
Ping Identity® Data Governance
Server Administration Guide

Version 7.0.0.0

Ping Identity® Data Governance
Server Product Documentation
© Copyright 2004-2017 Ping Identity® Corporation. All rights reserved.

Trademarks

Ping Identity, the Ping Identity logo, PingFederate, PingAccess, and PingOne are registered
trademarks of Ping Identity Corporation ("Ping Identity"). All other trademarks or registered
trademarks are the property of their respective owners.

Disclaimer

The information provided in these documents is provided "as is" without warranty of any kind.
Ping Identity disclaims all warranties, either express or implied, including the warranties of
merchantability and fitness for a particular purpose. In no event shall Ping Identity or its
suppliers be liable for any damages whatsoever including direct, indirect, incidental,
consequential, loss of business profits or special damages, even if Ping Identity or its suppliers
have been advised of the possibility of such damages. Some states do not allow the exclusion
or limitation of liability for consequential or incidental damages so the foregoing limitation may
not apply.

Support

https://support.pingidentity.com/

Table of Contents
Chapter 1: Introduction 1

Data Governance Server overview 2

Data Governance Server features 2

Data Governance Server deployment considerations 2

Configuration overview 3

SCIM 3

Data Sources 3

Scopes and Policies 4

System 4

Web Services and Applications 5

LDAP Administration and Monitoring 5

Logging, Monitoring, and Notifications 6

Chapter 2: Installation 7

Installation prerequisites 8

Supported platforms 8

Set the file descriptor limit 8

Set the maximum user processes 9

Disable filesystem swapping 9

Install the dstat utility on SuSE Linux 10

Managing system entropy 10

Enable the server to listen on privileged ports 10

Install the JDK 11

Encryption keys 11

User store overview 11

Ping license keys 11

Install the Directory Server 12

Data Governance Server Installation Tools 13

Install the Data Governance Server 14

Configure the Data Governance Server 15

Log into the Administrative Console 17

Install an additional Data Governance Server in a topology 17

Server folders and files 18

Plan a scripted installation 19

- ii -

Start the Data Governance Server 21

Stop the Data Governance Server 21

Schedule a server shutdown 21

Run an in-core restart 22

Run the server as a Microsoft Windows service 22

Register the service 22

Run multiple service instances 22

Deregister and uninstall 23

Log files 23

Uninstall the Data Governance Server 23

Chapter 3: Data access and mapping 24

Data components 25

Store adapter mappings 25

Directory Servers 25

Primary and secondary store adapters 25

Defining correlation attributes 26

Sample configuration 26

SCIM schemas 28

Store adapter mappings 28

SCIM attribute search considerations 28

Maintain username uniqueness 29

Define SCIM Resource Types 29

Pass-through SCIM Resource Type 29

Mapping SCIM Resource Type 30

Create a SCIM Resource Type 30

Create a Mapping SCIM Resource Type 30

Create a Pass Through SCIM Resource Type 31

Edit attribute and sub-attribute properties 31

Edit store adapter mappings 33

Complex attribute mapping 34

Client-specific SCIM attributes 34

Access data 36

Chapter 4: Token access 37

- iii -

Data Governance Server endpoint for OAuth2 clients 38

Access token validation 38

PingFederate Access Token Validator 38

JWT token validation 39

Chapter 5: Configure scopes and policies 40

OAuth2 scopes 41

Authenticated Identity Scope 41

Resource Scope 42

Create scopes 43

Create an Authenticated Identity OAuth2 scope 43

Create a Resource OAuth2 scope 43

Policy overview 43

Requesting operations through SCIM 44

Policy structure 44

JEXL use in policy structure 45

JEXL identifiers and variables 45

References containing invalid JEXL characters 45

Extended data type support 46

JEXL extension functions 46

Use obligations and advice 47

SCIM resource requests 47

Filter obligation 47

Policies and request processing 48

SCIM resource type policy evaluation 48

SCIM search request 48

SCIM GET request 49

SCIM POST request 49

SCIM PATCH and PUT requests 50

SCIM DELETE request 50

Policy Decision Point (PDP) endpoint 51

Policy engine request context 51

XACML attribute categories 51

Standard attribute use 52

Custom XACML function 53

SCIM resource properties 53

- iv -

Scope properties 53

SCIM request properties 54

Applicable scopes 55

Access token properties 55

Configure the Policy Service 56

Policy Information Providers 56

PIP Evaluation Order 56

Create policies 57

Creating a policy set 58

Troubleshoot policies with traces 58

Troubleshoot denied access 59

Chapter 7: Advanced configuration 60

General server configuration 61

Available configuration tools 61

Use the dsconfig tool 62

Administrative accounts 63

Change the administrative password 63

Use the Configuration API 63

Authentication and authorization 64

Relationship between the Configuration API and the dsconfig tool 64

GET example 65

GET list example 67

PATCH example 68

API paths 72

Sorting and filtering configuration objects 73

Update Properties 73

Administrative actions 75

Updating servers and server groups 76

Configuration API responses 76

Configuring HTTP connection handlers 77

Domain Name Service (DNS) caching 78

IP address reverse name lookups 79

Problems with SSL communication 79

- v -

Conditions for automatic server shutdown 79

Configuring traffic through a load balancer 80

System alarms, alerts, and gauges 80

Alert handlers 81

Test alarms and alerts 82

Logs and log publishers 83

Types of log publishers 83

View and configure log publishers 83

Create a new log publisher 83

Configure log compression 84

Configure log signing 84

Configure log retention and log rotation policies 85

Configure the Log Rotation Policy 86

Configure the Log Retention Policy 86

Server monitoring 86

Backend monitor entries 86

View system and consent data through the Data Metrics Server 88

Using the status tool 88

Server SDK extensions 88

Data Governance Server Advanced Server Configuration 89

Configuring Third-Party Store Adapters 89

Example Third-Party Store Adapter 90

Cross-Origin Resource Sharing Support 90

CORS Implementation 90

HTTP servlet services 91

HTTP servlet cross origin policies 91

Assigning a CORS policy to an HTTP servlet extension 92

Public and private key store configuration 93

Managing server encryption settings 94

Rotating the encryption key 94

Address a compromised encryption key 95

Customizing the Authentication User Interface 96

Branding 97

Schema changes 97

Topology configuration 98

- vi -

Topology master requirements and selection 98

Topology components 99

Server configuration settings 99

Topology settings 100

Monitor data for the topology 100

Updating the server instance listener certificate 101

Remove the self-signed certificate 102

Prepare a new keystore with the replacement key-pair 102

Use an existing key-pair 102

Use the certificate associated with the original key-pair 103

Update the server configuration to use the new certificate 104

Update the ads-truststore file to use the new key-pair 104

Retire the old certificate 104

Index 105

- vii -

Chapter 1: Introduction

The Data Governance Server provides solutions to manage and monitor user data and access
to account resources.

Topics include:

Data Governance Server overview

Data Governance Server features

Data Governance Server deployment considerations

Configuration overview

- 1 -

Chapter 1: Introduction

Data Governance Server overview
Most organizations today are working toward creating a unified customer profile. An essential
part of creating that common profile is to centralize multiple, overlapping accounts and define
the logic and security criteria for determining which applications should access data in a
profile. The Data Governance Server enables managing large amounts of customer data while
ensuring end-user privacy.

The Data Governance Server provides a common identity and single view of the customer by
mapping account resources from multiple backend Directory Servers to SCIM Resource Types
defined in the Data Governance Server. Restricted access to end users' information is
maintained through policy rules .

Data Governance Server features
The Data Governance Server provides the following features to securely manage account
resources:

l Support for multiple backend Servers. The Data Governance Server supports
multiple directory servers, with native support for the Ping Identity Directory Server and
extension points for others. Directory Servers serve as user stores to provide the
resources that can be requested by clients. Clients can be written one time for access to
the Data Governance Server and receive data from any type of infrastructure backend.

l SCIM Resource Types. SCIM Resource Types determine what attributes can be
accessed by a client through the Data Governance Server. The SCIM resource type
defines the resource name, endpoint URL, schemas, and other metadata that indicate
where a resource is managed and how it is composed.

l Access to resources based on policy. The Data Governance Server ensures that
data is provided to authorized clients through the use of defined OAuth2 Scopes and
policies. JEXL is used to define access control policies, and the processing model that
determines how to evaluate requests based on rules defined in the policies. Policies can
be based on industry rules, corporate policy, or consent granted by customers.

l Application Developer Portal. The Developer Portal enables client application
developers to work with the SCIM APIs to design applications that can access Data
Governance Server resources. See the Developer Portal for configuration examples
(https://developer.unboundid.com/).

Data Governance Server deployment considerations
The Data Governance Server accepts client requests to access user data. Clients are granted
authorization through an identity provider and receive access through the Data Governance
Server SCIM endpoint. The Data Governance Server validates an OAuth2 access token request,
where the scopes requested represent resources in backend servers.

- 2 -

Configuration overview

Planning a Data Governance Server deployment should start with defining what data can be
accessed and updated from backend Directory Servers, which are configured as User Stores.
User Stores have a schema defined to surface attributes. SCIM Resource Types are then
defined to enable access to attributes, and provide a unified view of identity data found in
multiple Directory Servers through Store Adapter Mappings. OAuth2 scopes are created to
define the resources that can be requested by a client and the actions that can be performed on
those resources.

Policies determine if a client can access requested scopes, based on the information provided
with the request. Obligations within the policy can define conditions for access. Policies then
determine the operations that can be performed on attributes within the requested scopes.

Configuration overview
Data Governance Server configuration defines all server services, policies, applications,
resources, and the mapping of data from one or more backend Directory Servers.
Configuration can be done from the command line with the dsconfig tool or through the
Administrative Console interface. All settings have associated help text in the interface and in
the linked Configuration Guide. The Configuration Guide contains details and relationship
specifics for all configuration objects and is available from the Administrative Console
interface or from the <server-root>/docs/index.html page.

SCIM
The SCIM protocol is an application-level, REST protocol for provisioning and managing identity
data. The SCIM Schema provides a schema and extension for representing users and groups.
Only those attributes defined in the SCIM Resource Type can be accessed through the Data
Governance Server. Any changes to these settings are saved to all Data Governance Servers in
a topology.

l SCIM Resource Types – Defines attribute mapping from a SCIM schema to native
attributes found in Directory Server entries. A pass-through SCIM Resource Type can
also be created to allow the addition of new attributes that are not mapped to any in a
Directory Server. The SCIM schema defines the attributes that comprise a SCIM
Resource Type. The SCIM Resource Type determines the attributes that can be accessed
by a client application.

l SCIM Schemas – Specifies the SCIM 2.0 schemas for data that can be accessed from
backend Directory Servers. Schemas provide the basis for creating SCIM Resource
Types.

Data Sources
Data sources are the servers that house the resources governed by the Data Governance
Server.

- 3 -

Chapter 1: Introduction

l External Servers – Lists the LDAP Directory Server instances that are configured with
the Data Governance Server.

l LDAP Health Checks – Checks the status of external LDAP servers on a regular basis,
and examines failures to determine if the server has become unavailable. This is an
advanced setting.

l Load Balancing Algorithms – Used to determine the appropriate LDAP external server
to use to process a request. They may be used to provide improved availability and
performance by distributing the workload across multiple backend servers. This is an
advanced setting.

l Store Adapters – Provides a Directory Server interface to the Data Governance Server.
Changes or additions to Store Adapters are saved to all Data Governance Servers in a
topology. Third-party store adapters can be created with the Server SDK.

Scopes and Policies
These settings define the rules for accessing resources through the Data Governance Server.
Any changes to these settings are saved to all Data Governance Servers in a topology.

l Access Token Validators – Validates an access token used to access protected
resources (OAuth2 scopes). Validators are used to decode tokens and return token
metadata. The Data Governance Server's local access token validator can be used, or a
third-party token validator can be defined using the Server SDK.

l OAuth Scopes – Specifies the data being requested from a client.

l Policy Information Providers – Retrieves XACML attributes from a Policy Information
Point (PIP) for policy evaluation. This is an advanced setting.

l Policies – Specifies the rules for how requested resources can be shared with clients,
written with JEXL (Java Expression Language) and based on the OASIS Committee
Specification 01, eXtensible access control markup language (XACML) Version 3.0. The
Data Governance Server provides default policies that can be used or modified.

l Policy Service – Contains the properties that affect the overall operation of the Data
Governance Server Policy Decision Point (PDP).

System
System settings define communication, connection, and the criteria for triggering alarms
regarding the server's resources. Changes to these setting can be saved to the local server or
saved to a group of servers. Most are not mirrored across a topology, unless otherwise stated.
See General Server Configuration for more information.

l Connection Handlers – Defines the settings for handling all interaction with the clients,
including accepting connections, reading requests, and sending responses.

- 4 -

Configuration overview

l Global Configuration – Specifies the SMTP server, password policies, and LDAP
request criteria configured for this server.

l Key Manager Providers – Manages the key material used to authenticate to another
server. This is an advanced setting.

l Key Pairs – Defines the key pair that can be used to provide credentials for digital
signatures. An existing key pair can be imported or a new one can be generated by the
server. This configuration object is mirrored across a topology.

l Locations – Lists the locations in which servers that are accessed by the Data
Governance Server reside.

l Trust Manager Providers – Determine whether to trust certificates presented to the
server. This is an advanced setting.

l Trusted Certificates – Specifies a trusted public key that can be used to verify
credentials for digital signatures and public-key encryption. This configuration object is
mirrored across a topology.

Web Services and Applications
These settings define the HTTP connection criteria for application access to the Data
Governance Server. Changes to these setting can be saved to the local server or saved to a
group of servers. They are not mirrored across a topology. See General Server Configuration
for more information.

l HTTP Configuration – Defines configuration for the Data Governance Server HTTP
Service. This is an advance setting and cannot be changed other than to include stack
traces in error pages.

l HTTP Servlet Cross Origin Policies – Defines the configuration for handling Cross-
Origin HTTP requests using the Cross Origin Resource Sharing (CORS) protocol. An
instance of HTTP Servlet Cross Origin Policy can be associated with multiple HTTP
Servlet Extensions.

l HTTP Servlet Extensions – Defines classes and initialization parameters used by a
servlet invoked by an HTTP connection handler.

l Web Application Extensions – Specifies the configuration settings for the
Administrative Console and any other web applications that are configured to work with
the Data Governance Server.

LDAP Administration and Monitoring
These are all advanced settings to manage the local server's accounts, account requirements
and security settings, and backend configuration. Changes to these setting can be saved to the
local server or saved to a group of servers. They are not mirrored across a topology. See
General Server Configuration for more information.

- 5 -

Chapter 1: Introduction

Logging, Monitoring, and Notifications
These settings define the notification criteria for system alerts, and the logging criteria for
actions within the Data Governance Server. Changes to these setting can be saved to the local
server or saved to a group of servers. They are not mirrored across a topology. See General
Server Configuration for more information.

l Alarm Manager – Defines the severity of alarms to be raised.

l Alert Handlers – Specifies the Alert Handlers used to notify administrators of problems
or events that occur in the Data Governance Server.

l Gauges – Specifies server performance thresholds and circumstances that merit the
raising of an alarm.

l Gauge Data Sources – Defines the source of gauge data obtained from the server,
including available memory and disk space.

l LDAP SDK Debug Logger – Records debug messages generated by the LDAP SDK for
Java. This is an advanced setting.

l Log File Rotation Listeners – Defines an action for the server to take before a log file
is rotated out of service, such as copying the file to a new location. This is an advanced
setting.

l Log Publishers – Defines the distribution of log messages from different loggers to a
destination.

l Log Retention Policies – Defines how long logs should be kept.

l Log Rotation Policies – Specifies when log files should be rotated.

l Monitor Providers – Provides information about the state of the server or server
components.

- 6 -

Chapter 2: Installation

The Data Governance Server installation requires few prerequisites, and can be deployed on
virtualized and/or commodity hardware.

Topics include:

Installation prerequisites

Encryption keys

User store overview

Ping license keys

Install the Directory Server

Data Governance Server installation tools

Install the Data Governance Server

Configure the Data Governance Server

Log into the Administrative Console

Install an additional Data Governance Server in a topology

Server folders and files

Plan a scripted installation

Start the Data Governance Server

Stop the Data Governance Server

Run the server as a Microsoft Windows Service

Uninstall the Data Governance Server

- 7 -

Chapter 2: Installation

Installation prerequisites
The following are required before installing the Data Governance Server:

l Java 8

l Minimum of 2 GB RAM

l Ping Directory Server 6.0, or later

Supported platforms
The Data Governance Server is a pure Java application. It is intended to run within the Java
Virtual Machine on any Java Standard Edition (SE) or Enterprise Edition (EE) certified platform.
For the list of supported platforms and Java versions, access the Ping Identity Customer
Support Center portal or contact an authorized support provider.

Note
It is highly recommended that a Network Time Protocol (NTP) system be in place so that multi-
server environments are synchronized and timestamps are accurate.

Set the file descriptor limit
The server allows for an unlimited number of connections by default, but is restricted by the
file descriptor limit on the operating system. The file descriptor limit on the operating system
can be increased with the following procedure.

Note
If the operating system relies on systemd, refer to the Linux operating system documentation
for instructions on setting the file descriptor limit.

1. Display the current hard limit of the system. The hard limit is the maximum server limit
that can be set without tuning the kernel parameters in the proc filesystem.

ulimit -aH

2. Edit the /etc/sysctl.conf file. If the fs.file-max property is defined in the file, make
sure its value is set to at least 65535. If the line does not exist, add the following to the
end of the file:

fs.file-max = 65535

3. Edit the /etc/security/limits.conf file. If the file has lines that set the soft and hard
limits for the number of file descriptors, make sure the values are set to 65535. If the
lines are not present, add the following lines to the end of the file (before #End of

file). Insert a tab between the columns.

* soft nofile 65535
* hard nofile 65535

- 8 -

Installation prerequisites

4. Reboot the server, and then use the ulimit command to verify that the file descriptor
limit is set to 65535 with the following command:

ulimit -n

Once the operating system limit is set, the number of file descriptors that the server will use
can be configured by either using a NUM_FILE_DESCRIPTORS environment variable, or by
creating a config/num-file-descriptors file with a single line such as, NUM_FILE_
DESCRIPTORS=12345. If these are not set, the default of 65535 is used. This is strictly optional
if wanting to ensure that the server shuts down safely prior to reaching the file descriptor limit.

Note
For RedHat 7 or later, modify the 20-nproc.conf file to set both the open files andmax user
processes limits:

/etc/security/limits.d/20-nproc.conf

Add or edit the following lines if they do not already exist:
* soft nproc 65536
* soft nofile 65536
* hard nproc 65536
* hard nofile 65536
root soft nproc unlimited

Set the maximum user processes
Redhat Enterprise Linux Server/CentOS 6.x sets the default maximum number of user
processes to 1024, which is lower than the setting on older distributions. This may cause JVM
memory errors when running multiple servers on a machine because each Linux thread is
counted as a user process.

At startup, the Data Governance Server attempts to raise this limit to 16,383 if the value
reported by ulimit is less. If the value cannot be set, an error message is displayed. Explicitly
set the limit in /etc/security/ limit.conf. For example:

* soft nproc 100000
* hard nproc 100000

The 16,383 value can also be set in the NUM_USER_PROCESSES environment variable, or by
setting the same variable in config/num-user-processes.

Disable filesystem swapping
Any performance tuning services, like tuned, should be be disabled. If performance tuning is
required, vm.swappiness can be set by cloning the existing performance profile then adding
vm.swappiness = 0 to the new profile's tuned.conf file in /usr/lib/tuned/profile-
name/tuned.conf. The updated profile is then selected by running tuned-adm profile
customized_profile.

- 9 -

Chapter 2: Installation

Install the dstat utility on SuSE Linux
The dstat utility is used by the collect-support-data tool to gather support data. It can be
obtained from the OpenSuSE project website. Perform the following steps to install the dstat
utility:

1. Log into the server as root.

2. Add the appropriate repository using the zypper tool.

3. Install the dstat utility:

$ zypper install dstat

Managing system entropy
Entropy is used to calculate random data that is used by the system in cryptographic
operations. Some environments with low entropy may have intermittent performance issues
with SSL-based communication. This is more typical on virtual machines, but can occur in
physical instances as well. Monitor the kernel.random.entropy_avail in sysctl value for
best results.

If necessary, update $JAVA_HOME/jre/lib/security/java.security to use
file:/dev/./urandom for the securerandom.source property.

Enable the server to listen on privileged ports
Linux systems provide 'capabilities' used to grant specific commands the ability to do things
that are normally only allowed for a root account. Instead of granting the ability to a specific
user, capabilities are granted to a specific command. It may be convenient to enable the
server to listen on privileged ports while running as a non-root user.

The setcap command is used to assign capabilities to an application. The cap_net_bind_
service capability enables a service to bind a socket to privileged ports (port numbers less
than 1024). If Java is installed in /ds/java (and the Java command to run the server is
/ds/java/bin/java), the Java binary can be granted the cap_net_bind_service capability
with the following command:

$ sudo setcap cap_net_bind_service=+eip /ds/java/bin/java

The java binary needs an additional shared library (libjli.so) as part of the Java installation.
More strict limitations are imposed on where the operating system will look for shared libraries
to load for commands that have capabilities assigned. So it is also necessary to tell the
operating system where to look for this library. This can be done by creating the file
/etc/ld.so.conf.d/libjli.conf with the path to the directory that contains the libjli.so
file. For example, if the Java installation is in /ds/java, the contents of that file should be:

/ds/java/lib/amd64/jli

Run the following command for the change to take effect:

$ sudo ldconfig -v

- 10 -

Encryption keys

Install the JDK
The Data Governance Server requires the Java 64-bit JDK. Even if Java is already installed,
create a separate Java installation for use by Data Governance Server to ensure that updates
to the system-wide Java installation do not inadvertently impact the Data Governance Server.

Encryption keys
Encryption setting definitions are used to validate encrypted access tokens. All Data
Governance Server instances must use the same set of definitions. Encryption setting
definitions are managed using the encryption-settings tool.

If new encryption settings must be defined, the new definition must be exported using the
encryption-settings tool and imported on all Data Governance Server instances. Only after
the new definition is imported on all servers can the new definition be used for subsequent
encryption operations.

See Managing the Server Encryption Settings for more information.

User store overview
During the Data Governance Server installation, at least one Ping Directory Server is defined
to serve as a user store. The user store is a repository of user data, such as names, email
addresses, and preferences, as well as user-specific metadata needed by the Data Governance
Server. For example, some user data may be stored in an LDAP directory server while other
attributes may be stored in a relational database. SCIM Resource Types are defined to enable
access to a user store's resources, and provide a consistent view of a user's profile that may
cross multiple Directory Servers.

Ping license keys
License keys are required to install all Ping products. Obtain licenses through Salesforce or
from https://www.pingidentity.com/en/account/request-license-key.html.

l A license is always required for setting up a new single server instance and can be used
site-wide for all servers in an environment. When cloning a server instance with a valid
license, no new license is needed.

l A new license must be obtained when updating a server to a new major version, for
example from 6.2 to 7.0. Licenses with no expiration date are valid until the server is
upgraded to the next major version. A prompt for a new license is displayed during the
update process.

l A license may expire on particular date. If a license does expire, obtain a new license
and install it using dsconfig or the Admin Console. The server will provide a notification

- 11 -

https://www.pingidentity.com/en/account/request-license-key.html

Chapter 2: Installation

as the expiration date approaches. License details are available using the server's
status tool.

When installing the server, specify the license key file in one of the following ways:

l Copy the license key file to the server root directory before running setup. The
interactive setup tool will discover the file and not require input. If the file is not in the
server root, the setup tool will prompt for its location.

l If the license key is not in the server root directory, specify the --licenseKeyFile
option for non-interactive setup, and the path to the file.

Install the Directory Server
The Data Governance Server requires at least one installed Ping Identity Directory Server. The
Data Governance Server can be configured with multiple user stores.

Note
All sensitive data in the user store can be encrypted.When using the Ping Identity Directory
Server as the user store, server-level encryption can be enabled as described in the
"Encrypting Sensitive Data" section in the Ping Directory Server Administration Guide.

The following information is needed during the installation:

l Server hostname

l LDAPS port

l Root DN and password

l Base DN

l Location of user entries

All configuration settings can be later modified through the dsconfig tool.

Perform the following steps to install the Directory Server:

1. Download the Directory Server zip distribution, PingDirectory-<version>.zip.

2. Unzip the file in any location.

$ unzip PingDirectory-<version>.zip

3. Change to the top level PingDirectory folder.

$ cd PingDirectory

4. Run the setup command.

$./setup

5. Enter yes to agree to the license terms.

- 12 -

Data Governance Server Installation Tools

6. Enter the fully qualified host name or IP address of the local host, or press Enter to
accept the default.

7. Create the initial root user DN for the Directory Server, or accept the default,
(cn=Directory Manager). This account has full access privileges.

8. Enter a password for this account, and confirm it.

9. To enable the Platform APIs over HTTPS, enter yes. These are the product's
configuration APIs.

10. Enter the port to accept connections from HTTPS clients, or press Enter to accept the
default. The default may be different depending on the account privileges of the user
installing.

11. Enter the port to accept connections from LDAP clients, or press Enter to accept the
default.

12. Type yes to enable LDAPS, or press Enter to accept the default (no). If enabling LDAPS,
enter the port to accept connections, or press Enter to accept the default LDAPS port.

13. Type yes to enable StartTLS for encrypted communication, or press Enter to accept the
default (no).

14. Select the certificate option for the server and provide the certificate location.

15. Specify the base DN for the Directory Server repository, for example
dc=company,dc=com.

16. Select an option to populate the database.

17. If this machine is dedicated to the Directory Server, tune the JVM memory allocation to
use the maximum amount of memory the Aggressive option). This ensures that
communication with the Directory Server is given the maximum amount of memory.
Choose the best memory option for the system and press Enter.

18. Enter yes to configure the server on startup and load the backend into memory before
accepting connections, or press Enter to accept the default (no).

19. To start the server after the configuration, press Enter for (yes).

20. Review the Setup Summary, and enter an option to accept the configuration, redo it, or
cancel.

Data Governance Server Installation Tools
The Data Governance Server provides a number of tools to install and configure the system.

l The setup tool performs the initial tasks needed to start the Data Governance Server
server, including configuring JVM runtime settings and assigning listener ports for the
Data Governance Server's REST services and applications.

- 13 -

Chapter 2: Installation

l The create-initial-config tool continues after setup and configures connectivity
between the user store and the Data Governance Server. During the process, the
prepare-external-store tool prepares each Ping Directory Server to serve as a user
store by the Data Governance Server. Configuration can be written to a file to use for
additional installations.

l Once the configuration is done, the dsconfig tool and the Administrative Console enable
more granular configuration.

Install the Data Governance Server
To expedite the setup process, be prepared to enter the following information:

l An administrative account for the Data Governance Server.

l An available port for the Data Governance Server to accept HTTPS connections from
REST API clients.

l An available port for the Administrative Console's communication.

l An available port to accept LDAP client connections.

l Information related to the server's connection security, including the location of a
keystore containing the server certificate, the nickname of that server certificate, and
the location of a truststore.

Perform the following steps for an interactive installation of the Data Governance Server:

1. Download the latest zip distribution of the Data Governance Server software.

2. Unzip the file in any location.

$ unzip PingDataGovernance-<version>.zip

3. Change to the top level PingDataGovernance folder.

4. Run the setup command.

$./setup

5. Type yes to accept the terms of this license agreement.

6. The setup tool enables cloning a configuration by adding to an existing Data Governance
Server topology. For an initial installation, press Enter to accept the default (no). When
adding additional Data Governance Server instances, an existing peer can be chosen to
mirror configuration.

7. Enter the fully qualified host name or IP address of the machine that hosts the Data
Governance Server, or press Enter to accept the default (local hostname).

8. Create the initial root user DN for the Data Governance Server. This account has full
access privileges. To accept the default (cn=Directory Manager), press Enter.

- 14 -

Configure the Data Governance Server

9. Enter and confirm a password for this account.

10. Define a port for Data Governance Server REST APIs and the Administrative Console to
accept HTTPS connections, or press Enter to accept the default.

11. Enter the port to accept LDAP client connections, or press Enter to accept the default.

12. To enable LDAPS connections press Enter and enter a port, or type no.

13. To enable StartTLS connections over regular LDAP connection press Enter, or type no.

14. Enter the certificate option for this server. If needed, the server will generate self-signed
certificates that should be replaced before the server is put into production.

15. If this machine is dedicated to the Data Governance Server, tune the JVM memory to use
the maximum amount of memory (the Aggressive option). If this system supports
other applications, choose an appropriate option.

16. Enter a location name for this server. The location is used for failover purposes if this
server belongs to a server group.

17. Enter an instance name for this Data Governance Server, or press Enter to accept the
default (<location> Server 1). The name must be unique in a topology and cannot be
changed once configured.

18. Press Enter (yes) to start the server when the configuration is applied.

19. Review the configuration options and press Enter to accept the default (set up the
server).

The installation will continue with the create-initial-config tool.

Configure the Data Governance Server
The next set of steps in the setup process rely on the create-initial-config tool. The setup
tool will continue with the create-initial-config tool to configure the Data Governance
Server. Having the following in place will expedite the configuration:

l At least one Ping Identity Directory Server is installed. Have the host name and
communication port available.

l Any additional Directory Servers that act as user stores. Only Ping Directory Servers can
be configured with this tool. Other user stores must be configured outside of this
process. Have the host names and communication ports available.

l Locations for this and any other Data Governance Servers for failover.

Note
The create-initial-config tool can install starter schemas that enable having a base
schema for the product to use after installation and/or using reference applications. The
schemas are user and user-and-ref-apps.If neither schema is installed, a custom schema

- 15 -

Chapter 2: Installation

andmapping SCIM resource type or a Pass-through SCIM resource type can be configured
later.

After the initial setup and configuration, run the dsconfig tool later to make configuration
adjustments. Perform the following steps to configure the Data Governance Server:

1. Press Enter (yes) to continue with create-initial-config. If for some reason the
initial configuration cannot be completed in one session, manually restart create-
initial-config later.

2. Define the account used by the Data Governance Server to communicate with an
external User Store, or press Enter to accept the default (cn=Governance
User,cn=Root DNs,cn=config).

3. Enter and confirm the account password.

4. Specify the type of security that the Data Governance Server uses when communicating
with all external store instances, or press Enter to accept the default (SSL).

5. Enter the host:port configured for the first Directory Server. The connection is verified.

6. Select the location name for the Directory Server (or user store server), or enter
another location if not listed in the menu.

7. Confirm that the identified host should be prepared. If additional servers will be added as
backups, select the Yes, and all subsequent servers option. This enables the
identification of another server later in the configuration. The prepare-external-store
tool can also be used to perform these tasks at a later time.

8. Enter the account and password needed to create the root user cn=Governance
User,cn=Root DNs,cn=config account on the Directory Server. This is the root account
created in the initial setup, such as the default (cn=Directory Manager. The Data
Governance Server sets up the DN and tests that it can access the account. This is also
the account used to log into the Administrative Console.

9. To configure the initial user store, press Enter for (yes). The user store will be
configured with a default Store Adapter and SCIM Resource Type, which will enable
mapping of resources in the user store.

10. If there are additional Directory Server locations, enter their host:port. If there are no
additional servers to add, press Enter to continue.

11. Choose one of the predefined schemas (the standard user schema and optionally the
reference application schema), or no schema. The instructions for configuration in this
guide use the standard user schema.

12. Specify the base DN for locating user entries, such as ou=people,dc=example,dc=com
and press Enter.

13. Review the configuration summary, and press Enter to accept the default (w) to write
the configuration to a dsconfig batch file. The configuration is written to <server-

- 16 -

Log into the Administrative Console

root>/resource/governance-cfg.dsconfig . Certificate files are written to external-
server-certs.zip.

14. Press Enter (yes) to confirm that the configuration should be applied to this Data
Governance Server and written to the governance-cfg.dsconfig file.

This completes the initial configuration for the Data Governance Server. Run the bin/status
tool to see that the Data Governance Server server is up and running.

Log into the Administrative Console
After the server is installed, access the Administrative Console,
https://<host>/console/login, to verify the configuration and manage the server. To log
into the Administrative Console, use the initial root user DN specified during setup (by default
cn=Directory Manager).

The dsconfig command or the Administrative Console can be used to create additional root
DN users in cn=Root DNs,cn=config. These new users require the fully qualified DN as the
login name, such as cn=new-admin,cn=Root DNs,cn=config. To use a simple user name
(with out the cn= prefix) for logging into the Administrative Console, the root DN user must
have the alternate-bind-dn attribute configured with an alternate name, such as "admin."

If the Administrative Console needs to run in an external container, such as Tomcat, a separate
package (<server-root>/resource/admin-console.zip) can be installed according to that
container's documentation.

Install an additional Data Governance Server in a
topology
A Data Governance Server instance can be cloned to serve as an additional server in a
topology. Adding a server to an existing topology copies the original Data Governance Server's
local configuration and links the two configurations. The configuration of Data Governance
Server's cluster items and the topology settings are automatically mirrored across servers in a
topology. See Topology Overview for details.

Note
When setting up a new Data Governance Server from an existing peer, the existing HTTP(S)
connection handlers are not cloned. These connection handlers are created from scratch using
default values of the new server and any specified port values.

1. Unpack the zip distribution in a folder different from the peer Data Governance Server.

2. Run the ./setup command in the <server-root> directory of the new server.

3. Accept the licensing agreement.

4. Enter yes to add this server to an existing Data Governance Server topology.

- 17 -

Chapter 2: Installation

5. Enter the host name of the peer Data Governance Server server from which the
configuration will be copied.

6. Enter the port of the peer Data Governance Server.

7. Choose the security communication to use to connect to the peer Data Governance
Server.

8. Enter the manager account DN and password for the peer Data Governance Server. The
connection is verified.

9. Enter the fully-qualified host name or IP address of the local host (the new server).

10. Enter the HTTPS client connection port for the Data Governance Server, or press Enter
to accept the default.

11. Select the option to install the Administrative Console application, if desired.

12. Enter the HTTPS connection port for the Administrative Console application, or press
Enter to accept the default.

13. Enter the port on which the new Data Governance Server will accept connections from
LDAP clients, or press Enter to accept the default.

14. Choose a certificate option for this Data Governance Server.

15. Choose the amount of memory to allocate to the JVM.

16. Choose the location for this server. The location of the peer is listed as an option, or a
new location can be defined. Regardless, the new server will have its topology and
cluster settings mirrored with its peer.

17. Enter a name for this server. The name cannot be changed after installation.

18. Press Enter to start the server after configuration.

19. Review the information for the configuration, and press Enter to set up the server with
these parameters.

20. To write this configuration to a file, press Enter to accept the default (yes).

Server folders and files
After the distribution file is unzipped, the following folders and command-line utilities are
available:

Directories/Files/Tools Description

ldif Stores any LDIF files that have been created or imported.

import-tmp Stores temporary imported items.

classes Stores any external classes for server extensions.

bak Stores the physical backup files used with the backup command-line tool.

update.bat, and update The update tool for UNIX/Linux systems and Windows systems.

- 18 -

Plan a scripted installation

Directories/Files/Tools Description

(Update is not supported for version 6.0)

uninstall.bat, and uninstall The uninstall tool for UNIX/Linux systems and Windows systems.

vendor_logo.png The image file for the Ping Identity logo.

setup.bat, and setup The setup tool for UNIX/Linux systems and Windows systems.

revert-update.bat, and revert-
update The revert-update tool for UNIX/Linux systems and Windows systems.

README README file that describes the steps to set up and start the server.

License.txt Licensing agreement for the product.

legal-notices Legal notices for dependent software used with the product.

docs
Provides the release notes, Configuration Reference Guide (HTML), API
Reference, and all other product documentation.

metrics
Stores the metrics that can be gathered for this server and surfaced in the Ping
Data Metrics Server.

bin Stores UNIX/Linux-based command-line tools.

bat Stores Windows-based command-line tools.

webapps
Stores the Administrative Console .war file, the Authentication interface reference
application's war file and source, and third-party licenses.

lib
Stores any scripts, jar files, and library files needed for the server and its
extensions.

collector
Used by the server to make monitored statistics available to the Data Metrics
Server.

locks Stores any lock files in the backends.

tmp Stores temporary files.

resource

Stores the MIB files for SNMP and can include ldif files, make-ldif templates,
schema files, dsconfig batch files, and other items for configuring or managing the
server.

config
Stores the configuration files for the backends (admin, config) as well as the
directories for messages, schema, tools, and updates.

logs Stores log files.

Plan a scripted installation
An interactive installation of an Data Governance Server uses the setup and create-
initial-config tools. This is the recommended installation method and should be used when
possible. A scripted installation can be performed, for scenarios that require a custom
configuration or automated deployment. The resulting governance-cfg.dsconfig batch file,
created with the create-initial-config tool, can then be used as a basis for scripted
installations.

The following is performed by the create-initial-config tool during an interactive
installation:

- 19 -

Chapter 2: Installation

External store preparation:

l For each Ping Directory Server, the prepare-external-store tool is run. This updates
the Directory Server’s schema, creates a privileged service account for use by the Data
Governance Server with the DN cn=Governance User,cn=Root DNs,cn=config, and
creates an administrative account.

l If the user store is comprised of LDAP directory servers, the prepare-external-store
tool is run for every server that comprises the user store. This updates the server’s
schema, and creates a privileged service account for use by the Data Governance Server
with the DN cn=Governance User,cn=Root DNs,cn=config.

Server configuration with dsconfig:

The create-initial-config command has a --dry-run option that can be used to generate
the governance-cfg.dsconfig file in non-interactive, or interactive mode, without applying
the configuration to the local server.

Note
The Directory Server ACIsmay need to be configured to grant access to elements of data, or
specific LDAP controls using ACIs, depending on which Data Governance Server services are
used. See resource/starter-schemas/README.txt for sample ACIs.

Installation Process

The following is a sample of the commands that should be included in a scripted installation:

1. Set up and configure one or more Directory Servers. See Installing the Directory Server.

2. Run the Data Governance Server setup command on the server that will host the Data
Governance Server.

$./setup --cli --no-prompt --acceptLicense --maxHeapSize 2g \
 --ldapPort 2389 --ldapsPort 2636 --httpsPort 8443 \
 --location Austin --instanceName server1 \
 --rootUserPassword <password> \
 --useJavaTrustStore <path>/keystores/truststore.jks \
 --useJavaKeystore <path>/keystores/server1keystore.jks \
 --trustStorePasswordFile<path>/keystores/truststore.txt \
 --keystorePasswordFile <path>/keystores/keystore.txt \
 --certNickname server-cert

The --trustStorePasswordFile option is only required if this server is expected to
update the truststore with certificates of other servers in the topology.

The password for the private key associated with the certificate (server-cert) should
be the same as the keystore password.

3. Run prepare-external-store for each user store.

$./prepare-external-store --no-prompt \
 --hostname ds1.example.com \
 --port 1636 --useSSL --trustStorePath <path>/keystores/truststore.jks
\
 --userStoreBaseDN "ou=people,dc=example,dc=com" \

- 20 -

Start the Data Governance Server

 --governanceBindPassword <password> \
 --bindDN "cn=directory manager" \
 --bindPassword <password>

4. Run the create-initial-config tool.

$./create-initial-config --no-prompt \
 --port 2636 --useSSL --trustStorePath <path>/keystores/truststore.jks
\
 --bindDN "cn=Directory Manager" \
 --bindPassword <password> \
 --governanceBindPassword <password> \
 --externalServerConnectionSecurity useSSL \
 --userStoreBaseDN "o=people,dc=example,dc=com" \
 --userStore ds1.example.com:1636:Austin

Start the Data Governance Server
To start the Data Governance Server, run the bin/start-server tool on UNIX/Linux systems
(the bat command is in the same folder for Windows systems).

To start the Data Governance Server in the foreground:

1. Enter the bin/start-server with the --nodetach option to launch the Data Governance
Server as a foreground process.

$ bin/start-server --nodetach

2. Stop the Data Governance Server by pressing CTRL-C in the terminal window where the
server is running or run the bin/stop-server command from another window.

Stop the Data Governance Server
The Data Governance Server provides a shutdown script, bin/stop-server, to stop the
server.

Schedule a server shutdown
The Data Governance Server enables scheduling a shutdown and sending a notification to the
server.out log file. The server uses the UTC time format if the provided timestamp includes a
trailing "Z," for example, 201304032300Z. The following example includes a --stopReason
option that writes the reason for the shutdown to the logs:

$ bin/stop-server --task \
 --hostname <server1.example.com> \
 --bindDN uid=admin,dc=example,dc=com \
 --bindPassword <password> \
 --stopReason "Scheduled offline maintenance" \
 --start 201504032300Z

- 21 -

Chapter 2: Installation

Run an in-core restart
Re-start the Data Governance Server using the bin/stop-server command with the --
restart or -R option. Running the command is equivalent to shutting down the server, exiting
the JVM session, and then starting up again. Shutting down and restarting the JVM requires a
re-priming of the JVM cache. To avoid destroying and re-creating the JVM, use an in-core
restart, which can be issued over LDAP. The in-core restart will keep the same Java process
and avoid any changes to the JVM options.

$ bin/stop-server \
 --task \
 --restart \
 --hostname <server1.example.com> \
 --bindDN uid=admin,dc=example,dc=com \
 --bindPassword <password>

Run the server as a Microsoft Windows service
The server can run as a Windows service on Windows Server 2012 R2 and Windows Server
2016. This enables log out of a machine without the server being stopped.

Register the service
Perform the following steps to register the server as a service:

1. Stop the server with bin/stop-server. A server cannot be registered while it is
running.

2. Register the server as a service. From a Windows command prompt, run bat/register-
windows-service.bat.

3. After a server is registered, start the server from the Windows Services Control Panel or
with the bat/start-server.bat command.

Note
Command-line arguments for the start-server.bat and stop-server.bat scripts are not
supported while the server is registered to run as aWindows service. Using a task to stop the
server is also not supported.

Run multiple service instances
Only one instance of a particular service can run at one time. Services are distinguished by the
wrapper.name property in the <server-root>/config/wrapper-product.conf file. To run
additional service instances, change the wrapper.name property on each additional instance.
Descriptions of the services can also be added or changed in the wrapper-product.conf file.

- 22 -

Uninstall the Data Governance Server

Deregister and uninstall
While a server is registered as a service, it cannot run as a non-service process or be
uninstalled. Use the bat/deregister-windows-service.bat file to remove the service from
the Windows registry. The server can then be uninstalled with the uninstall.bat script.

Log files
The log files are stored in <server-root>/logs, and filenames start with windows-service-
wrapper. They are configured to rotate each time the wrapper starts or due to file size. Only
the last three log files are retained. These configurations can be changed in the <server-
root>/config/wrapper.conf file.

Uninstall the Data Governance Server
The Data Governance Server provides an uninstall tool to remove the components from the
system. If this instance is a member of a topology of Data Governance Server servers, the
uninstall tool will remove it from the topology.

Note
If a Data Governance Server is amember of a topology, and the uninstall tool is not used to
remove it (it was shutdown and deletedmanually), it will not be removed from the topology
registry. In this scenario, use the bin/remove-defunct-server tool to remove the instance
from the topology.

Perform the following to uninstall the Data Governance Server:

1. From the server root directory, run the uninstall command.

$./uninstall

1. Select the option to remove all components or select the components to be removed.

2. To selected components, enter yes when prompted.

Remove Server Libraries and Administrative Tools? (yes / no) [yes]: yes

Remove Log Files? (yes / no) [yes]: no

Remove Configuration and Schema Files? (yes / no) [yes]: yes

Remove Backup Files Contained in bak Directory? (yes / no) [yes]: no

Remove LDIF Export Files Contained in ldif Directory? (yes / no) [yes]: no

The files will be permanently deleted, are you sure you want to continue? (yes / no)

[yes]:

3. Manually delete any remaining files or directories.

- 23 -

Chapter 3: Data access and mapping

Directory Servers provide the resources that can be accessed by clients. Attributes can be
mapped from multiple Directory Servers to create a unified identity in a SCIM Resource Type.
The SCIM Resource Type is the component that makes resources available to clients.

Topics include:

Data components

Primary and secondary store adapters

SCIM schemas

Store adapter mappings

SCIM attribute search considerations

Maintain username uniqueness

Define SCIM Resource Types

Complex attribute mapping

Client-specific SCIM attributes

Access data

- 24 -

Chapter 3: Data access and mapping

Data components
When a Directory Server is configured, a store adapter is installed to read and return native
SCIM objects. Custom store adapters can be created for non-LDAP Directory Servers with the
Ping Identity Server SDK. See Server Extensions for information.

The attributes surfaced for each backend store are mapped in SCIM Resource Types to enable
a unified view of a user profile, and to make them available to clients. The Data Governance
Server provides full read/write access through the SCIM Resource Type (/scim/v2/Me). The
access to these resources is subject to policy rules and restrictions.

Store adapter mappings
A SCIM Resource Type enables attribute mappings between the native store adapter schema
and the SCIM schema. The store adapter mapping can contain additional information as to
whether the native attribute is readable, writable, searchable, or authoritative. One must be
authoritative. A SCIM Resource Type can map attributes from multiple Directory Servers and
determine which attributes are the authoritative resource for a user profile. See Using SCIM
Resource Type Attributes in Policy for details about policy evaluation.

Directory Servers
The user stores provide data resources. One or more Ping Directory Servers, Directory Proxy
Servers, or third-party directory servers can serve as a user store. SCIM Resource Type
mappings can be used to aggregate attributes from multiple Directory Servers into a unified
view.

When a store adapter is added to the Data Governance Server’s server configuration, a
correlation attribute must be defined for SCIM Resource Types that are backed by multiple
store adapters. The correlation attribute defines an attribute for each store adapter that is used
to uniquely identify the same end user data across different store adapters. For example, if
every Directory Server stores a user’s email address, and an email address can always be
considered a primary key (that is, it is always unique per use), then each store adapter’s email
address attribute can be set as its correlation attribute.

Note

The Directory Server ACIsmay need to be configured to grant access to elements of data, or
specific LDAP controls using ACIs, depending on which Data Governance Server services are
used. See resource/starter-schemas/README.txt for sample ACIs.

Primary and secondary store adapters
Store adapters contain the configuration that the Data Governance Server uses to interact
directly with external Directory Servers. Every Directory Server providing a distinct set of user
data must have a store adapter entry in the configuration.

- 25 -

Primary and secondary store adapters

If the Data Governance Server is used to aggregate user attributes from multiple Directory
Servers, secondary store adapters can be configured. "Primary store adapter" and "Secondary
store adapter" designate how a SCIM Resource Type prioritizes user data lookups to multiple
store adapters. The primary store adapter is always checked first when processing a request
for a user resource, and then any secondary store adapters are checked. A user account
effectively does not exist if a record does not exist for it on the primary store adapter. The
primary store adapter should be used to store a user's core attributes, while a secondary store
adapter can store additional attributes.

Defining correlation attributes
When handling a request for a particular user, the Data Governance Server needs a way to
correlate an entry in the primary store adapter with any related entries in secondary store
adapters. This is done by correlating the value of an attribute shared across the store adapters
using the secondary store adapter's primary-correlation-attribute and secondary-
correlation-attribute properties. The correlation attribute should have a value that is
unique for each user.

Note
When creating SCIM resources backed by secondary store adapters, the server automatically
sets the secondary correlation attribute value if it does not already have a value from the
resource create request.

For example, user entries can be correlated across store adapters by email address:

$ dsconfig create-secondary-store-adapter \
 --type-name Users \
 --adapter-name MarketingData \
 --set store-adapter:DemographicsStoreAdapter \
 --set primary-correlation-attribute:mail \
 --set secondary-correlation-attribute:emailAddress

Sample configuration
An environment may have two LDAP Directory Servers with distinct sets of data. Set A may
have user credentials and profile attributes, and is configured with the primary store adapter.
Set B may have demographic data about these users, and is configured with the secondary
store adapter. The following can be configured for this scenario:

1. Configure each server in Set A.

$ bin/dsconfig create-external-server \
 --server-name profile-server \
 --type ping-identity-ds \
 ...

2. Configure each server in Set B.

$ dsconfig create-external-server \
 --server-name demographics-server \
 --type ping-identity-ds \
 ...

- 26 -

Chapter 3: Data access and mapping

3. Create LDAP load balancing algorithms.

$ dsconfig create-load-balancing-algorithm \
 --algorithm-name "Profile Store LBA" \
 --type failover \
 --set enabled:true \
 --set backend-server:profile-server

$ dsconfig create-load-balancing-algorithm \
 --algorithm-name "Demographics Store LBA" \
 --type failover \
 --set enabled:true \
 --set backend-server:demographics-server

4. Create store adapters.

$ dsconfig --adapter-name ProfileStoreAdapter \
 --type ldap \
 --set enabled:true \
 --set "load-balancing-algorithm:Profile Store LBA"
 ...

$ dsconfig --adapter-name ProfileStoreAdapter \
 --type ldap \
 --set enabled:true \
 --set "load-balancing-algorithm:Demographics Store LBA"
 ...

5. Designate the primary store adapter.

$ dsconfig create-scim-resource-type \
 --type-name Users \
 --type mapping \
 --set enabled:true \
 --set endpoint:Users \
 --set primary-store-adapter:ProfileStoreAdapter \
 --set core-schema:urn:example:schemas:Profile:1.0 \
 --set optional-schema-extension:urn:example:schemas:Demographics:1.0

6. Designate the secondary store adapter and correlation attributes.

$ dsconfig create-secondary-store-adapter \
 --type-name Users \
 --adapter-name MarketingData \
 --set store-adapter:DemographicsStoreAdapter \
 --set primary-correlation-attribute:mail \
 --set secondary-correlation-attribute:emailAddress

- 27 -

SCIM schemas

SCIM schemas
Each SCIM Resource Type maps to one core SCIM schema and optional extension schemas.
SCIM schemas are used to define the resources that can be retrieved from a backend Directory
Server. Each SCIM Resource Type represents one type of resource, such as "user" or
"account," and the schema defines the attributes of that resource.

Store adapter mappings
The Data Governance Server uses store adapter mappings to determine which store adapter
handles which attribute from the SCIM schema. For cases in which an attribute can be found on
multiple store adapters, one store adapter mapping should be created for each combination of
attribute and store adapter. One of these mappings must have the shared attribute set as
authoritative. This designates the store adapter that will be the authoritative source when
multiple possible values are found across a set of store adapters.

In the following example, the SCIM attribute
urn:pingidentity:schemas:sample:profile:1.0:topicPreferences is mapped to the
LDAP attribute ubidXTopicPreferenceJSON from the Marketing Directory Server adapter:

$ bin/dsconfig create-store-adapter-mapping \
 --type-name Users \
 --mapping-name topicPreferences \
 --set secondary-store-adapter:DemographicsStoreAdapter \
 --set scim-resource-type-attribute:urn:example:schemas:Demographics:1.0:topicPreferences
\
 --set store-adapter-attribute:ubidXTopicPreferenceJSON \
 --set authoritative:true

SCIM attribute search considerations
In order to provide paging and sorting, the Data Governance Server holds an entire search
result set in memory while it processes a SCIM search request. This is true for searches that
do not request paging or sorting. The SCIM Resource Type lookthrough-limit property sets
an upper bound for searches, so that clients do not exhaust the server resources. If the
number of search results for a given request exceeds this value, an error is returned to the
client indicating that the search matched too many results. A request that causes an unindexed
search is also restricted to the size limit of the lookthrough-limit setting.

The Data Governance Server attempts to find a single store adapter that can process the
provided search filter. The primary store adapter is checked first to see if it can process the
search filter. If it cannot, the secondary store adapters are consulted in no particular order.
The first store adapter capable of processing the search filter is chosen. The store adapter
must be able to return a superset of possible matches for the filter. The attributes in the search
filter must correspond to at least one searchable native attribute in the store adapter. If the
SCIM Resource Type is a Mapping SCIM Resource Type, the store adapter mapping for the
search filter attribute must be marked as searchable.

- 28 -

Chapter 3: Data access and mapping

If no store adapters can process the search, the Data Governance Server returns an error. For
each candidate search result from a store adapter, the Data Governance Server assembles a
complete SCIM resource by retrieving the native resource for every other store adapter using
the store adapter correlation attributes (set when secondary store adapters are defined) and
merging them together. Each resulting candidate SCIM resource is checked to see if it matches
the provided search filter and is discarded if it does not match.

Maintain username uniqueness
The Data Governance Server's default schema configuration uses "uid" as the RDN attribute of
user DNs, which ensures that all uid values are unique for that branch of the DIT. In the
default configuration, uid is recognized as a user's username. The Data Governance
Serverstore adapter mapping for the userName attribute of the default starter schema relies
on this.

It may be the case that the attribute used for the username is also an RDN attribute in the
Directory Server. If every entry resides on the same branch, these attribute values will always
be unique. Any configuration changes that do not maintain this structure must ensure that
usernames are unique. The Ping Directory Server provides the attribute uniqueness plugin that
can be used if configuration changes are required. See the Ping Directory Server
Administration Guide.

Define SCIM Resource Types
SCIM Resource Types provide a unified view of resources between the Data Governance
Server and one or more underlying Directory Servers, and correspond to the SCIM 2.0 SCIM
Resource Type. SCIM Resource Types determine what resources can be accessed from a
Directory Server. Each SCIM Resource Type represents one resource, such as "user" or
"account" and the schema defines the attributes of that resource.

Note
Whenmapping attributes, Directory Server attributes and SCIMResource Type attributes
must be of compatible types. For example, an attribute with an integer valuemust bemapped
to another attribute with an integer value. An attribute with a string value can only bemapped to
attributeswith boolean, integer, or date-time if it can be parsed.

There are two types of SCIM Resource Types: Pass-through SCIM Resource Type and Mapping
SCIM Resource Type. A Mapping SCIM Resource Type relies on a SCIM Schema, which is
installed with the configuration of a user store on a Directory Server.

Pass-through SCIM Resource Type
This type of SCIM Resource Type simply exposes the primary store adapter’s data as core
attributes, while secondary store adapter’s data are exposed as schema extensions. No
schema needs to be defined at the SCIM Resource Type and all schema enforcement is at the
responsibility of the store adapters. Since no schema is defined at the SCIM Resource Type,

- 29 -

Define SCIM Resource Types

attribute mappings are not defined. If the configured store adapter exposes a schema, it will
be enforced as the core or extension schemas for the SCIM Resource Type.

Mapping SCIM Resource Type
Attributes associated with a SCIM Resource Type are configured by specifying at least one core
schema and one or more schema extensions. The core schema defines attributes that can
appear at the root level of the SCIM resource exposed by the SCIM Resource Type. Schema
extensions define attributes that are namespaced by the schema’s URI. Schema extensions
can be optional or required. When processing client requests, the SCIM resource from the
client is first checked against the schemas defined for the SCIM Resource Type (core or
extension). The request is then mapped to a store adapter object, using the store adapter
mappings, and then processed.

Create a SCIM Resource Type
After user stores and store adapters are in place, SCIM Resource Types can be defined to
provide a unified view of identity data found in multiple Directory Servers. The SCIM Resource
Type determines the attributes that can be accessed by a client.

The following is a sample command for creating a mapping SCIM Resource Type:

$ bin/dsconfig create-scim-resource-type \
 --type-name Users \
 --type mapping \
 --set "description:Users Resource Type" \
 --set enabled:true \
 --set endpoint:/Users \
 --set primary-store-adapter:UserStoreAdapter \
 --set core-schema:urn:pingidentity:schemas:User:1.0 \
 --set required-schema-extension:urn:pingidentity:schemas:sample:profile:1.0

SCIM Resource Types can also be configured in the Administrative Console through SCIM ->
SCIM Resource Types.

Create a Mapping SCIM Resource Type
The following information is used to configure a Mapping SCIM Resource Type:

l A name for this SCIM Resource Type.

l An optional description for the SCIM Resource Type.

l The SCIM Resource Type's endpoint HTTP address, which will be relative to the /scim/v2
base URL.

l A primary store adapter to persist the data for this SCIM Resource Type.

l The primary store adapter attribute to use as the value for the SCIM object ID. The
object ID is a unique, immutable identifier for fetch, update, and delete operations on an
object. The entryUUID attribute is the default for an LDAP store adapter.

- 30 -

Chapter 3: Data access and mapping

l A look-through limit for the maximum number of resources that the SCIM Resource Type
should scan when processing a search request. This prevents a client from taking too
many of the server's resources for a single search.

l The core schema for the primary store adapter and any extension schemas.

Create a Pass Through SCIM Resource Type
The following information is used to configure a Pass Through SCIM Resource Type:

l A name for this SCIM Resource Type.

l An optional description for the SCIM Resource Type.

l The SCIM Resource Type's endpoint HTTP address, which will be relative to the /scim/v2
base URL.

l A primary store adapter to persist the data for this SCIM Resource Type.

l The primary store adapter attribute to use as the value for the SCIM object ID. The
object ID is a unique, immutable identifier for fetch, update, and delete operations on an
object. The entryUUID attribute is the default for an LDAP store adapter.

l A look-through limit for the maximum number of resources that the SCIM Resource Type
should scan when processing a search request. This prevents a client from taking too
many of the server's resources for a single search.

Edit attribute and sub-attribute properties
Attribute properties in the schema can be configured to change the actions that can be
performed, and when an attribute is returned to a requesting client. If the attribute contains
sub-attributes, those can be configured as well.

$ bin/dsconfig set-scim-attribute-prop \
 --schema-name urn:pingidentity:schemas:User:1.0 \
 --attribute-name displayName \
 --set "description:User's name."
 --set required:true \
 --set case-exact:true \
 --set mutability:read-only

This can be configured in the Administrative Console by editing a schema in SCIM -> SCIM
Schemas. Select a schema and edit any of the attributes listed. The following can be
configured for an attribute or sub-attribute:

l An optional description of the attribute.

l The attribute type, which can be:
o string - A sequence of zero or more Unicode characters encoded using UTF-8.

o boolean - The literal true or false.

- 31 -

Define SCIM Resource Types

o datetime - A date and time encoded as a valid xsd:dateTime (for example, 2008-
01-23T04:56:22Z).

o decimal - A real number with at least one digit to the left and right of the period.

o integer - A decimal number with no fractional digits.

o binary - Arbitrary binary data.

o reference - A URI for a resource. A resource can be a SCIM resource, an external
link to a resource (such as a photo), or an identifier such as a URN. The
reference-type property must be specified for these attributes.

o complex - A singular or multi-valued attribute whose value is a composition of
one or more sub-attributes.

l Specify if the attribute is required.

l Specify if the attribute is case-sensitive.

l Specify if the attribute can have multiple values.

l Specify suggested canonical values that can be used (such as work and home).

l The circumstances under which the values of the attribute can be written (mutability).
Values include:

o read-only - The attribute cannot be modified.

o read-write - The attribute can be updated and read.

o immutable - The attribute may have its initial value set, but cannot be modified
after.

o write-only - The attribute can be updated but cannot be read.

l The circumstances under which the values of the attribute are returned in response to a
request. Values include:

o by-default - The attribute is returned by default in all SCIM responses where
attribute values are returned.

o upon-request - The attribute is returned in response to any PUT, POST, or PATCH
operations if the attribute was specified by the client (for example, the attribute
was modified).

o always - The attribute is always returned.

o never - The attribute is never returned.

l The SCIM Resource Types that can be referenced. This property is only applicable for
attributes that are of type reference. Valid values are a defined SCIM Resource Type,
external indicating the resource is an external resource (such as a photo), or uri
indicating that the reference is to a service endpoint or an identifier (such as a schema
urn).

- 32 -

Chapter 3: Data access and mapping

l If the attribute is complex and has sub-attributes, they can be edited as well with these
values.

Edit store adapter mappings
Store adapters are designed to surface the schema of a backend Directory Server. Store
adapter mappings map SCIM Resource Type attributes and store adapter attributes. When the
Data Governance Server is installed with a Ping Directory Server, the schema attributes are
automatically mapped to a User SCIM Schema Resource Type.

Note
If the SCIMResource Type attribute name changes, make sure that scopes andOpenID
Connect Claims are updated to reflect the change.

The following is a sample command for editing a store adapter attribute mapping:

$ bin/dsconfig set-store-adapter-mapping-prop \
 --type-name Users \
 --mapping-name communicationOpts \
 --set store-adapter-attribute:ubidXCommunicationOptJSON \
 --set writable:false \
 --set searchable:true \
 --reset authoritative

Store adapter mappings can also be configured in the Administrative Console through SCIM ->
SCIM Resource Types. Click Actions -> Edit Store Adapter Mappings for a SCIM
Resource Type. The following is displayed:

Individual attributes can be changed, or all can be edited by clicking Bulk Edit. For each
attribute, the following can be configured:

- 33 -

Complex attribute mapping

l The store adapter attribute that is mapped to the SCIM Resource Type attribute.

l Readable – The SCIM Resource Type can read this attribute.

l Writable – The SCIM Resource Type can write to this attribute.

l Searchable – This specifies whether the attribute is efficiently searchable in the
underlying Directory Server. Indexed Directory Server attributes determine what
attributes (from the SCIM Resource Type Schema) can be used in a SCIM filter when
performing a query. If an attribute is not indexed in the Directory Server, it should not
be marked as Searchable here.

l Authoritative – If there are multiple mappings for this attribute (from multiple
Directory Servers), one must be marked Authoritative.

Complex attribute mapping
For searches involving sub-attributes of SCIM attributes that are mapped to LDAP JSON
attributes in the Directory Server, the sub-attribute field names in the search filter are treated
case-sensitively because the Directory Server treats them this way. This is a departure from
the SCIM 2.0 specification, where attribute names in search filters are case-insensitive.

For example, the SCIM attribute name has the sub-attribute familyName. The SCIM attribute
name is mapped to the LDAP JSON attribute scimName. The search filter NAME.FAMILYNAME eq
"Zweig" will not return a search result for an entry containing the specified value Zweig in the
familyName sub-attribute. A search result for this entry is returned if the filter is specified
instead as NAME.familyName. This is because the top-level attribute can be matched case-
insensitively but the sub-attribute can only be matched case-sensitively.

Client-specific SCIM attributes
Some environments may find it useful to designate a namespaced, schema-less portion of a
SCIM user resource, in which a client can store its data. For example, a resource type could be
configured such that an application may write any previously undefined attributes that are
prefixed with urn:customApp1.

To enable this, the data store schema must first have a single-valued JSON attribute defined to
hold application-specific attributes. For example, for an LDAP attribute called customApp:

customApp: { "urn:customApp1":{ "wine":["Napa Cabs","French Burgundy","Lodi Zinfandel"],
"age":"2000-2010" } }

This value should appear in the SCIM resource as follows:

 'urn:customApp1' : {
 'wine' : ['Napa Cabs', 'French Burgundy', 'Lodi Zinfandel'],
 'age' : '2000-2010'
 }

- 34 -

Chapter 3: Data access and mapping

The following is a command line sample of the steps needed to configure this type of
functionality in the Data Governance Server, or this process can be done in the Administrative
Console.

1. Create a store adapter mapping from "*" (SCIM) to "customApp" (LDAP). Using a
wildcard SCIM attribute, client-specific SCIM attributes do not need to be defined in
advance. To map only attributes from a single SCIM schema to an LDAP attribute, use a
schema-specific SCIM wildcard such as urn:myExtensionSchema:*.

$ bin/dsconfig create-store-adapter-mapping \
 --type-name "Users" \
 --mapping-name "customAppWildcard" \
 --set "scim-resource-type-attribute:*" \
 --set store-adapter-attribute:customApp

2. Set the SCIM Resource Type's schema-checking-option property to allow-undefined-
attributes.

$ bin/dsconfig set-scim-resource-type-prop \
 --type-name "Users" \
 --add schema-checking-option:allow-undefined-attributes

3. Define a wildcard scope that uses the client-specific namespace urn:customApp1 as a
prefix. Since the mapping is a wildcard, this prevents the client from reading or writing
any user attribute, and client-specific attributes do not need to be defined in advance.

$ bin/dsconfig create-oauth2-scope \
 --scope-name Wildcard-Scope \
 --type authenticated-identity \
 --set "consent-prompt-text:Save application data to your account!" \
 --set "resource-attribute:urn:customApp1:*" \
 --set resource-operation:modify \
 --set resource-operation:retrieve

4. Create the client and assign the wildcard scope to it.

$ bin/dsconfig create-oauth2-client \
 --client-name "App1" \
 --set client-id:<App-ID> \
 --set client-secret:<secret> \
 --set grant-type:authorization-code \
 --set grant-type:implicit \
 --set scope:openid \
 --set scope:email \

--set scope:Wildcard-Scope \
 --set redirect-url:https://company.com:<port>/client/

- 35 -

Access data

Access data
The SCIM endpoint provides full operations on user profile data through the SCIM protocol. The
endpoint's URL context path is /scim/v2/{name}. Each SCIM resource, specified in the SCIM
Schema, is exposed as an endpoint. For example, the URL path /scim/v2/Users would be
used to access the Users SCIM resource. Access to resources is determined by the XACML
policies that are configured for the Data Governance Server. If a request to the Data
Governance Server is delivering partial results, it may be due to policy settings. See How
Policy affects access to scopes.

The Data Governance Server SCIM endpoint enables applications to perform actions on an end
user's resources, if XACML policies permit. The following are important to consider when using
the SCIM endpoint:

/Me. SCIM supports a special endpoint to retrieve attributes of the currently authenticated
user without knowing the SCIM ID. Retrieve attributes of the currently authenticated user with
the following:

/scim/v2/Me

- 36 -

Chapter 4: Token access

Each client request is processed by policies, which determine whether requested scopes can
be granted. The Data Governance Server validates the access tokens included with the client
request to ensure that only authorized resources are accessed.

Topics include:

Data Governance Server endpoint for OAuth2 clients

Access token validation

PingFederate Access Token Validator

JWT token validation

- 37 -

Chapter 4: Token access

Data Governance Server endpoint for OAuth2 clients
The Data Governance Server provides a SCIM REST endpoint for client access. The following
list presents a summary of the endpoints that may be called by a client application requesting
user profile data. See <server-root>/docs/restapi/index.html for details.

Endpoint Description

/scim

/scim//v2/<name>

This is the SCIM 2.0 protocol endpoint used to retrieve a specified
SCIM Resource Type, where <name> is the SCIM Resource Type
being accessed. This endpoint supports all SCIM operations and
implements its access control through the XACML policies. A request
to this endpoint requires a scope that includes a
resourceOperations value that represents the desired action.

Data Governance Server endpoint for clients

Access token validation
Access Token Validators validate tokens submitted by client applications requesting access to
protected resources. Any number of validators can be configured for the Data Governance
Server. Two types of access token validators are available. One for PingFederate tokens and
another for JWT. Server SDK extensions can be installed to enable the Data Governance Server
to accept access tokens issued by other identity providers.

A third-party Access Token Validator is responsible for decoding an incoming access token and
returning token metadata that is similar in content to that specified by RFC 7662. Metadata
includes whether the token is valid and what scopes are granted to the token. This information
is passed to the Data Governance Server policy engine, which is responsible for determining
whether the token should be accepted and if it is sufficient to allow the incoming request to be
processed.

When an access token is presented with a resource request, the Data Governance Server
cycles through each configured Access Token Validator until it finds one that can decode the
token.

PingFederate Access Token Validator
Before configuring a PingFederate Access Token Validator on the Data Governance Server,
complete the following tasks on the PingFederate instance:

1. Create a client on the PingFederate instance that represents the Data Governance Server
as a resource server.

2. Set the Allowed Grant Types for this client to include the Access Token Validation grant
type.

3. Record the Data Governance Server client ID and client secret for use when configuring
the access token validator on the Data Governance Server.

- 38 -

JWT token validation

To configure an instance of the PingFederate Access Token Validator on the Data Governance
Server, have the following information:

l The base URL of the PingFederate instance (such as
https://myPingFedInstance.example.com:9031).

l The client ID and client secret for the validator to use when validating the token with
PingFederate.

Trust and key managers may also need to be configured for communication with the
PingFederate server over SSL. See Public and Private Keystore Configuration.

If the access token validator will support tokens obtained through OAuth2 grant types other
than Client Credentials, the token owner must be mapped to a user defined within the Data
Governance Server’s user store. This is done by creating one or more Token Resource Lookup
Methods for the access token validator. Each Token Resource Lookup Method references a
SCIM Resource Type and SCIM filter that are used by the Data Governance Server to look up
the local user that owns the access token. The SCIM filter is used to associate a token property
(such as the externalId or sub claim) to a SCIM user with matching attribute(s). See the
online Configuration Reference Guide, or dsconfig tool help.

JWT token validation
The JWT Access Token Handler enables self introspection of an access token. The JWT token
can be encrypted or plain text.

The Data Governance Server supports creating a key pair using RSA algorithms (Key Pairs).
The public key needs to be exported from the Data Governance Server and added to an
instance of PingFederate or another client's Access Token Manager and configured to use this
public key to encrypt the access token.

To verify signatures, the validator needs the public key(s) of the entity that is issuing access
tokens. Those public keys can either be imported (as Trusted Certificates) or obtained from the
JWKS endpoint of the access token issuer. Multiple keys are supported.

A mapping mechanism for sub and client_id is also available, if PingFederate or other
client's Access Token Manager is configured to provide this information in non-standard claims.
All JWT or custom claims should be made available in the request context for tokens.

- 39 -

Chapter 5: Configure scopes and policies

Scopes define the attributes that a client can request, the name that is displayed to end users,
the claims that can be accessed, and the actions that can be performed on each attribute.
Scopes must be defined in the Data Governance Server before a client can include them in
requests.

Policies are the rules that determine what resources may be accessed by client applications.
Policies include the criteria by which access decisions are made using targets, rules,
conditions, obligations, and a rule combining algorithm. Default policies are available, or
custom policies can be written.

Topics include:

OAuth2 scopes

Create scopes

Policy overview

Policy structure

Policy and request processing

Policy engine request context

Configure the policy service

Policy Information Providers

Create policies

Create a policy set

Troubleshoot policies with traces

- 40 -

OAuth2 scopes

OAuth2 scopes
When a client makes a request for resources, it specifies the level of access that it requires
using scopes. Based on the application’s configuration, and the policies that process the
request, the Data Governance Server decides whether the resource request should be
permitted.

There are three scope types:

l Generic OAuth2 scope (used for external Resource servers).

l Authenticated Identity scope.

l Resource scope.

A Generic OAuth2 scope includes the following properties, which are the base properties for the
Authenticated Identity and Resource scopes.

Property Description

tokenName The scope name as presented in an OAuth2 request.

type The scope type, which is oauth2 for generic scopes.

description A description of the scope for administrative use.

tags
A list of Tags associated with this scope. Tags are arbitrary additional properties that
can be examined by policies.

Generic OAth2 Scope Properties

Authenticated Identity Scope
This scope is granted for an authenticated end user. Once granted, the scope can be used to
access the attributes of that authenticated identity. The attributes can be obtained through
SCIM endpoints using the /Me authenticated subject alias as well as the URI of the SCIM
resource.

Properties in this scope include those in the generic OAuth2 scope and the following properties.
At least one of the operation properties must have a value.

Property Description

type
The scope type, which is authenticatedIdentity for authenticated
identity scopes.

resourceOperations

Operations can include:

l create (POST) to endpoint /scim/v2

l search (GET) from endpoint /scim/v2

l retrieve (GET) from endpoint /scim/v2/<id>, or /Me

l replace (PUT) to endpoint /scim/v2/<id>

Authenticated Identity Scope Properties

- 41 -

Property Description

l modify (PATCH) to endpoint /scim/v2/<id>

l delete (DELETE) from endpoint /scim/v2/<id>

resourceAttributes

A list of one or more SCIM attributes of the authenticated identity for which this
scope allows access. The type of access is determined by the operation
properties retrieve, replace, and modify. A wildcard value of * can be
used for all attributes. A schema-specific wildcard value of the form
urn:<schemaName>:* can be used to represent all attributes of a single
schema namespace.

Authenticated Identity Scope Properties

Resource Scope
An OAuth2 scope that allows a client bearing a granted token to access resources of a specified
SCIM Resource Type. It defines the SCIM operations (search, create, retrieve, update, and
delete) that can be performed by the client, and the attributes that can be retrieved or
updated. A Resource scope potentially allows access (subject to policy) to all resources of a
specified SCIM Resource Type.

Property Description

type The scope type, which is resource for resource scopes.

scimResourceType The SCIM Resource Type that can be accessed with this scope.

resourceOperations

Operations can include:

l create (POST) to endpoint /scim/v2

l search (GET) from endpoint /scim/v2

l retrieve (GET) from endpoint /scim/v2/<id>

l replace (PUT) to endpoint /scim/v2/<id>

l modify (PATCH) to endpoint /scim/v2/<id>

l delete (DELETE) from endpoint /scim/v2/<id>

resourceAttributes

A list of one or more SCIM attributes of the SCIM Resource Type for which
this scope allows access. The type of access is determined by the
operation properties create, retrieve, replace, and modify. A
wildcard value of * can be used for all attributes. A schema-specific
wildcard value of the form urn:<schemaName>:* can be used to
represent all attributes of a single schema namespace.

Resource Scope Properties

For granting access to Data Governance Server resources, the values of the
resourceAttributes property are attribute notation strings as defined in the SCIM 2.0, with
the addition of being able to specify wildcards for all attributes.

- 42 -

Create scopes

Create scopes
An OAuth2 scope indicates which data are being requested with a resource request. Typically,
one or more scopes are submitted with each request. Scopes are created based on the access
and authentication requirements of the data requested. A standard set of OpenID Connect
scopes is installed with the Data Governance Server, and additional scopes can be created.

The following is a sample command for creating a scope:

$ bin/dsconfig create-oauth2-scope \
 --scope-name workPhone \
 --type authenticated-identity \
 --set resource-attribute:work-phone \
 --set resource-operation:modify

Scopes can also be created in the Administrative Console through Authorization and
Policies -> OAuth2 Scopes.

Create an Authenticated Identity OAuth2 scope
The following information is used to configure an Authenticated Identity scope. See
Authenticated Identity Scope for details about the values allowed for resource operations.

l An OAuth2 access token name that is compliant with the OAuth 2.0 Specification (RFC
6749). The following characters are not permitted: space, '"', '\', '+' and ','.

l An optional description.

l Any optional tags associated with this scope. Tags are arbitrary additional properties that
can be examined by XACML policies for authorization decisions, such as HIPAA or
billing.

l Specify the resource operations allowed by this scope.

l Specify the resource attributes for which this scope allows access. The type of access is
determined by the Resource Operation property. A value of "*" indicates that all
attributes are accessible.

Create a Resource OAuth2 scope
All of the Authenticated Identity values are available for the Resource scope, with the addition
of the SCIM Resource Type from which the scope can access resources.

Policy overview
Policies determine the scopes that can be accessed by requesting clients through the use of an
access token, and the operations on attributes within the scope that are allowed. Policy
creation must balance the privacy requirements of the organization with the resource access
requirements of the clients. Policies are based on the the eXtensible access control markup
language (XACML) as specified in the OASIS Committee Specification 01, eXtensible access

- 43 -

control markup language (XACML) Version 3.0. The targets, rules, conditions, and rule
combining algorithms are expressed using JEXL. The native language features of JEXL duplicate
a large subset of functions defined by XACML and provide a more concise mechanism for
defining policy conditionals. See Policy structure for details about policy components.

Policies are evaluated by the Data Governance Server in response to the following requests
made by clients:

l All SCIM requests:
o Search request

o Get request

o Update request

o Create request

o Delete request

l A request to the PDP endpoint.

To create policies that will work as expected, or to create clients that can access data
correctly, review the parameters and attributes that will be included in the policy.

Requesting operations through SCIM
The Data Governance Server uses policies to determine whether a request for resources
should be granted given the scopes defined in the access token. Obligations can be used to
define conditions for limiting access to certain attributes. The requested attributes are returned
to the client, and any permitted operation (such as adding or modifying an address) is
performed.

Policy structure
Variable elements of policy, such as targets, rule conditions, variable definitions, and
obligation/advice expressions, are specified using JEXL. For a policy to be evaluated against a
request, the request needs to match the values specified in the policy Target element first. If
the target for the request matches the target for the policy, the rules in the policy are
evaluated. This occurs for each policy.

Just as there is a target for the policy, there is a target for each rule. For the rule Target
element to be evaluated, a value in the request must match, as defined in the Match element.
If the request matches a value, the rest of the conditions of the rule are evaluated.

Note
If no target is specified for a policy or a rule, the policy or rule is always evaluated.

If the conditions of a rule are satisfied, the result can be either permit or deny for that single
rule. If there are multiple rules in a policy, the rule combining algorithm for the policy
determines how the rule evaluation results are combined into a single policy decision.

- 44 -

Policy structure

If there are multiple policies that apply to the request, a policy-combining algorithm
determines how the decisions rendered by multiple policies are combined to form a decision by
the Data Governance Server. By default, the combining algorithm for Data Governance Server
policies is deny-overrides. This can be changed in the Policy Service through the
Administrative Console or with the dsconfig tool.

JEXL use in policy structure
XACML references to data from the request context are either Attribute Designators or
Attribute Selectors. Attribute Designators refer to specific named attributes. Attribute
Selectors allow JSON-path access to complex JSON objects. Using JEXL, all references to
request context data use the syntax category.value, where category refers to the XACML
category name and value can be either an attribute name or a JSON path. At policy evaluation
time the Data Governance Server first checks to see if value refers to a named attribute in
the context, and if not will interpret it as a path.

The following JEXL condition can be used to deny a SCIM create request if the user to be
created has a work email address in the “.gov” domain. It references the SCIM action attribute
using its attribute ID and the user’s email address through a JSON path.

action.action_id == "create" and scim_request.emails[type eq "work"].value =$ ".gov"

JEXL identifiers and variables
JEXL variable names are limited to alphanumeric characters, ‘_’, and ‘$.’ The Data Governance
Server supports the standard XACML attribute categories and attribute names, as described in
Standard attribute use. Since JEXL variable names are limited to alphanumeric characters, the
Data Governance Server requires the use of short names rather than full URNs when
referencing standard XACML attributes from JEXL.. For standard XACML names such as
urn:oasis:names:tc:xacml:3.0:attribute-category:action, the short name is the
relative portion of the URN after the final “:” character. In cases where this portion contains a
‘-’ character it must be replaced with an underscore ‘_.’ Therefore the standard attribute ID
urn:oasis:names:tc:xacml:1.0:action:action-id should be referenced as action_id.

References containing invalid JEXL characters
Because SCIM schema URNs typically contain characters that are not allowed in JEXL
identifiers, paths containing extension schemas must be quoted. For example, the following
expression could be used to reference the manager ID of a user record that supports the
standard SCIM 2.0 Enterprise User Schema Extension:

resource.’urn:ietf:params:scim:schemas:extension:enterprise:2.0:User:manager’.id

SCIM also allows attribute names to contain dashes (-), where JEXL does not. These attributes
must also be quoted in a JEXL expression.

- 45 -

Extended data type support
The Data Governance Server JEXL evaluation can comprehend the XML string formats for time,
dateTime, date, dayTimeDuration, and yearMonthDuration. For example, the following
expression checks if the access token's expiration time is greater than the current time:

access_token.exp > environment.currentDateTime

JEXL extension functions
In addition to the set of JEXL functions provided, the following extensions are supported under
the namespace ext.

XACML Function Access - An extension function is available to access XACML functions that
JEXL does not support. The syntax to invoke a XACML function directly is ext:xacml
(functionName, functionArguments …). The functionName is the short name for the
function. Function arguments can be any legal JEXL expression and may themselves refer to
values from the XACML request context.

The following example invokes the Data Governance Server’s XACML extension function
scimAttribute-subset. The function name itself is passed as a string, while function
arguments may themselves be JEXL expressions.

ext:xacml("scimAttribute-subset", scim_request.impacted_attributes, applicable_
scope.scope.resourceAttributes)

Accessing Referenced SCIM Resource Attributes - An extension function allows access to
SCIM objects that are indirectly referenced from the XACML request context. This supports, for
example, the ability to examine data through the SCIM reference attribute type as described in
RFC 7643.

The syntax for accessing a referenced SCIM object is ext:scimReference(String
referencePath, String attributePath) where referencePath specifies where in the
XACML request context to find the SCIM reference string, and attributePath is a JSON path
that selects content from the referenced SCIM object.

Consider a case where a User SCIM resource contains a wallet attribute that contains a list of
references to Payment Method objects, each of which is itself a SCIM resource. Each payment
method object in the list is identified by its canonical type (credit, payPal, check). So the
value of resource.wallet[type == “credit”] might be PaymentMethod/987654, which is
the ID of a Payment Method object. The ID itself is not of much use to a policy, however the
attributes of the referenced Payment Method object are. For example, the following expression
would return the expiration date of the user’s credit card:

ext:scimReference(‘resource.wallet[type eq “credit”]’, ‘expirationDate’)

Note
Policies are not able to use thismethod to resolve SCIM reference attributeswhose value is an
external or absolute URI.

- 46 -

Policy structure

Use obligations and advice
The XACML specification defines an obligation as a specified operation that should be
performed by the Policy Enforcement Point (PEP) based on an authorization decision. Advice is
additional information provided to the PEP based on a policy decision, and can be used by the
requesting client to determine why access to a resource was denied. Each obligation or advice
type takes zero or more arguments, and the value of each argument is specified as a JEXL
expression. The Data Governance Server provides the following obligation types.

SCIM resource requests
Exclude Obligation – Specifies an argument "attribute-names" that lists the attributes to
be excluded from the response. Each attribute must be formatted using SCIM Attribute
Notation.

Include Obligation – Specifies an argument "attribute-names" that lists the attributes to be
included in the response. Each attribute must be formatted using SCIM Attribute Notation.

The following example creates an exclude obligation that will prevent the userName attribute
from being returned with a resource:

$ bin/dsconfig create-policy-obligation \
 --type exclude-attributes \
 --policy-name myPolicy \
 --rule-name someRule \
 --obligation-name someName \
 --set "attribute-names:['userName']"

Filter obligation
When a SCIM search request is sent, each record returned from the underlying user store is
passed through the Data Governance Server’s policy engine to determine whether the client is
authorized to retrieve the returned resource. This can be expensive if there are a large number
of results returned from the search.

The add-filter obligation can be used to give policy writers a more efficient way to restrict
the results of a SCIM search operation. Rather than check each result against the server’s
retrieve policy, this obligation requires the SCIM implementation to pre-filter the results by
appending additional filter elements to the search request before the search is executed.

Policies can return zero or more add-filter obligations, each of which must specify a
syntactically correct SCIM 2.0 filter expression, as described in the SCIM 2.0 Protocol
specification. If the original SCIM request included a filter, then the additional filters are
ANDed with the original filter.

Each filter obligation takes a single argument, which is the string-valued filter expression. The
Attribute Assignment ID is filter, and its value may be either a string or a string bag. If the
value is a string-bag, then the SCIM implementation will contenate together each string in the
bag, with a space character between each segment, to form a single filter expression.

The following example will only permit records with tenant Id = 7:

$ dsconfig create-policy-obligation \
 --type add-filter \

- 47 -

 --policy-name myPolicy \
 --rule-name someRule \
 --obligation-name pickAnyName \
 --set "filter:tenantId eq 7"

Policies and request processing
Resource requests from a client are evaluated by the policy rules configured for the Data
Governance Server. This section describes each type of policy request that may be made by
the Data Governance Server's policy enforcement points.

SCIM resource type policy evaluation
Each request to the SCIM endpoint explicitly specifies what action is being requested and on
what resources. As a REST interface, SCIM uses the HTTP method, query parameters, method
body, and URI path to specify request parameters.

All SCIM requests target a specific SCIM Resource Type. For example, a search targeted to
/scim/v2/Users is executed against the Users SCIM endpoint. An update targeted to
/scim/v2/ConsumerUsers/9f8a23-5f7ec932-55c4-347e-b757-ce74258ea9e6 is executed
against a user with ID 9f8a23-5f7ec932-55c4-347e-b757-ce74258ea9e6 in the Users SCIM
Resource Type.

SCIM search request
A SCIM search request consists of a search filter and an optional specification of which
attributes to return from each record that satisfies the filter definition. The SCIM Resource
Type against which the search is to be conducted is derived from the relative URL path, such as
/scim/v2/Users.

The policy request generated from a SCIM search request contains the following attributes.

Attribute
ID/Content Attribute Category Attribute Value

subject_id access_subject
Name of the requesting client, if it can be retrieved from the
OAuth2 access token.

action_id action search.

resource_id resource Relative URL of the SCIM endpoint, such as Users.

<JSON Content> access_token Access token properties.

<JSON Content> applicable_scope Applicable scope objects.

SCIM search request attributes

After the search is run against the SCIM Resource Type, it generates policy requests for each
record returned in the results to determine whether the requesting client has permission to
receive the record’s attributes. Each resource and attribute of each record is evaluated
independently through a separate policy request to determine if it can be returned. Any
resources or individual resource attributes that are denied by policy are omitted from the
response. These subsequent policy requests are identical to a SCIM GET request.

- 48 -

Policies and request processing

Note
The number of search results that can be returned is limited by the SCIMResource Type’s
lookthroughLimit property, due to the potential cost of checking each response against
policy.

SCIM GET request
The following is contained in the authorization request generated for a SCIM GET request for a
known resource.

Attribute
ID/Content Attribute Category Value

subject_id access_subject
Name of the requesting client, if it can be retrieved from the
OAuth2 access token.

action_id action retrieve.

resource_id resource
Relative URL of the resource or sub resource to retrieve, such
as Users/12345 or /Users/12345/consents.

<JSON Content> resource SCIM object representation of the requested resource.

<JSON Content> access_token Access token properties.

<JSON Content> applicable_scope Applicable scope objects.

SCIM GET request attributes

The SCIM endpoint will perform the following actions based on the result of the XACML policy
authorization request:

l If the result is deny – The resource is not returned to the client and an error is returned.

l If the result is permit – The initial attribute set to be returned to the client is
determined. Since multiple policies and/or rules may be consulted to make the permit
decision, it’s possible that multiple obligations will be returned with the result. See Use
obligations and advice. Include and exclude obligations are processed as follows:

o All attributes specified in an exclude obligation are removed from the attribute set.

o If there are include obligations, all attributes that are not specified by an include
obligation are removed from the attribute set.

o If no attributes remain in the attribute set, a 200 success response code is
returned but with an empty resource object.

These rules for each result type are used for all resources returned from the SCIM endpoint.

SCIM POST request
The following is contained in the authorization request generated for a SCIM POST request.

- 49 -

Attribute ID Attribute Category Value

subject_id access_subject The client name.

action_id action create.

resource_id resource

Relative URL of the SCIM Resource Type to
be created, such as Users or of the SCIM
sub resource to be created, such as
/Users/12345/consents.

<JSON Content> scim_request
SCIM request body of the resource or sub
resource to be created.

<JSON Content> access_token Access token properties.

<JSON Content> applicable_scope Applicable scope objects.

SCIM POST request attributes

If the POST operation is permitted, the new resource is created and the new object is returned
to the client. After the POST is complete, a second policy request is issued to determine which
attributes of the updated record the client can receive in the response.

SCIM PATCH and PUT requests
PUT requests are internally converted into a PATCH operation, which is why they are handled
the same way by policy. The following is contained in the authorization request generated for a
SCIM PATCH or PUT request for a known resource.

Attribute ID Attribute Category Value

subject_id access_subject The client name.

action_id action modify.

resource_id resource

Relative URL of the resource or sub
resource to be modified, such as
Users/12345 or
/Users/12345/account.

<JSON Content> scim_request
The normalized SCIM PATCH request
body.

<JSON Content> access_token Access token properties.

<JSON Content> applicable_scope Applicable scope objects.

SCIM PATCH request attributes

If the PATCH or PUT operation is permitted, the resource is updated and returned to the client.
The updated resource is then subject to the same read criteria in a GET request.

SCIM DELETE request
The following is contained in the authorization request generated for a SCIM DELETE request
for a known resource.

- 50 -

Policy engine request context

Attribute ID Attribute Category Value

subject_id access_subject The client application name.

action_id action delete.

resource_id resource

Relative URL of the resource or sub-
resource to be deleted, such as
Users/12345 or
/Users/12345/account.

<JSON Content> access-token Access token properties.

<JSON Content> applicable-scope Applicable scope objects.

SCIM DELETE request attributes

Policy Decision Point (PDP) endpoint
The PDP endpoint enables an external Policy Enforcement Point (PEP) to generate policy
requests and send them directly to the Data Governance Server for evaluation. The request is
passed directly to the policy engine. The request can contain any standard attributes, Data
Governance Server custom attributes, or other attributes that may be required by custom
policies. This endpoint requires that the client authenticate using HTTP basic authentication.

Policy engine request context
The policy request context contains the information that is available to the policy engine to
make a decision. A request for authorization (OAuth2) will provide information that helps the
policy engine determine whether or not a client should be granted or denied access to a scope.
A request for resources will provide information that will help determine if the operations on
attributes in the requested scopes can be performed.

The request context contains attributes directly passed by a client when making an
authorization request to the policy engine. It is supplemented with additional attributes and
JSON objects that are retrieved from the attribute categories. In order to make a policy
decision, policies can reference any attribute or JSON object from the request context.

XACML attribute categories
All references from policy to objects that can be obtained from the request context are first
identified by their XACML attribute category.

l resource – This standard category definition is always used to reference the object to
which authorization is being requested. With a SCIM request, this is a SCIM resource
whose type is determined by the SCIM request path. See Resource properties for details.

l access_subject – This standard category definition contains the client ID, on whose
behalf the policy request has been made.

- 51 -

l access_token – This custom category provides access to properties of the access token
that has been used to make the current request. It exposes the access token as a JSON
object. See Processing access tokens for details.

l http_header – This custom category provides access to the HTTP headers of the
incoming request.

l http_query_param - – This custom category provides access to the HTTP query
parameters of the incoming request. The following example retrieves the value of the
query parameter with name channel:

http_query_param.channel

l scim_request – This custom category is populated by the Data Governance Server SCIM
endpoint and contains the JSON request body of the SCIM request that triggered policy
evaluation. The content from this attribute category is in standard SCIM 2.0 format. See
SCIM request properties for details.

l applicable_scope – This custom category is populated with the scopes from the access
token that are applicable to authorize a resource request. See Applicable scopes for
details.

l token_owner – For requests authorized with an access token, this custom category
provides access to the SCIM resource of the owner of the access token. See Access token
properties for details.

Other attribute categories can be defined by custom PIPs.

Standard attribute use
The following request attributes are specified by the XACML specification. Unless otherwise
specified, these are always available in the Data Governance Server’s policy request context.

Attribute URN Attribute Category Data Type Description

subject_id access_subject string
Contains the name of the client that is submitting
a policy request.

ip_address access_subject ipAddress

Contains the originating IP address of the
client’s authorization request. The availability
and accuracy of this attribute is dependent upon
the deployed Data Governance Server’s
network environment. When available, the value
is retrieved from the XFORWARDED_FOR
header of the client’s HTTP request. If that
header is not available, the IP address returned
may be that of the last proxy to send the request.

resource_id resource anyURI
Contains the ID of the resource being
requested.

action_id action string
Contains the name of the action being
requested.

Standard attributes

- 52 -

Policy engine request context

Attribute URN Attribute Category Data Type Description

current_time environment time

The time at which the Data Governance Server
began processing the current authorization
request.

current_date environment date
The date on which the current authorization
request is being processed.

current_dateTime environment dateTime

The date and time at which the Data
Governance Server began processing the
current authorization request.

Custom XACML function
There is a single custom function implemented by the Data Governance Server. This can be
accessed with the JEXL extension function. See JEXL extension functions.

The scimAttribute_subset function is similar to the standard XACML string-subset function,
except that the arguments are bags of SCIM attribute names using SCIM attribute notation as
described in the SCIM specification. The custom function comprehends wildcard attribute
specifications as supported in the resourceAttributes property of a Data Governance Server
OAuth2 scope.

For example, if the second set passed to this function contains the string urn:mySchema:*, and
the first set contains urn:mySchema:myAttribute, the function may still return TRUE (the first
set is considered to be a subset of the second).

SCIM resource properties
SCIM Resource Type resources are exposed as JSON objects that can be accessed from policy.
The format of the JSON object is determined by the structure of the underlying resource and
the mappings defined for its SCIM Resource Type. When a client makes a SCIM request, the
resource category content is a SCIM Resource. For example, the following JEXL expression will
retrieve the region sub-attribute of a user’s home address within the requested User
resource.

resource.addresses[type eq "home"].region

Scope properties
The default scope validation policy allows resource operations as long as one of the scopes
granted in the access token allows the operation. Access to attributes allowed per operation is
the union of all resourceAttributes defined in Authenticated Identity or Resource scopes that
allow that operation.

For operations to be allowed on resources, the policies that process the requests must allow
the operations requested in the scope. The following scope properties can be evaluated by
policies.

- 53 -

Property Data Type Description

tokenName String. The scope name as presented in an OAuth2 request.

type String.

The scope type, which is authenticated-identity for
authenticated identity scopes, resource for resource scopes, or
oauth2 for a generic scope.

tags
String.
Multivalued.

A list of Tags associated with a scope that can be examined by XACML
policies.

scimResourceType Aggregation. If a resource scope, the SCIM Resource Type that can be accessed.

resourceOperations
Multivalued
list. Optional.

Operations can include:

l create (POST) to endpoint /scim/v2

l search (GET) from endpoint /scim/v2

l retrieve (GET) from endpoint /scim/v2/<id>

l replace (PUT) to endpoint /scim/v2/<id>

l modify (PATCH) to endpoint /scim/v2/<id>

l delete (DELETE) from endpoint /scim/v2/<id>

resourceAttributes
Multivalued
string.

A list of one or more SCIM attributes of the authenticated identity for
which this scope allows access. The type of access is determined by the
operation properties retrieve, replace, and modify. A wildcard
value of * can be used for all attributes. A schema-specific wildcard
value of the form urn:<schemaName>:* can be used to represent all
attributes of a single schema namespace. Access to attributes allowed
per operation is the union of all resourceAttributes allowed in
the scope.

Scope properties

SCIM request properties
For policy evaluation of SCIM requests, the HTTP message body, if one exists, is available as
the content of the scim_request attribute category. For SCIM POST requests, this content will
be the JSON resource to be created, and for SCIM PATCH or PUT requests, the content will be a
normalized SCIM PATCH request. For convenience, the attribute with ID impacted_
attributes is also available. This attribute is computed by the policy engine and returns a list
of attribute names in SCIM attribute notation. It returns only the attributes that can be created,
modified, or deleted as a result of a SCIM POST, PUT, or PATCH request. See the SCIM 2.0
specification for more details.

The following JEXL example retrieves all impacted attributes from the current SCIM request:

scim_request.impacted_attributes

- 54 -

Policy engine request context

Applicable scopes
An access token presented by a client to the Data Governance Server can contain many
scopes, only some of which are applicable to the current request. The Data Governance
Server’s PIP exposes the applicable scopes under the attribute category applicable_scope.
This category contains a list of JSON scope objects, described in OAuth2 scopes, for those
scopes granted by the access token that meet the following criteria:

l The current request’s action_id is contained in one of the scope’s operations properties.

l The type of resource requested matches the type of resource to which the scope grants
access. For Authenticated Identity scopes, they are only applicable to requests in which
the resource requested is the access token owner.

l Generic OAuth2 scopes are always included since their meaning is not defined by the
Data Governance Server.

The following example retrieves all attributes that are granted access by all applicable scopes
of the access token:

applicable-scope.scope.resourceAttributes

Access token properties
The Data Governance Server's Policy Information Provider (PIP) exposes access tokens as
JSON objects under the attribute category access_token. What is available in the token is
determined by the token provider.

The following properties are common in an access token.

Property Data Type Description

active
Boolean.
Required. True if the token is valid, false if token is invalid or has expired.

client_id String. The ID of the client to which this token is granted.

iss String. The issuer of the token.

sub String.

The unique identifier for the token owner. For user tokens, this will be the
relative SCIM path to the user resource, such as Users/123456789. For
Client Credentials (app) tokens, this property is not present.

scope
Multivalued
string. A list of scope names granted by this token.

app String.
The name of the client for which this token was created. For application
tokens, this value will be equal to sub.

iat DateTime. The date and time at which the token was created.

exp DateTime. The date and time at which the token will expire.

nbf DateTime. The time at which the token becomes valid.

jti String. The unique token identifier.

Access token properties

- 55 -

Property Data Type Description

token_type String. The type of token.

username String. The user name of the token owner (not present for application tokens).

Access token properties

Configure the Policy Service
Policies are managed by the Policy Service. The default conditions of the Policy Service can be
viewed and changed with the dsconfig tool, or through the Managment Console
Authorization and Policies -> Policy Service.

The combining-algorithm determines how decisions are made if multiple policies or policy
sets are applied to a request for resources. The default for the Policy Service is deny-
overrides, which specifies that a "deny" decision from a policy should take priority over a
"permit" decision. The Data Governance Server also supports permit-overrides, deny-
unless-permit, and permit-unless-deny. See the OASIS Committee Specification 01,
eXtensible access control markup language (XACML) Version 3.0. August 2010 for details about
each combining algorithm.

Add any custom logged policy request attributes, which enables additional request attributes to
be included in the output of a Trace Log Publisher during policy evaluations. The URN of the
XACML category ID and Attribute ID are required, in addition to the logger key.

Policy Information Providers
Policy Information Providers are used to retrieve attribute(s) from the Policy Information Point
(PIP) during policy evaluation. This is an Advanced setting. See Standard attribute use and
Custom attribute use for information about these attributes. The Data Governance Server
provides the following Policy Information Providers:

BuiltIn Policy Information Provider – Resolves policy attributes that are implemented by
the Data Governance Server.

SCIM Request Policy Information Provider – Resolves policy attributes whose value can
be retrieved from an incoming SCIM request.

SCIM Resource Type Policy Information Provider – Resolves policy attributes whose
value can be retrieved from a SCIM Resource Type configured on this Data Governance Server
instance.

Token Policy Information Provider – Resolves policy attributes whose value can be
retrieved from an access token recieved by this Data Governance Server instance.

PIP Evaluation Order
When multiple PIPs are defined, the evaluation order determines the correct provider to verify
a specified policy attribute. Each PIP must have a unique evaluation value defined within a
Data Governance Server instance. PIPs with a smaller value are evaluated first.

- 56 -

Create policies

Create policies
The Administrative Console, Authorization and Policies -> Policies, or the dsconfig tool
can be used to create and manage policies.

SCIM Resource Policy Set – A container for policies that authorize requests for protected
resources, including SCIM and UserInfo requests.

Scope Validation – Authorizes SCIM requests based on the scopes granted by the access
token provided. The scope must also be configured to enable a requested action. See OAuth2
scopes for details.

Token Validation – Denies all SCIM resource requests that do not contain a valid access
token.

The following would be used to create the Token Validation policy, which is one of the Data
Governance Server's default policies:

$ bin/dsconfig create-policy \
 --policy-name "Token Validation" \
 --set "combining-algorithm:deny-unless-permit"

$ bin/dsconfig create-policy-rule \
 --policy-name "Token Validation" \
 --rule-name "Validate Token" \
 --set "effect:permit" \
 --set "description:Permit access if token is present and valid." \
 --set "condition:access_token.active"

$ bin/dsconfig create-policy-rule \
 --policy-name "Token Validation" \
 --rule-name "Error Advice" \
 --set "effect:deny" \
 --set "description:Provide error message for denied token."

$ bin/dsconfig create-policy-advice \
 --type "denied-reason" \
 --policy-name "Token Validation" \
 --rule-name "Error Advice" \
 --advice-name "token error advice" \
 --set 'error:"invalid_token"' \
 --set 'error-description:"Access token is expired or otherwise invalid."'

Policies can also be created in the Administrative Console through Authorization and
Policies -> Policies.

The following information is used to configure a policy .

l A unique name and optional description.

l If this policy needs a rule combining algorithm that overwrites the one specified in the
Policy Service, specify one.

l An optional target request. This JEXL expression will filter the incoming authorization
request to determine if the policy should be applied when authorizing the request. If a

- 57 -

target filter is specified here, it is applied in addition to the target applied by the policy
set in which this resides.

l Add optional policy variable definitions. These are JEXL expressions including rule
conditions, obligation expressions, and advice expressions.

l Add any policy advice expressions and error statements.

l Add any policy obligation expressions.

Note
Policies are not enabled until they are added to an enabled policy set.

Creating a policy set
A policy set is an ordered collection of policies that work together to perform a policy task. The
policy set is a XACML-defined entity. The Data Governance Server evaluates policy sets the
same way it evaluates policies.

Creation of a policy set is the same as that of a policy. A policy set must be created from
individual policies that have been configured in the Data Governance Server.

Note
Policy sets can contain both policies and other policy sets. If the combining algorithm is
ordered, a policy set may contain policies or other policy sets but not both. A policy set must not
contain a direct or nested reference to itself.

Troubleshoot policies with traces
Policy decisions are frequently the result of a complex series of logical steps. Identifying the
reason why a particular request is getting an unexpected result can be difficult. The Data
Governance Server can generate a trace of any policy decision, and log traces with in the File
Based Trace Log Publisher with dsconfig or through the Administrative Console.

Note
Policy traces are logged in the File Based Trace Log Publisher. See Logs and log publishers.

A Policy Decision Trace is an XML document that is formatted like the XACML policies. It
demonstrates the sequence of steps taken by the policy engine to come to a decision for a
specific request. The elements of the trace parallel the policies, policy targets, and policy rules
that are evaluated. The following are included:

l The first line of the log entry identifies the message type as POLICY-DECISION-TRACE.

l The parameters of the policy request being traced are listed, including the application,
action, and resources.

l Following this is the trace itself, which is included in the <DecisionTrace> XML element.

- 58 -

Troubleshoot policies with traces

The trace also includes entries for each policy, rule, and target evaluated during the decision
process. Each entry contains a result XML attribute, which specifies the result of evaluating
the corresponding policy element.

Troubleshoot denied access
Policies can issue advice expressions for any policy request that is denied. This passes
additional information to the client as to the reason for denying access. The SCIM endpoint will
look for error advice returned from the policy engine and include it in the error response
generated for the client. If a policy denies a request without advice, the error response is
access_denied.

The following error advice may be included in policy.

Advice ID Attribute ID Value

request_denied_reason

error

Error identifier or code. For SCIM responses, this
value will be used to populate the scimType
error parameter.

error_description

The value of the error_description
parameter of an error response, or the detail
parameter of a SCIM error response.

Policy error advice

- 59 -

Chapter 7: Advanced configuration

The Data Governance Server’s non-user data consists of data in the server configuration.
Generally, data in the server configuration define an individual Data Governance Server
instance, and can include its place in a server topology. Multiple server instances can be
grouped in two ways to share or mirror configuration settings:

l Server Groups – Servers that are added to a server group in the global configuration can
share configuration changes across the group, or not.

l Cluster – This is a topology management setting that enables a set of servers to be
grouped by a functional purpose, and any change to one is mirrored to all. A master
server verifies any configuration change before it is propagated to other servers in the
group.

Note
All configuration objects and settings are described in the HTMLConfiguration Reference,
which can be accessed from the Administrative Console or from the <server-
root>/docs/index.html page. Information in this chapter highlights configuration of interest
to a Data Governance Server installation. For complete configuration options and details, see
the Configuration Reference.

Topics include:

General server configuration

Data Governance Server advanced configuration

Configuring Data Governance Server login pages

Topology management

- 60 -

Chapter 7: Advanced configuration

General server configuration
There are tools and settings that are common across all Ping servers. These enable monitoring
and managing the server, configuring and sending alerts and alarms, and managing the
server's communication with clients. These configuration objects can be changed at the local
server, with the option to apply changes to servers in a group.

Available configuration tools
There are several tools that can be used for server administration and maintenance in the /bin
directory. The following is a sample of the command-line configuration tools:

Tool Description

backup

Run full or incremental backups on one or more Data Governance Servers. This
utility also supports the use of a properties file to pass predefined command-line
arguments.

base64
Encode raw data using the base64 algorithm or decode base64-encoded data back
to its raw representation.

collect-support-data

Collect and package system information useful in troubleshooting problems. The
information is packaged as a ZIP archive that can be sent to a technical support
representative.

config-diff

Generate a summary of the configuration changes in a local or remote server
instance. The tool can be used to compare configuration settings when
troubleshooting issues, or when verifying configuration settings on new servers.

create-initial-config Create an initial Data Governance Server configuration.

create-rc-script
Create a Run Control (RC) script that can be used to start, stop, and restart the Data
Governance Server on Unix-based systems.

dsconfig View and edit the Data Governance Server configuration.

dsframework
Manage administrative server groups or the global administrative user accounts that
are used to configure servers within server groups.

dsjavaproperties

Configure the JVM arguments used to run the Data Governance Server and its
associated tools. Before launching the command, edit the properties file located in
config/java.properties to specify the desired JVM arguments and the
JAVA_HOME environment variable.

encryption-settings Manage the server encryption settings database.

ldapdelete Perform an LDAP delete operation.

ldapcompare Perform an LDAP compare operation.

ldapmodify
Perform LDAP modify, add, and modify DN operations in the Data Governance
Server.

ldappasswordmodify Perform LDAP password modify operations in the Data Governance Server.

ldapsearch Perform LDAP search operations in the Data Governance Server.

Command-line tools

- 61 -

General server configuration

Tool Description

ldif-diff
Compare the contents of two LDIF files, the output being an LDIF file needed to bring
the source file in sync with the target.

ldifmodify Apply a set of modify, add, and delete operations against data in an LDIF file.

list-backends List the backends and base DNs configured in the Data Governance Server.

manage-extension

Install or update extension bundles. An extension bundle is a package of extension
(s) that utilize the Server SDK to extend the functionality of the Data Governance
Server. Any added extensions require a server re-start.

oauth2-request

Performs OAuth2 requests on the Data Governance Server. This tool can be used to
test OAuth2 functions of the Data Governance Server, and to manage OAuth2 tokens
on behalf of registered applications.

prepare-external-store

Prepares the external Directory Servers for the Data Governance Server. This is run
as part of the create-initial-config tool during installation. This tool creates
the Data Governance Server user account, sets the correct password, and configures
the account with required privileges. It will also install the necessary schema
required by the Data Governance Server.

remove-defunct-server
Removes a permanently unavailable Data Governance Server after it has been
removed from its topology by the uninstall tool.

restore Restore a backup of the Data Governance Server.

review-license Review and/or accept the product license.

server-state View information about the current state of the Data Governance Server processes.

start-server Start the Data Governance Server.

status Display basic server information.

stop-server Stop or restart the Data Governance Server.

sum-file-sizes Calculate the sum of the sizes for a set of files.

Command-line tools

Use the dsconfig tool
The dsconfig tool, is used to view or edit the Data Governance Server configuration, and is
parallel in functionality with the Administrative Console. This utility can be run in interactive
mode, non-interactive mode, and batch mode. Interactive mode provides an intuitive, menu-
driven interface for accessing and configuring the server.

To start dsconfig in interactive mode, enter the following command:

$ bin/dsconfig

The dsconfig tool provides a batching mechanism that reads multiple dsconfig invocations
from a file and executes them sequentially. The batch file advantage is that it minimizes LDAP
connections and JVM invocations required with scripting each call. To use batch mode to read
and execute a series of commands in a batch file, enter the following command:

$ dsconfig --bindDN uid=admin,dc=company,dc=com \
 --bindPassword password \
--no-prompt \

 --batch-file </path/to/config-batch.txt>

- 62 -

Chapter 7: Advanced configuration

The logs/config-audit.log file can be used to review the configuration changes made to the
Data Governance Server and use them in the batch file.

Administrative accounts
Users that authenticate to the Config API or the Administrative Console are stored in cn=Root
DNs,cn=config. These users must exist on all instances of the Data Governance Server to
manage a Topology of servers. The setup tool automatically copies one administrative
account when performing an installation from a peer, but if changed, the accounts must be
synchronized. Accounts can be added or changed with the dsconfig tool.

Change the administrative password
Root users are governed by the Root Password Policy and by default, their passwords never
expire. However, if a root user's password must be changed, use the ldappasswordmodify
tool.

1. Open a text editor and create a text file containing the new password. In this example,
name the file rootuser.txt.

$ echo password > rootuser.txt

2. Use ldappasswordmodify to change the root user’s password.

$ bin/ldappasswordmodify --port 1389 --bindDN "cn=Directory Manager" \
--bindPassword secret --newPasswordFile rootuser.txt

3. Remove the text file.

$ rm rootuser.txt

Use the Configuration API
Ping servers provide a Configuration API, which may be useful in situations where using LDAP
to update the server configuration is not possible. The API is consistent with the System for
Cross-domain Identity Management (SCIM) 2.0 protocol and uses JSON as a text exchange
format, so all request headers should allow the application/json content type.

The server includes a servlet extension that provides read and write access to the server’s
configuration over HTTP. The extension is enabled by default for new installations, and can be
enabled for existing deployments by simply adding the extension to one of the server’s HTTP
Connection Handlers, as follows:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --add http-servlet-extension:Configuration

The API is made available on the HTTPS Connection handler’s host:port in the /config
context. Due to the potentially sensitive nature of the server’s configuration, the HTTPS
Connection Handler should be used, for hosting the Configuration extension.

- 63 -

General server configuration

Authentication and authorization
Clients must use HTTP Basic authentication to authenticate to the Configuration API. If the
username value is not a DN, then it will be resolved to a DN value using the identity mapper
associated with the Configuration servlet. By default, the Configuration API uses an identity
mapper that allows an entry’s UID value to be used as a username. To customize this
behavior, either customize the default identity mapper, or specify a different identity mapper
using the Configuration servlet’s identity-mapper property. For example:

$ bin/dsconfig set-http-servlet-extension-prop \
 --extension-name Configuration \
 --set "identity-mapper:Alternative Identity Mapper”

To access configuration information, users must have the appropriate privileges:

l To access the cn=config backend, users must have the bypass-acl privilege or be
allowed access to the configuration using an ACI.

l To read configuration information, users must have the config-read privilege.

l To update the configuration, users must have the config-write privilege.

Relationship between the Configuration API and the dsconfig tool
The Configuration API is designed to mirror the dsconfig tool, using the same names for
properties and object types. Property names are presented as hyphen case in dsconfig and
as camel-case attributes in the API. In API requests that specify property names, case is not
important. Therefore, baseDN is the same as baseDn. Object types are represented in hyphen
case. API paths mirror what is in dsconfig. For example, the dsconfig list-connection-
handlers command is analogous to the API's /config/connection-handlers path. Object
types that appear in the schema URNs adhere to a type:subtype syntax. For example, a Local
DB Backend's schema URN is
urn:pingidentity:schemas:configuration:2.0:backend:local-db. Like the dsconfig
tool, all configuration updates made through the API are recorded in logs/config-audit.log.

The API includes the filter, sort, and pagination query parameters described by the SCIM
specification. Specific attributes may be requested using the attributes query parameter,
whose value must be a comma-delimited list of properties to be returned, for example
attributes=baseDN,description. Likewise, attributes may be excluded from responses by
specifying the excludedAttributes parameter. See Sorting and filtering with the
Configuration API for more information on query parameters.

Operations supported by the API are those typically found in REST APIs:

- 64 -

Chapter 7: Advanced configuration

HTTP Method Description
Related dsconfig
Example

GET

Lists the attributes of an object when used with a path
representing an object, such as /config/global-
configuration or /config/backends/userRoot. Can
also list objects when used with a path representing a parent
relation, such as /config/backends.

get-backend-prop

list-backends

get-global-
configuration-
prop

POST
Creates a new instance of an object when used with a relation
parent path, such as config/backends. create-backend

PUT

Replaces the existing attributes of an object. A PUT operation is
similar to a PATCH operation, except that the PATCH is
determined by determining the difference between an existing
target object and a supplied source object. Only those attributes in
the source object are modified in the target object. The target
object is specified using a path, such as
/config/backends/userRoot.

set-backend-prop

set-global-
configuration-
prop

PATCH

Updates the attributes of an existing object when used with a path
representing an object, such as /config/backends/userRoot.
See PATCH Example.

set-backend-prop

set-global-
configuration-
prop

DELETE
Deletes an existing object when used with a path representing an
object, such as /config/backends/userRoot. delete-backend

The OPTIONS method can also be used to determine the operations permitted for a particular
path.

Object names, such as userRoot in the Description column, must be URL-encoded in the path
segment of a URL. For example, %20 must be used in place of spaces, and %25 is used in place
of the percent (%) character. So the URL for accessing the HTTP Connection Handler object is:

/config/connection-handlers/http%20connection%20handler

GET example

The following is a sample GET request for information about the userRoot backend:

GET /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json

The response:

{
 "schemas": [
 "urn:pingidentity:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://localhost:5033/config/backends/userRoot"
 },
 "backendID": "userRoot2",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",

- 65 -

General server configuration

 "baseDN": [
 "dc=example2,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "10",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "1 m",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "0",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "0",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "enabled": "false",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "false",
 "id2childrenIndexEntryLimit": "66",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "jeProperty": [
 "je.cleaner.adjustUtilization=false",
 "je.nodeMaxEntries=32"
],
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",

- 66 -

Chapter 7: Advanced configuration

 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "5000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled"
}

GET list example

The following is a sample GET request for all local backends:

GET /config/backends
Host: example.com:5033
Accept: application/scim+json

The response (which has been shortened):

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
 "totalResults": 24,
 "Resources": [

{
 "schemas": [
 "urn:pingidentity:schemas:configuration:2.0:backend:ldif"
],
 "id": "adminRoot",
 "meta": {
 "resourceType": "LDIF Backend",
 "location": "http://localhost:5033/config/backends/adminRoot"
 },
 "backendID": "adminRoot",
 "backupFilePermissions": "700",
 "baseDN": [
 "cn=admin data"
],
 "enabled": "true",
 "isPrivateBackend": "true",
 "javaClass": "com.unboundid.directory.server.backends.LDIFBackend",
 "ldifFile": "config/admin-backend.ldif",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertWhenDisabled": "false",
 "writabilityMode": "enabled"
 },

{
 "schemas": [
 "urn:pingidentity:schemas:configuration:2.0:backend:trust-store"
],

- 67 -

General server configuration

 "id": "ads-truststore",
 "meta": {
 "resourceType": "Trust Store Backend",
 "location": "http://localhost:5033/config/backends/ads-truststore"
 },
 "backendID": "ads-truststore",
 "backupFilePermissions": "700",
 "baseDN": [
 "cn=ads-truststore"
],
 "enabled": "true",
 "javaClass": "com.unboundid.directory.server.backends.TrustStoreBackend",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertWhenDisabled": "true",
 "trustStoreFile": "config/server.keystore",
 "trustStorePin": "********",
 "trustStoreType": "JKS",
 "writabilityMode": "enabled"
 },

{
 "schemas": [
 "urn:pingidentity:schemas:configuration:2.0:backend:alarm"
],
 "id": "alarms",
 "meta": {
 "resourceType": "Alarm Backend",
 "location": "http://localhost:5033/config/backends/alarms"
 },
 ...

PATCH example

Configuration can be modified using the HTTP PATCH method. The PATCH request body is a
JSON object formatted according to the SCIM patch request. The Configuration API, supports a
subset of possible values for the path attribute, used to indicate the configuration attribute to
modify.

The configuration object's attributes can be modified in the following ways. These operations
are analogous to the dsconfig modify-[object] options.

l An operation to set the single-valued description attribute to a new value:

{
 "op" : "replace",
 "path" : "description",
 "value" : "A new backend."
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --set "description:A new backend"

l An operation to add a new value to the multi-valued jeProperty attribute:

{
 "op" : "add",
 "path" : "jeProperty",

- 68 -

Chapter 7: Advanced configuration

 "value" : "je.env.backgroundReadLimit=0"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --add je-property:je.env.backgroundReadLimit=0

l An operation to remove a value from a multi-valued property. In this case, path
specifies a SCIM filter identifying the value to remove:

{
 "op" : "remove",
 "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --remove je-property:je.cleaner.adjustUtilization=false

l A second operation to remove a value from a multi-valued property, where the path
specifies both an attribute to modify, and a SCIM filter whose attribute is value:

{
 "op" : "remove",
 "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --remove je-property:je.nodeMaxEntries=32

l An option to remove one or more values of a multi-valued attribute. This has the effect
of restoring the attribute's value to its default value:

{
 "op" : "remove",
 "path" : "id2childrenIndexEntryLimit"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --reset id2childrenIndexEntryLimit

The following is the full example request. The API responds with the entire modified
configuration object, which may include a SCIM extension attribute
urn:pingidentity:schemas:configuration:messages containing additional instructions:

Example request:

PATCH /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json

{
 "schemas" : ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],

- 69 -

General server configuration

 "Operations" : [{
 "op" : "replace",
 "path" : "description",
 "value" : "A new backend."
 }, {
 "op" : "add",
 "path" : "jeProperty",
 "value" : "je.env.backgroundReadLimit=0"
 }, {
 "op" : "remove",
 "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"
 }, {
 "op" : "remove",
 "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
 }, {
 "op" : "remove",
 "path" : "id2childrenIndexEntryLimit"
 }]
}

Example response:

{
 "schemas": [
 "urn:pingidentity:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot2",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://example.com:5033/config/backends/userRoot2"
 },
 "backendID": "userRoot2",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example2,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "10",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "1 m",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "0",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",

- 70 -

Chapter 7: Advanced configuration

 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "0",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "description": "123",
 "enabled": "false",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "false",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "jeProperty": [
 "\"je.env.backgroundReadLimit=0\""
],
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "5000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled",
 "urn:pingidentity:schemas:configuration:messages:2.0": {
 "requiredActions": [

{
 "property": "jeProperty",
 "type": "componentRestart",
 "synopsis": "In order for this modification to take effect,
 the component must be restarted, either by disabling and
 re-enabling it, or by restarting the server"
 },

{
 "property": "id2childrenIndexEntryLimit",

- 71 -

General server configuration

 "type": "other",
 "synopsis": "If this limit is increased, then the contents
 of the backend must be exported to LDIF and re-imported to
 allow the new limit to be used for any id2children keys
 that had already hit the previous limit."
 }
]
 }
}

API paths
The Configuration API is available under the /config path. A full listing of root sub-paths can
be obtained from the /config/ResourceTypes endpoint:

GET /config/ResourceTypes
Host: example.com:5033
Accept: application/scim+json

Sample response (abbreviated):

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
 "totalResults": 520,
 "Resources": [

{
 "schemas": [
 "urn:ietf:params:scim:schemas:core:2.0:ResourceType"
],
 "id": "dsee-compat-access-control-handler",
 "name": "DSEE Compat Access Control Handler",
 "description": "The DSEE Compat Access Control
 Handler provides an implementation that uses syntax

compatible with the Sun Java System Directory Server
 Enterprise Edition access control handler.",
 "endpoint": "/access-control-handler",
 "meta": {
 "resourceType": "ResourceType",
 "location": "http://example.com:5033/config/ResourceTypes/dsee-compat-access-
control-handler"
 }
 },

{
 "schemas": [
 "urn:ietf:params:scim:schemas:core:2.0:ResourceType"
],
 "id": "access-control-handler",
 "name": "Access Control Handler",
 "description": "Access Control Handlers manage the
 application-wide access control. The server's access
 control handler is defined through an extensible
 interface, so that alternate implementations can be created.
 Only one access control handler may be active in the server
 at any given time.",
 "endpoint": "/access-control-handler",

- 72 -

Chapter 7: Advanced configuration

 "meta": {
 "resourceType": "ResourceType",
 "location": "http://example.com:5033/config/ResourceTypes/access-control-handler"
 }
 },

{
...

The response's endpoint elements enumerate all available sub-paths. The path
/config/access-control-handler in the example can be used to get a list of existing access
control handlers, and create new ones. A path containing an object name like
/config/backends/{backendName}, where {backendName} corresponds to an existing
backend (such as userRoot) can be used to obtain an object’s properties, update the
properties, or delete the object.

Some paths reflect hierarchical relationships between objects. For example, properties of a
local DB VLV index for the userRoot backend are available using a path like
/config/backends/userRoot/local-db-indexes/uid. Some paths represent singleton
objects, which have properties but cannot be deleted nor created. These paths can be
differentiated from others by their singular, rather than plural, relation name (for example
global-configuration).

Sorting and filtering configuration objects
The Configuration API supports SCIM parameters for filter, sorting, and pagination. Search
operations can specify a SCIM filter used to narrow the number of elements returned. See the
SCIM specification for the full set of operations for SCIM filters. Clients may also specify sort
parameters, or paging parameters. As previously mentioned, clients may specify attributes to
include or exclude in both get and list operations.

GET Parameter Description

filter

Values can be simple SCIM filters such as id eq "userRoot" or
compound filters like meta.resourceType eq "Local DB Backend"
and baseDn co "dc=exmple,dc=com".

sortBy Specifies a property value by which to sort.

sortOrder Specifies either ascending or descending alphabetical order.

startIndex 1-based index of the first result to return.

count Indicates the number of results per page.

GET parameters for sorting and filtering

Update Properties
The Configuration API supports the HTTP PUT method as an alternative to modifying objects
with HTTP PATCH. With PUT, the server computes the differences between the object in the
request with the current version in the server, and performs modifications where necessary.
The server will never remove attributes that are not specified in the request. The API responds
with the entire modified object.

Request:

- 73 -

General server configuration

PUT /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json
{
 "description" : "A new description."
}

Response:

{
 "schemas": [
 "urn:pingidentity:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://example.com:5033/config/backends/userRoot"
 },
 "backendID": "userRoot",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "25",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "30 s",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "5",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "1",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "description": "abc",

- 74 -

Chapter 7: Advanced configuration

 "enabled": "true",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "true",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "100000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled"
}

Administrative actions
Updating a property may require an administrative action before the change can take effect. If
so, the server will return 200 Success, and any actions are returned in the
urn:pingidentity:schemas:configuration:messages:2.0 section of the JSON response
that represents the entire object that was created or modified.

For example, changing the jeProperty of a backend will result in the following:

"urn:pingidentity:schemas:configuration:messages:2.0": {
 "requiredActions": [

{
 "property": "baseContextPath",
 "type": "componentRestart",
 "synopsis": "In order for this modification to
 take effect, the component must be restarted,
 either by disabling and re-enabling it, or by
 restarting the server"
 },

{
 "property": "id2childrenIndexEntryLimit",
 "type": "other",
 "synopsis": "If this limit is increased, then the
 contents of the backend must be exported to LDIF

- 75 -

General server configuration

 and re-imported to allow the new limit to be used
 for any id2children keys that had already hit the
 previous limit."
 }
]
}
...

Updating servers and server groups
Servers can be configured as part of a server group, so that configuration changes that are
applied to a single server, are then applied to all servers in a group. When managing a server
that is a member of a server group, creating or updating objects using the Configuration API
requires the applyChangeTo query parameter. The behavior and acceptable values for this
parameter are identical to the dsconfig parameter of the same name. A value of
singleServer or serverGroup can be specified. For example:

https://example.com:5033/config/Backends/userRoot?applyChangeTo=singleServer

Note
This does not apply to mirrored subtree objects, which include Topology and Cluster level
objects. Changesmade tomirrored objects are applied to all objects in the subtree.

Configuration API responses
Clients of the API should examine the HTTP response code in order to determine the success or
failure of a request. The following are response codes and their meanings:

Response Code Description
Response
Body

200 Success

The requested operation succeeded, with the response body being the
configuration object that was created or modified. If further actions are
required, they are included in the
urn:pingidentity:schemas:configuration:messages:2.0
object.

List of
objects, or
object
properties,
administrative
actions.

204 No Content
The requested operation succeeded and no further information has been
provided, such as in the case of a DELETE operation. None.

400 Bad Request
The request contents are incorrectly formatted or a request is made for an
invalid API version.

Error
summary and
optional
message.

401 Unauthorized

User authentication is required. Some user agents such as browsers may
respond by prompting for credentials. If the request had specified
credentials in an Authorization header, they are invalid. None.

403 Forbidden

The requested operation is forbidden either because the user does not
have sufficient privileges or some other constraint such as an object is edit-
only and cannot be deleted. None.

404 Not Found The requested path does not refer to an existing object or object relation.

Error
summary and
optional

- 76 -

Chapter 7: Advanced configuration

Response Code Description
Response
Body

message.

409 Conflict

The requested operation could not be performed due to the current state of
the configuration. For example, an attempt was made to create an object
that already exists or an attempt was made to delete an object that is
referred to by another object.

Error
summary and
optional
message.

415 Unsupported
Media Type

The request is such that the Accept header does not indicate that JSON is
an acceptable format for a response. None.

500 Server Error
The server encountered an unexpected error. Please report server errors to
customer support.

Error
summary and
optional
message.

An application that uses the Configuration API should limit dependencies on particular text
appearing in error message content. These messages may change, and their presence may
depend on server configuration. Use the HTTP return code and the context of the request to
create a client error message. The following is an example encoded error message:

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:Error"
],
 "status": 404,
 "scimType": null,
 "detail": "The Local DB Index does not exist."
}

Configuring HTTP connection handlers
The server relies on the HTTP connection handler, which relies on one or more servlet
extensions. Servlet extensions are responsible for obtaining Java servlets and registering them
to be invoked using one or more context paths. For custom servlet extensions created using
the Server SDK, the process varies based on using a Java-based or Groovy-scripted extension.
See the Server SDK documentation for details.

HTTP connection handlers are responsible for managing the communication with HTTP clients
and invoking servlets to process requests from those clients. They can also be used to host
web applications on the server. Each HTTP connection handler must be configured with one or
more HTTP servlet extensions and zero or more HTTP operation log publishers.

If the HTTP Connection Handler cannot be started (for example, if its associated HTTP Servlet
Extension fails to initialize), this does not prevent the entire server from starting. The server's
start tool posts any errors to the error log.

The configuration properties available for use with an HTTP connection handler include:

l listen-address – Specifies the address on which the connection handler will listen for
requests from clients. If not specified, then requests will be accepted on all addresses
bound to the system.

- 77 -

General server configuration

l listen-port – Specifies the port on which the connection handler will listen for requests
from clients. Required.

l use-ssl – Indicates whether the connection handler will use SSL/TLS to secure
communications with clients (whether it uses HTTPS rather than HTTP). If SSL is
enabled, then key-manager-provider and trust-manager-provider values must also be
specified.

l http-servlet-extension – Specifies the set of servlet extensions that will be enabled
for use with the connection handler. You can have multiple HTTP connection handlers
(listening on different address/port combinations) with identical or different sets of
servlet extensions. At least one servlet extension must be configured.

l http-operation-log-publisher – Specifies the set of HTTP operation log publishers
that should be used with the connection handler. By default, no HTTP operation log
publishers will be used.

l ssl-cert-nickname – In scenarios where the multiple public-private key pairs are in a
JKS keystore, the LDAPConnectionHandler allows choosing a specific certificate alias
through the ssl-cert-nickname property. The HTTPConnectionHandler for HTTPS
connections should have the same option for parity.

l key-manager-provider – Specifies the key manager provider that will be used to obtain
the certificate presented to clients if SSL is enabled.

l trust-manager-provider – Specifies the trust manager provider that will be used to
determine whether to accept any client certificates presented to the server.

l num-request-handlers – Specifies the number of threads that should be used to
process requests from HTTP clients. These threads are separate from the worker threads
used to process other kinds of requests. The default value of zero means the number of
threads will be automatically selected based on the number of CPUs available to the JVM.

l web-application-extension– Specifies the web applications to be hosted by the
server.

For information about other connection handlers, see the Data Governance Server
Configuration Reference Guide.

Domain Name Service (DNS) caching
If needed, two global configuration properties can be used to control the caching of hostname-
to-numeric IP address (DNS lookup) results returned from the name resolution services of the
underlying operating system. Use the dsconfig tool to configure these properties.

network-address-cache-ttl– Sets the Java system property networkaddress.cache.ttl,
and controls the length of time in seconds that a hostname-to-IP address mapping can be
cached. The default behavior is to keep resolution results for one hour (3600 seconds). This
setting applies to the server and all extensions loaded by the server.

- 78 -

Chapter 7: Advanced configuration

network-address-outage-cache-enabled – Caches hostname-to-IP address results in the
event of a DNS outage. This is set to true by default, meaning name resolution results are
cached. Unexpected service interruptions may occur during planned or unplanned
maintenance, network outages or an infrastructure attack. This cache may allow the server to
function during a DNS outage with minimal impact. This cache is not available to server
extensions.

IP address reverse name lookups
Ping Identity servers do not explicitly perform numeric IP address-to-hostname lookups.
However address masks configured in Access Control Lists (ACIs), Connection Handlers,
Connection Criteria, and Certificate handshake processing may trigger implicit reverse name
lookups. For more information about how address masks are configured in the server, review
the following information for each server:

l ACI dns: bind rules under Managing Access Control (Directory Server and Directory
Proxy Servers)

l ds-auth-allowed-address: Adding Operational Attributes that Restrict Authentication
(Directory Server)

l Connection Criteria: Restricting Server Access Based on Client IP Address (Directory
Server and Directory Proxy Servers)

l Connection Handlers: restrict server access using Connection Handlers (Configuration
Reference Guide for all servers)

Problems with SSL communication
Enable TLS debugging in the server to troubleshoot SSL communication issues:

$ dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name com.unboundid.directory.server.extensions.TLSConnectionSecurityProvider \
 --set debug-level:verbose \
 --set include-throwable-cause:true

$ dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true \
 --set default-debug-level:disabled

In the java.properties file, add -Djavax.net.debug=ssl to the start-ds line, and run
bin/dsjavaproperties to make the option take effect on a scheduled server restart.

Conditions for automatic server shutdown
All Ping servers will shutdown in an out of memory condition, a low disk space error state, or
for running out of file descriptors. The Directory Server will enter lockdown mode on
unrecoverable database environment errors, but can be configured to shutdown instead with
this setting:

- 79 -

General server configuration

$ dsconfig set-global-configuration-prop \
--set unrecoverable-database-error-mode:initiate-server-shutdown

Configuring traffic through a load balancer
If an Ping Identity server is sitting behind an intermediate HTTP server, such as a load
balancer, a reverse proxy, or a cache, it will log incoming requests as originating with the
intermediate HTTP server instead of the client that actually sent the request. If the actual
client's IP address should be recorded to the trace log, enable X-Forwarded-* handling in both
the intermediate HTTP server and Ping server. For Ping servers:

l Edit the appropriate Connection Handler object (HTTPS or HTTP) and set use-
forwarded-headers to true.

l When use-forwarded-headers is set to true, the server will use the client IP address
and port information in the X-Forwarded-* headers instead of the address and port of
the entity that's actually sending the request, the load balancer. This client address
information will show up in logs where one would normally expect it to show up, such as
in the from field of the HTTP REQUEST and HTTP RESPONSE messages.

On the load balancer, configure settings to provide the X-Forwarded-* information, such as X-
Forwarded-Host:. See the product documentation for the device type.

System alarms, alerts, and gauges
Ping servers provide tools to monitor and manage the health of the system. The Data
Governance Server provides delivery mechanisms (handlers) for administrative alerts using
JMX or SNMP, in addition to standard error logging. All can be configured with the dsconfig
tool.

Alerts and alarms reflect state changes within the server that may be of interest to a user or
monitoring service. An alarm represents a stateful condition of the server or a resource that
may indicate a problem, such as low disk space or external server unavailability. A gauge
defines a set of threshold values with a specified severity that, when crossed, cause the server
to enter or exit an alarm state. Gauges are used for monitoring continuous values like CPU load
or free disk space (Numeric Gauge), or an enumerated set of values such as 'server available'
or ‘server unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity
changes due to changes in the monitored value. Like alerts, alarms have severity (NORMAL,
WARNING, MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a
Condition property, and may have a Specific Problem or Resource property. If surfaced
through SNMP, a Probable Cause property and Alarm Type property are also listed. Alarms can
be configured to generate alerts when the alarm's severity changes.

There are two alert types supported by the server - standard and alarm-specific. The server
constantly monitors for conditions that may attention by administrators, such as low disk
space. For this condition, the standard alert is low-disk-space-warning, and the alarm-
specific alert is alarm-warning. The server can be configured to generate alarm-specific alerts
instead of, or in addition to, standard alerts. By default, standard alerts are generated for

- 80 -

Chapter 7: Advanced configuration

conditions internally monitored by the server. However, gauges can only generate alarm-
alerts.

The server installs gauges for CPU, disk, and memory usage that can be cloned or configured
through the dsconfig tool. Existing gauges can be tailored to fit each environment by adjusting
the update interval and threshold values. Configuration of system gauges determines the
criteria by which alarms are triggered. The Stats Logger can be used to view historical
information about the value and severity of all system gauges.

The server is compliant with the International Telecommunication Union CCITT
Recommendation X.733 (1992) standard for generating and clearing alarms. If configured,
entering or exiting an alarm state can result in one or more alerts. An alarm state is exited
when the condition no longer applies. An alarm_cleared alert type is generated by the system
when an alarm's severity changes from a non-normal severity to any other severity. An
alarm_cleared alert will correlate to a previous alarm when Condition and Resource property
are the same. The Alarm Manager, which governs the actions performed when an alarm state
is entered, is configurable through the dsconfig tool.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores
information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over
time that can change in severity and be cleared when a monitored value returns to normal.
Alarms can be viewed with the status tool.

As with other alert types, alert handlers can be configured to manage the alerts generated by
alarms. A complete listing of system alerts, alarms, and their severity is available in <server-
root>/docs/admin-alerts-list.csv.

Alert handlers
Alert notifications can be sent to administrators when significant problems or events occur
during processing, such as problems during server startup or shutdown. The Data Governance
Server provides a number of alert handler implementations configured with the dsconfig tool
or the Administrative Console, including:

l Error Log Alert Handler – Sends administrative alerts to the configured server error
logger(s).

l JMX Alert Handler – Sends administrative alerts to clients using the Java Management
Extensions (JMX) protocol. The server uses JMX for monitoring entries and requires that
the JMX connection handler be enabled.

l SNMP Alert Handler – Sends administrative alerts to clients using the Simple Network
Monitoring Protocol (SNMP). The server must have an SNMP agent capable of
communicating through SNMP 2c.

If needed, the Server SDK can be used to implement additional, third-party alert handlers.

- 81 -

General server configuration

Test alarms and alerts
After gauges, alarms, and alert handlers are configured, verify that the server takes the
appropriate action when an alarm state changes by manually increasing the severity of a
gauge. Alarms and alerts can be verified with the status tool.

Perform the following steps to test alarms and alerts:

1. Configure a gauge with dsconfig and set the override-severity property to
critical. The following example uses the CPU Usage (Percent) gauge.

$ dsconfig set-gauge-prop \
 --gauge-name "CPU Usage (Percent)" \
 --set override-severity:critical

2. Run the status tool to verify that an alarm was generated with corresponding alerts.
The status tool provides a summary of the server’s current state with key metrics and
a list of recent alerts and alarms. The sample output has been shortened to show just the
alarms and alerts information.

$ bin/status

 --- Administrative Alerts ---
Severity : Time : Message
---------:-------------:--
Error : 11/Aug/2015 : Alarm [CPU Usage (Percent). Gauge CPU Usage (Percent)
 : 15:41:00 : for Host System Recent CPU and Memory has
 : -0500 : a current value of '18.583333333333332'.
 : : The severity is currently OVERRIDDEN in the
 : : Gauge's configuration to 'CRITICAL'.
 : : The actual severity is: The severity is
 : : currently 'NORMAL', having assumed this severity
 : : Mon Aug 11 15:41:00 CDT 2015. If CPU use is high,
 : : check the server's current workload and make any
 : : needed adjustments. Reducing the load on the system
 : : will lead to better response times.
 : : Resource='Host System']
 : : raised with critical severity
Shown are alerts of severity [Info,Warning,Error,Fatal] from the past 48 hours
Use the --maxAlerts and/or --alertSeverity options to filter this list

--- Alarms ---
Severity : Severity : Condition : Resource : Details
 : Start Time : : :
---------:------------:-----------:-------------:---------------------------
Critical : 11/Aug/2015: CPU Usage : Host System : Gauge CPU Usage (Percent) for
 : 15:41:00 : (Percent) : : Host System
 : -0500 : : : has a current value of
 : : : : '18.785714285714285'.
 : : : : The severity is currently
 : : : : 'CRITICAL', having assumed
 : : : : this severity Mon Aug 11
 : : : : 15:49:00 CDT 2015. If CPU use
 : : : : is high, check the server's
 : : : : current workload and make any
 : : : : needed adjustments. Reducing
 : : : : the load on the system will

- 82 -

Chapter 7: Advanced configuration

 : : : : lead to better response times

Shown are alarms of severity [Warning,Minor,Major,Critical]
Use the --alarmSeverity option to filter this list

Logs and log publishers
Ping supports different types of log publishers that can be used to provide the monitoring
information for operations, access, debug, and error messages that occur during normal
server processing. The server provides default log files as well as mechanisms to configure
custom log publishers with their own log rotation and retention policies.

Types of log publishers
Log publishers can be used to log processing information about the server, including:

l Error loggers – provide information about warnings, errors, or significant events that
occur within the server.

l Trace logger – provides information about each HTTP, OAuth2, XACML policy, and SCIM
request and response that is processed by the Data Governance Server.

View and configure log publishers
Log publishers can be created or modified on each server using the dsconfig tool or through
the Administrative Console, Logging, monitoring, and notifications -> Log Publishers.

Create a new log publisher
Ping provides customization options to create log publishers with the dsconfig command or
through the Administrative Console.

After creating a new log publisher, configure the log retention and rotation policies. For more
information, see Configuring Log Rotation and Configuring Log Retention.

The following example shows how to create a trace logger that collects debug information for
HTTP, external identity provider, XACML policy, and store adapter operations with the
dsconfig command:

$ bin/dsconfig create-log-publisher \
 --publisher-name NewTraceLogger \
 --type file-based-trace \
 --set enabled:true \
 --set debug-message-type:external-identity-provider-request-and-response \
 --set debug-message-type:http-full-request-and-response \
 --set debug-message-type:policy-decision-trace \
 --set debug-message-type:store-adapter-processing \
 --set http-message-type:request \
 --set http-message-type:response \
 --set xacml-policy-message-type:result \
 --set 'exclude-path-pattern:/**/*.css' \
 --set 'exclude-path-pattern:/**/*.gif' \
 --set 'exclude-path-pattern:/**/*.jpg' \

- 83 -

General server configuration

 --set 'exclude-path-pattern:/**/*.png' \
 --set log-file:myfile \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \
 --set "retention-policy:Free Disk Space Retention Policy" \
 --set compression-mechanism:gzip

Compression cannot be disabled or turned off once configured for the logger. Determine
logging requirements before configuring this option.

Configure log compression
Ping servers support the ability to compress log files as they are written. Because of the
inherent problems with mixing compressed and uncompressed data, compression can only be
enabled when the logger is created. Compression cannot be turned on or off once the logger is
configured. If the server encounters an existing log file at startup, it will rotate that file and
begin a new one rather than attempting to append it to the previous file.

Compression is performed using the standard gzip algorithm. Because it can be useful to have
an amount of uncompressed log data for troubleshooting, having a second logger defined that
does not use compression may be desired.

Configure compression by setting the compression-mechanism property to have the value of
gzip when creating a new logger. See Creating a New Log Publisher for details.

Configure log signing
Ping servers support the ability to cryptographically sign a log to ensure that it has not been
modified. For example, financial institutions require tamper-proof audit logs files to ensure
that transactions can be properly validated and ensure that they have not been modified by a
third-party entity or internally by an unauthorized person.

When enabling signing for a logger that already exists, the first log file will not be completely
verifiable because it still contains unsigned content from before signing was enabled. Only log
files whose entire content was written with signing enabled will be considered completely
valid. For the same reason, if a log file is still open for writing, then signature validation will
not indicate that the log is completely valid because the log will not include the necessary "end
signed content" indicator at the end of the file.

To validate log file signatures, use the validate-file-signature tool provided in the bin
directory of the server (or the bat directory on Windows systems). Once this property is
enabled, disable and then re-enable the log publisher for the changes to take effect. Perform
the following steps to configure log signing:

1. Use dsconfig to enable log signing for a Log Publisher. In this example, set the sign-
log property on the File-based Trace Log Publisher.

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Trace Logger" \
 --set sign-log:true

2. Disable and then re-enable the Log Publisher for the change to take effect.

- 84 -

Chapter 7: Advanced configuration

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Trace Logger" \
 --set enabled:false

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Trace Logger" \
 --set enabled:true

3. To validate a signed file, use the validate-file-signature tool to check if a signed file
has been altered.

$ bin/validate-file-signature --file logs/trace

All signature information in file 'logs/trace' is valid

If any validations errors occur, a message displays that is similar to this:

One or more signature validation errors were encountered while
validating the contents of file 'logs/trace':
* The end of the input stream was encountered without encountering the
end of an active signature block. The contents of this signed block
cannot be trusted because the signature cannot be verified

Configure log retention and log rotation policies
Ping servers enable configuring log rotation and log retention policies.

Log retention – When any retention limit is reached, the server removes the oldest archived
log prior to creating a new log. Log retention is only effective if a log rotation policy is in place.
A new log publisher must have at least one log retention policy configured. The following
policies are available:

l File Count Retention Policy – Sets the number of log files you want the sever to
retain. The default file count is 10 logs. If the file count is set to 1, the log will continue to
grow indefinitely without being rotated.

l Free Disk Space Retention Policy – Sets the minimum amount of free disk space.
The default free disk space is 500 MB.

l Size Limit Retention Policy – Sets the maximum size of the combined archived logs.
The default size limit is 500 MB.

l Custom Retention Policy – Create a new retention policy that meets the server’s
requirements.

l Never Delete Retention Policy – Used in a rare event that does not require log
deletion.

Log rotation – When a rotation limit is reached, the server rotates the current log and starts a
new log. A new log publisher must have at least one log rotation policy configured. The
following policies are available:

l Time Limit Rotation Policy – Rotates the log based on the length of time since the last
rotation. Default implementations are provided for rotation every 24 hours and every

- 85 -

General server configuration

seven days.

l Fixed Time Rotation Policy – Rotates the logs every day at a specified time (based on
24-hour). The default time is 2359.

l Size Limit Rotation Policy – Rotates the logs when the file reaches the maximum
size. The default size limit is 100 MB.

l Never Rotate Policy – Used in a rare event that does not require log rotation.

Configure the Log Rotation Policy
Use dsconfig to modify the log rotation policy for the access logger:

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Error Logger" \
 --remove "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --add "rotation-policy:7 Days Time Limit Rotation Policy"

Configure the Log Retention Policy
Use dsconfig to modify the log retention policy for the access logger:

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Error Logger" \
 --set "retention-policy:Free Disk Space Retention Policy"

Server monitoring
While the server is running, it generates a significant amount of information available through
monitor entries. This section contains information about the following:

l Backend monitor entries

l View system and consent data through the Data Metrics Server

l Use the status tool

Backend monitor entries
Each Ping server exposes its monitoring information under the cn=monitor entry.
Administrators can use various means to monitor the servers through SNMP, LDAP command-
line tools, and the Stats Logger.

The Monitor Backend contains an entry per component or activity being monitored. The list of
all monitor entries can be seen using the ldapsearch command as follows:

$ bin/ldapsearch --hostname server1.example.com \
 --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --baseDN "cn=monitor" "(objectclass=*)" cn

The following table lists a subset of monitor entries.

- 86 -

Chapter 7: Advanced configuration

Component Description

Active Operations

Provides information about the operations currently being processed by the server
including the number of operations, information on each operation, and the
number of active persistent searches.

Backends

Provides general information about the state of a server backend, including the
entry count. If the backend is a local database, there is a corresponding database
environment monitor entry with information on cache usage and on-disk size.

Client Connections

Provides information about all client connections to the server including a name
followed by an equal sign and a quoted value, such as connID="15",
connectTime="20100308223038Z".

Connection Handlers
Provides information about the available connection handlers on the server
including the LDAP and LDIF connection handlers.

Disk Space Usage
Provides information about the disk space available to various components of the
server.

General
Provides general information about the state of the server, including product name,
vendor name, and server version.

Index

Provides information on each index including the number of preloaded keys and
counters for read, write, remove, open-cursor, and read-for-search actions. These
counters provide insight into how useful an index is for a given workload.

HTTP/HTTPS Connection
Handler Statistics

Provides statistics about the interaction that the associated HTTP connection
handler has had with its clients, including the number of connections accepted,
average requests per connection, average connection duration, total bytes
returned, and average processing time by status code.

JVM Stack Trace Provides a stack trace of all threads processing within the JVM.

LDAP Connection Handler
Statistics

Provides statistics about the interaction that the associated LDAP connection
handler has had with its clients, including the number of connections established
and closed, bytes read and written, LDAP messages read and written, and
operations initiated, completed, and abandoned.

Processing Time Histogram

Categorizes operation processing times into a number of user-defined buckets of
information, including the total number of operations processed, overall average
response time (ms), and number of processing times between 0ms and 1ms.

System Information

Provides general information about the system and the JVM on which the server is
running, including system host name, operation system, JVM architecture, Java
home, and Java version.

Version
Provides information about the server version, including build ID, and revision
number.

Work Queue

Provides information about the state of the server work queue, which holds
requests until they can be processed by a worker thread, including the requests
rejected, current work queue size, number of worker threads, and number of busy
worker threads.

The work queue configuration has a monitor-queue-time property set to
true by default. This logs messages for new operations with a qtime attribute
included in the log messages. Its value is expressed in milliseconds and
represents the length of time that operations are held in the work queue.

Monitoring components

- 87 -

General server configuration

View system and consent data through the Data Metrics Server
The Data Metrics Server contains several charts to measure and monitor Data Governance
Server system and user consent activity. Charts and data are configured from the Data Metrics
Server Server. The following categories can be made available through a Data Metrics Server
dashboard:

Authorization Requests – Displays the number of blocked and permitted token requests
from client applications.

Request Volume – Displays authorization activity according to grant or deny.

Grant Types – Displays the number of authorization grants by type.

Consent/Deny by Application – Displays authorization activity based on client application.

Consent/Deny by Data Type – Displays authorization activity based on data type.

Most Requested Data – Displays most requested data.

Most Active Applications – Displays most active client applications.

Most Active Policies – Displays most active policies.

See the Ping Data Metrics Server Administration Guide for more information.

Using the status tool
Ping servers provide the status tool, which lists the health of the server. The status tool
polls the current health of the server and displays summary information about the number of
operations processed in the network. The tool provides the following information:

Status Section Description

Server Status Displays the server start time, operation status, number of connections (open, max, and total).

Server Details
Displays the server details including host name, administrative users, install path, server
version, and Java version.

Connection
Handlers

Displays the state of the connection handlers including address, port, protocol and current
state.

Admin Alerts

Displays the 15 administrative alerts that were generated over the last 48-hour period. Limit
the number of displayed alerts using the --maxAlerts option. For example, status --
maxAlerts 0 suppresses all alerts.

Status tool sections

Server SDK extensions
Custom server extensions can be created with the Server SDK. Extension bundles are installed
from a .zip archive or a file system directory. Use the manage-extension tool to install or
update any extension that is packaged using the extension bundle format. It opens and loads
the extension bundle, confirms the correct extension to install, stops the server if necessary,
copies the bundle to the server install root, and then restarts the server.

Note
The manage-extension tool must be used with Java extensions packaged using the

- 88 -

Chapter 7: Advanced configuration

extension bundle format. For more information, see the "Building and Deploying Java-Based
Extensions" section of the Server SDK documentation.

The Server SDK enables creating extensions for the Directory Server, Directory Proxy Server,
Data Metrics Server, Data Governance Server, and Data Sync Server servers. Cross-product
extensions include:

l Access Loggers

l Alert Handlers

l Error Loggers

l Key Manager Providers

l Monitor Providers

l Trust Manager Providers

l OAuth Token Handlers

l Manage Extension Plugins

Extensions for the Data Governance Server include:

l Policy Information Provider

l Store Adapter

Data Governance Server Advanced Server
Configuration
When a Data Governance Server is set up from a peer, its server configuration is cloned to the
new Data Governance Server, and the two configurations are linked such that changes to the
configuration are applied to both Data Governance Server servers by default. See Installing a
Clone Data Governance Server. If a server is installed in an existing topology (an installation
option), the server configurations are also linked.

The server's configuration is stored in an LDIF-based backend under the cn=config base DN.
It can be accessed using the LDAP protocol and is managed by the dsconfig tool,
Configuration API, or the Administrative Console.

Configuring Third-Party Store Adapters
Third-party adapters can be created for directory servers, that are not the Ping Directory
Server, with the Server SDK available in the unboundid-server-sdk-<version>.zip
package.

Configuring a custom store adapter includes the following steps:

1. Create a store adapter.

2. Store it in the /extensions directory of the Data Governance Server.

- 89 -

Data Governance Server Advanced Server Configuration

3. Create a SCIM Resource Type schema.

4. Map Store Adapter(s) and SCIM Resource Types using the Administrative Console or
dsconfig tool.

Example Third-Party Store Adapter
The Server SDK provides an example implementation of a third-party store adapter. View the
example and associated Javadocs in the Server SDK docs/example-
html/ExampleStoreAdapter.java.html directory.

ExampleStoreAdapter.java is an implementation of a flat-file JSON store adapter, which
stores the SCIM user data in JSON. At startup, all resources are loaded from the json-file-
path parameter (resource/user-database.json). The example uses an in-memory hash
map of SCIM resources mapped to their SCIM ID.

The example provides full operations plus filterable search support for add, update, and
deletes. The example will perform a full-file rewrite on every change, because the file format
is a serialized list of Resources<BaseResource>. The code example does not support sorting
or resource versioning.

Cross-Origin Resource Sharing Support
Cross-Origin Resource Sharing (CORS) enables client applications to make JavaScript requests
to the Data Governance Server (or Directory Server) by specifying the domain from which the
request is made.These cross-domain requests are generally not allowed by web browsers
without CORS support. CORS defines a way in which the browser and the server can interact to
determine whether a request is coming from a trusted domain.

CORS Implementation
CORS is implemented per HTTP servlet extension. Access is governed by HTTP Servlet Cross
Origin Policies defined through the dsconfig tool. Trusted domains can be added to these
policies or defined with registered applications in the Administrative Console or with the
dsconfig tool.

Note
By default, HTTP servlet extensions do not have CORS defined.Without a CORS policy
defined, the configuration of the browser will determine application access.

The following are configuration options in dsconfig:

>>>> HTTP Servlet Cross Origin Policy menu

What would you like to do?

1) List existing HTTP Servlet Cross Origin Policies
2) Create a new HTTP Servlet Cross Origin Policy
3) View and edit an existing HTTP Servlet Cross Origin Policy
4) Delete an existing HTTP Servlet Cross Origin Policy

b) back

- 90 -

Chapter 7: Advanced configuration

q) quit

Enter option [b]:

HTTP servlet services
Enabling CORS for a particular servlet can impact another service provided by the same
servlet. It is important to know which services will be affected when enabling CORS for an Data
Governance Server servlet. The following are available servlets and their functions.

Servlet Functions

API Explorer
Servlet Manages requests to the API Explorer, which enables testing Data Governance Server functions.

Authentication
Servlet Manages requests to the /authentication API endpoint (used by the auth-ui).

Configuration Used to enable read and write access to the server's Configuration API.

Documentation
Manages requests for the /docs content, which includes the index.html page, the
generated Configuration Reference Guide, and other product documents.

JWK Servlet Provides access to the JSON Web Key for token validation.

OAuth2 Servlet OAuth2 authorization, token, revocation, and validation endpoints.

Policy Decision
Point Servlet XACML PDP endpoint.

SCIM2 Profile access by SCIM Resource Type using SCIM.

UserInfo Servlet Profile access using OpenID Connect.

Note
Any servlet accepting JavaScript calls from client applications that are hosted at a different
location than that of the Data Governance Server APIs, such as the Velocity servlet, must have
CORS enabled.

HTTP servlet cross origin policies
Two sample policies are available after installation. They can be associated with a servlet
extension, or used as templates for additional policies.

Per-Application Origins – This policy trusts origins that are listed as trusted by applications
registered with the Data Governance Server.

Restrictive – This policy rejects all cross-origin requests unless explicitly defined with the
cors-allowed-origins property. Requests from application origins that are not specified are
rejected with a 403 Forbidden return code.

Each policy accepts values for the following properties.

Property Description

cors-enabled
Specifies if the CORS protocol is allowed by the servlet. The default
value is false.

cors-allowed-methods Specifies the list of HTTP methods allowed for access to resources. The

- 91 -

Data Governance Server Advanced Server Configuration

Property Description

default value is GET.

cors-enable-per-application-
origins

Specifies that a per-application list of allowed origins is consulted. The
default value is false in the Restrictive policy and true in the Per-
Application Origins policy.

cors-allowed-origins

Specifies a global list of allowed origins. If the cors-enable-per-
application-origins property is set to true, and there are
origins listed here, this list is consulted in addition to the per-application
list. A value of "*" specifies that all origins are allowed. The default is an
empty list.

cors-exposed-headers

Specifies a list of HTTP headers that browsers are allowed to access.
Simple response headers, as defined in the Cross-Origin Resource
Sharing Specification, are allowed. The default is an empty list.

cors-allowed-headers

Specifies the list of header field names that are supported for a
resource and can be specified in a cross-origin request. The default
values are Origin, Accept, X-Requested-With, Content-
Type, Access-Control-Request-Method, and Access-
Control-Request-Headers.

cors-preflight-max-age
Specifies the maximum number of seconds that a preflight request can
be cached by the client. The default value is 1800 (30 minutes).

cors-allow-credentials

Specifies whether requests that include credentials are allowed. This
value should be false for servlets that use OAuth2 authorization. The
default value is false.

Assigning a CORS policy to an HTTP servlet extension
CORS policies are assigned to HTTP servlet extensions through dsconfig.

The following are configuration options for the SCIM servlet extension:

>>>> Configure the properties of the SCIM Resource Type SCIM HTTP Servlet Extension
Property Value(s)

1) description -
2) cross-origin-policy No cross-origin policy is defined and no CORS headers are
recognized or returned.
3) base-context-path /scim

?) help
f) finish - apply any changes to the SCIM Resource Type SCIM HTTP Servlet Extension
a) show advanced properties of the SCIM Resource Type SCIM HTTP Servlet Extension
d) display the equivalent dsconfig command lines to either re-create this object or only
to apply pending changes
b) back
q) quit

Enter option [b]: 2

Choose the cross-origin-policy option. Defined policies are listed.

- 92 -

Chapter 7: Advanced configuration

>>>> Configuring the 'cross-origin-policy' property
The cross-origin request policy to use for the HTTP Servlet Extension.

A cross-origin policy is a group of attributes defining the level of cross-origin request
supported by the HTTP Servlet Extension.

Do you want to modify the 'cross-origin-policy' property?

1) Keep the default behavior: No cross-origin policy is defined and no CORS headers are
recognized or returned.
2) Change it to the HTTP Servlet Cross Origin Policy: Per-Application Origins
3) Change it to the HTTP Servlet Cross Origin Policy: Restrictive
4) Create a new HTTP Servlet Cross Origin Policy

?) help
q) quit

Choose the CORS policy to assign to this servlet extension.

Public and private key store configuration
The Data Governance Server server can be configured to validate access tokens with a private
key and expose a public key to enable client applications to read the content of the tokens. If
there are multiple Data Governance Servers in an environment, a key-pair created on one
server will automatically be mirrored on all other servers. The Data Governance Server
supports RSA key pairs.

A certificate key pair can be created by or imported to the server with the dsconfig tool, or
through the advanced setting System -> Key Pairs in the Administrative Console. For
example, the following command can be used to create a new key pair:

$ bin/dsconfig -n create-key-pair --pair-name jwt2

When a key-pair is created or imported, the private key is encrypted by the preferred
encryption settings definition in the encryption settings database and a Certificate Signing
Request attribute is created. The private key and Certificate Signing Request are read-only
properties, but not the certificate chain. The public key is wrapped in the certificate chain.

The Certificate Signing Request can be taken to a Certificate Signing Authority to obtain a
signed, public key certificate. This can then be imported with dsconfig to replace the self-
signed certificate.

Note
The Data Governance Server does not automatically rotate expired keys. If using self-signed
certificates, reset the certificate-chain property when needed. This will regenerate a new
self-signed certificate with the specified validity (self-signed-certificate-validity). If
using signed certificates, renew the certificate (extend its validity) from the Certificate Signing
Authority and set the certificate-chain property in the key-pair.

Long keysmay requiremore CPU for processing and affect performance, if request volume is
high.

- 93 -

Data Governance Server Advanced Server Configuration

Managing server encryption settings
The server encryption settings database is managed by the encryption-settings command-
line tool. The keys stored for the server are used to encrypt tokens, authorization codes,
account linking codes, and external identity provider tokens. Encryption settings definitions can
be created, listed, exported and imported. Help and examples are available with the following
command:

$ bin/encryption-settings --help

Information about the cipher algorithms and transformations available for use is located in the
Java Cryptography Architecture Reference Guide and Standard Algorithm Name Documentation
available on the Oracle website.

Rotating the encryption key
Perform the following steps for routine rotation of the encryption key:

1. Create a new encryption settings definition.

$ encryption-settings create \
 --cipher-algorithm AES \
 --key-length-bits 128

Successfully created a new encryption settings definition with ID <ID>

2. Verify the new definition was created.

$ encryption-settings list
Encryption Settings Definition ID: <old-key>
 Preferred for New Encryption: true
 Cipher Transformation: AES
 Key Length (bits): 128

Encryption Settings Definition ID: <ID>
 Preferred for New Encryption: false
 Cipher Transformation: AES
 Key Length (bits): 128

3. Create a PIN file that will be used for the exported definition.

$ echo "secret" > /tmp/exported-key.pin

4. Export the encrypt settings, referring to the generated encryption settings ID.

$ encryption-settings export \
 --id <ID> \
 --output-file /tmp/exported-key \
 --pin-file /tmp/exported-key.pin

Successfully exported encryption settings definition <ID> to file
/tmp/exported-key

- 94 -

Chapter 7: Advanced configuration

5. For every Data Governance Server instance in the topology, copy the exported definition
and PIN file to the Data Governance Server's host. Import the encryption settings,
without setting them as preferred. Delete the exported settings and PIN file when
finished.

$ encryption-settings import \
 --input-file /tmp/exported-key \
 --pin-file /tmp/exported-key.pin

Successfully imported encryption settings definition <ID> from file
/tmp/exported-key

$ rm /tmp/exported-key
$ rm /tmp/exported-key.pin

6. Perform the previous steps for all existing key pairs, as private keys will still be
encrypted with the previous preferred encryption definition. Delete the existing key pairs
and re-import them (which will automatically use the new preferred encryption definition
for the private key).

7. After importing the encryption settings definition to all Data Governance Servers,
including the instance where the definition was originally created, set the new definition
as preferred.

$ encryption-settings set-preferred \
 --id <ID>

Encryption settings definition <ID> is was successfully set as the
preferred definition for subsequent encryption operations.

Address a compromised encryption key
If an encryption settings definition becomes compromised, perform the following to create a
new definition and update the Data Governance Server servers. See the command line help for
the encryption-settings tool for arguments.

Note
If the Data Governance Server's encryption key is compromised, and the Data Governance
Server has been collecting access tokens for external identity providers through the relying
party feature, make sure those tokens are revoked.

1. Back up the encryption settings backend.

2. Back up the user store.

3. Revoke all authorizations for each client.

4. Stop the HTTPS Connection Handler that is used for the Data Governance Server's REST
APIs.

$ dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:false

- 95 -

Data Governance Server Advanced Server Configuration

5. Create a new encryption settings definition and set it as preferred. The following will
encrypt data using a 128-bit AES cipher:

$ encryption-settings create \
 --cipher-algorithm AES \
 --key-length-bits 128
 --set-preferred

6. Restart the HTTPS Connection Handler.

$ dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:true

If the deployment includes multiple Data Governance Servers, all servers should be taken
offline, and the encryption settings database must be updated on every server.

Note
Do not delete the compromised encryption definition. It will still be used to decrypt tokens,
authorization codes, and links that were encrypted with the previous key.

Customizing the Authentication User Interface
The Data Governance Server interface is implemented as a client-side Angular 2 application
without a backend server component. It is written using TypeScript and JavaScript. The
project’s build process leverages node and npm (like the Administrative Console), and is
packaged as a WAR file. See the Angular 2 documentation for more details about tools and
customization.

The Data Governance Server application is deployed as a Web Application Extension with a
base-context path of /auth-ui. The auth-ui source code is shipped with the Data Governance
Server in the auth-ui-source.tar.gz file in the /webapps directory. This can be extracted
into a directory on a development machine for customization. There are additional details
included in a readme file.

Most of the npm scripts defined in the auth project’s package.json file are subcommands
used by the top-level scripts dev, test and prod.

Example usage:

npm run [dev | test | prod]

Note
The Data Governance Server's Authentication API uses a cookie to track user sessions.
Cookiemanagement and server domains should be considered when deploying any clients
that will use the Authentication API.

The auth-ui implementation uses the /oauth/authorize and the /authentication/* APIs
through AJAX to implement the following views and flows:

l Consent prompts

l Error messages

- 96 -

Chapter 7: Advanced configuration

l Login fields and options

l Second-factor authentication

l Recover username or password

l Register new user account

l IDP-callback

Branding
The auth-ui interface styling comes from the assets/css/ubid-account.css file. To
override its styles, either this file can be edited directly, or an additional CSS override file can
be added to the project and included in the copy-assets script in package.json. For example:

1. Add a file called shopco.css to the assets/css directory.

2. Add the following to the file:

.login-div {
 background-color: #222;
}
.login-container a,
.login-container a:hover {
 color: #e15656;
}

3. Change the package.json file’s copy-assets script to include the new file in the CSS by
replacing this:

cleancss -o ../dist/css/ubid-account.min.css css/ubid-account.css

with this:

cleancss -o ../dist/css/ubid-account.min.css css/ubid-account.css
css/shopco.css

Schema changes
The auth-ui implementation assumes the sample reference schema is being used. To change
the reference schema, surface additional attributes, or use another schema, the auth-ui
project will need to be modified.

The following example adds the
urn:pingidentity:schemas:sample:profile:1.0:birthDate attribute from the sample
reference schema to the registration form:

1. Edit the app/register/register.html.ts file in the auth-ui project.

2. Add the following after the “Mobile Number” field’s form-group element:

<div class="form-group">
 <label for="birthDate" class="control-label">Birth Date</label>
 <input
[(ngModel)]="resource

- 97 -

Topology configuration

['urn:pingidentity:schemas:sample:profile:1.0:birthDate']"
 type="date" class="form-control input-sm" name="birthDate"
 placeholder="Birth Date" tabindex="9">
</div>

3. Optionally disable the customization warning message in
app/register/register.component.ts by replacing this:

isExpectedRegistrableAttributes = (registrableAttributes &&
registrableAttributes.length === 5 &&
registrableAttributes.indexOf('userName') !== -1 &&
registrableAttributes.indexOf('name') !== -1 &&
registrableAttributes.indexOf('password') !== -1 &&
registrableAttributes.indexOf('emails[type eq "home"].value') !== -1 &&
registrableAttributes.indexOf('phoneNumbers[type eq "mobile"].value')
!== -1);

with this:

isExpectedRegistrableAttributes = true;

4. On the Data Governance Server development server, add birthDate to the register-
resource-attribute for the Registration Identity Authenticator with the following
dsconfig command:

$ bin/dsconfig set-identity-authenticator-prop \
 --authenticator-name Registration \
 --add register-resource-
attribute:urn:pingidentity:schemas:sample:profile:1.0:birthDate

Topology configuration
Topology configuration enables grouping servers and mirroring configuration changes
automatically. It uses a master/slave architecture for mirroring shared data across the
topology. All writes and updates are forwarded to the master, which forwards them to all other
servers. Reads can be served by any server in the group.

Servers can be added to an existing topology at installation. See Add an additional Data
Governance Server to a topology for details.

Note
To remove a server from the topology, it must be uninstalled with the uninstall tool. See
Uninstalling theData Governance Server for details.

Topology master requirements and selection
A topology master server receives any configuration change from other servers in the
topology, verifies the change, then makes the change available to all connected servers when
they poll the master. The master always sends a digest of its subtree contents on each update.
If the node has a different digest than the master, it knows it's not synchronized. The servers

- 98 -

Chapter 7: Advanced configuration

will pull the entire subtree from the master if they detect that they are not synchronized. A
server may detect it is not synchronized with the master under the following conditions:

l At the end of its periodic polling interval, if a server's subtree digest differs from that of
its master, then it knows it's not synchronized.

l If one or more servers have been added to or removed from the topology, the servers
will not be synchronized.

The master of the topology is selected by prioritizing servers by minimum supported product
version, most available, newest server version, earliest start time, and startup UUID (a
smaller UUID is preferred).

After determining a master for the topology group (cluster), the topology data is reviewed
from all available servers (every five seconds by default) to determine if any new information
makes a server better suited to being the master. If a new server can be the master, it will
communicate that to the other servers, if no other server has advertised that it should be the
master. This ensures that all servers accept the same master at approximately the same time
(within a few milliseconds of each other). If there is no better master, the initial master
maintains the role.

After the best master has been selected for the given interval, the following conditions are
confirmed:

l A majority of servers is reachable from that master. (The master server itself is
considered while determining this majority.)

l There is only a single master in the entire topology.

If either of these conditions is not met, the topology is without a master and the peer polling
frequency is reduced to 100 milliseconds to find a new master as quickly as possible. If there is
no master in the topology for more than one minute, a mirrored-subtree-manager-no-
master-found alarm is raised. If one of the servers in the topology is forced as master with
the force-as-master-for-mirrored-data option in the Global Configuration configuration
object, a mirrored-subtree-manager-forced-as-master-warning warning alarm is raised.
If multiple servers have been forced as masters, then a mirrored-subtree-manager-forced-
as-master-error critical alarm will be raised.

Topology components
When a server is installed, it can be added to an existing topology, which will clone the server's
configuration. Topology settings are designed to operate without additional configuration. If
required, some settings can be adjusted to fit the needs of the environment.

Server configuration settings
Configuration settings for the topology are configured in the Global Configuration and in the
Config File Handler Backend. Though they are topology settings, they are unique to each server
and are not mirrored. Settings must be kept the same on all servers.

- 99 -

Topology configuration

The Global Configuration object contains a single topology setting, force-as-master-for-
mirrored-data. This should be set to true on only one of the servers in the topology, and is
used only if a situation occurs where the topology cannot determine a master because a
majority of servers is not available. A server with this setting enabled will be assigned the role
of master, if no suitable master can be determined. See Topology master requirements and
selection for details about how a master is selected for a topology.

The Config File Handler Backend defines three topology (mirrored-subtree) settings:

l mirrored-subtree-peer-polling-interval – Specifies the frequency at which the
server polls its topology peers to determine if there are any changes that may warrant a
new master selection. A lower value will ensure a faster failover, but it will also cause
more traffic among the peers. The default value is five seconds. If no suitable master is
found, the polling frequency is adjusted to 100 milliseconds until a new master is
selected.

l mirrored-subtree-entry-update-timeout – Specifies the maximum length of time to
wait for an update operation (add, delete, modify or modify-dn) on an entry to be applied
by the master on all of the servers in the topology. The default is 10 seconds. In reality,
updates can take up to twice as much time as this timeout value if master selection is in
progress at the time the update operation was received.

l mirrored-subtree-search-timeout – Specifies the maximum length of time in
milliseconds to wait for search operations to complete. The default is 10 seconds.

Topology settings
Topology meta-data is stored under the cn=topology,cn=config subtree and cluster data is
stored under the cn=cluster,cn=config subtree. The only setting that can be changed is the
cluster name.

Monitor data for the topology
Each server has a monitor that exposes that server's view of the topology in its monitor
backend, so that peer servers can periodically read this information to determine if there are
changes in the topology. Topology data includes the following:

l The server ID of the current master, if the master is not known.

l The instance name of the current master, or if a master is not set, a description stating
why a master is not set.

l A flag indicating if this server thinks that it should be the master.

l A flag indicating if this server is the current master.

l A flag indicating if this server was forced as master.

l The total number of configured peers in the topology group.

l The peers connected to this server.

- 100 -

Chapter 7: Advanced configuration

l The current availability of this server

l A flag indicating whether or not this server is not synchronized with its master, or
another node in the topology if the master is unknown.

l The amount of time in milliseconds where multiple masters were detected by this server.

l The amount of time in milliseconds where no suitable server is found to act as master.

l A SHA-256 digest encoded as a base-64 string for the current subtree contents.

The following metrics are included if this server has processed any operations as master:

l The number of operations processed by this server as master.

l The number of operations processed by this server as master that were successful.

l The number of operations processed by this server as master that failed to validate.

l The number of operations processed by this server as master that failed to apply.

l The average amount of time taken (in milliseconds) by this server to process operations
as the master.

l The maximum amount of time taken (in milliseconds) by this server to process an
operation as the master.

Updating the server instance listener certificate
To change the SSL certificate for the server, update the keystore and truststore files with the
new certificate. The certificate file must have the new certificate in PEM-encoded format, such
as:

-----BEGIN CERTIFICATE-----

MIIDKTCCAhGgAwIBAgIEacgGrDANBgkqhkiG9w0BAQsFADBFMR4wHAYDVQQKExVVbmJvdW5kSUQgQ2VydGlmaWNhd
GUxIzAhBgNVBAMTGnZtLW1lZGl1bS03My51bmJvdW5kaWQubGFiMB4XDTE1MTAxMjE1MzU0OFoXDTM1MTAwNzE1Mz
U0OFowRTEeMBwGA1UEChMVVW5ib3VuZElEIENlcnRpZmljYXRlMSMwIQYDVQQDExp2bS1tZWRpdW0tNzMudW5ib3V
uZGlkLmxhYjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAKN4tAN3o9Yw6Cr9hivwVDxJqF6+aEi9Ir3W
GFYLSrggRNXsiAOfWkSMWdIC5vyF5OJ9DlIgvHL4OuqP/YNEGzKDkgr6MwtUeVSK14+dCixygJGC0nY7k+f0WSCjt
IHzrmc4WWdrZXmgb+qv9LupS30JG0FXtcbGkYpjaKXIEqMg4ekz3B5cAvE0SQUFyXEdN4rWOn96nVFkb2CstbiPzA
gne2tu7paJ6SGFOW0UF7v018XY1m2WHBIoD0WC8nOVLTG9zFUavaOxtlt1TlhClkI4HRMNg8n2EtSTdQRizKuw9Dd
TXJBb6Kfvnp/nI73VHRyt47wUVueehEDfLtDP8pMCAwEAAaMhMB8wHQYDVR0OBBYEFMrwjWxl2K+yd9+Y65oKn0g5
jITgMA0GCSqGSIb3DQEBCwUAA4IBAQBpsBYodblUGew+HewqtO2i8Wt+vAbt31zM5/kRvo6/+iPEASTvZdCzIBcgl
etxKGKeCQ0GPeHr42+erakiwmGDlUTYrU3LU5pTGTDLuR2IllTT5xlEhCWJGWipW4q3Pl3cX/9m2ffY/JLYDfTJao
JvnXrh7Sg719skkHjWZQgOHXlkPLx5TxFGhAovE1D4qLVRWGohdpWDrIgFh0DVfoyAn1Ws9ICCXdRayajFI4Lc6K1
m6SA5+25Y9nno8BhVPf4q5OW6+UDc8MsLbBsxpwvR6RJ5cv3ypfOriTehJsG+9ZDo7YeqVsTVGwAlW3PiSd9bYP/8
yu9Cy+0MfcWcSeAE
-----END CERTIFICATE-----

If clients that already have a secure connection established with this server need to be
maintained, information about both certificates can reside in the same file (each with their own
begin and end headers and footers).

After the keystore and truststore files are updated, run the following dsconfig command to
update the server's certificate in the topology registry:

- 101 -

Topology configuration

$ bin/dsconfig set-server-instance-listener-prop \
 --instance-name <server-instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set listener-certificate <path-to-new-certificate-file>

The listener-certificate in the topology registry is like a trust store. The public certificates
that it has are automatically trusted by the local server. When the local server attempts a
secure LDAP connection to a peer, and the peer presents it with its certificate, the local server
will check the listener-certificate property for that server in the topology registry. If the
property contains the peer server's certificate, the local server will trust the peer. After this
trust is established, the handshake is completed using the inter-server certificate.

Remove the self-signed certificate
The server is installed with a self-signed certificate and key (ads-certificate), which are
used for internal purposes such as replication authentication, inter-server authentication in the
topology registry, reversible password encryption, and encrypted backup/LDIF export. The
ads-certificate lives in the keystore file called ads-truststore under the server’s /config
directory. If your deployment requires removing the self-signed certificate, it can be replaced.

The certificate is stored in the topology registry, which enables replacing it on one server and
having it mirrored to all other servers in the topology. Any change is automatically mirrored on
other servers in the topology. It is stored in human-readable PEM-encoded format and can be
updated with dsconfig. The following general steps are required to replace the self-signed
certificate:

1. Prepare a new keystore with the replacement key-pair.

2. Update the server configuration to use the new certificate by adding it to the server’s list
of certificates in the topology registry so that it is trusted by other servers.

3. Update the server’s ads-truststore file to use the new key-pair.

4. Retire the old certificate by removing it from the topology registry.

Note
Replacing the entire key-pair instead of just the certificate associated with the original private
key canmake existing backups and LDIF exports invalid. This should be performed
immediately after setup or before the key-pair is used. After the first time, only the certificate
associated with the private key should have to be changed, for example, to extend its validity
period or replace it with a certificate signed by a different CA.

Prepare a new keystore with the replacement key-pair
The self-signed certificate can be replaced with an existing key-pair, or the certificate
associated with the original key-pair can be used.

Use an existing key-pair

If a private key and certificate(s) in PEM-encoded format already exist, both the original
private key and self-signed certificate can be replaced in ads-truststore with the manage-

- 102 -

Chapter 7: Advanced configuration

tool. The following command imports existing certificates into a new keystore file, ads-
truststore.new:

$ bin/manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --private-key-file existing.key \
 --certificate-file existing.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

The certificates listed using the --certificate-file options must be ordered so that each
subsequent certificate is the issuer for the previous one. So the server certificate comes first,
the intermediate certificates next (if any), and the root CA certificate last.

Use the certificate associated with the original key-pair

The certificate associated with the original server-generated private key can be replaced with
the following commands:

1. Create a CSR for the ads-certificate:

$ bin/manage-certificates generate-certificate-signing-request \
 --keystore ads-truststore \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --use-existing-key-pair \
 --subject-dn "CN=ldap.example.com,O=Example Corporation,C=US" \
 --output-file ads.csr

2. Submit ads.csr to a CA for signing.

3. Export the server’s private key into ads.key:

$ bin/manage-certificates export-private-key \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --output-file ads.key

4. Import the certificates obtained from the CA (the CA-signed server certificate, any
intermediate certificates, and root CA certificate) into ads-truststore.new:

$ bin/manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --private-key-file ads.key \
 --certificate-file new-ads.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

- 103 -

Topology configuration

Update the server configuration to use the new certificate
To update the server to use the desired key-pair, the inter-server-certificate property
for the server instance must first be updated in the topology registry. The old and the new
certificates may appear within their own begin and end headers in the inter-server-
certificate property to support transitioning from the old certificate to the new one.

1. Export the server’s old ads-certificate into old-ads.crt:

$ bin/manage-certificates export-certificate \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --export-certificate-chain \
 --output-file old-ads.crt

2. Concatenate the old, new certificate, and issuer certificates into one file. On Windows, an
editor like notepad can be used. On Unix platforms, use the following command:

$ cat old-ads.crt new-ads.crt intermediate.crt root-ca.crt > chain.crt

3. Update the inter-server-certificate property for the server instance in the topology
registry using dsconfig:

$ bin/dsconfig -n set-server-instance-prop \
 --instance-name <instance-name> \
 --set “inter-server-certificate<chain.crt”

Update the ads-truststore file to use the new key-pair
The server will still use the old ads-certificate. When the new ads-certificate needs to
go into effect, the old ads-truststore file must be replaced with ads-truststore.new in the
server’s config directory.

$ mv ads-truststore.new ads-truststore

Retire the old certificate
The old certificate is retired by removing it from the topology registry when it has expired. All
existing encrypted backups and LDIF exports are not affected because the public key in the old
and new server certificates are the same, and the private key will be able to decrypt them.

$ cat new-ads.crt intermediate.crt root-ca.crt > chain.crt

$ bin/dsconfig -n set-server-instance-prop \
 --instance-name <instance-name> \
 --set “inter-server-certificate<chain.crt”

- 104 -

Index

A

access token 38

accepting all tokens 39

accepting external tokens 38

accepting PingFederate tokens 38

access token properties 55

administrative account

adding a root user account 63

Administrative Console

login account 16

URL 17

administrative password 63

attribute mappings 28

authoritative attribute 28, 34

complex attributes 34

described 25

indexing 33

mapping in SCIM Resource Types 33

authoritative attribute 28

B

backend monitors

entries 86

backup tool 61

base DN

configure Directory Server 13

configure user entries 16

base64 tool 61

C

client-specific SCIM attributes 34

collect-support-data tool 61

config-diff tool 61

Config File Handler Backend 99

correlation attribute 26

CORS

configuration 90

create-initial-config 15

create-rc-script tool 61

D

Data Governance Server

attribute filtering 2

deployment considerations 2

described 1

features 2

in a topology 17

installing 14

pluggable authentication 2

tools 61

Directory Server

described 25

installing 12

DNS caching 78

dsconfig

changing policy-combining
algorithm 44

CORS configuration 90

described 62

tool described 61

dsframework tool 61

dsjavaproperties tool 61

dstat

installing on SuSE Linux 10

- 105 -

Index: access token – dstat

Index: encryption-settings tool – oauth2-request tool

E

encryption-settings tool 11, 61

encryption keys 11, 95

endpoints

SCIM 36

error logger 83

F

filter obligation 47

G

Global Configuration object 100

H

HTTP Servlet Cross Origin Policy 91

HTTP servlet extension 92

I

installing

prerequisites 8

scripted install 19

inter-server-certificate property 104

IP address reverse name lookup 79

J

Java

installing the JDK 11

supported versions 8

JEXL

identifiers and variables 45

policy structure details 44

JSON 28

JVM memory allocation

Data Governance Server 15

Directory Server 13

JWT 38

JWT token validation 39

K

key pair configuration 93

L

ldapmodify tool 61

ldappasswordmodify tool 61

LDAPS

configure Data Governance Server 15

configure Directory Server 13

ldapsearch tool 61

ldif-diff tool 62

ldifmodify tool 62

license key 11

Linux configuration

filesystem swapping 9

set file descriptor limit 8

list-backends tool 62

load balancers 80

logging

available log publishers 83

configure log retention and rotation 85

configure log signing 84

create log publisher 83

log compression 84

login account 16

M

manage-certificates tool 103

manage-extension tool 62

metrics

viewing 88

monitoring entries 87

O

oauth2-request tool 62

- 106 -

Index: OAuth2 clients – SSL certificate

OAuth2 clients

enable client-specific SCIM
attributes 34

P

PDP endpoint 51

PingFederate access token validator 38

policy

authorization scenarios 44

decision trace 58

described 40

managing 57

obligations and advice 47

PDP endpoint 51

policy information providers 56

policy structure 44

request processing 48

troubleshoot denied access 59

viewing policy metrics 88

XACML 43

policy set

creating 58

prepare-external-store tool 16, 62

R

remove-defunct-server tool 23, 62

resource operations

scope properties 41, 54

Resource Scope 42

REST API

connection port 15

endpoints 38

restore tool 62

review-licence tool 62

root user DN 16-17

S

SCIM

DELETE operations 50

described 36

GET operations 49

PATCH and PUT operations 50

policy request with obligation 47

POST operations 49

search request 48

SCIM endpoint 36

described 25

search considerations 28

SCIM request properties 54

SCIM resource properties 53

SCIM Resource Type

creating 30

managing 29

REST API endpoints 38

store adapter mapping 33

SCIM schema

overview 28

username uniqueness 29

scopes

applicable scopes returned 55

Authenticated Identity scope 43

managing 43

Resource scope 42-43

scope types and properties 41

self-signed certificate

replacing 102

server shutdown 79

SSL certificate 101

- 107 -

Index: start-server – X-Forwarded values

start-server 62

running in the foreground 21

status tool 62, 88

stop-server 62

example of 21

in-core restart 22

store adapter

correlation attribute 26

mapping attributes 28

primary and secondary adapters 25

search considerations 28

third-party store adapters 89

store adapters

third-party 90

sum-file-sizes tool 62

supported platforms 8

system entropy 10

T

Third-Party Store Adapter 90

token validation

signature validation 39

topology

force master setting 100

inter-server-certificate property 104

master selection 98

monitor data 100

overview 98

replace self-signed certificate 104

server configuration settings 99

subtree polling interval 99

update SSL certificate 101

topology configuration

update SSL Certificate 102

trace logger 83

trace policy decisions 58

troubleshooting

server shutdown 79

SSL 79

U

uid 29

uninstall tool 23

user processes

configuring on Redhat/CentOS 9

user store 11-12

W

Windows service

configuration 22

deregister and uninstall 23

log files 23

X

X-Forwarded values 80

- 108 -

	Chapter 1: Introduction
	Data Governance Server overview
	Data Governance Server features
	Data Governance Server deployment considerations
	Configuration overview
	SCIM
	Data Sources
	Scopes and Policies
	System
	Web Services and Applications
	LDAP Administration and Monitoring
	Logging, Monitoring, and Notifications

	Chapter 2: Installation
	Installation prerequisites
	Supported platforms
	Set the file descriptor limit
	Set the maximum user processes
	Disable filesystem swapping
	Install the dstat utility on SuSE Linux
	Managing system entropy
	Enable the server to listen on privileged ports
	Install the JDK

	Encryption keys
	User store overview
	Ping license keys
	Install the Directory Server
	Data Governance Server Installation Tools
	Install the Data Governance Server
	Configure the Data Governance Server
	Log into the Administrative Console
	Install an additional Data Governance Server in a topology
	Server folders and files
	Plan a scripted installation
	Start the Data Governance Server
	Stop the Data Governance Server
	Schedule a server shutdown
	Run an in-core restart

	Run the server as a Microsoft Windows service
	Register the service
	Run multiple service instances
	Deregister and uninstall
	Log files

	Uninstall the Data Governance Server

	Chapter 3: Data access and mapping
	Data components
	Store adapter mappings
	Directory Servers

	Primary and secondary store adapters
	Defining correlation attributes
	Sample configuration

	SCIM schemas
	Store adapter mappings
	SCIM attribute search considerations
	Maintain username uniqueness
	Define SCIM Resource Types
	Pass-through SCIM Resource Type
	Mapping SCIM Resource Type
	Create a SCIM Resource Type
	Create a Mapping SCIM Resource Type
	Create a Pass Through SCIM Resource Type

	Edit attribute and sub-attribute properties
	Edit store adapter mappings

	Complex attribute mapping
	Client-specific SCIM attributes
	Access data

	Chapter 4: Token access
	Data Governance Server endpoint for OAuth2 clients
	Access token validation
	PingFederate Access Token Validator
	JWT token validation

	Chapter 5: Configure scopes and policies
	OAuth2 scopes
	Authenticated Identity Scope
	Resource Scope

	Create scopes
	Create an Authenticated Identity OAuth2 scope
	Create a Resource OAuth2 scope

	Policy overview
	Requesting operations through SCIM

	Policy structure
	JEXL use in policy structure
	JEXL identifiers and variables
	References containing invalid JEXL characters
	Extended data type support
	JEXL extension functions

	Use obligations and advice
	SCIM resource requests
	Filter obligation

	Policies and request processing
	SCIM resource type policy evaluation
	SCIM search request
	SCIM GET request
	SCIM POST request
	SCIM PATCH and PUT requests
	SCIM DELETE request

	Policy Decision Point (PDP) endpoint

	Policy engine request context
	XACML attribute categories
	Standard attribute use
	Custom XACML function
	SCIM resource properties

	Scope properties
	SCIM request properties
	Applicable scopes
	Access token properties

	Configure the Policy Service
	Policy Information Providers
	PIP Evaluation Order

	Create policies
	Creating a policy set
	Troubleshoot policies with traces
	Troubleshoot denied access

	Chapter 7: Advanced configuration
	General server configuration
	Available configuration tools
	Use the dsconfig tool
	Administrative accounts
	Change the administrative password
	Use the Configuration API
	Authentication and authorization
	Relationship between the Configuration API and the dsconfig tool
	GET example
	GET list example
	PATCH example

	API paths
	Sorting and filtering configuration objects
	Update Properties
	Administrative actions
	Updating servers and server groups
	Configuration API responses

	Configuring HTTP connection handlers
	Domain Name Service (DNS) caching
	IP address reverse name lookups
	Problems with SSL communication
	Conditions for automatic server shutdown
	Configuring traffic through a load balancer
	System alarms, alerts, and gauges
	Alert handlers
	Test alarms and alerts

	Logs and log publishers
	Types of log publishers
	View and configure log publishers
	Create a new log publisher
	Configure log compression
	Configure log signing
	Configure log retention and log rotation policies
	Configure the Log Rotation Policy
	Configure the Log Retention Policy

	Server monitoring
	Backend monitor entries
	View system and consent data through the Data Metrics Server
	Using the status tool

	Server SDK extensions

	Data Governance Server Advanced Server Configuration
	Configuring Third-Party Store Adapters
	Example Third-Party Store Adapter
	Cross-Origin Resource Sharing Support
	CORS Implementation
	HTTP servlet services
	HTTP servlet cross origin policies
	Assigning a CORS policy to an HTTP servlet extension

	Public and private key store configuration
	Managing server encryption settings
	Rotating the encryption key
	Address a compromised encryption key

	Customizing the Authentication User Interface
	Branding
	Schema changes

	Topology configuration
	Topology master requirements and selection
	Topology components
	Server configuration settings
	Topology settings

	Monitor data for the topology
	Updating the server instance listener certificate
	Remove the self-signed certificate
	Prepare a new keystore with the replacement key-pair
	Use an existing key-pair
	Use the certificate associated with the original key-pair

	Update the server configuration to use the new certificate
	Update the ads-truststore file to use the new key-pair
	Retire the old certificate

	Index

