
Release 7.3.0.3

Policy Administration Guide

Notice

 PingDataGovernance™ and Symphonic™

Product Documentation

© Copyright 2004-2019 Ping Identity® Corporation. All rights reserved.
© Copyright 2014-2019 Symphonic Software® Limited. All rights
reserved.

Trademarks

Ping Identity, the Ping Identity logo, PingFederate, PingAccess,
and PingOne are registered trademarks of Ping Identity Corporation
("Ping Identity"). All other trademarks or registered trademarks are the
property of their respective owners.

Disclaimer

The information provided in these documents is provided "as is"
without warranty of any kind. Ping Identity disclaims all warranties,
either express or implied, including the warranties of merchantability
and fitness for a particular purpose. In no event shall Ping Identity
or its suppliers be liable for any damages whatsoever including
direct, indirect, incidental, consequential, loss of business profits or
special damages, even if Ping Identity or its suppliers have been
advised of the possibility of such damages. Some states do not allow
the exclusion or limitation of liability for consequential or incidental
damages so the foregoing limitation may not apply.

Support

https://support.pingidentity.com/

PingDataGovernance | Contents | iii

Contents

Chapter 1: Install the PingDataGovernance Policy Administration
GUI... 4

System requirements and prerequisites..5
Operating system..5
Hardware...5
Java SE Runtime Environment.. 5

Installation..5
Distribution .zip file..5
Install and run the administration GUI... 6

Upgrade the PingDataGovernance Policy Administration GUI... 7

Chapter 2: Configure the PingDataGovernance Policy
Administration GUI.. 8

Common configuration.. 9
Authentication... 9

Chapter 3: Policy administration..13
Branches and snapshots...14

Create a new branch..14
Import a branch from a snapshot...15
Delete a branch.. 16
Partial import and export.. 16

Trust framework...18
Domains.. 18
Services.. 19
Attributes... 25
Value settings... 27
Actions.. 29
Identity classifications and IdP support..29
Named conditions... 30

Policy management... 31
Policy sets, policies, and rules...31
Policies and policy sets..31

Testing... 37
Analysis..38
Change control.. 39
Deployment packages... 40

Chapter 4: REST API... 41

PingDataGovernance | Install the PingDataGovernance Policy Administration GUI | 4

Chapter

1
Install the PingDataGovernance Policy Administration GUI

Topics:

• System requirements and
prerequisites

• Installation
• Upgrade the

PingDataGovernance Policy
Administration GUI

This section provides instructions for installing and upgrading the
PingDataGovernance Policy Administration GUI.

PingDataGovernance | Install the PingDataGovernance Policy Administration GUI | 5

System requirements and prerequisites

Operating system

Powered by Symphonic, the PingDataGovernance Policy Administration GUI product suite components
are distributed as executable scripts that can be run on any system with a Java SE Runtime 8 or Java
SE Runtime 11 environment. They have been specifically tested with both Oracle and OpenJDK JRE
installations on the following operating systems:

• Ubuntu 16.04 LTS and 18.04 LTS
• Red Hat Enterprise Linux 7.5 and 7.6
• Microsoft Windows 2016 Server

Hardware

The hardware requirements for the PingDataGovernance Policy Administration GUI depend on the
expected load. The recommended minimum for each installation is as follows:

• Modern x64-compatible processor
• 4GB RAM
• 100GB disk space

Java SE Runtime Environment

The PingDataGovernance Policy Administration GUI Administration Point application requires Java SE
Runtime 8 or 11. (Either OpenJDK or Oracle is recommended). Where possible, install the Java SE
Runtime Environment through the operating system’s package manager. Alternatively, you can download
the latest Oracle Java 8 JRE or Java 11 from the following location:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

After the environment is installed, ensure that the JAVA_HOME environment variable is set to the Server
JRE installation directory path, and ensure that its bin directory is added to the PATH environment
variable.

Installation

Distribution .zip file

The PingDataGovernance Policy Administration GUI components are distributed as a .zip file. The
following directories and files are included in this distribution:

• PingDataGovernance-PAP/

• admin-point-application/ – Administration Point executable scripts and example
configuration files.

• admin-point-installer/ – Configurator application, which produces the configuration file
configuration.yml after prompting the user.

• bin/ – Contains helper scripts to set up, start, and stop the server.
• config/ – Contains the configuration file configuration.yml, which is read when the helper

scripts are used to start the server.

• templates/ – Contains templates from which the system generates configuration.yml.
• configuration.yml – Contains the server configuration. This file is generated after bin/

setup is run.
• logs/ – Contains the log files that are populated during server execution.
• resource/ – Contains Ping policy files that can be loaded into the server.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

PingDataGovernance | Install the PingDataGovernance Policy Administration GUI | 6

• INSTALL – README file.

Install and run the administration GUI

About this task

The PingDataGovernance PAP is distributed with executable scripts to run the application in Microsoft
Windows or Linux/UNIX operating systems. After extracting the contents of the distribution .zip file, locate
the scripts for starting the Administration Point in the PingDataGovernance-PAP/bin folder.

Regardless of whether you install the PAP on Windows or Linux/UNIX, the script runs the PAP by using an
embedded H2 database. An embedded UI is served on http://localhost:8080/ by default, or at the
URL that was configured during setup. The REST API is available at http://localhost:8080/api/
by default, or at the URL that was configured during setup, with Swagger documentation available through
the UI.

Log files are generated in the working directory.

Windows

About this task

To generate the configuration.yml file, run the following script:

PingDataGovernance-PAP\admin-point-installer\bin\admin-point-
configurator.bat

To run the PingDataGovernance Policy Administration GUI as a Java application, run the following script:

PingDataGovernance-PAP\admin-point-application\bin\admin-point-
application.bat

Install as a Windows service

About this task

To install the PAP as a Windows service, extract the contents of the distribution .zip file to the
appropriate directory, such as PingDataGovernance-PAP. The directory PingDataGovernance-PAP
\admin-point-application\bin\ contains the following batch scripts:

• admin-point-application.bat – Runs the PAP as a java Application.
• InstallSymphonicAdminPoint.bat – Installs the PAP as a Windows service named

SymphonicAdminPoint. The life cycle of the PAP – start, stop, and restart – can be managed through
services.msc, the standard tool that is provided with Windows.

To start the PAP automatically during system startup, use Windows Services Manager to set the
Startup Type to Automatic.

• UninstallSymphonicAdminPoint.bat – Uninstalls the PAP service from the system.

Linux and UNIX

About this task

To run the PAP with the default configuration, run the start-server script, as follows:

PingDataGovernance-PAP/bin/start-server

By default, the start-server script runs the application as a server and uses the configuration.yml
file that is found in the PingDataGovernance-PAP/config folder. By using the setup script in

PingDataGovernance | Install the PingDataGovernance Policy Administration GUI | 7

PingDataGovernance-PAP/bin, a new version of configuration.yml is generated, reflecting the
appropriate configuration changes.

Upgrade the PingDataGovernance Policy Administration GUI

About this task

This section describes the steps by which a server administrator can upgrade the PingDataGovernance
Policy Administration GUI when a new version is released. In the example scenario, the administrator
transfers an existing server's configuration to an upgraded version.

The server uses a configuration YAML file and an H2 database, both of which utilize regular file-system
files that can be transferred between installations. Similarly, the product license, along with any SSL
certificate keystores that the configuration uses, can also be transferred between installations.

Important: Log files that are associated with the original installation are not transferred to the new server.

Steps

1. Navigate to the PingDataGovernance Policy Administration GUI installation directory.

$ cd /opt/dg-prev/PingDataGovernance-PAP

2. Stop any servers that might be running.

$ bin/stop-server

3. Copy the relevant server files to a temporary location for transferring.

$ cp config/configuration.yml /tmp
$ cp keystore /tmp
$ cp Symphonic.mv.db /tmp
$ cp PingDataGovernance.lic /tmp

Note: If the original installation was not using SSL, or if it was using an existing SSL certificate in a
different location,the keystore file might be absent.

4. Extract the contents of the PingDataGovernance PAP distribution .zip file to the appropriate location.

unzip ~/PingDataGovernance-PAP-x.x.x.x.zip -d /opt/dg-next

This step assumes that the distribution file is located in the user's HOME directory, and that the
destination folder, /opt/dg-next, already exists and is writable.

5. Navigate to the newly created directory.

$ cd /opt/dg-next/PingDataGovernance-PAP

6. Move the original files to the new location.

$ mv /tmp/configuration.yml config/
$ mv /tmp/keystore .
$ mv /tmp/Symphonic.mv.db .
$ mv /tmp/PingDataGovernance.lic .

7. Start the new server.

$ bin/start-server

PingDataGovernance | Configure the PingDataGovernance Policy Administration GUI | 8

Chapter

2
Configure the PingDataGovernance Policy Administration
GUI

Topics:

• Common configuration

The Administration Point application is built by using the Dropwizard
framework (https://www.dropwizard.io/), which features a YAML
configuration that is normally called configuration.yml. For
information about setting the configuration file, see Install and run the
administration GUI on page 6.

The distribution bundle for the PingDataGovernance Policy
Administration GUI, which is powered by Symphonic, contains
example Dropwizard configuration files. To gain an understanding of
the configuration file structure and the manner in which the various
configuration options fit together, refer to these files.

https://www.dropwizard.io/

PingDataGovernance | Configure the PingDataGovernance Policy Administration GUI | 9

Common configuration

Authentication

PingDataGovernance Policy Administration GUI supports single sign-on (SSO) authentication by using
identity provider solutions that are compatible with OpenID Connect (OIDC) or Lightweight Directory
Access Protocol (LDAP). Each option defines a sign-in flow that enables the PAP to authenticate a user
and obtain the user name and other information about him or her.

Enable authentication by selecting OpenID Connect when running the setup script.

OIDC

OIDC, or implicit flow, is an authentication layer that sits on top of the OAuth 2.0 open standard.

Enable and set up OIDC authentication

When configuring the identity provider (IdP), make certain that implicit flow is enabled. Additionally, the
list of valid redirect URIs must include the callback URI for the UI, http://ui-server:<port>/idp-
callback.

The PAP requires the following pieces of information from the IdP:

• client_id – Represents the ID that is referenced in the URI and tokens.
• OIDC configuration endpoint (http://idp-server:<port>/.well-known/openid-

configuration) – Used to obtain information like the IdP's OpenID authentication workflow endpoints
and token signing keys. The IdP must have CORS enabled on the OIDC discovery endpoint and
userinfo endpoint.

• Authentication scope – Can be set explicitly in the configuration. The minimum required value is
openid, and the default value is openid email profile.

The following table identifies the key authentication configuration properties in the file
configuration.yml:

Property Description Notes

Core

Authentication.Protocol Sets the authorization type for the
backend.

Set to oidc for OpenID Connect.

Authentication.oidc
ConfigurationEndpoint

Points to the IdP's OIDC
configuration endpoint.

The PingDataGovernance Policy
Administration GUI automatically
fetches the authorization
endpoints and signing keys from
this location.

Authentication.oidc
ClientId

OIDC client name. Client name of
PingDataGovernance Policy
Administration GUI; set by the
IdP.

Authentication.redirectUriOIDC redirect URL back to the
application.

Set this value in
configuration.yml to the
frontend host and post number,
followed by /idp-callback.

PingDataGovernance | Configure the PingDataGovernance Policy Administration GUI | 10

Property Description Notes

Authentication.scope OIDC identity server scopes to
request.

Contains mandatory scopes that
include the information about
authenticated users that the
PingDataGovernance Policy
Administration GUI requires, like
openid email profile.

UI

authType Specifies the type of authorization
that the front end uses.

Set to oidc for OIDC, and to
credentials for a test logon
attempt.

configurationEndpoint Specifies the location from which
the front end obtains its user
information.

Same value as
Authentication.oidc
ConfigurationEndpoint.

The following code shows an example backend PAP configuration:

#OpenID Connect authentication – Example backend configuration
core:
 Authentication.Protocol: "oidc"
 Authentication.redirectUri: "http://ui-server:<port>/idp-callback"
 Authentication.oidcConfigurationEndpoint: "https://identity-
server:<port>/.well-known/openid-configuration"
 Authentication.oidcClientId: "pingdatagovernance-pap"
 Authentication.scope: "openid email profile"

Similarly, the following code shows an example frontend PAP configuration:

#OpenID Connect authentication – Example frontend configuration
ui:
 authType: oidc
 configurationEndpoint: "https://identity-server::<port>/.well-known/
openid-configuration"
 clientId: "pingdatagovernance-pap"

Log on and off

When an unauthenticated user attempts to access the PingDataGovernance Policy Administration GUI
frontend application endpoint, he or she receives a response status code of 401 (unauthorized), and the
front end is directed automatically to the IdP's logon page. After the IdP's logon mechanism authenticates
a valid user, he or she is redirected back to PingDataGovernance Policy Administration GUI. When using
the REST endpoint unauthenticated, the response status code is again 401 (unauthorized), and the
Location header contains the identity server's authentication URI, decorated with everything the user
needs to authenticate, including the specified redirect_uri, which is performed with the id_token and
access_token in the fragment portion of the URI.

When a user logs off from PingDataGovernance Policy Administration GUI, a call is also made to log off
the user from the IdP's end.

LDAP

LDAP is a protocol for querying items in a directory-service provider like Active Directory.

PingDataGovernance | Configure the PingDataGovernance Policy Administration GUI | 11

Enable and set up LDAP authentication

When using LDAP over TLS, add the required keys to the Java truststore. The file configuration.yml
contains the information necessary to authenticate a user and to decorate the request with user properties
through LDAP.

Property Description Notes

Core

Authentication.Protocol Sets the authentication type for
the backend.

Set to ldap for LDAP.

Authentication.ldap.uri URI of the LDAP identity server. Address of the LDAP identity
server, such as ldap://
ldap.forumsys.com.

Authentication.ldap.
connectionTimeout

Number of milliseconds to wait on
a connection to an LDAP server
before failing.

Defaults to a value of 3000 (3
seconds).

Authentication.ldap.
readTimeout

Number of milliseconds to wait on
a query to an LDAP server before
failing.

Defaults to a value of 3000 (3
seconds).

Authentication.ldap.
negotiateTls

TLS strategy Set to none for no SSL, and
to strict or fail if SSL is
unavailable.

Authentication.ldap.
userKey

LDAP key that indicates the user
name.

Set to the key that identifies the
user name in the LDAP identity
server, like cn or uid.

Authentication.ldap.
BaseUserDn

Base DN for users on the LDAP
server.

DN prefix for all users, such
as ou=users,dc=example,
dc=com.

UI

authType Specifies the type of authorization
that the front end uses.

Set to ldap for LDAP, and to
credentials for a test logon
attempt.

The following code shows an example backend LDAP configuration:

#LDAP authentication – Example backend configuration
core:
 Authentication.Protocol: "ldap"
 Authentication.ldap.uri: "ldap://ldap-server"
 Authentication.ldap.connectionTimeout: 3000
 Authentication.ldap.readTimeout: 3000
 Authentication.ldap.negotiateTls: "strict"
 Authentication.ldap.userKey: "uid"
 Authentication.ldap.BaseUserDn: "dc=example,dc=com"

Similarly, the following code shows an example frontend LDAP configuration:

#LDAP authentication – Example frontend configuration
ui:
 authType: ldap

Log on and off

Because basic authentication is used to authenticate through LDAP, we recommend using a TLS
connection.

When a user attempts to log on with invalid credentials or without basic authentication, he or she receives
a response status code of 401 (unauthorized). Credentials must be valid LDAP credentials that use the key
Authentication.ldap.userKey, which resides in Authentication.ldap.BaseUserDn. To log off
a user, remove the basic authorization that is attached to all requests.

Chapter

3
Policy administration

Topics:

• Branches and snapshots
• Trust framework
• Policy management
• Testing
• Analysis
• Change control
• Deployment packages

About this task

This section introduces the features of the PingDataGovernance Policy
Administration Point (PAP), which is powered by Symphonic, and
provides instructions for creating access-control policies that reflect
your business requirements. It also includes a tour of the various
concepts that are involved in modelling policies. To get started with the
PingDataGovernance PAP, complete the following tasks:

Steps

1. Log on to the system.

For demonstration environments, use the following default
credentials:

• User name – admin
• Password – password123

2. Create a branch.

This branch functions as the base store for your policies and other
entities.

3. Define the trust framework.

This step lets you define the elements that form the building blocks
of your policies, such as the WHO, WHAT, WHERE, WHY, and
WHEN.

4. Define your policies and policy sets.

Build your policies to reflect your business needs.

5. Test the policies and policy sets.

Run scenario-based unit, system, and regression tests on your
policies.

6. Conduct an analysis.

Carry out detailed, cross-policy analysis to identify potential
conflicts, shadows, redundancies, and failure impacts.

7. Commit your changes.

This step creates a snapshot, which provides an immutable
representation of your policy map at a specific moment.

8. Create a deployment package.

This step creates a deployment file that can be deployed to
PingDataGovernance Server for use in production environments.

9. Deploy the package.

PingDataGovernance | Policy administration | 14

Branches and snapshots
The PingDataGovernance Administration Point embraces similar principles to general software source
control, and begins with the creation of a root branch. When you first deploy the PingDataGovernance
Policy Administration GUI, the Branches repository is empty, and the application forces you to create or
import a branch to continue using the product.

Create a new branch

About this task

Branch names must be unique within the PAP.

Create a branch during startup

Steps

1. On startup, type a unique branch name in the Create a Branch text box.

2. Click Create new branch.

Create a branch from the Version Control tab

About this task

On the Version Control tab, you can create either of the following branch types:

PingDataGovernance | Policy administration | 15

• Root branch.
• Child branch that is created from an existing branch.

Root branch

To create a root branch, perform the following steps:

Steps

1. Click + and select Create new root branch.

2. In the Name text box, type a unique name for the branch.

3. Click Save Branch.

Next steps
Child branch

To create a child branch from an existing branch, perform the following steps:

1. Select the snapshot from which to create the branch.

The snapshot must be committed. To branch from uncommitted changes, make certain to commit them
before proceeding.

2. Click + and select Create new branch from commit.

3. In the Name text box, type a unique name for the branch.
4. Click Save Branch.

A new sub-branch is created from the selected snapshot.

Import a branch from a snapshot

About this task

Branches can be imported from existing snapshot files, which contain the entities and policies from an
existing branch, and can be shared like other files. Snapshots provide a useful method for sharing and
restoring trust framework definitions and policies across users and environments.

To import a branch from a snapshot, perform the following steps:

PingDataGovernance | Policy administration | 16

Steps

1. Click + and select Import Snapshot.

2. Select the appropriate snapshot file.

3. In the Name text box, type a unique name for the snapshot.

4. Click Import.

Delete a branch

About this task

To delete a branch, perform the following steps:

Steps

1. Select the branch to delete.

2. Click Delete Branch.

3. Confirm your choice to delete the branch.

Unless a snapshot has been taken, deleting a branch is an irreversible process. All changes made after
the snapshot was exported will be permanently lost.

Next steps
To recover data from a deleted branch, load a snapshot that has been exported from the branch, if one
exists.

Partial import and export

About this task

The partial import/export feature enables the packaging of a subset of the policies or trust framework
entities for export. The policies and entities can then be imported as a new branch or into an existing
branch.

PingDataGovernance | Policy administration | 17

Partial import

About this task

The process of importing a partial snapshot adds or updates all of the entities into the selected branch. To
import a partial snapshot, perform the following steps:

Steps

1. Select the snapshot file to import.

2. Click Import.
The Summary page details the results of the import.

If the import function detects conflicts between the current branch version and the snapshot version of
the same entity, the Merge Conflict Resolution page opens.

3. If the Merge Conflict Resolution page opens, select for each conflict whether to keep your local
changes or to overwrite them with the values from the imported snapshot.

4. Click Import.

PingDataGovernance | Policy administration | 18

Partial export

About this task

A partial export lets users build an export snapshot of selected entities from a combination of the trust
framework, policy sets, and library set.

To export a partial snapshot, perform the following steps:

Steps

1. On the Partial Export page, select the snapshot file to export.

2. Click Add selection to snapshot.
The entity is added to the table.

Note: Because all dependencies are included automatically in the exported snapshot, you do not need
to select each dependency individually.

3. Click Export.

Trust framework
The trust framework tool lets you define the entities within your organizations so that you can build policies
about them at a later time. The information that your policies will express must be defined in the trust
framework. As a result, the policies that you create will be strongly typed to the definitions in your trust
framework.

Definitions are broken into the following types:

• Domains
• Services
• Actions
• Attributes
• Identity properties
• Identity providers
• Identity classifications
• Named conditions

The following sections describe these definitions in more detail.

Domains

Use the Domains section to define the organizational structure as well as any other organizations with
which you intend to interact, and on which you want to specify authorization policies. Keep the domain
ontology clean and simple. If you want additional levels of granularity, you can extend it later.

PingDataGovernance | Policy administration | 19

When importing domains from an existing organizational directory, like Active Directory, make certain to
exclude all unnecessary and redundant entities.

Services

Use the Services section to define the following types of services:

• Resources that your policies protect by regulating access to them.
• Information points that provide data for attributes that inform policy decisions.

The following sections describe these services in more detail.

Resources

For a resource, define only the top-level fields, like Name, Parent, and Description.

Unless you plan to use the service as an information point, leave the Service Type as none.

Information points

The process of setting up services as information points makes use of the PingDataGovernance Policy
Administration GUI’s service connectors. Make your selection from the Service Type drop-down list and
specify the relevant configuration values in the predefined fields.

PingDataGovernance | Policy administration | 20

Many common settings apply to all service endpoints. When a service is invoked during attribute resolution
and it returns a value, the response can be mapped to a Type, or you can apply a parsing processor to
extract a specific part of the response.

When existing services return more information than is required, or when you need to convert information
to a different format, support is provided for JSON Path, XPath, and the Spring Expression Library (SpEL).

For examples, see the following sections.

Common settings

The following settings apply to all service types:

• Request Timeout – Number of milliseconds that the PAP waits for the request to complete. If this value
is met before a successful response is received, the request is canceled. If retries are configured, the
request is attempted again. If all requests fail to complete in time, the result is an error that represents
the timeout.

• Number of Retries – Number of times that the PAP attempts a request again, after the initial request
fails or times out. This number is added to the initial attempt. For example, if you set this value to 2, the
PAP attempts a maximum of three times. Set to 0 to try a request only once.

• Retry strategy:

• Fixed Interval – Between each attempt to perform a service request, the PDP waits the amount of
time that is specified by the Retry Delay. This option is the default retry strategy.

• Exponential Backoff – The PDP waits for an exponentially increasing amount of time between
attempts to perform a service request.

• Retry Delay – If the retry strategy is Fixed Interval, the Retry Delay value specifies the number of
milliseconds that the PDP waits between request attempts.

If the retry strategy is Exponential Backoff, the PDP multiplies the Retry Value by 2^n, where n
represents the number of retries that have already been made. For example, if the Retry Delay is set
to 1000, and if the retry strategy is Exponential Backoff, the PDP makes the initial request, then waits
1000ms before making a second attempt, 2000ms before a third attempt, 4000ms before a fourth
attempt, and so on.

• Delay Jitter – Percentage value that indicates the amount of variability to apply to the Retry Delay on
each attempt. For example, if the Delay Jitter is set to 10%, the delays in the previous example are
1000±100ms, 2000±100ms, 4000±100ms, and so on.

RESTful services

The PDP can send and receive text, JSON, and XML content with GET, POST, PUT, DELETE, and HEAD
requests to HTTP services. HTTP authentication is supported by using a simple user name and password
or by using an OAuth2 token.

PingDataGovernance | Policy administration | 21

Custom headers can be sent with any request. Additionally, requests can be made dynamic in various
ways by interpolating attribute values into various parameters.

Core settings are as follows:

• URL Format – URL for the REST endpoint that will be accessed. Attributes can be interpolated
anywhere in the URL, but attribute values are not escaped. If necessary, specify this value in the
attribute definition.

• Http Method – Method to send in the HTTP request.
• Content Type – Content-Type header to send, which relates to the body of the request.
• Body – Body to send with the request. Attributes can be interpolated anywhere in the body, with no

escaping.

Authentication

The Authentication picker selects the HTTP authentication type, which corresponds to an authorization
header that is sent with the request:

• None – No authorization header is sent. This value is the default HTTP authentication type.
• Basic – Provides options for attributes whose values are sent as the user name and password of an

HTTP request with Basic authentication.
• OAuth2 – Reveals a token selector. The selected attribute is sent as the authorization token in an HTTP

request with Bearer authentication.

Headers

Any number of custom headers can be added to a request. Although header names are fixed strings, their
values can be constants or attribute values. To toggle between a constant and an attribute, click C/A next
to the appropriate header value.

Value settings

For a RESTful service, value settings describe the expected response from a request. If the response does
not require preprocessing, leave Processor set to None, and set the Type value as follows:

• For plain text, specify String.
• For JSON, specify JSON.
• For XML, specify XML.

If the response requires preprocessing, perform the following steps:

1. Select the required SpEL, XPath, or JSONPath processor.
2. Enter the appropriate expression.
3. In the Type field, specify the result type of the expression.

For example, if the RESTful service returns the following JSON body, and if a JSONPath processor is
selected with the expression $.name, the Type must be String, and the final value for the service is
John Smith.

{
 "id": 123,
 "name": "John Smith"
}

Secret

To mark a service's response as secret, and to ensure that data is never leaked to log files, enable the
Secret button.

PingDataGovernance | Policy administration | 22

Database information points

The PDP can connect directly to relational databases and can perform SQL queries.

S=Database connection string

This setting defines the JDBC connection string that is used to connect to one of the following databases:

• H2
• Oracle
• PostgreSQL
• Microsoft SQL Server

To use a particular database, make certain the appropriate JDBC driver is included in the classpath. To
use a database that is not included in the previous list, add the appropriate JDBC driver JAR file to the
PingDataGovernance Policy Administration GUI classpath.

Example JDBC connection strings

jdbc:h2:~/database
jdbc:postgresql://dbhost/dbname
jdbc:oracle:thin:@localhost:1521:SID

Attributes can be interpolated anywhere in the connection string.

SQL

The SQL setting contains the SQL query that is sent to the database. To prevent SQL injection attacks,
attribute interpolation is supported in value positions by default. In the following example, the attribute

PingDataGovernance | Policy administration | 23

placeholder becomes a SQL placeholder when the query is prepared, with the attribute value provided as a
parameter:

SELECT user,email FROM people WHERE userid == {{UserId}}

Attributes can be interpolated anywhere in a SQL string by using the unsafe modifier. For example, if
the Attribute Limit evaluates to a SQL snippet that limits the results of a query, such as LIMIT 20, the
following SQL could be used in a database service:

SELECT user,email FROM people WHERE dateOfBirth > {{StartDate}} {{Limit |
 unsafe}}

Warning: Depending on the source of the attribute value, this approach might open the SQL query
to injection attacks.

Results

Results from database queries are converted into a two-dimensional table and rendered in XML format
inside a root node. The following table features columns named firstname and lastname, which are
populated with example data that has been queried from a hypothetical database.

firstname lastname

Fred Flintstone

Barney Rubble

The following XML document shows the service result for this example:

<root>
 <row>
 <column name="firstname">Fred</column>
 <column name="lastname">Flintstone</column>
 </row>
 <row>
 <column name="firstname">Barney</column>
 <column name="lastname">Rubble</column>
 </row>
</root>

If the result type of such a service definition is set to XML, attributes can use XPath queries to pick
individual or collections of values from the XML data.

LDAP services

The PDP can make LDAP queries to resolve attribute values.

PingDataGovernance | Policy administration | 24

Configuration

Multiple settings are required to configure an LDAP service. This section uses a publicly available LDAP
service as an example.

Host and port

The following values provide an example hostname and port number for an LDAP server:

Host: ldap.forumsys.com
Port: 389

User name / Bind DN and password

The following values provide an example bind DN and password for an LDAP server:

Bind DN: cn=read-only-admin,dc=example,dc=com
Password: password

Search base DN / LDAP filter

The following settings define an LDAP query that can be made:

Search Base DN: dc=example,dc=com
LDAP Filter: ou=mathematicians

Results

Because the result of an LDAP query is converted to an XML document, set the Service Value Type to
XML. The following example shows the resulting document for the previous query:

<searchResponse>
 <searchResultEntry dn="OU=MATHEMATICIANS,DC=EXAMPLE,DC=COM">
 <attr name="ou">mathematicians</attr>
 <attr name="objectClass">groupOfUniqueNames</attr>
 <attr name="objectClass">top</attr>
 <attr name="uniqueMember">uid=euclid,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=riemann,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=euler,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=gauss,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=test,dc=example,dc=com</attr>
 <attr name="cn">Mathematicians</attr>
 </searchResultEntry>
</searchResponse>

Use XPath processors to extract individual parts or collections of data from a resulting XML document.

PingDataGovernance | Policy administration | 25

Camel services

In addition to retrieving information from HTTP, LDAP, and SQL information points, the PAP also supports
retrieving information from endpoints that are supported by the Apache Camel enterprise integration
platform.

To view the full list of systems supported, visit the Components page on the Apache Camel website.
Camel components are configured by using a combination of URI, headers, body, and configuration
settings. The appropriate values for each setting depend on the component that is being used. Consult the
documentation on the Camel website for the particular component that you plan to use.

URI

Camel endpoints are identified by URIs. As well as identifying the system, a URI can also specify
configuration options for a component. For details about configuring a URI for a component to which you
want to connect, visit the Apache Camel website.

Attribute values can be interpolated into a URI.

Headers

Further information can be sent to an external information point by using Camel headers. If the component
to which you want to connect uses headers, locate the instructions for the component on the Apache
Camel website.

Attribute values can be interpolated into headers.

Body

Some Camel components operate on a message body, which can be provided by using this setting. If
the component to which you want to connect to requires a message body, locate the instructions for the
component on the Apache Camel website.

Attribute values can be interpolated into the body.

Configuration

Some Camel components require you to configure helper components, which are specified by using the
Groovy scripting language to write a Spring Bean configuration block. For information about writing such
configurations, view this document.

Attribute values cannot be interpolated into the configuration.

Note: The Camel JDBC component makes use of the headers and body settings, and requires that a
JDBC data source be set up in the Camel configuration setting.

Attributes

Attributes provide the context that enables fine-grained policies. They retrieve data from multiple
information endpoints and permit the inclusion of values and results inside the rules of a policy. We
recommend contemplating the structure and naming conventions of your attributes so that policy writers
and editors can build policies without a deep understanding of the underlying data endpoints. The intention
is to abstract any complexity and expose the attributes in terms that business users and policy builders can
understand.

Create an attribute

About this task

To create an attribute, click + on the Attributes tab.

https://camel.apache.org/
https://camel.apache.org/components.html
http://www.groovy-lang.org/
https://docs.spring.io/spring-framework/docs/4.3.13.RELEASE/javadoc-api/org/springframework/beans/factory/groovy/GroovyBeanDefinitionReader.html

PingDataGovernance | Policy administration | 26

Resolver settings

Attributes are resolved only when an applicable rule requires the value of the attribute to evaluate the
conditions of the rules. For example, if a rule requires the Risk Score for a customer's device and
compares it to a value of High, Medium, or Low, the attribute resolver attempts to resolve the attribute
only when it reaches the policy. Depending on the order of the policies, you might not need to resolve all
attributes.

Each attribute can feature multiple resolver types that are resolved in the order in which they are defined.
These can be reordered by dragging and dropping.

The following resolver types are supported:

• Request – Looks inside an authorization request and determines whether the caller is providing the
attribute.

• Service – Uses a trust framework or service endpoint to invoke the service at runtime and to resolve the
attribute. To invoke the service, the service might rely on other attributes that are supplied. The PDP
handles this resolver type automatically.

• Attribute – Attributes can also be resolved from other attributes, which is useful when your attributes
contain multiple pieces of information and you want to create nested or children attributes as subset
extracts from them. For example, the Customer.Name attribute might return the following JSON
representation:

{ "firstname": "Joe", "middlename": "Bod", "surname": "Bloggs" }

The Customer.Name.Surname attribute can be created to resolve against the Customer.Name
attribute, and to use a JSON parser to extract only the Surname property of the JSON object.

• System – The PingDataGovernance PAP provides a number of default system attributes that can be
used without any additional configuration. For example, the CurrentDateTime attribute returns
the current system datetime value.

• Configuration key – Attributes can be resolved against configuration key items. These key-pair values
are defined in the file configuration.yml as part of the initial PAP configuration.

Conditional resolvers

All resolver types support the ability to add conditional logic. As a result, the resolver is invoked only under
certain defined conditions.

To add a conditional logic builder to a particular resolver, click Add Condition next to the resolver item.

PingDataGovernance | Policy administration | 27

The following example implies that the Service Resolver [Information Point.Credential
Datastore] is used only when Customer.Status = "Confirmed".

Attribute caching

The PingDataGovernance PAP supports caching for attributes. The ability to cache resolved attributes
delivers significant performance gains for the overall decision engine. To ensure optimum configuration, we
recommend that you consider this concept carefully.

The cache settings for attributes offer the following approaches:

• Time-based – Allows you to set the amount of time that the cache lives before it expires. This value is
also known as the time to live (TTL). If an attribute does not exist in the cache, the decision engine uses
the appropriate attribute resolvers to resolve it automatically. After the attribute is resolved, it is added
to the cache.

All subsequent attribute usages leverage the cached value until it expires from the cache, which results
in another attribute resolution.

• Attribute-based – Allows the application of an additional scope to the cache. This setting lets you
attach the value of an attribute to the scope of the cache, such as customerId or, as in the previous
example, sessionid. The cache is returned only when the scope is matched. The following example
saves and reuses the cache for a specific sessionid only.

Tip: The cache key for a trust framework attribute value includes a hash of the values that are required
for it to resolve. The cache key is invalidated automatically whenever one of these values changes. This
aggregation of scope parameters guards against inconsistencies between cached values.

Value settings

The Value Settings section of services and attributes allows you to dictate the value type and optional
processor steps to transform a resolved value. The PingDataGovernance PAP supports the following value
processors:

• JSONPath
• XPath
• Spring Expression language (SpEL)

The following sections describe these value processors in more detail.

PingDataGovernance | Policy administration | 28

JSONPath

Use JSONPath to extract data from JSON objects. A service might resolve to the following example:

{
 "name": "Joe Bloggs",
 "requestedItems": [
 {
 "id": "b5f963fa-111e-49ff-994b-b89a20a2c1d5",
 "price": 125.00
 },
 {
 "id": "84e204dd-44f5-4a84-8e58-972c2a9c80b4",
 "price": 299.99
 }
]
}

To extract the price fields of all requested items, create an attribute that resolves against the service, and
set the value processor to JSONPath with the following expression:

$.requestedItems[*].price

This attribute can be used in conditions or in further attribute resolution. For more reference about
JSONPath expressions, visit JSONPath – XPath for JSON.

XPath

As the XML equivalent of JSONPath, XPath follows a similar syntax. For more information about XPath
expressions, refer to the W3Schools XPath Tutorial.

The PingDataGovernance Policy Administration GUI supports XPath 1.0 only. Later functionality might be
unavailable.

SpEL

Use the Spring Expression language to perform complicated data processing. With SpEL, expressions are
applied directly to a resolved value. For example, you might want to search for a substring that matches
the following regular expression:

\[[0-9]*\.[0-9]\]

To locate the substring, set the processor to SpEL, and set the expression as follows:

matches(\[[0-9]*\.[0-9]\])

To combine multiple attribute values into a single value, insert attribute values directly into the SpEL
expression by wrapping its full name in double curly brackets, as the following example shows:

{{Customer.Age}} - {{State.Drinking Age}} >= 0

Note:

When interpolating an attribute into a SpEL expression, you can interpret only at a location where the
symbol is valid. For example, the following expression is valid because it uses string concatenation:

"Hello " + {{User.Name}} + "!"

The following expression is invalid because a symbol cannot appear inside a string literal:

"Hello {{User.Name}}!"

https://goessner.net/articles/JsonPath/
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3.org/TR/1999/REC-xpath-19991116/

PingDataGovernance | Policy administration | 29

For more information about the Spring Expression language, refer to the Language Reference
documentation for the Spring Framework.

Default value

Attributes can be given an optional default value in the event that they cannot be resolved. A default value
can also be used to encode constant attributes within the trust framework by not setting any resolvers and,
consequently, always resolving to the default value.

Actions

Actions are arbitrary values that a typical authorization request might ask to perform on a specific resource,
such as a view or an update. The following actions are typically configured in the PingDataGovernance
PAP:

• HTTP:

• GET
• PUT
• POST
• DELETE
• PATCH
• HEAD
• OPTIONS

• CRUD:

• Create
• Read
• Update
• Delete

Identity classifications and IdP support

The PingDataGovernance PAP lets you generate intelligent identity classifications that abstract the
underlying identity providers (IdPs) from their presumed levels of trust. As a result, policies can target
levels of trust instead of specific identity providers.

The following elements collectively define these trust levels:

• Identity providers – Define the different IdPs and attach identity properties to them. This approach
provides significant abstraction for complicated ecosystems that feature tens or hundreds of
participating IdPs.

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions-language-ref

PingDataGovernance | Policy administration | 30

• Identity properties – Define the items to attach to specific identity providers. These properties map
the identity providers to specific Identity Classification levels. For example, a Social property can be
attached to any IdPs that are classified as social.

• Identity classifications – Create different levels of classification by attaching the properties that are
required for an IdP to be considered inside the classification level.

Named conditions

Named conditions let you create reusable, conditional logic that helps abstract some of the logical
complexity from the people who build policies. Named conditions also minimize repetition throughout
policies.

Use named conditions to replace entire conditions, and also as components of complicated condition
expressions. To add a named condition within the condition builder, click + Named Condition.

Policy builders can create their own conditions that coexist with named conditions.

PingDataGovernance | Policy administration | 31

Policy management
The Policy Manager provides the tools for implementing the dynamic, fine-grained access-control policies
that govern the use of services and data in your organization. Use the Policy Manager to create policies
that answer the question, "Will this resource access request be permitted or denied?” In a traditional role-
based access control (RBAC) system, this question can be rephrased as, "Who is the user making the
access request, and has the user been assigned a role that can access the resource?"

Although such a policy can be modeled in the PingDataGovernance Policy Administration GUI, the
application is essentially an attribute-based access-control (ABAC) system. The question can be rephrased
yet again as, "Given the facts that I know about the user, the resource being accessed, what the user
wants to do with the resource, my confidence that the user is who she says she is, and any other pertinent
facts about the world at this point in time, should the user’s access request be permitted, and must
anything else be done besides permitting or denying access?" This lengthy question speaks directly to
the power of the PingDataGovernance Policy Administration GUI, which the Policy Manager provides a
straightforward way to harness.

Policy sets, policies, and rules

A typical large organization might utilize hundreds or thousands of conditions and constraints around
access control. Collectively, these conditions and constraints comprise the business rules that define the
circumstances under which certain resources are accessed.

Rules can be grouped together so that people can reason about them without needing to hold them in their
heads all at one time. For example, a set of authentication policies might require a user to authenticate to
a certain level before he or she can access a particular resource. Another set of policies might gather all of
the business rules around accessing the resources of a particular business unit. Yet another set of policies
might define the audit processes that are triggered whenever a user attempts to access a set of restricted
resources.

This structure is inherent in the problem domain of resource access control, and is reflected in the following
PingDataGovernance Policy Administration entities:

• Policy sets
• Policies
• Rules

The following sections examine these entities, their properties, and the manner in which they are
composed.

Policies and policy sets

To navigate to the Policy Manager, click Policies on the main navigation bar.

The left side of the page features the navigation panel's tree structure, which lists the existing policy nodes.

PingDataGovernance | Policy administration | 32

We recommend adding a root policy set to hold all other policy sets. A root policy set is useful when you
build a deployment package from the entire Policy tree.

Create policies and policy sets

About this task

To create a policy or policy set, perform the following steps:

Steps

1. In the navigation panel, click the Policies tab.

2. Click Creation (blue button).

3. In the pop-up window that opens, select Policy or Policy Set to start the creation process.

4. Specify a name.

Although you can give policies and policy sets almost any name that you like, we recommend using
relevant and contextual names, especially as the Policy tree grows in size and complexity. Consider
the business rule that the name is trying to model, and check whether it adequately represents the
operational policies of the organization.

For example purposes, this document uses a policy named My Basic Policy. A red dot in the upper-
right corner signifies that, after changing the name, the policy contains unsaved changes. If you try to
navigate away from this page, the system prompts you to save or discard your changes.

5. Click Save Changes.

Add targets to a policy

About this task

A target defines a set of access requests to which the policy applies.

PingDataGovernance | Policy administration | 33

After you name a policy, perform the following steps to add targets:

Steps

1. Click Show "Applies to".

The Target section expands.

Note: This policy applies to all requests because no targets are attached. To apply a policy exclusively
to all requests to a particular database, add the database domain as a target.

2. Drag the appropriate domains, services, identity classes, and actions from the Toolbox to the policy's
Target box.

These elements were created in the trust framework. To target Mobile Banking requests, for example,
drag the corresponding domain to the Target box. To target all banking groups, including mobile and
online groups, add the Banking Channel domain, which functions as a parent for both types of
requests. This step adds a total of three targets because the top level also serves as a target.

3. In this example, the domain Mobile Banking is dragged to the policy's Target box.

PingDataGovernance | Policy administration | 34

The target is displayed as a label that can be removed by clicking X.

4. This example adds four definitions as targets to the policy.

Three domains are involved in this example because the Banking Channel definition is a parent for
two other definitions. Logically, one of the definitions is picked by applying an OR operation within the
definition type.

The following graph shows the process by which the group of targets is evaluated.

Conditional targets

Conditional targets extend the capability of the "Applies to" concept by interweaving targets with other
conditional logic, and by allowing standalone logic to determine whether and when a policy or rule applies.
To enable this functionality, click Show "Applies When".

The following types of conditions can be included in the logical expression:

• Attribute comparison – Allows the comparison of an attribute with another attribute or a constant.
• Request comparison – Allows the matching of an incoming request to determine, for example, whether

the requested service equals Banking.Payment.

PingDataGovernance | Policy administration | 35

• Named condition – Click Add Named Condition to add a Named Condition drop-down list that
provides a selection of named, presaved conditions.

To toggle between Attribute Comparison mode and Request Comparison mode, click A and R to the left of
the comparator.

Advice

Advice is additional information that can be attached to a decision response. It is sent back to the
governance engine so that the appropriate action can be taken, depending on the response that was
evaluated from the policy itself. If a policy is set up to verify the authentication level of a user, and if the
policy evaluation determines that the user does not possess the correct access privileges, information can
be sent to explain the reason for denying access.

To indicate that the final decision applies only when the advice can be fulfilled, mark the advice as
Obligatory. The service that calls the PDP normally handles this responsibility, but you can also use the
PingDataGovernance Policy Administration Obligation Fulfillment Service to handle it.

Each advice features the following mandatory fields:

• Name – Human-readable label for reference in the Policy Manager.
• Code – Identifier used to distinguish between different types of advice.
• Applies To – Type of decision to which the advice attaches.

If an advice applies, and if its origin decision contributes to the final result, it is used in the final response.
In other words, the decision agrees with every decision between its origin and the top-level policy or policy
set.

Advice carries additional data in the form of payloads and attributes. A payload is an optional field that can
consist of static or interpolated data. Attributes allow you to return a key-value mapping of any attributes
that might be relevant to the advice.

Properties

Use properties to add metadata to a policy in the format of a key-value pair.

PingDataGovernance | Policy administration | 36

Rules and combining algorithms

Each policy can feature multiple rules that produce one of the following responses:

• Permit

• Deny

• Indeterminate

• Not applicable

To evaluate the overall decision of a policy, a combining algorithm is applied. The default algorithm set on
a new policy is Unless One Decision is Deny, the Decision will be Permit. This algorithm always evaluates
to permit unless the decision is deny.

The following list identifies these algorithms and describes their effects:

• PermitUnlessDeny (Unless one decision is deny, the decision will be permit) – Policy defaults to
Permit unless any of its children produce the decision Deny.

• DenyUnlessPermit (Unless one decision is permit, the decision will be deny) – Policy defaults to Deny
unless any of its children produce the decision Permit.

• PermitOverrides (A single permit will override any deny decisions) – If any children produce
the decision Permit, the policy returns Permit. If this step does not occur, the policy returns
Indeterminate if a child produces Indeterminate. Otherwise, the policy returns Deny if a child
produces Deny, and returns Not Applicable if all children are Not Applicable.

• DenyOverrides (A single deny will override any permit decisions) – If any children produce the decision
Deny, the policy returns Deny. If this step does not occur, the policy returns Indeterminate if a child
produces Indeterminate. Otherwise, the policy returns Permit if a child produces Permit, and
returns Not Applicable if all children are Not Applicable.

• FirstApplicable (The first applicable decision will be the final decision) – Children are evaluated in
turn until one produces an applicable value of Permit, Deny, or Indeterminate. If no applicable
decisions are present, the policy returns Not Applicable.

• OnlyOneApplicable (Only one child may produce a decision. If more than one is produced, the result
will be indeterminate) – Children are evaluated in turn. If at any point two children produce a decision
other than Not Applicable, the policy returns Indeterminate. Otherwise, if precisely one child
produces an applicable decision, the policy uses this value, and if no children produce applicable
decisions, the policy returns Not Applicable.

• DenyUnlessThreshold (Permit if the weighted average of applicable child decisions meets the
threshold, otherwise deny) – The policy’s children are assigned weights between 0 and 100. If a child
returns Permit, the weight is added to a running total. If a child returns Deny, the weight is subtracted
from the running total. After all children have been evaluated, the total is divided by the number of
children and is compared against the threshold. If the average value is greater than or equal to the
threshold, the policy returns Permit. Otherwise, it returns Deny.

Rule structure

Rules contain logical conditions that evaluate to true or false. Each rule can be assigned an effect
that is either permit or deny. A rule evaluates to an effect when its child condition or group of conditions
evaluates to true. A rule can be set so that if a condition evaluates to true and the effect is set to deny,
the rule evaluates to deny.

Like policies and policy sets, rules can have targets that work in the same way. Apply targets to achieve a
more fine-grained approach. For example, one rule might target the mobile banking channel, and another
rule might target the online banking channel.

PingDataGovernance | Policy administration | 37

If this condition evaluates to true, the effect is permit.

Testing
The PingDataGovernance Policy Administration GUI provides testing capabilities that allow for the
evaluation of test authorization requests against any or all policy nodes. To identify the node against which
policies are tested, select it as the root node from the tree on the left side of the page. In this example, the
evaluation is run against all policies because the root policy set is selected.

To prepare a test request, perform the following steps:

1. Select a definition of type Attribute or Service.
2. Navigate to the Test tab.
3. To form the request, select the following elements:

• Domain
• Service
• IdP
• Action
• Attributes

4. If the information endpoints that your attribute resolvers require are running, click Execute.

If your endpoints are not running or are otherwise unavailable, use the Overrides section to provide
stubbed values for any attributes and services that might be required during evaluation.

PingDataGovernance | Policy administration | 38

This step overrides the attribute and service resolution, and uses the stubbed values instead.

After the request is evaluated, the following Results tabs are displayed:

• Request – Shows the JSON request that is sent to the decision engine.
• Response – Contains the complete, high-verbosity response for the decision.
• Attributes – Identifies the attributes that are executed as part of the test.
• Services – Identifies the services that are executed as part of the test.
• Output – Summarizes the decision.
• Visualization – Provides a visual representation of the decision tree.

Analysis
The PingDataGovernance Policy Administration GUI provides full, policy-analysis capabilities that produce
a report of potential conflicts, redundancies, shadows, and failure-impact assessments, based on the
selected policy root node and all of its respective children. To execute the analysis across your complete
policy landscape, select the root node.

The following options provide strong analytical value:

PingDataGovernance | Policy administration | 39

• Conflicts – Highlights real policy conflicts, such as a policy permitting access to a resource when, under
the same conditions, another policy denies access to the resource.

• Redundancy – Highlights policies that are redundant, based on one or more policies, and whose
presence make no difference to the response.

• Shadows – Highlights policies that another policy can replace.
• Global redundancy – Similar to Redundancy but applies to library policies that are used in multiple

places.
• Failure impact – Highlights information points whose failure might alter the decision.

Select the options to analyze and click Execute.

Change control
After you finish building, testing, and analyzing your policies, commit your changes so that you can move
the policies into a state where they can be deployed to PingDataGovernance Server.

A list of previously committed snapshots, as well as any uncommitted changes, appears under Change
Control. To commit these changes and create a snapshot that forms the starting point of your deployment
package, click Commit New Changes.

Deployment packages
A deployment package is a compiled version of the policy tree. It is the key element that is deployed to
PingDataGovernance Server.

For more information, see Configure the PingDataGovernance Policy Administration GUI on page 8.

Chapter

4
REST API

Swagger documentation is available through the PingDataGovernance
Policy Administration GUI and has full testing capabilities. To view the
Swagger documents, click API Reference in the GUI.

	Contents
	Install the PingDataGovernance Policy Administration GUI
	System requirements and prerequisites
	Operating system
	Hardware
	Java SE Runtime Environment

	Installation
	Distribution .zip file
	Install and run the administration GUI
	Windows
	Install as a Windows service

	Linux and UNIX

	Upgrade the PingDataGovernance Policy Administration GUI

	Configure the PingDataGovernance Policy Administration GUI
	Common configuration
	Authentication
	OIDC
	LDAP

	Policy administration
	Branches and snapshots
	Create a new branch
	Create a branch during startup
	Create a branch from the Version Control tab

	Import a branch from a snapshot
	Delete a branch
	Partial import and export
	Partial import
	Partial export

	Trust framework
	Domains
	Services
	Resources
	Information points
	Common settings
	RESTful services
	Database information points
	LDAP services
	Camel services

	Attributes
	Create an attribute
	Resolver settings

	Conditional resolvers
	Attribute caching

	Value settings
	JSONPath
	XPath
	SpEL
	Default value

	Actions
	Identity classifications and IdP support
	Named conditions

	Policy management
	Policy sets, policies, and rules
	Policies and policy sets
	Create policies and policy sets
	Add targets to a policy
	Conditional targets
	Advice
	Properties
	Rules and combining algorithms
	Rule structure

	Testing
	Analysis
	Change control
	Deployment packages

	REST API

