
Release 7.3.0.3

Server Administration Guide

PingDataGovernance | Contents | ii

Contents

PingDataGovernance
™

 Product Documentation.......................................5

Introduction to PingDataGovernance Server..5
Key components..5
What's new.. 6

Explore PingDataGovernance Server..6
System entropy..7
About the tools.properties file... 7
System requirements...7

Platforms... 7
Docker...8
Java Runtime Environment.. 8
Browsers... 8

Install and configure PingDataGovernance Server...8
Install PingDirectory Server.. 9
Install PingDataGovernance Server... 9
Configure the PingDataGovernance User Store.. 10
Configure the PingDataGovernance OAuth subject search... 10
Configure PingDataGovernance logging.. 11

Install and configure the PingDataGovernance Policy Administration GUI.......................................11
Import default policies... 13

Configure PingDataGovernance Server for policy development.. 14
Create the first API policy... 15

Configure the API security gateway...15
Add a policy for programming jokes.. 19
Add a policy for the user city... 26
Example files.. 29

Create the first SCIM policies... 29
Create the policy tree...30
Create SCIM access token policies... 31
Create a policy for role-based access control..42
Example files.. 44

About the API security gateway.. 44
Request and response flow.. 44
Gateway configuration basics... 46
API security gateway authentication... 46
API security gateway policy requests... 47

Policy request attributes... 47
Gateway API Endpoint configuration properties that affect policy requests........................... 51
Path parameters... 52

About error templates..52
Example.. 53

PingDataGovernance | Contents | iii

About the Sideband API... 54
API gateway integration.. 54
Sideband API configuration basics... 56
Sideband API authentication...56

Authenticating to the Sideband API... 57
Authenticating API server requests..58

Sideband API policy requests... 59
Policy request attributes... 59
Sideband API Endpoint configuration properties..63
Path parameters... 63

Error templates.. 64
Error templates: Example...65

About the SCIM service.. 65
Request and response flow.. 66
SCIM configuration basics...68

About the create-initial-config tool..68
Example: Mapped SCIM resource type for devices...68

SCIM endpoints... 70
SCIM authentication.. 71
SCIM policy requests.. 72

Policy request attributes... 72
About SCIM searches...76

Lookthrough limit... 77
Disable the SCIM REST API.. 78

Policy administration.. 78
Create policies in a development environment...78

Change the active policy branch..78
Use policies in a production environment...79

Default policies... 79
Customized policies..80

Environment-specific Trust Framework attributes...80
Store keys and values in PingDataGovernance Server...81
External PDP mode..82
Embedded PDP mode..88

Advice.. 89
Add Filter.. 90
Allow Attributes... 90
Combine SCIM Search Authorizations...90
Denied Reason... 91
Exclude Attributes...91
Filter Response...91
Include Attributes.. 92
Prohibit Attributes... 93

Access token validators... 93
About access token validator processing... 93
Access token validator types.. 95

PingFederate access token validator... 95
JWT access token validator... 96

PingDataGovernance | Contents | iv

Mock access token validator.. 97
Third-party access token validator... 98

Server configuration..98
Administration accounts.. 98
About the dsconfig tool... 98
PingDataGovernance Administration Console...99
About the configuration audit log.. 99
About the config-diff tool... 100
Certificates... 100

Inter-server certificate... 101
Server certificate...104

Capture debugging data... 108
Export policy data..108
Enable detailed logging...109

Policy Decision logger.. 109
Debug Trace logger..109
Debug logger.. 110

Trace a policy-decision response... 110
Capture debugging data with the collect-support-data tool...112

PingDataGovernance Policy Administration GUI single sign-on........112
Reconfigure the PingDataGovernance Policy Administration GUI..112
PingFederate dependencies..113
PingFederate example configuration...113

OAuth server settings...114
Identity provider settings...116

Upgrade PingDataGovernance Server...116
Upgrade overview and considerations.. 116
Upgrading PingDataGovernance Server...117
Reverting an update..117

PingDataGovernance Server 7.3.0.3 Release Notes.............................118

PingDataGovernance Server Release Notes archive........................... 118
PingDataGovernance Server 7.3.0.2 Release Notes..118
PingDataGovernance Server 7.3.0.1 Release Notes..120
PingDataGovernance Server 7.3.0.0 Release Notes..121

Index.. 129

PingDataGovernance | PingDataGovernance™ Product Documentation | 5

PingDataGovernance™ Product Documentation

© Copyright 2004-2019 Ping Identity® Corporation. All rights reserved.
© Copyright 2014-2019 Symphonic Software® Limited. All rights reserved.

Trademarks

Ping Identity, the Ping Identity logo, PingFederate, PingAccess, and PingOne are registered trademarks of
Ping Identity Corporation ("Ping Identity"). All other trademarks or registered trademarks are the property of
their respective owners.

Disclaimer

The information provided in these documents is provided "as is" without warranty of any kind. Ping
Identity disclaims all warranties, either express or implied, including the warranties of merchantability and
fitness for a particular purpose. In no event shall Ping Identity or its suppliers be liable for any damages
whatsoever including direct, indirect, incidental, consequential, loss of business profits or special damages,
even if Ping Identity or its suppliers have been advised of the possibility of such damages. Some states
do not allow the exclusion or limitation of liability for consequential or incidental damages so the foregoing
limitation may not apply.

Support

https://support.pingidentity.com/

Introduction to PingDataGovernance Server

PingDataGovernance Server provides a policy-based security layer for protecting consumer data.

Increasingly, enterprises grant their users more control over their data privacy. While previous use cases
were typically simple, like a user opting out of an email newsletter. current use cases are growing more
sophisticated. In health care, for example, patients can grant family members and other third parties partial
or full access to their health records. Similarly, banking customers frequently control the account data that
is shared with different third parties.

The sophistication of modern, user-managed data privacy places increasing demands on security
professionals and API developers to ensure that user preferences and other policies are enforced in
partner and application APIs. Mistakes often result in costly data breaches as well as a loss of trust.

As an API security gateway to user-related data APIs, PingDataGovernance provides organizations with
an additional layer of protection to prevent data breaches. Organizations can add policy to complete the
following tasks:

• Inspect the content of API requests and responses
• Verify user preferences and other attributes
• Allow, deny, or sanitize specific API data

Key components
• PingDataGovernance Policy Administration GUI – Powered by Symphonic®, the

PingDataGovernance Policy Administration GUI gives policy administrators the ability to author and test
security and business policies. The GUI is divided into the following sections:

• In the Trust Framework, administrators define the entities and abstractions for the information that
a policy uses.

PingDataGovernance | Explore PingDataGovernance Server | 6

• In Policies, administrators define the hierarchies of conditions and rules to evaluate data and make
policy decisions.

• API security gateway – In PingDataGovernance Server, the API security gateway invokes the policy
engine to evaluate API requests, and then enforces the policy decisions. Policy decisions can result in
many outcomes, including allowing or denying an API request, and filtering or altering an API response.

What's new
PingDataGovernance 7.3 brings major changes compared to earlier versions.

Fundamentally, PingDataGovernance has always been and continues to be a solution for protecting
access to sensitive or regulated consumer data. In earlier versions, PingDataGovernance focused
almost entirely on the fine-grained protection of user-profile data. PingDataGovernance 7.3 expands its
applicability to provide fine-grained protection to the user-related data that is shared through your partner
and application APIs.

This expansion of applicability results in the following additions and changes:

• Earlier versions of PingDataGovernance focused on enforcing policy on SCIM-based APIs. This
approach worked for IAM teams that built solutions in need of identity APIs. However, the application
and platform APIs through which enterprises share user-related data already exist, and they are
incompatible with SCIM. The capability to define new SCIM-based APIs still exists, but now the existing
application and platform APIs can also be proxied.

• Earlier versions emphasized the promotion of meaningful OAuth scopes, with each version possessing
a fine-grained configuration for the allowed operations on SCIM resource attributes. Although the
best practices for meaningful or semantic OAuth scopes remain important to the design of new
APIs, existing enterprise APIs and OAuth scopes might already be defined with varying degrees of
granularity.

Additionally, the configuration of meaningful OAuth scopes has been removed. Policy now handles the
mapping of OAuth scope names to the set of allowed operations on SCIM resource attributes.

• Earlier versions of PingDataGovernance required administrators to develop policy logic in the scripting
language Java Expression Language (JEXL). To help business stakeholders and administrators
create and manage policies with confidence, administrators require a more user-friendly development
environment with a testing interface. As a result, the JEXL-based policy service has been replaced with
a new policy service that the PingDataGovernance Policy Administration GUI configures.

Explore PingDataGovernance Server

A complete PingDataGovernance solution includes the following components:

• PingDataGovernance Server – Enforces fine-grained data-access policies. It consists of the following
major components:

• API security gateway
• SCIM service
• Policy Decision service

• PingDataGovernance Policy Administration GUI – Powered by Symphonic, the
PingDataGovernance Policy Administration GUI provides an interface that lets business stakeholders
and administrators collaborate to develop and test policies. When policies are ready for production, they
are exported to PingDataGovernance’s Policy Decision Service.

• User Store – PingDataGovernance requires a User Store from which to obtain attributes about the user
who is invoking APIs, or the user about whom a service is invoking APIs, to evaluate the attributes as
part of policy. Although PingDataGovernance assumes that PingDirectory Server is the default User
Store, other LDAPv3-compliant directories are also supported.

PingDataGovernance | Explore PingDataGovernance Server | 7

This section explores these components in greater detail.

System entropy
Entropy is used to calculate random data that the system uses in cryptographic operations. Some
environments with low entropy might experience intermittent performance issues with SSL-based
communication, such as certificate generation. This scenario is more typical on virtual machines but can
also occur in physical instances. For best results, monitor the value of kernel.random.entropy_avail
in the configuration file /etc/sysctl.conf.

Note: To increase system entropy on a Windows system, move the mouse pointer in circles or type
characters randomly into an empty text document.

On a UNIX or Linux system, ensure that rng-tools is installed and run the following command:

sudo rngd -r /dev/urandom -o /dev/random

To check the level of system entropy on a UNIX or Linux system, run the following command:

cat /proc/sys/kernel/random/entropy_avail

Values smaller than 3200 are considered too low to generate a certificate and might cause the system to
hang indefinitely.

About the tools.properties file
PingDataGovernance Server supports the use of a tools.properties file that simplifies command-line
invocations by reading in a set of arguments for each tool from a text file. Each property takes the form of a
name-value pair that defines predetermined values for a tool's arguments.

Properties files are convenient when quickly testing PingDataGovernance Server in multiple environments.
PingDataGovernance Server supports the following types of properties files:

• Default properties files that can be applied to all command-line utilities
• Tool-specific properties files that are specified by the --propertiesFilePath option

To override PingDataGovernance Server's command-line utilities, use the properties file config/
tools.properties. With this approach, you can avoid typing frequently used arguments like -port and
-bindDN.

System requirements
Ping Identity® has qualified the configurations in this section and has certified that they are compatible with
the product. Differences in operating system versions, service packs, and other platform variations are
supported until the platform or other required software is suspected of causing an issue.

Platforms

• Windows Server 2019
• Windows Server 2016
• Red Hat Enterprise Linux ES 7.6
• Red Hat Enterprise Linux ES 7.5
• Red Hat Enterprise Linux ES 6.10
• Red Hat Enterprise Linux ES 6.9
• CentOS 7.6

PingDataGovernance | Explore PingDataGovernance Server | 8

• CentOS 7.5
• CentOS 6.10
• CentOS 6.9
• SUSE Linux Enterprise 15
• SUSE Linux Enterprise 12 SP3
• Ubuntu 18.04 LTS
• Ubuntu 16.04 LTS
• Amazon Linux 2
• Amazon Linux

Note: This product has been tested with the default configurations of all operating system components. If
your organization has customized implementations or has installed third-party plugins, the deployment of
this product might be affected.

Docker

Version: Docker 18.09.0

Host operating system: Ubuntu 18.04 LTS

Kernel: 4.4.0-1052-aws 7.3

Note: Ping Identity accepts no responsibility for the performance of any specific virtualization software and
in no way guarantees the performance or interoperability of any virtualization software with its products.

Java Runtime Environment

• Amazon Corretto 8
• OpenJDK 11
• OpenJDK 8
• Oracle Java SE Development Kit 11 LTS
• Oracle Java SE Development Kit 8

Browsers

Administration Console

• Chrome
• Firefox
• Internet Explorer 11 and later

End users

• Chrome
• Edge
• Firefox
• Internet Explorer 11 and later
• Safari

Install and configure PingDataGovernance Server

About this task

This section describes the initial steps of setting up PingDataGovernance Server. For information about
updating to a new version of PingDataGovernance Server, see Upgrade PingDataGovernance Server on
page 116.

PingDataGovernance | Explore PingDataGovernance Server | 9

In this section, you will complete the following tasks:

Steps

1. Install a PingDirectory Server instance and a PingDataGovernance Server instance.

2. Configure PingDataGovernance Server to use PingDirectory Server as the User Store.

3. Configure PingDataGovernance Server to search PingDirectory Server for OAuth token subjects.

Install PingDirectory Server

About this task

PingDataGovernance requires a User Store to evaluate identity attributes as part of policy. The following
command sets up PingDirectory Server with 1,000 users:

PingDirectory/setup \
 --cli --no-prompt --acceptLicense \
 --licenseKeyFile <path-to-pd-7x-license> \
 --rootUserDN "cn=directory manager" \
 --rootUserPassword <your-ds-password> \
 --ldapPort 1389 \
 --ldapsPort 1636 \
 --httpsPort 1443 \
 --generateSelfSignedCertificate \
 --baseDN "dc=example,dc=com" \
 --maxHeapSize 384m \
 --instanceName ds1 \
 --location Austin \
 --sampleData 1000

In this example, the server listens for LDAPS requests on port 1636.

Install PingDataGovernance Server

About this task

The following command sets up PingDataGovernance Server:

PingDataGovernance/setup \
 --cli --no-prompt --acceptLicense \
 --licenseKeyFile <path-to-dg-7x-license> \
 --rootUserDN "cn=directory manager" \
 --rootUserPassword <your-dg-password> \
 --ldapPort 8389 --ldapsPort 8636 \
 --httpsPort 8443 \
 --generateSelfSignedCertificate \
 --maxHeapSize 1g \
 --instanceName dg1 \
 --location Austin

In this example, PingDataGovernance Server listens for the following requests:

• LDAPS requests on port 8636
• HTTPS requests on port 8443

PingDataGovernance | Explore PingDataGovernance Server | 10

Configure the PingDataGovernance User Store

About this task

Configure PingDataGovernance Server to use PingDirectory Server as its User Store.

The first command makes a set of changes to PingDirectory Server that are needed by
PingDataGovernance Server, including the creation of a service account:

PingDataGovernance/bin/prepare-external-store \
 --hostname <your-ds-host> --port 1636 --useSSL --trustAll \
 --governanceTrustStorePath PingDataGovernance/config/truststore \
 --governanceTrustStorePasswordFile \
PingDataGovernance/config/truststore.pin \
 --bindDN "cn=directory manager" \
 --bindPassword <your-ds-password> \
 --governanceBindDN "cn=Governance User,cn=Root DNs,cn=config" \
 --governanceBindPassword <your-dg-service-account-password> \
 --userStoreBaseDN "ou=people,dc=example,dc=com" \
 --no-prompt

The second command configures PingDataGovernance Server with a store adapter that allows it to
communicate with PingDirectory Server to retrieve identity attributes. This command also sets up a SCIM
resource type that defines a Users type with a SCIM schema that is automatically mapped to an LDAP
type (inetOrgPerson) on PingDirectory Server.

PingDataGovernance/bin/create-initial-config \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --governanceBindPassword <your-dg-service-account-password> \
 --externalServerConnectionSecurity useSSL \
 --governanceTrustStorePath PingDataGovernance/config/truststore \
 --governanceTrustStorePasswordFile \
PingDataGovernance/config/truststore.pin \
 --userStoreBaseDN "ou=people,dc=example,dc=com" \
 --userStore "<your-ds-host>:1636:Austin" \
 --userObjectClass "inetOrgPerson" \
 --initialSchema pass-through

Configure the PingDataGovernance OAuth subject search

About this task

Configure PingDataGovernance Server to search the User Store for OAuth token subjects.

The first command configures PingDataGovernance Server to mock OAuth access token validation.
The Mock Access Token Validator accepts tokens without authenticating them, and is used only for
demonstration and testing purposes. To use an authorization server like PingFederate, see Access token
validators on page 93.

PingDataGovernance/bin/dsconfig create-access-token-validator \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --validator-name "Mock Access Token Validator" \
 --type mock --set enabled:true --set subject-claim-name:sub

The second command configures PingDataGovernance Server to search the User Store and retrieve the
identity attributes of the OAuth token subject, so that the attributes can be evaluated in policy. A token

PingDataGovernance | Explore PingDataGovernance Server | 11

resource lookup method defines the expression that is used to search SCIM resources by the access token
subject or additional claims. In this scenario, the value of the access token subject claim is used to search
the uid attribute value of the SCIM User resource.

PingDataGovernance/bin/dsconfig create-token-resource-lookup-method \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --validator-name "Mock Access Token Validator" \
 --method-name "User by uid" \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%_subject_claim_name%"' \
 --set evaluation-order-index:100

Configure PingDataGovernance logging

About this task

As you familiarize yourself with developing, testing, and enforcing policies, consider increasing the default
logging value to include details that will aid in debugging.

The following command enables more detailed logging to understand how policy decisions are being
made, including the comparison values and results of the various expressions that comprise a policy
decision tree:

PingDataGovernance/bin/dsconfig set-policy-decision-service-prop \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --add decision-response-view:decision-tree \
 --add decision-response-view:request \
 --add decision-response-view:evaluated-entities

Note: decision-response-view:request causes the Policy Decision Logger to record potentially
sensitive data in API requests and responses.

The following command enables Trace (detailed) logging, including complete HTTP requests and
responses:

PingDataGovernance/bin/dsconfig set-log-publisher-prop \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --publisher-name "Debug Trace Logger" \
 --set enabled:true

Note: Logging complete HTTP requests and responses might contain sensitive data.

For information about enabling detailed debug logging for troubleshooting purposes, see Enable detailed
logging on page 109.

Install and configure the PingDataGovernance Policy Administration GUI

About this task

To install an instance of the PingDataGovernance Policy Administration GUI, perform the following steps:

PingDataGovernance | Explore PingDataGovernance Server | 12

Steps

1. Extract the contents of the compressed PingDataGovernance-PAP distribution file.

2. Change the directory to PingDataGovernance-PAP.

3. To configure the application, run the ./bin/setup script.

4. Answer the on-screen questions.

We recommend specific answers for the following questions:

• How should the server be configured for authentication?

• Basic user name and password
• Connect to PingFederate server for OIDC SSO

Enter option 1, "Basic Authentication (for testing only)," which represents the basic user name and
password option.

• Should the server be configured to use HTTPS?

Because this example uses self-signed certificates to enable HTTPS, enter option 2, "Generate a
self-signed SSL certificate."

• What URL should be used to access the Symphonic API?

Unless you are testing on localhost, ensure that the provided API URL uses the public DNS
name of the PingDataGovernance Policy Administration GUI server. Include the full URL, including
the path and trailing slash, as the following example shows:

https://<DNS_Name>:<PortFromEarlierQuestion>/api/

• This server provides a Policy Decision Point that is protected by a shared sectret. What
should be used as the shared secret?

Enter my-shared-secret.

5. To start the PAP, run bin/start-server.

The PAP runs in the background, so you can close the terminal window in which it was started without
interrupting it.

Results
The following transcript represents an example demo configuration:

How should the server be configured for authentication?
 1) Basic Authentication (for testing only)
 2) OpenID Connect

Enter option [1]: 1

Should the server be configured to use HTTPS?
 1) Do not use HTTPS, only allow HTTP (insecure, use for testing)
 2) Generate a self-signed SSL certificate
 3) Use an existing SSL certificate

Enter option [2]:
Enter the path to the PingDataGovernance license key file or copy the file to /home/
centos/PingDataGovernance-PAP/PingDataGovernance.lic and press ENTER:

Symphonic Policy Admin Point installer
======================================

Please answer the following questions:

 What port should the application run on? [8080]:

 What URL should be used to access the Symphonic API? (Port must match above.) ["http://
localhost:8080/api/"]: https://pap.example.com:8080/api/

 This server provides a policy decision point that is protected by a shared secret. What
 should be used as the shared secret? [null]: my-shared-secret

PingDataGovernance | Explore PingDataGovernance Server | 13

 Application connector type? [https]:

 KeyStore type? [PKCS12]:

 KeyStore path? [keystore]:

 KeyStore password? [{}]:

 SSL Certificate alias? [my-ssl-cert]:

 SSL Certificate password? [{}]:

 Validate SSL certificates before starting? [false]:

 Validate SSL certificate peers? [false]:

Configuration Summary:

 server.applicationConnectors[0].port: 8080
 ui.REST_URL: https://pap.example.com:8080/api/
 core['Authentication.SharedSecret']: my-shared-secret
 server.applicationConnectors[0].type: https
 server.applicationConnectors[0].keyStoreType: PKCS12
 server.applicationConnectors[0].keyStorePath: keystore
 server.applicationConnectors[0].keyStorePassword: [C@3c87521
 server.applicationConnectors[0].certAlias: my-ssl-cert
 server.applicationConnectors[0].keyManagerPassword: [C@2aece37d
 server.applicationConnectors[0].validateCerts: false
 server.applicationConnectors[0].validatePeers: false

>>>> Configuration written to /home/centos/PingDataGovernance-PAP/config/configuration.yml

Generating SSL certificate...

>>>> SSL certificate saved to keystore

To start the server, run the ./bin/start-server script.

Next steps
In this example, the PingDataGovernance Policy Administration GUI is now running and listening on port
8080. To log on to the interface, visit https://<host>:8080. The default credentials are admin and
password123.

Note: Use the default user name and password logon credentials for demo and testing purposes only, like
this initial walk-through. To configure the PingDataGovernance Policy Administration GUI for PingFederate
OIDC SSO, see PingDataGovernance Policy Administration GUI single sign-on on page 112.

Import default policies

About this task

After logging on to PingDataGovernance Server, the following options are displayed:

• Create a Branch
• Import a Branch from Snapshot

To use the default policies that are distributed with PingDataGovernance Server, perform the following
steps:

Steps

1. Under Import a Branch from a Snapshot, select Click here to select a snapshot file.

The snapshot file is located in the PingDataGovernance installation directory at resource/
policies/defaultPolicies.SNAPSHOT.

2. Name the branch file Default Policies.

PingDataGovernance | Explore PingDataGovernance Server | 14

3. Click Import.

Configure PingDataGovernance Server for policy development

About this task

PingDataGovernance Server can be configured to evaluate policy in Embedded mode or External mode.
During policy development, configure PingDataGovernance Server in External mode, where it calls in to
the PingDataGovernance Policy Administration GUI for policy evaluation.

Steps

1. From the Data Sources section of the PingDataGovernance Administration Console (https://
<your-dg-host>:8443/console), click External Servers > New External Server > Policy
External Server.

2. On the New Policy External Server page, specify the following information:

• For the Name, specify PingDataGovernance Policy Administration Point.
• For the Base URL property, specify https://<your_PingDataGovernance_host>:8080.
• For the Host Name Verification Method, select allow-all for test environments. If you are

specifying a host name verification method for a non-test environment, you might need to configure
additional mechanisms.

• For the X User Id, specify admin.
• For the X Branch, specify the name of the branch that you created while importing the default policy

snapshot (Default Policies).
• For the Shared Secret, click Set Value, type my-shared-secret in the value and confirmation

boxes, and click OK.

3. To specify a value for the X Decision Node, perform the following steps:

a) Access the PingDataGovernance Policy Administration interface.
b) Click Policies > Global Decision Point.
c) In the upper-right corner, click
d) Click #.
e) To copy the node ID for the global decision point to the system clipboard, click Copy ID to

clipboard.
f) Paste the node ID (e51688ff-1dc9-4b6c-bb36-8af64d02e9d1) into the X Decision Node text

box.

4. Click Save.

Next steps
As an alternative to using the GUI, the following snippet provides an equivalent sample dsconfig
command to create the external server:

PingDataGovernance/bin/dsconfig create-external-server \
 --no-prompt --port 8638 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassord <your-dg-password> \
 --server-name "PingDataGovernance Policy Administration Point" \
 --type policy \
 --set base-url:http://<your_PingDataGovernance_host>:8080 \
 --set hostname-verification-method:allow-all \
 --set user-id:admin \
 --set "shared-secret:my-shared-secret" \
 --set decision-node:<global-decision-point-id> \
 --set "branch:Default Policies"

PingDataGovernance | Explore PingDataGovernance Server | 15

Configure the policy service in External mode

About this task

After the policy external server has been created, perform the following steps:

Steps

1. From the PingDataGovernance Administration Console, click Authorization and Policies > Policy
Decision Service.

2. For the PDP Mode, select external.

3. For the Policy Server, select the policy external server that you created in Configure
PingDataGovernance Server for policy development on page 14.

4. Keep all the other default values.

5. Click Save To Data Governance Server Cluster.

Warning: If you are using automation or DevOps to manage a cluster of PingDataGovernance
Servers, do not configure the nodes to share configuration details automatically among the
servers.

Next steps
As an alternative to using the GUI, the following snippet provides an equivalent sample dsconfig
command to configure the policy service in external mode:

PingDataGovernance/bin/dsconfig set-policy-decision-service-prop \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --set pdp-mode:external \
 --set "policy-server:PingDataGovernance PDP"

Create the first API policy

About this task

In this section, you will build and test your first policy for the PingDataGovernance API security gateway.

Suppose that your organization creates an application to provide users with jokes to tell at parties. A joke
API generates several jokes in different categories, and users are granted the ability to filter certain types
of jokes that they might find offensive or unappealing.

This example uses the public joke API developed by https://github.com/15Dkatz/official_joke_api.

Configure the API security gateway

The API security gateway functions as the intermediary between the API client and the API server. These
components are configured in the PingDataGovernance Administration Console.

In this section, you will configure https://<your-dg-host>:<your-https-dg-port>/jokes/
random to proxy to https://official-joke-api.appspot.com/random_joke.

Create the API external server

About this task

To create the API external server, perform the following steps:

https://github.com/15Dkatz/official_joke_api
https://official-joke-api.appspot.com/random_joke

PingDataGovernance | Explore PingDataGovernance Server | 16

Steps

1. From the PingDataGovernance Administration Console, click Data Sources > External Servers.

2. Click New External Server > API External Server.

3. For the Name, specify Joke API Server.

4. For the Base URL, specify https://official-joke-api.appspot.com.

5. Click Save.

Results

Next steps
As an alternative to using the GUI, the following snippet provides an equivalent sample dsconfig
command to create the API external server:

PingDataGovernance/bin/dsconfig create-external-server \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manger" \
 --bindPassword <your-dg-password> \
 --server-name "Joke API Server" \
 --type api \
 --set base-url:https://official-joke-api.appspot.com

PingDataGovernance | Explore PingDataGovernance Server | 17

Create the Gateway API Endpoint

About this task

To create the external Gateway API Endpoint, perform the following steps:

Steps

1. From the PingDataGovernance Administration Console, click Web Services and Applications >
Gateway API Endpoints.

2. Click New Gateway API Endpoint.

3. For the Name, specify Random Joke API.

4. For the Inbound Base Path, specify /jokes/random.

5. For the Outbound Base Path, specify /random_joke.

6. For the API Server, specify Joke API Server.

7. For HTTP Auth Evaluation Behavior, specify evaluate-and-discard.

8. For Access Token Validator, specify Mock Access Token Validator.

9. Click Save To Data Governance Server Cluster.

Warning: If you are using automation or DevOps to manage a cluster of PingDataGovernance
Servers, do not configure the nodes to share configuration details automatically among the
servers.

PingDataGovernance | Explore PingDataGovernance Server | 18

Results

Next steps
As an alternative to using the GUI, the following snippet provides an equivalent sample dsconfig
command to create the Gateway API Endpoint:

PingDataGovernance/bin/dsconfig create-gateway-api-endpoint \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manger" \
 --bindPassword <your-dg-password> \

PingDataGovernance | Explore PingDataGovernance Server | 19

 --endpoint-name "Random Joke API" \
 --set inbound-base-path:/jokes/random \
 --set outbound-base-path:/random_joke \
 --set "api-server:Joke API Server" \
 --set http-auth-evaluation-behavior:evaluate-and-discard \
 --set "access-token-validator:Mock Access Token Validator"

Test the gateway with cURL

About this task

Before testing the gateway, make certain that you have configured everything successfully with an HTTP
client like Postman or cURL.

Issue the following request:

curl --insecure -X GET
 https://<your-dg-host>:<your-https-dg-port>/jokes/random \
 -H 'Authorization: Bearer {"active": true}'

Note: To provide easy testing, the Mock Access Token Validator allows the use of unencoded and
unsigned bearer tokens.

The following response is typical:

{
 "id":25,
 "type":"programming",
 "setup":"How many programmers does it take to change a light bulb?",
 "punchline":"None that's a hardware problem"
}

Add a policy for programming jokes

Policies are developed and tested in the PingDataGovernance Policy Administration GUI, which is divided
into the following sections:

• Trust Framework – Defines the attributes for information that the policy rules use.
• Policies – Defines the rules that allow or block an API response.

Create attributes for a Joke API response

About this task

To implement user-managed control to filter certain types of jokes that users find offensive or unappealing,
the policy requires checking the type attribute of the JSON response body of the Joke API.

The first attribute that you create represents the entire JSON response body of the Joke API:

Steps

1. From the PingDataGovernance Policy Administration GUI, click Trust Framework > Attributes.

2. To add a new attribute, click +.

3. For the Name, specify Joke.

4. Verify that Parent is not selected.

5. For the Resolver Type, select Attribute and specify a value of HttpRequest.ResponseBody.

6. For the Value Settings Type, select JSON.

7. Click Save Changes.

PingDataGovernance | Explore PingDataGovernance Server | 20

Results

Next steps

The second attribute that you create represents the type attribute of the JSON response body of the Joke
API:

1. To add a new attribute, click +.
2. For the Name, specify type.
3. For the Parent, select Joke.
4. For the Resolver Type, select Attribute and specify a value of Joke.
5. For the Value Settings Processor, select JSON Path and specify a value of $.type.
6. For the Value Settings Type, select String.
7. Click Save Changes.

PingDataGovernance | Explore PingDataGovernance Server | 21

Create a service for the Random Jokes API

About this task

The name of the Gateway API Endpoint configured in PingDataGovernance Server is passed as the
service to the PingDataGovernance PDP. Create a policy that applies only to the requests and responses
of the Random Jokes API, and add this service to the Trust Framework.

Steps

1. From the PingDataGovernance Policy Administration GUI, click Trust Framework > Services.

2. To add a new service, click +.

3. For the Name, type Random Joke API.

4. Verify that Parent is not selected.

5. Click Save Changes.

PingDataGovernance | Explore PingDataGovernance Server | 22

Results

Create a policy for the Random Jokes API

About this task

To create a policy that targets the outbound response to an HTTP GET to the Random Joke API, perform
the following steps:

Steps

1. From the PingDataGovernance Policy Administration GUI, navigate to the Policies page.

2. Select Global Decision Point and click +.

3. Click Add Policy.

4. For the Name, specify Random jokes API policy.

5. Click Show "Applies to".

6. In the upper-right corner of the left panel, click Toolbox.

7. From the Actions list, drag outbound-GET to the blue Targets box.

8. From the Services list, drag Random Joke API to the blue Targets box.

9. Click Save Changes.

Results

PingDataGovernance | Explore PingDataGovernance Server | 23

Add logic to reject programming jokes

About this task

To add a rule that blocks responses with programming as the joke type attribute value, perform the
following steps:

Steps

1. Click Create new Rule.

2. For the Name, specify Block programming jokes.

3. For the Effect, select Deny.

4. To specify a Condition, perform the following steps:

a) From the first Condition field, select Joke.type.
b) From the second field, select Equals.
c) In the third field, type programming.

5. Click Save Changes.

Results

Add advice to set the HTTP response code

About this task

Add a command called advice that instructs PingDataGovernance Server to set the HTTP response code
when rejecting the outbound response. Because this problem is not associated with the HTTP client or its
request, set the response code to 502 to indicate a temporary gateway issue.

Steps

1. Expand Block programming jokes.

2. Click Show Advice.

3. Click Create new Advice.

4. For the Name, type Send "Bad gateway" response.

5. For the Code, type denied-reason.

6. From the Applies To drop-down list, select Deny.

PingDataGovernance | Explore PingDataGovernance Server | 24

7. Click +Payload.

8. For a Payload value, type {"status": 502}.

9. Click Save Changes.

Results

Test the policy in the GUI

About this task

To test the full policy tree in the PingDataGovernance Policy Administration GUI, perform the following
steps:

Steps

1. Navigate to the Policies page.

2. Click Global Decision Point.

3. Click the Test tab.

4. From the Service drop-down list, select Random Joke API.

5. From the Action drop-down list, select outbound-GET.

6. Add the following HttpRequest attribute:

{"AccessToken":{"active":true},
"ResponseBody":{"id":25,
"type":"programming",

PingDataGovernance | Explore PingDataGovernance Server | 25

"setup":"How many programmers does it take to change a light bulb?",
"punchline":"None that's a hardware problem"}}

The following image provides an example:

7. Click Execute.
The HTTP GET response is rejected because of the "Block programming jokes" rule.

Results

PingDataGovernance | Explore PingDataGovernance Server | 26

Test the API gateway with cURL

About this task

Test the proxied API again with cURL, as follows:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/jokes/
random \
 -H 'Authorization: Bearer {"active": true}'

Results
Non-programming jokes are allowed, but programming jokes return an HTTP 502 (bad gateway) response.

Add a policy for the user city

To simulate a user preference that is stored in an online profile, extend the policy to block programming
jokes from users in cities that are rich in software developers, like San Francisco, Boston, Austin, or
Seattle.

Find a user

About this task

To find a user, perform the following steps:

Steps

1. Verify that your PingDirectory example data contains a user whose profile location is set to one of the
developer-dense cities.

2. Issue the following search on your PingDirectory host, taking special note of the location (l, a
lowercase L) and user name (uid) of the resulting user:

PingDirectory/bin/ldapsearch \
 --port 1636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-ds-password> \
 --sizeLimit 1 "(|(l=Boston)(l=Austin)(l=San Fran*)(l=Seattle))"

Results
The following sample represents the typical output, although your output might differ:

dn: uid=user.20,ou=People,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
mail: user.20@example.com
initials: KFS
homePhone: +1 707 878 3104
pager: +1 188 707 6756
givenName: Katie
employeeNumber: 20
telephoneNumber: +1 024 280 5210
mobile: +1 625 070 5636
sn: Steeves
cn: Katie Steeves
description: This is the description for Katie Steeves.
street: 23279 Seventh Street
st: IN

PingDataGovernance | Explore PingDataGovernance Server | 27

postalAddress: Katie Steeves$23279 Seventh Street$Boston, IN 85072
uid: user.20
l: Boston
postalCode: 85072

Create an attribute for the user location

About this task

The information of the user whom the OAuth bearer token identified to PingDataGovernance is passed
as the TokenOwner to the PingDataGovernance PDP. To use the location attribute of the user within the
policy, add it to the trust framework:

Steps

1. Click Trust Framework > Attributes.

2. To add a new attribute, click +.

3. In the Name text box, type city.

4. From the Parent drop-down list, select TokenOwner.

5. In the Resolver Settings section, perform the following steps:

a) Click Add Resolver.
b) From the Resolver Type drop-down list, select Attribute and specify a value of TokenOwner.

6. In the Value Settings section, perform the following steps:

a) From the Processor drop-down list, select JSON Path and type a value of $.l (lowercase L).
b) Select the Default Value check box and type a value of [].

This step prevents a policy rule that uses the city attribute from failing if the token owner
possesses a null value for the l attribute.

c) Because the location is a multi-valued attribute, select Collection from the Type drop-down list.

7. Click Save changes.

Results

Add logic to check the user location

About this task

To check the user location by extending the condition logic of your policy rule, perform the following steps:

PingDataGovernance | Explore PingDataGovernance Server | 28

Steps

1. Click Policies > Global Decision Point > Random jokes API policy.

2. Expand the "Block programming jokes" rule.

3. In the Condition group box, perform the following steps:

a) Click + Comparison.
b) From the first drop-down list, select TokenOwner.city.
c) From the comparator drop-down list, select Contains.
d) In the final text box, type Boston, which is the city that you found when searching for a user.

4. Click Save Changes.

Results

Test the gateway with cURL

About this task

1. Test the proxied API again with cURL, but this time include the user name of the user whom you
located earlier, as follows:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/jokes/
random \
 -H 'Authorization: Bearer {"active": true, "sub": "user.20"}'

Try the API repeatedly until you receive an HTTP 502 response.
2. Test the proxied API again with a different user from a different city, as follows:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/jokes/
random \

PingDataGovernance | Explore PingDataGovernance Server | 29

 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

Keep trying the API until you receive a programming joke.

Example files

The compressed PingDataGovernance Server file at PingDataGovernance/resource/policies
includes a policy snapshot and deployment package that contains an example Trust Framework as well as
example policies.

Create the first SCIM policies
In the previous section, you used PingDataGovernance Server to filter data that an external REST API
returned. In this section, you will develop a set of access-control policies for the PingDataGovernance
Server's built-in SCIM REST API.

While PingDataGovernance Server's API security gateway protects existing REST APIs,
PingDataGovernance Server's built-in SCIM service provides a REST API for accessing and protecting
identity data that might be contained in datastores like LDAP and relational databases.

PingDataGovernance Server uses SCIM in the following ways:

• Internally, user identities are represented as SCIM identities by way of one or more SCIM resource
types and schemas. This approach includes access token subjects, which are always mapped to a
SCIM identity.

• A SCIM REST API service provides access to user identities through HTTP.

You will now design a set of policies to control access to the SCIM REST API by using OAuth 2 access
token rules. This section assumes that you have set up and configured PingDataGovernance Server as
described previously.

Before proceeding, make a test request to generate a SCIM REST API response to a request when only
the default policies are in place. As in the earlier section, a mock access token is used.

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/v2/
Me \
 -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "nonexistent.scope", "client_id": "nonexistent.client"}'

Although the precise attribute values might vary, the response returns the SCIM resource that corresponds
to user.1.

{"mail":["user.1@example.com"],"initials":["RJV"],"homePhone":
["+1 091 438 1890"],"pager":["+1 472 824 8704"],"givenName":
["Romina"],"employeeNumber":"1","telephoneNumber":["+1 319 624
 9982"],"mobile":["+1 650 622 7719"],"sn":["Valerio"],"cn":
["Romina Valerio"],"description":["This is the description
 for Romina Valerio."],"street":["84095 Maple Street"],"st":
["NE"],"postalAddress":["Romina Valerio$84095 Maple Street$Alexandria,
 NE 39160"],"uid":["user.1"],"l":["Alexandria"],"postalCode":
["39160"],"entryUUID":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","objectClass":
["top","person","organizationalPerson","inetOrgPerson"],"entryDN":"uid=user.1,
ou=people,o=yeah","meta":{"resourceType":"Users","location":"https://
<your-dg-host>:<your-https-dg-port>/scim/v2/Users/355a133d-58ea-3827-8e8d-
b39cf74ddb3e"},"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"]}

This response is a success response, although we prefer that it not be one, because it shows that any
active access token referencing a valid user can be used to access any data.

PingDataGovernance | Explore PingDataGovernance Server | 30

Create the policy tree

About this task

Log on to the PingDataGovernance Policy Administration GUI and click Policies > Policy Editor. The
default policies include a single policy, named Token Validation, under Global Decision Point.
This policy denies any request by using an access token if its active flag is set to false. This policy is
augmented with a set of scope-based access control policies.

Steps

1. To create a tree structure and ensure that your policies apply only to SCIM requests, perform the
following steps:

a) Highlight Global Decision Point.
b) Click +.
c) Click Add Policy Set.
d) In the Name text box, type SCIM Policy Set.
e) Click Unless one decision is deny, the decision will be permit and change it to A single deny

will override any permit decisions.

This step is known as a combining algorithm. It determines the manner in which the policy set
resolves potentially contending decisions from child policies.

f) Click Show "Applies to".
g) Click Toolbox.
h) From the Services list, drag SCIM2 to the blue Targets box.

This step ensures that policies in the SCIM policy set apply only to SCIM requests.
i) Click Save Changes.

2. To add a branch under the SCIM policy set to hold SCIM-specific access token policies, navigate from
Toolbox to Policies and perform the following steps:

a) Highlight SCIM Policy Set.
b) Click +.
c) Click Add Policy Set.
d) In the Name text box, type Token Policies.
e) Change the combining algorithm to A single deny will override any permit decisions.
f) Click Save Changes.

3. To add another branch that holds a policy specific to access token scopes, perform the following steps:

a) Highlight Token Policies.
b) Click +.

PingDataGovernance | Explore PingDataGovernance Server | 31

c) Click Add Policy Set.
d) In the Name text box, type Scope Policies.
e) Change the combining algorithm to Unless one decision is permit, the decision will be deny.
f) Click Save Changes.

Create SCIM access token policies

After you define a structure, you are ready to define some policies. In this section, you will define three
policies that use a requester's access token to limit its access to data.

Create a policy for permitted access token scopes

About this task

The first policy defines the access token scopes that PingDataGovernance Server accepts for SCIM
requests. The following table defines these scopes.

Scope Allowed actions Applies to

scimAdmin search, retrieve, create/modify,
delete

Any data

email retrieve Requester's email attributes

profile retrieve Requester's profile attributes

To create the policy and add rules to define the scopes, perform the following steps:

Steps

1. Highlight Scope Policies.

2. Click Show Advice.

3. Click Toolbox.

4. From the Advice list, drag Insufficient Scope to the blue Advice box.

5. Click Save Changes.

6. Highlight Scope Policies.

7. Click +.

8. Click Add Policy.

9. In the Name text box, type Permitted Scopes.

10.Change the combining algorithm to A single deny will override any permit decisions.

11.Click Save Changes.

PingDataGovernance | Explore PingDataGovernance Server | 32

Test the policy with cURL

About this task

If you attempt the same HTTP request that you issued previously, it is now denied:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "nonexistent.scope", "client_id": "nonexistent.client"}'
{"schemas":["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"403",
"scimType":"insufficient_scope","detail":"Requested operation not allowed by
 the granted OAuth scopes."}

Define the email scope

Steps

1. Highlight Permitted Scopes.

2. From the Rules list, drag Permitted SCIM scope for user to the blue Rules box.

3. To the right of the copied rule, click

4. Click Replace with clone.

5. In the Name text box, type Scope: email.

6. To expand the rule, click +.

7. In the Description text box, type Rule that permits a SCIM user to access its own
mail attribute if the access token contains the email scope..

8. In the HttpRequest.AccessToken.scope row of the Condition group box, type email in the
CHANGEME text box.

9. Within the rule, click Show "Applies to".

10.From Actions, drag retrieve to the blue Targets box.

Note: This task uses different actions from the previous gateway example.

11.Within the rule, click Show Advice.

12.Click Toolbox.

13.From Advice, drag Include email attributes to the blue Advice box.

Note the payload for this predefined advice. If the condition for this rule is satisfied, the response
includes the mail attribute.

14.Click Save changes.

PingDataGovernance | Explore PingDataGovernance Server | 33

Results

Test the email scope with cURL

About this task

If you make the same request as earlier, a 403 is returned because the provided scope is not allowed:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/v2/
Me \
 -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "nonexistent.scope", "client_id": "nonexistent.client"}'

If you adjust the request to use the email scope, the request succeeds, and only the mail attribute is
returned:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "nonexistent.client"}'
{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://<your-dg-host>:<your-https-
dg-port>/scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

PingDataGovernance | Explore PingDataGovernance Server | 34

Define the profile scope

Steps

1. From the Rules list, drag Permitted SCIM scope for user to the blue Rules box.

2. To the right of the copied rule, click

3. Click Replace with clone.

4. In the Name text box, type Scope: profile.

5. To expand the rule, click +.

6. In the Description text box, type Rule that permits a SCIM user to access a subset of
its own profile attributes if the access token contains the profile scope.

7. In the HttpRequest.AccessToken.scope row of the Condition group box, type profile in the
CHANGEME text box.

8. Within the rule, click Show "Applies to".

9. From Actions, drag retrieve to the blue Targets box.

10.Within the rule, click Show Advice.

11.Click Toolbox.

12.From Advice, drag Include profile attributes to the blue Advice box.

Note the payload for this predefined advice. If the condition for this rule is satisfied, the response
includes the uid, sn, givenName, and description attributes.

13.Click Save changes.

Results

PingDataGovernance | Explore PingDataGovernance Server | 35

Test the profile scope with cURL

About this task

Make the same request as earlier, but change the email scope that the access token uses to profile:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "profile", "client_id": "nonexistent.client"}'
{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://<your-dg-host>:<your-https-
dg-port>/scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.1"],"givenName":["Romina"],"description":["This is the description
 for Romina Valerio."],"sn":["Valerio"]}

The attributes defined by the new rule's advice are returned.

Because an access token might contain multiple scopes, confirm that an access token with the email and
profile scopes returns the union of the attributes that both scopes grant:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email profile", "client_id": "nonexistent.client"}'
{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://<your-dg-host>:<your-https-
dg-port>/scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.1"],"mail":["user.1@example.com"],"givenName":
["Romina"],"description":["This is the description for Romina
 Valerio."],"sn":["Valerio"]}

Define the scimAdmin scope

For the scimAdmin scope, you will define different behaviors that depend on the action of the request. As
a result, the scope definition will be split into multiple rules.

Add the scimAdmin retrieve rule

Steps

1. Highlight Permitted Scopes.

2. Click Create new Rule.

3. In the Name text box, type Scope: scimAdmin (retrieve).

4. From the Effect drop-down list, select Permit.

5. In the Condition group box, perform the following steps:

a) Click + Condition.
b) In the first text box, type HttpRequest.AccessToken.scope.
c) From the comparator drop-down list, select Contains.
d) In the final text box, type scimAdmin.

6. Within the rule, click Show "Applies to".

7. Click Toolbox.

8. From Actions, drag retrieve to the blue Targets box.

9. Within the rule, click Show Advice.

10.From Advice, drag Include all attributes to the blue Advice box.

11.Click Save Changes.

PingDataGovernance | Explore PingDataGovernance Server | 36

Results

Add the scimAdmin create/modify rule

Steps

1. Click Create new Rule.

2. In the Name text box, type Scope: scimAdmin (create/modify).

3. From the Effect drop-down list, select Permit.

4. In the Condition group box, perform the following steps:

a) Click + Condition.
b) In the first text box, type HttpRequest.AccessToken.scope.
c) From the comparator drop-down list, select Contains.
d) In the final text box, type scimAdmin.

5. Within the rule, click Show "Applies to".

6. Click Toolbox.

7. From Actions, drag create to the blue Targets box.

8. From Actions, drag modify to the blue Targets box.

9. Within the rule, click Show Advice > Create new advice.

10.In the Name text box, type Allow certain attributes to be created or updated.

11.Select the Obligatory check box.

12.In the Code text box, type allow-attributes.

13.From the Applies to drop-down list, select Permit.

14.Click + Payload.

15.In the Payload text box, type the following content:

["manager", "uid", "mail", "sn", "givenName", "cn", "description", "l",
 "st", "country", "postalAddress", "mobile", "homePhone"]

PingDataGovernance | Explore PingDataGovernance Server | 37

Note: This example arbitrarily restricts the attributes that can be set during a create or modify
operation. To allow all attributes, set the Payload value to ["*"].

16.Click Save Changes.

Results

Add the scimAdmin search rule

Steps

1. Click Create new Rule.

2. In the Name text box, type Scope: scimAdmin (search).

3. From the Effect drop-down list, select Permit.

4. In the Condition group box, perform the following steps:

a) Click + Condition.
b) In the first text box, type HttpRequest.AccessToken.scope.
c) From the comparator drop-down list, select Contains.
d) In the final text box, type scimAdmin.

5. Within the rule, click Show "Applies to".

6. Click Toolbox.

7. From Actions, drag search to the blue Targets box.

8. Click Save Changes.

Add the scimAdmin delete rule

Steps

1. Click Create new Rule.

2. In the Name text box, type Scope: scimAdmin (delete).

PingDataGovernance | Explore PingDataGovernance Server | 38

3. From the Effect drop-down list, select Permit.

4. In the Condition group box, perform the following steps:

a) Click + Condition.
b) In the first text box, type HttpRequest.AccessToken.scope.
c) From the comparator drop-down list, select Contains.
d) In the final text box, type scimAdmin.

5. Within the rule, click Show "Applies to".

6. Click Toolbox.

7. From Actions, drag delete to the blue Targets box.

8. Click Save Changes.

Create a policy for permitted OAuth2 clients

About this task

A REST service typically allows only requests from a whitelist of OAuth2 clients. In this section, you will
define a policy in which each rule specifies an allowed client.

Steps

1. On the Policies page, highlight Token Policies and click +.

2. Click Add Policy.

3. In the Name text box, type Permitted Clients.

4. Change the combining algorithm to Unless one decision is permit, the decision will be deny.

5. Click Create new Rule.

6. In the Name text box, type Client: client1.

7. From the Effect drop-down list, select Permit.

8. In the Condition group box, perform the following steps:

a) Click + Condition.
b) In the first text box, type HttpRequest.AccessToken.client_id.
c) From the comparator drop-down list, select Equals.
d) In the final text box, type client1.

9. Click Create new Rule.

10.In the Name text box, type Client: client2.

11.From the Effect drop-down list, select Permit.

12.In the Condition group box, perform the following steps:

a) Click + Condition.
b) In the first text box, type HttpRequest.AccessToken.client_id.
c) From the comparator drop-down list, select Equals.
d) In the final text box, type client2.

13.At the policy level, click Show Advice.

Note: Do not click Show Advice within the client1 or client2 rules.

14.From Advice, drag Unauthorized Client to the blue Advice box.

15.Click Save changes.

PingDataGovernance | Explore PingDataGovernance Server | 39

Results

Test the client policy with cURL

About this task

After completing the tasks in the previous sections, an access token for any client other than client1 or
client2 is rejected.

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "nonexistent.client"}'
{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"401","scimType":"The
 client is not authorized to request this
 resource.","detail":"unauthorized_client"}

An access token for client1 is now accepted.

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1"}'
{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://<your-dg-host>:<your-https-
dg-port>/scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

PingDataGovernance | Explore PingDataGovernance Server | 40

Create a policy for permitted audiences

About this task

An authorization server like PingFederate might set an audience field on the access tokens that it issues,
naming one or more services that are allowed to accept the access token. A REST service can use the
audience field to ensure that it does not accept access tokens that are intended for use with a different
service.

As with the Permitted Clients policy, each rule in the Permitted Audiences policy defines an acceptable
audience value.

Steps

1. Highlight Token Policies.

2. Click +.

3. Click Add Policy.

4. In the Name text box, type Permitted Audiences.

5. Change the combining algorithm to Unless one decision is permit, the decision will be deny.

6. Click Create new Rule.

7. In the Name text box, type Audience: https://example.com.

8. From the Effect drop-down list, select Permit.

9. In the Condition group box, perform the following steps:

a) Click + Condition.
b) In the first text box, type HttpRequest.AccessToken.audience.
c) From the comparator drop-down list, select Equals.
d) In the final text box, type https://example.com.

10.At the policy level, click Show Advice.

11.From Toolbox > Advice, drag Unauthorized Audience to the blue Advice box.

12.Click Save changes.

PingDataGovernance | Explore PingDataGovernance Server | 41

Results

Test the audience policy with cURL

About this task

An access token without a specific audience value is expected to be rejected.

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1"}'
{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"403","scimType":
"invalid_token","detail":"The access token was issued for a different
 audience."}

An access token with an audience value of https://example.com is accepted.

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1", "aud": "https://example.com"}'
{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://<your-https-dg-host>:<your-
dg-port>/scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

PingDataGovernance | Explore PingDataGovernance Server | 42

Create a policy for role-based access control

About this task

The final policy illustrates the manner in which an access-control rule can base its authorization decision
on an attribute of the requesting identity, rather than on an access token claim.

When PingDataGovernance Server authorizes a request, an access token validator resolves the subject
of the access token to a SCIM user, and populates a policy request attribute called TokenOwner with the
SCIM user's attributes. In this scenario, build a policy around the employeeType attribute, which must be
defined in the Trust Framework.

Steps

1. On Trust Framework > Attributes, click TokenOwner.

2. Click +.

3. Click Add new Attribute.

4. In the Name text box, type employeeType.

5. From the Parent drop-down list, select TokenOwner.

6. In the Resolver Settings section, perform the following steps:

a) Click Add Resolver.
b) From the Resolver Type drop-down list, select Attribute and specify a value of TokenOwner.

7. In the Value Settings section, perform the following steps:

a) From the Processor drop-down list, select JSON Path and type a value of employeeType.
b) Select the Default Value check box and type of value of [].

A empty array is specified as the default value because not all users have an employeeType
attribute. A default value of [] ensures that policies can safely use this attribute to define conditions.

c) From the Type drop-down list, select Collection.

8. Click Save changes.

Results

Next steps

Add a policy that uses the employeeType attribute.

1. Highlight SCIM Policy Set.

PingDataGovernance | Explore PingDataGovernance Server | 43

2. Click +.
3. Click Add Policy.
4. In the Name text box, type Restrict Intern Access.
5. Change the combining algorithm to Unless one decision is deny, the decision will be permit.
6. Click Create new Rule.
7. In the Name text box, type Restrict access for interns.
8. From the Effect drop-down list, select Permit.
9. In the Condition group box, perform the following steps:

a. Click + Condition.
b. In the first text box, type TokenOwner.employeeType.
c. From the comparator drop-down list, select Contains.
d. In the final text box, type intern.

10.Within the rule, click Show Advice > Create New Advice.
11.In the Name text box, type Restrict attributes visible to interns.
12.Select the Obligatory check box.
13.In the Code text box, type exclude-attributes.
14.From the Applies to drop-down list, select Permit.
15.Click + Payload.
16.In the Payload text box, type ["description"].
17.Click Save Changes.

PingDataGovernance | About the API security gateway | 44

Test the policy with cURL

About this task

PingDataGovernance's sample user data allows an employeeType attribute but does not populate it
with values for any users. To modify a user entry, create a file named user2-to-intern.ldif with the
following contents:

dn: uid=user.2,ou=people,dc=example,dc=com
changetype: modify
add: employeeType
employeeType: intern

Run the following command to update user.2:

PingDirectory/bin/ldapmodify --port 1636 --useSSL --trustAll --bindDN
 "cn=directory manager" --bindPassword <your-ds-password> -f user2-to-
intern.ldif

Confirm that the user cannot read the description attribute, even though the profile scope allows it:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.2", "scope":
 "profile", "client_id": "client1", "aud": "https://example.com"}'
{"id":"c9cbfb8c-d915-3de3-8a2c-a01c0ccc6d09","meta":
{"resourceType":"Users","location":"https://<your-dg-host>:<your-https-
dg-port>/scim/v2/Users/c9cbfb8c-d915-3de3-8a2c-a01c0ccc6d09"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.2"],"givenName":["Billy"],"sn":["Zaleski"]}

Example files

The compressed PingDataGovernance Server file at PingDataGovernance/resource/policies
includes a policy snapshot and deployment package that contains an example Trust Framework as well as
example policies.

About the API security gateway

PingDataGovernance Server and its API security gateway act as an intermediary between a client and an
API server.

Request and response flow
The gateway handles proxied requests in the following phases:

• Inbound phase – When a client submits an API request to PingDataGovernance Server, the gateway
forms a policy request based on the API request and submits it to the PDP for evaluation. If the policy
result allows it, PingDataGovernance Server forwards the request to the API server.

• Outbound phase – After PingDataGovernance Server receives the upstream API server's response, the
gateway again forms a policy request, this time based on the API server response, and submits it to the
PDP. If the policy result is positive, PingDataGovernance Server forwards the response to the client.

PingDataGovernance | About the API security gateway | 45

The API gateway supports only JSON requests and responses.

PingDataGovernance | About the API security gateway | 46

Gateway configuration basics
The API security gateway consists of the following components:

• One or more gateway HTTP servlet extensions
• One or more Gateway API Endpoints
• One or more API external servers

An API external server represents the upstream API server and contains the configuration for the
server's protocol scheme, host name, port, and connection security. The server can be created in the
PingDataGovernance Administration Console, or with the following example command:

PingDataGovernance/bin/dsconfig create-external-server \
 --server-name "API Server" \
 --type api \
 --set base-url:https://api-service.example.com:1443

A Gateway API Endpoint represents a public path prefix that PingDataGovernance Server accepts for
handling proxied requests. A Gateway API Endpoint configuration defines the base path for receiving
requests (inbound-base-path) as well as the base path for forwarding the request to the API server
(outbound-base-path). It also defines the associated API external server and other properties that
relate to policy processing, such as service, which targets the policy requests generated for the Gateway
API Endpoint to specific policies.

The following example commands use the API external server from the previous example to create a pair
of Gateway API Endpoints:

PingDataGovernance/bin/dsconfig create-gateway-api-endpoint \
 --endpoint-name "Consent Definitions" \
 --set inbound-base-path:/c/definitions \
 --set outbound-base-path:/consent/v1/definitions \
 --set "api-server:API Server" \
 --set service:Consent

PingDataGovernance/bin/dsconfig create-gateway-api-endpoint \
 --endpoint-name "Consent Records" \
 --set inbound-base-path:/c/consents \
 --set outbound-base-path:/consent/v1/consents \
 --set "api-server:API Server" \
 --set service:Consent

The gateway HTTP servlet extension is the server component that represents the API security gateway
itself. In most cases, you do not need to configure this component.

Changes to these components do not typically require a server restart to take effect. For more information
about configuration options, refer to the Configuration Reference Guide that is bundled with the product.

API security gateway authentication
Although the gateway does not strictly require the authentication of requests, the default policy set requires
bearer token authentication.

To support this approach, the gateway uses the configured access token validators to evaluate bearer
tokens that are included in incoming requests. The result of that validation is supplied to the policy request
in the HttpRequest.AccessToken attribute, and the user identity that is associated with the token is
provided in the TokenOwner attribute.

PingDataGovernance | About the API security gateway | 47

Policies use this authentication information to affect the processing of requests and responses. For
example, a policy in the default policy set requires all requests to be made with an active access token.

Rule: Deny if HttpRequest.AccessToken.active Equals false

Advice:
 Code: denied-reason
 Applies To: Deny
 Payload: {"status":401, "message": "invalid_token", "detail":"Access token
 is expired or otherwise invalid"}

Gateway API Endpoints include the following configuration properties to specify the manner in which they
handle authentication.

Property Description

http-auth-evaluation-behavior Determines whether the Gateway API Endpoint
evaluates bearer tokens, and if so, whether the
bearer token is forwarded to the API server.

access-token-validator Sets the access token validators that the Gateway
API Endpoint uses. By default, this property has
no value, and the Gateway API Endpoint can
evaluate every bearer token by using each access
token validator that is configured on the server. To
constrain the set of access token validators that a
Gateway API Endpoint uses, set this property to
use one or more specific values.

If http-auth-evaluation-behavior is set to
do-not-evaluate, this setting is ignored.

API security gateway policy requests
Before accepting an incoming request and forwarding it to the API server, the gateway creates a policy
request that is based on the request and sends it to the PDP for authorization. Before accepting an API
server response and forwarding it back to the client, the gateway creates a policy request that is based
on the request and response, and sends it to the PDP for authorization. An understanding of the manner
in which the gateway formulates policy requests can help you create and troubleshoot policies more
effectively.

We recommend enabling detailed decision logging and viewing all policy request attributes in action,
particularly when first developing API security gateway policies. For more information, see Policy Decision
logger on page 109.

Policy request attributes

The following table identifies the attributes of a policy request that the gateway generates.

PingDataGovernance | About the API security gateway | 48

Policy request attributes Description Type

action Identifies the gateway request
processing phase and the HTTP
method, such as GET or POST.

The value is formatted as
<phase>-<method>.

Example values include
inbound-GET, inbound-POST,
outbound-GET, and outbound-
POST.

String

service Identifies the API service. By
default, this attribute is set
to the name of the Gateway
API Endpoint, which can be
overridden by setting the Gateway
API Endpoint's service property.
Multiple Gateway API Endpoints
can use the same service value.

String

domain Unused. String

identityProvider Identifies the access token
validator that evaluates the
bearer token used in an incoming
request.

String

attributes Identifies additional attributes
that do not correspond to
a specific entity type in the
PingDataGovernance trust
framework. For more information
about these attributes, see the
following table.

Object

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

HttpRequest Identifies the HTTP request. Object

TokenOwner The access token subject as a
SCIM resource, as obtained by
the access token validator.

Object

Gateway Provides additional gateway-
specific information about the
request.

Object

The following table identifies the fields that the HttpRequest attribute contains.

Attribute Description Type

RequestURI The request URI. String

Headers Request/response headers. Object

PingDataGovernance | About the API security gateway | 49

Attribute Description Type

ResourcePath Portion of the request URI path
following the inbound base path
that the Gateway API Endpoint
defines.

String

QueryParameters Request URI query parameters. Object

AccessToken Parsed access token. For more
information, see the following
table.

Object

RequestBody The request body, if available. Object

ResponseBody The response body, if available.
This attribute is provided only for
outbound policy requests.

Object

ClientCertificate Properties of the client certificate,
if one was used.

Object

The access token validator populates the HttpRequest.AccessToken attribute, which contains the
fields in the following table. These fields correspond approximately to the fields that the IETF Token
Introspection specification (RFC 7662) defines.

Attribute Description Type

client_id The client ID of the application
that was granted the access
token.

String

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization
server sets this field to indicate
the resource servers that might
accept the token.

Array

user_token Flag that the access token
validator sets to indicate that the
token was issued originally to a
subject. If this flag is false, the
token does not have a subject
and was issued directly to a client.

Boolean

subject Token subject. This attribute
is a user identifier that the
authorization server sets.

String

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This attribute is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

username Subject's user name. This
attribute is a user identifier that
the authorization server sets.

String

https://tools.ietf.org/html/rfc7662

PingDataGovernance | About the API security gateway | 50

Attribute Description Type

issuer Token issuer. This attribute is
usually a URI that identifies the
authorization server.

String

issued_at Date and time at which the
access token was issued.

DateTime

expiration Date and time at which the
access token expires.

DateTime

not_before Date and time before which a
resource server does not accept
the access token.

DateTime

token_type The token type, as set by the
authorization server. This value is
typically set to bearer.

String

The following table identifies the fields that the HttpRequest.ClientCertificate attribute contains.

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

notBefore Earliest date on which the
certificate is considered valid.

DateTime

notAfter Expiration date and time of the
certificate.

DateTime

issuer Distinguished name (DN) of the
certificate issuer.

String

subject DN of the certificate subject. String

valid Indicates whether the certificate is
valid.

Boolean

The following table identifies the fields that the Gateway attribute contains.

Attribute Description Type

_BasePath Portion of the HTTP request URI
that matches the Gateway API
Endpoint's inbound-base-path
value.

String

_TrailingPath Portion of the HTTP request URI
that follows the _BasePath.

String

base path parameters Parameters used in a Gateway
API Endpoint's inbound-base-
path configuration property are
included as fields of the Gateway
attribute.

String

PingDataGovernance | About the API security gateway | 51

Attribute Description Type

custom attribute The Gateway attribute might
contain multiple arbitrary custom
attributes that are defined by the
policy-request-attribute
of the Gateway API Endpoint
configuration.

String

Gateway API Endpoint configuration properties that affect policy requests

The following table identifies Gateway API Endpoint properties that might force the inclusion of additional
attributes in a policy request.

Gateway API Endpoint property Description

inbound-base-path Defines the URI path prefix that the gateway uses
to determine whether the Gateway API Endpoint
handles a request.

The inbound-base-path property value can
include parameters. If parameters are found and
matched, they are included as attributes to policy
requests.

The following configuration properties reference
parameters that the inbound-base-path
introduces:

• outbound-base-path

• service

• resource-path

• policy-request-attribute

service Identifies the API service to the PDP.

The service value appears in the policy request as
the service attribute.

If undefined, the service value defaults to the name
of the Gateway API Endpoint.

resource-path Identifies the REST resource to the PDP.

The resource path value appears in the policy
request as the HttpRequest.ResourcePath
attribute.

If undefined, the resource path value defaults to
the portion of the request that follows the base path
defined by inbound-base-path.

policy-request-attribute Defines zero or more static, arbitrary key-value
pairs. If specified, key-value pairs are always added
as attributes to policy requests.

These custom attributes appear in the policy
request as fields of the Gateway attribute. For
example, if a value of policy-request-
attribute is foo=bar, the attribute Gateway.foo
is added to the policy request with a value of bar.

PingDataGovernance | About the API security gateway | 52

Path parameters

As stated previously, the inbound-base-path property value can include parameters. If parameters are
found and matched, they are included in policy requests as fields of the Gateway policy request attribute.
The previous table identifies additional configuration properties that can use these parameters.

Parameters must be introduced by the inbound-base-path property. Other configuration properties
cannot introduce new parameters.

Basic example

Given the following example configuration:

Gateway API Endpoint property Example value

inbound-base-path /accounts/<accountId>/transactions

outbound-base-path /api/v1/accounts/<accountId>/
transactions

policy-request-attribute foo=bar

A request URI with the path /accounts/XYZ/transactions/1234 matches the inbound base path and
is mapped to the outbound path /api/v1/accounts/XYZ/transactions/1234.

The following properties are added to the policy request:

• HttpRequest.ResourcePath : 1234

• Gateway.accountId : XYZ

• Gateway.foo : bar

Advanced example

Given the following example configuration:

Gateway API Endpoint property Example value

inbound-base-path /health/<tenant>/<resourceType>

outbound-base-path /api/v1/health/<tenant>/<resourceType>

service HealthAPI.<resourceType>

resource-path <resourceType>/<_TrailingPath>

A request URI with the path /health/OmniCorp/patients/1234 matches the inbound base path and
is mapped to the outbound path /api/v1/health/OmniCorp/patients/1234.

The following properties are added to the policy request:

• service : HealthAPI.patients

• HttpRequest.ResourcePath : patients/1234

• Gateway.tenant : OmniCorp

• Gateway.resourceType : patients

About error templates
REST API clients are often written with the expectation that the API produces a custom error format. Some
clients might fail unexpectedly if they encounter an error response that uses an unexpected format.

When a REST API is proxied by PingDataGovernance Server, errors that the REST API returns are
forwarded to the client as is, unless a policy dictates a modification of the response. In the following
scenarios, PingDataGovernance Server returns a gateway-generated error:

PingDataGovernance | About the API security gateway | 53

• When the policy evaluation results in a deny response. This scenario typically results in a 403 error.
• When an internal error occurs in the gateway, or when the gateway cannot contact the REST API

service. This scenario typically results in a 500, 502, or 504 error.

By default, these responses use a simple error format, as the following example shows:

{
 "errorMessage": "Access Denied",
 "status": 403
}

The following table describes this default error format.

Field Type Description

errorMessage String Error message

status Number HTTP status code

Because some REST API clients expect a specific error response format, PingDataGovernance Server
provides a facility for responding with custom errors, called error templates. An error template is written
in Velocity Template Language and defines the manner in which a Gateway API Endpoint produces error
responses.

Error templates feature the following context parameters:

Parameter Type Description

status Integer HTTP status

message String Exception message

For more information, see Error templates on page 64.

Example

The example in this section demonstrates the configuration of a custom error template for a Gateway API
Endpoint named Test API. Error responses that use this error template feature the following fields:

• code

• message

Perform the following steps:

1. Create a file named error-template.vtl with the following contents:

#set ($code = "UNEXPECTED_ERROR")
#if($status == 403)
 #set ($code = "ACCESS_FAILED")
#end
{
 "code":"$code",
 "message":"$message"
}

2. Add the error template to the configuration, as follows:

dsconfig create-error-template \
 --template-name "Custom Error Template" \
 --set "velocity-template<error-template.vtl"

http://velocity.apache.org/engine/1.7/user-guide.html

PingDataGovernance | About the Sideband API | 54

3. Assign the error template to the Gateway API Endpoint, as follows:

dsconfig set-gateway-api-endpoint-prop \
 --endpoint-name "Test API" \
 --set "error-template:Custom Error Template"

The error template is used whenever the gateway generates an error in response to a request. For
example, a policy deny results in a response like the following example:

HTTP/1.1 403 Forbidden
Content-Length: 57
Content-Type: application/json;charset=utf-8
Correlation-Id: e7c8fb82-f43e-4678-b7ff-ae8252411513
Date: Wed, 27 Feb 2019 05:54:50 GMT
Request-Id: 56

{
 "code": "ACCESS_FAILED",
 "message": "Access Denied"
}

About the Sideband API

As a gateway, PingDataGovernance Server functions as a reverse proxy that performs the following steps:

• Intercepts client traffic to a backend REST API service.
• Authorizes the traffic to a policy decision point (PDP) that operates in one of the following locations:

• Within the PingDataGovernance process. This mode is known as Embedded PDP mode.
• Outside the PingDataGovernance process. This mode is known as External PDP mode.

Using the Sideband API, PingDataGovernance Server can be configured instead as a plugin to an external
API gateway. In Sideband mode, an API gateway integration point performs the following steps:

• Intercepts client traffic to a backend REST API service.
• Passes intercepted traffic to the PingDataGovernance Sideband API.

The Sideband API authorizes requests and responses, and returns them in a potentially modified form,
which the API gateway forwards to the backend REST API or the client.

API gateway integration
By using an API gateway plugin that acts as a client to the Sideband API, PingDataGovernance Server can
be used with an external API gateway.

PingDataGovernance | About the Sideband API | 55

PingDataGovernance | About the Sideband API | 56

After the API gateway receives a request from an API gateway plugin, it makes a call to the Sideband API
to process the request. The Sideband API returns a response that contains a modified version of the HTTP
client's request, which the API gateway forwards to the REST API.

If the Sideband API returns a response that indicates the request is unauthorized or otherwise not to
be forwarded, the response includes the response to return to the client. The API gateway returns the
response to the client without forwarding the request to the REST API.

When the API gateway receives a response from the REST API, it makes a call to the Sideband API to
process the response. The Sideband API returns a response that contains a modified version of the REST
API's response, which the API gateway forwards to the client.

Sideband API configuration basics
The Sideband API consists of the following components:

• Sideband API Shared Secrets – Define the authentication credentials that the Sideband API might
require an API gateway plugin to present. For more information, see Authenticating to the Sideband API
on page 57.

• Sideband API HTTP Servlet Extension – Represents the Sideband API itself. If you decide to require
shared secrets, you might need to configure this component. For more information, see Authenticating
to the Sideband API on page 57.

• One or more Sideband API Endpoints – Represent a public path prefix that the Sideband API accepts
for handling proxied requests. Specifically, a Sideband API Endpoint configuration defines the following
items:

• The base path (base-path) for requests that the Sideband API accepts.
• Properties that relate to policy processing, such as service, which targets the policy requests that

are generated for the Sideband API Endpoint to specific policies.

PingDataGovernance Server's out-of-the-box configuration includes a Default Sideband API Endpoint
that accepts all API requests and generates policy requests for the service Default. To customize policy
requests further, an administrator can create additional Sideband API Endpoints.

The following example commands create a pair of Sideband API Endpoints that target specific requests to
a consent service:

PingDataGovernance/bin/dsconfig create-sideband-api-endpoint \
 --endpoint-name "Consent Definitions" \
 --set base-path:/c/definitions \
 --set service:Consent

PingDataGovernance/bin/dsconfig create-sideband-api-endpoint \
 --endpoint-name "Consent Records" \
 --set base-path:/c/consents \
 --set service:Consent

For more information about using the Sideband API Endpoint configuration to customize policy requests,
see Sideband API policy requests on page 59

Note: Changes to these components do not typically require a server restart to take effect. For more
information about the configuration and configuration options, refer to the Configuration Reference Guide,
which is bundled with the product.

Sideband API authentication
The Sideband API provides the following levels of authentication:

• Authentication to the Sideband API itself

PingDataGovernance | About the Sideband API | 57

• Bearer token processing of API gateway requests

The following sections describe these authentication levels in more detail.

Authenticating to the Sideband API

The Sideband API can require an API gateway plugin to authenticate to it by using a shared secret. Shared
secrets are defined by using Sideband API Shared Secret configuration objects, and are managed by
using the Sideband API HTTP Servlet Extension.

Creating a shared secret

About this task

To create a shared secret, run the following example dsconfig command, substituting values of your
choosing:

PingDataGovernance/bin/dsconfig create-sideband-api-shared-secret \
 --secret-name "Shared Secret A" \
 --set "shared-secret:secret123"

Note:

• The shared-secret property sets the value that the Sideband API requires the API gateway plugin to
present. After this value is set, it is no longer visible.

• The secret-name property is a label that allows an administrator to distinguish one Sideband API
Shared Secret from another.

A new Sideband API Shared Secret is not used until the shared-secrets property of the Sideband API
HTTP Servlet Extension is updated. To update the shared-secrets property, run the following example
dsconfig command:

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --add "shared-secrets:Shared Secret A"

Deleting a shared secret

About this task

To remove a Sideband API Shared Secret from use, run the following example dsconfig command,
substituting values of your choosing:

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --remove "shared-secrets:Shared Secret A"

To delete a Sideband API Shared Secret, run the following example dsconfig command:

PingDataGovernance/bin/dsconfig delete-sideband-api-shared-secret \
 --secret-name "Shared Secret A"

Rotating shared secrets

About this task

To avoid service interruptions, the Sideband API allows multiple, distinct shared secrets to be accepted
at the same time. As a result, an administrator can configure a new shared secret that the Sideband API

PingDataGovernance | About the Sideband API | 58

accepts alongside an existing shared secret. This approach allows time for the API gateway plugin to be
updated to use the new shared secret.

Steps

1. Create a new Sideband API Shared Secret and assign it to the Sideband API HTTP Servlet Extension.

2. Update the API gateway plugin to use the new shared secret.

3. Remove the previous Sideband API Shared Secret.

Customizing the shared secret header

About this task

By default, the Sideband API accepts a shared secret from an API gateway plugin by way of the PDG-
TOKEN header. To customize a shared secret header, change the value of the Sideband API HTTP Servlet
Extension's shared-secret-header property.

For example, the following command changes the shared secret header to x-shared-secret:

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --set shared-secret-header-name:x-shared-secret

The following command resets the shared secret header to its default value:

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --reset shared-secret-header-name

Authenticating API server requests

About this task

As with PingDataGovernance's API Security Gateway mode, API server requests that the Sideband API
authorizes do not strictly require authentication. However, the default policy set requires bearer token
authentication.

To support this level of authentication, the Sideband API uses configured Access Token Validators to
evaluate bearer tokens that are included in incoming requests. The HttpRequest.AccessToken
attribute supplies the validation result to the policy request, and the TokenOwner attribute provides the
user identity that is associated with the token.

Policies use this authentication information to affect the processing requests and responses. For example,
a policy in the default policy set requires all requests to be made with an active access token.

Rule: Deny if HttpRequest.AccessToken.active Equals false

Advice:
 Code: denied-reason
 Applies To: Deny
 Payload: {"status":401, "message": "invalid_token", "detail":"Access token
 is expired or otherwise invalid"}

The following table identifies the configuration properties that determine the manner in which Sideband API
Endpoints handle authentication.

PingDataGovernance | About the Sideband API | 59

Table 1:

Property Description

http-auth-evaluation-behavior Determines whether the Sideband API Endpoint
evaluates bearer tokens and, if so, whether the
Sideband API Endpoint forwards them to the API
server by way of the API gateway.

access-token-validator Sets the Access Token Validators that the
Sideband API Endpoint uses. Because this property
contains no value by default, the Sideband API
Endpoint can potentially use each Access Token
Validator that is configured on the server to
evaluate every bearer token.

To constrain the set of Access Token Validators
that a Sideband API Endpoint uses, set this
property to use one or more specific values.

This setting is ignored if http-auth-
evaluation-behavior is set to do-not-
evaluate.

Sideband API policy requests
To authorize an incoming request, the Sideband API performs the following steps:

• Creates a policy request that is based on the incoming request.
• Sends the policy request to the PDP for evaluation.

An understanding of the manner in which the Sideband API formulates policy requests can help you create
and troubleshoot policies more effectively.

Policy request attributes

The following table identifies the attributes that are associated with a policy request that the Sideband API
generates.

Attribute Description Type

action Identifies the request-processing
phase and the HTTP method,
such as GET or POST.

The value is formatted as
<phase>-<method>. Example
values include inbound-GET,
inbound-POST, outbound-
GET, and outbound-POST.

String

PingDataGovernance | About the Sideband API | 60

Attribute Description Type

service Identifies the API service. By
default, this value is set to the
name of the Sideband API
Endpoint.

To override the default value,
set the Sideband API Endpoint's
service property.

Multiple Sideband API Endpoints
can use the same service value.

String

domain Unused. String

identityProvider Name of the Access Token
Validator that evaluates the
bearer token in an incoming
request.

String

attributes Additional attributes that do not
correspond to a specific entity
type in the Symphonic trust
framework.

For more information, see the
following table.

Object

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

HttpRequest HTTP request. Object

TokenOwner Access token subject as a SCIM
resource, as obtained by the
access token validator.

Object

Gateway Additional information about the
request.

Object

The following table identifies the fields that the HttpRequest attribute can contain.

Attribute Description Type

RequestURI Request URI. String

Headers Request and response headers. Object

ResourcePath Portion of the request URI path
that follows the inbound base
path, which the Sideband API
Endpoint defines.

String

QueryParameters Request URI query parameters. Object

AccessToken Parsed access token.

For more information, see the
following table.

Object

PingDataGovernance | About the Sideband API | 61

Attribute Description Type

RequestBody Request body, if available. Object

ResponseBody Response body, if available. This
field is provided only for outbound
policy requests.

Object

ClientCertificate Properties of the client certificate,
if one was used.

Object

The following table identifies the fields that are associated with the HttpRequest.AccessToken
attribute, which is populated by the access token validator.

Note: These fields correspond approximately to the fields that are defined by the IETF Token
Introspection specification, RFC 7662.

Attribute Description Type

client_id Client ID of the application that
was granted the access token.

String

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization server
sets this field to identify the
resource servers that can accept
the token.

Array

user_token Flag that the access token
validator sets to indicate the
token was originally issued to a
subject. If the flag is false, the
token contains no subject and
was issued directly to a client.

Boolean

subject Token subject. This value
represents a user identifier that
the authorization server sets.

String

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This value is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

username Subject's user name. This value
represents a user identifier that
the authorization server sets.

String

issuer Token issuer. Typically, this
value is a URI that identifies the
authorization server.

String

issued_at Date and time at which the
access token was issued.

DateTime

expiration Date and time at which the
access token expired.

DateTime

https://tools.ietf.org/html/rfc7662

PingDataGovernance | About the Sideband API | 62

Attribute Description Type

not_before Date and time before which a
resource server does not accept
an access token.

DateTime

token_type Token type, as set by the
authorization server. Typically,
this value is bearer.

String

The following table identifies the fields that the HttpRequest.ClientCertificate attribute can
contain.

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

issuer Distinguished name (DN) of the
certificate issuer.

String

subject DN of the certificate subject. String

notAfter Expiration date and time of the
certificate.

DateTime

notBefore Earliest date on which the
certificate is considered valid.

DateTime

valid Indicates whether the SSL client
certificate is valid.

Boolean

The following table identifies the fields that the Gateway attribute can contain.

Attribute Description Type

_BasePath Portion of the HTTP request URI
that matches the Sideband API
Endpoint's base-path value.

String

_TrailingPath Portion of the HTTP request URI
that follows the _BasePath.

String

base path parameters Parameters in a Sideband
API Endpoint's base-path
configuration property are
included as fields of the Gateway
attribute.

String

base path parameters The Gateway attribute can
contain multiple, arbitrary custom
attributes that are defined by the
policy-request-attribute
of the Sideband API Endpoint
configuration.

String

PingDataGovernance | About the Sideband API | 63

Sideband API Endpoint configuration properties

The following table identifies Sideband API Endpoint properties that might force the inclusion of additional
attributes with the policy request.

Property Description

base-path Defines the URI path prefix that the Sideband
API uses to determine whether the Sideband API
Endpoint handles a request.

The base-path property value can include
parameters. If parameters are found and matched,
they are included as attributes to policy requests.

The following configuration properties can
reference parameters that base-path introduces:

• service

• resource-path

• policy-request-attribute

service Identifies the API service to the PDP. A policy can
use this value to target requests.

The service value appears in the policy request
as the service attribute. If undefined, the
service value defaults to the name of the
Sideband API Endpoint.

resource-path Identifies the REST resource to the PDP.

The resource path value appears in the policy
request as the HttpRequest.ResourcePath
attribute. If undefined, the resource-path value
defaults to the portion of the request that follows the
base path, as defined by base-path.

policy-request-attribute Defines zero or more static, arbitrary key-value
pairs. If specified, the pairs are always added as
attributes to policy requests.

These custom attributes appear in the policy
request as fields of the Gateway attribute. For
example, if a value of policy-request-
attribute is foo=bar, the attribute
Gateway.foo is added to the policy request with
the value bar.

Path parameters

If parameters are found and matched for the base-path property, they are included in policy requests
as fields of the Gateway policy request attribute. These parameters are available for use by other
configuration properties, as identified in the table in Sideband API Endpoint configuration properties on
page 63.

Parameters must be introduced by the base-path property. Other configuration properties cannot
introduce new parameters.

PingDataGovernance | About the Sideband API | 64

Path parameters: Basic example

The following table provides a basic example configuration.

API Endpoint property Example value

base-path /accounts/{accountId}/transactions

policy-request-attribute foo=bar

A request URI with the path /accounts/XYZ/transactions/1234 matches the example base-path
value.

The following properties are added to the policy request:

• HttpRequest.ResourcePath : 1234

• Gateway.accountId : XYZ

• Gateway.foo : bar

Path parameters: Advanced example

The following table provides an advanced example configuration:

API Endpoint property Example value

base-path /health/{tenant}/{resourceType}

service HealthAPI.{resourceType}

resource-path {resourceType}/{_TrailingPath}

A request URI with the path /health/OmniCorp/patients/1234 matches the example base-path
value.

The following properties are added to the policy request:

• service : HealthAPI.patients

• HttpRequest.ResourcePath : patients/1234

• Gateway.tenant : OmniCorp

• Gateway.resourceType : patients

Error templates
REST API clients are often written to expect a custom error format that the API produces. Some clients
might fail unexpectedly if they encounter an error response that uses an unexpected format.

When PingDataGovernance Server proxies a REST API, errors that the API returns are forwarded to
the client as they are, unless a policy dictates modifications to the response. In the following scenarios,
PingDataGovernance Server return an error that the Sideband API generates:

• The policy evaluation results in a deny response. This scenario typically results in a 403 error.
• An internal error occurrs in the Sideband API. This scenario typically results in a 500 error.

By default, these responses use a simple error format, as the following example shows.

{
 "errorMessage": "Access Denied",
 "status": 403
}

The following table describes the default error format.

PingDataGovernance | About the SCIM service | 65

Field Type Description

errorMessage String Error message.

status Number HTTP status code.

Because some REST API clients expect a specific error-response format, PingDataGovernance Server
provides error templates as a way to respond with custom errors. Written in Velocity Template Language,
error templates define the manner in which a Sideband API Endpoint produces error responses.

The following table identifies the context parameters that are provided with error templates.

Parameter Type Description

status Integer HTTP status.

message String Exception message.

Error templates: Example

This topic demonstrates the configuration of a custom error template for a Sideband API Endpoint called
Test API.

The following fields are associated with the error responses that use this error template:

• code

• message

To create such an error template, perform the follwing steps:

1. Create a file named error-template.vtl with the following contents:

#set ($code = "UNEXPECTED_ERROR")
#if($status == 403)
 #set ($code = "ACCESS_FAILED")
#end
{
 "code":"$code",
 "message":"$message"
}

2. Add the error template to the configuration.

dsconfig create-error-template \
 --template-name "Custom Error Template" \
 --set "velocity-template<error-template.vtl"

3. Assign the error template to the Sideband API Endpoint.

dsconfig set-sideband-api-endpoint-prop \
 --endpoint-name "Test API" \
 --set "error-template:Custom Error Template"

The error template is used whenever the Sideband API generates an error in response to a request.

About the SCIM service

PingDataGovernance Server's built-in SCIM service provides a REST API for data that is stored in one or
more external datastores, based on the SCIM 2.0 standard.

http://velocity.apache.org/engine/1.7/user-guide.html
https://tools.ietf.org/html/rfc7644

PingDataGovernance | About the SCIM service | 66

Request and response flow
The SCIM REST API provides an HTTP API for data that is contained in a User Store. Although User
Stores typically consist of a single datastore, such as PingDirectory Server, they can also consist of
multiple datastores.

When a SCIM request is received, it is translated into one or more requests to the User Store, and the
resulting User Store response is translated into a SCIM response. The SCIM response is authorized
by sending a policy request to the PDP. Depending on the policy result, including the advices that are
returned in the result, the SCIM response might be filtered or rejected.

PingDataGovernance | About the SCIM service | 67

PingDataGovernance | About the SCIM service | 68

SCIM configuration basics
PingDataGovernance Server's SCIM system consists of the following components:

• SCIM resource types – Define a class of resources, such as users or devices. Every SCIM resource
type features at least one SCIM schema, which defines the attributes and subattributes that are
available to each resource, and at least one store adapter, which handles datastore interactions.

The following types of SCIM resource types differ according to the definitions of the SCIM schema:

• Mapping SCIM resource type – Requires an explicitly defined SCIM schema, with explicitly defined
mappings of SCIM attributes to store adapter attributes. Use a mapping SCIM resource type to
exercise detailed control over the SCIM schema, its attributes, and its mappings.

• Pass-through SCIM resource type – Does not use an explicitly defined SCIM schema. Instead,
an implicit schema is generated dynamically, based on the schema that is reported by the store
adapter. Use a pass-through SCIM resource type when you need to get started quickly.

• SCIM schemas – Define a collection of SCIM attributes, grouped under an identifier called a schema
URN. Each SCIM resource type possesses a single core schema and can feature schema extensions,
which act as secondary attribute groupings that the schema URN namespaces. SCIM schemas are
defined independently of SCIM resource types, and multiple SCIM resource types can use a single
SCIM schema as a core schema or schema extension.

A SCIM attribute defines an attribute that is available under a SCIM schema. The configuration for a
SCIM attribute defines its data type, regardless of whether it is required, single-valued, or multi-valued.
Because it consists of SCIM subattributes, a SCIM attribute can be defined as a complex attribute.

• Store adapters – Act as a bridge between PingDataGovernance Server's SCIM system and an external
datastore. PingDataGovernance Server provides a built-in LDAP store adapter to support LDAP
datastores, including PingDirectory Server and PingDirectoryProxy Server. The LDAP store adapter
uses a configurable load-balancing algorithm to spread the load among multiple directory servers. Use
the Server SDK to create store adapters for arbitrary datastore types.

Each SCIM resource type features a primary store adapter, and can also define multiple secondary
store adapters. Secondary store adapters allow a single SCIM resource to consist of attributes that are
retrieved from multiple datastores.

Store adapter mappings define the manner in which a SCIM resource type maps the attributes in its
SCIM schemas to native attributes of the datastore.

About the create-initial-config tool

The create-initial-config tool helps to quickly configure PingDataGovernance Server for SCIM.
Run this tool after completing setup to configure a SCIM resource type named Users, along with a related
configuration.

For an example of using create-initial-config to create a pass-through SCIM resource type, see
Configure the PingDataGovernance User Store on page 10.

Example: Mapped SCIM resource type for devices

This example demonstrates the addition of a simple mapped SCIM resource type, backed by the standard
device object class of a PingDirectory Server.

To add data to PingDirectory Server, create a file named devices.ldif with the following contents:

dn: ou=Devices,dc=example,dc=com
objectClass: top
objectClass: organizationalUnit
ou: Devices

dn: cn=device.0,ou=Devices,dc=example,dc=com

PingDataGovernance | About the SCIM service | 69

objectClass: top
objectClass: device
cn: device.0
description: Description for device.0

dn: cn=device.1,ou=Devices,dc=example,dc=com
objectClass: top
objectClass: device
cn: device.1
description: Description for device.1

Use the ldapmodify tool to load the data file, as follows:

PingDirectory/bin/ldapmodify --defaultAdd --filename devices.ldif

Start configuring PingDataGovernance Server by adding a store adapter, as follows:

dsconfig create-store-adapter \
 --adapter-name DeviceStoreAdapter \
 --type ldap \
 --set enabled:true \
 --set "load-balancing-algorithm:User Store LBA" \
 --set structural-ldap-objectclass:device \
 --set include-base-dn:ou=devices,dc=example,dc=com \
 --set include-operational-attribute:createTimestamp \
 --set include-operational-attribute:modifyTimestamp \
 --set create-dn-pattern:entryUUID=server-
generated,ou=devices,dc=example,dc=com

The previous command creates a store adapter that handles LDAP entries found under the base DN
ou=devices,dc=example,dc=com with the object class device. This example uses the User Store
load-balancing algorithm that is created when you use the create-initial-config tool to set up a
users SCIM resource type.

The following command creates a SCIM schema for devices with the schema URN
urn:pingidentity:schemas:Device:1.0:

dsconfig create-scim-schema \
 --schema-name urn:pingidentity:schemas:Device:1.0 \
 --set display-name:Device

Under this schema, add the string attributes name and description, as follows:

dsconfig create-scim-attribute \
 --schema-name urn:pingidentity:schemas:Device:1.0 \
 --attribute-name name \
 --set required:true
dsconfig create-scim-attribute \
 --schema-name urn:pingidentity:schemas:Device:1.0 \
 --attribute-name description

After you create a store adapter and schema, create the SCIM resource type, as follows:

dsconfig create-scim-resource-type \
 --type-name Devices \
 --type mapping \
 --set enabled:true \
 --set endpoint:Devices \
 --set primary-store-adapter:DeviceStoreAdapter \
 --set lookthrough-limit:500 \
 --set core-schema:urn:pingidentity:schemas:Device:1.0

PingDataGovernance | About the SCIM service | 70

Map the two SCIM attributes to the corresponding LDAP attributes. The following commands map the
SCIM name attribute to the LDAP cn attribute, and map the SCIM description attribute to the LDAP
description attribute:

dsconfig create-store-adapter-mapping \
 --type-name Devices \
 --mapping-name name \
 --set scim-resource-type-attribute:name \
 --set store-adapter-attribute:cn \
 --set searchable:true

dsconfig create-store-adapter-mapping \
 --type-name Devices \
 --mapping-name description \
 --set scim-resource-type-attribute:description \
 --set store-adapter-attribute:description

To confirm that the new resource type has been added, send the following request to the SCIM resource
types endpoint:

curl -k https://localhost:8443/scim/v2/ResourceTypes/Devices
{"schemas":
["urn:ietf:params:scim:schemas:core:2.0:ResourceType"],"id":"Devices","name":
"Devices","endpoint":"Devices","schema":"urn:pingidentity:schemas:Device:1.0",
"meta":{"resourceType":"ResourceType","location":"https://localhost:8443/
scim/v2/ResourceTypes/Devices"}}

For a more advanced example of a mapped SCIM resource type, refer to the example User schema in
PingDataGovernance/resource/starter-schemas.

SCIM endpoints
The following table identifies the endpoints that the SCIM 2.0 REST API provides.

Endpoint Description Supported HTTP methods

/ServiceProviderConfig Provides metadata that indicates
PingDataGovernance Server's
authentication scheme, which
is always OAuth 2.0, and its
support for features that the SCIM
standard considers optional.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/Schemas Lists the SCIM schemas that
are configured for use on
PingDataGovernance Server, and
that define the various attributes
available to resource types.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

PingDataGovernance | About the SCIM service | 71

Endpoint Description Supported HTTP methods

/Schemas/<schema> Retrieves a specific SCIM
schema, as specified by its ID.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/ResourceTypes Lists all of the SCIM resource
types that are configured for use
on PingDataGovernance Server.
Clients can use this information
to determine the endpoint, core
schema, and extension schemas
of any resource types that the
server supports.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/ResourceTypes/
<resourceType>

Retrieves a specific SCIM
resource type, as specified by its
ID.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/<resourceType> Creates a new resource (POST),
or lists and filters resources
(GET).

GET, POST

/<resourceType>/.search Lists and filters resources. POST

/<resourceType>/
<resourceId>

Retrieves a single resource
(GET), modifies a single resource
(PUT, PATCH), or deletes a
single resource (DELETE).

GET, PUT, PATCH, DELETE

/Me Alias for the resource that the
subject of the access token
identifies.

Retrieves the resource (GET),
modifies the resource (PUT,
PATCH), or deletes the
(DELETE).

GET, PUT, PATCH, DELETE

SCIM authentication
All SCIM requests must be authenticated by using OAuth 2.0 bearer token authentication.

Bearer tokens are evaluated by using access token validators. The HttpRequest.AccessToken
attribute supplies the validation result to the policy request, and the TokenOwner attribute provides the
user identity that is associated with the token.

Policies use this authentication information to affect the processing of requests and responses.

PingDataGovernance | About the SCIM service | 72

SCIM policy requests
An understanding of the manner in which the SCIM service formulates policy requests will help you to
create and troubleshoot policies more effectively.

For every SCIM request or response, one or more policy requests are sent to the PDP for authorization.
Policies can use a policy request's action value to determine the processing phase and to act
accordingly.

Most SCIM operations are authorized in the following phases:

1. The operation itself is authorized.
2. The outgoing response is authorized with the retrieve action.

In most cases, policies that target the retrieve action can be reused to specify read-access control
rules.

Operation Actions

POST /scim/v2/<resourceType> create, retrieve

GET /scim/v2/<resourceType>/
<resourceId>

retrieve

PUT /scim/v2/<resourceType>/
<resourceId>

PATCH /scim/v2/<resourceType>/
<resourceId>

modify, retrieve

DELETE /scim/v2/<resourceType>/
<resourceId>

delete

GET /scim/v2/<resourceType>

POST /scim/v2/<resourceType>/.search

search, retrieve

-OR-

search, search-result

For more information about authorizing searches,
see About SCIM searches on page 76.

We recommend enabling detailed decision logging and viewing all policy request attributes in action,
particularly when learning how to develop SCIM policies. For more information, see Policy Decision logger
on page 109.

Policy request attributes

The following table identifies the attributes associated with a policy request that the SCIM service
generates.

PingDataGovernance | About the SCIM service | 73

Policy request attribute Description Type

action Identifies the SCIM request as
one of the following types:

• create

• modify

• retrieve

• delete

• search

• search-request

String

service Identifies the SCIM service, which
is always SCIM2.

String

domain Unused. String

identityProvider Name of the access token
validator that evaluates the
bearer token used in an incoming
request.

String

attributes Additional attributes that do not
correspond to a specific entity
type in the PingDataGovernance
Trust Framework. For more
information, see the following
table.

Object

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

HttpRequest HTTP request. Object

impactedAttributes Provides the set of attributes that
the request modifies.

Collection

TokenOwner Access token subject as a SCIM
resource, as obtained by the
access token validator.

Object

SCIM2 Provides additional, SCIM2-
specific information about the
request.

Object

The following table identifies the fields that the HttpRequest attribute contains.

Attribute Description Type

RequestURI The request URI. String

Headers Request and response headers. Object

PingDataGovernance | About the SCIM service | 74

Attribute Description Type

ResourcePath Uniquely identifies the SCIM
resource that is being requested,
in the format <Resource
Type>/<SCIM ID>, as the
following example shows:

Users/0450b8db-
f055-35d8-8e2f-0f203a291cd1

String

QueryParameters Request URI query parameters. Object

AccessToken Parsed access token. For more
information, see the following
table.

Object

RequestBody The request body, if available.
This attribute is available for
POST, PUT, and PATCH
requests.

Object

ClientCertificate Properties of the client certificate,
if one is used.

Object

The access token validator populates the HttpRequest.AccessToken attribute, which contains the
fields in the following table. These fields correspond approximately to the fields that the IETF Token
Introspection specification (RFC 7662) defines.

Attribute Description Type

client_id The client ID of the application
that was granted the access
token.

String

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization
server sets this field to indicate
the resource servers that might
accept the token.

Array

user_token Flag that the access token
validator sets to indicate that the
token was issued originally to a
subject. If this flag is false, the
token does not have a subject
and was issued directly to a client.

Boolean

subject Token subject. This attribute
is a user identifier that the
authorization server sets.

String

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This attribute is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

https://tools.ietf.org/html/rfc7662

PingDataGovernance | About the SCIM service | 75

Attribute Description Type

username Subject's user name. This
attribute is a user identifier that
the authorization server sets.

String

issuer Token issuer. This attribute is
usually a URI that identifies the
authorization server.

String

issued_at Date and time at which the
access token was issued.

DateTime

expiration Date and time at which the
access token expires.

DateTime

not_before Date and time before which a
resource server does not accept
the access token.

DateTime

token_type The token type, as set by the
authorization server. This value is
typically set to bearer.

String

The following table identifies the fields that the HttpRequest.ClientCertificate attribute contains.

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

notBefore Earliest date on which the
certificate is considered valid.

DateTime

notAfter Expiration date and time of the
certificate.

DateTime

issuer Distinguished name (DN) of the
certificate issuer.

String

subject DN of the certificate subject. String

valid Indicates whether the certificate is
valid.

Boolean

The following table identifies the fields that the SCIM2 attribute contains.

PingDataGovernance | About the SCIM service | 76

Attribute Description Type

resource Complete SCIM resource that the
request targets. This attribute is
available for GET, PUT, PATCH,
and DELETE requests.

The resource attribute is
also available in the policy
requests that are performed for
each matching SCIM resource
in a search result. For more
information, see About SCIM
searches on page 76.

Object

modifications Contains a normalized SCIM
2 PATCH request object that
represents all of the changes to
apply. This attribute is available
for PUT and PATCH requests.

Object

About SCIM searches

A request that potentially causes the return of multiple SCIM resources is considered a search request.
Perform such requests in one of the following manners:

• Make a GET request to /scim/v2/<resourceType>.
• Make a POST request to /scim/v2/<resourceType>/.search.

To constrain the search results, we recommend that clients supply a search filter through the filter
parameter. For example, a GET request to /scim/v2/Users?filter=st+eq+"TX" returns all SCIM
resources of the Users resource type in which the st attribute possesses a value of "TX" Additionally, the
Add Filter policy can be used to add a filter automatically to search requests.

SCIM search policy processing

Policy processing for SCIM searches occurs in the following phases:

1. Policies deny or modify a search request.
2. Policies filter the search result set.

Search request authorization

In the first phase, a policy request is issued for the search itself, using the search action. If the policy
result is a deny, the search is not performed. Otherwise, advices in the policy result are applied to the
search filter, giving advices a chance to alter the filter.

Note: Only advice types that are written specifically for the search action can be used. For example, the
Add Filter advice type can be used to constrain the scope of a search.

The Combine SCIM Search Authorizations advice type can also be used at this point. If this advice is used,
search results are authorized by using a special mode, which the next section describes.

Search response authorization

After a search is performed, the resulting search response is authorized in one of two ways.

The default authorization mode simplifies policy design but can generate a large number of policy requests.
For every SCIM resource that the search returns, a policy request is issued by using the retrieve action.
If the policy result is a deny, the SCIM resource is removed from the search response. Otherwise, advices
in the policy result are applied to the SCIM resource, which gives advices a chance to alter the resource.

PingDataGovernance | About the SCIM service | 77

Because the retrieve action is used, policies that are already written for single-resource GET operations
are reused and applied to the search response.

Optimized search response authorization

If the search request policy result includes the Combine SCIM Search Authorizations advice type, an
optimized authorization mode is used instead. This mode reduces the number of overall policy requests but
might require a careful policy design. Instead of generating a policy request for each SCIM resource that
the search returns, a single policy request is generated for the entire result set. To distinguish the policy
requests that this authorization mode generates, the action search-result is used.

Write policies that target these policy requests to accept an object that contains a Resources array with all
matching results. Advices that the policy result returns are applied iteratively to each member of the result
set. The input object that is provided to advices also contains a Resources array, but it contains only the
single result that is currently being considered.

The following code provides an example input object:

{
 "Resources": [{
 "name": "Henry Flowers",
 "id": "40424a7d-901e-45ef-a95a-7dd31e4474b0",
 "meta": {
 "location": "https://example.com/scim/v2/Users/40424a7d-901e-45ef-
a95a-7dd31e4474b0",
 "resourceType": "Users"
 },
 "schemas": [
 "urn:pingidentity:schemas:store:2.0:UserStoreAdapter"
]
 }
]
}

The optimized search response authorization mode checks policies efficiently, and is typically faster than
the default authorization mode. However, the optimized search response authorization mode might be less
memory-efficient because the entire result set, as returned by the datastore, is loaded into memory and
processed by the PDP.

Lookthrough limit
Because a policy evaluates every SCIM resource in a search result, some searches might exhaust server
resources. To avoid this scenario, cap the total number of resources that a search matches.

The configuration for each SCIM resource type contains a lookthrough-limit property that defines this
limit, with a default value of 500. If a search request exceeds the lookthrough limit, the client receives a
400 response with an error message that resembles the following example:

{
 "detail": "The search request matched too many results",
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:Error"
],
 "scimType": "tooMany",
 "status": "400"
}

To avoid this error, a client must refine its search filter to return fewer matches.

PingDataGovernance | Policy administration | 78

Disable the SCIM REST API

About this task

If you have no need to expose data through the SCIM REST API, disable it by removing the SCIM2 HTTP
servlet extension from the HTTPS connection handler, or from any other HTTP connection handler, and
restart the handler, as follows:

dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --remove http-servlet-extension:SCIM2 \
 --set enabled:false
dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:true

When the SCIM REST API is disabled, access token validators still use PingDataGovernance Server's
SCIM system to look up token owners.

Policy administration

Create policies in a development environment

About this task

Policies are developed in the PingDataGovernance Policy Administration GUI, which is sometimes referred
to as the Policy Administration Point (PAP). PingDataGovernance can be configured to evaluate policy in
the following modes:

• Embedded
• External

In a development environment, the External mode is used. PingDataGovernance authorizes requests by
submitting policy requests to the PAP.

Change the active policy branch

About this task

The PingDataGovernance Policy Administration GUI manages multiple sets of Trust Framework attributes
and policies by storing data sets in different branches. In a development environment, the ability to quickly
reconfigure PingDataGovernance Server between policy branches is highly beneficial.

To change the active policy branch, perform the following steps:

Steps

1. Define a Policy External Server configuration for each branch.

2. Change the Policy Decision service’s policy-server property as needed.

PingDataGovernance | Policy administration | 79

Example configuration

The following example involves a policy branch named Default Policies and a policy branch named
SCIM Policies. Create a Policy external server for each branch, as follows:

dsconfig create-external-server \
 --server-name "Default Policies" \
 --type policy \
 --set base-url:http://localhost:4200 \
 --set user-id:admin \
 --set decision-node:e51688ff-1dc9-4b6c-bb36-8af64d02e9d1 \
 --set "branch:Default Policies"
dsconfig create-external-server \
 --server-name "SCIM Policies" \
 --type policy \
 --set base-url:http://localhost:4200 \
 --set user-id:admin \
 --set decision-node:e51688ff-1dc9-4b6c-bb36-8af64d02e9d1 \
 --set "branch:SCIM Policies"

To use the Default Policies branch, configure the Policy Decision Service to use the corresponding
Policy external server, as follows:

dsconfig set-policy-decision-service-prop \
 --set "policy-server:Default Policies"

To use the SCIM Policies branch, configure the Policy Decision Service to use the corresponding
Policy external server, as follows:

dsconfig set-policy-decision-service-prop \
 --set "policy-server:SCIM Policies"

Use policies in a production environment
PingDataGovernance Server can be configured to evaluate policy in the following modes:

• Embedded
• External

In staging and production environments, configure PingDataGovernance Server in Embedded mode so
that it does not depend on an external server.

To configure the Embedded mode of the Policy Decision Service, perform the following steps:

1. On the main configuration page of the PingDataGovernance Administration Console, click Policy
Decision Service.

2. From the PDP Mode drop-down list, select Embedded.
3. After you complete the following section, upload a policy deployment package file.

For more information about modes, see External PDP mode on page 82 and Embedded PDP mode on
page 88.

Default policies

To use the default policies that are distributed with PingDataGovernance Server, select the deployment
package and locate the default policies deployment package that loads directly into the embedded PDP.
The policy deployment package is located at resource/policies/defaultPolicies.SDP.

PingDataGovernance | Policy administration | 80

The following dsconfig command configures the policy service in Embedded mode with the default
policies:

PingDataGovernance/bin/dsconfig set-policy-decision-service-prop \
 --set pdp-mode:embedded \
 --set "deployment-package<resource/policies/defaultPolicies.SDP"

Customized policies

About this task

To install a new set of policies into the PingDataGovernance embedded PDP, based on the changes that
you made through the PingDataGovernance Policy Administration GUI, perform the following steps:

Steps

1. In the PingDataGovernance Policy Administration GUI, click Change Control.

2. Verify that you are viewing the Version Control child tab

3. Select Commit New Changes and enter a commit message.

4. From the submenu in the upper-left corner, select the Deployment Packages tab.

5. To create a new deployment package, click +.

6. From the Branch drop-down list, select the policy branch to export.

7. From the Snapshot drop-down list, select the option that matches your most recent commit message.

8. To include only particular policies and policy sets, from the Policy Node drop-down list, select the
branch in the policy tree to export.

9. Click Create Package.

10.After the deployment package has been created, click Export Package to download a file to your
system.

11.To load the new deployment package into the PingDataGovernance embedded PDP, use the
PingDataGovernance Administration Console or enter a dsconfig command like the following
example:

PingDataGovernance/bin/dsconfig set-policy-decision-service-prop \
 --set "deployment-package</path/to/policies/customPolicies.SDP"

Environment-specific Trust Framework attributes
Within dynamic authorization, policies must be able to retrieve attributes frequently from Policy Information
Providers (PIPs) at runtime. The services and datastores from which additional policy information
is retrieved range from development and testing environments to preproduction and production
environments.

For example, you might use a Trust Framework service to retrieve a user's consent from PingDirectory's
Consent API. This service depends on the URL of the Consent API, the user name and password that are
used for authentication, and other items that vary between development, preproduction, and production
environments.

PingDataGovernance | Policy administration | 81

When you begin creating policies, you can define these values easily in the Trust Framework attributes, as
the following image shows.

Before sharing your policies with others or moving to production, remove these hard-coded values from the
Trust Framework. For more information, see Remove the hard-coded password on page 86.

Store keys and values in PingDataGovernance Server

About this task

Environment-specific attribute keys and values are stored in PingDataGovernance Server's configuration,
which can be encrypted. By using this approach, you can configure different values in each of your
PingDataGovernance development, preproduction, and production environments.

The hard-coded values will be removed from your Trust Framework attributes at a later time.

Define a policy configuration key

About this task

To define a policy configuration key, perform the following steps:

PingDataGovernance | Policy administration | 82

Steps

1. Use a web browser to access the PingDataGovernance Administration Console at https://<your-
dg-host>:<your-dg-https-port>/console.

2. Navigate to Authorization and Policies > Policy Decision Service.

3. In the Name text box, type ConsentServicePassword.

4. In the Policy Configuration Value text box, type foobarpassword1.

Next steps

If you utilize scripted deployment automation, use the command-line tools to configure a different value
for each of your environments. For example, in Ansible you might use a Jinja2 template to replace
foobarpassword1 with the appropriate Consent API password for the deployment environment, as
follows:

 PingDataGovernance/bin/dsconfig create-policy-configuration-key
 \
 --key-name ConsentServicePassword \
 --set "policy-configuration-value:foobarpassword1"

Repeat this step for the ConsentServiceBaseUri and ConsentServiceUsername configuration keys.

External PDP mode

When you develop policies, you are using the PDP in your PingDataGovernance Policy Administration GUI
server. This mode is referred to as External PDP mode. To grant an external PDP access to the passwords
that are stored in PingDataGovernance Server, create a service that retrieves the keys and values from
your development PingDataGovernance Server's configuration API.

Ultimately, you will create services like the following example, each of which retrieves a specific value from
your development PingDataGovernance Server:

PingDataGovernance | Policy administration | 83

To complete this task, configure the credentials that grant access to your development
PingDataGovernance Server's API.

Note: Configure credentials to grant access to your development PingDataGovernance Servers only when
operating in External PDP mode. Such credentials are unnecessary when operating in Embedded PDP
mode, which is used in production environments.

Never store credentials in the Trust Framework attributes. Instead, save them to the server on which you
installed the PingDataGovernance Policy Administration GUI.

Store PingDataGovernance credentials as environment variables

About this task

To create environment variables, run the following commands in a terminal window:

export ConfigurationKeyServiceBaseUri="https://<your-dg-host>:<your-dg-
httpsport>/config/v2"
export ConfigurationKeyServiceUsername="cn=<your-dg-username>"
export ConfigurationKeyServicePassword="<your-dg-password>"

Add PingDataGovernance environment variables to the configuration file

About this task

To add an attribute value to the configuration file, perform the following steps:

Steps

1. In a text editor, open the configuration file PingDataGovernance-PAP/config/
configuration.yml.

2. Locate the core: section.

PingDataGovernance | Policy administration | 84

3. Add the user name and password to PingDataGovernance Server, as follows:

ConfigurationKeyServiceBaseUri: ${ConfigurationKeyServiceBaseUri}
ConfigurationKeyServiceUsername: ${ConfigurationKeyServiceUsername}
ConfigurationKeyServicePassword: ${ConfigurationKeyServicePassword}

4. Stop the PingDataGovernance Policy Administration GUI server.

5. Restart the PingDataGovernance Policy Administration GUI server.

Results

The ${} points to the server environment variables. It is added to configuration.yml so that the
PingDataGovernance Policy Administration GUI can use environment variables as attributes.

In the following section, we will create those attributes within the PingDataGovernance Policy
Administration GUI.

Define a new attribute

About this task

To define a new attribute, perform the following steps:

Steps

1. From the PingDataGovernance Policy Administration GUI, navigate to Trust Framework.

2. Click Attributes.

3. Click +Add new attribute.

4. In the Name text box, type Username.

5. In the Resolver Settings section, perform the following steps:

a) From the Resolver Type drop-down list, select Configuration Key.
b) In the corresponding text box, type ConfigurationKeyServiceUsername.

6. Click Save Changes.

PingDataGovernance | Policy administration | 85

Next steps
Repeat this task for ConfigurationKeyServiceBaseUri and
ConfigurationKeyServicePassword.

Retrieve the ConsentServicePassword value

About this task

Create a new Trust Framework service to retrieve the ConsentServicePassword value from your
development PingDataGovernance Server.

Steps

1. From the PingDataGovernance Policy Administration GUI, navigate to Trust Framework.

2. Click Services.

3. Click +Add new service.

4. In the Name text box, type ConsentServicePassword.

5. From the Service Type drop-down list, select Restful.

6. In the Restful Settings section, perform the following steps:

a) In the URL Format text box, type {{ConfigurationKeyServiceBaseUri}}/policy-
decision-service/policy-configuration-keys/ConsentServicePassword.

b) From the Authentication drop-down list, select Basic.
c) From the Username drop-down list, select the attribute that you created,

<Attribute>.Username.
d) From the Password drop-down list, select the attribute that you created, <Attribute>.Password.

7. In the Value Settings section, perform the following steps:

a) From the Processor drop-down list, select JSONPath.
b) In the corresponding text box, type $.policyConfigurationValue.

8. Click Save Changes.

PingDataGovernance | Policy administration | 86

Results

Next steps
Repeat this task for ConsentServiceBaseUri and ConsentServiceUsername.

Remove the hard-coded password

About this task

Remove the hard-coded password from your Trust Framework attributes and add a resolver to use the new
Trust Framework service. To reduce REST API calls to your development PingDataGovernance Server,
ensure that you add attribute caching.

Steps

1. From the PingDataGovernance Policy Administration GUI, navigate to Trust Framework.

2. Click Attributes.

3. Expand ConsentService.

4. Click Password.

5. In the Resolver Settings section, perform the following steps:

a) From the Resolver Type drop-down list, select Service.
b) In the corresponding text box, type

PolicyConfigurationService.ConsentServicePassword.

6. Click Save Changes.

PingDataGovernance | Policy administration | 87

Results

Next steps
Repeat this task for ConsentServiceUsername and ConsentServiceBaseUri.

Test your changes

About this task

PingDataGovernance | Policy administration | 88

Steps

Embedded PDP mode

When you perform regression testing or work in a production environment, you are using the PDP that is
embedded within PingDataGovernance Server. This mode is referred to as Embedded PDP mode.

PingDataGovernance Server automatically passes all configured policy configuration keys and values to
the embedded PDP.

Access a policy configuration key

About this task

To access the keys and values in Trust Framework attributes, add a corresponding resolver for using the
Configuration Key type, and specify the matching key name. Make certain to drag the Configuration Key
resolver to the top of the preference order.

Steps

1. From the PingDataGovernance Policy Administration GUI, navigate to Trust Framework.

2. Click Attributes.

3. Click +Add new attribute.

4. In the Name text box, type Password.

5. In the Resolver Settings section, perform the following steps:

a) From the Resolver Type drop-down list, select Configuration Key.
b) In the corresponding text box, type ConsentServicePassword.
c) Click +Add Resolver.
d) From the Resolver Type drop-down list, select Service.
e) In the corresponding text box, type

PolicyConfigurationService.ConsentServicePassword.

6. Click Save Changes.

PingDataGovernance | Policy administration | 89

Results

Next steps
Repeat this task for ConsentServiceBaseUri and ConsentServiceUsername.

Advice
When a policy is applied to a request or response, the policy result might include one or more advices.
An advice is a directive that instructs the policy enforcement point to perform additional processing in
conjunction with an authorization decision. In this example, PingDataGovernance Server functions as the
policy enforcement type.

Advices allow PingDataGovernance Server to do more than simply allow or deny access to an API
resource. For example, an advice might cause the removal of a specific set of fields from a response.

An advice can be added directly to a single policy or rule, or it can be defined in the Toolbox for use with
multiple policies or rules. Advices possess the following significant properties:

Advice property Description

Name Friendly name for the advice.

Obligatory If true, the advice must be fulfilled as a condition
of authorizing the request. If PingDataGovernance
cannot fulfill an obligatory advice, it fails the
operation and returns an error to the client
application. If a non-obligatory advice cannot
be fulfilled, an error is logged, but the client's
requested operation continues.

Code Identifies the advice type. This value corresponds
to an advice ID that the PingDataGovernance
configuration defines.

Applies To Specifies the policy decisions, such as Permit or
Deny, that include the advice with the policy result.

PingDataGovernance | Policy administration | 90

Advice property Description

Payload Set of parameters governing the actions that the
advice performs when it is applied. The appropriate
payload value depends on the advice type.

PingDataGovernance supports the following advice types:

• Add Filter
• Allow Attributes
• Combine SCIM Search Authorizations
• Denied Reason
• Exclude Attributes
• Filter Response
• Include Attributes
• Prohibit Attributes

The following sections describe these advice types in more detail. To develop custom advice types, use
the Server SDK.

Note: Many advice types let you use the JSONPath expression language to specify JSON field paths. To
experiment with JSONPath, use the Jayway JSONPath Evaluator tool.

Add Filter

Advice ID: add-filter

Description: Adds administrator-required filters to SCIM search queries.

Applicable to: SCIM

The Add Filter advice places restrictions on the resources that are returned to an application that can
otherwise use SCIM search requests. The filters that the advice specifies are ANDed with any filter that the
SCIM request includes.

The payload for this advice is a string that represents a valid SCIM filter, which can contain multiple
clauses that are separated by AND or OR. If multiple instances of Add Filter advice are returned from policy,
they are ANDed together to form a single filter that is passed with the SCIM request. If the original SCIM
request body included a filter, it is ANDed with the policy-generated filter to form the final filter value.

Allow Attributes

Advice ID: allow-attributes

Description: Specifies the attributes that a JSON request body can create or modify for POST, PUT, or
PATCH.

Applicable to: All, although only SCIM is supported when the HTTP method is PATCH.

The payload for this advice is a JSON array of strings. Each string is interpreted as the name of a resource
attribute that the client can modify, create, or delete. If the client request contains changes for an attribute
that the advice does not name, the request is denied with a 403 Forbidden response. If multiple instances
of Allow Attributes advice are returned from policy, the union of all named attributes is allowed. The
optional wildcard string "*" indicates that the request can modify all attributes, and can override the other
paths that are present in the policy result.

Combine SCIM Search Authorizations

Advice ID: combine-scim-search-authorizations

Description: Optimizes policy processing for SCIM search responses.

https://goessner.net/articles/JsonPath/
https://jsonpath.herokuapp.com/

PingDataGovernance | Policy administration | 91

Applicable to: SCIM

By default, SCIM search responses are authorized by generating multiple policy decision requests with the
retrieve action, one for each member of the result set. The default mode enables policy reuse but might
result in greater overall policy processing time.

When this advice type is used, the current SCIM search result set is processed by using an alternative
authorization mode in which all search results are authorized by a single policy request that uses the
search-results action. The policy request includes an object with a single Resources field, which
is an array that consists of each matching SCIM resource. Advices that are returned in the policy result
are applied iteratively against each matching SCIM resource, allowing for the modification or removal of
individual search results.

This advice type does not use a payload.

For more information about SCIM search handling, see About SCIM searches on page 76.

Denied Reason

Advice ID: denied-reason

Description: Allows a policy writer to provide an error message that contains the reason for denying a
request.

Applicable to: All.

The payload for Denied Reason advice is a JSON object string with the following fields:

• status – Contains the HTTP status code that is returned to the client. If this field is absent, the default
status is 403 Forbidden.

• message – Contains a short error message that is returned to the client
• detail (optional) – Contains additional, more detailed error information.

The following example might be returned for a request made with insufficient scope:

{"status":403, "message":"insufficient_scope", "detail":"Requested operation
 not allowed by the granted OAuth scopes."}

Exclude Attributes

Advice ID: exclude-attributes

Description: Specifies the attributes that are excluded from a JSON response.

Applicable to: All

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath into the
response body of the request that is being authorized. The portions of the response that each JSONPath
selects are removed before the response is returned to the client. Each JSONPath can point to multiple
attributes in the object, all of which are removed.

The following example instructs PingDataGovernance Server to remove the attributes secret and
data.private:

["secret","data.private"]

For more information about the processing of SCIM searches, see Filter Response on page 91.

Filter Response

Advice ID: filter-response

Description: Directs PingDataGovernance Server to invoke policy iteratively over each item of a JSON
array that is contained within an API response.

PingDataGovernance | Policy administration | 92

Applicable to: Gateway

Filter Response advice allows policies, when presented with a request to permit or deny a multi-valued
response body, to require that a separate policy request be made to determine whether the client can
access each individual resource that a JSON array returns.

The following table identifies the fields of the JSON object that represents the payload for this advice.

Field Required Description

Path Yes JSONPath to an array within the
API's response body. The advice
implementation iterates over the
nodes in this array and makes a
policy request for each node.

Action No Value to pass as the action
parameter on subsequent policy
requests. If no value is specified,
the action from the parent policy
request is used.

Service No Value to pass as the service
parameter on subsequent policy
requests. If no value is specified,
the service value from the parent
policy request is used.

ResourceType No Type of object contained by each
JSON node in the array, selected
by the Path field. On each
subsequent policy request, the
contents of a single array element
are passed to the policy decision
point as an attribute with the
name that this field specifies. If no
value is specified, the resource
type of the parent policy request
is used.

On each policy request, if policy returns a deny decision, the relevant array node is removed from the
response. If the policy request returns a permit decision with additional advice, the advice is fulfilled
within the context of the request. For example, this advice allows policy to decide whether to exclude or
obfuscate particular attributes for each array item.

For a response object that contains complex data, including arrays of arrays, this advice type can descend
through the JSON content of the response.

Note: Performance ramifications might arise as the total number of policy requests increases.

Include Attributes

Advice ID: include-attributes

Description: Limits the attributes that a JSON response can return.

Applicable to: All

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath into the
response body of the request that is being authorized. The response includes only the portions that one of
the JSONPaths selects. When a single JSONPath represents multiple attributes, all of them are included. If

PingDataGovernance | Access token validators | 93

multiple instances of Include Attributes advice are returned from a policy, the response includes the union
of all selected attributes.

For more information about the processing of SCIM searches, see Filter Response on page 91.

Prohibit Attributes

Advice ID: prohibit-attributes

Description: Specifies the attributes that a JSON request body cannot create or modify with POST, PUT,
or PATCH methods.

Applicable to: All, although only SCIM is supported when the HTTP method is PATCH.

The payload for this advice is a JSON array of strings. Each string is interpreted as the name of a resource
attribute that the client is not permitted to modify, create, or delete. If the client request contains changes
for an attribute that the advice specifies, the request is denied with a 403 Forbidden response.

Access token validators

Access token validators verify the tokens that client applications submit when they request access to
protected resources. Specifically, they translate an access token into a data structure that constitutes part
of the input for policy processing.

To authenticate to PingDataGovernance Server's HTTP services, clients use OAuth 2 bearer token
authentication to present an access token in the HTTP Authorization Request header. To process the
incoming access tokens, PingDataGovernance Server uses access token validators, which determine
whether to accept an access token and translate it into a set of properties, called claims.

Most access tokens identify a user, also called the token owner, as its subject, and access token validators
retrieve the token owner's attributes from the User Store. All the data that an access token validator
produces is sent to the PDP so that policies can determine whether to authorize the request.

About access token validator processing
Any number of access token validators can be configured for PingDataGovernance Server. Each access
token validator possesses an evaluation order index, an integer that determines its processing priority.
Lower evaluation order index values take precedence over higher values.

The following image shows the validation process.

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750

PingDataGovernance | Access token validators | 94

PingDataGovernance | Access token validators | 95

1. If an incoming HTTP request contains an access token, the token is sent to the access token validator
with the lowest evaluation order index.

2. The access token validator validates the access token.

Validation logic varies by access token validator type, but the validator generally verifies the following
information:

• A trusted source issued the token
• The token is not expired

If the token is valid, its active flag is set to true. The flag and other access token claims are added to
the HttpRequest.AccessToken attribute of the policy request.

3. If the access token contains a subject, the access token validator sets the user_token flag to true,
and uses a token resource lookup method to fetch the token owner through SCIM.

A token resource lookup defines a SCIM filter that locates the token owner. If the lookup succeeds, the
resulting SCIM object is added to the policy request as the TokenOwner attribute.

4. If the access token validator is unable to validate the access token, the token is passed to the access
token validator with the next lowest evaluation order index, and the previous two steps are repeated.

5. HTTP request processing continues, and the policy request is sent to the PDP.
6. Policies inspect the HttpRequest.AccessToken and TokenOwner attributes to make access control

decisions.

Access tokens issued using the OAuth 2 client credentials grant type are issued directly
to a client and do not contain a subject. An access token validator always sets the
HttpRequest.AccessToken.user_token flag to false for such tokens, which are called application
tokens, in contrast to tokens with subjects, which are called user tokens. Because authorization policies
often grant a broad level of access for application tokens, we recommend that such policies always check
the HttpRequest.AccessToken.user_token flag.

Access token validators determine whether PingDataGovernance Server accepts an access token and
uses it to provide key information for access-control decisions, but they are neither the sole nor the primary
means of managing access. The responsibility for request authorization falls upon the PDP and its policies.
This approach allows an organization to tailor access-control logic to its specific needs.

Access token validator types
PingDataGovernance Server provides the following types of access token validators:

• PingFederate access token validator
• JSON Web Token (JWT) access token validator
• Mock access token validator
• Third-party access token validator

PingFederate access token validator

To verify the access tokens that a PingFederate authorization server issues, the PingFederate access
token validator uses HTTP to submit the tokens to PingFederate Server's token introspection endpoint.
This step allows the authorization server to determine whether a token is valid.

Because this step requires an outgoing HTTP request to the authorization server, the PingFederate access
token validator might perform slower than other access token validator types. Regardless, the validation
result is guaranteed to be current, which is an important consideration if the authorization server permits
the revocation of access tokens.

Before attempting to use a PingFederate access token validator, create a client that represents the access
token validator in the PingFederate configuration. This client must use the Access Token Validation grant
type.

PingDataGovernance | Access token validators | 96

Example configuration

In PingFederate, create a client with the following properties:

• Client ID: PingDataGovernance
• Client authentication: Client Secret
• Allowed grant types: Access Token Validation

Take note of the client secret that is generated for the client, and use PingDataGovernance Server's
dsconfig command to create an access token validator, as follows:

Change the host name and port below, as needed
dsconfig create-external-server \
 --server-name "PingFederate External Server" \
 --type http \
 --set base-url:https://example.com:9031
Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "PingFederate Access Token Validator" \
 --type ping-federate \
 --set enabled:true \
 --set "authorization-server:PingFederate External Server" \
 --set client-id:PingDataGovernance \
 --set "client-secret:<client secret>"
 --set evaluation-order-index:2000
Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "PingFederate Access Token Validator" \
 --method-name "User by uid" \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

JWT access token validator

The JWT access token validator verifies access tokens that are encoded in JSON Web Token format,
which can be signed (JWS) or signed and encrypted (JWE). The JWT access token validator inspects the
JWT token without presenting it to an authorization server for validation.

To ensure that a trusted source issued a particular token, the token's signature is validated by using the
public keys of the authorization server in one of the following manners:

• Store the keys as trusted certificates in PingDataGovernance Server's configuration.
• Retrieve the keys by way of HTTP from the authorization server's JSON Web Key Set (JWKS) endpoint

when the JWT access token validator is initialized. This method ensures that the JWT access token
validator uses updated copies of the authorization server's public keys.

Because the JWT access token validator is not required to make a token introspection request for every
access token that it processes, it performs better than the PingFederate access token validator. The
access token is self-validated, however, so the JWT access token validator cannot determine whether the
token has been revoked.

Supported JWS/JWE features

For signed tokens,the JWT access token validator supports the following JWT web algorithm (JWA) types :

• RS256
• RS384
• RS512

PingDataGovernance | Access token validators | 97

For encrypted tokens, the JWT access token validator supports the RSA-OAEP key-encryption algorithm
and the following content-encryption algorithms:

• A128CBC-HS256
• A192CBC-HS384
• A256CBC-HS512

Example configuration

In the following example, a JWT access token validator is configured to retrieve public keys from a
PingFederate authorization server's JWKS endpoint:

Change the host name and port below, as needed
dsconfig create-external-server \
 --server-name "PingFederate External Server" \
 --type http \
 --set base-url:https://example.com:9031
Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "JWT Access Token Validator" \
 --type jwt \
 --set enabled:true \
 --set evaluation-order-index:1000 \
 --set "authorization-server:PingFederate External Server" \
 --set jwks-endpoint-path:/ext/oauth/jwks
Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "JWT Access Token Validator" \
 --method-name "User by uid" \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Mock access token validator

A mock access token validator is a special access token validator type that is used for development or
testing purposes. A mock access token validator accepts arbitrary tokens without validating whether
a trusted source issued them. This approach allows a developer or tester to make bearer token-
authenticated requests without first setting up an authorization server.

Mock access tokens are formatted as plain-text JSON objects using standard JWT claims. Always provide
the boolean active claim. If this value is true, the token is accepted. If this value is false, the token
is rejected. If the sub claim is provided, a token owner lookup populates the TokenOwner policy request
attribute, as with the other access token validator types.

The following example cURL command provides a mock access token in an HTTP request:

curl -k -X GET https://localhost:8443/scim/v2/Me -H 'Authorization:
 Bearer {"active": true, "sub":"user.3", "scope":"email profile",
 "client":"client1"}'

Important: Never use mock access token validators in a production environment because they do not
verify whether a trusted source issued an access token.

PingDataGovernance | Server configuration | 98

Example configuration

The configuration for a mock access token validator resembles the configuration for a JWT access
token validator. However, the JWS signatures require no configuration because mock tokens are not
authenticated.

Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "Mock Access Token Validator" \
 --type mock --set enabled:true \
 --set evaluation-order-index:9999
Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "Mock Access Token Validator" \
 --method-name "User by uid" \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Third-party access token validator

To create custom access token validators, use the Server SDK.

Server configuration

This section covers basic server configuration. For a detailed look at configuration, refer to the Ping Identity
PingDataGovernance Server Configuration Reference, which is located in the server's docs directory.

PingDataGovernance Server is built upon the same foundation as PingDirectory Server. Both servers use
a common configuration system, and their configurations use the same tools and APIs.

The configuration system is fundamentally LDAP-based, and configuration entries are stored in a special
LDAP backend called cn=config. The structure is a tree structure, and configuration entries are
organized in a shallow hierarchy under cn=config.

Administration accounts
Administration accounts called Root DNs are stored in a branch of the configuration backend, cn=Root
DNs,cn=config. When setup is run, the process creates a superuser account that is typically
named cn=Directory Manager. Although PingDataGovernance Server is not an LDAP directory
server, it follows this convention by default. As a result, its superuser account is also typically named
cn=Directory Manager.

To create additional administration accounts, use dsconfig or the PingDataGovernance Administration
Console to add Root DN users.

About the dsconfig tool
Use the dsconfig tool whenever you administer the server from a shell. When run without arguments,
dsconfig enters an interactive mode that permits the browsing and updating of the configuration from a
menu-based interface. Use this interface to list, update, create, and delete configuration objects.

When viewing any configuration object in dsconfig, use the d command to display the command line that
is necessary to recreate a configuration object. A command line in this form can be used directly from a
shell or placed in a dsconfig batch file, along with other commands.

PingDataGovernance | Server configuration | 99

Batch files are a powerful feature that enable scripted deployments. By convention, these scripts use a
file extension of DSCONFIG. Batch files support comments by using the # character, and they support line
continuation by using the \ (backslash) character.

For example, the following dsconfig script configures PingDataGovernance Server's policy service:

Define an external PingDataGovernance PAP
dsconfig create-external-server \
 --server-name "PingDataGovernance PAP" \
 --type policy \
 --set base-url:http://localhost:4200 \
 --set user-id:admin \
 --set decision-node:e51688ff-1dc9-4b6c-bb36-8af64d02e9d1 \
 --set "branch:Default Policies"
Configure the policy service
dsconfig set-policy-decision-service-prop \
 --set pdp-mode:external \
 --set "policy-server:PingDataGovernance PAP" \
 --set "decision-response-view:request" \
 --set "decision-response-view:decision-tree"

To load a dsconfig batch file, run dsconfig with the --batch-file argument, as follows:

$ PingDataGovernance/bin/dsconfig -n --batch-file example.dsconfig

Batch file 'example.dsconfig' contains 2 commands.

Pre-validating with the local server Done

Executing: create-external-server -n --server-name "PingDataGovernance PAP"
 --type policy --set base-url:http://localhost:4200 --set
decision-node:e51688ff-1dc9-4b6c-bb36-8af64d02e9d1 --set "branch:Default
 Policies"

Arguments from tool properties file: --useSSL --hostname localhost --port
 8636 --bindDN cn=root --bindPassword ***** --trustAll

The Policy External Server was created successfully.

Executing: set-policy-decision-service-prop -n --set pdp-mode:external --set
 "policy-server:PingDataGovernance PAP" --set
decision-response-view:request --set decision-response-view:decision-tree

The Policy Decision Service was modified successfully.

 PingDataGovernance Administration Console
The PingDataGovernance Administration Console is a web-based application that provides a graphical
configuration and administration interface. It is available by default from the /console path.

About the configuration audit log
All successful configuration changes are recorded to the file logs/config-audit.log, which records
the configuration commands that represent these changes as well as the configuration commands that
undo the changes.

$ tail -n 8 PingDataGovernance/logs/config-audit.log

PingDataGovernance | Server configuration | 100

[23/Feb/2019:23:16:24.667 -0600] conn=4 op=12 dn='cn=Directory
 Manager,cn=Root DNs,cn=config' authtype=[Simple] from=127.0.0.1
 to=127.0.0.1
Undo command: dsconfig delete-external-server --server-name
 "PingDataGovernance PAP"
dsconfig create-external-server --server-name "PingDataGovernance PAP"
 --type policy --set base-url:http://localhost:4200 --set decision-
node:e51688ff-1dc9-4b6c-bb36-8af64d02e9d1 --set "branch:Default Policies"

[23/Feb/2019:23:16:24.946 -0600] conn=5 op=22 dn='cn=Directory
 Manager,cn=Root DNs,cn=config' authtype=[Simple] from=127.0.0.1
 to=127.0.0.1
This change was made to mirrored configuration data, which is
 automatically kept in sync across all servers.
Undo command: dsconfig set-policy-decision-service-prop --set "policy-
server:PingDataGovernance (Gateway Policy Example)"
dsconfig set-policy-decision-service-prop --set "policy-
server:PingDataGovernance PAP"

About the config-diff tool
The config-diff tool compares server configurations and produces a dsconfig batch file that lists the
differences.

When run without arguments, the config-diff tool produces a list of changes to the configuration,
as compared to the server’s baseline or out-of-the-box configuration. Because this list captures the
customizations of your server configuration, it is useful when you transition from a development
environment to a staging or production environment.

$ PingDataGovernance/bin/config-diff
No comparison arguments provided, so using "--sourceLocal --sourceTag
 postSetup --targetLocal" to compare the local configuration with the post-
setup configuration.
Run "config-diff --help" to get a full list of options and example usages.

Configuration changes to bring source (config-postSetup.gz) to target
 (config.ldif)
Comparison options:
Ignore differences on shared host
Ignore differences by instance
Ignore differences in configuration that is part of the topology
 registry

dsconfig create-external-server --server-name "DS API Server" --type api
--set base-url:https://localhost:1443 --set hostname-verification-
method:allow-all --set "trust-manager-provider:Blind Trust" --set user-
name:cn=root --set "password:AADaK6dtmjJQ7W+urtx9RGhSvKX9qCS8q5Q="

dsconfig create-external-server --server-name "FHIR Sandbox" --type api
--set base-url:https://fhir-open.sandboxcerner.com
...

Certificates
Depending on the circumstances, PingDirectory Server uses one of the following certificates:

• Inter-server certificate – Used for internal purposes, like the following examples:

• Replication authentication

https://fhir-open.sandboxcerner.com

PingDataGovernance | Server configuration | 101

• Inter-server authentication in the topology registry
• Reversible password encryption
• Encrypted backups and LDIF exports

• Server certificate – Presented by the server when a client uses a protocol like LDAPS or HTTPS to
initiate a secure connection. A client must trust the server's certificate to obtain a secure connection to
it.

The following sections describe these certificates in more detail.

Inter-server certificate

Generated during installation, the inter-server certificate is stored under the alias ads-certificate in a
file named ads-truststore, which resides in the server’s /config directory. This certificate contains
the key pair for the local server as well as for the certificates of all trusted servers, and has a lifetime of 20
years before expiring.

The local server's public key is signed by its own private key, making it a self-signed certificate. The alias
is hard-coded to ads-certificate, and the keystore file is hard-coded to ads-truststore. This
behavior cannot be modified during setup.

Warning:

• Although some customers feel uncomfortable with the self-signed nature of the inter-server
certificate, we recommend that you do not replace it with a CA-signed certificate for the following
reasons:

• If the inter-server certificate is replaced incorrectly, serious problems can occur during
topology authentication.

• The inter-server certificate is used for internal purposes only.
• If the server's access logs contain authentication (bind) errors, the inter-server certificate is

most likely configured inappropriately. In the topology registry, this certificate is persisted in the
inter-server-certificate property of a server instance.

Replace the inter-server certificate

About this task

Because the inter-server certificate is also stored in the topology registry, it can be replaced on one server
and mirrored to all other servers in the topology. Changes are mirrored automatically to the other servers in
the topology.

Important: Before attempting to replace the inter-server certificate, ensure that all servers in the topology
are updated to version 7.0 or later.

The inter-server certificate is stored in human-readable, PEM-encoded format and can be updated by
using the dsconfig tool. While the certificate is being replaced, existing authenticated connections
continue to work. If the server is restarted, or if a topology change requires a reset of peer connections, the
server continues authenticating with its peers, all of whom trust the new certificate.

To replace the inter-server certificate with no downtime, complete the following tasks:

Steps

1. Prepare a new keystore with the replacement key pair.

2. Import the earlier trusted certificates into the new keystore.

3. Update the server configuration to use the new certificate by adding it to the server’s list of certificates
in the topology registry.
After this step is performed, other servers will trust the certificate.

4. Replace the server’s ads-truststore file with the new one.

PingDataGovernance | Server configuration | 102

5. Retire the previous certificate by removing it from the topology registry.

Next steps
The following sections describe these tasks in more detail.
Prepare a new keystore with the replacement key pair

The self-signed certificate can be replaced with an existing key pair. As an alternative, the certificate that is
associated with the original key pair can be used.

Use an existing key pair

If a private key and certificate in PEM-encoded format already exist, both the original private key and the
self-signed certificate can be replaced in ads-truststore by using the manage-certificates tool.
Depending on your operating system, the manage-certificates tool is located in the server's bin or
bat directory.

Important: If the existing key pair is not in PEM-encoded format, convert it to a format that is compatible
with the server’s ads-truststore keystore file format before proceeding.

If you replace the entire key pair instead of only the certificate that is associated with the original private
key, your existing backups and LDIF exports might be rendered invalid. To avoid this scenario, perform
this step immediately after setup, or at least before the key pair is used. After the first use, change only the
certificate associated with the private key to extend its validity period, or to replace it with a certificate that
is signed by a different CA.

The following command imports existing certificates into a new keystore file named ads-
truststore.new:

manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --private-key-file existing.key \
 --certificate-file existing.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Order the certificates that use the --certificate-file option in such a manner that each subsequent
certificate functions as the issuer for the previous one. The server certificate is listed first, any intermediate
certificates are listed next, and the root CA certificate is listed last. Because some deployments do not
feature an intermediate issuer, you might need to import only the server certificate and a single issuer.

Replace the certificate associated with the original key pair

About this task

Alternatively, to replace the certificate that is associated with the original server-generated, ads-
certificate private key, perform the following steps:

Steps

1. Create a CSR for the ads-certificate, as follows:

manage-certificates generate-certificate-signing-request \
 --keystore ads-truststore \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --use-existing-key-pair \
 --subject-dn "CN=ldap.example.com,O=Example Corporation,C=US" \

PingDataGovernance | Server configuration | 103

 --output-file ads.csr

2. Submit ads.csr to a CA for signing.

3. Export the server’s private key into ads.key, as follows:

manage-certificates export-private-key \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --output-file ads.key

4. Import the certificates obtained from the CA – including the CA-signed server certificate, the root CA
certificate, and any intermediate certificates – into ads-truststore.new, as follows:

manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --private-key-file ads.key \
 --certificate-file new-ads.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Import earlier trusted certificates into the new keystore

About this task

The new ads-truststore file, ads-truststore.new, contains only the server’s new key pair. You
must import the currently trusted certificates of other servers in the topology.

To export trusted certificates from ads-truststore and import them into ads-truststore.new,
perform the following steps for each trusted certificate:

Steps

1. Locate the currently trusted certificates, as follows:

manage-certificates list-certificates \
 --keystore ads-truststore

2. For each alias other than ads-certificate, or whose fingerprint does not match ads-
certificate, perform the following steps:

a) Export the trusted certificate from ads-truststore, as follows:

manage-certificates export-certificate \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias <trusted-cert-alias> \
 --export-certificate-chain \
 --output-file <trust-cert-alias>.crt

b) Import the trusted certificate into ads-truststore.new, as follows:

manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias <trusted-cert-alias> \
 --certificate-file <trusted-cert-alias>.crt

PingDataGovernance | Server configuration | 104

Update the server configuration to use the new certificate

About this task

Before updating the server to use the appropriate key pair, update the inter-server-certificate
property for the server instance in the topology registry. To support the transition from an existing
certificate to a new one, earlier and newer certificates might appear within their own beginning and ending
headers in the inter-server-certificate property.

To update the server configuration to use the new certificate, perform the following steps:

Steps

1. Export the server’s previous ads-certificate into old-ads.crt, as follows:

manage-certificates export-certificate \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --output-file old-ads.crt

2. Concatenate the previous and new certificate into one file.

On Windows, use a text editor like Notepad. On Unix, use the following command:

cat old-ads.crt new-ads.crt > old-new-ads.crt

3. Use dsconfig to update the inter-server-certificate property for the server instance in the
topology registry, as follows:

$ bin/dsconfig -n set-server-instance-prop \
 --instance-name <instance-name> \
 --set "inter-server-certificate<old-new-ads.crt"

Replace the previous ads-truststore file with the new one

Because the server still uses the previous ads-certificate, you must replace the previous ads-
truststore file with ads-truststore.new in the server’s config directory when you want the new
ads-certificate to go into effect:

$ mv ads-truststore.new ads-truststore

Retire the previous certificate

Retire the previous certificate by removing it from the topology registry after it expires, as follows:

$ dsconfig -n set-server-instance-prop \
 --instance-name <instance-name> \
 --set "inter-server-certificate<chain.crt"

Existing encrypted backups and LDIF exports remain unaffected. Because the public key is the same in the
previous and new server certificates, the private key can decrypt them.

Server certificate

During setup, administrators have the option of using self-signed certificates or CA-signed certificates
for the server certificate. Where possible, we encourage the use of CA-signed certificates. Self-signed
certificates are recommended only for demonstration and proof-of-concept environments.

If you specify the option --generateSelfSignedCertificate during setup, the server certificate is
generated automatically with the alias server-cert. The key pair consists of the private key and the
self-signed certificate, and is stored in a file named keystore, which resides in the server's /config

PingDataGovernance | Server configuration | 105

directory. The certificates for all the servers that the server trusts are stored in the truststore file, which
is also located under the server’s /config directory.

To override the server certificate alias and the files that store the key pair and certificates, use the following
arguments during setup:

• --certNickname

• --use*Keystore

• --use*Truststore

For more information about these arguments, refer to the setup tool’s Help and the Installation Guide.

Important: If the server's access logs contain authentication (bind) errors, the inter-server certificate
is most likely configured inappropriately. In the topology registry, this certificate is persisted in a Server
Instance Listener’s listener-certificate property.

Replace the server certificate

About this task

Regardless of whether the server was set up with self-signed or CA-signed certificates, the steps to
replace the server certificate are nearly identical.

This task makes the following assumptions:

• You are replacing the self-signed server certificate.
• The certificate alias is server-cert.
• The private key is stored in keystore.
• The trusted certificates are stored in truststore.
• The keystore and truststore use the JKS keystore format.

If a PKCS#12 keystore format was used for the keystore and truststore files during setup, change
the --keystore-type argument in the manage-certificate commands to PKCS12 in the relevant
steps.

Important: Before attempting to replace the inter-server certificate, ensure that all servers in the topology
are updated to version 7.0 or later.

While the certificate is being replaced, existing secure connections continue to work. If the server is
restarted, or if a topology change requires a reset of peer connections, the server continues authenticating
with its peers, all of whom trust the new certificate.

To replace the server certificate with no downtime, complete the following tasks:

Steps

1. Prepare a new keystore with the replacement key pair.

2. Import the earlier trusted certificates into the new truststore file.

3. Update the server configuration to use the new certificate by adding it to the server’s list of listener
certificates in the topology registry.
After this step is performed, other servers will trust the certificate.

4. Replace the server’s keystore and truststore files with the new ones.

5. Retire the previous certificate by removing it from the topology registry.

Next steps
The following sections describe these tasks in more detail.
Prepare a new keystore with the replacement key pair

The self-signed certificate can be replaced with an existing key pair. As an alternative, the certificate that is
associated with the original key pair can be used.

PingDataGovernance | Server configuration | 106

Use an existing key pair

If a private key and certificate already exist in PEM-encoded format, they can replace both the original
private key and the self-signed certificate in keystore (instead of replacing the self-signed certificate
associated with the original server-generated private key). Use the manage-certificates tool that,
depending on your operating system, is located in the server's bin or bat directory.

The following command imports existing certificates into a new keystore file named keystore.new:

manage-certificates import-certificate \
 --keystore keystore.new \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --private-key-file existing.key \
 --certificate-file existing.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Order the certificates that use the --certificate-file option in such a manner that each subsequent
certificate functions as the issuer for the previous one. The server certificate is listed first, any intermediate
certificates are listed next, and the root CA certificate is listed last. Because some deployments do not
feature an intermediate issuer, you might need to import only the server certificate and a single issuer.

Replace the certificate associated with the original key pair

About this task

If the certificate that is associated with the original server-generated private key (server-cert) has
expired or must be replaced with a certificate from a different CA, perform the following steps to replace it:

Steps

1. Create a CSR file for the server-cert, as follows:

manage-certificates generate-certificate-signing-request \
 --keystore keystore \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --use-existing-key-pair \
 --subject-dn "CN=ldap.example.com,O=Example Corporation,C=US" \
 --output-file server-cert.csr

2. Submit server-cert.csr to a CA for signing.

3. Export the server’s private key into server-cert.key, as follows:

manage-certificates export-private-key \
 --keystore keystore \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --output-file server-cert.key

4. Import the certificates obtained from the CA – including the CA-signed server certificate, the root CA
certificate, and any intermediate certificates – into keystore.new, as follows:

manage-certificates import-certificate \
 --keystore keystore.new \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --private-key-file server-cert.key \

PingDataGovernance | Server configuration | 107

 --certificate-file server-cert.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Import earlier trusted certificates into the new keystore

About this task

The trusted certificates of other servers in the topology must be imported into the new truststore file.
To export trusted certificates from truststore and import them into truststore.new, perform the
following steps for each trusted certificate:

Steps

1. Locate the currently trusted certificates, as follows:

manage-certificates list-certificates \
 --keystore truststore

2. For each alias other than server-cert, or whose fingerprint does not match server-cert, perform
the following steps:

a) Export the trusted certificate from truststore, as follows:

manage-certificates export-certificate \
 --keystore truststore \
 --keystore-password-file tuststore.pin \
 --alias <trusted-cert-alias> \
 --export-certificate-chain \
 --output-file trusted-cert-alias.crt

b) Import the trusted certificate into truststore.new, as follows:

manage-certificates import-certificate \
 --keystore truststore.new \
 --keystore-type JKS \
 --keystore-password-file truststore.pin \
 --alias <trusted-cert-alias> \
 --certificate-file trusted-cert-alias.crt

Update the server configuration to use the new certificate

About this task

Before updating the server to use the appropriate key pair, update the listener-certificate property
for the server instance's LDAP listener in the topology registry. To support the transition from an existing
certificate to a new one, earlier and newer certificates might appear within their own beginning and ending
headers in the listener-certificate property.

To update the server configuration to use the new certificate, perform the following steps:

Steps

1. Export the server’s previous server-cert into old-server-cert.crt, as follows:

manage-certificates export-certificate \
 --keystore keystore \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --output-file old-server-cert.crt

2. Concatenate the previous and new certificate into one file.

PingDataGovernance | Capture debugging data | 108

On Windows, use a text editor like Notepad. On Unix, use the following command:

cat old-server-cert.crt new-server-cert.crt > old-new-server-cert.crt

3. Use dsconfig to update the listener-certificate property for the server instance's LDAP
listener in the topology registry, as follows:

$ bin/dsconfig -n set-server-instance-listener-prop \
 --instance-name instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set "listener-certificate<old-new-server-cert.crt"

Replace the keystore and truststore files with the new ones

Because the server still uses the previous server-cert, you must replace the earlier keystore and
truststore files with the new ones in the server’s config directory when you want the new server-
cert to take effect.

$ mv keystore.new keystore
 mv truststore.new truststore

Retire the previous certificate

Retire the previous certificate by removing it from the topology registry after it expires, as follows:

$ dsconfig -n set-server-instance-listener-prop \
 --instance-name <instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set "listener-certificate<new-server-cert.crt"

Capture debugging data

This section provides instructions for exporting all Trust Framework and policy data from the
PingDataGovernance Policy Administration GUI, which is powered by Symphonic, to a snapshot that
captures all of the policy data contained within a branch of the PingDataGovernance Policy Administration
GUI. Snapshots provide a convenient way to load policy data into a separate PingDataGovernance Policy
Administration GUI instance.

Export policy data

About this task

To export policy data, perform the following steps:

Steps

1. Navigate to Change Control.

2. Click Version Control.

3. Click the name of the branch to export.

4. Click Options and select Export Snapshot.
A snapshot file is downloaded to your computer.

PingDataGovernance | Capture debugging data | 109

Enable detailed logging
This section provides instructions for enabling detailed debug logging for troubleshooting purposes. This
level of logging captures request and response data that contains potentially sensitive information.

Note: Do not use this level of logging when working with actual customer data.

Policy Decision logger

Enabled by default, the Policy Decision logger records decision responses that are received from the
PDP. Regardless of whether PingDataGovernance Server is configured to evaluate a policy in Embedded
or External mode, a policy-decision file logs every policy decision per request. This file is located at
PingDataGovernance/logs/policy-decision and contains the following information:

• Policy-decision response – Each client request triggers a policy-decision response that specifies the
inbound actions to perform, and another policy-decision response that specifies the outbound actions to
perform. If you think of a policy-decision response as a set or decision tree of policies, all inbound and
outbound requests are read from that set or tree.

Policy rules determine whether a request is denied, permitted, or indeterminate.
• Most recent policy decision – To debug the most recent inbound request, open the policy-decision

log file and locate the highest DECISION requestID in the section near the bottom of the file. In
the following example, [08/May/2019:15:35:04.791 -0500] "DECISION requestID=46"
represents the most recent request, and action equals "inbound-GET".

Alternatively, you can use the most recent request timestamp to locate the most recent request.
• Policy advice – If the policy contains advice, it is logged after the policy-decision response JSON.

Advice features the same corresponding requestID, as the following example shows:

To increase the level of detail that is returned in PDP decision responses, configure the Policy Decision
Service as follows:

dsconfig set-policy-decision-service-prop \
 --add decision-response-view:decision-tree \
 --add decision-response-view:request

Debug Trace logger

The Debug Trace logger records detailed information about the processing of HTTP requests and
responses. The following example enables this log:

dsconfig set-log-publisher-prop \
 --publisher-name "Debug Trace Logger" \
 --set enabled:true

PingDataGovernance | Capture debugging data | 110

By default, the corresponding log file is located at PingDataGovernance/logs/debug-trace.

Debug logger

The Debug logger records debugging information that a developer might find useful. The following example
enables this log:

dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true

dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name com.unboundid.directory.broker.http.gateway \
 --set debug-level:verbose

dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name \
 com.unboundid.directory.broker.config.GatewayConfigManager \
 --set debug-level:verbose

dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name \
 com.unboundid.directory.broker.core.policy.PolicyEnforcementPoint \
 --set debug-level:verbose

dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true

By default, the corresponding log file is located at PingDataGovernance/logs/debug.

Trace a policy-decision response

About this task

Before attempting to troubleshoot or trace a policy-decision response, make certain that the Trace log is
enabled within PingDataGovernance Server. For more information, see Configure PingDataGovernance
logging on page 11.

Each policy-decision response is presented in JSON format. To view the details of a policy-decision
response, perform the following steps:

Steps

1. From within the policy-decision file, copy the policy-decision response JSON.

2. In the Policy Administration GUI, navigate to Policies.

3. Click the Log Visualizer tab.

4. In the Log Input text box, paste the policy-decision response JSON.

5. Click Visualize.

PingDataGovernance | Capture debugging data | 111

Results
An interactive decision tree of your policies is displayed.

This image depicts the final decision that is sent to the client. The node to the far left, Global Decision
Point, represents the root node, and the children nodes contain the subset of policies and rules.

The following color-coded icons convey important information:

• Green check mark – Indicates that the request permit on the policy or rule.
• Red X – Indicates that the request deny on the policy or rule.
• Gray N/A – Indicates that the request is not applicable to the policy or rule.

In the previous example, the client received a final decision of deny. The Token Validation policy permitted
the request initially but was overridden after the Random Jokes API policy was applied.

PingDataGovernance | PingDataGovernance Policy Administration GUI single sign-on | 112

Capture debugging data with the collect-support-data tool
Run the collect-support-data tool to capture the PingDataGovernance Server’s configuration,
server state, environment, and other information that is useful for troubleshooting issues. When you run
collect-support-data, the tool generates a compressed file that can be attached to a message or
report.

 PingDataGovernance/bin/collect-support-data

By default, the tool excludes log files that might contain sensitive customer information, including the
debugging logs that are described in Enable detailed logging on page 109. When you use test data, send
the following log files alongside collect-support-data’s compressed output file:

• PingDataGovernance/logs/policy-decision

• PingDataGovernance/logs/debug-trace

• PingDataGovernance/logs/debug

PingDataGovernance Policy Administration GUI single
sign-on

To improve security and ensure a consistent authentication experience across all enterprise applications,
enable single sign-on (SSO) for administrators, security professionals, and business analysts to
authenticate and access the PingDataGovernance Policy Administration GUI, which is powered by
Symphonic.

Reconfigure the PingDataGovernance Policy Administration GUI

Steps

1. To stop the application, run the stop-server command.

2. To reconfigure the application, run the setup command again.

3. Answer the following on-screen questions:

a) Select OpenID Connect.
b) Ensure that the API URL and the callback URL use the public DNS name of the

PingDataGovernance Policy Administration GUI server.

Use the paths /api/ and /idp-callback, as specified.
c) Ensure that the PingFederate discovery endpoint uses PingFederate Server's public DNS name.

Note: You must specify the PingFederate discovery endpoint twice.

4. To restart the application, run the start-server command.

Next steps

Before using a browser to log on to the GUI, configure the PingFederate dependencies.

The following transcript represents an example SSO configuration:

$ bin/setup
Use Basic auth (for testing) or OpenID Connect (for production) [b, o]? o
Provide a license file [bin/PingDataGovernance.lic]: /home/centos/
pingdatagovernance.70.lic

PingDataGovernance | PingDataGovernance Policy Administration GUI single sign-on | 113

What port should the application run on? [8080]: 8080
What URL should be used to access the Symphonic API? (Port must match.)
 [http://localhost:8080/api/]: http://pap.example.com:8080/api/
What is the URL to your PingFederate discovery endpoint? [https://
localhost:9031/.well-known/openid-configuration]: https://
sso.example.com:9031/.well-known/openid-configuration
What is the URL to your PingFederate discovery endpoint? (As above)
 [https://localhost:9031/.well-known/openid-configuration]: https://
sso.example.com:9031/.well-known/openid-configuration
What should the callback URL for OIDC be? (Port must match.) [https://
localhost:8080/idp-callback]: http://pap.example.com:8080/idp-callback

Configuration Summary:

 server.applicationConnectors[0].port: 8080
 ui.REST_URL: http://pap.example.com:8080/api/
 security.oidcConfigurationEndpoint: https://
sso.example.com:9031/.well-known/openid-configuration
 ui.auth.configurationEndpoint: https://
sso.example.com:9031/.well-known/openid-configuration
 security.redirectUri: http://pap.example.com:8080/idp-
callback

>>>> Configuration written to /home/centos/PingDataGovernance-PAP/bin/
configuration.yml

To start the server, run the bin/start-server script.

PingFederate dependencies
For OIDC-based SSO, the PingDataGovernance Policy Administration GUI requires the following
configuration details in PingFederate:

• OAuth client named pingdatagovernance-pap
• Redirect URL configuration matches the OAuth redirect URL provided to bin/setup, like http://

<server>:8080/idp-callback

• Cross-origin resource sharing (CORS) configuration includes the scheme, host, and port of the
PingDataGovernance Policy Administration GUI, like http://<server>:8080

• Support for the response type token id_token
• Support for the following OIDC scopes:

• openid

• email

• profile

• Support for the following claims:

• sub

• name

• email

• The issuance criteria is configured so that only entitled users can access the application

For information about supporting these dependencies, refer to your PingFederate documentation.

PingFederate example configuration
The PingDataGovernance Policy Administration GUI relies on external access authorization, which is
handled in one of the following manners:

PingDataGovernance | PingDataGovernance Policy Administration GUI single sign-on | 114

• PingFederate authorizes external access through token-issuance criteria.
• PingAccess uses access rules to authorize external access.

The following example configuration assumes that a group of policy administrators is configured in
PingDataGovernance, and expects the PingFederate token-issuance criteria to verify group membership.

OAuth server settings

Steps

1. If necessary, perform the following steps to add OIDC scopes:

a) Click OAuth Server > Scope Management > Common Scopes.
b) Add the following scopes:

• email

• profile

c) Click Save.

2. To create an authentication policy contract, perform the following steps:

a) Click Identity Provider > Policy Contracts.
b) Click Create.
c) Extend the contract with name and email attributes.
d) For group-based access authorization, extend the contract with isMemberOf, which the issuance

criteria uses at a later time.
e) Click Next.
f) Click Done.
g) Click Save.

3. To map your authentication policy contract for persistent grants, perform the following steps:

a) Click OAuth Server > Authentication Policy Contract Mapping.
b) Select the authentication policy contract that you created in the previous step.
c) Click Add Mapping.
d) Click Next.
e) Fulfill the contract with the following values from the authentication policy contract:

• For the USER_KEY, specify the subject.
• For the USER_NAME, specify the name.

f) Click Save.

4. To create the access token manager, perform the following steps:

a) Click OAuth Server > Access Token Management > Create.
b) From the Type drop-down list, select JSON Web Tokens.
c) Add a row to the symmetric keys, using 64 hexadecimal characters.
d) Select JWS Algorithm HMAC using SHA-256.
e) From the Active Symmetric Key Id drop-down list, select your symmetric key.
f) Click Next.
g) Select Check all.
h) Click Next.
i) Add the following attributes:

• sub

• email

• name

j) Click Next.
k) Click Save.

5. To map your authentication policy contract to your access token manager, perform the following steps:

PingDataGovernance | PingDataGovernance Policy Administration GUI single sign-on | 115

a) Click OAuth Server > Access Token Mapping.
b) Select the authentication policy contract and the access token manager that you created during the

previous steps.
c) Click Add Mapping.
d) Click Next.
e) Fulfill the contract with the following values from the authentication policy contract:

• For the email, specify the email.
• For the name, specify the name.
• For the sub, specify the subject.

f) Click Next.
g) To authorize access, add the following issuance criteria:

1. From the Source drop-down list, select Authentication Policy Contract.
2. From the Attribute Name drop-down list, select isMemberOf.
3. From the Condition drop-down list, select multi-value contains DN.
4. Type the full DN of the group of policy administrators, like cn=Policy

Admins,ou=Groups,dc=example,dc=com.
5. Click Add.

h) Click Next.
i) Click Save.

6. To create the OIDC policy, perform the following steps:

a) Click OAuth Server > OpenID Connect Policy Management.
b) Click Add Policy.
c) Select the access token manager that you created earlier.
d) Select the include server information in the ID token check box.
e) Extend the token lifetime to 120 minutes.
f) Click Next.
g) Delete all attributes except email and name.
h) Click Next.
i) Add the following scopes:

• email

• profile

The scopes are associated automatically with the email and name attributes.
j) Click Next.
k) Click Next.
l) Fulfill the contract from the matching attributes of the access token.
m) Click Next.
n) Click Done.
o) Click Save.

7. To create the OAuth client for the PingDataGovernance Policy Administration GUI, perform the
following steps:

a) In the Clients section of the OAuth Server page, click Create.
b) In the Client ID text box, type pingdatagovernance-pap.
c) Select No client authentication.
d) Add the redirect URL of the PingDataGovernance Policy Administration GUI that you entered while

installing the GUI, like http://pap.example.com:8080/idp-callback.
e) For Scopes, select the following values:

• email

• profile

PingDataGovernance | Upgrade PingDataGovernance Server | 116

Note: If you are restricting common scopes, select openid, as well.
f) From the Grant Type drop-down list, select Implicit.
g) From the Default Access Token Manager drop-down list, select the access token manager that

you created earlier.
h) From the Connect Policy drop-down list, select OpenID.
i) Click Save.

8. To configure CORS, perform the following steps:

a) Click OAuth Server > Authorization Server Settings.
b) Under Cross-Origin Resource Sharing Settings, add the base URL of the server on which you

installed the PingDataGovernance Policy Administration GUI.

Specify the base URL as the scheme, host, and port, like http://pap.example.com:8080.
c) Click Save.

Identity provider settings

About this task

Create an authentication policy that fulfills your authentication policy contract with the required attributes
from your identity provider. This process depends on your environment and typically involves the following
steps:

Steps

1. An Identity Provider adapter provides values for the following required attributes:

• name

• email

• subject

2. The Identity Provider adapter also provides the isMemberOf attribute for the group-based authorization
that the previous section describes.

3. An authentication policy maps the authentication adapter.

4. Contract fulfillment maps the attributes of the Identity Provider adapter to the Authentication Policy
contract.

Upgrade PingDataGovernance Server

Ping Identity periodically issues software release builds that introduce new features, enhancements, and
fixes for improved server performance. To upgrade the current server code version, administrators can use
PingDataGovernance Server's update utility.

This section presents an update scenario and discusses various implications that must be considered
when you upgrade your server code.

Upgrade overview and considerations
The process of upgrading PingDataGovernance Server involves the following tasks:

1. Downloading a new version of the PingDataGovernance Server distribution .zip file, and extracting its
contents to the server that you want to update.

2. Running the update utility, making certain to point the --serverRoot or -R option value from the
new root server toward the installation that requires upgrading.

PingDataGovernance | Upgrade PingDataGovernance Server | 117

When performing an upgrade, consider the following points:

• An upgrade affects only the configuration of the server that is being upgraded. To upgrade multiple
servers, perform the upgrade process on them individually. For information about updating the
PingDataGovernance Policy Administration GUI server, refer to the PingDataGovernance Policy
Administration Guide.

• The update tool verifies whether the version of Java that is installed meets the new server
requirements. To simplify the process, install the version of Java that the new server supports before
you run the update tool.

• Upgrades for PingDataGovernance Server are supported only from version 7.0.0.0 or later. If you
attempt to upgrade from a version that is earlier than 7.3.0.0, you will sustain configuration loss. When
you run the update tool, a message reminds you of this possibility.

Upgrading PingDataGovernance Server

About this task

This task makes the following assumptions:

• The existing server installation is located in /prod/PingDataGovernance.
• The new server version is extracted to /home/stage/PingDataGovernance.

Steps

1. Download and extract the contents of the new version of the PingDataGovernance Server distribution
.zip file to a location outside the existing server's installation.

2. Copy the PingDataGovernance license file for the new version to /home/stage/
PingDataGovernance.

-OR-

Use the --licenseKeyFile option to specify the location of the license file when you run the update
tool in the next step.

3. Run the update tool that is provided with the new server package.

$ /home/stage/PingDataGovernance/update --serverRoot/prod/
PingDataGovernance

If the update tool detects changes to the server configuration, it might prompt you to confirm them.

Results
The existing version of PingDataGovernance Server is upgraded to the new version.

Reverting an update

About this task

Use the revert-update tool to revert back one level to the previous version of PingDataGovernance
Server. The revert-update tool returns the file system to its prior state by accessing a log of file actions
that the update tool performed. If you have performed multiple updates, run revert-update multiple
times to revert to each prior update sequentially.

Important: You can revert back only one level. For example, if you have run the update tool twice since
initially installing PingDataGovernance Server, run the revert-update tool to revert the installation to its
previous state, and then run revert-update again to return the installation to its original state.

PingDataGovernance | PingDataGovernance Server 7.3.0.3 Release Notes | 118

To revert back to the most recent version of PingDataGovernance Server, run the revert-update tool
from the server root directory, as follows:

$ PingDataGovernance-old/revert-update

Next steps
When starting PingDataGovernance Server for the first time after a reversion, the server display warnings
about offline configuration changes. These warnings are not critical and do not appear during subsequent
startups.

PingDataGovernance Server 7.3.0.3 Release Notes

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server:

Ticket ID Description

PDSTAGING-840 Fixed an issue that could cause the server to leak
a small amount of memory each time it failed to
establish an LDAP connection to another server.

DS-40371, DS-40382, DS-40427 SCIM 2 search responses can now be authorized
and filtered with an optimized authorization mode
that uses a single policy request to process
an entire result set. This authorization mode is
optional. By default, the server creates a policy
request for each member of a result set.

This authorization mode is enabled on a per-
request basis. To enable, a policy that targets
the SCIM2 service and the search action must
provide an advice with the ID combine-scim-
search-authorizations but with no payload.
The subsequent search response is then authorized
by using a single policy request with the 'SCIM2'
service and the 'search-result' action. If advices
are returned in the policy results, they are applied
iteratively to each SCIM resource in the result set.

For more information, refer to the
PingDataGovernance Server Administration Guide.

PingDataGovernance Server Release Notes archive

Release Notes for earlier versions of PingDataGovernance Server are included for reference.

PingDataGovernance Server 7.3.0.2 Release Notes

Upgrade Considerations

Important considerations for upgrading to this version of PingDataGovernance Server:

PingDataGovernance | PingDataGovernance Server Release Notes archive | 119

• If you are upgrading from PingDataGovernance 7.3.0.0 to 7.3.0.1 or 7.3.0.2, an updated version of the
Policy Administration GUI is required.

• The Allow Attributes and Prohibit Attributes advices have been deprecated. If a deployment requires the
behavior that these advices provided, use a Server SDK to implement the appropriate behavior.

• API Endpoints, which were introduced in 7.3.0.0, have been renamed to Gateway API endpoints.

Warning: When performing an update, existing API Endpoint configuration objects are migrated
automatically. To reflect this change, manually update your dsconfig scripts and other
automated deployments or configurations.

What's New

As a gateway, PingDataGovernance Server functions as a reverse proxy while in deployment mode.
With 7.3.0.2, the Sideband API introduces an alternate deployment mode in which PingDataGovernance
Server uses a plugin to connect to an existing API Lifecycle Gateway. In sideband deployment, the API
Lifecycle Gateway handles requests between API clients and backend API services. The integration plugin
intercepts all request data and passes it through PingDataGovernance Server, which authorizes requests
and responses, and modifies request and response data.

Resolved Issues

The following table identifies issues that have been resolved with this release of PingDataGovernance
Server.

Ticket ID Description

DS-38832 Added a property to Advice types that limits their
application to PERMIT or DENY decisions.

DS-39037 The provided PingDataGovernance policies and
deployment packages now apply access token
validation policies only to the following requests:

• Inbound
• SCIM
• OpenBanking

DS-39490, DS-39616 The API Endpoint configuration type has been
renamed to Gateway API Endpoint.

Update any existing dsconfig scripts that
reference an API Endpoint. For example, a
dsconfig command of create-api-endpoint
must be changed to create-gateway-api-
endpoint.

DS-39592 HTTP External Servers feature a new attribute,
certificate-alias, which defines the alias of a
specific certificate within the keystore to be used as
a client certificate.

DS-39681 When PingDataGovernance Server receives a
401 – Unauthorized response from an external
policy decision server, it converts the status to
503 – Service Unavailable for the upstream
client.

PingDataGovernance | PingDataGovernance Server Release Notes archive | 120

Ticket ID Description

DS-40234 The Open Banking account request endpoint no
longer requires a value for x-fapi-financial-
id. Instead, it now includes the configured fapi-
financial-id value in policy requests through
the Gateway.FapiFinancialId attribute. A
policy can deny account requests based on the
presence and value of this attribute.

PingDataGovernance Server 7.3.0.1 Release Notes

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server:

Ticket ID Description

DS-17278 Added a cn=Server Status
Timeline,cn=monitor monitor entry to track a
history of the local server's last 100 status changes
and their timestamps.

Updated the LDAP external server monitor to
include attributes that track health-check state
changes for external servers. The new attributes
include the following information:

• Number of times a health-check transition has
occurred

• Timestamps of the most recent transitions
• Messages associated with the most recent

transitions

DS-37504, DS-38765, DS-39011 Fixed an issue in the Passthrough SCIM
resource type that could cause an access token
validator's token subject lookup to fail if the user
store was unavailable when PingDataGovernance
Server was started. This issue typically manifested
as a SCIM schema error in the debug trace log,
such as "Attribute uid in path uid is undefined."

DS-39176, DS-39308 Updated the Groovy scripting language version to
2.5.7. For a list of changes, visit groovy-lang.org
and view the Groovy 2.5 Release Notes.

As of this release, only the core Groovy runtime
and the groovy-json module are bundled with
the server. To deploy a Groovy-scripted Server
SDK extension that requires a Groovy module not
bundled with the server, such as groovy-xml or
groovy-sql, download the appropriate JAR file
from groovy-lang.org and place it in the server's
lib/extensions directory.

http://www.groovy-lang.org/
http://www.groovy-lang.org/

PingDataGovernance | PingDataGovernance Server Release Notes archive | 121

Ticket ID Description

DS-39564 Fixed an issue in which the gateway responded
with a 404 for requests that were handled by a
Gateway API Endpoint with an inbound-base-
path of "/".

DS-39593 Fixed an issue in which policy decision logs
contained content that the Policy Administration
GUI Log Visualizer considered invalid.

PingDataGovernance Server 7.3.0.0 Release Notes

Upgrade Considerations

Important considerations for upgrading to this version of PingDataGovernance Server:

• WARNING: OAuth scope configurations for resource access control, including fine-grained access
control, and JEXL-based policies are no longer supported. Manual steps are necessary to migrate
configuration and policies in order to restore the functionality of SCIM APIs. Please contact your
account executive to schedule time for migration assistance.

What's New

These are new features for this release of PingDataGovernance Server:

• New features for data encryption in transit and at rest: added support for TLS 1.3, ability to encrypt and
automatically decrypt sensitive files such as tools.properties and keystore pin files using the server data
encryption keys, and the ability to more easily and securely separate master keys from data encryption
keys by protecting the server encryption settings database using either Amazon Key Management
Service (AWS KMS) or HashiCorp Vault.

• Added support for Amazon Corretto JDK 8, Windows Server 2019, Red Hat Enterprise Linux 7.6,
CentOS 7.6, Amazon Linux 2, and Docker 18.09.0 on Ubuntu 18.04 LTS.

• Fine-grained data access control for JSON-based APIs. Configured as a reverse proxy to existing
customer API endpoints, PingDataGovernance enforces dynamic authorization policies to inbound API
calls or outbound API responses. For inbound calls, policies can inspect request attributes and request
bodies to allow or deny the HTTP call. For outbound responses, policies can whitelist or blacklist JSON
objects and specific attributes, thus sanitizing the HTTP response data per use case.

• New Policy Administration GUI. Data owners and other stakeholders can now collaborate with IT and
developers to build and test data access control policies. IT and developers configure services and
attributes that gather, extract, and transform data dynamically from REST APIs, RBDMS, LDAP, and
more. Data owners and other stakeholders build expressions to check and compare these attributes as
part of a hierarchy of policies and rules. The Policy Administration GUI supports testing with mock input
data, and it displays test results in a graphical tree to help policy writers understand and troubleshoot
policy logic.

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server:

PingDataGovernance | PingDataGovernance Server Release Notes archive | 122

Ticket ID Description

PDSTAGING-570,DS-38334 The following enhancements were made to the
topology manager to make it easier to diagnose the
connection errors described in PDSTAGING-570:

- Added monitoring information for all the failed
outbound connections (including the time since it's
been failing and the last error message seen when
the failure occurred) from a server to one of its
configured peers and the number of failed outbound
connections.

- Added alarms/alerts for when a server fails to
connect to a peer server within a configured grace
period.

PDSTAGING-570,DS-38344 The topology manager will now raise a mirrored-
subtree-manager-connection-asymmetry alarm
when a server is able to establish outbound
connections to its peer servers, but those peer
servers are unable to establish connections back
to the server within the configured grace period.
The alarm is cleared as soon as there is connection
symmetry.

PDSTAGING-570,DS-38335 The dsreplication tool has been fixed to work
when the node being used to enable replication is
currently out-of-sync with the topology master.

DS-15734 Added a cipher stream provider that can be
used to protect the contents of the encryption
settings database with a key from the Amazon Key
Management Service.

PingDataGovernance | PingDataGovernance Server Release Notes archive | 123

Ticket ID Description

DS-18060 Added an HTTP servlet extension that can be
used to retrieve the server's current availability
state. It accepts any GET, POST, or HEAD request
sent to a specified endpoint and returns a minimal
response whose HTTP status code may be used to
determine whether the server considers itself to be
AVAILABLE, DEGRADED, or UNAVAILABLE. The
status code for each of these states is configurable,
and the response may optionally include a JSON
object with an "availability-state" field with the name
of the current state.

Two instances of this servlet extension are now
available in the default configuration. A request sent
to /available-state will return an HTTP status code
of 200 (OK) if the server has a state of AVAILABLE,
and 503 (Service Unavailable) if the server has
a state of DEGRADED or UNAVAILABLE. A
request sent to the /available-or-degraded-state will
return an HTTP status code of 200 for a state of
AVAILABLE or DEGRADED, and 503 for a state of
UNAVAILABLE. The former may be useful for load
balancers that you only want to have route requests
to servers that are fully available. The latter may be
useful for orchestration frameworks if you wish to
destroy and replace any instance that is completely
unavailable.

DS-37617 HTTP Connection Handlers now accept client-
provided correlation IDs by default. To adjust the
set of HTTP request headers that may include a
correlation ID value, change the HTTP Connection
Handler's correlation-id-request-header property.

DS-37753 PingDataGovernance now contains Server SDK
support for Advices.

DS-37839 Make Fingerprint Certificate Mapper and Subject
DN to User Attribute Certificate Mapper disabled
by default on fresh installations. This will not affect
upgrades from installations where these mappers
are enabled.

PingDataGovernance | PingDataGovernance Server Release Notes archive | 124

Ticket ID Description

DS-37959 Added support for insignificant configuration archive
attributes.

The configuration archive is a collection of the
configurations that have been used by the server
at some time. It is updated whenever a change
is made to data in the server configuration, and
it is very useful for auditing and troubleshooting.
However, because the entries that define root
users and topology administrators reside in the
configuration, changes to those entries will also
cause a new addition to the configuration archive.
This is true even for changes that affect metadata
for those entries, like updates to the password
policy state information for one of those users. For
example, if last login time tracking is enabled for
one of those users, especially with high-precision
timestamps, a new configuration may be generated
and added to the configuration archive every time
that user authenticates to the server. While it is
important for this information to be persisted, it
is not as important for it to be part of the server's
configuration history.

This update can help avoid the configuration
archive from storing information about updates
that only affect this kind of account metadata. If
a configuration change only modifies an existing
entry, and if the only changes to that entry affect
insignificant configuration archive attributes, then
that change may not be persisted in the server's
configuration archive.

By default, the following attributes are now
considered insignificant for the purpose of the
configuration archive:

* ds-auth-delivered-otp * ds-auth-password-
reset-token * ds-auth-single-use-token * ds-
auth-totp-last-password-used * ds-last-access-
time * ds-pwp-auth-failure * ds-pwp-last-login-
ip-address * ds-pwp-last-login-time * ds-pwp-
password-changed-by-required-time * ds-pwp-
reset-time * ds-pwp-retired-password * ds-pwp-
warned-time * modifiersName * modifyTimestamp
* pwdAccountLockedTime * pwdChangedTime *
pwdFailureTime * pwdGraceUseTime * pwdHistory
* pwdReset

PingDataGovernance | PingDataGovernance Server Release Notes archive | 125

Ticket ID Description

DS-38050 Updated the server to support encrypting the
contents of the PIN files needed to unlock certificate
key and trust stores. If data encryption is enabled
during setup, then the default PIN files will
automatically be encrypted.

Also, updated the command-line tool framework
so that the tools.properties file (which can provide
default values for arguments not provided on the
command line), and passphrase files (for example,
used to hold the bind password) can be encrypted.

DS-38072 Updated the server to enable TLSv1.3 by default on
JVMs that support it (Java 11 and higher).

DS-38085 Fixed an issue in the installer where the
Administrative Console's trust store type would be
incorrectly set if it differed from the key store type.

DS-38089,DS-38705 The Open Banking Account Request servlet now
supports versions 1.1, 2.0, and 3.0 of the Open
Banking Read/Write Data API.

Error responses returned by the Account Request
servlet are now formatted as described in the Open
Banking Read/Write Data API specification, v3.0.

DS-38090,DS-38564,DS-38567 The response header used for correlation IDs
may now be set at the HTTP Servlet Extension
level using the correlation-id-response-header
configuration property. If set, this property overrides
the HTTP Connection Handler's correlation-id-
response-header property.

DS-38109 Added the --skipHostnameCheck command line
option to the setup script, which bypasses validation
of the provided host name for the server.

DS-38403 Fixed an issue that could prevent certain types of
initialization failures from appearing in the server
error log by default.

DS-38512 Added a cipher stream provider that can be used
to protect the contents of the encryption settings
database with a secret passphrase obtained from a
HashiCorp Vault instance.

DS-38550 Fixed an issue in which backups of the encryption
settings database could be encrypted with a key
from the encryption settings database.

PingDataGovernance | PingDataGovernance Server Release Notes archive | 126

Ticket ID Description

DS-38670 Fixed a bug where the startIndex value for
SCIM requests would be incorrect if the used
LDAPSearch element had more than one baseDN
defined in the scim-resources XML file.

DS-38737 Fixed an issue where inter-server bind requests
would fail if the cipher used reported a maximum
unencrypted block size of 0.

DS-38864 Changed the default value of the HTTP
Configuration property include-stack-traces-in-error-
pages from 'true' to 'false'. Disabling this property
prevents information about exceptions thrown by
servlet or web application extensions from being
revealed in HTTP error responses.

PingDataGovernance | PingDataGovernance Server Release Notes archive | 127

Ticket ID Description

DS-38897,DS-38908 Fixed two issues in which the server could have
exposed some clear-text passwords in files on the
server file system.

* When creating an encrypted backup of the alarms,
alerts, configuration, encryption settings, schema,
tasks, or trust store backends, the password
used to generate the encryption key (which may
have been obtained from an encryption settings
definition) could have been inadvertently written
into the backup descriptor. This problem does not
affect local DB backends (like userRoot), the LDAP
changelog backend, or the replication database.

* When running certain command-line tools with an
argument instructing the tool to read a password
from a file, the password contained in that file could
have been written into the server's tool invocation
log instead of the path to that file. Affected tools
include backup, create-initial-config, create-initial-
proxy-config, dsreplication, enter-lockdown-mode,
export-ldif, import-ldif, ldappasswordmodify, leave-
lockdown-mode, manage-tasks, manage-topology,
migrate-ldap-schema, parallel-update, prepare-
endpoint-server, prepare-external-server, realtime-
sync, rebuild-index, re-encode-entries, reload-
http-connection-handler-certificates, reload-index,
remove-defunct-server, restore, rotate-log, and
stop-server. Other tools are not affected. Also note
that this only includes passwords contained in files
that were provided as command-line arguments;
passwords included in the tools.properties file, or
in a file referenced from tools.properties, would not
have been exposed.

In each of these cases, the files would have been
written with permissions that make their contents
only accessible to the system account used to run
the server. Further, while administrative passwords
may have been exposed in the tool invocation log,
neither the passwords for regular users, nor any
other data from their entries, should have been
affected. We have introduced new automated tests
to help ensure that such incidents do not occur in
the future.

We recommend changing any administrative
passwords you fear may have been compromised
as a result of this issue. If you are concerned that
the passphrase for an encryption settings definition
may have been exposed, then we recommend
creating a new encryption settings definition that is
preferred for all subsequent encryption operations,
exporting your data to LDIF, and re-importing so
that it will be encrypted with the new key. You also
may wish to re-encrypt or destroy any existing
backups, LDIF exports, or other data encrypted with
a compromised key, and you may wish to sanitize
or destroy any existing tool invocation log files that
may contain clear-text passwords.

PingDataGovernance | PingDataGovernance Server Release Notes archive | 128

Ticket ID Description

DS-38913 Added a set of message types to Trace Log
Publishers that records events related to access
token validation.

DS-39086 Removed the version information page from the
docs/build-info.txt endpoint. This information is now
available in build-info.txt, which is located in the root
directory.

DS-39102 Updated the server SDK class
AccessTokenValidator's method
initializeTokenValidator's parameters. The method's
first parameter is now of type ServerContext instead
of BrokerContext. This change is incompatible with
earlier versions of the server SDK.

PingDataGovernance | Index | 129

Index

D

document copyright 5

	Contents
	PingDataGovernance™ Product Documentation
	Introduction to PingDataGovernance Server
	Key components
	What's new

	Explore PingDataGovernance Server
	System entropy
	About the tools.properties file
	System requirements
	Platforms
	Docker
	Java Runtime Environment
	Browsers

	Install and configure PingDataGovernance Server
	Install PingDirectory Server
	Install PingDataGovernance Server
	Configure the PingDataGovernance User Store
	Configure the PingDataGovernance OAuth subject search
	Configure PingDataGovernance logging

	Install and configure the PingDataGovernance Policy Administration GUI
	Import default policies
	Configure PingDataGovernance Server for policy development
	Configure the policy service in External mode

	Create the first API policy
	Configure the API security gateway
	Create the API external server
	Create the Gateway API Endpoint
	Test the gateway with cURL

	Add a policy for programming jokes
	Create attributes for a Joke API response
	Create a service for the Random Jokes API
	Create a policy for the Random Jokes API
	Add logic to reject programming jokes
	Add advice to set the HTTP response code
	Test the policy in the GUI
	Test the API gateway with cURL

	Add a policy for the user city
	Find a user
	Create an attribute for the user location
	Add logic to check the user location
	Test the gateway with cURL

	Example files

	Create the first SCIM policies
	Create the policy tree
	Create SCIM access token policies
	Create a policy for permitted access token scopes
	Test the policy with cURL
	Define the email scope
	Test the email scope with cURL

	Define the profile scope
	Test the profile scope with cURL

	Define the scimAdmin scope
	Add the scimAdmin retrieve rule
	Add the scimAdmin create/modify rule
	Add the scimAdmin search rule
	Add the scimAdmin delete rule

	Create a policy for permitted OAuth2 clients
	Test the client policy with cURL

	Create a policy for permitted audiences
	Test the audience policy with cURL

	Create a policy for role-based access control
	Test the policy with cURL

	Example files

	About the API security gateway
	Request and response flow
	Gateway configuration basics
	API security gateway authentication
	API security gateway policy requests
	Policy request attributes
	Gateway API Endpoint configuration properties that affect policy requests
	Path parameters
	Basic example
	Advanced example

	About error templates
	Example

	About the Sideband API
	API gateway integration
	Sideband API configuration basics
	Sideband API authentication
	Authenticating to the Sideband API
	Creating a shared secret
	Deleting a shared secret
	Rotating shared secrets
	Customizing the shared secret header

	Authenticating API server requests

	Sideband API policy requests
	Policy request attributes
	Sideband API Endpoint configuration properties
	Path parameters
	Path parameters: Basic example
	Path parameters: Advanced example

	Error templates
	Error templates: Example

	About the SCIM service
	Request and response flow
	SCIM configuration basics
	About the create-initial-config tool
	Example: Mapped SCIM resource type for devices

	SCIM endpoints
	SCIM authentication
	SCIM policy requests
	Policy request attributes
	About SCIM searches
	SCIM search policy processing
	Search request authorization
	Search response authorization

	Lookthrough limit
	Disable the SCIM REST API

	Policy administration
	Create policies in a development environment
	Change the active policy branch
	Example configuration

	Use policies in a production environment
	Default policies
	Customized policies

	Environment-specific Trust Framework attributes
	Store keys and values in PingDataGovernance Server
	Define a policy configuration key

	External PDP mode
	Store PingDataGovernance credentials as environment variables
	Add PingDataGovernance environment variables to the configuration file
	Define a new attribute
	Retrieve the ConsentServicePassword value
	Remove the hard-coded password
	Test your changes

	Embedded PDP mode
	Access a policy configuration key

	Advice
	Add Filter
	Allow Attributes
	Combine SCIM Search Authorizations
	Denied Reason
	Exclude Attributes
	Filter Response
	Include Attributes
	Prohibit Attributes

	Access token validators
	About access token validator processing
	Access token validator types
	PingFederate access token validator
	JWT access token validator
	Mock access token validator
	Third-party access token validator

	Server configuration
	Administration accounts
	About the dsconfig tool
	PingDataGovernance Administration Console
	About the configuration audit log
	About the config-diff tool
	Certificates
	Inter-server certificate
	Replace the inter-server certificate
	Prepare a new keystore with the replacement key pair
	Use an existing key pair
	Replace the certificate associated with the original key pair

	Import earlier trusted certificates into the new keystore
	Update the server configuration to use the new certificate
	Replace the previous ads-truststore file with the new one
	Retire the previous certificate

	Server certificate
	Replace the server certificate
	Prepare a new keystore with the replacement key pair
	Use an existing key pair
	Replace the certificate associated with the original key pair

	Import earlier trusted certificates into the new keystore
	Update the server configuration to use the new certificate
	Replace the keystore and truststore files with the new ones
	Retire the previous certificate

	Capture debugging data
	Export policy data
	Enable detailed logging
	Policy Decision logger
	Debug Trace logger
	Debug logger

	Trace a policy-decision response
	Capture debugging data with the collect-support-data tool

	PingDataGovernance Policy Administration GUI single sign-on
	Reconfigure the PingDataGovernance Policy Administration GUI
	PingFederate dependencies
	PingFederate example configuration
	OAuth server settings
	Identity provider settings

	Upgrade PingDataGovernance Server
	Upgrade overview and considerations
	Upgrading PingDataGovernance Server
	Reverting an update

	PingDataGovernance Server 7.3.0.3 Release Notes
	PingDataGovernance Server Release Notes archive
	PingDataGovernance Server 7.3.0.2 Release Notes
	PingDataGovernance Server 7.3.0.1 Release Notes
	PingDataGovernance Server 7.3.0.0 Release Notes

	Index

