent busy is a continuous metric;
for every sample interval, a valid CPU percent busy measurement can be taken. A continuous
metric differs from a count metric in that you cannot sum continuous metric samples across time
in a meaningful way. For example, if was have a 1 second measurement of CPU percent busy
and the CPU is 25% busy for 10 seconds, summing these samples would show the CPU is 250%
busy, which is not meaningful. Instead, continuous metric samples use average, minimum,
and maximum statistics. If you want to know how busy the CPU has been since midnight, you
average, rather than sum, the samples since midnight.

A discrete metric is a measurement that has both a value and a weight. A value with a higher
weight means more samples within the sample period for that value. A discrete metric is
analogous to a weighted average and requires that multiple measurements be taken within
a single sample interval. For example, response time is a discrete metric, where the actual
response time of each LDAP operation is averaged and the number of LDAP operations is
provided as the weight. Discrete metrics are different from continuous metrics because each
measurement is weighted. If no LDAP operations occurs in a sample interval, the value would
be zero and the weight would be zero.

Some continuous and discrete metrics may also report a minimum/maximum value if the
measurement is composed of multiple sub-measurements. The minimum/maximum values are

Data Collection and Metrics

65

aggregated by averaging rather than using a min()/max() function, so the aggregated values do
not automatically push to the extremes but rather reflect the median of the minimum/maximum
values.

Some discrete metrics may also convey histogram data. Histogram data represents an additional
set of measurements that take individual measurements and place them into buckets, where
each bucket is defined by a value range. The Metrics Engine supports histograms with up to 15
buckets. Histogram valued samples are unique because they give a picture of the distribution
of the values, and because they more precisely answer the question of "How many samples
are greater than X?". When multiple measurements are reduced to a single number (average),
then the sample value distribution is lost. This loss occurs at the fine-grained measurement
level, and during time-based aggregation. However, a histogram representation does not lose
the distribution information. Histograms can be added over time so that we can always answer
the question "How many samples are greater than X?" exactly (if the value of X is a histogram
bucket boundary).

About Dimensions

Dimensions provide a means of aggregating and subdividing metric sample values in a way that
logically follows what is actually measured. For example, metrics that measure disk activity
have a disk-device dimension. Aggregating on the disk-device dimension shows the average
disk activity for all disks, where pivoting (splitting) by the disk-device dimension shows the
activity for specific disks.

Every metric has a logical instance dimension, which corresponds to the server that the sample
was created on. Beyond that, each metric may have up to three dimensions, which are defined in
the metric definition.

For example, the sync-pipe-completed-ops metric has two dimensions, the pipe-name and
pipe-result. The pipe-name is the name of the sync pipe as configured on the UnboundID
Synchronization Server. The pipe-result is one of the following set of values:

➢ exception
➢ failed
➢ failed-at-resource
➢ failed-during-mapping
➢ match-multiple-at-dest
➢ no-match-at-dest
➢ already-exists-at-dest
➢ no-change-needed
➢ out-of-scope
➢ success
➢ aborted-by-plugin
➢ failed-in-plugin

At each measurement interval for each sync pipe on each sync server, there will be a value for
each of the pipe-result values. So, for a single Synchronization Server with two sync pipes,
pipe-one and pipe-two, the samples generated for each sample period look like the following.
Note that the timestamp is constrained to time-only for brevity.

Data Collection and Metrics

66

08:15:05, sync-pipe-completed-ops, pipe-one, exception, 1
08:15:05, sync-pipe-completed-ops, pipe-one, failed, 7
08:15:05, sync-pipe-completed-ops, pipe-one, failed-at-resource, 1
08:15:05, sync-pipe-completed-ops, pipe-one, failed-during-mapping, 1
08:15:05, sync-pipe-completed-ops, pipe-one, match-multiple-at-dest, 3
08:15:05, sync-pipe-completed-ops, pipe-one, no-match-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-one, already-exists-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-one, no-change-needed, 1
08:15:05, sync-pipe-completed-ops, pipe-one, out-of-scope, 1
08:15:05, sync-pipe-completed-ops, pipe-one, success, 125
08:15:05, sync-pipe-completed-ops, pipe-one, aborted-by-plugin, 1
08:15:05, sync-pipe-completed-ops, pipe-one, failed-in-plugin, 0
08:15:05, sync-pipe-completed-ops, pipe-two, exception, 3
08:15:05, sync-pipe-completed-ops, pipe-two, failed, 9
08:15:05, sync-pipe-completed-ops, pipe-two, failed-at-resource, 2
08:15:05, sync-pipe-completed-ops, pipe-two, failed-during-mapping, 1
08:15:05, sync-pipe-completed-ops, pipe-two, match-multiple-at-dest, 4
08:15:05, sync-pipe-completed-ops, pipe-two, no-match-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-two, already-exists-at-dest, 0
08:15:05, sync-pipe-completed-ops, pipe-two, no-change-needed, 1
08:15:05, sync-pipe-completed-ops, pipe-two, out-of-scope, 1
08:15:05, sync-pipe-completed-ops, pipe-two, success, 217
08:15:05, sync-pipe-completed-ops, pipe-two, aborted-by-plugin, 1
08:15:05, sync-pipe-completed-ops, pipe-two, failed-in-plugin, 0

First, we compare how busy pipe-one is compared to pipe-two by pivoting on pipe-name. We
do not pivot on pipe-result, allowing all twelve results to aggregate to a single value. This
results in the following:

pipe-one 141
 pipe-two 239

However, failures would get double-counted, once in the failed result and again in the specific
failure mode. So, we can filter specific dimension values into the result by considering only
samples with success or failed pipe-result values in the aggregation. This results in the
following:

pipe-one 132
 pipe-two 226

These values provide the real sync pipe operation count. Next, we can pivot by pipe-result,
not pipe-name, to get a set of counts that show the distribution of the counts of the specific error
types, as well as the success and failure. This data provides a quick way of assessing the kinds of
problems being encountered by the sync pipes.

The dimensions give us a way to pivot or aggregate along a metric-specific axis. All metrics
have the instance pivot and the time pivot. Metrics that support the histogram statistic can also
have a histogram pivot. The following diagram illustrates a response time histogram pivot.

Data Collection and Metrics

67

Figure 24: Pivot by Histogram

A time pivot allows the results to show time as a dimension, which breaks the samples that
correspond to the requested time range into time quanta. Commonly, you specify N samples
across range R, filling in a time-series chart that shows the metric value as a function of time.
The following diagram illustrate a response time pivot by time.

Figure 25: Pivot by Time

Data Collection and Metrics

68

An instance pivot allows the results to be pivoted, or split, by server instance, allowing us to
compare servers against each other. We can see how busy each server's CPU is by looking at the
host-system-cpu-used with an instance pivot. The following diagram illustrates response time
pivoted by time and instance.

Figure 26: Pivot by Time and Instance

A histogram pivot requires a metric that supports the histogram statistic, and discriminates the
results by histogram bucket boundaries. For example, LDAP response time with a histogram
pivot shows how many LDAP operations fell into each of the histogram buckets. The following
diagram illustrate throughput pivoted by time, instance, and application.

Data Collection and Metrics

69

Figure 27: Throughput Pivot

Overview of Query Concepts

A metric query consists of three components:

➢ The data used to calculate the query results
➢ The aggregation method used on the data to calculate the query result
➢ The format of the query result

The remainder of this section describes each of these components in more detail.

Selecting Query Data

The data used to generate the results of a metric query are driven by the following factors:

➢ Metric and statistic
➢ Time range
➢ Server instances included in the result (optional)
➢ Included dimension values (optional)
➢ Histogram range (optional)

Every query returns results for a single statistic, such as the average, and of a single metric, such
as response time.

A query must include the time range used to generate the results. Time ranges can either be
absolute dates (in ISO-8601 format) or relative dates (such as -30m). A relative start time offset

Data Collection and Metrics

70

is relative to the end time. A relative end time offset is relative to the current time. When no end
time is specified, the server includes results up to the current time.

The time range and the desired number of points, if you have selected pivot by time, dictates
the resolution of data used to process the query. For example, the finest granularity of data, one
second resolution, is only kept for a few hours. It will not be used to satisfy a query spanning
multiple days.

By default, all server instances that produce the metric are used to calculate the query results.
However, the metric query can be restricted to one of the following:

➢ A specific list of servers
➢ Servers of a given type, such as identity data stores
➢ Servers within a specific location

For metrics that include one or more dimensions, a query can be evaluated across a subset
of dimension values. For example, the results returned for the response-time metric can be
restricted to just the search and modify values of the op-type dimension.

For discrete-valued metrics that break their values down into histogram ranges, you can query
the count statistic applied to a subset of histogram buckets by specifying a minimum and/or
maximum histogram value. For example, a query on the response-time metric could return a
count of operations that took longer than 100 milliseconds.

Aggregating the Query Result

You may want a metric query to return the full, raw data that matches the query parameters,
so that the server can aggregate metric results across time, server instance, dimension value, or
histogram value. The server aggregates results, except when the query indicates not to, by using
a pivot. The mechanism for aggregating the data depends on the type of metric, as described
earlier. A pivot directs the query processor to not aggregate one component of the query data. A
pivot can be one of the following:

➢ Time
➢ Server instance
➢ A specific dimension
➢ Histogram buckets

Zero or more pivots can be specified in the query with the following results:

• If no pivot is specified, then the query returns a single number that represents the aggregation
of all matched data. For example, a query with no pivot might return the total number of
operations that have completed today.

• A single pivot results in one-dimensional data, such as a time-based chart with a single line
or a simple bar chart.

• Using two pivots results in two-dimensional data, such as a time-based chart with a separate
line for each server instance, or a stacked bar chart that shows the number of completed
operations broken down by server and operation type.

Data Collection and Metrics

71

• Using three pivots results in three-dimensional data, such as a stacked, grouped bar chart that
shows completed operations broken down by server, operation type, and result.

Beyond aggregating multiple samples into one, the data returned by a metric query can be
further manipulated to make it more consumable by the client. For example, queries can be
scaled on the count statistic to return the count of events per second, per minute, or per hour.
Counts of histogram values can be returned by a percentage of the total. For example, instead
of returning the raw count of operations that took longer than 50 milliseconds to complete,
the results could be returned as the percentage of all operations that took longer than 50
milliseconds to complete. A value of 0.02% is more meaningful than a value of 40.

Formatting the Query Result

The final step of query processing is to convert the results into the format requested by the
client. Results can be returned in one of the following formats:

➢ A CSV spreadsheet
➢ A PNG or a JPG chart
➢ XML format
➢ JSON format

About the Data Collection Process

The Metrics Engine polls all the monitored servers over LDAP to fetch alert, status, and
performance data. Status data indicates the most current status of each monitored server. Alert
data reflects the alerts emitted by each server. Performance data exposes the cn=monitor entry
of each product server.

For a complete summary of the metrics and dimensions that can be exposed through the
RESTful Metrics API, see the reference files located in the docs/metrics-guide directory.
Most metrics have a count, minimum, maximum, and average.

The following sections describe the types of data collected in more detail.

About Performance Data

Performance data represents a majority of the data collected by the Metrics Engine. Depending
on how you configure the servers in your topology, each may produce hundreds of kilobytes of
performance data per minute, and the Metrics Engine stores performance data for 20 years. You
must configure the volume of performance data collected by each monitored server so that the
Metrics Engine can keep up with the flow. Ideally, the amount of data captured has little to no
impact on the performance of the monitored system.

The performance data model is a dimensional data model, meaning that a measurement may be
taken on multiple simultaneous values that are distinguished by dimension values. For example,
a response time metric provides the time in milliseconds it took a server to respond to an
LDAP request. This response-time metric has two dimensions: application name and operation

Data Collection and Metrics

72

type. The application name reflects the connection criteria of the request. The operation type
corresponds to the LDAP operation, such as add, bind, or search. So, if a server has 20 different
connection criteria, each response-time sample may have 140 different values, one for each of
the applications multiplied by the number of operation types.

The performance data captured on the monitored server has a record with the following fields:

Name Data Type Description

Timestamp Date Time of measurement, using clock on the monitored server

Metric String Name of metric

Dimension String[3] Values of dimensions 1 - 3

Count Int Number of measurements represented by this sample

Average Double Average value of this sample

Minimum Double Optional minimum value of this sample

Maximum Double Optional maximum value of this sample

Buckets Int[] Optional histogram data associated with this sample

When a performance record is imported into the Metrics Engine, it is normalized to reduce the
size of the record. The normalized record contains the following information in the Metrics
Engine:

Name Data Type Description

batchID Int The ID of the batch of data to which this record belongs

sampleTime Timestamp The time the sample was captured or equivalent information after
aggregation

metric_qual Int The ID of a structure that reflects the metric and all dimension values

definitionID Int ID of the histogram definition, if the data belong to a histogram-valued
sample

count Int Number of measurements represented by this sample

avg_val Real Average value for this sample

min_val Real Minimum value for this sample

max_val Real Maximum value for this sample

val1-15 Long Histogram bucket values

About the Collection of System Monitoring Data

All UnboundID servers have the capability to monitor the health of the server and host system
they run on for diagnostic review and troubleshooting. Initially, the servers do not collect any
performance data until they are prepared for monitoring by an UnboundID Metrics Engine using
the monitored-servers add-servers tool or an administrator enables system health data
collection for real-time inspection and querying. At a high level, all of the important server and
machine metrics which can be monitored are available in the cn=monitor backend.

Note: Windows is not a supported monitoring platform. Host system
monitor data is unavailable on Windows.

Data Collection and Metrics

73

The Stats Collector plugin is the primary driver of performance data collection for LDAP,
server response, replication, local JE databases, and host system machine metrics. Stats
Collector configuration determines the sample and collection intervals, granularity of data
(basic, extended, verbose), types of host system collection (cpu, disk, network) and what kind
of data aggregation occurs for LDAP application statistics. The Stats Collector plugin ensures
that an UnboundID Metrics Engine is able to gather all of the detailed data required for a
comprehensive diagnostic review.

The Stats Collector plugin relies exclusively on entries in the cn=monitor backend to sample
data using LDAP queries. In order for real-time host system monitoring data to be present, the
Host System Monitor Provider populates the monitor backend with specific real-time attributes
about CPU and memory utilization. You can also configure the Host System Monitor Provider
to collect real-time utilization data for specific disk subsystems and network interfaces on the
host. Configuration of the Host System monitor provider enables the low-level generation of
performance data through system-specific System Utilization monitor modules.

The System Utilization Monitors interface directly with the host operating system to gather
statistics about CPU utilization and idle states, memory consumption, disk input and output
rates, and queue depths, as well as network packet transmit and receive activity.

Utilization metrics are gathered via externally invoked OS commands, such as iostat and
netstat, using platform-specific arguments and version-specific output parsing.

Enabling the Host System monitor provider automatically gathers CPU and memory utilization
but only optionally gathers disk and network information. Disk and network interfaces are
enumerated in the configuration by device names (e.g., eth0 or lo), and by disk device names
(e.g., sd1, sdab, sda2, scsi0).

About the External Collector Daemon

The System Utilization monitor contains an embedded collector daemon that runs on systems
affected by a Java process fork memory issue, RFE 5049299 (i.e., when a process attempts
to fork a child process, Solaris attempts to allocate the same amount of memory for the child
process, which will likely fail when the parent process consumes a large amount of memory).
The embedded collector daemon is started automatically for the UnboundID server via the
startup script named _start-collector-helper.sh. The start-collector-helper inspects
the Host System Monitor provider configuration to conditionally determine whether the external
daemon process is required.

Note: On Linux, no OS external commands are forked. Instead, the /proc
filesystem is accessed directly using file input/output to read the latest CPU,
memory, disk, and network I/O data.

The external collector daemon operates by having an internal table of repeatable commands
that run on a schedule. The collector creates a simulated filesystem in the <server-root>/logs
directory for each command type so that the Host System Monitor Provider can find the output
of the most recently collected data. The <server-root>/logs directory is the default folder for
these files.

Data Collection and Metrics

74

Note: You can override the default <server-root>/logs directory by
running the following command:

$ bin/dsconfig set-monitor-provider-prop \
 --provider-name "Host System" \
 --set system-utilization-monitor-log-directory:/tmp

Commands that are repeated on an interval are executed on a thread at a 2x interval sampling
rate. The filename of the output contains the sample timestamp, such as iostats-[sample-
timestamp]. Repeating commands use a subdirectory for each command type to keep results
isolated from other command types and to help organize file cleanup. If the collector daemon
fails for any reason, the Host System Monitor provider is not left reading stale system data
because the expected timestamp files will be missing. To handle clock-edge timing, the monitor
sampler will also look for data in a filename of the previous second. Samples cannot be reused,
because timestamp files are deleted once their data have been collected.

The collector daemon runs with no inter-process communication. However the collector daemon
monitors a process PID file provided by the startup script and waits for the process PID file to
be created and/or waits for an empty-file-to-active process PID transition. Once an active
server process PID is acquired, the collector daemon monitors the contents of the process PID
file as well as the file's existence, to determine whether the UnboundID server is active. If the
process PID file is deleted, the process PID contained within the PID file changes, or the process
PID becomes inactive, the UnboundID server has stopped and the monitor daemon exits within
one second. The daemon also monitors the Host System Monitor provider configuration and
exits within one second if the provider is disabled in the server.

Because of the cooperative nature of the external collector daemon files and the output file
readers in the System Utilization monitor, the collector daemon can be safely killed by a system
administrator. If the collector daemon is terminated, host system machine diagnostic metrics are
not available for monitoring until the UnboundID server is restarted.

About Monitored Server Clock Skew

Correlating metric samples from multiple servers as a function of time requires that the
timestamp associated with each sample (which is provided by the monitored server) is in sync.
The monitored servers need to have their system clocks synchronized. The more time skew there
is between monitored servers and the Metrics Engine, the less accurate is the time correlation
across samples from different servers. If you have a five second spike in a metric on Server A
and a similar six second spike on Server B, if the system clocks on Server A and Server B are
not synchronized, you will not know which came first or if they were truly concurrent.

The Metrics Engine does not actively do anything to help synchronize the system clocks, but
it does track that information and make it visible in the cn=Monitored Server <server-
name>,cn=monitor entry.

The system-clock-skew-seconds attribute indicates the difference between the Metrics Engine
system clock and the monitored server clock, in seconds. The larger this skew value, the less
precision you have when comparing changes in data across servers.

Data Collection and Metrics

75

While it is not necessary to keep the Metrics Engine clock synchronized with all of the
monitored servers, it can be convenient when issuing metric queries with time ranges specified
by offsets. Because the offset will computed using the Metrics Engine system clock, if this clock
is very different from the monitored servers' system clocks, then the start/end time of a metric
query will not match the expected boundaries.

Tuning Data Collection

Collecting all of the performance data at the most granular level from all of the servers may not
be possible without a significant investment in hardware for the Metrics Engine. Instead, you
can tune your data collection to fit within the limits of your existing Metrics Engine hardware.
The remainder of this section describes several strategies for tuning data collection.

Reducing the Data Collected

You may not require all of the metrics produced by the Metrics Engine. If not, tune the sets
of metrics collected by using the dsconfig command-line tool to update the Stats Collector
Plugin’s entry-cache property. For example, to omit all metrics related to the entry cache set
the entry-cache-info group as follows:

$ bin/dsconfig set-plugin-prop --plugin-name "Stats Collector" \
 --set entry-cache-info:none

Note: The dsconfig commands in this section are to be run on each
monitored server, not necessarily on the Metrics Engine server.

The server collects information for eight different info groups. In this example, we set the
entry-cache-info group to none, meaning that none of the metrics from that info group are
produced. Limit data collection to the devices of actual interest.

Reducing the Frequency of Data Collection

The monitored servers produce metric samples as quickly as every second, which is useful
for short-duration changes. However, these samples are less useful hours later, after the per-
second data is aggregated to per-minute data. The following example illustrates how to use the
dsconfig tool to change the base sample production rate from the default of 1 second to 10
seconds.

$ bin/dsconfig set-plugin-prop --plugin-name "Stats Collector" \
 --set "sample-interval:10 seconds"

This change reduces the total data volume by about 90 percent.

Data Collection and Metrics

76

Reducing the Frequency of Sample Block Creation

You can also reduce the number of sample blocks processed by the Metrics Engine in a given
time. By default, the monitored servers produce a new block of samples every 30 seconds.
Increasing this to 60 seconds, while reducing the Metrics Engine’s polling rate to 60 seconds,
reduces the sample processing overhead. For example, you can change the frequency at which
the monitored servers create sample blocks using the following dsconfig command:

$ bin/dsconfig set-backend-prop --backend-name metrics \
 --set sample-flush-interval:60s

Reducing Metrics Engine Impact on Performance

The UnboundID Identity Data Store, UnboundID Identity Proxy, and UnboundID Identity Data
Sync servers all expose performance data through the cn=monitor DN. Performance penalties
arise only when this data is read, either directly by an LDAP client, or by enabling either the
Periodic Stats Logger or Stats Collector plugins.

The Periodic Stats Logger plugin reads the configured monitors and writes the resulting values
to a CSV file that contains human-readable column titles and several value columns per line.
The output is suitable for human consumption, typically through a spreadsheet application.

The Stats Collector plugin also reads the configured monitors and writes the resulting values to
a CSV file, but this file is made available for LDAP clients at the cn=metrics DN. The Stats
Collector CSV files are suitable for use by the Metrics Engine, and contain one metric value per
line.

If you do not want to monitor performance, you can disable both the Periodic Stats Logger
(disabled by default) and the Stats Collector (disabled by default) plugins using dsconfig. Each
of these plugins adds an approximate 3% CPU utilization penalty, plus a negligible amount of
disk I/O and JVM heap usage.

For example, to enable the Stats Collector plugin, use dsconfig as follows:

$ bin/dsconfig set-plugin-prop --plugin-name "Stats Collector" \
 --set enabled:true

Note: The monitored-servers tool will enable the Stats Collector plugin
on the monitored server.

About Data Processing on the Metrics Engine

When blocks of samples arrive at the Metrics Engine, they are queued on disk and loaded into
the database on a FIFO basis. Samples from a single server are processed in time-order, so that
sample blocks with older data are always processed before a sample block containing newer
data. The Metrics Engine does not do time-correlation between blocks coming from different

Data Collection and Metrics

77

servers. So, server A samples from 2 hours ago may be loaded immediately after server B
samples from two minutes ago. This flexibility allows different monitored servers to become
unavailable to the Metrics Engine, for example, by going off line, without affecting the overall
system monitoring. Also, a query for data from server A and B may return data for server B but
not server A, until the data queued for server A has been collected and imported.

Note: Samples collected from the Metrics Engine itself are processed ahead
of all other servers.

Data Importing

The Metrics Engine polls all of the monitored servers at a regular interval, looking for blocks
of samples that have not already been collected. When new samples are available, the Metrics
Engine fetches them via LDAP, queues them to disk, and adds an import record to the FIFO
import queue. The Metrics Engine has one dedicated thread draining the import queue, taking
each block of samples and converting them to the normalized form stored in the DBMS. The
import queue’s size is normally near zero, but under certain conditions it may become large.

For example, if a monitored server becomes unavailable for an extended period of time, perhaps
for several hours, it will continue to queue blocks of samples locally. When it becomes available
again, the Metrics Engine collection poll of that server will capture hundreds or even thousands
of sample blocks. The Metrics Engine captures the sample blocks at a much faster speed than
it can import them, causing the queue to grow for a period of time. If the Metrics Engine is
stopped, this problem is compounded because all monitored servers will then have a backlog of
sample blocks to be imported.

When the Metrics Engine first starts, it will queue (for import) all sample blocks still on disk.
All sample blocks on disk at server startup are first checked for maximum sample age. Blocks
that are older than two hours are discarded.

Data Aggregation

To maintain a size-limited DBMS while accumulating data over a period of years, the Metrics
Engine aggregates data into four different levels. Each level contains data with less time-
granularity, but covering a larger period of time. Data is aggregated from a lower (greater time
granularity) to a higher level as soon as enough data for aggregation is available. For example,
the level 0 data has one second granularity, and the level 1 data has 1 minute granularity. After
level 0 has collected one minute’s worth of data, the data from that minute can be aggregated to
level 1.

The monitored servers generate three types of metrics, and each type is aggregated differently:

➢ Counts. Samples are aggregated by a sum of the values.
➢ Continuous. Samples are aggregated by an average of the values.
➢ Discrete. Samples are aggregated by a weighted average of the values.

Data Collection and Metrics

78

To keep the data tables for each aggregation level at a constrained size, each aggregation level
has a maximum age for the samples. When the samples are older than this age, they are deleted
from the level. While aggregation occurs soon after the samples arrive in the level, pruning
occurs only after all samples in a block have passed their age limit.

The Metrics Engine attempts to collect data from all configured servers as efficiently as
possible. However, Monitored Server availability, DBMS backlog, and Metrics Engine load can
all cause the data pipeline to slow down. The data aggregation system is designed to correctly
handle gaps in the data.

The resolution of the aggregation levels cannot be changed, but you can configure the maximum
age of each level. The following table describes the aggregation levels:

Level Resolution Default Maximum Age Max Age

0 1 second 2 hours 48 hours

1 1 minute 7 days 34 days

2 1 hour 12 months 5 years

3 1 day 20 years 20 years

The raw data from the Metrics Engine is initially put in level 0. After a period of time, the
newest data in level 0 is aggregated and put into level 1. This aggregation process carries on
up to level 3. To keep the DBMS at a fixed upper bound, as the data ages out of each level it is
deleted. Consider the following diagram. Note that the x-axis time scale is non-linear:

Level 0 data holds the most recent 2 hours of data. When data in level 0 is older than 2 hours, it
is deleted. Because the data in the lower levels have greater time resolution, transient data issues
are more visible in lower levels than in upper levels. The aggregation process results in a type of
averaging or data smoothing.

Data Collection and Metrics

79

A second feature of this type of aggregation is that a gap exists between now and the newest
available data for each level. This gap results from aggregation occurring on the boundary of
the time resolution of the data. Level 3 data has one day resolution, so the newest data point
it could have would need to aggregate an entire day’s worth of data. If the aggregation occurs
at midnight, then at 12:01 AM, the level 3 data would include yesterday. However, it will not
include today until after 12:01 AM tomorrow.

The pruning of data from each level can fall behind at times, so that a given level has more data
than it should. However, pruning occurs often enough to ensure that the storage for the data does
not grow without bound.

Accessing Monitoring Data

The Metrics Engine stores the data it collects in a DBMS, accessed via JDBC. The default
configuration uses a DBMS server located on the same host as the Metrics Engine, with JDBC
access limited to loopback connections. Within the DBMS server itself, the Metrics Engine uses
a distinct database instance and distinct schema within the database. To access this schema, the
Metrics Engine uses a DMBMS user with rights to the specified schema. A user can access the
metric data over an HTTP port using the query-metric tool. This tool uses the Metrics Engine
REST API, which is also available to custom applications

The data collected by the Metrics Engine does not contain any of the data in the LDAP entries
of the monitored servers, so there is no risk of customer data being inadvertently exposed. The
Metrics Engine does collect monitored server configuration data, most commonly exposed in the
dimension values.

Monitoring Service Level Agreements

The Metrics Engine provides the ability to aggregate and track performance data for one or
more service level agreements (SLAs). The server aggregates the data using an SLA object
that tracks the current and historical performance of LDAP operations (i.e., throughput and
response times) that are tied to specifically monitored applications. The SLA object consists of
a tracked application name, one or more LDAP operations to be considered, a set of servers that
contributes performance data to the SLA and optionally, thresholds to generate alerts should the
server exceed these limits.

Thresholds are optional configuration settings but are extremely useful in tracking server
performance when enabled. If a threshold is not configured, the performance data is not
monitored. Each threshold sets a limit that indicates a warning condition where the server's
performance is nearing the critical threshold limit and/or a critical condition where the server's
performance has exceeded the critical threshold value. Whenever the monitored server has
entered either the warning or critical state, or when it has returned to its non-alerted state, the
Metrics Engine generates an alert. The generated alerts are the same types as those created by
the Identity Data Store and Identity Proxy servers and can be routed via the same configurable
mechanisms for SNMP and SMTP (via the Alert Handler), such that a monitoring console or
administrator can be notified when the tracked application performance goes out of tolerance.
Although it is possible to gather this metric data using existing monitoring consoles, the SLA

Data Collection and Metrics

80

object provides an added advantage in that it can report the aggregate performance of all servers
involved, which is difficult to configure using external monitoring tools, since aggregate metrics
can come from multiple values across multiple servers.

The SLA object provides a few additional features that make monitoring application
performance a bit simpler.

• Designating Servers that Contribute to SLA Tracking. The SLA object includes a
reference to a Server Query component that is used to designate the monitored servers that
contribute to the SLA measurements. If your deployment has 10 Identity Data Store servers
and 3 Identity Proxy servers, but only five of Identity Data Stores are used to provide service
for a tracked application, the SLA object can be configured to remember which servers are
involved.

• REST API. The Metrics Engine provides a REST API that allows you to list configured
SLA objects and their current status, and to drill into any SLA object to get historical
performance data across any desired time range. The Metrics Engine REST API also allows
you to list alerts generated by SLA thresholds, blending the alert information with the
threshold information in a way that gives a more contextual view of the tracked applications
performance during (plus before and after) the period when it exceeded its configured limits.

About the Monitoring Thresholds

The Metrics Engine uses a Monitoring Threshold mechanism that has two subcomponents that
you can select for your threshold configurations:

• Spike Monitoring Threshold. Used to configure a set of operational performance limits
on a specific measurement where the limit is specified as a percent change from the most
recent measurement average value. The Metrics Engine continually monitors the specified
measurements and compares them to configured limits, producing alerts if the performance
limits are not met. A Spike Monitoring Threshold has warning and critical limits, and will
enter or leave an alerted state when the monitored value exceeds either of the limits. The
Spike Monitoring Threshold is configured with limits that are percentages of the recent
average value of the measurement, and is therefore useful when the valid range of the
measurement is not known in advance. This type of limit is useful in detecting short-term
changes in a measurement that fluctuates broadly over time. The limit is applied in both
positive and negative directions, so that this type of threshold can detect an upward or
downward spike in the value. The figure below shows an example of the spike monitoring
threshold, where the red line is the average throughput/second and the green lines are the
limits, showing the average window for the throughput.

Data Collection and Metrics

81

Figure 28: Spike Monitoring Threshold

• Static Level Monitoring Threshold. Used to configure performance limits on a specific
measurement, where the specified limits are fixed values that do not change over time. The
Metrics Engine continually monitors the specified measurements and compares them to
configured limits, producing alerts if the performance limits are not met. A Static Level
Monitoring Threshold has warning and critical limits, and will enter or leave an alerted state
when the monitored value exceeds any of the limits. The Static Level Monitoring Threshold
is configured with static numeric limits, and is useful when the expected valid range of the
measurement is known in advance.

Data Collection and Metrics

82

•

Figure 29: Static Level Monitoring Threshold

The Metrics Engine periodically evaluates each Threshold, computing new values for it's current
value, current average, and alerted state. The default evaluation period is 30 seconds, and it can
be changed using the threshold-poll-frequency property of the "Monitoring Configuration"
entry.

It is important to understand the timeline of the data used during the Threshold evaluation, so
that you can make sense of the delay between the time when a performance change occurs on
the monitored servers and when the SLA object reflects the change and alerts are subsequently
issued. Using the figure below, a Threshold is evaluated at time 'Now'. The most recent data that
Threshold uses is 1 minute old (i.e., Newest Data). Each Threshold evaluation requires at least
1 minute of new data (i.e., Minimum Data), so that at time 'Now' the Threshold is working with
data that is between 1 and 2 minutes old (between Minimum Data and Newest Data).

Decreasing the threshold-poll-frequency so that Thresholds evaluate more frequently does
not change these data limits, the Metrics Engine only checks to see if there is sufficient data
more often. The 1 minute delay between 'Now' and 'Newest Data' is not configurable. This delay
ensures the Metrics Engine has had enough time to poll the monitored servers and get the most
recent data. The 1 minute delay between 'Newest Data' and 'Minimum Data' is configurable on
a per-Threshold basis for Spike-valued Thresholds using the average-value-window property,
but 1 minute is the minimum window. What this means from a practical perspective is that the
time between when a monitored performance anomaly occurs on a monitored system, and when
an alert is created will be between 2 and 3 minutes.

Data Collection and Metrics

83

Figure 30: Threshold Time Line

Note also that, because the Metrics Engine can capture metrics data with a very fine time
resolution (1 second data is the default), the data is often very "noisy," meaning that there is a lot
of variation between samples. By default, the data is time-averaged (e.g., using 5 consecutive 1-
second samples to produce a single 5-second value), and time-averaging will ultimately reduce
the noise. However, "noisy" data can make it harder to choose an appropriate threshold limit
value. If the limit value is too close to the noise levels, the threshold will alert due to values that
have a very short time duration, which is usually not desirable or necessary.

To reduce the probability of a false threshold alert due to a short data spike, each threshold
is configured with a minimum-time-to-trigger property, which determines the minimum
time allowed to exceed the threshold before an alert is generated, and a minimum-time-to-
exist property that determines the time required for the threshold to exit an alerted state. The
following figure shows the low resolution response time monitoring for an LDAP operation.

Figure 31: Response Time Monitoring - Low Resolution

Data Collection and Metrics

84

The Metrics Engine also provides the option to display a high resolution view for the response
time.

Figure 32: Response Time Monitoring - High Resolution

To Configure a Service Level Agreement (SLA)

Before you configure your SLA object, you must have the Metrics Engine up-and-running
and monitoring your servers. The SLA object relies on existing performance metrics and only
aggregates the data for specific SLAs. You can configure any number of SLA objects. For more
information, see the Metrics Engine Configuration Reference (HTML).

1. Use dsconfig to create a server query that specifies which servers will contribute to SLA
monitoring. In this example, the command specifies the proxy servers located in Austin.

$ bin/dsconfig create-server-query \
 --query-name "Austin Proxy Servers" \
 --set server-instance-type:proxy \
 --set server-instance-location:Austin

2. Use dsconfig to set up a static-level monitoring threshold called "15ms response time."
The alert condition is set to "entry", which means that the server will enter an alerted state
(alert-condition:entry) and generate an alert if the server enters a warning state (alert-
on-warn:true and warn-if-above:12) or critical state (critical-if-above:15). When
the server leaves its alerted state, an alert will be generated indicating this condition (alert-
condition:exit). The minimum amount of time that the threshold can be exceeded before
an alert is generated is set to 15 seconds (min-time-for-trigger:15s).

$ bin/dsconfig create-monitoring-threshold \
 --threshold-name "15ms response time" \
 --type static-level \
 --set alert-condition:entry \
 --set alert-condition:exit \
 --set alert-on-warn:true \
 --set min-time-for-trigger:15s \

Data Collection and Metrics

85

 --set min-time-for-exit:15s \
 --set warn-if-above:12 \
 --set critical-if-above:15

3. Use dsconfig to set up a static-level monitoring threshold called "5k ops/sec." The alert
condition is set to "entry", which means that the server will enter an alerted state (alert-
condition:entry) and generate an alert if the server enters a warning state (alert-on-
warn:true and warn-if-above:4) or critical state (critical-if-above:5). When the
server leaves its alerted state, an alert will be generated indicating this condition (alert-
condition:exit). The minimum amount of time that the threshold can be exceeded before
an alert is generated is set to 15 seconds (min-time-for-trigger:15s).

$ bin/dsconfig create-monitoring-threshold \
 --threshold-name "5k ops/sec" \
 --type static-level \
 --set alert-condition:entry \
 --set alert-condition:exit \
 --set alert-on-warn:true \
 --set min-time-for-trigger:15s \
 --set min-time-for-exit:15s \
 --set warn-if-above:4 \
 --set critical-if-above:5

4. Use dsconfig to create an SLA that targets an SSO application and monitors the response
and throughput times for LDAP bind operations. The response time threshold is set to 15ms.
The throughput threshold is set to 5k operations per second. The targeted servers are the set
of proxy servers, located in Austin.

$ bin/dsconfig create-ldap-sla \
 --sla-name "SSO Application" \
 --set enabled:true \
 --set "application-name:SSO Application" \
 --set "response-time-threshold-ms:15ms response time" \
 --set "throughput-threshold-ops-per-second:5k ops/sec"
 --set ldap-op:bind \
 --set "sla-server-query:Austin Proxy Servers"

Note: An SLA can be disabled, which prevents the Metrics Engine from
evaluating thre thresholds and generating alerts.

Data Collection and Metrics

86

Accessing the Metrics Engine Data

87

Chapter

5 Accessing the Metrics Engine Data

The data collected by the UnboundID Metrics Engine is available through two main interfaces,
the Metrics Engine RESTful API and the query-metric command-line tool. This chapter contains
information about how to use these tools to access your monitored data, including API reference
materials.

This chapter includes the following topics:

Topics:

• About the query-metric tool
• Using the Query Metric Tool
• About the Metrics Engine API
• Metrics Engine API Reference

Accessing the Metrics Engine Data

88

About the query-metric tool

The query-metric tool can be used to view the data in a more interactive way than the API itself
permits. The tool is a client application of the Metrics Engine API. It features subcommands
that can help you understand how to form an API query, as well as tell you what values are
permissible.

The query-metric tool features a non-interactive mode as well as an interactive mode that
prompts you for information like a wizard. In addition to the subcommands for listing metrics,
server instances, and dimension values, you can form queries using the following subcommands:

• explore subcommand. This command creates a series of hyper-linked HTML files
containing charts for a broad range of metrics. The tool generates these files by making a
series of API queries for a set of servers and metrics. The tool helps you understand the
breadth of available metrics and look for patterns or anomalies across multiple metrics. In
interactive mode, the tool prompts you for the servers and the metrics using a menu.

• query subcommand. This command help you refine a query for specific data of interest. In
interactive mode, the tool prompts you for the server, metrics, dimensions, statistics, and
pivot values using menus. The tool can be used to request a server generated chart image file
or data formatted in XML, JSON, or CSV.

Using the Query Metric Tool

The query-metric tool gives you access to all the metrics being gathered by the server. This
tool allows you to explore the full breadth of the collected data, examining any metric and
dimension.

This tool runs in both interactive and non-interactive modes. Interactive mode presents options
in a wizard-like way, allowing you to choose values from menus of options. To start the tool in
interactive mode, simply invoke the tool with no parameters:

$ query-metric

You will be shown a menu allowing you to choose the subcommand you want to invoke. Once
the subcommand is finished, you will be given the opportunity to choose another subcommand
or quit. You may invoke a subcommand in interactive mode by specifying it on the command
line.

For example, the following command starts the explore subcommand in interactive mode:

$ query-metric explore

The explore subcommand of the query-metric tool will capture results from several metrics.
All metrics can be pivoted by 'instance', but beyond that most metrics have different dimensions.
The pseudo-dimensions dim1/dim2/dim3 may be used to instruct the tool to query on the
metrics 1st/2nd/3rd dimension (if available). The following command will will pivot all metrics
by instance and the first two dimension of each metric:

Accessing the Metrics Engine Data

89

$ query-metric explore --pivot instance --pivot dim1 --pivot dim2

In non-interactive mode, the tool generates charts based on command-line input. For example,
the following command requests information from the local Metrics Engine listening on port
8080 and generates response-time and throughput charts for Proxy Server instances in Austin for
the previous two weeks:

$ query-metric explore --httpPort 8080 --instanceType proxy \
 --instanceLocation Austin --metric response-time --metric throughput \
 --startTime -2w

The following command line can be used to obtain a JSON formatted data table that shows
average throughput for all Proxy Server instances in the topology over time with 100 data
points. Each line in the chart represents either an application's search or modification
throughput. Throughput values are represented as operations per second:

$ query-metric query --hostname localhost --httpPort 8080 \
 --username cn=user1,cn=api-users --password secret --table json \
 --metric throughput --instanceType proxy --statistic average \
 --pivot op-type --pivot application-name \
 --dimension op-type:search,modify --rateScaling second \
 --maxIntervals 100 --startTime 2012-09-01T17:41Z \
 --endTime 2012-09-30T17:41Z

To see a list of all supported subcommand and global tool options, invoke the tool's help as
follows:

$ query-metric -?

To get detailed information about a particular subcommand, invoke the subcommand's help as
follows:

$ query-metric explore -?

About the Query Metric Explore Command HTML Pages

The query-metric tool's explore subcommand generates queries that drive the Metrics API,
such as adding a specific chart or tabular result to a custom dashboard. It also generate HTML
page output. This section provides some examples of the HTML page output you can expect
from the explore subcommand.

For example, the explore subcommand can generate an index page that shows tables of all the
metrics that were collected:

Accessing the Metrics Engine Data

90

Figure 33: Index Page

Clicking the "View page of all metrics" link on the index page display a page that contains all
the generated charts. This view allows you to easily scroll through all of the charts collected:

Figure 34: Metrics Overview Page

Accessing the Metrics Engine Data

91

Clicking one of the links in the Metric column of the index page or clicking on a chart itself
displays a new page. This page contains the chart, links for making requests from the Metrics
Engine API for the same data in chart and data formats, as well as other information about the
collected data:

Figure 35: Metric Details Page

About the Metrics Engine API

The Metrics Engine API can be used to build custom dashboards and other applications for
exploring the data. It features a RESTful interface that can be accessed using standard, off-the-
shelf tools and charting packages, such as the Google Chart Tools. The Metrics Engine API can
also be easily accessed from a Web browser.

Metrics Engine API Reference

This section provides reference information for using the RESTful API of the UnboundID
Metrics Engine.

Connection Security and Authentication

As discussed in the section "Setting Up the Database," no sensitive user data is collected by the
Metrics Engine and stored in the DBMS. However, if you wish to secure access to the Metrics
Engine REST API, you may enable secure HTTPS connections and require authentication. A

Accessing the Metrics Engine Data

92

secure HTTPS Connection Handler may be created during setup, and authentication can be
enabled using dsconfig.

Metrics Engine REST API authentication is disabled by default. When enabled, the REST
API service requires HTTP basic authentication to be used with each request. Requests will
be authenticated against entries in the api-users LDIF backend or entries in "cn=Root
DNs,cn=config". Because Root DN users possess many privileges by default, we strongly
recommend that you authenticate with users in the api-users backend instead, to prevent the
unnecessary use of more privileged account credentials.

To Enable REST API Authentication

Enable REST API authentication by setting the require-api-authentication property of the
Monitoring Configuration object.

• Set this property as follows:

$ bin/dsconfig set-monitoring-configuration-prop --set require-api-
authentication:true

To Add a REST API User

1. Create a file name api-user1.ldif containing one or more user entries with no privileges.
Below is a sample user entry.

dn: cn=app-user1,cn=api-users
changeType: add
objectClass: inetOrgPerson
objectClass: person
objectClass: top
cn: app-user1
uid: app-user1
sn: User1
userpassword: api1
ds-pwp-password-policy-dn: cn=Default Password Policy,cn=Password Policies,cn=config

Note: The password is in clear text. It will be encrypted during the next
step.

2. Load the entry using ldapmodify.

$ bin/ldapmodify --filename api-user1.ldif

3. You can now authenticate using either the cn or the uid of the users added, in this case api-
user1.

Tuning the RESTful API Service

By default, the Metrics Engine can open up to 20 simultaneous connections to its PostgreSQL
RDBMS. The number of connections allowed is set by the max-db-connections property of
the Monitoring Database configuration object. The HTTP Connection Handler, which runs the
REST Servlet, has a default num-request-handlers value of 15. This value must be less than

Accessing the Metrics Engine Data

93

the maximum number of connections. If the RESTful API service is handling its maximum
number of concurrent requests, this leaves at least five database connections available for other
components, such as the import service.

Note: If the Metrics Engine services requests through multiple HTTP
Connection Handlers, such as to support both HTTP and HTTPS, then
you must ensure that the total number of request handlers for both HTTP
Connection Handlers does not exceed the maximum number of DB
connections.

Listing Monitored Instances

Get a list of all monitored instances along with their current status. The default format will be
JSON if none is specified. The servlet will use the HTTP Accept header as a hint if no specific
format is specified. Results may be filtered using the various instance query params.

URL /api/v1/instances

Method GET

Formats JSON, XML

Query Parameters
• instanceHostname (multi-valued) - Hostname(s) of the servers to get data

from. Multiple values are evaluated as logical ORs.

• instanceLocation (multi-valued) - Location(s) of the servers to get data from.

Multiple values are evaluated as logical ORs.

• instanceType (multi-valued) - Types of server(s) to get data from. Possible

values are:

➢ directory

➢ proxy

➢ sync

➢ metrics-engine

• instanceVersion (multi-valued) - Version(s) of the servers to get data from.

Multiple values are evaluated as logical ORs.

EXAMPLES: All instances in JSON format.
curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/instances.json

All directory and proxy instances in XML format:
curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/instances.xml?
instanceType=directory&instanceType=proxy

Response Code 200 0K

Response Body {
 "found" : 2,

Accessing the Metrics Engine Data

94

 "offset" : 0,#
 "instances" : [{
 "type" : "directory",
 "id" : "unboundid4500",
 "hostname": "unboundid4500.example.com",
 "displayName" : "unboundid4500",
 "version": "UnboundID Directory Server 4.5.0.0",
 "operatingSystem": "Solaris",
 "status": {
 "state": "ONLINE"
 }
 }, {
 "type" : "directory",
 "id" : "unboundid3500",
 "hostname": "unboundid3500.example.com",
 "displayName" : "unboundid3500",
 "version": "UnboundID Directory Server 3.5.0.0",
 "operatingSystem": "Linux",
 "status": {
 "state": "DEGRADED",
 "unavailableAlerts": [
 "replication-backlogged"
]
 }
}] }

Retrieving a Monitored Instance

Get a specific monitored instance along with its status. The default format will be JSON if
none is specified. The servlet will use the HTTP Accept header as a hint if no specific format is
specified.

URL /api/v1/instances/{instance}{.format}

Method GET

Formats JSON, XML

Query Parameters N/A

Server State
The Metrics Engine returns the server state status of the monitored instance, which is

displayed by the status parameter:

The status parameter can have one of the following values:

• OFFLINE. The server cannot be contacted at all.

• STARTING_UP. The server is starting.

• ONLINE. The server is available and apparently normal.

• DEAD_LOCKED. The server has detected that it is deadlocked and unable to

process more operations.

• UNAVAILABLE. The server is unavailable although not necessarily offline. This may

be due to the server being in lock-down mode but may be online for administrative

purposes.

• DEGRADED. The server is available but is in a state that renders it incapable of

providing services.

• CONNECTION_ERROR. The server could not connect or has lost connection to the

host.

Accessing the Metrics Engine Data

95

EXAMPLE: Instance with ID metrics-engine in JSON format.
curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/instances/metrics-engine.json

Response Code 200 0K

Response Body {
 "displayName": "metrics-engine",
 "hostname": "metrics-engine.example.com",
 "id" : "metrics-engine",
 "operatingSystem": "Solaris",
 "status" : {
 "state" : "ONLINE"
 },
 "type" : "metrics-engine",
 "version": "UnboundID Metrics Engine 4.5.0.0"
}

Listing Available Metrics

Get a list of metric definitions along with their the units, dimensions, names, and so on. The
default format will be JSON if none is specified. The servlet will use the HTTP Accept header
as a hint if no specific format is specified.

URL /api/v1/metrics{.format}

Method GET

Formats JSON, XML

Query Parameters
• name - Limits the results to metrics whose names contain a matching substring. The

search is not case-sensitive.

• type (multi-valued) - Limits the results to the metrics of the specified type.

Possible values are:

➢ discreteValued

➢ continuousValued

➢ count

• group (multi-valued) - Limits the results to the metrics with the specified group.

Possible values are:

➢ Directory Backend

➢ Monitoring Data Cache

➢ Java Virtual Machine

➢ LDAP

➢ Entry Balancing

➢ Directory Entry Cache

➢ External Server

➢ Host System

➢ Metric Query

➢ Monitoring DBMS

➢ Monitoring Data Processing

➢ Replication

➢ Sync Pipe

Accessing the Metrics Engine Data

96

• instanceType (multi-valued) - Limits the result to metrics that uses the

specified instance types as sources. Possible values are:

➢ directory

➢ proxy

➢ sync

➢ metrics-engine

• statistic (multi-valued) - Limits the results to metrics that provides the

specified statistics. Possible values are:

➢ count

➢ average

➢ maximum

➢ minimum

➢ histogram

EXAMPLES:All metrics in JSON format.
curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics.json

All count type metrics in the “directory backend” group providing either count or average
statistics in JSON format:
curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics.json?type=count&group=directory
%20backend&statistic=count&statistic=average

Note: Spaces in parameter values may be encoded as %20 or t.

Response Code 200 0K

Response Body {
 "found": 7,
 "metrics": [
 {
 "countUnit": {
 "abbreviatedName": "Chkpt",
 "pluralName": "Checkpoints",
 "singularName": "Checkpoint"
 },
 "description": "Number of database checkpoints
 performed by the backend",
 "dimensions": [
 {
 "id": "backend",
 "values": [
 "userroot"
]
 }
],
 "group": "Directory Backend",
 "id": "backend-checkpoints",
 "instanceTypes": [
 "directory"
],
 "name": "Backend Checkpoints",
 "shortName": "Checkpoints",
 "statistics": [
 "count"
],
 "type": "count"
 },

Accessing the Metrics Engine Data

97

 {
 "countUnit": {
 "abbreviatedName": "Evicted",
 "pluralName": "Evicted",
 "singularName": "Evicted"
 },
 "description": "Number of nodes evicted from the
 database cache to meet memory constraints",
 "dimensions": [
 {
 "id": "backend",
 "values": [
 "userroot"
]
 }
],
 "group": "Directory Backend",
 "id": "backend-nodes-evicted",
 "instanceTypes": [
 "directory"
],
 "name": "Backend Nodes Evicted",
 "shortName": "Nodes Evicted",
 "statistics": [
 "count"
],
 "type": "count"
 },
 {
 "countUnit": {
 "abbreviatedName": "JE File",
 "pluralName": "JE Files/Logs",
 "singularName": "JE File/Log"
 },
 "description": "Number of new database log files
 created by backend",
 "dimensions": [
 {
 "id": "backend",
 "values": [
 "userroot"
]
 }
],
 "group": "Directory Backend",
 "id": "backend-new-db-logs",
 "instanceTypes": [
 "directory"
],
 "name": "New Backend Database Log Files",
 "shortName": "New Log Files",
 "statistics": [
 "count"
],
 "type": "count"
 },
 {
 "countUnit": {
 "abbreviatedName": "RandRead",
 "pluralName": "Random Reads",
 "singularName": "Random Read"
 },
 "description": "Number of Random I/O Disk reads
 made by backend",
 "dimensions": [
 {
 "id": "backend",
 "values": [
 "userroot"
]
 }
],
 "group": "Directory Backend",
 "id": "backend-random-reads",
 "instanceTypes": [
 "directory"
],
 "name": "Random Disk Reads",
 "shortName": "Random Reads",

Accessing the Metrics Engine Data

98

 "statistics": [
 "count"
],
 "type": "count"
 },
 {
 "countUnit": {
 "abbreviatedName": "Rand Wr",
 "pluralName": "Random Writes",
 "singularName": "Random Write"
 },
 "description": "Number of Random I/O Disk writes
 made by backend",
 "dimensions": [
 {
 "id": "backend",
 "values": [
 "userroot"
]
 }
],
 "group": "Directory Backend",
 "id": "backend-random-writes",
 "instanceTypes": [
 "directory"
],
 "name": "Random Disk Writes",
 "shortName": "Random Writes",
 "statistics": [
 "count"
],
 "type": "count"
 },
 {
 "countUnit": {
 "abbreviatedName": "Seq Rd",
 "pluralName": "Sequential Reads",
 "singularName": "Sequential Read"
 },
 "description": "Number of Sequential I/O Disk reads
 made by backend",
 "dimensions": [
 {
 "id": "backend",
 "values": [
 "userroot"
]
 }
],
 "group": "Directory Backend",
 "id": "backend-sequential-reads",
 "instanceTypes": [
 "directory"
],
 "name": "Sequential Disk Reads",
 "shortName": "Sequential Reads",
 "statistics": [
 "count"
],
 "type": "count"
 },
 {
 "countUnit": {
 "abbreviatedName": "Seq Wr",
 "pluralName": "Sequential Writes",
 "singularName": "Sequential Write"
 },
 "description": "Number of Sequential I/O Disk writes
 made by backend",
 "dimensions": [
 {
 "id": "backend",
 "values": [
 "userroot"
]
 }
],
 "group": "Directory Backend",
 "id": "backend-sequential-writes",

Accessing the Metrics Engine Data

99

 "instanceTypes": [
 "directory"
],
 "name": "Sequential Disk Writes",
 "shortName": "Sequential Writes",
 "statistics": [
 "count"
],
 "type": "count"
 }
],
 "offset": 0
}

Retrieving a Metric Definition

Get a specific metric definition. The default format will be JSON if none is specified. The
servlet will use the HTTP Accept header as a hint if no specific format is specified.

URL /api/v1/metrics/{metricId}{.format}

Method GET

Formats JSON, XML

Query Parameters N/A

EXAMPLE: Metric with ID backend-sequential-writes in XML format.
curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics/backend-sequential-writes.xml

Response Code 200 0K

Response Body Count type metric.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<countMetric xmlns="com.unboundid.directory.mon.api.v1"
 id="backend-sequential-writes" name="Sequential Disk Writes"
 shortName="Sequential Writes" group="Directory Backend">
 <description>Number of Sequential I/O Disk writes made by
 backend</description>
 <instanceTypes>
 <instanceType>directory</instanceType>
 </instanceTypes>
 <statistics>
 <statistic>count</statistic>
 </statistics>
 <dimensions>
 <dimension id="backend">
 <values>
 <value>userroot</value>
 </values>
 </dimension>
 </dimensions>
 <countUnit singularName="Sequential Write"
 pluralName="Sequential Writes" abbreviatedName="Seq Wr" />
</countMetric>

Response Body (JSON

format)

Discrete valued metric:

{
 "countUnit": {
 "abbreviatedName": "Cluster Operation",
 "pluralName": "Cluster Operations",
 "singularName": "Cluster Operation"
 },
 "description": "Time spent performing a cluster operation
 on a DBMS partition",
 "dimensions": [
 {

Accessing the Metrics Engine Data

100

 "id": "aggregation-level",
 "values": [
 "level0",
 "level1",
 "level2"
]
 }
],
 "group": "Monitoring DBMS",
 "id": "monitor-cluster-time",
 "instanceTypes": [
 "metrics-engine"
],
 "name": "DBMS Cluster",
 "shortName": "DBMS Cluster",
 "statistics": [
 "average",
 "count"
],
 "type": "discreteValued",
 "valueUnit": {
 "abbreviatedName": "Msec",
 "pluralName": "Milliseconds",
 "singularName": "Millisecond"
 }
}

Response Body (JSON

format)

Continuous valued metric.

{
 "description": "Number of active database cleaner threads for
 the specified backend",
 "dimensions": [
 {
 "id": "backend",
 "values": [
 "userroot"
]
 }
],
 "group": "Directory Backend",
 "id": "backend-active-cleaner-threads",
 "instanceTypes": [
 "directory"
],
 "name": "Active Cleaner Threads",
 "shortName": "Active Cleaner Threads",
 "statistics": [
 "average"
],
 "type": "continuousValued",
 "valueUnit": {
 "abbreviatedName": "Cleaner",
 "pluralName": "Cleaner Threads",
 "singularName": "Cleaner Thread"
 }
}

Performing a Metric Query

A metric query will return the collected sample data from the various monitored instances.
The data returned by the query may be presented several different ways depending on client
requirements.

Common Query

Parameters
• instanceType (multi-valued) - Type(s) of instances to get data from. Possible

values are:

➢ directory

➢ proxy

➢ sync

Accessing the Metrics Engine Data

101

➢ metrics-engine

• instanceLocation (multi-valued) - Location(s) of the instances from which

data is collected.

• instanceHostname (multi-valued) - Names of the machines hosting the

instances.

• instanceVersion (multi-valued) - Version(s) of the instances providing the

data.

• instance (multi-valued) - ID(s) of the instances from which data is collected.

Note that the instance ID is the cn of the external server. It is the same name as the

name displayed by the status command.

• startTime - Include samples on or after the specified time. The time is either an

absolute time in ISO 8601 format (such as 2012-08-13T19:36:00Z) or a time relative

to the endTime (such as -5m or -4h). By default, the start time is -5m.

• endTime - Include samples on or before this time. The end time is either an

absolute time in ISO 8601 format or a time relative to now (such as -5m or -4h).

The default end time is now. Note that offset time values are relative to the current

system clock time on the Metrics Engine.

• maxIntervals - The number of separate intervals, between the start and

end times, returned. This value may be thought of as the “resolution” of the data

over time. By default, the maximum number of intervals is 1, which means all

samples collected between the start and end times will be aggregated into one result

according to the statistic selected.

• statistic - Retrieve and apply this statistic to the data. Default for count based

metrics is count and average for other metric types. Possible values are:

➢ count

➢ average

➢ minimum

➢ maximum

➢ histogram

• dimension (multi-valued) - Include only these dimension values. A colon

separates the dimension name and values, which are separated by commas (for

example, op-type:add,delete).

• pivot (multi-valued) - Pivot by these dimensions. A pivot keeps the data

separated along different dimensional values. The value “instance” may be used

to keep the data separate between different instances. For metrics that have the

histogram statistic, the histogram pivot may also be used to keep the values of each

histogram bucket separate.

• tz (timezone) - Specifies the timezone to be used when displaying dates. By

default, GMT. The timezone is specified in Java TimeZone format, so "US/Central"

specificities CST in the United States.

Sub-parameters for

the count and average

statistics

Both the count and average statistics of count type metrics may have a rate scale

applied to occurrences over a period of time using the per sub-parameter. The valid

rate scaling values are:

➢ s or second

Accessing the Metrics Engine Data

102

➢ m or minute

➢ h or hour

Sub-parameters for the

histogram statistic

By default, the histogram statistic includes all buckets and keeps the raw value for each

bucket. However, you can configure graphs that show the percentage of all operations

above a given threshold, such as 50 ms. These graphs are useful for focusing on the

small percentage of operations in a given category. We recommend that this value be

a histogram bucket boundary. If the value falls between boundaries, then the buckets

where it falls will be included in the data. The possible values are:

➢ min - Includes in the calculation only the histogram data above the given threshold

➢ max - Provides an upper bound on the histogram value

➢ percent - Allows the histogram values to be reported as a percentage of the

overall values. Instead of returning raw counts, the value is a fraction of the total.

This percentage is calculated within a pivot.

Note that if both min and max are specified, the returned value is the sum of all buckets

between min and max (including the max).

Data Set Structure

The data set structure is a proprietary data structure that is space-optimized and designed for
easy interoperability with charting libraries like Highcharts, FusionCharts, or JFreeChart. This
format is ideal for clients capable of performing some simple manipulation of the returned data
to fit the target use case. The default format will be JSON if none is specified. The servlet will
use the HTTP Accept header as a hint if no specific format is specified.

URL /api/v1/metrics/{metricId}/dataset{.format}

Method GET

Formats JSON, XML

Note: All of the Common Query parameters apply to this resource.

Get the average response time metric for add and delete operations from 7/7/2012 for all identity
data stores and identity proxies in two locations, Austin and Houston:
curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics/response-time/dataset?
instanceType=directory
 &instanceType=proxy&instanceLocation=austin&instanceLocation=houston&startTime=-1d
 &endTime=2012-07-07&pivot=instance&dimension=op-type:add,delete

Get the new connections metric and scale the value per hour in the last 5 minutes:
curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics/new-connections/dataset?
statistic=count;per:hour

Get the percentage of all occurrences in the last hour where the response-time metric has a value
above 50ms:
curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics/response-time/dataset?
statistic=histogram;min:50;percent&startTime=-1h

Accessing the Metrics Engine Data

103

Response Code 200 0K

Response Body When only one time interval is requested, a category dataset is returned where the first

pivoted dimension values are listed as categories and each data point corresponds to a

category. Subsequent pivots and histogram buckets are included as a series and sub-

series. This example is the result of two pivots, op-type and instance:

{
 "type" : "category",
 "firstSampleTime" : 1344090300000,
 "lastSampleTime" : 1344090600000,
 "metric" : {
 "type" : "discreteValued",
 "id" : "response-time",
 "name" : "Response Time",
 "shortName" : "Response Time",
 "description" : "Time for server to process an LDAP
 operation and send a response to the client",
 "group" : "LDAP",
 "instanceTypes" : ["directory", "proxy"],
 "statistics" : ["average", "count", "histogram"],
 "dimensions" : [{
 "id" : "application-name"
 }, {
 "id" : "op-type",
 "values" : ["Search", "ModifyDN", "Add", "Delete",
 "Compare", "Bind", "Modify"]
 }],
 "countUnit" : {
 "singularName" : "Operation Response Time",
 "pluralName" : "Operation Response Time",
 "abbreviatedName" : "Response Time"
 },
 "valueUnit" : {
 "singularName" : "Millisecond",
 "pluralName" : "Milliseconds",
 "abbreviatedName" : "Msec"
 }
 },
 "series" : [{
 "label" : "unboundid35",
 "data" : ["0", "0", "0", "0", "0", "0", "0"]
 }, {
 "label" : "unboundid3",
 "data" : ["0", "0", "0", "0", "0", "0", "0"]
 }],
 "label" : "op-type",
 "categories" : ["Search", "Delete", "Bind", "Modify",
 "Add", "ModifyDN", "Compare"]
}

Response Body
For queries that request more than one time interval, a timeInterval data set

will be returned. Each data point corresponds to the consecutive time interval. Pivoted

dimensional values and histogram buckets are included as a series and sub-series.

 {
 "type" : "timeInterval",
 "firstSampleTime" : 1344089954000,
 "lastSampleTime" : 1344090254000,
 "metric" : {
 "type" : "discreteValued",
 "id" : "response-time",
 "name" : "Response Time",
 "shortName" : "Response Time",
 "description" : "Time for server to process an LDAP
 operation and send a response to the client",
 "group" : "LDAP",
 "instanceTypes" : ["directory", "proxy"],
 "statistics" : ["count", "average", "histogram"],
 "dimensions" : [{
 "id" : "application-name"
 }, {
 "id" : "op-type",
 "values" : ["search", "modifydn", "add", "delete",
 "compare", "bind", "modify"]
 }],
 "countUnit" : {

Accessing the Metrics Engine Data

104

 "singularName" : "Operation Response Time",
 "pluralName" : "Operation Response Time",
 "abbreviatedName" : "Response Time"
 },
 "valueUnit" : {
 "singularName" : "Millisecond",
 "pluralName" : "Milliseconds",
 "abbreviatedName" : "Msec"
 }
 },
 "series" : [{
 "label" : "unboundid3",
 "data" : ["0", "0", "0", "0", "0", "0", "0", "0", "0", "0"]
 }, {
 "label" : "unboundid35",
 "data" : ["0", "0", "0", "0", "0", "0", "0", "0", "0", "0"]
 }],
 "resolutionInSeconds" : 30
}

Chart Image

This API is the simplest way to retrieve and visualize the collected metrics data. The server will
generate a chart of the query result. PNG is the default format if no format is specified.

URL /api/v1/metrics/{metricId}/chart{.format}

Method GET

Formats PNG, JPEG

Query Parameters
➢ width - The width of the image. Default value is 800.

➢ height - The height of the image. Default value is 600.

➢ showLegend - Whether to include the chart legend. Default value is true.

➢ title - A custom title of the chart. Default value is the metric name.

Note: All of the Common Query parameters apply to this resource.

For example, to get the percent CPU used by all servers over the last week, pivot by server
instance as follows:

curl -s -o chart.png https://<MetricsEngineHost>8080/api/v1/metrics/host-system-cpu-
used/chart?maxIntervals=50&startTime=-1w&pivot=instance:

This results in the following chart.

Accessing the Metrics Engine Data

105

Figure 36: CPU Percent Busy

Google Chart Tools Datasource Protocol

Metrics data may also be requested and presented in tabular format that is fully compatible with
Google's Chart Tools Datasource protocol (https://developers.google.com/chart/interactive/
docs/dev/implementing_data_source). However, the Google Visualization API query language
(the tq request parameter) is not supported. The standard metric query parameters as outlined
above will still be used instead. The Metrics Engine supports JSON, HTML, CSV, and TSV
data formats as outlined by the Datasource protocol.

URL /api/v1/metrics/{metricId}/datatable

Method GET

Formats JSON, HTML, CSV, and TSV

Query Parameters
➢ tqx=out:html - HTML formatted output.

➢ tqx=out:csv - CSV formatted output.

➢ tqx=out:tsv-excel - TSV formatted output.

➢ tz (timezone) - Specifies the timezone to be used when displaying dates. The

Google Visualization API has no notion of time zones and always assumes that

the times returned are in local time. The Metrics Engine stores all time stamps in

GMT and this is the time that is returned by default. This parameter allows you to

configure how the Metrics Engine presents the times in the specified timezone.

Usually, the client will pass the user's local timezone in IANA Time Zone Database

format, so "US/Central" specificities CST in the United States.

Note: All of the Common Query parameters apply to this resource.

Get the average response time metric for the last 5 minutes with 30 second (5 * 60 / 10)
resolution and pivoted by op-type and then instance in CSV format:
curl \
 -X GET \
 https://<metricsEngineHost>:8080/api/v1/metrics/response-time/datatable?
tqx=out:csv&maxIntervals=10
 &pivot=op-type&pivot=instance&tz=US/Central

Accessing the Metrics Engine Data

106

Response Code 200 0K

Response Body When only one time interval is requested, the first pivoted dimension values form the

first column. For queries that request more than one time interval, the start of each time

interval forms the first column. Combinations of subsequent pivoted dimension values

and/or histogram buckets are included as additional columns. The CSV format will be

shown for readability. All date and time values are under the GMT time zone.

"Time","unboundid35 AVERAGE Milliseconds","unboundid3 AVERAGE
 Milliseconds"
"2012-08-04T14:38:00Z","0","0"
"2012-08-04T14:39:00Z","0","0"
"2012-08-04T14:40:00Z","0","0"
"2012-08-04T14:41:00Z","0","0"
"2012-08-04T14:42:00Z","0","0"

The following sample code illustrates using Google chart tools:
<html>
 <head>
 <!--Load the AJAX API-->
 <script type="text/javascript" src="https://www.google.com/jsapi"></script>
 <script type="text/javascript">

 // Load the Visualization API and the line chart package.
 google.load('visualization', '1.0', {'packages':['corechart']});

 // Set a callback to run when the Google Visualization API is loaded.
 google.setOnLoadCallback(drawChart);

 function drawChart() {
 var query = new google.visualization.Query('https://<metricsEngineHost>:8080/
 api/v1/metrics/response-time/datatable?maxIntervals=10&pivot=op-
type&pivot=instance');
 query.send(handleQueryResponse);
 }

 function handleQueryResponse(response) {
 if (response.isError()) {
 alert('Error in query: ' + response.getMessage() + ' '
 + response.getDetailedMessage());
 return;
 }

 var data = response.getDataTable();

 var visualization = new
 google.visualization.LineChart(document.getElementById('chart_div'));
 visualization.draw(data, null);
 }
 </script>
 </head>
 <body>
 <!--Div that will hold the chart-->
 <div id="chart_div"></div>
 </body>
</html>

Accessing the Metrics Engine Data

107

Accessing Alerts Collected by the Metrics Engine

Access the collected alerts from all monitored servers.

URL
/api/v1/events/[?query-parameters] - gets a list of events

/api/v1/events/{eventId} - gets a single event

Method GET

Formats JSON, XML

Query Parameters
• type (multi-valued) - Limits the result to include only events of the specified types.

Valid values are presented below.

• severity (multi-valued) - Limits the result to include only events that have the

matching severity. Valid "severity" values are: INFO, WARNING, ERROR, and

FATAL.

• instance, instanceType, instanceLocation, instanceHostname,

instanceVersion, startTime, and endTime. See Performing a Metric

Query for a description of each parameter.

• limit, offset. See Pagination for a description of each parameter.

Response Code 200 0K

Response Body {
 "found" : 2,
 "offset" : 0,
 "events" : [

 {"id":"9bdfd1b8-3811-4a84-b779-93553ff35f83",
 "creationDate":1351274815559,
 "eventType":"server-starting",
 "eventSeverity":"INFO",
 "sourceProductInstance":"lockdown-test",
 "summary":"Server Starting",
 "detail":"The Directory Server is starting"},
 {"id":"9bdfd1b8-3811-4a84-b779-93553ff35f83",
 "creationDate":1351274815559,
 "eventType":"server-starting",
 "eventSeverity":"INFO",
 "sourceProductInstance":"directory-3",
 "summary":"Server Starting",
 "detail":"The Directory Server is starting"}
]
}

The type query parameter can take the following values:

➢ access-control-change
➢ access-control-disabled
➢ access-control-enabled
➢ access-control-parse-failure
➢ access-log-criteria-matched
➢ backend-disabled
➢ backend-initialization-failed
➢ backup-failed

Accessing the Metrics Engine Data

108

➢ cannot-acquire-shared-backend-lock
➢ cannot-copy-schema-files
➢ cannot-decode-entry
➢ cannot-find-recurring-task
➢ cannot-register-backend
➢ cannot-release-shared-backend-lock
➢ cannot-rename-current-task-file
➢ cannot-rename-new-task-file
➢ cannot-restore-backup
➢ cannot-schedule-recurring-task-iteration
➢ cannot-write-configuration
➢ cannot-write-new-schema-files
➢ cannot-write-server-state-file
➢ li>cannot-write-task-backing-file
➢ config-change
➢ deadlock-detected
➢ duplicate-alerts-suppressed
➢ duplicate-fatal-alerts-suppressed
➢ duplicate-error-alerts-suppressed
➢ duplicate-warning-alerts-suppressed
➢ duplicate-info-alerts-suppressed
➢ entering-lockdown-mode
➢ external-config-file-edit-handled
➢ external-config-file-edit-lost
➢ external-server-initialization-failed
➢ force-gc-complete
➢ force-gc-starting
➢ health-check-available-to-degraded
➢ health-check-available-to-unavailable
➢ health-check-degraded-to-available
➢ health-check-degraded-to-unavailable
➢ health-check-unavailable-to-available
➢ health-check-unavailable-to-degraded
➢ index-degraded
➢ index-rebuild-completed
➢ index-rebuild-in-progress
➢ invalid-privilege
➢ je-background-sync-failed
➢ je-daemon-thread-exception
➢ je-recovery-required
➢ large-attribute-update-failure
➢ lba-no-available-servers
➢ ldap-connection-handler-cannot-listen
➢ ldap-connection-handler-consecutive-failures
➢ ldap-connection-handler-uncaught-error
➢ ldif-backend-cannot-write
➢ ldif-connection-handler-parse-error
➢ ldif-connection-handler-io-error
➢ leaving-lockdown-mode
➢ logging-error

Accessing the Metrics Engine Data

109

➢ low-disk-space-error
➢ low-disk-space-warning
➢ offline-config-change-detected
➢ out-of-disk-space-error
➢ proxy-entry-balancing-operation-failure
➢ proxy-entry-rebalancing-admin-action-required
➢ replication-backlogged
➢ replication-missing-changes
➢ replication-monitor-data-unavailable
➢ replication-replay-failed
➢ replication-server-changelog-failure
➢ replication-server-listen-failure
➢ replication-unresolved-conflict
➢ replication-unsent-changes
➢ restricted-subtree-accessibility
➢ schema-checking-disabled
➢ server-jvm-paused
➢ server-shutting-down
➢ server-started
➢ server-starting
➢ sync-resource-connection-error
➢ sync-resource-operation-error
➢ sync-pipe-initialization-error
➢ sync-pipe-backlog-above-threshold
➢ sync-pipe-backlog-below-threshold
➢ system-nanotime-stopped
➢ system-current-time-shifted
➢ thread-exit-holding-lock
➢ threshold-warning-entry
➢ threshold-warning-exit
➢ threshold-critical-entry
➢ threshold-critical-exit
➢ uncaught-exception
➢ unique-attribute-sync-conflict
➢ unique-attribute-sync-error
➢ unrecognized-alert-type
➢ user-defined-error
➢ user-defined-fatal
➢ user-defined-info
➢ user-defined-warning
➢ worker-thread-caught-error
➢ work-queue-backlogged
➢ work-queue-full
➢ work-queue-no-threads-remaining

LDAP SLA API

The LDAP SLA API provides a means to list the LDAP SLA objects (configuration data)
and to query any sinlge LDAP SLA object. The query of an LDAP SLA object results in the

Accessing the Metrics Engine Data

110

aggregated LDAP SLA configuration plus scalar data that contains the current values for the
LDAP SLA plus time-series data. The "current" data comes from the Threshold object, and the
historical data comes from a metric query. Thus, historical data is significantly more expensive
to fetch and is only included in the results if the client requests it. This allows an LDAP SLA
query to get the configuraiton and current data very efficiently for clients that only need the
current data. A client that needs both current and historical data can include the appropriate
query parameter and get all the data in a single call.

Retrieving the SLA Object

List the LDAP SLA objects (configuration data) and query any single LDAP SLA object. The
default format will be JSON if none is specified. The servlet will use the HTTP Accept header
as a hint if no specific format is specified.

URL
/api/v1/sla/ldap-sla - Returns a list of all LDAP SLA configuration objects in

name-order. This includes current values and status as held by the Threshold objects,

but will only include any historical data.

/api/v1/sla/ldap-sla/{sla-name} - Returns a single LDAP SLA

configuration object plus optional historical data.

Method GET

Formats JSON, XML

Query Parameters
For the 1st URL:

• instance - Returns LDAP SLA's that reference the specified instance.

• application-name - Returns LDAP SLA's that reference this application name.

• ldap-op - Returns LDAP SLA's that reference this LDAP operation.

For the 2nd URL:

• historical (multi-valued, optional)

➢ time (includes time series data)

➢ limits (includes % of time thresholds limits have been exceeded - requires

Threshold)

➢ alerts (includes all Threhold alerts - requires Thresholding)

➢ histogram (includes response-time histogram as column data)

➢ nines (includes response time values that correlate to 99%, 99.9%, 99.99%, and

99.999% response-time measurements)

• startTime - (optional, default - 1 hr). The time at which the historical data starts.

• endTime - (optional, default - 5m). The time at which the historical data ends.

• pivot - (optional, multi-valued). Historical time-series pivots by this dimension.

➢ instance - pivot by producing server.

➢ ldap-op - pivot by LDAP operation.

➢ histogram - pivot response-time time series by histogram buckets.

Accessing the Metrics Engine Data

111

• maxIntervals - (optional, default=100). Number of points to include in the historical

time series.

When the API requests historical data, the API server implementation constructs

and issues one or more metric queries as necessary to fetch the resulting data.

The APi allows a client to enumerate all LDAP SLA objects and to get a broad

set of measurement data for the LDAP SLA. If no historical data is needed, the

"instantaneous" data is effectively all in memory (in the Threshold objects) and will be

a very quick respone. Some historical data will be quite a bit slower to fetch (multiple

seconds), and clients should be able to manage that fact.

EXAMPLE: Retrieving an SLA object.
curl -X GET http://x3550-09:8080/api/v1/sla/ldap/Acme+Identity+Portal?historical=time
\&historical=nines\&pivot=instance\&startTime=-15m

Response Code 200 0K

Response Body (JSON

format)

Response (JSON):

{
 "name":"Acme Identity Portal",
 "applicationName":"Application 5",
 "ldapOps":["search"],
 "servers":["x2270-08.unboundid.lab:1389"],
 "enabled":true,
 "responeTimeState":"NORMAL",
 "throughputState":"normal",
 "currentResponseTime":6.002752,
 "currentThroughput":7032.794,
 "averageResponseTime":6.212055,
 "averageThroughput":5517.1323,
 "responseTimeWarnLimit":8.0,
 "responseTimeCriticalLimit":10.0,
 "throughputWarnLimit":8000.0,
 "throughputCriticalLimit":10000.0,
 "responseTimeSeries":{
 "type":"timeInterval",
 "firstSampleTime":1359045070000,
 "lastSampleTime":1359045970000,
 "rateScaling":"NONE",
 "statistic":"AVERAGE",
 "metric":{
 "type":"discreteValued",
 "id":"response-time",
 "name":"Response Time",
 "shortName":"Response Time",
 "description":"Time for server to process an
 LDAP operation and send a response to the
 client.",
 "group":"LDAP",
 "instanceTypes":["identity-data-store","proxy"],
 "statistics":["average","count","histogram"],
 "dimensions":[{"id":"application-name",
 "values":["unidentified directory application",
 "unidentified proxy application","application 9",
 "application 5","root user","admin user",
 "application 6"]},{"id":"op-type","values":
 ["search","modifydn","add","delete","compare",
 "bind","modify"]}],
 "countUnit":{"singularName":"Operation Response Time",
 "pluralName":"Operation Response Time",
 "abbreviatedName":"Response Time"},
 "valueUnit":{"singularName":"Millisecond",
 "pluralName":"Milliseconds","abbreviatedName":"Msec"}
 },
 "series":[
 {"label":"x2270-08.unboundid.lab:1389",
 "data":[3.0120885,3.7983484,5.8223324,6.9673944,
 3.7627347,7.8599353,6.4741855,7.1965156,4.642965,
 6.4567575,7.5919747,7.315942,5.5505323,7.676259,
 6.7929792,6.0238724,6.258689,6.918475,7.6584263,
 4.507659,7.7891426,7.7237306,6.003436,6.562086,

Accessing the Metrics Engine Data

112

 6.5203643,6.3706737,6.766388,6.5930696,7.3876667,
 4.6867347,6.7640586,4.671808,7.1373825,7.2503524,
 7.500583,5.219624,7.4529514,4.440301,7.1102366,
 6.0021896,7.3931694,6.520522,5.547696,6.8611526,
 5.1369443,6.4802103,6.0406966,7.163752,5.3269434,
 6.9904456,5.055998,5.8450484,4.972494,9.763915,
 5.778041,6.201931,6.1402993,5.118754,6.781435,
 7.224573,7.258575,5.4384823,6.7813044,5.820621,
 7.671158,6.168999,5.638104,7.785232,4.797556,
 6.4578395,5.4489355,8.33236,5.5137024,7.273964,
 5.4661403,8.303381,6.2553997,7.1138144,5.845391,
 6.718696,6.9525356,6.2418604,7.1721854,6.0303135,
 6.869038,5.6402783,7.8097477,4.5565543,5.8214054,
 5.8906417,7.159979,7.709213,5.1525316,7.363583,
 5.2055826,8.589983,0.0,0.0,0.0,0.0],
 "lastCompleteIndex":99
 }
],
 "resolutionInSeconds":9
 },
 "throughputSeries":{
 "type":"timeInterval",
 "firstSampleTime":1359045070000,
 "lastSampleTime":1359045970000,
 "rateScaling":"NONE",
 "statistic":"COUNT",
 "metric":{
 "type":"count",
 "id":"throughput",
 "name":"LDAP Operation Throughput",
 "shortName":"LDAP Op Throughput",
 "description":"Number of LDAP operations that have
 been processed.",
 "group":"LDAP",
 "instanceTypes":["identity-data-store","proxy"],
 "statistics":["count"],
 "dimensions":[{"id":"application-name",
 "values":["unidentified directory application",
 "unidentified proxy application","application 9",
 "application 5","root user","admin user",
 "application 6"]},{"id":"op-type","values":
 ["search","modifydn","add","delete","compare",
 "bind","modify"]}],
 "countUnit":{"singularName":"Operation Throughput",
 "pluralName":"Operation Throughput",
 "abbreviatedName":"Throughput"}
 },
 "series":[
 {
 "label":"x2270-08.unboundid.lab:1389",
 "data":[7809.953,7997.222,6878.337,5426.2446,
 8132.547,4636.0234,5249.1113,5068.4443,
 7488.769,5792.971,4668.297,4968.804,6005.3145,
 4304.648,5328.3774,6413.66,5791.5547,5333.196,
 4717.5093,6262.7993,4396.8,4757.9023,5703.421,
 5226.5156,5780.211,5628.8447,4708.0103,
 5173.0947,4726.222,6214.1113,5456.183,7179.8926,
 5424.388,5174.8135,5110.048,6766.5894,4946.5664,
 7754.889,5552.245,5062.4204,5660.222,5493.3477,
 5691.1113,5179.0,6422.778,6003.4443,5229.5557,
 5313.6665,6114.7197,5476.549,7345.8345,6471.737,
 6628.267,3626.0579,7189.512,5525.778,3491.94,
 5849.9946,6055.7065,5264.3853,5298.0,5548.689,
 5919.0967,5246.632,5120.217,5890.6953,5783.586,
 4664.3945,6613.474,5255.0903,6440.4443,4829.505,
 6022.874,4979.2,6389.972,4667.748,5969.5557,
 5506.889,5759.395,5648.9956,5226.778,5394.1816,
 5154.8853,6078.421,5436.0024,6174.4443,4902.453,
 5881.0,5678.8975,5661.264,4843.2363,4998.3545,
 6603.6006,4352.532,6533.7295,2974.6267,"NaN",
 "NaN","NaN","NaN"],
 "lastCompleteIndex":95
 }],
 "resolutionInSeconds":9
 },
 "responseTimeNines":["100 ms","1000 ms","1000 ms",
 "1000 ms"],
 "startTime":1359045070863,
 "endTime":1359045970863

Accessing the Metrics Engine Data

113

}

Pagination

Pagination is supported for both the metrics and instances listing URLs.

Query Parameters
➢ limit - Specifies the maximum number of results to return. Default is to return all

results.

➢ offset - Specifies how many results to skip for the first results to return.

Response Parameters
➢ found - The number of results that satisfied the query params.

➢ offset - The index into the total result set where the current response begins.

Response Codes

The following response codes are available.

Response Code Description

200 0K The request was processed successfully and the requested data returned.

400 Bad Request The request contained an error. Refer to the error message to resolve the issue.

404 Not Found The requested resource is not found or no samples are collected for the metric.

500 Internal Server Error An unexpected server error occurred. Refer to the error message for more info.

503 Service Not Available The metric query service is temporary offline. Refer to the error message for more info.

Response Body <?xml version="1.0" encoding="UTF-8"?>
<errorResponse>
 <message>There are no metrics defined with id response-tme.
 Available metrics may be found at /metrics
 </message>
</errorResponse>

Accessing the Metrics Engine Data

114

Managing the Metrics Engine

115

Chapter

6 Managing the Metrics Engine

This chapter provides information about managing the UnboundID® Metrics Engine. It includes
information about working with logs, notifications, and alerts, as well as information about the
command-line tools included with the Metrics Engine.

Topics:

• Working With Logs
• Monitoring the Metrics Engine
• Monitoring with JMX
• Managing Notifications and Alerts
• Command-Line Tools

Managing the Metrics Engine

116

Working With Logs

UnboundID Metrics Engine provides error loggers that provide information about warnings,
errors, or significant events that occur within the server. The remainder of this section describes
how to create new log publishers, how to configure log rotation and retention, how to manage
the file-based error log publisher and how to manage the syslog-based error log publisher.

Creating New Log Publishers

The UnboundID Metrics Engine provides customization options to help you create your own log
publishers with the dsconfig command.

When you create a new log publisher, you must also configure the log retention and rotation
policies for each new publisher. For more information, see Configuring Log Rotation and
Configuring Log Retention.

To Create a New Log Publisher

1. Use the dsconfig command in non-interactive mode to create and configure the new log
publisher. This example shows how to create a logger that only logs disconnect operations.

$ bin/dsconfig create-log-publisher \
 --type file-based-access --publisher-name "Disconnect Logger" \
 --set enabled:true \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set log-connects:false \
 --set log-requests:false --set log-results:false \
 --set log-file:logs/disconnect.log

Note: To configure compression on the logger, add the option to the
previous command:

--set compression-mechanism: gzip

Compression cannot be disabled or turned off once configured for
the logger. Therefore, careful planning is required to determine your
logging requirements including log rotation and retention with regards to
compressed logs.

2. View the Log Publishers.

$ bin/dsconfig list-log-publishers

Log Publisher : Type : enabled
---------------------------:-------------------:--------
Disconnect Logger : file-based-access : true
File-Based Access Logger : file-based-access : true
File-Based Audit Logger : file-based-access : false
File-Based Debug Logger : file-based-debug : false
File-Based Error Logger : file-based-error : true

Managing the Metrics Engine

117

Replication Repair Logger : file-based-error : true

To Create a Log Publisher Using dsconfig Interactive Command-Line Mode

1. On the command line, type bin/dsconfig.

2. Authenticate to the server by following the prompts.

3. On the Configuration Console main menu, select the option to configure the log publisher.

4. On the Log Publisher Management menu, select the option to create a new log publisher.

5. Select the Log Publisher type. In this case, select File-Based Access Log Publisher.

6. Type a name for the log publisher.

7. Enable it.

8. Type the path to the log file, relative to the Metrics Engine root. For example, logs/
disconnect.log.

9. Select the rotation policy you want to use for your log publisher.

10.Select the retention policy you want to use for your log publisher.

11.On the Log Publisher Properties menu, select the option for log-connects:false, log-
disconnects:true, log-requests:false, and log-results:false.

12.Type f to apply the changes.

Configuring Log Rotation

The Metrics Engine allows you to configure the log rotation policy for the server. When any
rotation limit is reached, the Metrics Engine rotates the current log and starts a new log. If you
create a new log publisher, you must configure at least one log rotation policy.

You can select the following properties:

• Time Limit Rotation Policy. Rotates the log based on the length of time since the last
rotation. Default implementations are provided for rotation every 24 hours and every 7 days.

• Fixed Time Rotation Policy. Rotates the logs every day at a specified time (based on 24-
hour time). The default time is 2359.

• Size Limit Rotation Policy. Rotates the logs when the file reaches the maximum size for
each log. The default size limit is 100 MB.

• Never Rotate Policy. Used in a rare event that does not require log rotation.

Managing the Metrics Engine

118

To Configure the Log Rotation Policy

• Use dsconfig to modify the log rotation policy for the access logger.

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Access Logger" \
 --remove "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --add "rotation-policy:7 Days Time Limit Rotation Policy"

Configuring Log Retention

The Metrics Engine allows you to configure the log retention policy for each log on the server.
When any retention limit is reached, the Metrics Engine removes the oldest archived log prior to
creating a new log. Log retention is only effective if you have a log rotation policy in place. If
you create a new log publisher, you must configure at least one log retention policy.

• File Count Retention Policy. Sets the number of log files you want the Metrics Engine to
retain. The default file count is 10 logs. If the file count is set to 1, then the log will continue
to grow indefinitely without being rotated.

• Free Disk Space Retention Policy. Sets the minimum amount of free disk space. The
default free disk space is 500 MBytes.

• Size Limit Retention Policy. Sets the maximum size of the combined archived logs. The
default size limit is 500 MBytes.

• Custom Retention Policy. Create a new retention policy that meets your Metrics Engine’s
requirements. This will require developing custom code to implement the desired log
retention policy.

• Never Delete Retention Policy. Used in a rare event that does not require log deletion.

To Configure the Log Retention Policy

• Use dsconfig to modify the log retention policy for the access logger.

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Access Logger" \
 --set "retention-policy:Free Disk Space Retention Policy"

Managing the File-Based Error Log Publisher

The Error Log reports errors, warnings, and informational messages about events that occur
during the course of the Metrics Engine’s operation. Each entry in the error log records the
following properties (some are disabled by default and must be enabled):

• Time Stamp. Displays the date and time of the operation. Format: DD/Month/
YYYY:HH:MM:SS <offset from UTC time>

Managing the Metrics Engine

119

• Category. Specifies the message category that is loosely based on the server components.

• Severity. Specifies the message severity of the event, which defines the importance of the
message in terms of major errors that need to be quickly addressed. The default severity
levels are: fatal-error, notice, severe-error, severe-warning.

• Message ID. Specifies the numeric identifier of the message.

• Message. Stores the error, warning, or informational message.

Error Log Example

The following example displays the error log for the Metrics Engine. The log is enabled by
default and is accessible in the <server-root>/logs/errors file.

[21/Oct/2012:05:15:23.048 -0500] category=RUNTIME_INFORMATION severity=NOTICE
msgID=20381715 msg="JVM Arguments: '-Xmx8g', '-Xms8g', '-XX:MaxNewSize=1g',
'-XX:NewSize=1g', '-XX:+UseConcMarkSweepGC', '-XX:+CMSConcurrentMTEnabled',
'-XX:+CMSParallelRemarkEnabled', '-XX:+CMSParallelSurvivorRemarkEnabled',
'-XX:+CMSScavengeBeforeRemark', '-XX:RefDiscoveryPolicy=1',
'-XX:ParallelCMSThreads=4', '-XX:CMSMaxAbortablePrecleanTime=3600000',
'-XX:CMSInitiatingOccupancyFraction=80', '-XX:+UseParNewGC', '-XX:+UseMembar',
'-XX:+UseBiasedLocking', '-XX:+UseLargePages', '-XX:+UseCompressedOops',
'-XX:PermSize=128M', '-XX:+HeapDumpOnOutOfMemoryError',
'-Dcom.unboundid.directory.server.scriptName=setup'"
[21/Oct/2012:05:15:23.081 -0500] category=EXTENSIONS severity=NOTICE
msgID=1880555611 msg="Administrative alert type=server-starting
id=4178daee-ba3a-4be5-8e07-5ba17bf30b71
class=com.unboundid.directory.server.core.MetricsEngine
msg='The Metrics Engine is starting'"
[21/Oct/2012:05:15:23.585 -0500] category=CORE severity=NOTICE
msgID=1879507338 msg="Starting group processing for backend api-users"
[21/Oct/2012:05:15:23.586 -0500] category=CORE severity=NOTICE
msgID=1879507339 msg="Completed group processing for backend api-users"
[21/Oct/2012:05:15:23.586 -0500] category=EXTENSIONS severity=NOTICE
msgID=1880555575 msg="'Group cache (2 static group(s) with 0 total
memberships and 0 unique members, 0 virtual static group(s),
1 dynamic group(s))' currently consumes 7968 bytes and can grow to a maximum
of an unknown number of bytes"
[21/Oct/2012:05:16:18.011 -0500] category=CORE severity=NOTICE
msgID=458887 msg="The Metrics Engine (UnboundID Metrics Engine 4.5.0.0
build 20121021003738Z, R12799) has started successfully"

To Modify the File-Based Error Logs

• Use dsconfig to modify the default File-Based Error Log.

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Error Logger" \
 --set include-product-name:true --set include-instance-name:true \
 --set include-startup-id:true

Monitoring the Metrics Engine

The Metrics Engine exposes its monitoring information under the cn=monitor entry.
Administrators can use various means to monitor the servers, including the UnboundID Metrics
Engine, through SNMP, the Management Console, JConsole, LDAP command-line tools, and
the Periodic Stats Logger.

The following monitoring components are accessible:

Managing the Metrics Engine

120

Table 11: Metrics Engine Monitoring Components

Component Description

Active Operations Provides information about the operations currently being processed by the Metrics

Engine. Shows the number of operations, information on each operation, and the

number of active persistent searches.

Backends Provides general information about the state of a Metrics Engine backend, including

the backend ID, base DN(s), entry counts, entry count for the cn=admin data,

writability mode, and whether it is a private backend. The following backend monitors

are provided:

➢ adminRoot

➢ ads-truststore

➢ alerts

➢ api-users

➢ backup

➢ config

➢ monitor

➢ schema

➢ tasks

➢ userRoot

Berkeley DB JE Environment Provides information about the state of the Oracle Berkeley DB Java Edition database

used by the Metrics Engine backend. Most of the statistics are obtained directly from

the Berkeley DB JE.

Client Connections Provides information about all client connections to the Metrics Engine. The client

connection information contains a name followed by an equal sign and a quoted value

(e.g., connID="15", connectTime="20100308223038Z", etc.)

Connection Handlers Provides information about the available connection handlers on the Metrics Engine,

which includes the LDAP and LDIF connection handlers. These handlers are used to

accept client connections and to read requests and send responses to those clients.

DBMS Activity Provides the number of DBMS operations and average time per operation on a per-

table basis.

DBMS Table Provides the size, number of table and index scans, number of live records, and

number of dead records of each DBMS table.

Disk Space Usage Provides information about the disk space available to various components of the

Metrics Engine.

General Provides general information about the state of the Metrics Engine, including product

name, vendor name, server version, etc.

Index Provides on each index. The monitor captures the number of keys preloaded, and

counters for read/write/remove/open-cursor/read-for-search. These counters provide

insight into how useful an index is for a given workload.

HTTP/HTTPS Connection

Handler Statistics

Provides statistics about the interaction that the associated HTTP connection handler

has had with its clients, including the number of connections accepted, average

requests per connection, average connection duration, total bytes returned, and

average processing time by status code.

JVM Stack Trace Provides a stack trace of all threads processing within the JVM.

LDAP Connection Handler

Statistics

Provides statistics about the interaction that the associated LDAP connection handler

has had with its clients, including the number of connections established and closed,

bytes read and written, LDAP messages read and written, operations initiated,

completed, and abandoned, etc.

Managing the Metrics Engine

121

Component Description

Monitored Server Provides the internal metrics of the Metrics Engine, including sample import and

aggregation times.

Processing Time Histogram Categorizes operation processing times into a number of user-defined buckets of

information, including the total number of operations processed, overall average

response time (ms), number of processing times between 0ms and 1ms, etc.

Sample Cache Provides the size, utilization, and eviction of the memory cache that holds metric

samples from the DBMS.

Sample Query Provides the count and average time per metric query operation, including query

execution time, percentage of query already in the Sample Cache, and the number of

records returned from DBMS for query.

System Information Provides general information about the system and the JVM on which the Metrics

Engine is running, including system host name, operation system, JVM architecture,

Java home, Java version, etc.

Version Provides information about the Metrics Engine version, including build ID, version,

revision number, etc.

Work Queue Provides information about the state of the Metrics Engine work queue, which holds

requests until they can be processed by a worker thread, including the requests

rejected, current work queue size, number of worker threads, number of busy worker

threads, etc.

Monitoring Disk Space Usage

The disk space usage monitor provides information about the amount of usable disk space
available for Metrics Engine components. It also provides the ability to generate administrative
alerts, as well as take additional action if the amount of usable space drops below the defined
thresholds.

You can configure three thresholds for this monitor:

• Low space warning threshold. This threshold is defined as either a percentage or absolute
amount of usable space. If the amount of usable space drops below this threshold, then
the Metrics Engine will generate an administrative alert but will remain fully functional.
It will generate alerts at regular intervals that you configure (such as once a day) unless
action is taken to increase the amount of usable space. The Metrics Engine will also generate
additional alerts as the amount of usable space is further reduced (e.g., each time the
amount of usable space drops below a value 10% closer to the low space error threshold).
If an administrator frees up disk space or adds additional capacity, then the server should
automatically recognize this and stop generating alerts.

• Low space error threshold. This threshold is also defined as either a percentage or absolute
size. Once the amount of usable space drops below this threshold, then the server will
generate an alert notification and will begin rejecting all operations requested by non-root
users with "UNAVAILABLE" results. The server should continue to generate alerts during
this time. Once the server enters this mode, then an administrator will have to take some
kind of action (e.g., running a command to invoke a task or removing a signal file) before
the server will resume normal operation. This threshold must be less than or equal to the low
space warning threshold. If they are equal, the server will begin rejecting requests from non-
root users immediately upon detecting low usable disk space.

Managing the Metrics Engine

122

• Out of space error threshold. This threshold may also be defined as a percentage or
absolute size. Once the amount of usable space drops below this threshold, then the
UnboundID Metrics Engine will generate a final administrative alert and will shut itself
down. This threshold must be less than or equal to the low space error threshold. If they are
equal, the server will shut itself down rather than rejecting requests from non-root users.

The threshold values may be specified either as absolute sizes or as percentages of the total
available disk space. All values must be specified as absolute values or as percentages. A mix
of absolute values and percentages cannot be used. The low space warning threshold must be
greater than or equal to the low space error threshold, the low space error threshold must be
greater than or equal to the out of space error threshold, and the out of space error threshold
must be greater than or equal to zero.

If the out of space error threshold is set to zero, then the server will not attempt to automatically
shut itself down if it detects that usable disk space has become critically low. If the amount of
usable space reaches zero, then the database will preserve its integrity but may enter a state
in which it rejects all operations with an error and requires the server (or at least the affected
backends) to be restarted. If the low space error threshold is also set to zero, then the server will
generate periodic warnings about low available disk space but will remain fully functional for as
long as possible. If all three threshold values are set to zero, then the server will not attempt to
warn about or otherwise react to a lack of usable disk space.

Monitoring with JMX

The UnboundID Metrics Engine supports monitoring the JVM™ through a Java Management
Extensions (JMX™) management agent, which can be accessed using JConsole or any other
kind of JMX client. The JMX interface provides JVM performance and resource utilization
information for applications running Java. You can monitor generic metrics exposed by the
JVM itself, including memory pools, threads, loaded classes, and MBeans, as well as all the
monitor information that the Metrics Engine provides. You can also subscribe to receive JMX
notifications for any administrative alerts that are generated within the server.

Running JConsole

Before you can access JConsole, you must configure and enable the JMX Connection Handler
for the Metrics Engine using the dsconfig tool. See Configuring the JMX Connection Handler
and Alert Handler.

To invoke the JConsole executable, type jconsole on the command line. If JDK_HOME is not
set in your path, you can access JConsole in the bin directory of the JDK_HOME path.

Monitoring the Metrics Engine Using JConsole

You can set up JConsole to monitor the Metrics Engine using a remote process. Make sure to
enable the JMX Connection Handler and to assign at least the jmx-read privilege to a regular
user account (the jmx-notify privilege is required to subscibe to receive JMX notifications). Do
not use a root user account, as this would pose a security risk.

Managing the Metrics Engine

123

Managing Notifications and Alerts

The UnboundID Metrics Engine provides delivery mechanisms for account status notifications
and administrative alerts using SMTP, JMX, or SNMP in addition to standard error logging.
Alerts and events reflect state changes within the server that may be of interest to a user or
monitoring service. Notifications are typically the delivery of an alert or event to a user or
monitoring service. Account status notifications are only delivered to the account owner
notifying a change in state in the account.

This chapter presents the following topics:

Working with Administrative Alert Handlers

The UnboundID Metrics Engine provides mechanisms to send alert notifications to
administrators when significant problems or events occur during processing, such as problems
during server startup or shutdown. The Metrics Engine provides a number of alert handler
implementations, including:

• Error Log Alert Handler. Sends administrative alerts to the configured server error
logger(s).

• Exec Alert Handler. Executes a specified command on the local system if an administrative
alert matching the criteria for this alert handler is generated by the Metrics Engine.
Information about the administrative alert will be made available to the executed application
as arguments provided by the command.

• Groovy Scripted Alert Handler. Provides alert handler implementations defined in a
dynamically-loaded Groovy script that implements the ScriptedAlertHandler class defined
in the Server SDK.

• JMX Alert Handler. Sends administrative alerts to clients using the Java Management
Extensions (JMX) protocol. UnboundID uses JMX for monitoring entries and requires that
the JMX connection handler be enabled.

• SMTP Alert Handler. Sends administrative alerts to clients via email using the Simple Mail
Transfer Protocol (SMTP). The server requires that one or more SMTP servers be defined in
the global configuration.

• SNMP Alert Handler. Sends administrative alerts to clients using the Simple Network
Monitoring Protocol (SNMP). The server must have an SNMP agent capable of
communicating via SNMP 2c.

• SNMP Subagent Alert Handler. Sends SNMP traps to a master agent in response to
administrative alerts generated within the server.

• Third Party Alert Handler. Provides alert handler implementations created in third-party
code using the Server SDK.

Managing the Metrics Engine

124

Administrative Alert Types

If enabled, the Metrics Engine can generate administrative alerts when the events occur. The
Alert types are presented in the table below.

Table 12: Administrative Alert Types

Alert Type Severity Description

access-control-change Info Indicates that access control configuration has been

changed.

access-control-disabled Warning Indicates that access control evaluation has been disabled.

access-control-enabled Info Indicates that access control evaluation has been enabled.

access-control-parse-failure Error Indicates that an error occurred while attempting to parse

an access control rule.

access-log-criteria-matched Info Indicates that an access log message matched the criteria

for the admin alert access log publisher.

backend-end-initialization-failed Error Indicates that an attempt to initialize the backend failed.

cannot-acquire-shared-backend-lock Error Indicates that an error occurred while attempting to acquire

a shared backend lock.

cannot-copy-schema-files Error Indicates that an error occurred while attempting to copy

schema files during a schema update.

cannot-decode-entry Error Indicates that an error occurred while attempting to decode

an entry stored in a backend.

cannot-find-recurring-task Error Indicates that the definition for a recurring task could not

be found.

cannot-register-backend Error Indicates that an error occurred while trying to register a

backend.

cannot-register-shared-backend-lock Error Indicates that an error occurred while trying to release a

shared backend lock.

cannot-rename-current-task-file Error Indicates that an error occurred while trying to rename the

current task backing file.

cannot-rename-new-task-file Error Indicates that an error occurred while trying to rename the

new task backing file.

cannot-restore-backup Error Indicates that an error occurred while trying to restore a

backup.

cannot-schedule-recurring-task-iteration Error Indicates that an error occurred while trying to schedule a

recurring task iteration.

cannot-write-configuration Error Indicates that an error occurred while trying to write the

updated server configuration.

cannot-write-new-schema-files Error Indicates that an error occurred while trying to update

schema files.

cannot-write-server-state-file Error Indicates that an error occurred while attempting to write

the server status file.

cannot-write-task-backing-file Error Indicates that an error occurred while trying to write the

task backing file.

config-change Info Indicates the a configuration change has been made in the

server.

Managing the Metrics Engine

125

Alert Type Severity Description

deadlock-detected Error Indicates that a deadlock has been detected in the JVMTM

in which the Metrics Engine is running.

duplicate-alerts-suppressed Error Indicates that duplicate alert notifications have been

suppressed.

entering-lockdown-mode Warning Indicates that the server is entering lockdown mode, in

which it will only allow operations from root users.

external-config-file-edit-handled Warning Indicates that the server has detected an external edit to

the configuration file with the server online, but that it was

able to copy the modifications into a separate file without

applying them.

external-config-file-edit-handled Warning Indicates that the server has detected an external edit to

the configuration file with the server online, but that it was

able to copy the modifications into a separate file without

applying them.

external-config-file-edit-lost Error Indicates that the server has detected an external edit to

the configuration file with the server online and was unable

to copy the modifications into a separate file.

external-server-initialization-failed Error Indicates that an attempt to initialize an external server

failed.

force-gc-complete Info Indicates that the server has completed a forced garbage

collection.

force-gc-starting Info Indicates that the server is about to force a synchronous

garbage collection.

index-degraded Warning Indicates that a backend is operating with a degraded

index that needs to be rebuilt before that index may be

used.

index-rebuild-completed Info Indicates that a backend is in the progress of rebuilding

one or more indexes.

index-rebuild-in-progress Info Indicates that a backend is in the progress of rebuilding

one or more indexes.

invalid-privilege Warning Indicates that a user has been configured with an invalid

privilege.

je-recovery-required Fatal Indicates that a backend using the Oracle Berkeley DB

Java Edition (JE) has encountered a server error and

requires recovery.

ldap-connection-handler-cannot-listen Fatal Indicates that an error occurred when the LDAP

connection handler tried to start listening for client

connections and therefore the connection handler will be

disabled.

ldap-connection-handler-consecutive-

failures

Fatal Indicates that the LDAP connection handler has

experienced consecutive failures and will be disabled.

ldap-connection-handler-uncaught-error Fatal Indicates that the LDAP connection handler has

encountered an uncaught error and will be disabled.

ldif-backend-cannot-write Error Indicates that an error occurred while trying to write the

backing file for the LDIF backend.

ldif-connection-handler-io-error Error Indicates that the LDIF connection handler encountered an

I/O error that prevented it from processing.

Managing the Metrics Engine

126

Alert Type Severity Description

ldif-connection-handler-parse-error Error Indicates that the LDIF connection handler encountered an

I/O error that has prevented it from processing.

leaving-lockdown-mode Info Indicates that the server is leaving lockdown mode and

resuming normal operation.

logging-error Error Indicates that an error occurred while attempting to log a

message.

low-disk-space-error Error Indicates that the amount of usable disk space has

dropped below the low space error threshold.

low-disk-space-warning Warning Indicates that the amount of usable disk space has

dropped below the configured low space warning

threshold.

low-disk-space-warning Warning Indicates that the amount of usable disk space has

dropped below the configured low space warning

threshold.

out-of-disk-space-error Fatal Indicates that the amount of usable disk space has

dropped below the configured out of space error threshold.

replication-backlogged Warning Indicates that the replication backlog has exceeded the

replication backlog count alert threshold for longer than the

replication backlog duration alert threshold.

replication-backlog Warning Indicates that a replication server has known changes that

have not been applied yet.

replication-monitor-data-unresolved Warning Indicates that replication monitor data is unavailable from

cn=monitor.

replication-unresolved-conflict Error Indicates that the multi-master replication cannot

automatically resolve a conflict.

replication-plugin-message-serialization-

failure

Warning Indicates that the replication plug-in failed to serialize or

de-serialize a replication message.

replication-replay-failed Error Indicates that the server has failed to replay a replication

operation.

replication-server-changelog-failure Error Indicates that the replication server encountered an error

while accessing the replication changelog database.

replication-server-listen-failure Error Indicates that the replication server encountered an

error while trying to listen on the configured replication

port. There may be another application listening on the

same port or the replication server host name may not be

resolvable. Check the replication server configuration.

replication-unresolved-conflict Error Indicates that the server has detected a replication conflict

that could not be resolved.

server-jvm-paused Warning Indicates that the server's JVM paused for some reason

possibly due to misconfiguration.

server-shutting-down Info Indicates that the server has begun the shutdown process.

server-started Info Indicates that the server has completed that startup

process.

server-starting Info Indicates that the server is starting.

system-nanotime-stopped Error Indicates that System.nanoTime() has stopped advancing.

thread-exit-holding-lock Error Indicates that a thread has exited while still holding one or

more locks.

Managing the Metrics Engine

127

Alert Type Severity Description

uncaught-exception Error Indicates that the server has detected an uncaught

exception that may have caused a thread to terminate.

unique-attribute-sync-conflict Error Indicates that the server has detected a unique attribute

conflict that was introduced from synchronization.

unique-attribute-sync-error Error Indicates that the server has encountered an error

while attempting to detect unique attribute conflicts via

synchronization.

unrecognized-alert-type Error Indicates that an unrecognized alert type was

encountered. This should never be used for any alert that

is generated, but only for cases in which the server needs

to create an alert type from a string but the string does not

match any recognized type.

user-defined-error Error Indicates that an error alert notification has been

generated by third-party code.

user-defined-fatal Fatal Indicates that a fatal error alert notification was generated

by third-party code.

user-defined-info Info Indicates that an informational alert notification was

generated by third-party code.

user-defined-warning Warning Indicates that a warning alert notification was generated by

third-party code.

worker-thread-caught-error Error Indicates that a worker thread caught an unexpected error.

work-queue-backlogged Error Indicates that the work queue has become significantly

backlogged and operations have been required to wait a

significant length of time to be processed.

work-queue-full Error Indicates that the work queue is full and has rejected a

client request.

work-queue-no-threads-remaining Fatal Indicates that all worker threads have been terminated due

to errors and the server must shut down.

worker-thread-caught-error Error Indicates that a worker thread has caught an unexpected

error that has caused it to be terminated.

Configuring the JMX Connection Handler and Alert Handler

You can configure the JMX connection handler and alert handler respectively using the
dsconfig tool. Any user allowed to receive JMX notifications must have the jmx-read and
jmx-notify privileges. By default, these privileges are not granted to any users (including root
users or global administrators). For security reasons, we recommend that you create a separate
user account that does not have any other privileges but these. Although not shown in this
section, you can configure the JMX connection handler and alert handler using dsconfig in
interactive command-line mode, which is visible on the "Standard" object menu.

To Configure the JMX Connection Handler

1. Use dsconfig to enable the JMX Connection Handler.

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "JMX Connection Handler" \
 --set enabled:true \

Managing the Metrics Engine

128

 --set listen-port:1689

2. Add a new non-root user account with the jmx-read and jmx-notify privileges. This
account can be added using the ldapmodify tool using an LDIF representation like:

dn: cn=JMX User,cn=Root DNs,cn=config
changetype: add
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: ds-cfg-root-dn-user
givenName: JMX
sn: User
cn: JMX User
userPassword: password
ds-cfg-inherit-default-root-privileges: false
ds-cfg-alternate-bind-dn: cn=JMX User
ds-privilege-name: jmx-read
ds-privilege-name: jmx-notify

To Configure the JMX Alert Handler

• Use dsconfig to configure the JMX Alert Handler.

$ bin/dsconfig set-alert-handler-prop --handler-name "JMX Alert Handler" \
 --set enabled:true

Configuring the SMTP Alert Handler

By default, there is no configuration entry for an SMTP alert handler. To create a new instance
of an SMTP alert handler, use the dsconfig tool.

Configuring the SMTP Alert Handler

• Use the dsconfig tool to configure the SMTP Alert Handler.

$ bin/dsconfig create-alert-handler \
 --handler-name "SMTP Alert Handler" \
 --type smtp \
 --set enabled:true \
 --set "sender-address:alerts@example.com" \
 --set "recipient-address:administrators@example.com" \
 --set "message-subject:Directory Admin Alert \%\%alert-type\%\%" \
 --set "message-body:Administrative alert:\\n\%\%alert-message\%\%"

Configuring the SNMP Subagent Alert Handler

You can configure the SNMP Subagent alert handler using the dsconfig tool, which is visible
at the "Standard" object menu. Before you begin, you need an SNMP Subagent capable of
communicating via SNMP2c. For more information on SNMP, see Monitoring Using SNMP.

Managing the Metrics Engine

129

To Configure the SNMP Subagent Alert Handler

• Use dsconfig to configure the SNMP subagent alert handler. The server-host-name is the
address of the system running the SNMP subagent. The server-port is the port number on
which the subagent is running. The community-name is the name of the SNMP community
that is used for the traps.

The Metrics Engine also supports a SNMP Alert Handler, which is used in deployments that
do not enable an SNMP subagent.

$ bin/dsconfig set-alert-handler-prop \
 --handler-name "SNMP Subagent Alert Handler" \
 --set enabled:true \
 --set server-host-name:host2 \
 --set server-port:162 \
 --set community-name:public

Working with the Alerts Backend

The Metrics Engine stores recently generated admin alerts in an Alerts Backend under the
cn=alerts branch. The backend makes it possible to obtain admin alert information over LDAP
for use with remote monitoring. The backend's primary job is to process search operations for
alerts. It does not support add, modify, or modify DN operations of entries in the cn=alerts
backend.

The alerts persist on disk in the config/alerts.ldif file so that they can survive server
restarts. By default, the alerts remain on disk for seven days before being removed. However,
administrators can configure the number of days for alert retention using the dsconfig tool.
The administrative alerts of Warning level or worse that have occurred in the last 48 hours are
viewable from the output of the status command-line tool and in the Management Console.

To View Information in the Alerts Backend

• Use ldapsearch to view the admin alerts.

$ bin/ldapsearch --port 1389 --bindDN "cn=Directory Manager" \
 --bindPassword secret --baseDN cn=alerts "(objectclass=*)"

dn: cn=alerts
objectClass: top
objectClass: ds-alert-root
cn: alerts

dn: ds-alert-id=3d1857a2-e8cf-4e80-ac0e-ba933be59eca,cn=alerts
objectClass: top
objectClass: ds-admin-alert
ds-alert-id: 3d1857a2-e8cf-4e80-ac0e-ba933be59eca
ds-alert-type: server-started
ds-alert-severity: info
ds-alert-type-oid: 1.3.6.1.4.1.32473.2.11.33
ds-alert-time: 20110126041442.622Z
ds-alert-generator: com.unboundid.directory.server.core.metrics.engine
ds-alert-message: The Metrics Engine has started successfully

""""

Managing the Metrics Engine

130

To Modify the Alert Retention Time

1. Use dsconfig to change the maximum time information about generated admin alerts is
retained in the Alerts backend. After this time, the information gets purged from the Metrics
Engine. The minimum retention time is 0 milliseconds, which immediately purges the alert
information.

$ bin/dsconfig set-backend-prop --backend-name "alerts" \
 --set "alert-retention-time: 2 weeks"

2. View the property using dsconfig.

$ bin/dsconfig get-backend-prop --backend-name "alerts" \
 --property alert-retention-time

Property : Value(s)
---------------------:---------
alert-retention-time : 2 w

To Configure Duplicate Alert Suppression

• Use dsconfig to configure the maximum number of times an alert is generated within a
particular timeframe for the same condition. The duplicate-alert-time-limit property
specifies the length of time that must pass before duplicate messages are sent over the
administrative alert framework. The duplicate-alert-limit property specifies the
maximum number of duplicate alert messages should be sent over the administrative alert
framework in the time limit specified in the duplicate-alert-time-limit property.

$ bin/dsconfig set-global-configuration-prop \
 --set duplicate-alert-limit:2 \
 --set "duplicate-alert-time-limit:3 minutes"

Command-Line Tools

The UnboundID Metrics Engine provides a full suite of command-line tools necessary to
administer the server. The command-line tools are available in the bin directory for UNIX or
Linux systems and bat directory for Microsoft Windows systems.

This chapter presents the following topics:

Using the Help Option

Each command-line utility provides a description of the subcommands, arguments, and usage
examples needed to run the tool. You can view detailed argument options and examples by
typing --help with the command.

bin/dsconfig --help

Managing the Metrics Engine

131

For those utilities that support additional subcommands (for example, dsconfig), you can get a
list of the subcommands by typing --help-subcommands.

bin/dsconfig --help-subcommands

You can also get more detailed subcommand information by typing --help with the specific
subcommand.

bin/dsconfig list-log-publishers --help

Note: For detailed information and examples of the command-line tools, see
the UnboundID Metrics Engine Command-Line Tool Reference.

Available Command-Line Utilities

The Metrics Engine provides the following command-line utilities, which can be run directly in
interactive, non-interactive, or script mode.

Table 13: Command-Line Utilities

Command-Line Tools Description

backup Run full or incremental backups on one or more Metrics Engine backends. This

utility also supports the use of a properties file to pass predefined command-line

arguments. See Managing the tools.properties File for more information.

base64 Encode raw data using the base64 algorithm or decode base64-encoded data

back to its raw representation.

collect-support-data Collect and package system information useful in troubleshooting problems. The

information is packaged as a ZIP archive that can be sent to a technical support

representative.

create-rc-script Create an Run Control (RC) script that may be used to start, stop, and restart the

Metrics Engine on UNIX-based systems.

dsconfig View and edit the Metrics Engine configuration.

dsframework Manage administrative server groups or the global administrative user accounts

that are used to configure servers within server groups.

dsjavaproperties Configure the JVM arguments used to run the Metrics Engine and associated

tools. Before launching the command, edit the properties file located in config/

java.properties to specify the desired JVM options and JAVA_HOME

environment variable.

ldapmodify Perform LDAP modify, add, delete, and modify DN operations in the Metrics

Engine.

ldappasswordmodify Perform LDAP password modify operations in the Metrics Engine.

ldapsearch Perform LDAP search operations in the Metrics Engine.

ldif-diff Compare the contents of two LDIF files, the output being an LDIF file needed to

bring the source file in sync with the target.

ldifmodify Apply a set of modify, add, and delete operations against data in an LDIF file.

manage-extension Install or update extension bundles. An extension bundle is a package of

extension(s) that utilize the Server SDK to extend the functionality of the

UnboundID Metrics Engine. Extension bundles are installed from a zip archive or

Managing the Metrics Engine

132

Command-Line Tools Description

file system directory. The Metrics Engine will be restarted if running to activate the

extension(s).

metric-engine-schema Show current and required UnboundID Metrics Engine DBMS schema version

information.

monitored-servers Configure the set of servers to be monitored by this Metrics Engine and prepare

external servers for monitoring.

query-metric Explore collected monitoring data by forming queries for charts and data.

queryrate Execute metric queries.

restore Restore a backup of the Metrics Engine backend.

revert-update Returns a server to the version before the last update was performed.

review-license Review and/or indicate your acceptance of the product license.

server-state View information about the current state of the Metrics Engine process.

setup Perform the initial setup for the Metrics Engine instance.

start-metrics-engine Start the Metrics Engine.

status Display basic server information.

stop-metrics-engine Stop or restart the Metrics Engine.

sum-file-sizes Calculate the sum of the sizes for a set of files.

summarize-config Generate a configuration summary of either a remote or local Metrics Engine

instance. By default, only basic components and properties will be included. To

include advanced components, use the --advanced option.

uninstall Uninstall the Metrics Engine.

update Update the Metrics Engine to a newer version by downloading and unzipping the

new server install package on the same host as the server you wish to update.

Then, use the update tool from the new server package to update the older

version of the server. Before upgrading a server, you should ensure that it is

capable of starting without severe or fatal errors. During the update process, the

server is stopped if running, then the update performed, and a check is made to

determine if the newly updated server starts without major errors. If it cannot start

cleanly, the update will be backed out and the server returned to its prior state.

See the revert-update tool for information on reverting an update.

Managing the tools.properties File

The UnboundID Metrics Engine supports the use of a tools properties file that simplifies
command-line invocations by reading in a set of arguments for each tool from a text file.
Each property is in the form of name/value pairs that define predetermined values for a tool’s
arguments. Properties files are convenient when quickly testing the Metrics Engine in multiple
environments.

The Metrics Engine supports two types of properties file: default properties files that can be
applied to all command-line utilities or tool-specific properties file that can be specified using
the --propertiesFilePath option. You can override all of the Metrics Engine's command-line
utilities with a properties file using the config/tools.properties file.

Managing the Metrics Engine

133

Creating a Tools Properties File

You can create a properties file with a text editor by specifying each argument, or option,
using standard Java properties file format (name=value). For example, you can create a simple
properties file that define a set of LDAP connection parameters as follows:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
bindPassword=secret

Next, you can specify the location of the file using the --propertiesFilePath /path/to/
File option with the command-line tool. For example, if you save the previous properties file
as bin/mytool.properties, you can specify the path to the properties file with ldapsearch as
follows:

$ bin/ldapsearch --propertiesFilePath bin/mytools.properties "(objectclass=*)"

Properties files do not allow quotation marks of any kind around values. Any spaces or special
characters should be escaped. For example,

bindDN=cn=QA\ Managers,ou=groups,dc=example,dc=com

The following is not allowed as it contains quotation marks:

bindDN=cn="QA Managers,ou=groups,dc=example,dc=com"

Tool-Specific Properties

The Metrics Engine also supports properties for specific tool options using the format:
tool.option=value. Tool-specific options have precedence over general options. For example,
the following properties file uses ldapsearch.port=2389 for ldapsearch requests by the client.
All other tools that use the properties file uses port=1389.

hostname=server1.example.com
port=1389
ldapsearch.port=2389
bindDN=cn=Directory\ Manager

Another example using the dsconfig configuration tool is as follows:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
dsconfig.bindPasswordFile=/ds/config/password

Note: The .bindPasswordFile property requires an absolute path. If
you were to specify ~/ds/config/password, where ~ refers to the home
directory, the server does not expand the ~ value when read from the
properties file.

Managing the Metrics Engine

134

Specifying Default Properties Files

The Metrics Engine provides a default properties files that apply to all command-line utilities
used in client requests. A default properties file, tools.properties, is located in the <server-
root>/config directory.

If you place a custom properties file that has a different filename as tools.properties in this
default location, you need to specify the path using the --propertiesFilePath option. If you
make changes to the tools.properties file, you do not need the --propertiesFilePath
option. See the examples in the next section.

Evaluation Order Summary

The Metrics Engine uses the following evaluation ordering to determine options for a given
command-line utility:

• All options used with a utility on the command line takes precedence over any options in any
properties file.

• If the --propertiesFilePath option is used with no other options, the Metrics Engine takes
its options from the specified properties file.

• If no options are used on the command line including the --propertiesFilePath option
(and --noPropertiesFile), the Metrics Engine searches for the tools.properties file at
<server-root>

• If no default properties file is found and a required option is missing, the tool generates an
error.

• Tool-specific properties (for example, ldapsearch.port=3389) have precedence over
general properties (for example, port=1389).

Evaluation Order Example

Given the following properties file that is saved as <server-root>/bin/tools.properties:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
bindPassword=secret

The Metrics Engine locates a command-line options in a specific priority order.

1. All options presented with the tool on the command line take precedence over any options
in any properties file. In the following example, the client request is run with the options
specified on the command line (port and baseDN). The command uses the bindDN and
bindPassword arguments specified in the properties file.

$ bin/ldapsearch --port 2389 --baseDN ou=People,dc=example,dc=com \
 --propertiesFilePath bin/tools.properties “(objectclass=*)”

2. Next, if you specify the properties file using the --propertiesFilePath option and no other
command-line options, the Metrics Engine uses the specified properties file as follows:

Managing the Metrics Engine

135

$ bin/ldapsearch --propertiesFilePath bin/tools.properties \
 “(objectclass=*)”

3. If no options are presented with the tool on the command line and the --noPropertiesFile
option is not present, the Metrics Engine attempts to locate any default tools.properties
file in the following location:

<server-root>/config/tools.properties

Assume that you move your tools.properties file from <server-root>/bin to the <server-
root>/config directory. You can then run your tools as follows:

$ bin/ldapsearch "(objectclass=*)"

The Metrics Engine can be configured so that it does not search for any properties file
by using the --noPropertiesFile option. This options tells the Metrics Engine to use
only those options specified on the command line. The --propertiesFilePath and --
noPropertiesFile options are mutually exclusive and cannot be used together.

4. If no default tools.properties file is found and no options are specified with the
command-line tool, then the tool generates an error for any missing arguments.

Managing the Metrics Engine

136

Troubleshooting the Metrics Engine

137

Chapter

7 Troubleshooting the Metrics Engine

This chapter provides the common problems and potential solutions that might occur when
running UnboundID Metrics Engine.

This chapter presents the following information:

Topics:

• Debugging the Metrics Engine
• Working with the Troubleshooting Tools
• Metrics Engine Troubleshooting Tools
• Troubleshooting Resources for Java Applications
• Troubleshooting Resources in the Operating System
• Troubleshooting Performance Problems
• Troubleshooting the Metrics Engine API
• Common Problems and Potential Solutions

Troubleshooting the Metrics Engine

138

Debugging the Metrics Engine

You can enable the JVM debugging options to track garbage collection data for your system.
The options can impact JVM performance, but they provide valuable data to tune your server
when troubleshooting garbage collection issues. While the jstat utility with the -gc option
can be used to obtain some information about garbage collection activity, there are additional
arguments that can be added to the JVM to use when running the server to provide additional
detail.

-XX:+PrintGCDetails
-XX:+PrintTenuringDistribution
-XX:+PrintGCApplicationConcurrentTime
-XX:+PrintGCApplicationStoppedTime
-XX:+PrintGCDateStamps

To run the Metrics Engine with these options, edit the config/java.properties file and add
them to the end of the line that begins with "start-metrics-engine.java-args". After the file
has been saved, invoke the following command to make those new arguments take effect the
next time the server is started:

$ bin/dsjavaproperties

Working with the Troubleshooting Tools

The UnboundID Metrics Engine provides a highly-reliable service that satisfies your company's
objectives. However, if problems do arise (whether from issues in the Metrics Engine itself or
a supporting component, like the JVM, operating system, or hardware), then it is essential to be
able to diagnose the problem quickly to determine the underlying cause and the best course of
action to take towards resolving it.

Working with the Collect Support Data Tool

The Metrics Engine provides a significant amount of information about its current state
including any problems that it has encountered during processing. If a problem occurs, the
first step is to run the collect-support-data tool in the bin directory. The tool aggregates
all relevant support files into a zip file that administrators can send to your authorized support
provider for analysis. The tool also runs data collector utilities, such as jps, jstack, and jstat
plus other diagnostic tools for Solaris and Linux machines, and bundles the results in the zip file.

The tool may only archive portions of certain log files to conserve space, so that the resulting
support archive does not exceed the typical size limits associated with e-mail attachments.

The data collected by the collect-support-data tool varies between systems. For example,
on Solaris Zone, configuration information is gathered using commands like zonename and
zoneadm. However, the tool always tries to get the same information across all systems for the
target Metrics Engine. The data collected includes the configuration directory, summaries and
snippets from the logs directory, an LDIF of the monitor and RootDSE entries, and a list of all
files in the server root.

Troubleshooting the Metrics Engine

139

To Run the Collect Support Data Tool

1. Go to the server root directory.

2. Use the collect-support-data tool. Make sure to include the host, port number, bind DN,
and bind password.

$ bin/collect-support-data --hostname 127.0.0.1 --port 389 \
 --bindDN "cn=Directory Manager" --bindPassword secret \
 --serverRoot /opt/UnboundID-Metrics-Engine --pid 1234

3. Email the zip file to your Authorized Support Provider.

Metrics Engine Troubleshooting Tools

The UnboundID Metrics Engine provides a set of tools that can also be used to obtain
information for diagnosing and solving problems.

Server Version Information

If it becomes necessary to contact your authorized support provider, then it will be important to
provide precise information about the version of the Metrics Engine software that is in use. If
the server is running, then this information can be obtained from the "cn=Version,cn=monitor"
entry. It can also be obtained using the command:

$ bin/status --fullVersion

This command outputs a number of important pieces of information, including:

• Major, minor, point and patch version numbers for the server.

• Source revision number from which the server was built.

• Build information including build ID with time stamp, OS, user, Java and JVM version for
the build.

• Auxiliary software versions: Jetty, JZlib, SNMP4j (SNMP4J, Agent, Agentx), Groovy,
UnboundID LDAP SDK for Java, and UnboundID Server SDK.

Embedded Profiler

If the Metrics Engine appears to be running slowly, then it is helpful to know what operations
are being processed in the server. The JVM Stack Trace monitor entry can be used to obtain a
point-in-time snapshot of what the server is doing, but in many cases, it might be useful to have
information collected over a period of time.

The embedded profiler is configured so that it is always available but is not active by default so
that it has no impact on the performance of the running server. Even when it is running, it has

Troubleshooting the Metrics Engine

140

a relatively small impact on performance, but it is recommended that it remain inactive when
it is not needed. It can be controlled using the dsconfig tool or the web administration console
by managing the "Profiler" configuration object in the "Plugin" object type, available at the
standard object level. The profile-action property for this configuration object can have one
of the following values:

• start – Indicates that the embedded profiler should start capturing data in the background.

• stop – Indicates that the embedded profiler should stop capturing data and write the
information that it has collected to a logs/profile{timestamp} file.

• cancel – Indicates that the embedded profiler should stop capturing data and discard any
information that it has collected.

Any profiling data that has been captured can be examined using the profiler-viewer tool.
This tool can operate in either a text-based mode, in which case it dumps a formatted text
representation of the profile data to standard output, or it can be used in a graphical mode that
allows the information to be more easily understood.

To Invoke the Profile Viewer in Text-based Mode

• Run the profile-viewer command and specify the captured log file using the --fileName
option.

$ bin/profile-viewer --fileName logs/profile.20110101000000Z

To Invoke the Profile Viewer in GUI Mode

• Run the profile-viewer command and specify the captured log file using the --fileName
option. To invoke GUI mode, add the option --useGUI.

$ bin/profile-viewer --fileName logs/profile.20110101000000Z --useGUI

Troubleshooting Resources for Java Applications

Because the UnboundID Metrics Engine is written entirely in Java, it is possible to use standard
Java debugging and instrumentation tools when troubleshooting problems with the Metrics
Engine. In many cases, obtaining the full benefit of these tools requires access to the Metrics
Engine source code. These Java tools should be used under the advisement of your authorized
support provider.

Java Troubleshooting Documentation (Oracle/Sun JDK)

There are a number of documents providing general information about troubleshooting Java-
based applications. Some of these documents include:

• http://www.oracle.com/technetwork/java/javase/index-138283.html – Troubleshooting Java
SE

Troubleshooting the Metrics Engine

141

• http://www.oracle.com/technetwork/java/javase/index-137495.html – Troubleshooting Guide
for Java SE 6 with HotSpot VM

• http://www.sun.com/bigadmin/hubs/java/troubleshoot/ – BigAdmin Page on Java SE
Troubleshooting

• http://www.oracle.com/technetwork/java/javase/tools6-unix-139447.html – Tools for
troubleshooting Java on Solaris and Linux

Java Troubleshooting Tools (Oracle/Sun JDK)

The Java Development Kit provides a number of very useful tools to obtain information about
Java applications and diagnosing problems. These tools are not included with the Java Runtime
Environment (JRE), so the full Java Development Environment (JDK) should always be
installed and used to run the UnboundID Metrics Engine.

jps

The jps tool is a Java-specific version of the UNIX ps tool. It can be used to obtain a list of all
Java processes currently running and their respective process identifiers. When invoked by a
non-root user, it will list only Java processes running as that user. When invoked by a root user,
then it lists all Java processes on the system.

This tool can be used to see if the Metrics Engine is running and if a process ID has been
assigned to it. This process ID can be used in conjunction with other tools to perform further
analysis.

This tool can be run without any arguments, but some of the more useful arguments that include:

• -v – Includes the arguments passed to the JVM for the processes that are listed.

• -m – Includes the arguments passed to the main method for the processes that are listed.

• -l – (lowercase L). Include the fully qualified name for the main class rather than only the
base class name.

Additional documentation for the jps tool is available at:

• http://java.sun.com/javase/6/docs/techs/tools/share/jps.html

jstack

The jstack tool is used to obtain a stack trace of a running Java process, or optionally from a
core file generated if the JVM happens to crash. A stack trace can be extremely valuable when
trying to debug a problem, because it provides information about all threads running and exactly
what each is doing at the point in time that the stack trace was obtained.

Stack traces are helpful when diagnosing problems in which the server appears to be hung or
behaving slowly. Java stack traces are generally more helpful than native stack traces, because
Java threads can have user-friendly names (as do the threads used by the UnboundID Metrics

Troubleshooting the Metrics Engine

142

Engine), and the frame of the stack trace may include the line number of the source file to which
it corresponds. This is useful when diagnosing problems and often allows them to be identified
and resolved quickly.

To obtain a stack trace from a running JVM, use the command:

jstack {processID}

where {processID} is the process ID of the target JVM as returned by the jps command. To
obtain a stack trace from a core file from a Java process, use the command:

jstack {pathToJava} {pathToCore}

where {pathToJava} is the path to the java command from which the core file was created, and
{pathToCore} is the path to the core file to examine. In either case, the stack trace is written to
standard output and includes the names and call stacks for each of the threads that were active in
the JVM.

In many cases, no additional options are necessary. The "-l" option can be added to obtain a
long listing, which includes additional information about locks owned by the threads. The “-m”
option can be used to include native frames in the stack trace.

Additional documentation for the jstack tool is available at http://java.sun.com/javase/6/ docs/
techs/tools/share/jstack.html.

jmap

The jmap tool is used to obtain information about the memory consumed by the JVM. It is very
similar to the native pmap tool provided by many operating systems. As with the jstack tool,
jmap can be invoked against a running Java process by providing the process ID, or against a
core file, like:

jmap {processID}
jmap {pathToJava} {pathToCore}

Some of the additional arguments include:

• -dump:live,format=b,file=filename – Dump the live heap data to a file that can be
examined by the jhat tool

• -heap – Provides a summary of the memory used in the Java heap, along with information
about the garbage collection algorithm in use.

• -histo:live – Provides a count of the number of objects of each type contained in the heap.
If the “:live” portion is included, then only live objects are included; otherwise, the count
include objects that are no longer in use and are garbage collected.

Additional information about the jmap tool can be found at http://java.sun.com/javase/6/ docs/
techs/tools/share/jmap.html.

Troubleshooting the Metrics Engine

143

jhat

The jhat (Java Heap Analysis Tool) utility provides the ability to analyze the contents of the
Java heap. It can be used to analyze a heap dump file, which is generated if the Metrics Engine
encounters an out of memory error (as a result of the "-XX:+HeapDumpOnOutOfMemoryError"
JVM option) or from the use of the jmap command with the "-dump" option.

The jhat tool acts as a web server that can be accessed by a browser in order to query the
contents of the heap. Several predefined queries are available to help determine the types of
objects consuming significant amounts of heap space, and it also provides a custom query
language (OQL, the Object Query Language) for performing more advanced types of analysis.

The jhat tool can be launched with the path to the heap dump file, like:

jhat /path/to/heap.dump

This command causes the jhat web server to begin listening on port 7000. It can be accessed in
a browser at http://localhost:7000 (or http://address:7000 from a remote system). An
alternate port number can be specified using the "-port" option, like:

jhat -port 1234 /path/to/heap.dump

To issue custom OQL searches, access the web interface using the URL http://
localhost:7000/oql/ (the trailing slash must be provided). Additional information about
the OQL syntax may be obtained in the web interface at http://localhost:7000/oqlhelp/.
Additional information for the jhat tool may be found at http://java.sun.com/javase/6/
docs/techs/tools/share/jhat.html.

jstat

The jstat tool is used to obtain a variety of statistical information from the JVM, much like the
vmstat utility that can be used to obtain CPU utilization information from the operating system.
The general manner to invoke it is as follows:

jstat {type} {processID} {interval}

The {interval} option specifies the length of time in milliseconds between lines of output. The
{processID} option specifies the process ID of the JVM used to run the Metrics Engine, which
can be obtained by running jps as mentioned previously. The {type} option specifies the type
of output that should be provided. Some of the most useful types include:

• -class – Provides information about class loading and unloading.

• -compile – Provides information about the activity of the JIT complex.

• -printcompilation – Provides information about JIT method compilation.

• -gc – Provides information about the activity of the garbage collector.

• -gccapacity – Provides information about memory region capacities.

Troubleshooting the Metrics Engine

144

Java Diagnostic Information

In addition to the tools listed in the previous section, the JVM can provide additional diagnostic
information in response to certain events.

JVM Crash Diagnostic Information

If the JVM itself should happen to crash for some reason, then it generates a fatal error log
with information about the state of the JVM at the time of the crash. By default, this file is
named hs_err_pid{processID}.log and is written into the base directory of the Metrics
Engine installation. This file includes information on the underlying cause of the JVM crash,
information about the threads running and Java heap at the time of the crash, the options
provided to the JVM, environment variables that were set, and information about the underlying
system. More information about the content that may be written to this log file may be found at
http://java.sun.com/javase/6/webs/trouble/TSG-VM/html/felog.html.

Java Troubleshooting Tools (IBM JDK)

The UnboundID Metrics Engine can be run on machines using the IBM JDK. IBM provides
Java monitoring and diagnostic tools that can assess JVM performance and troubleshoot any
Java application failures. The following tools are available for the IBM JDK. For more detailed
information, see the IBM Developers web-site for a description of each tool:

• Health Center Version 1.3. Monitors Java applications running on the JDK. The tool
provides profiling information for performance, memory usage, system environment, object
allocations and other areas.

• Memory Analyzer Version 1.1. Analyzes Java heap memory using a system or heap dump
snapshot of a Java process.

• Garbage Collection and Memory Visualizer Version 2.6. Fine-tunes Java performance by
optimizing garbage collection performance, provides Java heap recommendations based on
peak and average memory usage, and detects memory leaks and heap exhaustion.

• Dump Analyzer Version 2.2. Helps troubleshoot the cause of any application failure using
an operating system dump. The tool detects any potential problems based on state, thread,
stack information and error messages that were generated when the application failed.

• Diagnostics Collector Version 1.0. Collects diagnostic and context information during Java
runtime processes that failed. The tool verifies your Java diagnostic configuration to ensure
that disabled diagnostic analyzers are enabled to troubleshoot a problem.

• IBM Diagnostic Tool Framework for Java Version 1.5. Runs on dump data extracted by
the jextract tool. The tool checks memory locations, Java threads, Java objects and other
important diagnostic areas when the system dump was produced.

Troubleshooting the Metrics Engine

145

Troubleshooting Resources in the Operating System

The underlying operating system also provides a significant amount of information that can help
diagnose issues that impact the performance and the stability of the Metrics Engine. In some
cases, problems with the underlying system can be directly responsible for the issues seen with
the Metrics Engine, and in others system, tools can help narrow down the cause of the problem.

Identifying Problems with the Underlying System

If the underlying system itself is experiencing problems, it can adversely impact the function of
applications running on it. Places to look for problems in the underlying system include:

• The system log file (/var/adm/messages on Solaris and /var/log/messages on Linux).
Information about faulted or degraded devices or other unusual system conditions are written
there.

• On Solaris systems, if the fault management system has detected a problem with a system
component, information about that problem is obtain by running the fmdump command.

• If the ZFS filesystem is in use, then the zpool status command provides information about
read errors, write errors, or data checksum errors.

Examining CPU Utilization

Observing CPU utilization for the Metrics Engine process and the system as a whole provides
clues as to the nature of the problem.

System-Wide CPU Utilization

To investigate CPU consumption of the system as a whole, use the vmstat command with a
time interval in seconds, like:

vmstat 5

The specific output of this command varies between different operating systems, but it includes
the percentage of the time the CPU was spent executing user-space code (user time), the
percentage of time spent executing kernel-space code (system time), and the percentage of time
not executing any code (idle time).

If the CPUs are spending most of their time executing user-space code, the available processors
are being well-utilized. If performance is poor or the server is unresponsive, it can indicate that
the Metrics Engine is not optimally tuned. If there is a high system time, it can indicate that the
system is performing excessive disk and/or network I/O, or in some cases, there can be some
other system-wide problem like an interrupt storm. If the system is mostly idle but the Metrics
Engine is performing poorly or is unresponsive, there can be a resource constraint elsewhere
(for example, waiting on disk or memory access, or excessive lock contention), or the JVM can

Troubleshooting the Metrics Engine

146

be performing other tasks like stop-the-world garbage collection that cannot be run heavily in
parallel.

Per-CPU Utilization

To investigate CPU consumption on a per-CPU basis, use the mpstat command with a time
interval in seconds, like:

mpstat 5

On Linux systems, it might be necessary to add "-P ALL" to the command, like:

mpstat -P ALL 5

Among other things, this shows the percentage of time each CPU has spent in user time, system
time, and idle time. If the overall CPU utilization is relatively low but mpstat reports that one
CPU has a much higher utilization than the others, there might be a significant bottleneck within
the server or the JVM might be performing certain types of garbage collection which cannot be
run in parallel. On the other hand, if CPU utilization is relatively even across all CPUs, there is
likely no such bottleneck and the issue might be elsewhere.

Per-Process Utilization

To investigate CPU consumption on a per-process basis, use the prstat tool on Solaris or the
top utility on Linux. If a process other than the Java process used to run the Metrics Engine is
consuming a significant amount of available CPU, it might be interfering with the ability of the
Metrics Engine to run effectively.

If the mpstat command showed that one CPU was much more heavily utilized than the others,
it might be useful to identify the thread with the highest CPU utilization as it is likely the one
that is a bottleneck preventing other threads from processing. On Solaris, this can be achieved
by using the prstat command with the "-L" option, like:

prstat -L -p {processID}

This command will cause each thread to be displayed on a separate line, with the LWPID
(lightweight process identifier) displayed as the last item on each line, separated from the
process name by a slash. The thread that is currently consuming the largest amount of CPU will
be displayed at the top of the list, and the pstack command can be used to identify which thread
is responsible.

Examining Disk Utilization

If the underlying system has a very high disk utilization, it can adversely impact Metrics Engine
performance. It could delay the ability to read or write database files or write log files. It could
also raise concerns for server stability if excessive disk I/O inhibits the ability of the cleaner
threads to keep the database size under control.

The iostat tool may be used to obtain information about the disk activity on the system. On
Solaris systems, this should be invoked using the "-x" and "-n" arguments, like:

Troubleshooting the Metrics Engine

147

iostat -x -n 5

On Linux systems, iostat should be invoked with the "-x" argument, like:

iostat -x 5

A number of different types of information will be displayed, but to obtain an initial feel for how
busy the underlying disks are, look at the "%b" column on Solaris and the "%util" column on
Linux. Both of these fields show the percentage of the time that the underlying disks are actively
servicing I/O requests. A system with a high disk utilization likely exhibits poor Metrics Engine
performance.

If the high disk utilization is on one or more disks that are used to provide swap space for the
system, the system might not have enough free memory to process requests. As a result, it
might have started swapping blocks of memory that have not been used recently to disk. This
can cause very poor server performance. It is important to ensure that the server is configured
appropriately to avoid this condition. If this problem occurs on a regular basis, then the server
is likely configured to use too much memory. If swapping is not normally a problem but it
does arise, then check to see if there are any other processes running, which are consuming
a significant amount of memory, and check for other potential causes of significant memory
consumption (for example, large files in a tmpfs filesystem).

On Solaris systems using ZFS, you can use the zpool iostat {interval} command to obtain
information about I/O activity on a per-pool basis. While this command provides a useful
display of the number of read and write operations and the amount of data being read from
and written to the disks, it does not actually show how busy the underlying disks. As a result,
the zpool iostat command is generally not as useful as the traditional iostat command for
identifying potential I/O bottlenecks.

Examining Process Details

There are a number of tools provided by the operating system that can help examine a process in
detail.

ps

The standard ps tool can be used to provide a range of information about a particular process.
For example, the command can be used to display the state of the process, the name of the
user running the process, its process ID and parent process ID, the priority and nice value,
resident and virtual memory sizes, the start time, the execution time, and the process name with
arguments:

ps -fly -p {processID}

Note that for a process with a large number of arguments, the standard ps command displays
only a limited set of the arguments based on available space in the terminal window. In that
case, the BSD version of the ps command (available on Solaris as /usr/ucb/ps) can be used to
obtain the full command with all arguments, like:

/usr/ucb/ps auxwww {processID}

Troubleshooting the Metrics Engine

148

pstack

The pstack command can be used to obtain a native stack trace of all threads in a process.
While a native stack trace might not be as user-friendly as a Java stack trace obtained using
jstack, it includes threads that are not available in a Java stack trace. For example, the
command displays those threads used to perform garbage collection and other housekeeping
tasks. The general usage for the pstack command is:

pstack {processID}

dbx / gdb

A process debugger provides the ability to examine a process in detail. Like pstack, a debugger
can obtain a stack trace for all threads in the process, but it also provides the ability to examine
a process (or core file) in much greater detail, including observing the contents of memory at
a specified address and the values of CPU registers in different frames of execution. The GNU
debugger gdb is widely-used on Linux systems and is available on Solaris, but the Sun Studio
debugger dbx is generally preferred over gdb on Solaris.

Note that using a debugger against a live process interrupts that process and suspends its
execution until it detaches from the process. In addition, when running against a live process,
a debugger has the ability to actually alter the contents of the memory associated with that
process, which can have adverse effects. As a result, it is recommended that the use of a process
debugger be restricted to core files and only used to examine live processes under the direction
of your authorized support provider.

pfiles / lsof

To examine the set of files that a process is using (including special types of files, like sockets)
on Solaris, you can use the pfiles command, like:

pfiles {processID}

On Linux systems, the lsof tool can be used, like:

lsof -p {processID}

Tracing Process Execution

If a process is unresponsive but is consuming a nontrivial amount of CPU time, or if a process
is consuming significantly more CPU time than is expected, it might be useful to examine the
activity of that process in more detail than can be obtained using a point-in-time snapshot like
you can get with pstack or a debugger. For example, if a process is performing a significant
amount of disk reads and/or writes, it can be useful to see which files are being accessed.
Similarly, if a process is consistently exiting abnormally, then beginning tracing for that process
just before it exits can help provide additional information that cannot be captured in a core file
(and if the process is exiting rather than being terminated for an illegal operation, then no core
file may be available).

Troubleshooting the Metrics Engine

149

On Solaris systems, the dtrace tool provides an unmatched mechanism for tracing the execution
of a process in extremely powerful and flexible ways, but it is also relatively complex and
describing its use is beyond the scope of this document. In many cases, however, observing
the system calls made by a process can reveal a great deal about what it is doing. This can be
accomplished using the truss utility on Solaris or the strace tool on Linux.

The truss utility is very powerful and has a lot of options, but two of the most useful forms in
which it may be invoked are:

• truss -f -p {processID} – Provides a basic overview of all system calls being made by the
specified process (and any subprocesses that it creates) and their associated return values.

• truss -fear all -p {processID} – Provides an extremely verbose trace of all system call
activity, including details about data being read from or written to files and sockets.

In both cases, the output may be written to a file instead of the terminal window by adding the
-o {path} option. Further, rather than observing an already-running process, it is possible
to have truss launch the process and trace execution over its entire life span by replacing -p
{processID} with name and arguments for the command to invoke.

On Linux systems, the basic equivalent of the first truss variant above is:

strace -f -p {processID}

Consult the strace manual page for additional information about using it to trace process
execution on Linux.

Examining Network Communication

Because the UnboundID Metrics Engine is a network-based application, it can be valuable
to observe the network communication that it has with clients. The Metrics Engine itself can
provide details about its interaction with clients by enabling debugging for the protocol or data
debug categories, but there may be a number of cases in which it is useful to view information
at a much lower level. A network sniffer, like the snoop tool on Solaris or the tcpdump tool on
Linux, can be used to accomplish this.

There are many options that can be used with these tools, and their corresponding manual pages
will provide a more thorough explanation of their use. However, to perform basic tracing to
show the full details of the packets received for communication on port 389 with remote host
1.2.3.4, the following commands can be used on Solaris and Linux, respectively:

snoop -d {interface} -r -x 0 host 1.2.3.4 port 389
tcpdump -i {interface} -n -XX -s 0 host 1.2.3.4 and port 389

On Solaris systems, the snoop command provides enhanced support for parsing LDAP
communication (but only when the Metrics Engine is listening on the default port of 389). By
adding the "-v" argument to the snoop command line, a verbose breakdown of each packet will
be displayed, including protocol-level information. It does not appear that the tcpdump tool
provides support for LDAP parsing. However, in either case it is possible to write capture data
to a file rather than displaying information on the terminal (using "-o {path}" with snoop, or
"-w {path}" with tcpdump), so that information can be later analyzed with a graphical tool like
Wireshark, which provides the ability to interpret LDAP communication on any port.

Troubleshooting the Metrics Engine

150

Note that enabling network tracing generally requires privileges that are not available to normal
users and therefore may require root access. On Solaris systems, granting the net_rawaccess
privilege to a user should be sufficient to allow that user to run the snoop utility.

Troubleshooting Performance Problems

This section addresses some possible performance issues that the Metrics Engine may
experience. The Metrics Engine monitors itself at the same time that it monitors other servers, so
the historical view of the status and performance of the Metrics Engine is captured in the DBMS
and is available for historical analysis.

Example of Interpreting Performance Data to Troubleshoot Problems

This section describes troubleshooting system performance problems. It uses a contrived
example and answers the question of why an application, which was performing great 30
minutes ago, now exhibits terrible performance.

The help desk receives a phone call at 11:50 AM from a user indicating that application XYZ is
performing poorly. The help desk personnel check and all applicable servers appear to be up and
running, CPU utilization is within tolerance, and there are no observable network issues. After
30 minutes pass, the help desk staff make no progress with the issue and it gets escalated -- to
you.

The application in question is hosted on a pair of identity proxies with both servers sharing the
same pair of identity data stores in a round-robin configuration.

First, you get a plot of the average Identity Proxy response time that covers the time frame of the
initial complaint. This chart is captured using the following query-metric command:

$ bin/query-metric query --metric response-time --instanceType proxy \
 --startTime -1h

The command displays the following chart.

Troubleshooting the Metrics Engine

151

Figure 37: Proxy Server Response Time

This chart shows the problem that the user observed. Application response time tripled right
around the time they called in. The average shifted up, meaning that either a few request to
a really long time, or maybe everything slowed down. To get more information, you use the
query-metric command to get a plot of the application response time histogram over the same
time. The result is the following graph.

Figure 38: Application Response Time Histogram

Troubleshooting the Metrics Engine

152

The graph shows that no requests during this period took a really long time. So it appears that all
operations were slow, so we look at the external server health.

Figure 39: External Server Health

Here, we see an increase in response time that matches the decrease in external server health on
vm-02-nas:1389. So, the problem appears to be on that specific Identity Data Store. Next, we
look at what each Identity Data Store was doing.

Figure 40: Directory Operations in Progress

Troubleshooting the Metrics Engine

153

During the "bad" period from the first plot, we see that directory-11 (vm-02-nas:1389) stopped
doing anything. Something happened on directory-11 and then cleared up about 30 minutes
later. Finally, we consult the most recent status on directory-11 using the status command. We
see the following:

--- Administrative Alerts ---
Severity : Time : Message
---------:----------------------------:---
--

Error : 10/Sep/2012 11:47:39 -0500 : A severe backlog has been detected in the
Directory Server work queue. The operation currently at the head of the queue has
been waiting for 25785 milliseconds
Error : 10/Sep/2012 11:47:25 -0500 : A severe backlog has been detected in the
Directory Server work queue. The operation currently at the head of the queue has
been waiting for 11790 milliseconds
Warning : 10/Sep/2012 11:47:12 -0500 : The Directory Server has detected that the
amount of usable disk space is below the configured low disk space warning threshold
for the following path(s):
: : '/home/slj/deploy/ds2' (totalBytes:
18624344064, usableBytes: 1851559936, usablePercent: 10),
'/home/slj/deploy/ds2/changelogDb' (totalBytes: 18624344064,
: : usableBytes: 1851559936, usablePercent:
10), '/home/slj/deploy/ds2/config' (totalBytes: 18624344064, usableBytes:
1851559936, usablePercent: 10),
: : '/home/slj/deploy/ds2/db/changelog'
(totalBytes: 18624344064, usableBytes: 1851559936, usablePercent: 10),
'/home/slj/deploy/ds2/db/userRoot' (totalBytes:
: : 18624344064, usableBytes: 1851559936,
usablePercent: 10), '/home/slj/deploy/ds2/logs' (totalBytes: 18624344064,
usableBytes: 1851559936, usablePercent: 10)

Looking at the charts and server status above, you conclude that available disk space on
directory-11 went below the warning threshold for a period, resulting in the traffic shifting from
two identity data stores to only one for about 30 minutes. At the end of that time, both identity
data stores resumed normal operations and the response time returned to normal. What caused
the disk space to suddenly decrease is not known.

All of the charts above were captured using the query-metric tool of the Metrics Engine.
You can write a script that will capture historical information and use it to quickly analyze
performance problems that occurred hours, days, or even weeks ago with a high degree of
confidence.

Long Time Before Samples Appear in Queries

The delay between when a metric sample is capture and when it is available in the Metrics
Engine is a combination of queuing and polling delays. The default configuration allows the
monitored server queue samples in memory for up to 30 seconds before writing them to disk.
Samples are not available for the Metrics Engine to capture until after they are written to disk on
the monitored servers, so there is a delay of up to 30 seconds in queuing o the monitored server.

The Metrics Engine polls each monitored server every 30 seconds by default, looking for new
data. In a worst case, a sample may have been captured on the monitored server 60 seconds
before it has been captured and queued for import on the Metrics Engine. When all servers are
running normally, 60 seconds is the upper limit of a normal delay between when a sample is
captured on the monitored server and when it is available to a query on the Metrics Engine.

Sometimes there is a backlog of blocks of sample data to be imported into the Metrics Engine.
In this case, a sample block may be delayed by minutes or even hours before becoming available
to a query, in part because the import of sample blocks is a sequential operation. Fortunately,

Troubleshooting the Metrics Engine

154

you can easily observe this condition and predict when the backlog will be cleared and normal
latency can once again be expected.

Use the following URL in a browser to chart the number of sample blocks queued by the
Metrics Engine as a function of time over the past hour. You can estimate, using the downward
slope of the spike, how long it will take to clear the backlog.

http://<metrics-engine-host:port>/api/v1/metrics/monitor-import-queue-depth/chart?
maxIntervals=60&startTime=-1h

Below is a sample from a Metrics Engine that was shut down for 10 minutes. The spike that
occurs on startup results from the fact that all monitored servers continued to queue sample
blocks, and when the Metrics Engine started back up it fetched them and queued them for
import. You can see from the chart that about 1500 sample blocks were queued and it took the
Metrics Engine about three minutes to catch back up.

Figure 41: Import Queue Depth

If you choose to monitor over LDAP, the following LDAP entry contains the equivalent
information.

dn: cn=Aggregation,cn=monitor
 Attribute: import-queue - number of sample blocks waiting for import
 (should be close to zero)
 Attribute: import-load-delay-millis - milliseconds between when the
 sample block arrived and when it was imported
 (should be less than 5 seconds)
 Attribute: import-load-millis - milliseconds to load the block to DBMS
 (should be less than 50 milliseconds)
 Attribute: import-parse-millis - milliseconds to parse the block to a
 normalized form ready for import
 (should be less than 75 milliseconds)

The Metrics Engine captures and stores all of the data above, so you can easily go back and look
at the data's history to judge how well things are working.

Slow Queries for a Particular Metric

The Metrics Engine DBMS is designed for minimal space usage and the data in the samples
tables is eventually optimized for query performance. However, there are cases where some
queries may be slow. The expected query performance for a metric query should be less
than 500 milliseconds per query. If the Metrics Engine host system has adequate CPU and

Troubleshooting the Metrics Engine

155

disk performance, as well as enough RAM for both the Metrics Engine server process and
PostgreSQL DBMS processes, then 500 milliseconds or less per query is expected for most
queries. There are a few exceptions. Understanding the performance considerations can help you
improve query response time.

Some metric queries must read millions of records from the DBMS. If the query has not been
executed in the recent past, then chances are very good that all of the data will need to come
from disk. If the tables holding the data have been layout optimized, this process can take
several seconds. If the tables have not been layout optimized, this process can take more than
a minute. The Metrics Engine caches recent query results, so making the same query a second
time increases the likelihood that it can be much of the data from the sample cache, bypassing
the DBMS and reducing the overall query time.

If you have problems with a particular query and want to understand it better, enable the slow-
query-threshold property using dsconfig. Queries for the specified metric that take longer
than the threshold will print query statistics to the server's error log. The statistics include the
percentage of the query that was already in cache (as a function of time), the number of records
read from the DBMS, and how long the DBMS query took.

The following command causes any query for the throughput metric that take more than 500
milliseconds to have its query statistics printed to the server error log.

dsconfig set-monitoring-configuration-prop \
 --set slow-query-threshold-ms:500:throughput

For metrics that you know you want to query, but you cannot predict the frequency of the
queries, you can configure metric queries to run in the background. Running them in the
background keeps the metrics in the cache and avoids the slow first query. The slow-query
threshold setting above prints the command you should use to setup a prefetch query when
a query exceeds the specified slow-query-threshold. See the Prefetched Metric Query
configuration object with dsconfig for the details on how to configure this feature.

All Metric Queries are Slow

The evicted-count attribute of the sample cache sets the number of entries that have been
evicted from the cache due to a lack of space. If this attribute is much great than zero, the cache
is undersized for the query load placed on the server. You can increase the size of the sample
cache with the following command, which sets the maximum size to 200000.

dsconfig set-monitoring-configuration-prop \
 --set sample-cache-max-cached-series:200000

Some queries are so infrequent that the cached data expires due to age. The default age is ten
minutes, but this can be increased up to one hour. If you observer the expired-count monitor
attribute increasing between queries, you may consider increasing the idle timeout as follows:

dsconfig set-monitoring-configuration-prop \
 --set sample-cache-idle-series-timeout:20m

Troubleshooting the Metrics Engine

156

Strange Query Results for Time Ranges Ending Now

The query API attempts by default to aggregate samples across servers and dimension values.
Sometimes, the samples for different servers, or even different dimension values, are imported
into the Metrics Engine at different times. The only guarantee about the importing f metric
samples is that they will be imported in time-order for each server. You can not set the ordering
across servers and samples for a specific time may arrive in stages. So, a metric query that
aggregates across servers or dimensions may get partial data when the query time range ends
close to now. This problem is compounded when the monitored servers have significant clock
skew relative to each other, because samples are timestamped with the monitored server clock,
not the Metrics Engine clock. Since the query looks at a single time range, the more clock
skew the monitored servers have, the higher the probability of the results close to now looking
strange.

To illustrate this problem, consider the following example. We want to look at the throughput
metric for four proxy server. and we want to know how many LDAP operations have occurred
every minute of the last hour. The delay problem is most like to appear in the last minute,
because the DBMS has throughput data for some of the servers but not all. So, for 59 of the 60
minutes, the throughput data shows all four proxy servers. However, for the last minute, it only
has data for two of the four servers. The last sample has only half the value of all the others.
While it appears that throughput has dropped dramatically, in fact the last minute sample only
contains part of the data, the rest has not year arrived. This problem can occur for metrics that
are average-based (like response-time) as well, though it usually is not as dramatic.

If you see this behavior and want to understand it better, the API makes it very easy to
investigate. With the PI, you can pivot (split) the data by server and dimension and look at the
last few minutes. Since the API lets you format the results as an HTML table, you can see that
the data has not arrived and get a better idea of how to formulate your query to avoid this data
influx area.

The following sequence of API URLs return the last three minutes of data in 10-second
increments:

http://<metrics-engine-host:port>/api/v1/metrics/throughput/datatable?
maxIntervals=30&startTime=-3m;&tqx=out:html&tz=US/Central

http://<metrics-engine-host:port>/api/v1/metrics/throughput/datatable?
maxIntervals=30&startTime=-3m;&tqx=out:html&tz=US/Central&pivot=instance

http://<metrics-engine-host:port>/api/v1/metrics/throughput/datatable?
maxIntervals=30&startTime=-3m;&tqx=out:html&tz=US/Central&pivot=instance&pivot=op-type

The first URL aggregate all servers and LDAP operations into a single number split across time.
The second URL splits out the data by server and time. The third URL splits out the data by
server, LDAP operation, and time.

As you add dimension pivots (splits), you can see more clearly how the results are aggregations
of partial data, a fact that is particularly pronounced in the most recent 60 seconds. The Metrics
Engine is especially good at processing large flows of data, but less well suited to low latency
reporting.

Troubleshooting the Metrics Engine

157

Note that this behavior is not limited to the most recent 60 seconds. If a server stops reporting
metric samples for any reason, this behavior will occur. A server can remain active with LDAP
activity but be inaccessible to the Metrics Engine (for example, if the WAN link is disrupted) for
a period of time, and the same pattern will be visible in the data. However, this occurs almost all
the time within the most recent 30 to 60 seconds.

Optimizing the Layout of the Sample Data Table

The Metrics Engine loads data into the sample data tables in close to chronological order, so that
the records in the table are essentially time continguous. Sample data tables are partitioned by
time, so that all samples for a given time range are in a single partition. While the insert order
does not guarantee the record layout on disk, the records will not be optimized for the supported
queries. A sample block may contain samples for 50 different metrics, such that the metric of
interest for a query only occurs every 50 records. As a result, the DBMS storage may contain
only one record in each DBMS disk page, which is pathological for query performance. The
Metrics Engine compensates for this by optimizing the partition when it believe no new records
will be added (at the end of the time range the partition supports). This optimization takes up
to a minute while it rewrites the entire partition in an order that matches the index order used
for metric queries. Query performance for an unoptimized partition is about 80% slower than
performance for an optimized partition. This simple background task is critical for good query
performance. If a query arrives during partition optimization and needs data from the partition
being optimized, the query will be blocked until optimization completes.

Troubleshooting the Metrics Engine API

When making requests of the Metrics Engine API, you may get an HTTP response indicating
an internal server error (HTTP code 500). These errors may indicate a problem processing the
request that resulted in an exception. If you encounter this error, enable the debug logger for
the API resources, as the UnboundID support staff will need the debug log to help diagnose the
problem. Enable the debug logger as follows:

dsconfig create-debug-target --publisher-name "File-Based Debug Logger" \
 --target-name com.unboundid.directory.mon.api.v1.resources --set debug-level:info \
 --set include-throwable-cause:true

Common Problems and Potential Solutions

This section describes a number of different types of problems that can occur and common
potential causes for them.

The Server Will Not Run Setup

If the setup tool does not run properly, some of the most common reasons include the
following:

Troubleshooting the Metrics Engine

158

A Suitable Java Environment Is Not Available

The UnboundID Metrics Engine requires that Java be installed on the system and made available
to the server, and it must be installed prior to running setup. If the setup tool does not detect
that a suitable Java environment is available, it will refuse to run.

To ensure that this does not happen, the setup tool should be invoked with an explicitly-defined
value for the JAVA_HOME environment variable that specifies the path to the Java installation
that should be used. For example:

env JAVA_HOME=/ds/java ./setup

If this still does not work for some reason, then it can be that the value specified in the provided
JAVA_HOME environment variable can be overridden by another environment variable. If that
occurs, try the following command, which should override any other environment variables that
can be set:

env UNBOUNDID_JAVA_HOME="/ds/java" UNBOUNDID_JAVA_BIN="" ./setup

Unexpected Arguments Provided to the JVM

If the setup script attempts to launch the java command with an invalid set of Java arguments,
it might prevent the JVM from starting. By default, no special options are provided to
the JVM when running setup, but this might not be the case if either the JAVA_ARGS or
UNBOUNDID_JAVA_ARGS environment variable is set. If the setup tool displays an error
message that indicates that the Java environment could not be started with the provided set of
arguments, then invoke the following command before trying to re-run setup:

unset JAVA_ARGS UNBOUNDID_JAVA_ARGS

The Server Has Already Been Configured or Used

The setup tool is only intended to provide the initial configuration for the Metrics Engine. It
refuses to run if it detects that the setup tool has already been run, or if an attempt has been
made to start the Metrics Engine prior to running the setup tool. This protects an existing
Metrics Engine installation from being inadvertently updated in a manner that could harm an
existing configuration or data set.

If the Metrics Engine has been previously used and if you want to perform a fresh installation,
it is recommended that you first remove the existing installation, create a new one and run
setup in that new installation. However, if you are confident that there is nothing of value in
the existing installation (for example, if a previous attempt to run setup failed to complete
successfully for some reason but it will refuse to run again), the following steps can be used to
allow the setup program to run:

• Remove the config/config.ldif file and replace it with the config/update/
config.ldif.{revision} file containing the initial configuration.

• If there are any files or subdirectories below the db directory, then remove them.

• If a config/java.properties file exists, then remove it.

Troubleshooting the Metrics Engine

159

• If a lib/setup-java-home script (or lib\set-java-home.bat file on Microsoft Windows)
exists, then remove it.

The Server Will Not Start

If the Metrics Engine does not start, then there are a number of potential causes.

The Server or Other Administrative Tool Is Already Running

Only a single instance of the Metrics Engine can run at any time from the same installation root.
If an instance is already running, then subsequent attempts to start the server will fail. Similarly,
some other administrative operations can also prevent the server from being started. In such
cases, the attempt to start the server should fail with a message like:

The Metrics Engine could not acquire an exclusive lock on file
/ds/UnboundID-Metrics-Engine/locks/server.lock: The exclusive lock requested for file
/ds/UnboundID-Metrics-Engine/locks/ server.lock was not granted, which indicates
that another process already holds a shared or exclusive lock on that
file. This generally means that another instance of this server is already
running

If the Metrics Engine is not running (and is not in the process of starting up or shutting down)
and there are no other tools running that could prevent the server from being started, and the
server still believes that it is running, then it is possible that a previously-held lock was not
properly released. In that case, you can try removing all of the files in the locks directory before
attempting to start the server.

If you wish to have multiple instances running at the same time on the same system, then you
should create a completely separate installation in another location on the filesystem.

There Is Not Enough Memory Available

When the Metrics Engine is started, the JVM attempts to allocate all memory that it has been
configured to use. If there is not enough free memory available on the system, then the Metrics
Engine generates an error message that indicates that the server could not be started with
the specified set of arguments. Note that it is possible that an invalid option was provided to
the JVM (as described below), but if that same set of JVM arguments has already been used
successfully to run the server, then it is more likely that the system does not have enough
memory available.

There are a number of potential causes for this:

• If the amount of memory in the underlying system has changed (for example, system
memory has been removed, or if the Metrics Engine is running in a zone or other type of
virtualized container and a change has been made to the amount of memory that container
will be allowed to use), then the Metrics Engine might need to be re-configured to use a
smaller amount of memory than had been previously configured.

• Another process running on the system is consuming a significant amount of memory so
that there is not enough free memory available to start the server. If this is the case, then

Troubleshooting the Metrics Engine

160

either terminate the other process to make more memory available for the Metrics Engine, or
reconfigure the Metrics Engine to reduce the amount of memory that it attempts to use.

• The Metrics Engine was just shut down and an attempt was made to immediately restart it.
In some cases, if the server is configured to use a significant amount of memory, then it can
take a few seconds for all of the memory that had been in use by the server, when it was
previously running, to be released back to the operating system. In that case, run the vmstat
command and wait until the amount of free memory stops growing before attempting to
restart the server.

• For Solaris-based systems only, if the system has one or more ZFS filesystems (even if the
Metrics Engine itself is not installed on a ZFS filesystem), but it has not been configured
to limit the amount of memory that ZFS can use for caching, then it is possible that ZFS
caching is holding onto a significant amount of memory and cannot release it quickly enough
when it is needed by the Metrics Engine. In that case, the system should be re-configured to
limit the amount of memory that ZFS is allowed to use as described in the Using the Collect
Support Data Tool.

• If the system is configured with one or more memory-backed filesystems, for example,
tmpfs used for /tmp for Solaris), then look to see if there are any large files that can be
consuming a significant amount of memory in any of those locations. If so, then remove
them or relocate them to a disk-based filesystem.

• For Linux systems only, if there is a mismatch between the huge pages setting for the JVM
and the huge pages reserved in the operating system. For more information, see Configure
Huge Page Support (Linux).

If nothing else works and there is still not enough free memory to allow the JVM to start, then as
a last resort, try rebooting the system.

An Invalid Java Environment or JVM Option Was Used

If an attempt to start the Metrics Engine fails with an error message indicating that no valid Java
environment could be found, or indicates that the Java environment could not be started with
the configured set of options, then you should first ensure that enough memory is available on
the system as described above. If there is a sufficient amount of memory available, then other
causes for this error can include the following:

• The Java installation that was previously used to run the server no longer exists (for example,
an updated Java environment was installed and the old installation was removed). In
that case, update the config/java.properties file to reference to path to the new Java
installation and run the bin/dsjavaproperties command to apply that change.

• The Java installation used to run the server has been updated and the server is trying to
use the correct Java installation but one or more of the options that had worked with the
previous Java version no longer work with the new version. In that case, it is recommended
that the server be re-configured to use the previous Java version, so that it can be run while
investigating which options should be used with the new installation.

• If an UNBOUNDID_JAVA_HOME or UNBOUNDID_JAVA_BIN environment variable is
set, then its value may override the path to the Java installation used to run the server as
defined in the config/java.properties file. Similarly, if an UNBOUNDID_JAVA_ARGS

Troubleshooting the Metrics Engine

161

environment variable is set, then its value might override the arguments provided to
the JVM. If this is the case, then explicitly unset the UNBOUNDID_JAVA_HOME,
UNBOUNDID_JAVA_BIN, and UNBOUNDID_JAVA_ARGS environment variables before
trying to start the server.

Note that any time the config/java.properties file is updated, the bin/dsjavaproperties
tool must be run to apply the new configuration. If a problem with the previous Java
configuration prevents the bin/dsjavaproperties tool from running properly, then it can
be necessary to remove the lib/set-java-home script (or lib\set-java-home.bat file on
Microsoft Windows) and invoke the bin/dsjavaproperties tool with an explicitly-defined
path to the Java environment, like:

env UNBOUNDID_JAVA_HOME=/ds/java bin/dsjavaproperties

An Invalid Command-Line Option Was Provided

There are a small number of arguments that are provided when running the bin/start-ds
command, but in most cases, none are required. If one or more command-line arguments were
provided for the bin/start-ds command and any of them is not recognized, then the server
provides an error message indicating that an argument was not recognized and displays version
information. In that case, correct or remove the invalid argument and try to start the server
again.

The Server Has an Invalid Configuration

If a change is made to the Metrics Engine configuration using an officially-supported tool
like dsconfig or the Management Console, the server should validate that configuration
change before applying it. However, it is possible that a configuration change can appear to be
valid at the time that it is applied, but does not work as expected when the server is restarted.
Alternately, a change in the underlying system can cause a previously-valid configuration to
become invalid.

In most cases involving an invalid configuration, the Metrics Engine displays (and writes to the
error log) a message that explains the problem, and this can be sufficient to identify the problem
and understand what action needs to be taken to correct it. If for some reason the startup failure
does not provide enough information to identify the problem with the configuration, then look in
the logs/config-audit.log file to see what recent configuration changes have been made with
the server online, or in the config/archived-configs directory to see if there might have been
a recent configuration change resulting from a direct change to the configuration file itself that
was not made through a supported configuration interface.

If the server does not start as a result of a recent invalid configuration change, then it can be
possible to start the server using the configuration that was in place the last time that the server
started successfully (for example, the "last known good" configuration). This can be achieved
using the --useLastKnownGoodConfig option:

$ bin/start-ds --useLastKnownGoodConfig

Note that if it has been a long time since the last time the server was started and a number of
configuration changes have been made since that time, then the last known good configuration

Troubleshooting the Metrics Engine

162

can be significantly out of date. In such cases, it can be preferable to manually repair the
configuration.

If there is no last known good configuration, if the server no longer starts with the last known
good configuration, or if the last known good configuration is significantly out of date, then
manually update the configuration by editing the config/config.ldif file. In that case,
you should make sure that the server is offline and that you have made a copy of the existing
configuration before beginning. You might wish to discuss the change with your authorized
support representative before applying it to ensure that you understand the correct change that
needs to be made.

Note: In addition to manually-editing the config file, you can look at
previous achived configurations to see if the most recent one works. You can
also use the ldif-diff tool to compare the configurations in the archive to
the current configuration to see what is different.

You Do Not Have Sufficient Permissions

The Metrics Engine should only be started by the user or role used to initially install the server.
In most cases, if an attempt is made to start the server as a user or role other than the one used
to create the initial configuration, then the server will fail to start, because the user will not have
sufficient permissions to access files owned by the other user, such as database and log files.
However, if the server was initially installed as a non-root user and then the server is started by
the root account, then it can no longer be possible to start the server as a non-root user because
new files that are created would be owned by root and could not be written by other users.

If the server was inadvertently started by root when it is intended to be run by a non-root user,
or if you wish to change the user account that should be used to run the server, then it should be
sufficient to simply change ownership on all files in the Metrics Engine installation, so that they
are owned by the user or role under which the server should run. For example, if the Metrics
Engine should be run as the "ds" user in the "other" group, then the following command can be
used to accomplish this (invoked by the root user):

chown -R ds:other /ds/UnboundID-Metrics-Engine

The Server Has Crashed or Shut Itself Down

You can first check the current server state by using the bin/server-state command. If
the Metrics Engine was previously running but is no longer active, then the potential reasons
include the following:

• The Metrics Engine was shut down by an administrator. Unless the server was forcefully
terminated (for example, using “kill -9”), then messages are written to the error and
server.out logs explaining the reason for the shutdown.

• The Metrics Engine was shut down when the underlying system crashed or was rebooted. If
this is the case, then running the uptime command on the underlying system shows that it
was recently booted.

Troubleshooting the Metrics Engine

163

• The Metrics Engine process was terminated by the underlying operating system for some
reason (for example, the out of memory killer on Linux). If this happens, then a message will
be written to the system error log.

• The Metrics Engine decided to shut itself down in response to a serious problem that had
arisen. At present, this should only occur if the server has detected that the amount of usable
disk space has become critically low, or if significant errors have been encountered during
processing that left the server without any remaining worker threads to process operations. If
this happens, then messages are written to the error and server.out logs (if disk space is
available) to provide the reason for the shutdown.

• The JVM in which the Metrics Engine was running crashed. If this happens, then the JVM
should dump a fatal error log (a hs_err_pid{processID}.log file) and potentially a core
file.

In the event that the operating system itself crashed or terminated the process, then you should
work with your operating system vendor to diagnose the underlying problem. If the JVM
crashed or the server shut itself down for a reason that is not clear, then contact your authorized
support provider for further assistance.

The Server Will Not Accept Client Connections

You can first check the current server state by using the bin/server-state command. If the
Metrics Engine does not appear to be accepting connections from clients, then potential reasons
include the following:

• The Metrics Engine is not running.

• The underlying system on which the Metrics Engine is installed is not running.

• The Metrics Engine is running but is not reachable as a result of a network or firewall
configuration problem. If that is the case, then connection attempts should time out rather
than be rejected.

• If the Metrics Engine is configured to allow secure communication via SSL or StartTLS, then
a problem with the key manager and/or trust manager configuration can cause connections
to be rejected. If that is the case, then messages should be written to the server access log for
each failed connection attempt.

• If the Metrics Engine has been configured with a maximum allowed number of connections,
then it can be that the maximum number of allowed client connections are already
established. If that is the case, then messages should be written to the server access log for
each rejected connection attempt.

• If the Metrics Engine is configured to restrict access based on the address of the client, then
messages should be written to the server access log for each rejected connection attempt.

• If a connection handler encounters a significant error, then it can stop listening for new
requests. If this occurs, then a message should be written to the server error log with
information about the problem. Another solution is to restart the server. A third option is to
restart the connection handler using the LDIF connection handler to make it available again.
To do this, create an LDIF file that disables and then re-enables the connection handler,

Troubleshooting the Metrics Engine

164

create the config/auto-process-ldif directory if it does not already exist, and then copy
the LDIF file into it.

The Server is Unresponsive

You can first check the current server state by using the bin/server-state command. If the
Metrics Engine process is running and appears to be accepting connections but does not respond
to requests received on those connections, then potential reasons for this behavior include:

• If all worker threads are busy processing other client requests, then new requests that arrive
will be forced to wait in the work queue until a worker thread becomes available. If this is
the case, then a stack trace obtained using the jstack command shows that all of the worker
threads are busy and none of them are waiting for new requests to process.

Note: If all of the worker threads are tied up processing the same
operation for a long time, the server will also issue an alert that it might be
deadlocked, which may not actually be the case. All threads might be tied
up processing unindexed searches.

• If a request handler is stuck performing some expensive processing for a client connection,
then other requests sent to the server on connections associated with that request handler is
forced to wait until the request handler is able to read data on those connections. If this is the
case, then only some of the connections can experience this behavior (unless there is only
a single request handler, in which it will impact all connections), and stack traces obtained
using the jstack command shows that a request handler thread is continuously blocked
rather than waiting for new requests to arrive. Note that this scenario is a theoretical problem
and one that has not appeared in production.

• If the JVM in which the Metrics Engine is running is not properly configured, then it can
be forced to spend a significant length of time performing garbage collection, and in severe
cases, could cause significant interruptions in the execution of Java code. In such cases, a
stack trace obtained from a pstack of the native process should show that most threads are
idle but at least one thread performing garbage collection is active. It is also likely that one or
a small number of CPUs is 100% busy while all other CPUs are mostly idle. The server will
also issue an alert after detecting a long JVM pause (due to garbage collection). The alert will
include details of the pause.

• If the JVM in which the Metrics Engine is running has hung for some reason, then the
pstack utility should show that one or more threads are blocked and unable to make
progress. In such cases, the system CPUs should be mostly idle.

• If a network or firewall configuration problem arises, then attempts to communicate with the
server cannot be received by the server. In that case, a network sniffer like snoop or tcpdump
should show that packets sent to the system on which the Metrics Engine is running are not
receiving TCP acknowledgement.

• If the system on which the Metrics Engine is running has become hung or lost power with
a graceful shutdown, then the behavior is often similar to that of a network or firewall
configuration problem.

Troubleshooting the Metrics Engine

165

If it appears that the problem is with the Metrics Engine software or the JVM in which it is
running, then you need to work with your authorized support provider to fully diagnose the
problem and determine the best course of action to correct it.

Problems with the Management Console

If a problem arises when trying to use the Management Console, then potential reasons for the
problem may include the following:

• The web application container used to host the console is not running. If an error occurs
while trying to start it, then consult the logs for the web application container.

• If a problem occurs while trying to authenticate to the web application container, then make
sure that the target Metrics Engine is online. If it is online, then the access log may provide
information about the reasons for the authentication failure.

• If a problem occurs while attempting to interact with the Identity Proxy instance using the
Management Console, then the access and error logs for that Metrics Engine instance might
provide additional information about the underlying problem.

Providing Information for Support Cases

If a problem arises that you are unable to fully diagnose and correct on your own, then contact
your authorized support provider for assistance. To ensure that the problem can be addressed
as quickly as possible, be sure to provide all of the information that the support personnel may
need to fully understand the underlying cause by running the collect-support-data tool, and
then sending the generated zip file to your authorized support provider. It is good practice to run
this tool and send the ZIP file to your authorized support provider before any corrective action
has taken place.

Troubleshooting the Metrics Engine

166

	Contents
	Copyright
	Preface
	Purpose of This Guide
	Audience
	Related Documentation
	Document Conventions

	Overview of the Metrics Engine
	Overview of the Metrics Engine
	About Data Collection

	Installing the Server
	Before You Begin
	Supported Operating Platforms
	Software Requirements
	Installing Java
	To Install Java (Oracle/Sun)
	To Install Java (IBM)

	About the PostgreSQL DBMS
	Preparing the Operating System (Solaris)
	Using ZFS
	To Restrict ZFS Memory Consumption
	To Limit ZFS Transaction Group Writes
	ZFS Access to Underlying Disks
	Configuring ZFS Compression
	To Configure ZFS Compression

	Preparing the Operating System (Linux)
	To Set the File Descriptor Limit (Linux)
	To Set the Filesystem Flushes
	About Editing OS-Level Environment Variables
	Install sysstat and pstack (Red Hat)
	Install dstat (SUSE Linux)
	To Disable Filesystem Swapping
	To Set noatime on ext3 and ext 4 Systems
	Configuring Huge Page Support (Linux)
	To Configure Huge Page Support on Releases Prior to Redhat Enterprise Linux Server 6.0

	Running as a Non-Root User
	Running as a Non-Root User (Linux)
	Creating a Solaris Role
	To Create a Solaris Role for Multiple Administrators

	Installation Process Overview
	Configuring the External Servers
	Preparing the Servers Monitored by the Metrics Engine
	Configuring the Processing Time Histogram Plugin
	Setting the Connection Criteria to Collect SLA Statistics by Application
	Updating the Global Configuration

	Notes on the PostgreSQL Database Setup
	About Setting Up the PostgreSQL DBMS Database
	Tuning the PostgreSQL Configuration

	Installing the Metrics Engine
	To Install the Metrics Engine

	Configuring the Metrics Engine
	About the monitored-servers Tool
	About Adding Individual Servers Using dsconfig
	To Configure the Metrics Engine
	To Add Individual Monitored Servers Using dsconfig

	Running the Metrics Engine
	Starting the Metrics Engine
	To Start the Metrics Engine as a Background Process
	To Start the Metrics Engine as a Foreground Process
	To Start the Metrics Engine at Boot Time

	To Stop the Metrics Engine
	To Restart the Metrics Engine

	Installing the Management Console
	To Install the Management Console Out of the Box
	Logging into the Management Console
	To Log into the Management Console

	Fine-Tuning the Management Console
	To Configure One or More Primary Servers for the Console
	To Configure SSL for the Primary Console Server
	To Configure a Truststore for the Console

	Upgrading the Management Console
	To Upgrade the Management Console

	Backing Up the Metrics Engine DBMS
	About Backing Up DBMS Data
	About Historical Data Storage
	Determining What Data to Backup
	Implications of Restoring Data
	Planning for Periodic Backups

	Before You Begin Your Backup
	How to Backup the Database
	How to Restore the Database
	Excluding Data from Specific Aggregation Levels

	Performing a Full Backup
	How to Export and Import the Database

	Uninstalling the Metrics Engine
	To Uninstall the Metrics Engine in Interactive Mode
	Uninstalling the Metrics Engine in Non-Interactive Mode
	To Uninstall the Metrics Engine in Non-Interactive Mode
	To Uninstall Selected Components in Non-Interactive Mode

	Uninstalling the Management Console
	To Uninstall the Management Console

	Cleaning Up the PostgreSQL DBMS After Uninstall

	Configuring Charts
	Customizing the Identity Broker Dashboard
	About the Metrics Engine Documentation
	About the Chart Builder Tool
	About the Dashboard Files
	About the Chart Properties File
	To Create a New Dashboard Chart Definition
	Testing the Dashboard Changes

	Data Collection and Metrics
	Overview of Metrics Concepts
	About Analyzing Aggregated Data
	About the Types of Metrics
	About Dimensions

	Overview of Query Concepts
	Selecting Query Data
	Aggregating the Query Result
	Formatting the Query Result

	About the Data Collection Process
	About Performance Data

	About the Collection of System Monitoring Data
	About the External Collector Daemon

	About Monitored Server Clock Skew
	Tuning Data Collection
	Reducing the Data Collected
	Reducing the Frequency of Data Collection
	Reducing the Frequency of Sample Block Creation
	Reducing Metrics Engine Impact on Performance

	About Data Processing on the Metrics Engine
	Data Importing
	Data Aggregation

	Accessing Monitoring Data
	Monitoring Service Level Agreements
	About the Monitoring Thresholds
	To Configure a Service Level Agreement (SLA)

	Accessing the Metrics Engine Data
	About the query-metric tool
	Using the Query Metric Tool
	About the Query Metric Explore Command HTML Pages

	About the Metrics Engine API
	Metrics Engine API Reference
	Connection Security and Authentication
	To Enable REST API Authentication
	To Add a REST API User

	Tuning the RESTful API Service
	Listing Monitored Instances
	Retrieving a Monitored Instance
	Listing Available Metrics
	Retrieving a Metric Definition
	Performing a Metric Query
	Data Set Structure
	Chart Image
	Google Chart Tools Datasource Protocol

	Accessing Alerts Collected by the Metrics Engine
	LDAP SLA API
	Retrieving the SLA Object

	Pagination
	Response Codes

	Managing the Metrics Engine
	Working With Logs
	Creating New Log Publishers
	To Create a New Log Publisher
	To Create a Log Publisher Using dsconfig Interactive Command-Line Mode

	Configuring Log Rotation
	To Configure the Log Rotation Policy

	Configuring Log Retention
	To Configure the Log Retention Policy

	Managing the File-Based Error Log Publisher
	Error Log Example
	To Modify the File-Based Error Logs

	Monitoring the Metrics Engine
	Monitoring Disk Space Usage

	Monitoring with JMX
	Running JConsole
	Monitoring the Metrics Engine Using JConsole

	Managing Notifications and Alerts
	Working with Administrative Alert Handlers
	Administrative Alert Types

	Configuring the JMX Connection Handler and Alert Handler
	To Configure the JMX Connection Handler
	To Configure the JMX Alert Handler

	Configuring the SMTP Alert Handler
	Configuring the SMTP Alert Handler

	Configuring the SNMP Subagent Alert Handler
	To Configure the SNMP Subagent Alert Handler

	Working with the Alerts Backend
	To View Information in the Alerts Backend
	To Modify the Alert Retention Time
	To Configure Duplicate Alert Suppression

	Command-Line Tools
	Using the Help Option
	Available Command-Line Utilities
	Managing the tools.properties File
	Creating a Tools Properties File
	Tool-Specific Properties
	Specifying Default Properties Files
	Evaluation Order Summary
	Evaluation Order Example

	Troubleshooting the Metrics Engine
	Debugging the Metrics Engine
	Working with the Troubleshooting Tools
	Working with the Collect Support Data Tool
	To Run the Collect Support Data Tool

	Metrics Engine Troubleshooting Tools
	Server Version Information
	Embedded Profiler
	To Invoke the Profile Viewer in Text-based Mode
	To Invoke the Profile Viewer in GUI Mode

	Troubleshooting Resources for Java Applications
	Java Troubleshooting Documentation (Oracle/Sun JDK)
	Java Troubleshooting Tools (Oracle/Sun JDK)
	jps
	jstack
	jmap
	jhat
	jstat

	Java Diagnostic Information
	JVM Crash Diagnostic Information

	Java Troubleshooting Tools (IBM JDK)

	Troubleshooting Resources in the Operating System
	Identifying Problems with the Underlying System
	Examining CPU Utilization
	System-Wide CPU Utilization
	Per-CPU Utilization
	Per-Process Utilization

	Examining Disk Utilization
	Examining Process Details
	ps
	pstack
	dbx / gdb
	pfiles / lsof

	Tracing Process Execution
	Examining Network Communication

	Troubleshooting Performance Problems
	Example of Interpreting Performance Data to Troubleshoot Problems
	Long Time Before Samples Appear in Queries
	Slow Queries for a Particular Metric
	All Metric Queries are Slow
	Strange Query Results for Time Ranges Ending Now
	Optimizing the Layout of the Sample Data Table

	Troubleshooting the Metrics Engine API
	Common Problems and Potential Solutions
	The Server Will Not Run Setup
	A Suitable Java Environment Is Not Available
	Unexpected Arguments Provided to the JVM
	The Server Has Already Been Configured or Used

	The Server Will Not Start
	The Server or Other Administrative Tool Is Already Running
	There Is Not Enough Memory Available
	An Invalid Java Environment or JVM Option Was Used
	An Invalid Command-Line Option Was Provided
	The Server Has an Invalid Configuration
	You Do Not Have Sufficient Permissions

	The Server Has Crashed or Shut Itself Down
	The Server Will Not Accept Client Connections
	The Server is Unresponsive
	Problems with the Management Console
	Providing Information for Support Cases

	Index

