Ping

|dentity.

Ping Identity® Data Governance
Broker Administration Guide

Version 6.0.0.0






Copyright

Copyright © 2016 UnboundID Corporation
All rights reserved.

This document constitutes an unpublished, copyrighted work and contains valuable trade
secrets and other confidential information belonging to UnboundID Corporation. None of the
material may be copied, duplicated, or disclosed to third parties without the express written
permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or
through such sites or resources. UnboundID will not be responsible or liable for any actual or
alleged damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such sites or
resources. UnboundID and the UnboundID Logo are trademarks or registered trademarks of
UnboundID Corp. in the United States and foreign countries. All other marks referenced are
those of their respective owners.




Table of Contents

CoPY Gt . i
P e A G X
AU NG X
DOCUMENEAtiON .. . X
Chapter 1: Introduction ... il 1
Data Governance Broker OVerVieW ... .. .. 2
Data Governance Broker Features ... ... ... .. 2
Data Governance Broker Architecture ... . . . 3
Data Governance Broker Configuration Overview ... . ... . ... 5
Identity Provider SerViCeS .. ... 5
SCIM il 7
Data SOUMCES 7
Authorization and PoliCies ... . 8
SV S M L 8
Web Services and Applications ... 9
LDAP Administration and Monitoring ... .. 9
Logging, Monitoring, and Notifications ... ... . . . ... 9
Sample Data Governance Broker Configuration ... .. ... ... 10
Data Governance Broker as both a Resource and Identity Provider Server ............._. 10
Data Governance Broker as a Resource Server Only ... . 11
Chapter 2: Installation . 13
Installation Prerequisites ... . 14
Supported Platforms L 14
Set the File Descriptor Limit .. . 14
Setting the Maximum User ProCesses ... ... ... 15
Disable Filesystem SwWapping ... .. 15
Installing the dstat Utility on SUSE LiNUX ... . 16
Managing System EntropY ... . 16
Enabling the Server to Listen on Privileged Ports on Linux _..._................................ 16
Installing the JDK L 17
AboUt ENCryption KeY S .o 17
User Store OVerVIEW ... 17
Installing the Directory Server .. . 17



Data Governance Broker Installation Tools ... ... . 19

Installing the Data Governance Broker .. ... . . 19
Configuring the Data Governance BroKer ... ... 21
Logging into the Administrative Console ... L 22
Installing Additional Data Governance Brokers ina Topology ........ ... ........... 23
Server Folders and Files ... 24
Planning a Scripted Install . 25
Scripted Installation ProCess ... . L. 25
Installing Sample Users . 26
Run the Data Governance BrokKer ... . .. 27
Stop the Data Governance BroKer ... 27
Schedule a Server Shutdown .. .. 28
Run an In-Core Restart .. . 28
Uninstalling the Data Governance BroKer ... ... i 28
Using the Data Governance Broker Sample Application ... ... ... ............. 29
Chapter 3: Data Access and Mapping ... ... 30
Data ComMpPONENS il 31
Public Endpoints: UserInfo and SCIM ... 31
OpenID Connect Claims Map (UserInfo Map) ... ..o 31
StOre AdapPrerS o 31
Store Adapter Mappings ... . 31
DIrECEOrY SOIVEIS .. 31
Store Adapter OVerVieW . 32
Primary and Secondary Store Adapters ... ... 32
Defining Correlation Attributes . . . 33
Sample Configuration ... . 33
SCIM SCNEIMAS ..o 34
Store Adapter Mappings ..o 34
SCIM Attribute Search Considerations ... ... .. .. 35
Maintaining Username UNiQUENESS . .. 36
Defining SCIM ReSOUICE TYPES ... 36
Pass-through SCIM RESOUICE TYPE .. ... 36
Mapping SCIM Resource Type Attributes ... . ... ... 37




Creating @ SCIM ReSOUINCE TY PO o i 37

Creating a Mapping SCIM Resource TYPe ... . 37
Creating a Pass Through SCIM Resource Type ... . L 38
Editing Attribute and Sub-Attribute Properties ... ... ... 38
Editing Store Adapter Mappings ... 40
Defining OpenID Connect Claims .. 41
OpenlID Connect Claims and SCOPES . ... ... 41
Complex Attribute Mapping .. ... 41
Defining SCIM Sub Resource Type Handlers ... . . . 42
Creating @ SCIM Sub ResOUIrCe TYPe .. il 43
Creating a SCIM Sub ReSOUIrCe TY PO .. 43
OAuth2 Client-Specific SCIM Attributes ... .. L 44
AcCesSiNg Data .. 45
Chapter 4: Identity Provider Services and User Authentication ... ... ......__....... 46
Authentication Processing OVerVieW ... 47
Authentication Context .. . L 48
Login and Second Factor FIOWS . . 49
Authentication Chain .. 49
ACCOUNE FlOW .o 50
Identity Authenticators .. L 50
Authentication Configuration EXamples ... . . 52
Username Password Authentication ... ... ... 52
Adding Social Login through an External Identity Provider ... .. .. ... ... ... ... ......... 53
Adding Account Registration ... .. 53
Adding Second Factor Authentication ... . ... ... 54
Adding ACCOUNE RECOVEIY 54
OpenID Connect ReqUEST . ... L 55
OpenID Connect RESPONSE . L 55
The Data Governance Broker as a Relying Party ... .. 56
Creating an Account through Identity Provider Login ... ... . . 56
Identity Provider Configuration . ... . . 57
Defining Access ToKen Providers ... ... L 58
Defining Account Flow Handlers ... . 59
Defining Authentication Chains .. ... . 59
Defining Authentication Context Classes . ... ... ... . 60

_iv_



Defining the Authentication Service .. ... ... 61

Creating an Identity Authenticator ... ... . ... 61
Creating an OpenID Connect Claims Map ... . il 63
Defining the OpenID Connect ServiCe ... . . 64
Creating an External Identity Provider ... . . . 64
Configuring @ Redirect URI .. 65
Properties For FacebooK ... i 66
Properties For GOOgle ... . 66
Properties For OpenlID Connect ... .. 66
Properties FOr SAML ... 67
Defining Telephony Messaging Providers ... . . . 67
Defining Verification Code Generators ... ... 67
Chapter 5: OAuth2 Clients and Token ACCeSS ... ... ... i 69
OAuth2 Client Considerations ... .. . 70
OAuth2 Authorization Grant TYPesS ... L 70
OAuth2 Authorization RESPONSE TYPES ... 71
Adding an OAUth2 Client L . 71
The Data Governance Broker Token Endpoint .. ... o . 73
RO QUEST 73
RES PN . 73
Token Validation by the Data Governance BroKer ... .. . . 73
REQUESE . 74
RES P ONS il 74
Token Revocation by the Data Governance Broker ... ... .. ... 75
Token Validation by an External Resource Server ... ... 75
Obtaining a Refresh ToKeN . . 76
Accepting External Access TOKEeNS ... 77
Data Governance Broker Endpoints for OAuth2 Clients ... ... ... 77
Chapter 6: Configuring Scopes and XACML Policies ... ... ... ... ... 79
OAUEN 2 VeIV W L 80
OAULN 2 SCOPES . .. 80
Authenticated Identity SCOPe ... .. . 81
RESOUINCE SO oL 82




Scope Authorization ProCessing ... .. . . 83

Satisfy Authentication Context Requirements (ACRS) ... ... oot a. 83
Prompt for and Capture ConSent ... ... 83
Crealting SCOPES . .. . 84
Creating an Authenticated Identity OAuth2 Scope ... . ... . .. . ... 84
Creating a Resource OAUthZ SCOpe ... . . 85
XACML Policy OVerVIieW L 85
Authenticating the End-user Prior to Granting an Access Token _............................. 86
Requesting an Access TOKeN 87
Requesting Operations through SCIM or UserInfo ... ... . ... ... . ... ............... 88
POliCY SErUCTUNE 89
Requesting JISON-Formatted Data ... .. ... . 89
Using Obligations and AdViCe ... . 89
Authentication Requests .. . il 90
OAuth2 Authorization Requests .. . L 90
SCIM Resource ReqUeSTS ... . 90
Policies and Request Processing Per Endpoint ... .. .. . ... 91
OAuth2 Endpoint Policy Requests ... ... . 91
SCIM Resource Type Policy Evaluation ... ... . . 92
SCIM Sub-Resource Operation Policy Evaluation ... ... ... ... 93
SCIM Search RequUest .. . 93
SCIM Get Request o L 94
SCIM POST ReqUEST il 95
SCIM PATCH and PUT ReQUESTS .. ... 95
SCIM Delete ReqUest ... o L 96
UserInfo Endpoint Policy Evaluation ... . .. 96
Policy Decision Point (PDP) Endpoint ... .. 96
Policy Engine Request ConteXt ... L 96
XACML Attribute Categories ... L 97
Standard XACML Attribute Use ... . . 98
Custom XACML FUNCHiON ... 99
ReSOUIrCe Properties . 99
ACR Properties . 99

S COPE ProPer i eS . 100
SCIM ReSOUIrCe Properties .. ... 100

_Vi_



Accessing Referenced SCIM Resource Attributes ... ... . 100

OAUEN2 Client Properties ...l 101
ACR ProPeI i ES .. 101
S0P PrO eI O L 101
HT TP ReqUESt Properties ... 102
SCIM ReqUEST Properties ... 103
APPIICAbIE SCOPES . ...l 103
SESSION Pro et S L 104
ACCESS TOKEN Properties .. ... 104
Policy Sections and Functions Described ... . ... ... 105
The Scope Validation PoliCY ... o 106
Section DesCripliONS oo 108
Configuring the Policy ServiCe .. ... 110
Policy Information Providers ... . 110
PIP Evaluation Order .. .. . L 110
Creating XACML PoliCIeS .. ... 110
Creating @ PoliCy St . oo L 112
Testing PoliCies ... . 112
Troubleshooting Policies with Traces ... ... .. 112
Troubleshooting Denied ACCESS .. ... L 113
Unsupported XACML FeatUres .. ... 114
Chapter 7: Advanced Configuration ... ... 116
General Server Configuration ... 117
Available Configuration ToOIS ... ... 117
Using the dsconfig to0l .. 118
Administrative ACCOUNES .. . 119
Using the Configuration AP L 119
Authentication and Authorization ... ... 119
Relationship Between the Configuration API and the dsconfig Tool ...................... 120
GET EXamMIPle 121

GET List EXamIPle 122

PAT CH EXamMIle ..o 124

AP Paths .. 127

- vii -



Sorting and Filtering Configuration Objects ... ... .. 129

Updating Properties .. 129
Administrative ACtiONS . 131
Updating Servers and Server GrOUPS ... ..o 131
Configuration API RESPONSES ... L 132
Configuring HTTP Connection Handlers ... .. . 133
Domain Name Service (DNS) Caching ... i 134
IP Address Reverse Name LOOKUPS . ... e 134
Problems with SSL Communication ... ... .. 135
Conditions for Automatic Server Shutdown ... ... ... ... ... 135
Configuring Traffic Through a Load Balancer ... ... ... 135
System Alarms, Alerts, and GaUges . ... 136
Alert Handlers oL 137
Test Alarms and Aler s ... 137
Working with Logs and Log Publishers . ... . . 138
Types Of Log PUDLiShErsS o 138
Viewing and Configuring Log Publishers ... .. . 138
Creating a New Log Publisher .. . 139
Configuring Log CompressiON .. . 139
Configuring Log Signing ... oL 140
Configuring Log Retention and Log Rotation Policies ... ... ... ... ... ... 140
Configure the Log Rotation Policy ... .. 141
Configure the Log Retention PoliCy ... ... i 141
MoNItOriNg the SerVar ... 142
Backend Monitor Entries .. .. .. 142
Viewing System and Consent data Through the Data Metrics Server ..._............... 143
Using the status Tool ... 144
Server SDK EXEeNSIONS oo L 144
Data Governance Broker Advanced Server Configuration ... ... ... 145
Configuring Third-Party Store Adapters ... . L 145
Example Third-Party Store Adapter ... . 145
About Cross-0rigin Resource Sharing SUpport ... . 146
CORS Implementation ... o 146
HTTP Servlet Services ... . 146
HTTP Servlet Cross Origin Policies ... ... . 147



Assigning a CORS Policy to an HTTP Servlet Extension ... .. ... i .. 148

Public and Private Key Store Configuration ... ... ... ... 149
Configure Authentication with a SASL External Certificate ... ... ... 149
Managing Server Encryption Settings ... .. . 151
Rotating the ENnCryption KeY ... o e 151
Addressing a Compromised Encryption Key ... ... . 153
Customizing the Authentication User Interface ... ... ... 153
Branding .o 154
Schema Changes ... .. 155
Topology Configuration .. il 156
Topology Master Requirements and Selection ... . ... 156
Topology CoOmMPONENES .. 157
Server Configuration Settings .. ... . 157
ToPOlogy SettiNgS ... 158
Monitor Data For the Topology .. ... ol 158
Updating the Server Instance Listener Certificate ... ... ... . 159
INAeX L 160

_iX_



Preface

The PingData Data Governance Broker Administration Guide contains concepts and procedures
to configure an Identity Provider server, Resource server, or both. This includes defining
Identity Provider settings, token requirements, XACML policies, OAuth2 clients, and the
resources that can be requested. Management tasks and tools are also described.

Audience

This guide is intended for identity architects and administrators who are designing and
implementing an identity infrastructure solution. Familiarity with system-, user-, and network-
level security principles is assumed. Knowledge of directory services principles is
recommended.

To use this guide effectively, readers should be familiar with the following subjects:

REST web services and principles
JSON or XML serialization formats
XACML 3.0

OAuth2 specification

OAuth2 Bearer Token specification
SCIM Schema 2.0

OpenID Connect 1.0

Documentation

The Data Governance Broker includes the following documents, available from the index.html
page in the docs folder of the server.




Preface

« PingData Data Governance Broker Administration Guide (PDF)

« PingData Data Governance Broker REST API Reference (HTML)

« PingData Data Governance Broker Configuration Reference Guide (HTML)
« PingData Data Governance Broker Command Line Reference (HTML)

o PingData Data Governance Broker API Explorer

_Xi_



Chapter 1: Introduction

Companies need to be able to monetize valuable user data, while balancing data privacy
regulations. The Data Governance Broker provides solutions to manage and monitor the
authorization and authentication of user data access.

Topics include:

Data Governance Broker Overview

Data Governance Broker Features

Data Governance Broker Architecture

Data Governance Broker Configuration Overview

Sample Data Governance Broker Configuration




Chapter 1: Introduction

Data Governance Broker Overview

Most organizations today are working toward creating a unified customer profile. An essential
part of creating that common profile is to centralize multiple, overlapping accounts and to
define the logic and security criteria for determining which applications should access data in a
profile. The Data Governance Broker enables managing large amounts of customer data while
ensuring end-user privacy.

The Data Governance Broker can act as a Resource server, or both a Resource server and
Identity Provider server.

« As a Resource and Identity Provider server, the Data Governance Broker provides
authorization decisions for client applications, provisioning systems, API gateways and
analytical tools in architectures involving personal, account, or sensitive identity data.

« As a Resource server, it provides restricted access to end users' information.

The Data Governance Broker is designed to make authorization decisions based on XACML
Policies and user consent. It is both the policy decision point and the OAuth2 Identity Provider
for externalized authorization. Because the Data Governance Broker centralizes the policy and
consent functions, security rules are applied consistently across all applications. In addition, a
common identity and single view of the customer can be configured by mapping account
resources from multiple backend Directory Servers to SCIM Resource Types defined in the
Data Governance Broker.

Data Governance Broker Features

The Data Governance Broker provides the following features for OAuth2 clients to securely
access resources:

« Support for multiple backend Servers. The Data Governance Broker supports
multiple directory servers, with native support for the Ping Identity Directory Server and
extension points for others. Directory Servers serve as user stores to provide the
resources that are requested by OAuth2 clients. OAuth2 clients can be written one time
for access to the Data Governance Broker and receive data from any type of
infrastructure backend.

. Standards-based authentication and authorization. The Data Governance Broker
provides OAuth2 and OpenID Connect-compliant functionality for authentication with the
Data Governance Broker and authorization to account resources. OpenID Connect
provides the authentication layer on top of the OAuth2 protocol. It enables OAuth2 clients
to verify the identity of a user based on the authentication performed by an Authorization
Server, and obtain information about the user based on authorization flows and policy
rules.




Data Governance Broker Architecture

« Modular authentication and authorization flows. The Data Governance Broker
enables multi-factor authentication and a modular (chain-based) configuration for
account flows.

« Authorization based on XACML policy and User Consent. The Data Governance
Broker ensures that data is provided to authorized OAuth2 clients through the use of
defined OAuth2 Scopes and XACML policies. The XACML (eXtensible Access Control
Markup Language) standard is used to define XML access control policies, and the
processing model that determines how to evaluate requests based on rules defined in the
policies. Policies can be based on industry rules, corporate policy, or consent granted by

customers.

« SCIM Resource Types. SCIM Resource Types determine what attributes can be
accessed by an OAuth2 client through the Data Governance Broker. The SCIM resource
type defines the resource name, endpoint URL, schemas, and other metadata that
indicate where a resource is managed and how it is composed.

. Support for social login. The Data Governance Broker can act as a relying party,
enabling users to log into OAuth2 clients and update or create Data Governance Broker
accounts with external identity provider accounts from Facebook, Google, a SAML
provider, or an OpenID Connect provider.

. User interface sample. A My Account sample application, in the <server-
root>/samples directory, can be installed with the Data Governance Broker to
demonstrate how a client application makes requests for user data, how an end user can
grant consent for the application to access that data, and how the Data Governance
Broker returns that data.

« API Explorer. The API Explorer is an interactive way to test data requests against
various endpoints, and determine if authorization and XACML policy configuration is
correct. The API Explorer works directly with the Data Governance Broker so that
configuration, testing, and updates can be done seamlessly. Access the API Explorer
from the Documentation Index page, <server-root>/docs/index.html, or the server's
HTTPS endpoint https://<host>:<http-port>/explorer.

« Authentication Developer Portal. The Developer Portal enables client application
developers to work with the authentication, SCIM, and UserInfo APIs to design
applications that can access Data Governance Broker resources. See the Authentication
Developer Portal for configuration examples (https://developer.unboundid.com/).

Data Governance Broker Architecture

The Data Governance Broker can act as both the Identity Provider and Resource server for
OAuth2 clients requesting access to user data. Clients are granted authorization through an




Chapter 1: Introduction

OAuth2 flow and receive access through OpenID Connect and SCIM endpoints. The Data
Governance Broker performs the following functions:

Authorize an OAuth2 access token request, where the scopes requested represent
resources that are served by the Data Governance Broker’s SCIM endpoint.

Authorize an OAuth2 access token request, where the scopes requested represent
resources that are served by an external Resource server.

Authorize a resource (SCIM) request where the access token provided was generated by
the Data Governance Broker’s Identity Provider Service.

Authorize a resource (SCIM) request where the access token provided was generated by
an external identity provider.

The following illustrates the Data Governance Broker architecture and its components.

Data Broker 6.0 Internal Architecture

Authentication Uls My Account App
Jauthn foauth Juserinfo facim
[
Authentication || Authorization Resource jer
Context Class Scopes Tokens
Chains Consem Scopes

Authenticators Context Class Sub Resource

XACML Policy Engine POP AFI

Auihentication Palicies || Authorizasion Po

Policy Pollcy Infommatian Point (FF

Policy Store Engine PIP
A T i
Resource Type
SCIM Schema Resource Mapping
Custom * Data Store
. Hdapter Adapter
‘_
'_ A
Other |
1 ata
, Data | .
| Store
| Stora

Extiriiacn Poifits




Data Governance Broker Configuration Overview

Planning a Data Governance Broker deployment should start with determining its role as a
Resource server. This includes defining what data can be accessed and updated from backend
Directory Server, which can be configured as User Stores that supply or store user data. User
Stores that have a schema defined can surface attributes and attribute properties. SCIM
Resource Types are then defined to enable access to OAuth2 clients, and provide a unified view
of identity data found in multiple Directory Servers through Store Adapter Mappings. OAuth2
scopes are created to define the resources that can be requested by an OAuth2 client and the
actions that can be performed on those resources.

If using the Data Governance Broker as an Identity Provider, the Identity Provider Service
must be defined. This includes setting OAuth2 authorization token and OpenlID Connect access
token requirements, the default SCIM Resource Type and any account registration or recovery
actions that can be performed. An external identity provider can also be configured to manage
authentication.

OAuth2 clients that can request access to scopes are defined, including the OAuth2 grant types
that can be used to access resources. Access token settings are inherited from the Identity
Provider Service. Make sure that application development is done with consideration for the
scopes that will be requested and how XACML policies will process these requests. See Policies
and Request Processing Per Endpoint.

XACML policies determine if a client can access requested scopes, based on the information
provided with the request. Obligations within the policy can define conditions for access, such
as requiring user's consent. XACML policies then determine the operations that can be
performed on attributes within the requested scopes. Obligations can again define conditions
for limiting access to certain attributes.

The Data Governance Broker also tracks the consent that end users grant for access to their
data. Consent can be managed by a requesting application or separate application through
requested operations in OAuth2 scopes.

Data Governance Broker Configuration Overview

Data Governance Broker configuration defines all server services, policies, applications,
resources, and the mapping of data from one or more backend Directory Servers.
Configuration can be done from the command line with the dsconfig tool or through the
Administrative Console interface. All settings have associated help text in the interface and in
the linked Configuration Guide. The Configuration Guide contains details and relationship
specifics for all configuration objects and is available from the Administrative Console
interface or from the <server-root>/docs/index.html page.

Identity Provider Services

Identity Provider Services contain the components and services that the Data Governance
Broker needs to process requests as an identity provider or through an external identity
provider. If multiple Data Governance Brokers are grouped in a topology, all configuration of
these settings is mirrored across all servers in the topology. See Topology Management for
more information. Identity Provider services include:




Chapter 1: Introduction

. Access Token Providers - Defines how identity and authorization information is
delivered by OAuth2 access tokens. The JWT Access Token Provider is provided as a
default, if the create-initial-broker-config tool was used after Data Governance
Broker installation. The access token provider is used by the access-token-provider
property of the OpenID Connect Service.

« Account Flow Handlers - Defines account flow requirements prior to the authorization
of requested data. Available flows include Password Recovery, Username Recovery, and
Verify Account.

« Authentication Chains - Defines an authentication process in which a user must supply
credentials for one or more Identity Authenticators as listed in the chain. Available
chains include Account Verification, Login, Second Factor, and Username and Password
Recovery.

« Authentication Context Classes - Defines a set of authentication requirements that
must be met before access to OAuth2 scopes can be granted. A default class and multi-
factor authentication (MFA) class are available.

« Authentication Service - Defines the settings for user authentication and session
management.

. External Identity Providers - Specifies the identity providers that can be used to log
into the Data Governance Broker, such as Google, Facebook, an OIDC provider, or a
SAML provider.

. Identity Authenticators - Defines the authentication schemes that can be used to log
into the Data Governance Broker. This is required by the Identity Provider Service.

« OAuth2 Clients - Specifies the OAuth2 clients that can request access to resources
based on authorization and policy.

. OpenID Connect Claims - If using the /userinfo endpoint to access resources,
claims are defined to determine the information that can be accessed.

« OpenlID Connect Service - Defines the OpenID Connect properties that the Data
Governance Broker will use including access token issuer and duration, and the
Authentication Context Classes (ACRs) that will be used.

. Telephony Messaging Providers - Defines the method for delivering messages about
a user's account by telephone, such as SMS or voice.

. Verification Code Generators - Defines the process for generating a verification code
for account details, such as email address or phone number. These can be used by
Identity Authenticators.




Data Governance Broker Configuration Overview

SCIM

The SCIM protocol is an application-level, REST protocol for provisioning and managing identity
data. The SCIM Schema provides a schema and extension for representing users and groups.
Only those attributes defined in the SCIM Resource Type can be accessed through the Data
Governance Broker. Any changes to these settings are saved to all Data Governance Brokers in
a topology.

« SCIM Resource Types - Defines attribute mapping from a SCIM schema to native
attributes found in Directory Server entries, which provides a unified view of identity
data found in multiple Directory Servers. A pass-through SCIM Resource Type can also
be created to allow the addition of new attributes that are not mapped to any in a
Directory Server. The SCIM schema defines the attributes that comprise a SCIM
Resource Type. The SCIM Resource Type determines the attributes that can be accessed
by a client application.

« SCIM Schemas - Specifies the SCIM 2.0 schemas for data that can be accessed from
backend Directory Servers. Schemas provide the basis for creating SCIM Resource
Types.

« SCIM Sub Resource Type Handlers - Defines a SCIM sub resource type that can be
used to process extended operations on a SCIM resource type, such as validating an
email address or making sure an account password meets specified requirements.

Data Sources

Data sources are the servers that house the resources governed by the Data Governance
Broker.
. External Servers - Lists the LDAP Directory Server instances that are configured with
the Data Governance Broker.

. LDAP Health Checks - Checks the status of external LDAP servers on a regular basis,
and examines failures to determine if the server has become unavailable. This is an
advanced setting.

. Load Balancing Algorithms - Used to determine the appropriate LDAP external server
to use to process a request. They may be used to provide improved availability and
performance by distributing the workload across multiple backend servers. This is an
advanced setting.

. Store Adapters - Provides a Directory Server interface to the Data Governance Broker.
Changes or additions to Store Adapters are saved to all Data Governance Brokersin a
topology. Third-party store adapters can be created with the Server SDK.




Chapter 1: Introduction

Authorization and Policies

These settings define the rules for accessing resources through the Data Governance Broker.
Any changes to these settings are saved to all Data Governance Brokers in a topology.

Access Token Validators - Validates an access token used to access protected
resources (OAuth2 scopes). Validators are used to decode tokens and return token
metadata. The Data Governance Broker's local access token validator can be used, or a
third-party token validator can be defined using the Server SDK.

OAuth Scopes - Specifies the data being requested with an OAuth2 authorization
request from an OAuth2 client.

Policy Information Providers - Retrieves XACML attributes from a Policy Information
Point (PIP) for policy evaluation. This is an advanced setting.

XACML Policies - Specifies the rules for how requested resources can be shared with
OAuth2 clients, based on the OASIS Committee Specification 01, eXtensible access
control markup language (XACML) Version 3.0. The Data Governance Broker provides
several default policies that can be used or modified.

XACML Policy Service - Contains the properties that affect the overall operation of the
Data Governance Broker Policy Decision Point (PDP).

System

System settings define communication, connection, and the criteria for triggering alarms
regarding the server's resources. Changes to these setting can be saved to the local server or
saved to a group of servers. Most are not mirrored across a topology, unless otherwise stated.
See General Server Configuration for more information.

Connection Handlers - Defines the settings for handling all interaction with the clients,
including accepting connections, reading requests, and sending responses.

Global Configuration - Specifies the SMTP server, password policies, and LDAP
request criteria configured for this server.

Key Manager Providers — Manages the key material used to authenticate to another
server. This is an advanced setting.

Key Pairs - Defines the key pair that can be used to provide credentials for digital
signatures. An existing key pair can be imported or a new one can be generated by the
server. This configuration object is mirrored across a topology.

Locations - Lists the locations in which servers that are accessed by the Data
Governance Broker reside.

Trust Manager Providers - Determine whether to trust certificates presented to the
server. This is an advanced setting.




Data Governance Broker Configuration Overview

. Trusted Certificates - Specifies a trusted public key that can be used to verify
credentials for digital signatures and public-key encryption. This configuration object is
mirrored across a topology.

Web Services and Applications

These settings define the HTTP connection criteria for application access to the Data
Governance Broker. Changes to these setting can be saved to the local server or saved to a
group of servers. They are not mirrored across a topology. See General Server Configuration
for more information.

« HTTP Configuration - Defines configuration for the Data Governance Broker HTTP
Service. This is an advance setting and cannot be changed other than to include stack
traces in error pages.

« HTTP Servlet Cross Origin Policies - Defines the configuration for handling Cross-
Origin HTTP requests using the Cross Origin Resource Sharing (CORS) protocol. An
instance of HTTP Servlet Cross Origin Policy can be associated with multiple HTTP
Servlet Extensions.

« HTTP Servlet Extensions - Defines classes and initialization parameters used by a
servlet invoked by an HTTP connection handler.

« Web Application Extensions - Specifies the configuration settings for the
Administrative Console and any other web applications that are configured to work with
the Data Governance Broker.

LDAP Administration and Monitoring

These are all advanced settings to manage the local server's accounts, account requirements
and security settings, and backend configuration. Changes to these setting can be saved to the
local server or saved to a group of servers. They are not mirrored across a topology. See
General Server Configuration for more information.

Logging, Monitoring, and Notifications

These settings define the notification criteria for system alerts, and the logging criteria for
actions within the Data Governance Broker. Changes to these setting can be saved to the local
server or saved to a group of servers. They are not mirrored across a topology. See General
Server Configuration for more information.

« Alarm Manager - Defines the severity of alarms to be raised.

« Alert Handlers - Specifies the Alert Handlers used to notify administrators of problems
or events that occur in the Data Governance Broker.

« Gauges - Specifies server performance thresholds and circumstances that merit the
raising of an alarm.




Chapter 1: Introduction

« Gauge Data Sources - Defines the source of gauge data obtained from the server,
including available memory and disk space.

. LDAP SDK Debug Logger - Records debug messages generated by the LDAP SDK for
Java. This is an advanced setting.

« Log File Rotation Listeners - Defines an action for the server to take before a log file
is rotated out of service, such as copying the file to a new location. This is an advanced
setting.

« Log Publishers - Defines the distribution of log messages from different loggers to a
destination.

« Log Retention Policies - Defines how long logs should be kept.

« Log Rotation Policies - Specifies when log files should be rotated.

« Monitor Providers - Provides information about the state of the server or server
components.

Sample Data Governance Broker Configuration

The following provides a reference sequence of tasks based on the role that the Data
Governance Broker will perform in an existing environment. These tasks can be performed
from the Data Governance Broker Administrative Console or with the dsconfig tool. All
components of the identity infrastructure should be identified before beginning system
configuration.

Data Governance Broker as both a Resource and Identity Provider Server

The following is a sample workflow for the Data Governance Broker as both an Identity
Provider and Resource server:

1. Determine how user data will be made available to OAuth2 clients. This includes
determining the backend user stores that can be accessed, and how data across multiple
stores will be correlated. A store adapter is installed with any LDAP Directory Server, or
third-party adapters can be created with the Server SDK. A SCIM Schema can be used to
surface attributes in the Directory Server, and is needed if mapping attributes from
multiple Directory Servers to create a unified identity.

2. After SCIM Schemas are configured, resources from each configured user store are
available for mapping. Configure SCIM Resource Types to make resources available to
requesting OAuth2 clients. A SCIM Resource Type is required for the Identity Provider
Service.

3. Configure the Identity Provider Service and the authentication used by the Data
Governance Broker. Settings enable the OpenID Connect and OAuth2 functionality, login
and second factor authentication flows, and self-service account flows, if needed.

-10 -



Sample Data Governance Broker Configuration

4. Identify the OAuth2 scopes that can be accessed. OAuth2 scopes define the attributes
that can be requested and the actions that can be performed. Scopes are required by
OAuth2 clients when sending requests to the Data Governance Broker.

5. Add the OAuth2 clients that can request access to data. The application client ID, client
secret, scopes, and OAuth2 flows are defined with each client. This information will be
needed by any client requesting data from the Data Governance Broker.

6. Determine the XACML policies that will govern data access. Policies determine access
based on the OAuth2 client making the request, the attributes requested, and the
intended action to be taken on each attribute. Policies that are installed with the
Directory Server are configured to use the OAuth2 scopes that are installed as well. Both
can be customized. If policies need to access decision-making information outside of the
Data Governance Broker configuration, a custom Policy Information Provider can be
configured with the SDK, or with the help of Ping Identity Professional Services.

7. Policies determine what and how OAuth2 clients access resources. Make sure that policy
rules work as expected by using Log Publishers to verify that the requests to and
responses from the Data Governance Broker are as expected.

8. If using the /userinfo endpoint, data must be mapped from the Identity Provider SCIM
Resource Type with OpenID Connect Claims.

9. OAuth2 clients can be configured to surface an external identity provider (Facebook,
Google, SAML, or OpenID Connect) for end users to log into the Data Governance Broker.

10. If there is an PingData Data Metrics Server installed, it can be configured to display
system and consent metrics for the Data Governance Broker. See the PingData Data
Metrics Server Administration Guide for information about configuring the Data Metrics
Server.

Data Governance Broker as a Resource Server Only

If using the Data Governance Broker as a Resource server only, resources will need to be
created manually, and SCIM Resource Types configured. Configuration in this scenario will rely
on an existing identity deployment and the type of authorization that the Data Governance
Broker is expected to provide. The following is a sample workflow for a Resource server:

1. Create the OAuth2 Resource Scopes that can be accessed by OAuth2 clients.

2. Register the OAuth2 clients that can request access to data. The application client ID,
client secret, scopes, and OAuth2 flows are defined with the client.

3. Determine the XACML policies that will govern data access. Policies can base access
decisions on the OAuth2 client making the request, the attributes requested, the
environment information that is available, and the intended action to be taken on each

-11 -



Chapter 1: Introduction

attribute. Policies that are installed with the Data Governance Broker are configured to
use the OAuth2 scopes that are installed as well. Both can be customized.

4. Since the Data Governance Broker is not the Identity Service Provider, a custom Policy
Information Provider must be configured with the SDK to validate access tokens from an
external authorization server.

5. Policies determine what and how OAuth2 clients access resources. Make sure that policy
rules work as expected by using Log Publishers to verify that the requests to and
responses from the Data Governance Broker are as expected.

6. If using the /userinfo endpoint, map data with OpenID Connect Claims.

7. OAuth2 clients can use an external identity provider (Facebook, Google, SAML, or
OpenID Connect) accounts to access the Data Governance Broker.

-12 -



Chapter 2: Installation

The Data Governance Broker installation requires few prerequisites, and can be deployed on
virtualized and/or commodity hardware.

Topics include:

Installation Prerequisites

About Encryption Keys

User Store Overview

Installing the Directory Server

Installation Tools

Installing the Data Governance Broker

Configuring the Data Governance Broker

Logging into the Administrative Console

Installing Additional Data Governance Broker in a Topology

Server Folders and Files

Planning a Scripted Installation

Installing Sample Users

Running the Data Governance Broker

Stopping the Data Governance Broker

Uninstalling the Data Governance Broker

Using the Sample Web Application

-13 -



Chapter 2: Installation

Installation Prerequisites

The following are required before installing the Data Governance Broker:

. Java 7
e Minimum of 2 GB RAM
« PingData Directory Server 5.2

Supported Platforms

The Data Governance Broker is a pure Java application. It is intended to run within the Java
Virtual Machine on any Java Standard Edition (SE) or Enterprise Edition (EE) certified platform.
For the list of supported platforms and Java versions, access the Ping Identity Customer
Support Center portal or contact an authorized support provider.

Note
Itis highly recommended that a Network Time Protocol (NTP) system be in place so that multi-
server environments are synchronized and timestamps are accurate.

Set the File Descriptor Limit

The server allows for an unlimited number of connections by default, but is restricted by the
file descriptor limit on the operating system. The file descriptor limit on the operating system
can be increased with the following procedure.

Note
If the operating system relies on systemd, refer to the Linux operating system documentation
for instructions on setting the file descriptor limit.
1. Display the current hard limit of the system. The hard limit is the maximum server limit
that can be set without tuning the kernel parameters in the proc filesystem.

ulimit -aH

2. Editthe /etc/sysctl.conf file. If the fs. file-max property is defined in the file, make
sure its value is set to at least 65535. If the line does not exist, add the following to the
end of the file:

fs.file-max = 65535

3. Editthe /etc/security/limits.conf file. If the file has lines that set the soft and hard
limits for the number of file descriptors, make sure the values are set to 65535. If the
lines are not present, add the following lines to the end of the file (before #End of
file). Insert a tab between the columns.

* soft nofile 65535
* hard nofile 65535

-14 -



Installation Prerequisites

4. Reboot the server, and then use the ulimit command to verify that the file descriptor
limit is set to 65535 with the following command:

ulimit -n

Once the operating system limit is set, the number of file descriptors that the server will use
can be configured by either using a NUM FILE DESCRIPTORS environment variable, or by
creating a config/num-file-descriptors file with a single line such as, NUM FILE
DESCRIPTORS=12345. If these are not set, the default of 65535 is used. This is strictly optional
if wanting to ensure that the server shuts down safely prior to reaching the file descriptor limit.

Note
For RedHat 7 or later, modify the 20-nproc.conf file to set both the open files and max user
processes limits:

/etc/security/limits.d/20-nproc.conf

Add or edit the following lines if they do not already exist:

b soft nproc 65536
o soft nofile 65536
B hard nproc 65536
2 hard nofile 65536
root soft nproc unlimited

Setting the Maximum User Processes

Redhat Enterprise Linux Server/CentOS 6.x sets the default maximum number of user
processes to 1024, which is lower than the setting on older distributions. This may cause JVM
memory errors when running multiple servers on a machine because each Linux thread is
counted as a user process. This is not an issue on Solaris and AIX platforms as individual
threads are not counted as user processes.

At startup, the Data Governance Broker attempts to raise this limit to 16,383 if the value
reported by ulimit is less. If the value cannot be set, an error message is displayed. Explicitly
set the limitin /etc/security/ limit.conf. For example:

* soft nproc 100000
* hard nproc 100000

The 16,383 value can also be set in the NUM _USER PROCESSES environment variable, or by
setting the same variable in config/num-user-processes.

Disable Filesystem Swapping

Any performance tuning services, like tuned, should be be disabled. If performance tuning is
required, vm. swappiness can be set by cloning the existing performance profile then adding
vm.swappiness = 0 to the new profile's tuned.conf filein /usr/lib/tuned/profile-
name/tuned.conf. The updated profile is then selected by running tuned-adm profile
customized profile.

- 15 -



Chapter 2: Installation

Installing the dstat Utility on SuSE Linux

The dstat utility is used by the collect-support-data tool to gather support data. It can be
obtained from the OpenSuSE project website. Perform the following steps to install the dstat
utility:

1. Log into the server as root.

2. Add the appropriate repository using the zypper tool.

3. Install the dstat utility:

$ zypper install dstat

Managing System Entropy

Entropy is used to calculate random data that is used by the system in cryptographic
operations. Some environments with low entropy may have intermittent performance issues
with SSL-based communication. This is more typical on virtual machines, but can occur in
physical instances as well. Monitor the kernel.random.entropy avail in sysctl value for
best results.

If necessary, update $JAVA HOME/jre/lib/security/java.security to use
file:/dev/./urandom for the securerandom.source property.

Enabling the Server to Listen on Privileged Ports on Linux

Linux systems do not provide a direct analog to the Solaris User and Process Rights
Management subsystems. Linux does have a similar mechanism called capabilities used to
grant specific commands the ability to do things that are normally only allowed for a root
account. This is different from the Solaris model because instead of granting the ability to a
specific user, capabilities are granted to a specific command. It may be convenient to enable
the server to listen on privileged ports while running as a non-root user.

The setcap command is used to assign capabilities to an application. The cap net bind
service capability enables a service to bind a socket to privileged ports (port numbers less
than 1024). If Java is installed in /ds/java (and the Java command to run the server is
/ds/java/bin/java), the Java binary can be granted the cap net bind service capability
with the following command:

$ sudo setcap cap net bind service=t+eip /ds/java/bin/java

The java binary needs an additional shared library (1ibj1li.so) as part of the Java installation.
More strict limitations are imposed on where the operating system will look for shared libraries
to load for commands that have capabilities assigned. So it is also necessary to tell the
operating system where to look for this library. This can be done by creating the file
/etc/ld.so.conf.d/1ibjli.conf with the path to the directory that contains the 1ibjli.so
file. For example, if the Java installation is in /ds/java, the contents of that file should be:

/ds/java/lib/amd64/j1l1

Run the following command for the change to take effect:

-16 -



About Encryption Keys

$ sudo ldconfig -v

Installing the JDK

The Data Governance Broker requires the Java 64-bit JDK. Even if Java is already installed,
create a separate Java installation for use by Data Governance Broker to ensure that updates
to the system-wide Java installation do not inadvertently impact the Data Governance Broker.

Solaris systems require the 32-bit and 64-bit versions. The 64-bit version of Java on Solaris
relies on a number of files provided by the 32-bit version, so the latter should be installed first.

About Encryption Keys

Encryption setting definitions are used to protect Data Governance Broker generated tokens
and User Store metadata. All Data Governance Broker instances must use the same set of
definitions. Encryption setting definitions are managed using the encryption-settings tool.

If new encryption settings must be defined, the new definition must be exported using the
encryption-settings tool and imported on all Data Governance Broker instances. Only after
the new definition is imported on all servers can the new definition be used for subsequent
encryption operations.

See Managing the Server Encryption Settings for more information.

User Store Overview

During the Data Governance Broker installation, at least one PingData Directory Server is
defined to serve as a user store, and to store user credentials. The user store is a repository of
user data, such as names, email addresses, and preferences, as well as user-specific
metadata needed by the Data Governance Broker. For example, some user data may be stored
in an LDAP directory server while other attributes may be stored in a relational database or a
document database. SCIM Resource Types are defined to enable access to a user store's
resources, and provide a consistent abstracted view of a user's profile that may cross multiple
Directory Servers.

Any LDAP Directory Server added after the initial Data Governance Broker installation must be
configured with the prepare-external-store tool before it can be used as a user store. See
Data Governance Broker Installation Tools.

Installing the Directory Server

The Data Governance Broker requires at least one installed PingData Directory Server. This
enables much of the account management and password recovery functionality. The Data
Governance Broker can be configured with multiple user stores.

Note
All sensitive data in the user store can be encrypted. When using the Ping Identity Directory

-17 -



Chapter 2: Installation

Server as the user store, server-level encryption can be enabled as described in the
"Encrypting Sensitive Data" section in the PingData Directory Server Administration Guide.

The following information is needed during the installation:
« Server hostname
o LDAPS port
« Root DN and password
. Base DN
« Location of user entries
All configuration settings can be later modified through the dsconfig tool.
Perform the following steps to install the Directory Server:
1. Download the Directory Server zip distribution, PingDirectory-<version>.zip.
2. Unzip the file in any location.

$ unzip PingDirectory-<version>.zip

3. Change to the top level PingDirectory folder.

$ cd PingDirectory

4. Run the setup command.

$ ./setup

5. Enter yes to agree to the license terms.

6. Enter the fully qualified host name or IP address of the local host, or press Enter to
accept the default.

7. Create the initial root user DN for the Directory Server, or accept the default,
(cn=Directory Manager). This account has full access privileges.

8. Enter a password for this account, and confirm it.

9. To enable the Platform APIs over HTTPS, enter yes. These are the product's
configuration APIs.

10. Enter the port to accept connections from HTTPS clients, or press Enter to accept the
default. The default may be different depending on the account privileges of the user
installing.

11. Enter the port to accept connections from LDAP clients, or press Enter to accept the
default.

12. Type yes to enable LDAPS, or press Enter to accept the default (no). If enabling LDAPS,
enter the port to accept connections, or press Enter to accept the default LDAPS port.

-18 -



13.

14,
15.

16.
17.

18.

19.
20.

Data Governance Broker Installation Tools

Type yes to enable StartTLS for encrypted communication, or press Enter to accept the
default (no).

Select the certificate option for the server and provide the certificate location.

Specify the base DN for the Directory Server repository, for example

dc=company, dc=com.

Select an option to populate the database.

If this machine is dedicated to the Directory Server, tune the JVM memory allocation to
use the maximum amount of memory the Aggressive option). This ensures that

communication with the Directory Server is given the maximum amount of memory.
Choose the best memory option for the system and press Enter.

Enter yes to configure the server on startup and load the backend into memory before
accepting connections, or press Enter to accept the default (no).

To start the server after the configuration, press Enter for (yes).

Review the Setup Summary, and enter an option to accept the configuration, redo it, or
cancel.

Data Governance Broker Installation Tools

The Data Governance Broker provides a number of tools to install and configure the system.

« The setup tool performs the initial tasks needed to start the Data Governance Broker

server, including configuring JVM runtime settings and assigning listener ports for the
Data Governance Broker's REST services and applications.

The create-initial-broker-config tool continues after setup and configures
connectivity between the user store and the Data Governance Broker. During the
process, the prepare-external-store tool prepares each PingData Directory Server to
serve as a user store by the Data Governance Broker. Configuration can be written to a
file to use for additional installations.

Once the configuration is done, the dsconfig tool and the Administrative Console enable
more granular configuration.

Installing the Data Governance Broker

To expedite the setup process, be prepared to enter the following information:

« An administrative account for the Data Governance Broker.

« An available port for the Data Governance Broker to accept HTTPS connections from

REST API clients.

« An available port for the Administrative Console's communication.

-19 -



Chapter 2: Installation

« An available port to accept LDAP client connections.

« Information related to the server's connection security, including the location of a

keystore containing the server certificate, the nickname of that server certificate, and
the location of a truststore.

Perform the following steps for an interactive installation of the Data Governance Broker:

1.
2.

10.

11.
12.
13.
14.

15.

16.

Download the latest zip distribution of the Data Governance Broker software.

Unzip the file in any location.

$ unzip PingDataGovernance-<version>.zip

Change to the top level PingDataGovernance folder.

Run the setup command.

$ ./setup

Type yes to accept the terms of this license agreement.

The setup tool enables cloning a configuration by adding to an existing Data Governance
Broker topology. For an initial installation, press Enter to accept the default (no). When
adding additional Data Governance Broker instances, an existing peer can be chosen to
mirror configuration.

Enter the fully qualified host name or IP address of the machine that hosts the Data
Governance Broker, or press Enter to accept the default (local hostname).

Create the initial root user DN for the Data Governance Broker. This account has full
access privileges. To accept the default (cn=Directory Manager), press Enter.

Enter and confirm a password for this account.

Define a port for Data Governance Broker REST APIs and the Administrative Console to
accept HTTPS connections, or press Enter to accept the default.

Enter the port to accept LDAP client connections, or press Enter to accept the default.
To enable LDAPS connections press Enter and enter a port, or type no.
To enable StartTLS connections over regular LDAP connection press Enter, or type no.

Enter the certificate option for this server. If needed, the server will generate self-signed
certificates that should be replaced before the server is put into production.

If this machine is dedicated to the Data Governance Broker, tune the JVM memory to use
the maximum amount of memory (the Aggressive option). If this system supports
other applications, choose an appropriate option.

Enter a location name for this server. The location is used for failover purposes if this
server belongs to a server group.

-20 -



17.

18.
19.

Configuring the Data Governance Broker

Enter an instance name for this Data Governance Broker, or press Enter to accept the
default (<location> Broker 1). The name must be unique in a topology and cannot be
changed once configured.

Press Enter (yes) to start the server when the configuration is applied.

Review the configuration options and press Enter to accept the default (set up the
server).

The installation will continue with the create-initial-broker-config tool.

Configuring the Data Governance Broker

The next set of steps in the setup process rely on the create-initial-broker-config tool.
The setup tool will continue with the create-initial-broker-config tool to configure the
Data Governance Broker. Having the following in place will expedite the configuration:

« Atleast one Ping Identity Directory Server is installed. Have the host name and

communication port available.

« Any additional Directory Servers that act as user stores. Only PingData Directory

Servers can be configured with this tool. Other user stores must be configured outside of
this process. Have the host names and communication ports available.

« Locations for this and any other Data Governance Brokers for failover.

After the initial setup and configuration, run the dsconfig tool later to make configuration
adjustments. Perform the following steps to configure the Data Governance Broker:

1.

Press Enter (yes) to continue with create-initial-broker-config. If for some reason
the initial configuration cannot be completed in one session, manually restart create-

initial-broker-config later.

Define the account used by the Data Governance Broker to communicate with an
external User Store, or press Enter to accept the default (cn=Broker User, cn=Root

DNs, cn=config).
Enter and confirm the account password.

Specify the type of security that the Data Governance Broker uses when communicating
with all external store instances, or press Enter to accept the default (SSL).

Enter the host :port configured for the first Directory Server. The connection is verified.

Select the location name for the Directory Server (or user store server), or enter
another location if not listed in the menu.

Confirm that the identified host should be prepared. If additional servers will be added as
backups, select the Yes, and all subsequent servers option. This enables the

-21 -



Chapter 2: Installation

prepare-external-store tool can also be used to perform these tasks at a later time.

8. Enter the account and password needed to create the root user cn=Broker
User, cn=Root DNs, cn=config account on the Directory Server. This is the root account
created in the initial setup, such as the default (cn=Directory Manager. The Data
Governance Broker sets up the DN and tests that it can access the account. This is also
the account used to log into the Administrative Console.

9. To configure the initial user store, press Enter for (yes). The user store will be
configured with a default Store Adapter and SCIM Resource Type, which will enable
mapping of resources in the user store.

10. If there are additional Directory Server locations, enter their host :port. If there are no
additional servers to add, press Enter to continue.

11. Choose one of the predefined schemas (the standard user schema and optionally the
reference application schema), or no schema. The instructions for configuration in this
guide use the standard user schema.

12. Specify the base DN for locating user entries, such as ocu=people, dc=example, dc=com
and press Enter.

13. Review the configuration summary, and press Enter to accept the default (w) to write
the configuration to a dsconfig batch file. The configuration is written to <server-
root>/resource/broker-cfg.dsconfig . Certificate files are written to external-

server-certs.zip.

14. Press Enter (yes) to confirm that the configuration should be applied to this Data
Governance Broker and written to the broker-cfg.dsconfig file.

This completes the initial configuration for the Data Governance Broker. Run the bin/status
tool to see that the Data Governance Broker server is up and running.

Logging into the Administrative Console

After the Data Governance Broker is installed, access the Administrative Console,
https://<host>/console/login, to verify the configuration and manage the server. The root
user DN or the common name of a root user DN is required to log into the Administrative
Console. For example, if the DN created in Configuring the Data Governance Broker was
cn=Directory Manager, directory manager can be used to log into the Administrative
Console.

If the Administrative Console needs to run in an external container, such as Tomcat, a separate
package can be installed according to that container's documentation. Contact Ping Identity
Customer Support for the package location and instructions.

-22 -



Installing Additional Data Governance Brokers in a Topology

Installing Additional Data Governance Brokers in a
Topology

A Data Governance Broker instance can be cloned to serve as an additional serverin a
topology. Adding a server to an existing topology copies the original Data Governance Broker's
local configuration and links the two configurations. The configuration of Data Governance
Broker's cluster items and the topology settings are automatically mirrored across serversin a
topology. See Topology Overview for details.

Note

v A W

o

10.

11.
12.

13.

14.
15.
16.

When setting up a new Data Governance Broker from an existing peer, the existing HTTP(S)
connection handlers are not cloned. These connection handlers are created from scratch using
default values of the new server and any specified port values.

Unpack the zip distribution in a folder different from the peer Data Governance Broker.
Run the . /setup command in the <server-root> directory of the new server.

Accept the licensing agreement.

Enter yes to add this server to an existing Data Governance Broker topology.

Enter the host name of the peer Data Governance Broker server from which the
configuration will be copied.

Enter the port of the peer Data Governance Broker.

Choose the security communication to use to connect to the peer Data Governance
Broker.

Enter the manager account DN and password for the peer Data Governance Broker. The
connection is verified.

Enter the fully-qualified host name or IP address of the local host (the new server).

Enter the HTTPS client connection port for the Data Governance Broker, or press Enter
to accept the default.

Select the option to install the Administrative Console application, if desired.

Enter the HTTPS connection port for the Administrative Console application, or press
Enter to accept the default.

Enter the port on which the new Data Governance Broker will accept connections from
LDAP clients, or press Enter to accept the default.

Choose a certificate option for this Data Governance Broker.
Choose the amount of memory to allocate to the JVM.

Choose the location for this server. The location of the peer is listed as an option, or a
new location can be defined. Regardless, the new server will have its topology and
cluster settings mirrored with its peer.

-23-



Chapter 2: Installation

17. Enter a name for this server. The name cannot be changed after installation.

18. Press Enter to start the server after configuration.

19. Review the information for the configuration, and press Enter to set up the server with

these parameters.

20. To write this configuration to a file, press Enter to accept the default (yes).

Server Folders and Files

After the distribution file is unzipped, the following folders and command-line utilities are

available:

Directories/Files/Tools

Description

Idif Stores any LDIF files that have been created or imported.

import-tmp Stores temporary imported items.

classes Stores any external classes for server extensions.

bak Stores the physical backup files used with the backup command-line tool.

update.bat, and update

The update tool for UNIX/Linux systems and Windows systems.

(Update is not supported for version 6.0)

uninstall.bat, and uninstall

The uninstall tool for UNIX/Linux systems and Windows systems.

vendor_logo.png

The image file for the Ping Identity logo.

setup.bat, and setup

The setup tool for UNIX/Linux systems and Windows systems.

revert-update.bat, and revert-
update

The revert-update tool for UNIX/Linux systems and Windows systems.

README README file that describes the steps to set up and start the server.
License.txt Licensing agreement for the product.
legal-notices Legal notices for dependent software used with the product.

Provides the release notes, Configuration Reference Guide (HTML), API
docs Reference, and all other product documentation.

Stores the metrics that can be gathered for this server and surfaced in the
metrics PingData Data Metrics Server.
bin Stores UNIX/Linux-based command-line tools.
bat Stores Windows-based command-line tools.

Stores the Administrative Console .war file, the Authentication interface reference
webapps application's war file and source, and third-party licenses.
samples Stores the sample application .zip files.

Stores any scripts, jar files, and library files needed for the server and its
lib extensions.

Used by the server to make monitored statistics available to the Data Metrics
collector Server.
locks Stores any lock files in the backends.

-24 -



Planning a Scripted Install

Directories/Files/Tools Description

tmp Stores temporary files.

Stores the MIB files for SNMP and can include Idif files, make-Idif templates,
schema files, dsconfig batch files, and other items for configuring or managing the

resource server.

Stores the configuration files for the backends (admin, config) as well as the
config directories for messages, schema, tools, and updates.

logs Stores log files.

Planning a Scripted Install

An interactive installation of an Data Governance Broker uses the setup and create-
initial-broker-config tools. This is the recommended installation method and should be
used when possible. A scripted installation can be performed, for scenarios that require a
custom configuration or automated deployment. The resulting broker-cfg.dsconfig batch
file, created with the create-initial-broker-config tool, can then be used as a basis for
scripted installations.

The following is performed by the create-initial-broker-config tool during an interactive
installation:

External store preparation:

« For each PingData Directory Server, the prepare-external-store tool is run. This
updates the Directory Server’s schema, creates a privileged service account for use by
the Data Governance Broker with the DN cn=Broker User,cn=Root DNs,cn=config,
and creates an administrative account.

« If the user store is comprised of LDAP directory servers, the prepare-external-store
tool is run for every server that comprises the user store. This updates the server’s
schema, and creates a privileged service account for use by the Data Governance Broker
with the DN cn=Broker User,cn=Root DNs,cn=config.

Server configuration with dsconfig:

The create-initial-broker-config command has a --dry-run option that can be used to
generate the broker-cfg.dsconfig file in non-interactive, or interactive mode, without
applying the configuration to the local server.

Note
The Directory Server ACls may need to be configured to grant access to elements of data, or
specific LDAP controls using ACls, depending on which Data Governance Broker services are
used. See resource/starter-schemas/README . txt for sample ACls.

Scripted Installation Process

The following is a sample of the commands that should be included in a scripted installation:

-25-



Chapter 2: Installation

1. Set up and configure one or more Directory Servers. See Installing the Directory Server.

2. Run the Data Governance Broker setup command on the server that will host the Data
Governance Broker.

$ ./setup --cli --no-prompt --acceptLicense --maxHeapSize 2g \
--ldapPort 2389 --ldapsPort 2636 --httpsPort 8443 \
--location Austin --instanceName brokerl \

--rootUserPassword <password> \

--useJavaTrustStore <path>/keystores/truststore.jks \
--useJavaKeystore <path>/keystores/brokerlkeystore.jks \
-—trustStorePasswordFile<path>/keystores/truststore.txt \
-—keystorePasswordFile <path>/keystores/keystore.txt \
--certNickname server-cert

The --trustStorePasswordFile option is only required if this server is expected to
update the truststore with certificates of other servers in the topology.

The password for the private key associated with the certificate (server-cert) should
be the same as the keystore password.

3. Runprepare-external-store for each user store.

$ ./prepare-external-store --no-prompt \
--hostname dsl.example.com \
--port 1636 --useSSL --trustStorePath <path>/keystores/truststore.jks

--userStoreBaseDN "ou=people,dc=example,dc=com" \
--brokerBindPassword <password> \

--bindDN "cn=directory manager" \

--bindPassword <password>

4. Runthe create-initial-broker-config tool.

$ ./create-initial-broker-config —--no-prompt \
—--port 2636 --useSSL --trustStorePath <path>/keystores/truststore.jks

--bindDN "cn=Directory Manager" \

--bindPassword <password> \

--brokerBindPassword <password> \
-—externalServerConnectionSecurity useSSL \
--userStoreBaseDN "o=people,dc=example,dc=com" \
--userStore dsl.example.com:1636:Austin

Installing Sample Users

The Data Governance Broker provides a template to create a set of users (1000) that can be
used by the sample application. The schema must be created from <server-
root>/resource/starter-schemas/reference-apps-make-1dif.template and installed on
the Ping Identity Directory Server. Once complete, a set of users (user. 0 through user.999)
is available. Passwords for each are password.

-26 -



Run the Data Governance Broker

Perform the following steps to modify the Directory Server entries according to the directives
in the LDIF file:

1. From the Directory Server server root, stop the server.
$ <PingDirectory>/bin/stop-ds
2. From the Data Governance Broker server root, create the users LDIF file from the

template provided. A success message is displayed when complete.

$ <PingDataGovernance>/bin/make-1dif \
--templateFile <PingDataGovernance>/resource/starter—-schemas/
reference-apps-make-1dif.template \
--1difFile <PingDataGovernance>/ldif/reference-apps-user—-entries.ldif

3. From the Directory Server server root, import the users. A successful import message is
displayed when complete.

$ <PingDirectory>/bin/import-1dif \
--1difFile <PingDirectory>/1dif/reference-apps-user—-entries.ldif \
--includeBranch dc=example,dc=com \
--rejectFile <PingDirectory>/1ldif/reject.ldif

If sample data was loaded in the Directory Server installation, add the following
command to this step:

--overwriteExistingEntries

Run the Data Governance Broker

To start the Data Governance Broker, run the bin/start-broker tool on UNIX/Linux systems
(the bat command is in the same folder for Windows systems).

To Run the Data Governance Broker in the foreground:

1. Enter the bin/start-broker with the --nodetach option to launch the Data Governance
Broker as a foreground process.

$ bin/start-broker --nodetach

2. Stop the Data Governance Broker by pressing CTRL-C in the terminal window where the
server is running or run the bin/stop-broker command from another window.

Stop the Data Governance Broker

The Data Governance Broker provides a shutdown script, bin/stop-broker, to stop the
server.

-27 -



Chapter 2: Installation

Schedule a Server Shutdown

The Data Governance Broker enables scheduling a shutdown and sending a notification to the
server.out log file. The server uses the UTC time format if the provided timestamp includes a
trailing "Z," for example, 201304032300Z. The following example includes a --stopReason
option that writes the reason for the shutdown to the logs:

$ bin/stop-broker --task \
--hostname <serverl.example.com> \
--bindDN uid=admin,dc=example,dc=com \
--bindPassword <password> \
--stopReason "Scheduled offline maintenance" \
--start 201504032300z

Run an In-Core Restart

Re-start the Data Governance Broker using the bin/stop-broker command with the --
restart or -R option. Running the command is equivalent to shutting down the server, exiting
the JVM session, and then starting up again. Shutting down and restarting the JVM requires a
re-priming of the JVM cache. To avoid destroying and re-creating the JVM, use an in-core
restart, which can be issued over LDAP. The in-core restart will keep the same Java process
and avoid any changes to the JVM options.

$ bin/stop-broker \
--task \
--restart \
--hostname <serverl.example.com> \
--bindDN uid=admin,dc=example,dc=com \
—--bindPassword <password>

Uninstalling the Data Governance Broker

The Data Governance Broker provides an uninstall tool to remove the components from the
system. If this instance is a member of a topology of Data Governance Broker servers, the
uninstall tool will remove it from the topology.

Note
If a Data Governance Broker is a member of a topology, and the uninstall toolis not used to
remove it (it was shutdown and deleted manually), it will not be removed from the topology
registry. In this scenario, use the bin/remove-defunct-server tool to remove the instance
from the topology.

Perform the following to uninstall the Data Governance Broker:
1. From the server root directory, run the uninstall command.

$ ./uninstall

- 28 -



Using the Data Governance Broker Sample Application

1. Select the option to remove all components or select the components to be removed.

2. To selected components, enter yes when prompted.

Remove Server Libraries and Administrative Tools? (yes / no) [yes]: yes
Remove Log Files? (yes / no) [yes]: no

Remove Configuration and Schema Files? (yes / no) [yes]: yes

Remove Backup Files Contained in bak Directory? (yes / no) [yes]: no

Remove LDIF Export Files Contained in 1dif Directory? (yes / no) [yes]: no

The files will be permanently deleted, are you sure you want to continue? (yes / no)

[yes]:

3. Manually delete any remaining files or directories.

Using the Data Governance Broker Sample Application

A sample application can be installed in addition to the Administrative Console application to
determine if account flow activities are configured correctly. This application is designed to
illustrate a client's view of how data can be requested and delivered from the Data Governance
Broker. The sample application is located in <server-root>/samples/my-account.tar.gz.
Extract the file and follow the instructions in the README .md file to install the sample
application.

To use this application with the Data Governance Broker's starter schema, sample users must
be installed in the configured PingData Directory Server. See Installing Sample Users for
details.

Note
Because the sample applications use the Data Governance Broker server for authentication, if
bookmarking the application pages, bookmark the sample application landing pages, not the
login page. Navigating to the bookmarked login page will cause authentication errors.

-29-



Chapter 3: Data Access and Mapping

Directory Servers provide the resources that can be accessed by OAuth2 clients. Attributes
can be mapped from multiple Directory Servers to create a unified identity in a SCIM Resource
Type. The SCIM Resource Type is the component that makes resources available to OAuth2
clients.

Topics include:

Data Components

Store Adapter Overview

Primary and Secondary Store Adapters

SCIM Schemas

Store Adapter Mappings
SCIM Attribute Search Considerations

Maintaining Username Uniqueness

Defining SCIM Resource Types

Defining SCIM Sub Resource Type Handlers

Defining OpenID Connect Claims
OAuth2 Client-Specific SCIM Attributes

Accessing Data

-30 -



Chapter 3: Data Access and Mapping

Data Components

When a Directory Server is configured, a Store Adapter is installed to read and return native
SCIM objects. Custom store adapters can be created for non-LDAP Directory Servers with the
Ping Identity Server SDK. The attributes surfaced for each backend store are mapped in SCIM
Resource Types to enable a unified view of a user profile, and to make them available to
OAuth2 clients.

Public Endpoints: Userinfo and SCIM

The Data Governance Broker, acting as a resource server, provides read access to user profile
data through the UserInfo endpoint (/userinfo) and provides full read/write access through
the SCIM Resource Type (/scim/v2/Me). The access to these resources is subject to policy
rules and restrictions.

OpeniD Connect Claims Map (Userinfo Map)

A claims map maps OpenlID Connect UserInfo claims to attributes defined in the SCIM Schema.
Access to resources is read-only. Configure an OpenID Connect Claims map only if using the
UserInfo endpoint.

Store Adapters

A store adapter connects the data coming into the Data Governance Broker with an Ping
Identity Directory Server or other external directory. For example, an LDAP Store Adapter
manages the attribute mappings from an LDAP Directory Server to a SCIM schema used for a
corresponding SCIM Resource Type. The Data Governance Broker provides an LDAP store
adapter.

Store Adapter Mappings

A SCIM Resource Type enables attribute mappings between the native store adapter schema
and the SCIM Schema. The Store Adapter mapping can contain additional information as to
whether the native attribute is readable, writable, searchable, or authoritative. One must be
authoritative. A SCIM Resource Type can map attributes from multiple Directory Servers and
determine which attributes are the authoritative resource for a user profile. See Using SCIM
Resource Type Attributes in Policy for details about policy evaluation.

Directory Servers

The User Stores are the user repositories or data resources, which can be one or more
PingData Directory Servers, Directory Proxy Servers, or third-party directory servers. SCIM
Resource Type mappings can be used to aggregate attributes from multiple Directory Servers
into a unified view.

-31 -



Store Adapter Overview

When a Store Adapter is added to the Data Governance Broker’s server configuration, a
correlation attribute must be defined for SCIM Resource Types that are backed by multiple
store adapters. The correlation attribute defines an attribute for each Store Adapter that is
used to uniquely identify the same end user data across different store adapters. For example,
if every Directory Server stores a user’s email address, and an email address can always be
considered a primary key (that is, it is always unique per use), then each Store Adapter’s
email address attribute can be set as its correlation attribute.

Store Adapter Overview

A store adapter acts as an interface between the Data Governance Broker’s SCIM Resource
Type layer and an external data store, such as an LDAP directory server, a relational database,
or a REST service. A SCIM Resource Type can have one or more associated store adapters,
each corresponding to a specific type of data store. When user data is retrieved or modified,
the SCIM Resource Type calls the appropriate store adapter, which performs the actual
operations against the data store, and passes results back up to the SCIM Resource Type layer.

The Data Governance Broker provides a default store adapter that supports LDAP directory
servers. Custom store adapters can be written using the Server SDK. So that the translation
between a store adapter and a SCIM Resource Type can be managed, store adapters expose
user attributes as a SCIM schema. Attributes from the store adapter schema are mapped to
attributes in the SCIM Resource Type schema.

Note
The Directory Server ACls may need to be configured to grant access to elements of data, or
specific LDAP controls using ACls, depending on which Data Governance Broker services are
used. See resource/starter-schemas/README . txt for sample ACls.

Creating custom store adapters requires the Server SDK. See Server Extensions for
information.

Primary and Secondary Store Adapters

If the Data Governance Broker is used to aggregate user attributes from multiple Directory
Servers, secondary store adapters can be configured. Store adapters contain the configuration
that the Data Governance Broker uses to interact directly with external Directory Servers.
Every Directory Server providing a distinct set of user data must have a store adapter entry in
the configuration.

"Primary store adapter" and "Secondary store adapter" designate how a SCIM Resource Type
prioritizes user data lookups to multiple store adapters. The primary store adapter is always
checked first when processing a request for a user resource, and then any secondary store
adapters are checked. A user account effectively does not exist if a record does not exist for it
on the primary store adapter. The primary store adapter should be used to store a user's core
attributes, while a secondary store adapter can store additional attributes.

-32-



Chapter 3: Data Access and Mapping

Defining Correlation Attributes

When handling a request for a particular user, the Data Governance Broker needs a way to
correlate an entry in the primary store adapter with any related entries in secondary store
adapters. This is done by correlating the value of an attribute shared across the store adapters.
This is configured using the secondary store adapter's primary-correlation-attribute and
secondary-correlation-attribute properties. The correlation attribute should have a value
that is unique for each user.

Note
When creating SCIM resources backed by secondary store adapters, the server automatically
sets the secondary correlation attribute value if it does not already have a value from the
resource create request.

For example, user entries can be correlated across store adapters by email address:

$ dsconfig create-secondary-store-adapter \
-—type-name Users \
--adapter-name MarketingData \
-—-set store-adapter:DemographicsStoreAdapter \
--set primary-correlation-attribute:mail \
--set secondary-correlation-attribute:emailAddress

Sample Configuration

An environment may have two LDAP Directory Servers with distinct sets of data. Set A may
have user credentials and profile attributes, and is configured with the primary store adapter.
Set B may have demographic data about these users, and is configured with the secondary
store adapter. The following can be configured for this scenario:

1. Configure each server in Set A.

$ bin/dsconfig create-external-server \
--server—-name profile-server \
--type ping-identity-ds \

2. Configure each server in Set B.

$ dsconfig create-external-server \
-—server-name demographics-server \
--type ping-identity-ds \

3. Create LDAP load balancing algorithms.

$ dsconfig create-load-balancing-algorithm \
-—algorithm-name "Profile Store LBA"™ \
--type failover \
--set enabled:true \
--set backend-server:profile-server

$ dsconfig create-load-balancing-algorithm \
-—algorithm-name "Demographics Store LBA" \
--type failover \

-33-



SCIM Schemas

--set enabled:true \
--set backend-server:demographics-server

4. Create store adapters.

$ dsconfig --adapter-name ProfileStoreAdapter \
-—type ldap \
--set enabled:true \
--set "load-balancing-algorithm:Profile Store LBA"

S dsconfig --adapter-name ProfileStoreAdapter \
-—type ldap \
--set enabled:true \
—--set "load-balancing-algorithm:Demographics Store LBA"

5. Designate the primary store adapter.

$ dsconfig create-scim-resource-type \
--type-name Users \
--type mapping \
--set enabled:true \
--set endpoint:Users \
--set primary-store-adapter:ProfileStoreAdapter \
--set core-schema:urn:example:schemas:Profile:1.0 \
--set optional-schema-extension:urn:example:schemas:Demographics:1.0

6. Designate the secondary store adapter and correlation attributes.

$ dsconfig create-secondary-store-adapter \
-—type-name Users \
--adapter—-name MarketingData \
--set store-adapter:DemographicsStoreAdapter \
--set primary-correlation-attribute:mail \
--set secondary-correlation-attribute:emailAddress

SCIM Schemas

Each SCIM Resource Type maps to one core SCIM Schema and optional extension schemas.
SCIM schemas are used to define the resources that can be retrieved from a backend Directory
Server. Each SCIM Resource Type represents one type of resource, such as "user" or
"account," and the schema defines the attributes of that resource.

Store Adapter Mappings

The Data Governance Broker uses Store Adapter Mappings to determine which store adapter
handles which attribute from the SCIM schema. The secondary-store-adapter property of
a Store Adapter Mapping designates the store adapter to use.

-34-



Chapter 3: Data Access and Mapping

The Data Governance Broker can handle cases in which an attribute can be found on multiple
store adapters. In these cases, one Store Adapter Mapping should be created for each
combination of attribute and store adapter. One of these mappings must have the shared
attribute set as authoritative. This designates the store adapter that will be the authoritative
source when multiple possible values are found across a set of store adapters.

In the following example, the SCIM attribute
urn:pingidentity:schemas:sample:profile:1.0:topicPreferences is mapped to the
LDAP attribute ubidxTopicPreferenceJSON from the Marketing Directory Server adapter:

$ bin/dsconfig create-store-adapter-mapping \
-—type-name Users \
--mapping-name topicPreferences \
--set secondary-store-adapter:DemographicsStoreAdapter \
--set scim-resource-type-attribute:urn:example:schemas:Demographics:1.0:topicPreferences

--set store-adapter-attribute:ubidXTopicPreferenceJSON \
--set authoritative:true

SCIM Attribute Search Considerations

In order to provide paging and sorting, the Data Governance Broker holds an entire search
result set in memory while it processes a SCIM search request. This is true for searches that
do not request paging or sorting. The SCIM Resource Type lookthrough-limit property sets
an upper bound for searches, so that clients do not exhaust the server resources. If the
number of search results for a given request exceeds this value, an error is returned to the
client indicating that the search matched too many results. A request that causes an unindexed
search is also restricted to the size limit of the 1ookthrough-1imit setting.

The Data Governance Broker attempts to find a single store adapter that can process the
provided search filter. The primary store adapter is checked first to see if it can process the
search filter. If it cannot, the secondary store adapters are consulted in no particular order.
The first store adapter capable of processing the search filter is chosen. The store adapter
must be able to return a superset of possible matches for the filter. The attributes in the search
filter must correspond to at least one searchable native attribute in the store adapter. If the
SCIM Resource Type is a Mapping SCIM Resource Type, the store adapter mapping for the
search filter attribute must be marked as searchable.

If no store adapters can process the search, the Data Governance Broker returns an error. For
each candidate search result from a store adapter, the Data Governance Broker assembles a
complete SCIM resource by retrieving the native resource for every other store adapter using
the store adapter correlation attributes (set when secondary store adapters are defined) and
merging them together. Each resulting candidate SCIM resource is checked to see if it matches
the provided search filter and is discarded if it does not match.

-35-



Maintaining Username Uniqueness

Maintaining Username Uniqueness

The Data Governance Broker's default schema configuration uses "uid" as the RDN attribute of
user DNs, which ensures that all uid values are unique for that branch of the DIT. In the
default configuration, uid is recognized as a user's username. The following Data Governance
Broker functions rely on this:

« The Match Filter property of the default Username Password Identity Authenticator.

« The Store Adapter Mapping for the userName attribute of the default starter schema.

It may be the case that the attribute used for the username is also an RDN attribute in the
Directory Server. If every entry resides on the same branch, these attribute values will always
be unique. Any configuration changes that do not maintain this structure must ensure that
usernames are unique. The PingData Directory Server provides the attribute uniqueness plugin
that can be used if configuration changes are required. See the PingData Directory Server
Administration Guide.

Defining SCIM Resource Types

SCIM Resource Types provide a unified view of resources between the Data Governance
Broker and one or more underlying Directory Servers, and correspond to the SCIM 2.0 SCIM
Resource Type. SCIM Resource Types determine what resources can be accessed from a
Directory Server. Each SCIM Resource Type represents one resource, such as "user" or
"account" and the schema defines the attributes of that resource.

Note
When mapping attributes, Directory Server attributes and SCIM Resource Type attributes
must be of compatible types. For example, an attribute with an integer value must be mapped
to another attribute with an integer value. An attribute with a string value can only be mapped to
attributes with boolean, integer, or date-time if it can be parsed.

There are two types of SCIM Resource Types: Pass-through SCIM Resource Type and Mapping
SCIM Resource Type. A Mapping SCIM Resource Type relies on a SCIM Schema, which is
installed with the configuration of a user store on an PingData Directory Server.

Pass-through SCIM Resource Type

This type of SCIM Resource Type simply exposes the primary store adapter’s data as core
attributes, while secondary store adapter’s data are exposed as schema extensions. No
schema needs to be defined at the SCIM Resource Type and all schema enforcement is at the
responsibility of the store adapters. Since no schema is defined at the SCIM Resource Type,
attribute mappings are not defined. If the configured store adapter exposes a schema, it will
be enforced as the core or extension schemas for the SCIM Resource Type.

- 36 -



Chapter 3: Data Access and Mapping

Mapping SCIM Resource Type Attributes

Attributes associated with a SCIM Resource Type are configured by specifying at least one core
schema and one or more schema extensions. The core schema defines attributes that can
appear at the root level of the SCIM resource exposed by the SCIM Resource Type. Schema
extensions define attributes that are namespaced by the Schema’s URI. Schema extensions
can be optional or required. When processing client requests, the SCIM resource from the
OAuth2 client is first checked against the schemas defined for the SCIM Resource Type (core or
extension). The request is then mapped to a store adapter object, using the store adapter
mappings, and then processed.

Creating a SCIM Resource Type

After user stores and Store Adapters are in place, SCIM Resource Types can be defined to
provide a unified view of identity data found in multiple Directory Servers. The SCIM Resource
Type determines the attributes that can be accessed by an OAuth2 client.

The following is a sample command for creating a mapping SCIM Resource Type:

$ bin/dsconfig create-scim-resource-type \
--type-name Users \
-—type mapping \
--set "description:Users Resource Type" \
--set enabled:true \
--set endpoint:/Users \
-—-set primary-store-adapter:UserStoreAdapter \
--set core-schema:urn:pingidentity:schemas:User:1.0 \
--set required-schema-extension:urn:pingidentity:schemas:sample:profile:1.0

SCIM Resource Types can also be configured in the Administrative Console through SCIM ->
SCIM Resource Types.

Creating a Mapping SCIM Resource Type

The following information is used to configure a Mapping SCIM Resource Type:
« A name for this SCIM Resource Type.
« An optional description for the SCIM Resource Type.

« The SCIM Resource Type's endpoint HTTP address, which will be relative to the /scim/v2
base URL.

« A primary store adapter to persist the data for this SCIM Resource Type.
« The primary store adapter attribute to use as the value for the SCIM object ID. The

object ID is a unique, immutable identifier for fetch, update, and delete operations on an
object. The entryuuID attribute is the default for an LDAP store adapter.

« A look-through limit for the maximum number of resources that the SCIM Resource Type
should scan when processing a search request. This prevents an OAuth2 client from

-37 -



Defining SCIM Resource Types

taking too many of the server's resources for a single search.

The core schema for the primary store adapter and any extension schemas.

Creating a Pass Through SCIM Resource Type

The following information is used to configure a Pass Through SCIM Resource Type:

A name for this SCIM Resource Type.
An optional description for the SCIM Resource Type.

The SCIM Resource Type's endpoint HTTP address, which will be relative to the /scim/v2
base URL.

A primary store adapter to persist the data for this SCIM Resource Type.

The primary store adapter attribute to use as the value for the SCIM object ID. The
object ID is a unique, immutable identifier for fetch, update, and delete operations on an
object. The entryUUID attribute is the default for an LDAP Store Adapter.

A look-through limit for the maximum number of resources that the SCIM Resource Type
should scan when processing a search request. This prevents an OAuth2 client from
taking too many of the server's resources for a single search.

Editing Attribute and Sub-Attribute Properties

Attribute properties in the schema can be configured to change the actions that can be
performed, and when an attribute is returned to a requesting OAuth2 client. If the attribute
contains sub-attributes, those can be configured as well.

$ bin/dsconfig set-scim-attribute-prop \
-—schema-name urn:pingidentity:schemas:User:1.0 \
-—attribute-name displayName \

--set "description:User's name."
--set required:true \

--set case-exact:true \

--set mutability:read-only

This can be configured in the Administrative Console by editing a schema in SCIM -> SCIM
Schemas. Select a schema and edit any of the attributes listed. The following can be
configured for an attribute or sub-attribute:

An optional description of the attribute.

« The attribute type, which can be:

o string - A sequence of zero or more Unicode characters encoded using UTF-8.
o boolean - The literal true or false.

o datetime - A date and time encoded as a valid xsd:dateTime (for example, 2008-
01-23T04:56:227).

o decimal - A real number with at least one digit to the left and right of the period.

- 38 -



Chapter 3: Data Access and Mapping

o integer - A decimal number with no fractional digits.
o binary - Arbitrary binary data.

o reference - A URI for a resource. A resource can be a SCIM resource, an external
link to a resource (such as a photo), or an identifier such as a URN. The
reference-type property must be specified for these attributes.

o complex - A singular or multi-valued attribute whose value is a composition of
one or more sub-attributes.

« Specify if the attribute is required.

« Specify if the attribute is case-sensitive.

« Specify if the attribute can have multiple values.

« Specify suggested canonical values that can be used (such as work and home).

« The circumstances under which the values of the attribute can be written (mutability).
Values include:
o read-only - The attribute cannot be modified.
o read-write - The attribute can be updated and read.

o immutable - The attribute may have its initial value set, but cannot be modified
after.

o write-only - The attribute can be updated but cannot be read.

« The circumstances under which the values of the attribute are returned in response to a

request. Values include:
o by-default - The attribute is returned by default in all SCIM responses where
attribute values are returned.

o upon-request - The attribute is returned in response to any PUT, POST, or PATCH
operations if the attribute was specified by the client (for example, the attribute
was modified).

o always - The attribute is always returned.

o never - The attribute is never returned.

« The SCIM Resource Types that can be referenced. This property is only applicable for
attributes that are of type reference. Valid values are a defined SCIM Resource Type,
external indicating the resource is an external resource (such as a photo), or uri
indicating that the reference is to a service endpoint or an identifier (such as a schema
urn).

« If the attribute is complex and has sub-attributes, they can be edited as well with these
values.

-39 -



Defining SCIM Resource Types

Editing Store Adapter Mappings

Store adapters are designed to surface the schema of a backend Directory Server. Store
Adapter Mappings define a mapping between SCIM Resource Type attributes and store adapter
attributes. When the Data Governance Broker is installed with an PingData Directory Server,
the schema attributes are automatically mapped to a User SCIM Schema Resource Type.

Note
If the SCIM Resource Type attribute name changes, make sure that scopes and OpenID
Connect Claims are updated to reflect the change.

The following is a sample command for editing a Store Adapter attribute mapping:

$ bin/dsconfig set-store-adapter-mapping-prop \
--type-name Users \
-—-mapping-name communicationOpts \
--set store-adapter-attribute:ubidXCommunicationOptJSON \
--set writable:false \
--set searchable:true \
--reset authoritative

Store Adapter Mappings can also be configured in the Administrative Console through SCIM ->
SCIM Resource Types. Click Actions -> Edit Store Adapter Mappings for a SCIM
Resource Type. The following is displayed:

Pingldentity. PingData Administrative Console Odfssymeegm= (Do

~
: dgs1 ' Configuration ~ ' SCIM Resource Types & Configuration Guide
= dg 9 yp! g

Store Adapter Mappings - Users

Store Adapter Mappings define a mapping between SCIM Resource Type attributes and Store Adapter attributes

Map New SCIM Resource Type Altribute . Bulk Edit_ ~ Q
SCIM Resource Type Attribute = UserStoreAdapter Mapping Actions
accountVerified ubidAccountVerified Remove
Search

addresses ubidPostalAddress.JSON Remove

displayName displayName Remove
Search

emails ubidEmailJSON Remove

entitiements. ubidEntitlement Remove
Search

lastLogin ds-pwpast-login-time Remove
Wile  Search

loginDisabled ds-pwp-account-disabled Remove

White Search

Individual attributes can be changed, or all can be edited by clicking Bulk Edit. For each
attribute, the following can be configured:

« The store adapter attribute that is mapped to the SCIM Resource Type attribute.
. Readable - The SCIM Resource Type can read this attribute.

- 40 -



Chapter 3: Data Access and Mapping

« Writable - The SCIM Resource Type can write to this attribute.

« Searchable - This specifies whether the attribute is efficiently searchable in the
underlying Directory Server. Indexed Directory Server attributes determine what
attributes (from the SCIM Resource Type Schema) can be used in a SCIM filter when
performing a query. If an attribute is not indexed in the Directory Server, it should not
be marked as Searchable here.

« Authoritative - If there are multiple mappings for this attribute (from multiple
Directory Servers), one must be marked Authoritative.

Defining OpenID Connect Claims

A UserlInfo endpoint is an OAuth2 protected resource that returns information about an
authenticated end user. UserInfo Mapping enables mapping the Identity Service Provider's
SCIM Resource Type attributes to claims returned from the UserInfo endpoint. The standard
UserInfo data and claims are detailed in the OpenID Connect Authentication 1.0 Specification.
Any custom claims can be defined and exposed at the UserInfo endpoint by adding (non-
standard) entries in the UserInfo map. See Creating an OpenlID Connect Claims Map for
details.

OpenlD Connect Claims and Scopes

For an OAuth2 client to successfully retrieve an OpenID Connect claim from the UserInfo
endpoint, it must request and get consent to use a corresponding scope. Make sure that
configured scopes contain the attributes that clients will request. Make sure that any changes
to the SCIM schema or attribute mapping are also made in the scope configuration.

Complex Attribute Mapping

If an attribute is complex (such as urn:scim:schemas:core:1.0:name), the UserInfo endpoint
returns a JSON object with property names matching the complex attribute's sub-attributes.
For example, if urn:scim:schemas:core:1.0:name Were mapped to a custom name object
OpenID Connect claim, the following would be returned for this claim:

"name object":{"formatted":"Mort Kurio","familyName":"Kurio","givenName":"Mort"}

Sub-claims are mapped only if the OpenID Connect claim itself is correctly mapped to a SCIM
Resource Type attribute.

For searches involving sub-attributes of SCIM attributes that are mapped to LDAP JSON
attributes in the PingData Directory Server, the sub-attribute field names in the search filter
are treated case-sensitively because the Directory Server treats them this way. This is a
departure from the SCIM 2.0 specification, where attribute names in search filters are case-
insensitive.

For example, the SCIM attribute name has the sub-attribute familyName. The SCIM attribute
name is mapped to the LDAP JSON attribute scimName. The search filter NAME . FAMILYNAME eq
"zweig" will not return a search result for an entry containing the specified value zweig in the

-41 -



Defining SCIM Sub Resource Type Handlers

familyName sub-attribute. A search result for this entry is returned if the filter is specified
instead as NAME . familyName. This is because the top-level attribute can be matched case-
insensitively but the sub-attribute can only be matched case-sensitively.

Defining SCIM Sub Resource Type Handlers

SCIM Sub Resource Type Handlers may be used to define a SCIM sub resource type that may
be used to process extended operations on a SCIM resource type. Sub resource types are used
to retrieve session meta data that the Data Governance Broker stores with a user entry, such
as consent information or account state. They are mainly used in the resource server role to
exposes a per resource API for managing metadata that can not be managed using standard
SCIM attributes. Like Resource Types, they are assigned to OAuth2 scopes.

The following SCIM Sub resource Type Handlers are available:

Available Sub Resource Type Handlers

Sub Resource Type Handler Description

Retrieves account state information based on the
accountUsabilityNotices, accountUsabilityWarnings,
accountUsabilityErrors, and accountActivationTime

Account State settings in the PingData Directory Server.
Consent Updates a user's consent for an application to access resources.
Consent History Retrieves the consent history for a user.

Validates the email address for a user, based on the last validated value.

The Email Delivered Code Identity Authenticator uses the same metadata to

determine if an email address is validated before using it for authentication.

A create request can validate an attribute path with an existing value, or a

new value by sending a verification code to the email address. If the same

verification code is provided in a subsequent replace request, the attribute
Email Address Validator value is recorded as validated in the metadata.

External Identity Updates or retrieves external identity linked information for an account.

Retrieves the password requirements for this account based on the
password quality requirements extended operation settings in the PingData
Password Quality Requirements Directory Server.

Updates an account password based on the password quality requirements
Password Update extended operation settings in the PingData Directory Server.

Validates the phone number for a user, based on the last validated value. A

create request can validate an attribute path with an existing value, or a new

value by sending a verification code to the phone number. If the same

verification code is provided in a subsequent replace request, the attribute

value is recorded as validated in the metadata. The Telephony Messaging
Phone Number Validator Providers are used to send verification codes.

- 42 -



Chapter 3: Data Access and Mapping

Available Sub Resource Type Handlers

Sub Resource Type Handler Description

Retrieves and can be used to remove a user’s current sessions. The session

will return information about when it was last used, the IP address, and UA

string. When removing a session, all access tokens for the user are also
Session revoked.

Determines if a time-based one-time password (TOTP) shared secret is

currently registered for a user. It can also be used to generate a new shared

secret, validate it using the TOTP device, and register it on the user’s

resource based on the has-totp-shared-secret password policy
TOTP Shared Secret state operation settings in the PingData Directory Server.

Creating a SCIM Sub Resource Type

SCIM Resource Types can be used to set or retrieve session meta data saved with a user's
entry.

The following is a sample command for creating a generic SCIM Sub Resource Type:

$ bin/dsconfig create-scim-sub-resource-type-handler \

--handler-name Preferences \

--set "description:account preferences" \

--set enabled:true \

--set endpoint:accountPreferences \

--set java-
class:com.unboundid.directory.broker.api.AccountPreferencesSCIMSubResourceTypeHandler

SCIM Sub Resource Types can also be configured in the Administrative Console through SCIM
-> SCIM Sub Resource Types.

Creating a SCIM Sub Resource Type

The following information is used to configure a SCIM Sub Resource Type:
« A name for this SCIM Sub Resource Type.
« An optional description for the SCIM Sub Resource Type.

« The SCIM Sub Resource Type's endpoint HTTP address, which will be relative to the
/scim/v2 base URL.

« The path to the SCIM Sub Resource Type attribute, if needed.

. If a verification code is needed, the code generator, validity duration, and messaging
provider may be required.

« The Java Class for the SCIM Sub Resource Type extension handler, such as

com.unboundid.directory.broker.api.<new>SCIMSubResourceTypeHandler.

-43 -



OAuth2 Client-Specific SCIM Attributes

OAuth2 Client-Specific SCIM Attributes

Some environments may find it useful to designate a namespaced, schema-less portion of a
SCIM user resource, in which an OAuth2 client can store its data. For example, a resource type
could be configured such that an application may write any previously undefined attributes that
are prefixed with urn: customAppl.

To enable this, the data store schema must first have a single-valued JSON attribute defined to
hold application-specific attributes. For example, for an LDAP attribute called customApp:

customApp: { "urn:customAppl":{ "wine":["Napa Cabs","French Burgundy","Lodi Zinfandel"],
"age":"2000-2010" } }

This value should appear in the SCIM resource as follows:

'urn:customAppl' : {
'wine' : [ 'Napa Cabs', 'French Burgundy', 'Lodi Zinfandel' ],
'age' : '2000-2010'

}

The following is a command line sample of the steps needed to configure this type of
functionality in the Data Governance Broker, or this process can be done in the Administrative
Console.

1. Create a store adapter mapping from "*" (SCIM) to "customaApp" (LDAP). Using a
wildcard SCIM attribute, client-specific SCIM attributes do not need to be defined in
advance. To map only attributes from a single SCIM schema to an LDAP attribute, use a
schema-specific SCIM wildcard such as urn:myExtensionSchema: *.

$ bin/dsconfig create-store-adapter-mapping \
--type-name "Users" \
--mapping-name "customAppWildcard" \
--set "scim-resource-type-attribute:*" \
--set store-adapter-attribute:customApp

2. Set the SCIM Resource Type's schema-checking-option property to allow-undefined-

attributes.

$ bin/dsconfig set-scim-resource-type-prop \
--type-name "Users" \
—--add schema-checking-option:allow-undefined-attributes

3. Define a wildcard scope that uses the client-specific namespace urn:customAppl as a
prefix. Since the mapping is a wildcard, this prevents the client from reading or writing
any user attribute, and client-specific attributes do not need to be defined in advance.

$ bin/dsconfig create-ocauth2-scope \
--scope-name Wildcard-Scope \
-—-type authenticated-identity \
--set "consent-prompt-text:Save application data to your account!"™ \
--set "resource-attribute:urn:customAppl:*" \
--set resource-operation:modify \
—--set resource-operation:retrieve

-44 -



Chapter 3: Data Access and Mapping

4. Create the OAuth2 client and assign the wildcard scope to it.

$ bin/dsconfig create-oauth2-client \
-—client-name "Appl" \
-—-set client-id:<App-ID> \
-—-set client-secret:<secret> \
--set grant-type:authorization-code \
--set grant-type:implicit \
--set scope:openid \
--set scope:email \
--set scope:Wildcard-Scope \
--set redirect-url:https://company.com:<port>/client/

Accessing Data

The Data Governance Broker server supports two user profile endpoints:

« The SCIM endpoint provides full operations on user profile data through the SCIM
protocol. The endpoint's URL context path is /scim/v2/{name}. Each SCIM resource,
specified in the SCIM Schema, is exposed as an endpoint. For example, the URL path
/scim/v2/Users would be used to access the Users SCIM resource.

« The OpenID Connect UserInfo endpoint enables the Data Governance Broker to function
as a Resource server. The endpoint's URL context path is /userinfo. The UserInfo
endpoint is read-only and uses GET actions to retrieve user profile data.

Access to resources is determined by the XACML policies that are configured for the Data
Governance Broker. If a request to the Data Governance Broker is delivering partial results, it
may be due to policy settings. See How Policy Affects Access to Scopes.

The Data Governance Broker SCIM endpoint enables applications to perform actions on an end
user's resources, if XACML policies permit. The following are important to consider when using
the SCIM endpoint:

/Me. SCIM supports a special endpoint to retrieve attributes of the currently authenticated
user without knowing the SCIM ID. Retrieve attributes of the currently authenticated user with
the following:

/scim/v2/Me

Authentication. The SCIM endpoints are protected by bearer token authentication, obtained
from the Data Governance Broker. See Authentication for details.

Note
/Bulk and /Groups are not supported.

See the Authentication Developer Portal section on SCIM APIs at
https://developer.unboundid.com/.

-45 -



Chapter 4: Identity Provider Services and
User Authentication

The Data Governance Broker supports the OpenID Connect Standard 1.0, which enables an
OAuth2 client to use the Data Governance Broker as its Identity Provider. OpenID Connect
enables the client to offload its user authentication function to the Data Governance Broker,
which will prompt the end user for any number of authentication flows and issue an ID Token
that the client can use to validate the user's identity.

Obtaining an access tokens, refresh tokens, and token validation are fully documented in the
OpenID Connect 1.0 specification.

Topics include:
Authentication Processing Overview
HTTP Authentication Schemes

OpenID Connect Request

OpenID Connect Response

Using the Data Governance Broker as Relying Party

Creating an External Identity Provider

Authentication Service Settings

-46 -



Chapter 4: Identity Provider Services and User Authentication

Authentication Processing Overview

When an OAuth2 client sends an OAuth2 or OpenID Connect authorization request to the Data
Governance Broker’s authorize endpoint, the Data Governance Broker performs the following
tasks:

« XACML policies are used to drive the authentication flow.
« XACML policies are evaluated again to authorize the scopes.

« Finally, an authorization code and/or access token is issued.

The following illustrates the authentication flow and components involved.

-47 -



Authentication Processing Overview

I
Authentication Request

}

fauthn O
; _ |3
|1 - Policy ' —
P . --\ Enforc§men1 XACML Response !
| XACML Request, one per effective Paint DENY: Continue to next ACH or return |

| ACR until PERMIT or user
| interachon raquired

I
|
I access_deniad if not more ACRs
]

: subject-id: reguesting application :
I
|
/!

PERMIT: Continue to Authorization Step i
DENY wi ADVICE: Redirsct to Ul for user |
interaction !

I action-id: accept authentication
, resource-id: ACR name

If Attribute Vakes from
f 1 Peguest Context .
| Lise Custam PiPxs fo sedrove |

| Ea +,  awlomal atintuns valas ,'

o b A
2 «
Atfribute Reguest from I

| Attmbte Cosigratar or Seiacinon f' Information - - -

' Policles are evaluated if the X | ] Point P
' Target from Policy Set, Policy, , —FH-— —— -

e - I Foquost Contoxt I ‘ Palicy

! or Rules match f Policy Decision \ . _"-EU:‘HPr_ﬂ_P_IF‘_s_ |
Default Policies: Point
' Login Policy

Second Factor Policy

Request Context

Other Custom Policies Information available to policy writars:

;. Account Verification Pelicy

= Incoming XACML Request L
subject-id, action-id, resource-id ;
- ACH properties !
JSOM, ¥ACML attributes-category: resource
= DAuth2 client properties
JEOM, ¥ACML attributes-category: access-subject
- Session properties
JEON, attributes-category: session
- HTTP Request parameters, headers .
XACML attributes-category: http-request
- Emvironment
Standard ¥ACML enviranment attributes

Any other information reguired: Custorm PIPs !

Authentication Context

An Authentication Context represents the information known about how, when, and where the
current user was authenticated. An Authentication Context Class reference (ACR) is a grouping
of authentication requirements. For example, an ACR may specify that a particular
authentication method must be used, or it may specify a maximum duration since the user was
last authenticated by any method. At any point in time, it is possible to determine whether an
ACR is satisfied, or not, by the current Authentication Context. An Authentication Context is
evaluated by XACML policies to determine if it satisfies the requirements of an ACR.

- 48 -



Chapter 4: Identity Provider Services and User Authentication

The OAuth2 client can drive the Data Governance Broker’s authentication behavior by
specifying a set of ACRs that the Authentication Context must meet using the acr request
parameter, as specified by the OpenID Connect specification. If the client did not specify the
ACRs in the request, the configured OAuth2 client level or global level defaults are used to
determine authentication requirements.

Data Broker’s ACR Progression

Auth Request Client Config Palicy Scope

The Data Governance Broker evaluates ACRs in the order specified. If an ID token has been
requested by a client, once the policies return a permit for one of the ACRs, that ACR will be
included in the acr claim of the ID token. Additionally, the configured authentication method
references (AMRSs) for all authenticators used to satisfy the ACR are included in the amr claim
of the ID token as well. The following are properties of an ACR:

ACR Properties

Property Description

Name The name of the ACR, which cannot contain spaces.
Description A description of the ACR for administrative use.

Login Authentication Chain The Authentication Chain for user login.

Second Factor Authentication

Chain The Authentication Chain for second factor authentication.
Login Expiration Interval The time at which the login will expire.

Second Factor Expiration
Interval The time at which the second factor authentication will expire.

Login and Second Factor Flows

The login and second factor authentication flows are designed to authenticate a user using an
Authentication Chain specified by policy advice. If the policy doesn’t specify the Authentication
Chain to use, the configured global defaults are used. After successful invocation of the chain,
the time of the last successful login/second factor, the chain used, client IP, and brower’s UA
string are recorded in a new session metadata in the user resource. A long lived cookie is set
on the browser to associate it with this session metadata in future requests.

Authentication Chain

Each flow uses an Authentication Chain which is an ordered set of Identity Authenticators and
their enforcement criteria. An Identity Authenticator is responsible for checking one or more
credentials provided by the end-user in the request and returning a success or failure along
with a response containing its current state. When a login or second factor request is
processed, it invokes the Identity Authenticators in the order defined by the chain.
Enforcement criteria is then applied based on the success/failure returned by each
authenticator:

-49 -



Authentication Processing Overview

« required-continue: The authenticator is required to succeed. If it succeeds or fails,
authentication still continues to proceed down the chain.

e required-stop-on-failure: The authenticator is required to succeed. If it succeeds,
authentication continues down the chain. If it fails, authentication does not proceed down
the chain and is considered failed.

o optional-stop-on-success: The authenticator is not required to succeed. If it does
succeed, authentication does not proceed further and is considered successful. If it fails,
authentication continues down the chain.

« optional-continue: The authenticator is not required to succeed. If it succeeds or fails,
authentication still continues to proceed down the chain.

Account Flow

Account flows provide the mechanism to perform pre-authentication account self-services such
as account verification, consent agreement capturing, and other actions. The Data Governance
Broker provides three account flow handlers:

Verify Account Flow Handler - Designed to use an authentication chain to validate a user’s
account. Upon success, it will allow the client to update the user resource to indicate the
account is validated. This handler is used to validate a newly registered user’s email address
using the Email Delivered Code Identity Authenticator. The flow is triggered by a sample policy
that checks if the user’s accountverified attribute is set to TRUE. If not, it will return deny
with advice to perform this flow. Upon success, the user’s accountverified attribute is set to
TRUE.

Username Recovery Flow Handler - Designed to use an authentication chain to locate and
verify the user’s identity before returning the value of the configured username attribute. By
default, this handler is configured to use the reCaptcha, lookup, and Email Delivered Code
Identity Authenticators to locate and verify the user to recover. This flow is only triggered by a
link generated by the configuration of the Username Password Identity Authenticator used
during login.

Password Recovery Flow Handler - Designed to use an authentication chain to locate and
verify the user’s identity before the user’s password requirements are returned and a new
password may be set. By default, this handler is configured to use the reCaptcha, lookup, and
Email Delivered Code Identity Authenticators to locate and verify the user to recover. This flow
is only triggered by a link generated by the configuration of the Username Password Identity
Authenticator used during login.

Identity Authenticators

Identity Authenticators provide ways to authenticate a user or provide additional assurance
about the identity of a user who is already authenticated.

Account Lookup Authenticator - Designed to be part of the authentication chain used by the
username/password recovery account flows to locate the user to recover.

-50 -



Chapter 4: Identity Provider Services and User Authentication

A configured SCIM filter template is used to perform a search operation to locate the server.
Placeholders in the filter template will be replaced by the values of the authenticator’s request
parameters.

The authenticator will return success if the search returned exactly one user resource.

Email Delivered Code Authenticator - Designed to be part of the authentication chain used
by the login, second factor, as well as username/password recovery flows.

It uses the configured Verification Code Generator to generate a random code which will be
sent to the user’s email address. The user’s email address is retrieved from the configured
attribute path of the current user in the chain invocation context. The code is sent using the
configured SMTP external server. The subject text of the message sent is specified in the
authentication request.

The authenticator expects a follow up validation request with the generated code. The
authenticator will then return success if the code matches.

Telephony Delivered Code Authenticator - Designed to be part of the authentication chain
used by the login, second factor, as well as username/password recovery flows.

It uses the configured Verification Code Generator to generate a random code which will be
sent to the user’s telephone number. The user’s telephone number is retrieved from the
configured attribute path of the current user in the chain invocation context. The code is sent
using the configured Telephony Messaging Provider. The text of the message sent is specified
in the authentication request.

The authenticator expects a follow up validation request with the generated code. The
authenticator will then return success if the code matches.

« Twilio SMS Messaging Provider: uses Twilio SMS API to send a SMS to the telephone
number.

« Twilio Voice Messaging Provider: uses the Twilio Voice API to call the telephone humber
and read the message.

TOTP Authenticator - Designed to be part of the authentication chain used by the second
factor flow. It uses the Validate TOTP Extended LDAP Operation to validate the TOTP in the
request with an PingData Directory Server.

External Authenticator - Designed to be part of the authentication chain used by the login
flow. This authenticator is used with the configured External Identity Providers, and returns the
IDP’s authentication/authorization URL to the client (through the auth-ui). During the Identity
Provider callback, the client is expected to relay it back to the authenticator in a follow up
request.

If configured with a Directory Server, this authenticator checks and updates password policy
state in the Directory Server using the Externally Processed Authentication SASL Mechanism. It
supports returning accountbDisabled and accountLocked errors based on the user’s
password policy in the Directory Server.

Username Password Authenticator - Designed to be part of the authentication chain used
by the login flow. The username parameter may be omitted. In this case, the password in the
request will be checked against the current user in the chain invocation context.

-51 -



Authentication Configuration Examples

Additionally, it now supports forced password change based on the account usability errors
returned by the Directory Server (such as must-change-password Or password-expired-
with-grace-logins). In this case, the password requirements are returned in the response. It
then expects a follow up request containing the current and new password. It then uses the
Password Modify Extended LDAP operation to update the user’s password. Lastly, it also
supports returning accountbDisabled and accountLocked errors based on the user’s password
policy in the Directory Server.

reCaptcha Authenticator - Designed to be part of the authentication chain used by the Login
and Username Password Recovery flows. It should be configured to be invoked before other
authenticators in the chain to prevent brute force attacks.

Registration Authenticator - Designed to be part of the authentication chain used by the

Login flow. It creates a new user resource based on the attribute and value pairs provided in
the request, and returns success. The initial state of this authenticator returns the password
requirements for a new user.

Authentication Configuration Examples

The following are high-level steps to configure the following in the Data Governance Broker:
« Basic authentication with username and password.
« Adding an external identity provider for social login.
« Adding account registration.
« Adding second factor authentication.

« Adding account recovery.

Username Password Authentication

To configure basic authentication where the end user supplies a username and password,
configure the following:

Identity Authenticators - After Data Governance Broker installation, a Username Password
authenticator is available. Check the Match Filter setting to make sure that works with the
schema in place.

Authentication Chains - If a login chain is not already created after installation, create a
new one and call it Login. Select the Identity Authenticator (Username Password) configured
previously. For Enforcement criteria, select required-continue if every authentication
requires a username and password to be submitted. Enter an evaluation order index of 0 if
this is the first authenticator add. The order index determines how to evaluate an
authentication submission.

Authentication Service - Select the Login chain created previously. This is where the Data
Governance Broker’s login default is configured. If no other authentication requirements are
configured or specified, this authentication chain is used.

-52-



Chapter 4: Identity Provider Services and User Authentication

Authentication Context Class - Create an ACR, which consists of authentication chains for
Login and Second Factor authentication. Specify the intervals a user has to reauthenticate for
each factor. An authentication chain does not have to be assigned an ACR. If the environment
will have one possible authentication experience, creating an unpopulated ACR will be
sufficient. The Data Governance Broker will rely on the login chains assigned under the
Authentication Service.

OpenID Connect Service - Select which ACRs will be evaluated and in what order (top to
bottom). An ACR must be selected for the Data Governance Broker to accept authentication
requests, but it does not have to have authentication chains defined. Every authentication
request has to be evaluated in the context of an ACR, so at least one has to be defined and
selected.

OAuth2 Client - Add an Oauth2 client to the Data Governance Broker and add scopes for the
client to access. Permitted ACRs can be used to specify the ACR evaluation the Data
Governance Broker will make for authentication if no ACR is provided by the client. If an ACR is
provided, this list acts as a filtering list to determine if the requested ACR is permitted by
client. Permitted Scopes can be configured to determine if consent is required, if a scope is
required to gain access to the client, and if a particular ACR requirement is needed to grant
access to a scope.

Adding Social Login through an External Identity Provider

Have the necessary credentials and configuration information needed from the identity
provider to configure the Data Governance Broker as a relying party. Depending on the
provider, this may include client ID, client secret or certificates.

External Identity Providers - Configure connections to Google, Facebook, SAML, and
OpenlID Connect providers.

Identity Authenticators - Specify a name, URN, and any attributes that can be shared with
the client for identification and possibly pre-populating a registration form. A single
authenticator can be used by multiple identity providers.

Authentication Chain - Open the Login chain, add the new authenticator, set the evaluation
order, and enforcement criteria such as optional-stop-on-success.

The auth-ui determines that an external identity provider is available as a login option and
renders the appropriate icon to initiate that request. Icons are available for Facebook, Google,
and OpenID Connect providers. A generic icon for is available for SAML.

Adding Account Registration

To add account registration, define authenticator, add it to an authentication chain, and modify
or create an ACR:

Identity Authenticator - Create a Registration Identity Authenticator, and define which
attributes need to be captured from a registration form. Review an External Identity Provider’s
mappings to make sure they align with the registration attributes required.

- 53 -



Authentication Configuration Examples

Authentication Chain - Add the Registration Identity Authenticator to the primary (login
authentication) chain used in the context classes. There may be multiple authentication chains
used in context classes as the login authentication chain.

Authentication UI - Modify the auth-ui/app/register source files to match the fields
required for registration. They are built using PingData sample schema and will need to be
customized. See Customizing the Authentication User Interface.

Adding Second Factor Authentication

To add an additional authentication requirement, add or configure an Identity Authenticator,
add the authenticator to an Authentication Chain, and add or configure an Authentication
Context Class. Available authenticators that can be used as second factors include:

« Email (Unverified/Verified)
« SMS (Unverified/Verified)

« TOTP (relies on a PingData Directory Server Validate TOTP Password Extended LDAP
operation)

Identity Authenticator - Create a new Telephony Delivered Code Identity Authenticator, and
define the schema URN, attribute path to find the phone number, the code generator, and
whether validation is required.

Authentication Chain - Add this identity authenticator to a chain or create a new one for
second factor only. For second factor, we recommend creating a separate chain so you can
specify the second factors available to users.

Authentication Service - If a separate second factor chain was created, determine if second
factor authentication is required by default. If the chain in the ACR does not specify a second
factor chain, the Data Governance Broker will execute the defined chain for the Authentication
Service.

Authorization Context Class - Add the second factor chain to the default context class and
specify the interval in which a user will be prompted for that factor, or create a separate
context class containing the second factor chain so that applications can specifically request
second factor flows.

Authentication UI - If introducing a new identity authenticator, you will need to modify the
authentication UI to recognize the new authenticator and present screens specific for that
instance.

OAuth2 Client - Edit existing scopes to require a second factor ACR prior to granting the
scope.

Adding Account Recovery

Account Flow Handlers are pre-authentication flows that interact with the user. These handlers
are primarily used to process account recovery requests. There are two primary account
recovery flows, username and password. To configure password recovery, configure the
Password Recovery account flow handler:

-54 -



Chapter 4: Identity Provider Services and User Authentication

Account Flow Handlers - Enable the account handler, and select or create an authentication
chain that defines requirements necessary to determine if a user can change the account
password, such as reCAPTCHA or Email Delivered Code. This account flow handler uses the
Directory Server's change password extended LDAP operation if the authentication chain is
successfully met.

Authentication Chain - Create a chain that defines the enforcement criteria to be considered
before an action can be taken. Assign the chain to the Account Flow Handler.

OpenlID Connect Request

To authenticate an end user, an OAuth2 client must have the following information from the
Data Governance Broker server administrator:

client identifier - An unique identifier issued to the client by the Data Governance Broker
server to identify itself.

client secret - A shared secret established between theData Governance Broker Server and
the client application that is used for signing the ID token when it is returned to the client.

authorization, token, validate, endpoint URLs - The Data Governance Broker’s HTTP
endpoint addresses for authenticating the end user, obtaining authorization, and issuing and
validating access tokens. See Data Governance Broker Endpoints for OAuth2 Clients for details.

userinfo endpoint - The address of the resource that, when presented with a token by the
client, returns attributes about the end user.

The client uses this information to create an OAuth2 request to obtain an access token. An acr
parameter can be included to specify the authentication parameters the client requires.

The following example request uses the implicit grant flow:

GET /authorize?response type=token%20id token&client i1d6c7283d2-92d6-4767-9ceb—
adableb5e7e0d&state=4848573984983&scope=openid%20profile&

redirect uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

An OAuth2 request becomes an OpenlID Connect request with the inclusion of the openid
scope. The Data Governance Broker XACML policies will determine the attributes that the
clients can access within any scopes that are defined.

OpenlID Connect Response

If the end user logged in properly and authorized the OAuth2 client request, the response from
the Data Governance Broker server includes an access token. If the request is an OpenlID
Connect request (contains the openid scope and response type=id token), the OAuth2
access token response will include the access token and id token parameters. The following
is encoded as a JSON Web token inthe id token:

aud (audience) - The client for which this token is intended.
exp (expiration) — The time after which this token is no longer valid.

iat (integer). The time at which the token was issued.

-55-



The Data Governance Broker as a Relying Party

sub (subject) - A locally unique identifier for the end user. This value is never reassigned.

iss (issuer) — An HTTPS URI that is the fully qualified host name of the issuer, which is paired
with the user identifier to create a globally unique identifier.

nonce - The nonce value sent in the request to ensure that the response is original and cannot
be reused.

The id token parameter ensures that the data received by the OAuth2 client has not been
modified. The Data Governance Broker can only issue assertions about registered clients and
user identifiers within its domain. The token is validated by the Data Governance Broker
/oauth/validate endpoint. The client must do the following:

« Verify that the aud matches its client ID and iss matches the domain of the server that
issued the client ID.

« Store the user identifier and iss together.

The following is an example of a base64url decoded ID token:
{

"iss": "https://server.example.com",
"sub": "24400320",

"aud": "s6BhdRkgt3",

"nonce": "n-0S6 WzA2Mj",

"exp": 1311281970,

"iat": 1311280970,

"auth time": 1311280969,

The Data Governance Broker as a Relying Party

The Data Governance Broker, as relying party, acts as a client of an external identity provider
service. Users can log into the Data Governance Broker with external identity provider
accounts. The Data Governance Broker provides authentication claims, account linking, and
profile retrieval services to the OAuth2 client. The Data Governance Broker must be registered
with the identity provider to enable this flow.

A social login link (and icon) can be configured and displayed on the Data Governance Broker’s
default login page for clients configured to use an external identity provider.

Creating an Account through Identity Provider Login

If an end user does not have a Data Governance Broker account, one can be created with the
information obtained from an external identity provider.

If a user attempts to log in with an external account, the External Identity Authenticator
returns mapped attributes if the Data Governance Broker did not find a linked account for the
user. The Authentication UI then presents the registration form so the user can register using
the Registration Identity Authenticator.

- 56 -



Chapter 4: Identity Provider Services and User Authentication

Identity Provider Configuration

The Data Governance Broker as an Identity Provider is responsible for providing token and
authorization code identifiers for users trying to interact with the system. Authentication can
be performed by the Data Governance Broker, or the Data Governance Broker can rely on a

configured external identity provider.

Data Broker Identity Provider Flow
Website redirects user
Sreen T ata Broker

Web Site

options 10 establish a session through
a cookie or 8 token,

<< suthn | | @ Authz
2. HTTF Auth Module goes to
tha Liser sb e B2 rolicy Engine
& Resource Type
Data
Store

The following components are configured:

3. Data Broker can present multiple 4. \Website requests data

abaout user.

Data Stare. This

request will be fitered
through the Folicy
Engine.

« Access Token Providers — Defines how identity and authorization information is
represented by OAuth2 access tokens. A default JSON Web Token Provider is available,
or a new one can be created. To import or configure a new key pair, see Public and

Private Key Store Configuration.

« Account Flow Handlers — Defines additional account flows after user authentication but
before authorization to resources, such as username or password recovery.

« Authentication Chains — Defines an authentication process where the end-user must
present credentials for one or more Identity Authenticators defined in the chain.

« Authentication Context Classes — Specifies a set of authentication context requirements
(ACRs) that must be met before access to a resource (OAuth2 Scope) is granted.

« Authentication Service - Defines the properties that affect the Data Governance Broker
OAuth2 service including access token settings and default ACRs.

-57 -



Identity Provider Configuration

« External Identity Provider — Configure Facebook, Google Plus, an OpenID Connect
provider, or a SAML provider for authentication. Part of the External Identity Provider
configuration is mapping attributes to SCIM Resource Types, and defining what should
occur at login if there is a change to an attribute.

« Identity Authenticators — The default Username Password Identity Authenticator is
configured, but can be changed, or another authenticator can be created. Identity
Authenticators define how a user authenticates with the Data Governance Broker.

o OAuth2 Clients - Define the OAuth2 clients that can request access to resources through
the Data Governance Broker.

« OpenlD Connect Claims - Defines a claim that can be exposed through the UserInfo
endpoint, and its mapping to attribute(s) of the identity resource.

« OpenID Connect Service - Defines token requirements and the default set of ACRs that
can be used to authenticate users.

« Telephony Messaging Providers - Delivers messages to users by telephone (SMS or

voice message).

« Verification Code Generators — Deliver verification codes based on fixed-length strings
built from one or more character sets.

Defining Access Token Providers

Access Token Providers define how identity and authorization information is represented by
OAuth 2 access tokens. All tokens are signed JSON Web Tokens (JWTs) to enable verification
from the Data Governance Broker or from an external resource server.

See Public and Private Key Store Configuration for key store settings. If not using the default
provider, the desired key store configuration should be in place before configuring an Access
Token Provider.

The following is a sample command line configuration:

$ bin/dsconfig create-access-token-provider \
--provider-name "Signed JWT Access Token" \
-—type jwt --set "description:Default Token Provider" \
-—-set "access-token-signing-key-pair:Access Token Signing Key Pair" \
--set access-token-signing-algorithm:RS256

Access Token Providers can also be configured in the Administrative Console under Identity
Provider -> Access Token Providers. The following information is needed to configure the
Authentication Service:

« The unique name and optional description for this provider.
« The access token signing key pair.

« The access token signing algorithm, which can be either RS512, RS256, or RS384.

- 58 -



Chapter 4: Identity Provider Services and User Authentication

Defining Account Flow Handlers

Account Flow Handlers define additional account flows after authentication is complete, but
before authorization to access resources. Three flow types are available:

Password Recovery - Used to reset a user's password.
Username Recovery - Used to look up a user's username.

Verify Account - Used to verify the contact information for a user using an authentication
chain. The account is updated with a specified attribute to indicate successful verification.

This setting relies on the configuration of Authentication Chains.

The following is a sample command line configuration:

$ bin/dsconfig create-account-flow-handler \
--handler-name "Username Recovery" \
-—type username-recovery \
--set enabled:true \
--set "authentication-chain:Username and Password Recovery" \
--set username-attribute:username

Account Flow Handlers can also be configured in the Administrative Console under Identity
Provider -> Account Flow Handlers. The following information is needed to configure an
Account Flow Handler:

« A unique name and optional description for this flow.
« The Authentication Chain to use for this flow.

« For Username Recovery, the attribute to retrieve that is the username. For Verify
Account, the attribute to set confirming that the account was verified.

Defining Authentication Chains

Authentication Chains define an authentication process where a user must present credentials
for one or more Identity Authenticators defined in the chain. Identity Authenticators are listed
in the order in which they should be performed. An authentication process will succeed or fail

based on the enforcement criteria set for each Identity Authenticator.

The following is a sample command line configuration:

$ bin/dsconfig create-authentication-chain \
--chain-name MFA

$ bin/dsconfig create-chained-identity-authenticator \
--chain-name MFA \
-—authenticator-name "Verified Email Delivered Code" \
--set evaluation-order-index:1

Authentication Chains can also be configured in the Administrative Console under Identity
Provider -> Authentication Chains. The following information is needed to configure an
Authentication Chain:

- 590 -



Identity Provider Configuration

« The name and optional description for the chain.
« The set of Identity Authenticators to use in this chain.

« The enforcement criteria for the Identity Authenticators in this chain. Options are:
o required-continue — The authenticator is required to succeed. If it succeeds or
fails, authentication still continues to proceed down the chain.

o required-stop-on-failure — The authenticator is required to succeed. If it
succeeds, authentication continues down the chain. If it fails, authentication does
not proceed down the chain and is considered failed.

o optional-stop-on-success — Ihe authenticator is not required to succeed. If it
does succeed, authentication does not proceed down the chain and is considered
success. If it fails, authentication continues down the Chain.

o optional-continue — The authenticator is not required to succeed. If it succeeds
or fails, authentication still continues to proceed down the chain.

« The Evaluation Order Index. Chained Identity Authenticators are evaluated based on this
index, from least to greatest.

Defining Authentication Context Classes

An Authentication Context Class (ACR) specifies the set of requirements that must be met
before access to a resource (OAuth2 Scope) can be granted. With SAML and OpenID Connect
providers, ACRs are defined around the property of assurance levels inferred from the
methods used to authenticate the user.

The Authentication Context is evaluated by XACML policies to determine if it satisfies the
requirements of an ACR. If the Authentication Context satisfies the ACR, the policy returns
permit. However, if the Authentication Context can not currently satisfy the ACR as is, it may
return a deny with advices to perform authentication flows.

The following is a sample command line configuration:

$ bin/dsconfig create-authentication-context-class \
--class-name "New Class" \
--set "description:Authentication class requiring login with a 12-hour expiration." \
--set "login-authentication-chain:Second Factor" \
--set second-factor-authentication-chain:MFA \
--set "login-expiration-interval:1 d" \
--set "second-factor-expiration-interval:5 s"

Authentication Context Classes can also be configured in the Administrative Console under
Identity Provider -> Authentication Context Classes. The following information is
needed to configure Authentication Context Classes:

« The name and optional description of the class.

« The Authentication Chain for user login.

- 60 -



Chapter 4: Identity Provider Services and User Authentication

« The Authentication Chain for second factor authentication.
« The time at which the login will expire.

« The time at which the second factor authentication will expire.

Defining the Authentication Service

The Authentication Service defines the properties that affect the Data Governance Broker
session and authentication functions. These settings are used to define the actions that the
Data Governance Broker can perform as an Identity Provider.

The following is a sample command line configuration:

$ bin/dsconfig set-authentication-service-prop \
--set "login-authentication-chain:Second Factor" \
--set "second-factor-authentication-chain:Account Verification" \
--set "cookie-max-age:500 w" \
--set max-concurrent-sessions:10

The Authentication Service can also be configured in the Administrative Console under
Identity Provider -> Authentication Service. The following information is needed to
configure the Authentication Service:

« The login and second factor authentication chains that will be used. By default, both are
disabled.

« The cookie domain, path, and maximum age for each session.

« User session criteria, including max concurrent sessions, and flow inactivity timeout.

« The SCIM Resource Type that will provide the credentials and attributes of users that can
be authenticated by the Data Governance Broker. This resource type must be configured
with a primary LDAP store adapter connected to an PingData Directory Server or an
PingData Directory Proxy Server. The Data Governance Broker performs authentication
against this SCIM Resource Type using the credentials provided through the login
interfaces and REST APIs. Attributes of the authenticated identity can be retrieved and
provided to clients through the SCIM /Me endpoint or OpenID Connect claims.

« The session resource attribute, which is exposed to the client during a valid user session.
The client can use this as a personalized greeting during log in or second factor flows.

Creating an Identity Authenticator

Identity Authenticators define how a user can authenticate with the Data Governance Broker.

The following Identity Authenticators are provided:

« Account Lookup - Used to lookup an end-user account from one or more specified
request parameter values.

« Linked External Identity - Used to authenticate an end-user with an External Identity
Provider.

-61 -



Identity Provider Configuration

reCAPTCHA - Used to verify a user's response to a Google reCAPTCHA challenge.

Registration - Used create and authenticate a new account from data entered by the
end-user.

TOTP - Used to authenticate an end-user with a time-based one-time password based
on RFC 6238 by using the Directory Server Validate TOTP Password Extended LDAP
operation.

Unverified Email Delivered Code - Used to deliver a verification code to an e-mail
address stored in a specified attribute from a user's SCIM resource, and then verify the
code entered by the user.

Unverified Phone Delivered Code - Used to deliver a verification code to a telephone
number (by SMS or voice message) stored in a specified attribute of a user's SCIM
resource, and then verify the code entered by the user.

Username Password - Used to authenticate an end-user with a username and
password using an LDAP BIND operation.

Verified Email Delivered Code - Used to deliver a verification code to an e-mail
address stored in a specified attribute from a user's SCIM resource and then verify the
code subsequently entered by the user.

Verified Phone Delivered Code - Used to deliver a verification code to a telephone
number stored in a specified attribute of a user's SCIM resource, and then verify the
code entered by the user.

The following is a sample command for creating a Username Password authenticator:

$

bin/dsconfig create-identity-authenticator \
-—authenticator-name "New Authenticator" \
--type username-password \

--set enabled:true \

--set 'match-filter:userName eq "$1"'

Configure the following for an Identity Authenticator:

« The a name and optional description for this authenticator.

« A match filter, which specifies the SCIM search filter that should be used when

performing searches to map the provided username to a backend user resource. The
filter pattern can include a string from a capturing group matched by the match pattern
by using a dollar sign ($) followed by an integer value that indicates which capturing
group should be used. Capture group 0O refers to the entire username that matched. For
example, the match-filter userName eq $1 and organization eq $2 with a match
pattern of ~ (.*) @ (.*) $ will substitute $1 and $2 with the portions before and after the
'@' symbol in the username.

« A match pattern, which specifies the regular expression pattern used to identify portions

of a username. Any portion of the username that matches this pattern is replaced with

-62 -



Chapter 4: Identity Provider Services and User Authentication

the provided match-filter replace pattern. If multiple substrings within the given
username match this pattern, all occurrences are replaced. If no part of the given
username matches this pattern, the match-filter is not altered. It must be a valid regular
expression as described in the API documentation for the java.util.regex.Pattern
class, including support for capturing groups. For example, a match-pattern of ~ (. *) @
(.*) s will match an e-mail address username. The match filter userName eq $1 and
organization eg $2 can then be used to substitute $1 and $2 with the portions before
and after the '@' symbol in the username.

Note Make sure that SCIM search functions are designed to return one, unique username. See
Maintaining Username Uniqueness for details.

Creating an OpeniID Connect Claims Map

OpenlID Connect Claims define a claim that can be exposed through the UserInfo endpoint, and
its mapping to attribute(s) of the SCIM Resource Type that is defined for the Authentication
Service. Claims can be defined by name or the path, for example:

« name - Defines the name claim whose value is mapped from an attribute in the SCIM
Resource Type that is defined for the Identity Provider Service.

« name.last - Defines the name claim whose value is a JSON object where the field 1ast
is mapped from an attribute in the SCIM Resource Type that is defined for the Identity
Provider Service.

« * - All core or extension identity resource attributes are defined as claims with the same
name and value.

« urn:extension:* - Maps all extension attributes identified by extension URN
urn:extension in the SCIM Resource Type that is defined for the Identity Provider
Service.

e addresses[type eq "preferred"].postalCode - Maps the postalCode sub-attribute
of the address, where the sub-attribute type equals preferred.
The following is a sample command line for adding a claim:

$ bin/dsconfig create-openid-connect-claim \
--claim-name email work \
--set 'identity-resource-attribute:emails[primary eq "true"].value'

Maps can also be edited and created in the Administrative Console under Identity Provider -
> OpenID Connect Claims. The following information is needed to create a claims map:

« The name of the claim.

« The attribute name as represented in the SCIM Resource Type that is defined for the
Identity Provider Service.

- 63 -



Identity Provider Configuration

Defining the OpenID Connect Service

The OpenlID Connect Service defines token requirements and the default set of ACRs that can
be used to authenticate users.

The following is a sample command line configuration:

$ bin/dsconfig set-openid-connect-service-prop \
--set "authorization-code-validity-duration:2 m" \
--set "access-token-validity-duration:10 h" \
--set "refresh-token-validity-duration:2 w 2 d" \
--set "id-token-validity-duration:10 m"

The OpenlID Connect Service can also be configured in the Administrative Console under
Identity Provider -> OpenID Connect Service. The following information is needed to
configure the Authentication Service:
« Authorization code validity duration specifies the length of time an authorization code is
valid. OAuth2 client configuration can specify a different validity duration that is specific
to authorization codes generated for that client, which will override this property.

« Access token validity duration specifies the length of time an access token is valid.
OAuth2 client configuration can specify a different validity duration that is specific to
access tokens granted for that application, which will override this property.

« Refresh token validity duration. OAuth2 client configuration can specify a different
validity duration that is specific to refresh tokens generated for that application, which
will override this property. A value of 0 will disable the generation of refresh tokens.

« ID Token validity duration specifies the length of time an OpenID Connect token is valid.
OAuth2 client configuration can specify a different validity duration that is specific to ID
tokens granted for that client, which will override this property.

« ID Token issuer name specifies a unique identifier for the Issuer (iss) claim of an ID
token. This value is inserted into a URL of the form https://issuer name when
returned as the unique issuer identifier in an OpenID Connect ID token. The default value
for this property is the host name of the Data Governance Broker installation.

« The ordered list of Authentication Context Classes (ACRs), which determine the steps
required for user authentication and access to scopes. A client can specify its own
required ACRs, but they must be configured in the Data Governance Broker.

« The access token provider.

Creating an External Identity Provider

An External Identity Provider can be used to provide a social log in option to users, reset or
retrieve account usernames and passwords, and link existing account data to data in a SCIM
Resource Type. The options for these actions are defined in the Identity Provider Service.

- 64 -



Chapter 4: Identity Provider Services and User Authentication

The Data Governance Broker provides templates for creating Facebook and Google identity
providers, or an OpenID Connect provider can be configured. All can be created through the
Administrative Console or from the command line.

The following is a sample command for creating a Facebook identity provider:

$ bin/dsconfig create-external-identity-provider \
-—provider-name "Facebook Provider" \
-—type facebook \
-—-set "description:Facebook for Web App access" \
--set enabled:true \
--set app-1d:847392057829512 \
--set "app-secret:AACHIFDY0Oke71yMjDhfBVsgYk+9BczWYM24="" \
--set permission:email

The following general information is needed to add any identity provider:
« A name and an optional description for this provider.

« The location URI for the icon that will represent the identity provider on the Data
Governance Broker login page.

« The hostname verification method for making sure the identity provider's hostname
matches the name(s) stored inside the server's X.509 certificate. This is only needed if
SSL is being used for connection security. Options are:

o allow-all - Turns hostname verification off.

o strict - Works like the Java Runtime Environment, and accepts wildcards. The
hostname must match any of the Subject Alternative Names or the first CN. A
wildcard can be present in the CN, and in any of the Subject Alternative Names. A
wildcard such as *.example.com matches only subdomains in the same level, for
example a.example.com. It does not match deeper nested subdomains.

« If using SSL, provide the location (DN) of the Key Manager and Trust Manager. If not
provided, The Java Runtime Environment's default Key Manager and Trust Manager will
be used.

« Attribute mapping for each provider defines how the value of a single SCIM Resource
Type attribute is determined from an External Identity Provider attribute. The SCIM
Resource Type is defined in the Identity Provider Service.

Configuring a Redirect URI

An External Identity Provider's configuration may require a redirect-uri, such as
https://broker.example.com/auth-ui/callback.html. The redirect URI value configured
at the External Identity Provider will depend on the client application implementation. Login
and registration through an External Identity Provider uses the auth-ui by default. If
implementing a custom authentication UI, the redirect URI will reflect how the application is
implemented.

- 65 -



Identity Provider Configuration

The same is true for External Identity Provider linking through the SCIM API. For example If
using the My-Account sample application, the redirect URI will resemble
https://broker.example.com/samples/my-account/callback.html. However, if
implementing a custom Data Governance Broker SCIM API client, the redirect URI will reflect
the application's implementation.

Properties For Facebook

« The App ID that was given to the Data Governance Broker when it was registered with
Facebook.

« The App Secret that was given to the Data Governance Broker when it was registered
with Facebook.

« Facebook permissions. These are the Facebook scopes that can be requested from a
registered Data Governance Broker OAuth2 client.

Properties For Google

« The Client ID that was given to the Data Governance Broker when it was registered with
Google.

« The Client Secret that was given to the Data Governance Broker when it was registered
with Google.

« The Google scopes that can be requested from a registered Data Governance Broker
OAuth2 client.

Properties For OpenID Connect

« The Client ID that was given to the Data Governance Broker when it was registered with
the identity provider.

« The Client Secret that was given to the Data Governance Broker when it was registered
with the identity provider.

« The OpenID Connect scopes that can be requested from a registered Data Governance
Broker OAuth2 client.

« Choose the authentication method to use when the OAuth2 client connects to the identity
provider's token endpoint.

« The URL that the identity provider recognizes as its issuer identifier.
« The URL for the identity provider's OAuth2 authorization endpoint.

« The URL for the identity provider's OAuth2 token endpoint.

« The URL for the identity provider's OAuth2 UserInfo endpoint.

- 66 -



Chapter 4: Identity Provider Services and User Authentication

Properties For SAML
« The URL of the SAML Identity Provider Single Sign-On Service.

« The local entity ID used to populate the issuer field of outgoing SAML messages, which is
the Data Governance Broker by default.

« The entity ID of the SAML Identity Provider, which must match the issuer field of the
SAML messages received and the source ID of SAML Artifacts received.

Defining Telephony Messaging Providers

Telephony Messaging Providers are used to deliver messages to users by telephone (SMS or
voice message). Two Twilio providers are included with the Data Governance Broker
installation. A third-party provider can be created with the Server SDK.

The following is a sample command line configuration:

$ bin/dsconfig create-telephony-messaging-provider \
-—-provider-name "New Provider" \
-—type sms-twilio \
--set twilio-account-sid:<ID>
--set twilio-auth-token:AAAd5IBOshLkgl5Wgx7e6bNtWVndvs 9DNXg=
--set sender-phone-number:<0000000000>

Authentication Chains can also be configured in the Administrative Console under Identity
Provider -> Telephony Messaging Providers. The following information is needed to
configure a Telephony Messaging Provider:

« The name and optional description of the provider.
« The unique ID assigned to the Twilio account.
« The authentication token assigned to the account.

« The phone numbers obtained for use with the Twilio account.

Defining Verification Code Generators

Verification Code Generators are used to deliver verification codes based on fixed-length
strings built from one or more character sets.

The following is a sample command line configuration:

$ bin/dsconfig create-verification-code-generator \
-—generator-name "New Code Generator" \
-—type random \
--set code-character-set:alpha:ABCDEFG \
--set code-character-set:numeric:0123456789 \
--set code-format:"alpha:3,numeric:4"

Verification Code Generators can also be configured in the Administrative Console under
Identity Provider -> Verification Code Generators. The following information is needed
to configure a Verification Code Generator:

-67 -



Identity Provider Configuration

The name and optional description of the generator.
One or more named ASCII character sets used to generate codes.
The authentication token assigned to the account.

The format requirements of the generated code.

- 68 -



Chapter 5: OAuth2 Clients and Token
Access

OAuth2 clients request access to scopes. Each request is processed by XACML policies, which
determine whether the scope can be granted. Adding an OAuth2 client to the Data Governance
Broker defines the URL, the OAuth2 grant types, token requirements, and the scopes that the
client can use. A client ID and client secret are defined and are needed by the OAuth2 client to
interface with the /oauth endpoints. A redirect URL is needed during the registration process
so that the Data Governance Broker can redirect an end user back to the client when
authorizing access to resources.

Topics include:
OAuth?2 Client Considerations

Using Applicable Scopes
Creating OAuth2 Clients
OAuth2 Authorization Grant Types

OAuth2 Authorization Response Types

Processing Access Tokens

The Data Governance Broker Token Endpoint

Token Validation by the Data Governance Broker

Token Revocation by the Data Governance Broker

Obtaining a Refresh Token

Accepting External Access Tokens

- 69 -



Chapter 5: OAuth2 Clients and Token Access

OAuth2 Client Considerations

Consider the following when configuring an OAuth2 client to connect with the Data Governance
Broker:

Assign only the grant types needed by the OAuth2 client. For example, it should be rare
that a client needs to use both the code and the implicit grant types.

The client should request only needed scopes. Requesting only necessary information
ensures that a user's privacy is respected and maintained.

When a client receives an access token, it should not assume that all requested scopes
were granted. The token response will often contain the list of granted scopes. In the
case of the implicit grant type, the list of granted scopes will only be provided if they
differ from the requested scopes. The validation endpoint can always be used to get the
list of granted scopes.

Access tokens are digitally signed JSON Web Tokens (JWT). In cases where external
resource servers must validate access tokens, RSA public and private key configuration
can be used to verify and trust Data Governance Broker tokens.

Access tokens granted using the implicit grant type should be configured to be short-
lived.

Access tokens should be validated to confirm that they are intended for the client. The
token itself contains all the required information about the user, avoiding the need to
query the database more than once.

Any state information that must be preserved between requests should be stored using
the state parameter. The redirect uri value should not be used to store state.

The Data Governance Broker's Authentication API uses a cookie to track user sessions.
Cookie management and server domains should be considered when deploying any
clients that will use the Authentication API.

OAuth2 Authorization Grant Types

The OAuth2 specification states that a client application must receive authorization from a
resource owner through an access token, to retrieve the owner's protected resources. The
Data Governance Broker supports all OAuth2 authorization grant types:

Authorization Code Grant - This is a server-side redirection-based flow. The OAuth2
client redirects the end user (user agent) to the authorization endpoint (Data Governance
Broker) to grant or deny access to a resource. If access is granted, the Data Governance
Broker returns a redirection URI with an authorization code and then redirects the end
user back to the client. The client uses the authorization code to request an access token

-70 -



OAuth2 Authorization Response Types

from the Data Governance Broker server. The Data Governance Broker validates the
authorization code and returns an access and optionally a refresh token to the client. The
client can now use the access token to request resources. The access token serves as
both authentication of the client, and authorization to access the resources.

. Implicit Code Grant - This is another redirection-flow, designed for web clients, such
as mobile applications or JavaScript applications running in browsers. The flow is similar
to the authorization grant flow, except that the Data Governance Broker redirects the
client with an embedded access token in the URI, rather than an authorization code
requiring a separate token request. The client secret is not used because it would be
stored (and be vulnerable) in the client. No refresh token is sent as this grant type is
designed for short-lived access to a resource.

. Resource Owner Password Credentials Grant - This flow enables a user to log in
with a username and password to receive an access token. The OAuth2 client can then
keep the access token for access to resources. The client is expected to discard the
username and password and keep the access token. This flow should only be used for
clients that are trusted to handle the user password in the clear, as well as detailed
account and credential validation errors.

. Client Credentials Grant - This flow enables a client's application server to exchange
the client ID and the client secret for an access token. This enables clients to directly
access resources that are specific to the client and are not tied to an identity.

OAuth2 Authorization Response Types

The Data Governance Broker supports the following OAuth2 and Open ID Connect response
types:

« code - torequestan authorization code.
o token - to requestan access token.

« token id token - to request both an access token and an ID token.

Adding an OAuth2 Client

Create and maintain OAuth2 clients that can request access to resources based on XACML
policy, or any other privacy restrictions. The information used to register the client with the
Data Governance Broker will be needed by the OAuth2 client to request resources. Clients can
be added through the Administrative Console or from the command-line, such as:

$ bin/dsconfig create-ocauth2-client \
--client-name "Web App Client"
--set scope:email

The information used to configure an OAuth2 client includes:

-71 -



Chapter 5: OAuth2 Clients and Token Access

General Information
« The name of the client.
« Optional description, and contact email address for this OAuth2 client.
« The contact email address for this client.
« The client URL, which must also be registered with the Data Governance Broker.

« The trusted origin(s) of the client if making JavaScript requests.

« The optional tag assigned to this client, for additional XACML policy processing.

OAuth2 Information

« The client ID and client secret can be generated by the Data Governance Broker when
the OAuth2 client is created, or they can be entered manually.

« The OAuth2 access grant types, which include:
o authorization-code - The authorization code grant, which is used to request an
access token from an authorization code.

o client-credentials - The client credentials grant, which can be used by a client to
request an access token using only its client credentials.

o implicit - The implicit grant, where an access token can be requested without
obtaining intermediate credentials (such as an authorization code).

o password - The password grant, where an access token can be requested directly
from the resource owner credentials.

o refresh-token - The refresh token grant, where a new access token can be
requested from a refresh token.

« If using the authorization code or implicit grant flow, specify a redirect URL.

« If necessary, the access and authentication token settings can be specified per client. If
not specified when creating the OAuth2 client, the Identity Provider Service settings are
used.

« The Authentication Context Classes (ACRs) that are permitted for this client. If not
specified, the client can determine the required ACRs in its request to the Data
Governance Broker. By default, the Data Governance Broker provides two ACRs in the
OpenlD Connect Service Configuration. Any ACR that the client can require, must be
defined in the Data Governance Broker.

« Any external identity providers that can be used to authenticate an end user account
(advanced setting).

« The permitted scopes that can be requested by an OAuth2 client. These can also require
additional ACRs, which are processed after the initial authentication phase of a client
request. See Authentication Processing Overview for details.

-72 -



The Data Governance Broker Token Endpoint

The Data Governance Broker Token Endpoint

An OAuth2 client uses the token endpoint (/oauth/token) to obtain an access token by
presenting its authorization grant. The endpoint can also issue a refresh token if the original
access token has become invalid or expires. The authorization header of the client request will
contain the Base64 encoded client ID and client secret credentials.

Note
The token endpoint can return errors, warnings, and notices related to the login identity's
password and account state when using the Resource Owner Password Credentials Grant

type.

Request

The following example makes a token request to the endpoint:

POST /oauth/token HTTP/1.1

Host: <example.com>

Authorization: Basic aXQncyBkYW5nZXJvdXMgdG8gZ28gYWxvbmU6dGFrZSB0aGlz
Content-Type: application/x-www-form-urlencoded

grant type=authorization code&code=Splxl10BeZQQYbYS6WxSbIA&redirect
uri=https%$3A%2F%2Fclient%2Eexample%$2Ecom%2Fcb

Response

If the token request is authorized, the Data Governance Broker server returns:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragma: no-cache

"access_ token": "2YotnFZFEjrlzCsicMWpAA",

"token type": "bearer",

"expires in": 3600,

"scope": "openid email profile",

"id token": "eyJhbGciOiJIUzI1NiJ9.eyJhdXRoX3RpbWUiOjEOM]jE4ODExXMDMs ImV4
cCI6MTQYMTg4MiAWOSWic3ViljoiOWY4YTIZLWNGY2M3NmV1LWQWN2ItM2T
4Yy05MjJjLWRkZDgwOWMOYZzE3MyIsImF1ZCI6WyJhY211I10sImlzcyI6Im
hO0dHBzO1lwvXC94MjI1IMCOwWMS51eGFtcGx1ImNvbSIsImlhdCI6MTQyMTg4M
TEWOX0 .CZYpxocXZ- DEPttmHgSiQlFU8Pplb8I-70K3PMp4-Y"

Token Validation by the Data Governance Broker

The Data Governance Broker token validation endpoint (/oauth/validate) enables OAuth2
clients and external resource servers to determine the state of an access token, as well as
additional metadata about the token. To validate an access token, a POST is sent to the Data
Governance Broker's /oauth/validate endpoint, which returns a response with information

-73-



Chapter 5: OAuth2 Clients and Token Access

about the token's validity and scope. The validation endpoint is based on the OAuth 2.0 Token
Introspection standard, RFC 7662.

Parameters are provided either as form parameters or as query parameters appended to the
token validation endpoint URL. Though, using query parameters is discouraged because it will
cause the access token to be logged.

The token parameter is required. A client id parameter is optional. If both are provided,
the validation endpoint verifies that the access token was issued to the provided client.

The token response includes a jti claim (JWT ID), which provides a unique identifier for the
access token. The §ti value also appears in the Data Governance Broker's trace log output,
and can be used to find requests using this access token.

Note
OAuth2 clients using OpenID Connect are responsible for validating ID tokens received from
the Data Governance Broker. Refer to the OpenlD Connect Core 1.0 specification for
information.

Request

The following is a request to validate a token:

POST /oauth/validate HTTP/1.1

Accept: application/json

Content-Type: application/x-www-form-urlencoded; charset=utf-8
Host: example.com:443

token=<access token>&client id=<client ID>

Response

If the operation is successful, the Data Governance Broker responds with a JSON object with
the following parameters:

HTTP/1.1 200 OK

Cache-Control: no-store

Pragma: no-cache

Content-Type: application/json;charset=UTF-8

{
"active": true,
"sub": "Users/1d998887-87bc-4271-aalc-27652bf02d6c",
"client id": "<client ID>",
"exp": 1448008233,
"iat": 1447971141,
"scope": "openid profile email"
"jti": "IPaSog"
}

Token validation failures occur if the token is malformed, expired, or revoked. Failures will
also occur if the provided client id does not match the application for which the access token
was issued. If validation fails, the response will indicate that the token is inactive:

HTTP/1.1 200 OK
Content-Length: 16

-74 -



Token Revocation by the Data Governance Broker

Content-Type: application/json;charset=UTF-8

{

"active": false

}

Token Revocation by the Data Governance Broker

The token revocation endpoint (/oauth/revoke) enables OAuth2 clients to send a POST
request to the Data Governance Broker to revoke access or refresh tokens. Revoking a token
does not remove any associated consents. Token revocation conforms to the OAuth 2.0 Token
Revocation RFC 7009.

During the revocation process, the Data Governance Broker validates the client credentials,
and verifies that the client making the request originally issued the token. If the validation
fails, the request is refused and an error response is sent. If validation is successful, the Data
Governance Broker revokes or invalidates the token.

For example, he following revokes a token:

POST /oauth/revoke HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Token=MC2AAQGBBlpxSGUtUYIgQI8F1lrTZdspndxDamsIKKxei8Wdj E3DUXscVpiw6u8

If the operation is successful, the Data Governance Broker responds with the HTTP status code
200.

Token Validation by an External Resource Server

Data Governance Broker access tokens are digitally signed JWTs, which enables them to be
validated by the Data Governance Broker or by an external resource server with the
configuration of public/private key pairs.

When a client application makes a request to the Data Governance Broker for access to
resources, a JWT is returned and must be saved locally (in local storage, or through cookies),
instead of the traditional approach of creating a session in the server and returning a cookie.

When a user wants to access a protected resource, the client application sends the JWT,
typically in the Authorization header using the Bearer schema. The resource server (either the
Data Governance Broker or an external server) checks for a valid JWT in the Authorization
header. If it is present, the access to protected resources is granted. The authentication
mechanism is stateless, as the user's state is never saved in server memory.

Because JWTs are self-contained, all of the necessary information that determines what can be
accessed (the scopes) is present. Once the Data Governance Broker and an external resource
server are configured with a key pair, the validation of the token and the request for data are
processed by the resource server, reducing the need to make multiple requests to the Data
Governance Broker.

-75 -



Chapter 5: OAuth2 Clients and Token Access

Obtaining a Refresh Token

To request an OAuth2 refresh token, the offline access scope should be requested in the
client's authorization request. The client application's use and consent requirements will
dictate the choice of scope:

The offline access scope is provided for compliance with the OpenID Connect specification.
To successfully obtain a refresh token, a client using this scope must also specify the prompt
authorization request parameter with a value of consent. End users must provide explicit
consent to grant a refresh token every time one is requested.

Note
When a clientrequeststhe offl1ine access scope, the server relies on the Offline Access
policy to determine if the request included the prompt parameter including the consent
value. If the server finds that prompt=consent was not provided, it willremove the offline
access scope from the candidate list of scopes to authorize.

Refresh tokens can only be requested with an authorization code grant request or a resource
owner password credentials grant request. For example:

GET /oauth/authorize?

response type=codeé& client id=<0d5e5af7-420c-4241-8cff-0cfd9d806e59&
scope=profile%20email%20offline accessé&

prompt=consenté&

state=48389488¢& redirect uri=https%3A%2F%2Fwww.example.com¥3A8443%2Fredirect

The refresh token will be provided in the refresh token field of the token response. The client
may use a refresh token to extend the duration of an authorization without end user interaction
by making a refresh request to the token endpoint to obtain a new access token. The following
POST parameters are used:

« grant type — Required. Value must be set to refresh token.
. refresh token - Required. The refresh token issued to the client.

« scope — Optional. The scope of the access request. The requested scope cannot include
any scope not originally granted by the resource owner.

The response will look like the following:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragma: no-cache

{
"access token":"VGhlIGFwcGFyaXRpb24gb2YgdGhlc2UgZmFjZXMgaW4gdGhlIGNyb3dkOw=="",
"refresh token": "UGVOYWxzIGOuIGEgd2VOLCBibGFjayBib3VnaC4=",
"token type":"bearer",
"expires in":3600,
"scope": "profile email"

-76 -



Accepting External Access Tokens

Accepting External Access Tokens

As a Resource server, the Data Governance Broker supports receipt of access tokens from a
third-party OAuth2 provider. Authorization of requests that use externally-defined access
tokens can now use a third-party validator.

Access tokens must be validated by XACML policy. The Token Policy Information Provider is
responsible for determining the capabilities of internally-issued access tokens and making
them available to the policy engine.

If an externally-issued access token is presented with a request, the Token Policy Information
Provider will be unable to interpret it. The policy engine in that case will continue through its
list of configured PIPs until it finds one that can decode the token.

Though not required, a third-party PIP can offer the same JSON interface as the Data
Governance Broker's PIP, therefore making the type of token transparent to policy. This type
of PIP must at least return a JSON object populated with the active, sub, and scope
properties. A third-party PIP that provides a different interface would require policies to be
written with specific knowledge of different token types.

Data Governance Broker Endpoints for OAuth2 Clients

The Data Governance Broker provides multiple REST endpoints for client access. The following
list presents a summary of the endpoints that may be called by a client application requesting
user profile data. All Data Governance Broker endpoints are available at <server-
root>/docs/restapi/index.html.

A request to each endpoint should have a scope with the desired actions included. Review the
properties and values available for Authenticated Identity Scopes and Resource Scopes.

Data Governance Broker Endpoints for Clients

Endpoint Description

This is the SCIM 2.0 protocol endpoint used to retrieve a specified
SCIM Resource Type, where <name> is the SCIM Resource Type
being accessed. This endpoint supports all SCIM operations and
implements its access control through the XACML policies. A request
to this endpoint requires a scope thatincludes a

/scim/iv2/<name> resourceOperations value that represents the desired action.

loauth

The OAuth2 standard authorization endpoint. This is the endpoint that
/oauth/authorize an application will use to get an authorization grant from the user.

The OAuth2 token endpoint. This is the endpoint that an application
will use to request an access token from the Data Governance Broker

/oauth/token Server to access identity information.
/oauth/revoke The Data Governance Broker endpoint used to revoke a token.
/oauth/validate The Data Governance Broker endpoint used to validate a token.

-77 -



Chapter 5: OAuth2 Clients and Token Access

Endpoint Description

luserinfo

The OpenlD Connect endpoint. Use this endpoint for applications that

require read-only access to user profile data. Access to this endpoint

requires an OAuth2 access token with the openid scope. The client

application will receive the attributes granted by the scopes in the
luserinfo access token. Either GET or POST actions can be used.

Ipdp/v1/authorization

The Data Governance Broker Policy Decision Point endpoint used by

an external Policy Enforcement Point (PEP) to generate XACML

requests and send them directly to the Data Governance Broker for

evaluation. The requestis passed directly to the policy engine. This

method supports POST only. The body of the POST should contain
/pdp/v1/authorization the XACML request as an XML string.

-78 -



Chapter 6: Configuring Scopes and
XACML Policies

Scopes define the attributes that an OAuth2 client can request, the name that is displayed to
end users, the claims that can be accessed, and the actions that can be performed on each
attribute. Scopes must be defined in the Data Governance Broker before a client can include
them in requests. Scopes are also used to capture consent for the requested resources.

XACML policies are the rules that determine what scopes are shared with OAuth2 clients and
under what conditions. Policies include the criteria by which access decisions are made using
targets, rules, conditions, obligations, and a rule combining algorithm. Default policies are
available, or custom policies can be written.

Topics include:
OAuth2 Overview
OAuth2 Scopes

Creating Scopes
XACML Policy Overview

Policy Structure

Policy Request Processing Per Endpoint

Policy Engine Request Context

Policy Sections and Functions Described

Configuring the Policy Service

Policy Information Providers

Creating Policies

Creating a Policy Set

Testing Policies

Unsupported XACML Features

-79 -



Chapter 6: Configuring Scopes and XACML Policies

OAuth2 Overview

The Data Governance Broker, as an Identity Provider, uses the OAuth2 authorization
framework, which enables clients to obtain access to protected resources by using tokens. The
security and privacy of user information relies on the access requirements and consent flows
configured for the OAuth2 client.

OpenlD Connect, built on the OAuth2 standard, is the identity layer that enables clients to
authenticate end users without performing the authentication themselves. It also enables end-
user identity data to be shared between interested parties with the end-users’ consent. It
provides two primary mechanisms for doing this:

« ID tokens. ID tokens are compact objects which identifies the user making the request
and provide information about authentication events.

« The UserInfo endpoint. This is a bearer token-protected REST endpoint which provides
attributes (“claims”) about the identity of the access token owner.

The OAuth2 implementation, defined in the Identity Provider Service, provides the necessary
interfaces to define access requirements and develop an OAuth2 client. After the Data
Governance Broker is installed, the Identity Provider Service can be configured with the
dsconfig tool or through the Administrative Console.

The encryption and decryption keys used to protect tokens and authorization codes are stored
in the encryption settings database. See Managing Server Encryption Settings for information.

OAuth2 Scopes

When an OAuth2 client makes an authorization request using the standard OAuth2 endpoints, it
specifies the level of access that it requires using scopes. Based on the application’s
configuration, the XACML policies that process the request, and consents granted by a user, the
Data Governance Broker will decide which scopes to return in an access token.

There are three scope types:
« Generic OAuth2 scope (used for external Resource servers).
« Authenticated Identity scope.

« Resource scope.

A Generic OAuth2 scope includes the following properties, which are the base properties for the
Authenticated Identity and Resource scopes.

Generic OAth2 Scope Properties

Property Description
Token Name The scope name as presented in an OAuth2 request.
Type The scope type, which is cauth?2 for generic scopes.

- 80 -



OAuth2 Scopes

Generic OAth2 Scope Properties
Property Description

Description A description of the scope for administrative use.

A description of the scope that will be presented in a consent dialog, if the scope is
Consent Prompt Text configured to require consent.

A list of Tags associated with this scope. Tags are arbitrary additional properties that
Tags can be examined by XACML policies.

Authenticated Identity Scope

This scope is granted for an authenticated end user. Once granted, the scope can be used to
access the attributes of that authenticated identity. The attributes can be obtained through
SCIM endpoints using the /Me authenticated subject alias as well as the URI of the SCIM
resource, or obtained as OpenID Connect claims using the /UserInfo endpoint. User attributes
can also be obtained as claims in the ID token.

Properties in this scope include those in the generic OAuth2 scope and the following properties.
At least one of the operation properties must have a value. Policy processing of requests that
contain account, consent, or external identity provider operations is described in SCIM Sub-
Resource Operation Policy Evaluation.

Authenticated Identity Scope Properties
Property Description

The scope type, which is authenticated-identity for authenticated
Type identity scopes.

Operations can include:
o create (POST) to endpoint /scim/v2
o search (GET) from endpoint /scim/v2

o retrieve (GET) from endpoint /scim/v2/<id>,
/Userinfo, Or /Me

o replace (PUT) to endpoint /scim/v2/<id>
e modify (PATCH) to endpoint /scim/v2/<id>

Resource Operations e delete (DELETE) from endpoint /scim/v2/<id>

A list of one or more SCIM attributes of the authenticated identity for which this
scope allows access. The type of access is determined by the operation
properties retrieve replace, and modify. A wildcard value of * can be
used for all attributes. A schema-specific wildcard value of the form

urn:<schemaName>:* can be used to represent all attributes of a single
Resource Attributes schema namespace.

The Sub Resource Type that can be accessed by this scope, such as consent
SCIM Sub Resource Types history, account state, or password criteria.

-81-



Chapter 6: Configuring Scopes and XACML Policies

Resource Scope

An OAuth2 scope that allows an OAuth2 client bearing a granted token to access resources of a
specified SCIM Resource Type. It defines the SCIM operations (search, create, retrieve,
update, and delete) that can be performed by the client, and the attributes that can be
retrieved or updated. A Resource scope is similar to an Authenticated Identity scope, but
potentially allows access (subject to XACML policy) to all resources of a specified SCIM
Resource Type.

Properties in this scope include those in the Authenticated Identity scope and the following
properties. Policy processing of requests that contain account, or external identity provider
actions is described in SCIM Sub-Resource Operation Policy Evaluation.

Resource Scope Properties

Property Description
Type The scope type, which is resource for resource scopes.
SCIM Resource Type The SCIM Resource Type that can be accessed with this scope.

Operations can include:
e create (POST) to endpoint /scim/v2
e search (GET) from endpoint /scim/v2
o retrieve (GET) from endpoint /scim/v2/<id>
e replace (PUT) to endpoint /scim/v2/<id>
e modify (PATCH) to endpoint /scim/v2/<id>

Resource Operations e delete (DELETE) from endpoint /scim/v2/<id>

A list of one or more SCIM attributes of the SCIM Resource Type for which
this scope allows access. The type of access is determined by the
operation properties cCreate, retrieve replace andmodify A
wildcard value of * can be used for all attributes. A schema-specific

wildcard value of the form urn: <schemaName>: * can be used to
Resource Attributes represent all attributes of a single schema namespace.

The Sub Resource Type that can be accessed by this scope, such as

consent history, account state, or password criteria. If this is null, access is

for the base resource object. If not null, access is granted for the sub
SCIM Sub Resource Types resource only, and not for the base resource.

For granting access to Data Governance Broker resources, the values of the
resourceAttributes property are attribute notation strings as defined in the SCIM 2.0, with
the addition of being able to specify wildcards for all attributes.

Note
The default OAuth2 Scope policy will deny requests for Resource scopes unless the client
credentials grant type is used (or, if a different grant type is used and the end user has the.
admin entitlement).

-82 -



Scope Authorization Processing

Scope Authorization Processing

After authentication processing is performed and an ACR is satisfied, each scope requested by
the client is evaluated to determine if it can be granted in the final access token. When an
OAuth2 client sends an authorization request to the Data Governance Broker’s authorize
endpoint, the Data Governance Broker first uses XACML policies to drive the authentication
flow. The Data Governance Broker will again use XACML policies to authorize the scopes to
grant. Finally, an authorization code and/or access token is granted.

Each scope associated with an OAuth2 client can be configured with:

« Whether the scope must be granted when requested by the client. If so and the scope can
not be granted for any reason, the entire request will fail.

« Whether the scope requires consent from the end-user when requested by the client.

« The ACR required to grant the scope when requested by the client.

Satisfy Authentication Context Requirements (ACRs)

In the authentication processing phase, the Data Governance Broker’s authentication flow is
determined using the ACR request parameter from the client. If the Authentication Context
satisfies the ACR as is, the policy returns permit. If the Authentication Context can not
currently satisfy the ACR as is, it may return a deny with advices to perform authentication
flows. Lastly, if the Authentication Context can not satisfy the ACR at all, it may return a deny
without any advices.However, there may be cases where the authentication flow should be
determined based on the scopes requested. For example, if the client requested a scope that
includes access to highly sensitive data, second factor authentication may be desirable to
protect the data, even if the client did not specify an ACR to require it.

If specified by configuration, the required ACR of each requested scope is evaluated first, just
like during the authentication processing phase. If the Authentication Context satisfies the ACR
as is, the policy returns permit. If the Authentication Context can not currently satisfy the ACR
as is, it may return a deny with advices to perform authentication flows. Lastly, if the
Authentication Context can not satisfy the ACR at all, it may return a deny without any advices.
Additional authentication flows are executed, if indicated by the ACR evaluation result.

Note
The same authentication flow should not be executed twice. An ACR policy should check the
last time the authentication flow was performed, and only prompt if required. However, a policy
could be written to trigger an authentication flow without first performing the check, and cause
the same authentication flow to be triggered twice. In that case, the Data Governance Broker
will log an error instead of prompting the user again.

Prompt for and Capture Consent

When a scope is granted by policy and consent is required, the previous consent decision for
the scope is checked first. If consent was previously granted or denied, it will not be prompted
for again. If there was no previous consent decision for the scope, consent approval will be

- 83 -



Chapter 6: Configuring Scopes and XACML Policies

requested. The consent approval prompt will ONLY include scopes that had no previous consent
decisions.

When approving the consent approval prompt, all required scopes will be recorded with an
approved consent decision. Optional scopes must be explicitly approved or they will be
recorded with a deny consent decision.

Creating Scopes

An OAuth2 scope indicates which data are being requested with an OAuth2 authorization
request. Typically, one or more scopes are submitted with each request. Scopes are created
based on the access and authentication requirements of the data requested. A standard set of
OpenlD Connect scopes is installed with the Data Governance Broker, and additional scopes
can be created.

The following is a sample command for creating a scope:

$ bin/dsconfig create-oauth2-scope \
--scope-name workPhone \
-—type authenticated-identity \
--set "consent-prompt-text:Can I access your work phone number?" \
--set consent-operation:retrieve-consent \
--set external-identity-operation:link-external-identity \
--set account-operation:retrieve-account-state \
--set resource-attribute:work-phone \
--set resource-operation:modify

Scopes can also be created in the Administrative Console through Authorization and
Policies -> OAuth2 Scopes.

Creating an Authenticated Identity OAuth2 Scope

The following information is used to configure an Authenticated Identity scope. See
Authenticated Identity Scope for details about the values allowed for consent, external identity
provider, account, and resource operations.

« An OAuth2 access token name that is compliant with the OAuth 2.0 Specification (RFC
6749). The following characters are not permitted: space, '"', '\', '+'and ', '.

« An optional description.

« Any optional tags associated with this scope. Tags are arbitrary additional properties that
can be examined by XACML policies for authorization decisions, such as HIPAA or
billing.

« The text displayed to a user when prompting for consent to access this scope.
« Specify the resource operations allowed by this scope.

« Specify the resource attributes for which this scope allows access. The type of access is
determined by the Resource Operation property. A value of "*" indicates that all
attributes are accessible.

-84 -



XACML Policy Overview

« Specify the sub resource operations allowed by this scope on the specified resource
attributes.

Creating a Resource OAuth2 Scope

All of the Authenticated Identity values are available for the Resource scope, with the addition
of the SCIM Resource Type that specifies the type of resource to which the scope provides
access. See Resource Scope for details about the values allowed for consent, external identity
provider, account, and resource operations.

XACML Policy Overview

Policies determine the scopes that can be accessed by requesting OAuth2 clients through the
use of an access token, and the operations on attributes within the scope that are allowed.
Policy creation must balance the privacy requirements of the organization with the resource
access requirements of the OAuth2 clients. Policies are expressed using the eXtensible access
control markup language (XACML) as specified in the OASIS Committee Specification 01,
eXtensible access control markup language (XACML) Version 3.0, and can contain targets,
rules, conditions, and a rule combining algorithm.

XACML policies are evaluated by the Data Governance Broker in response to the following
requests made by OAuth2 clients:

« An authentication (OpenID Connect) request to the OAuth2 endpoint.
« An authorization/token request to the OAuth2 endpoint.
« A request to the UserInfo endpoint.

« All SCIM requests:
o Search request

o Get request

o Update request

o Create request

o Delete request

o Sub-resource request

« A XACML request to the PDP endpoint.

To create XACML policies that will work as expected, or to create OAuth2 clients that can
access data correctly, review the parameters and attributes that will be included in the XACML
requests for each of the scenarios provided.

- 85 -



Chapter 6: Configuring Scopes and XACML Policies

Authenticating the End-user Prior to Granting an Access Token

When an OAuth2 client sends an OAuth2 or OpenID Connect authorization request to the Data
Governance Broker’s authorize endpoint, XACML policies are used to drive the authentication
flow.

|
Authentication Request

)

_ Jauthn )

T _ _ |3

‘ 1 - Paolicy - —
.- e - Enforcament | “yacML Response :
| XACML Request, one per effective Point DENY: Continue to next ACGR or return I
| ACR until PERMIT or user [

access_deniad if not mare ACRs
1 interachon required

I

1

1
) . N ) - | PERMIT: Continue to Authaorization Step
, subject-id: reguesting application

I

1

!

DENY w/ ADVICE: Redirsct to Ul for user |
interaction !

action-id:  accept authentication
, resource-id: ACR name
' Policy Engine Context Handler

P | Adtribute Vakues from |
f 1 Fleguest Contest |
| 2 | Ll Custam PIPS fo reinisve |
a arlomal atimure valvas
0 M VA N
2 .
Attribute Aequest from I

a

Request Context

U Other Custom Policles Infarmation available to policy writars:

.. _Account Verification Policy »

e - : Fequost Contoxt I - Paolicy
1 Attibeits Dasigratar or Sebacter ,' ‘ Information =1
| Palicles are evaluated if the i | ~ Point :
| Target from Policy Set, Policy, | —— L _ [
: or Rules match || Policy Decision | 1 _CustomPiPs_ ;
i ! . ;
| Default Policies: : | Point |
| Login Policy | :
| Second Factor Palicy ! S N
: 1
]
I
I

= Incoming XACML Request !
subject-id, action-id, resource-id
- ACH properties
JSOM, XACML attributes-category: resource
= DAuth2 client properties
JSOM, XACML attributes-category: access-subject
- Session properties
JEON, attributes-category: session
- HTTF Request parameters, headers
HACML attributes-category: hittp-request
- Emvironment
Standard XACML enviranment attributes

Any other information reguired: Custom PiPs

- 86 -



XACML Policy Overview

Requesting an Access Token

An OAuth2 client requests an access token, receives the token from the Data Governance
Broker or a third-party, and then sends the token to the Data Governance Broker with a set of
requested scopes. Each requested scope will generate a policy evaluation, resulting in a
permit oOr deny to access. Obligations can be used to define conditions for access to each
scope, such as requiring user's consent. The token returned to the client after policy evaluation
may contain a subset of the requested scopes, or if none of the scopes are granted, no token is
returned (the client receives an error response).

The following illustrates the policy flow for a token request.

Token Request

Joauth/authorize foauthoken

Policy | 3
s Enforcement
Fm e mmm— e ——————- . Point e i \
MACML Request, cne par scops
subject-id: requesting application
action-id:  grant
resource=-id; scope name

| XACML Response, one par scope
' PERMIT, DENY, or
PERMIT with consant obligation

Asribite Vaiues o

i
FBoUest Cormgt

2 : Liss Cusseem PiPS 10 i
a x|
\ r
Atriute Reguest from
- 4 i Ruseast Cormai PD"C'}."
_________________ !, Aibate Dotagraior o Sl Information  |[* 77
Policies are evaluated if the Point
Target from Palicy Sat, Palicy,
or Rules match Policy Decision Custom PiPs
Detault Policies: Point
OAuth Scope Policy
Qurth Consant Policy
' Request Context
' .
Other Custormn Polidies 1 Information available to policy writers:

- Incoming XACML Request

subgect-id. action-id, resource-id
- Scope proparties

JEON, XACTML attributes-category: resource
I - DAWth clien propedies
. JSOM, XACKL attributes-categony: access-subject
! = Session propertios
. JSOM, attributes-calagony: seasion
| - HTTF Raquest paramaters, headers
' XACML attnbwutes-category: http-request
' - Emvironment

Standard XACML environment attributes

: Any other information reguired: Custorn PIPs

-87-



Chapter 6: Configuring Scopes and XACML Policies

Requesting Operations through SCIM or Userinfo

The scopes that policies permit access to are returned in the access token to the OAuth2 client.
The token, which represents the privileges granted to the OAuth2 client, may then be sent to
either the SCIM or UserInfo endpoint. The Data Governance Broker uses XACML policies again
to determine whether the requested operation should be authorized given the scopes granted
in the access token. Obligations can again be used to define conditions for limiting access to
certain attributes. The requested attributes are returned to the client, and any permitted
operation (such as adding or modifying an address) is performed.

The following illustrates the policy flow for a SCIM or UserInfo request.

SCIM/Userinfo Request

fecimivas Jfuserinfa
| 1 | Poiicy | 3 |
\ Enforcemint \
smommmomso—moo : Poini smommmmommes
| BACML Request . | BACML Response
| subject-id: requesting application ! ! PERMIT, DENY, or
| notion-id;: SCIM opomation . | PERMIT with por-atiribute coligations
! resource-id: reguested rescurce | ! finchude, exclude)
= -
AsriEvte Wauaee fram
fon Cutan FiPe 1 reveen
1 e P10 3
| 2a | . il T o
| 2 | AN RAIEST FIm -
Blequertt Camzal Policy
e Agriogis [wgretr o Seeciy | Il'lfl:t""?'l.ar_t:l'l - -
| Policies are evaluated il the i | Point
i Targed fram Policy Set, Policy, :
H or Fulies match " | Policy Decision Cusbomn PIPs
Podni

Dedault Policies:
Token Validation Pokcy H
Scope Validation Policy

Cither Custom Policies.

Request Context

: Infoarmaton available 1o polcy wiitérs

. - Incoming XACML Request

subject-id, notions-id, resouroo=id
Scopo propaortios
JEOM, XACKL attribuies-catogory: rescuros

= SCIM Reguest details (for create/modify operations)

JEOMN, XACML attributes-category: scime-request

- DAuth? chanl propesties

JEOM. KACKL attribudes-category: access-subject

- AcGess Token properies

JEOM. XACKL attribides-categon. sccess-taken

- Applicalble Scope properties
1 JSOM. KACML attribides-category: applicable-scopa
. = HTTP Request parameters, headers

LACKML aftribifes-category: hitp-reguast

! - Envewonemgnt

Standard XACML snvircnmant attributes

' Any ather information required: Cusfom PiPs

- 88 -



Policy Structure

Policy Structure

For a policy to be evaluated against a request, the request needs to match the values specified
in the policy <Target> element first. If the target for the request matches the target for the
policy, the rules in the policy are evaluated. This occurs for each XACML policy.

Just as there is a target for the policy, there is a target for each rule. For the rule <Target>
element to be evaluated, a value in the request must match, as defined in the <Match>
element. If the request matches a value, the rest of the conditions of the rule are evaluated.

Note
If no target is specified for a policy or a rule, the policy or rule is always evaluated.

If the conditions of a rule are satisfied, the result can be either permit or deny for that single
rule. If there are multiple rules in a policy, the rule combining algorithm for the policy
determines how the rule evaluation results are combined into a single policy decision.

If there are multiple policies that apply to the request, a policy-combining algorithm
determines how the decisions rendered by multiple policies are combined to form a decision by
the Data Governance Broker. By default, the combining algorithm for Data Governance Broker
policies is deny-overrides. This can be changed in the Policy Service through the
Administrative Console or with the dsconfig tool.

Requesting JSON-Formatted Data

The AttributeSelector element can be used in a policy to retrieve structured data returned
in JSON-format. Differing from the XACML specification, the path references in the
AttributeSelector are interpreted as JSON paths rather than XPath.

In the following example, an AttributeSelector elementis used to obtain the region sub-
attribute of a user’s home address:

<AttributeSelector
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
Path="addresses|[type eq home].region"
DataType="http://www.w3.0rg/2001/XMLSchema#String" />

Depending on the path specification, an AttributeSelector may return multiple nodes from
a JSON object, resulting in a XACML “bag” of attribute values. The bataType specification of
the AttributeSelector must specify the type of the node(s) returned. If the nodes returned
from the path evaluation are JSON objects rather than a simple data type, then the
AttributeSelector’s DataType must be http://www.w3.0rg/2001/XMLSchema#String and the
node value is returned to the Policy Engine as a JSON string.

Using Obligations and Advice

The XACML specification defines an obligation as a specified operation that should be
performed by the Policy Enforcement Point (PEP) based on an authorization decision. For
example, if certain criteria in a policy rule are met, an obligation for user consent or an
additional authorization step may be enforced. Advice is additional information provided to the
PEP based on a policy decision, and can be used by the requesting OAuth2 client to determine

- 89 -



Chapter 6: Configuring Scopes and XACML Policies

why access to a scope or resource was denied. The Data Governance Broker provides the
following obligation types.

Authentication Requests

Login Required Advice - Indicates that the user must login (again) in order for the
requested ACR to be satisfied

Second Factor Required Advice - Indicates that a second factor authentication step is
required in order for the requested ACR to be satisfied

Account Flow Required Advice - Indicates that an arbitrary Account Flow must be
completed in order for the requested ACR to be satisfied. Takes a single argument "account-
flow-handler" which identifies which account flow should be executed.

The following example shows an Account Flow Required advice expression in which the
requested flow is Verify Account:

<AdviceExpressions>
<AdviceExpression AdviceId="account-flow-required" AppliesTo="Deny">
<AttributeAssignmentExpression Attributeld="account-flow-handler">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
Verify Account
</AttributeValue>
</AttributeAssignmentExpression>
</AdviceExpression>
</AdviceExpressions>

OAuth2 Authorization Requests

Override Consent Obligation - By default consent is required or not based on the
permitted-scope configuration of the requesting OAuth2 client. This obligation can be used to
override the value in the configuration. The isRequired argument determines whether
consent is required or not required.

The following is XACML syntax for a sample consent obligation:

<ObligationExpressions>
<ObligationExpression ObligationId="override-consent" FulfillOn="Permit">
<AttributeAssignmentExpression AttributelId="is-required">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
true
</AttributeValue>
</AttributeAssignmentExpression>
</ObligationExpression>
</ObligationExpressions>

SCIM Resource Requests

Exclude Obligation - Specifies an argument that lists the attributes to be excluded from the
response. Each attribute must be formatted using SCIM Attribute Notation, such as
urn:scim:schemas:core:2.0:User:userName for the userName attribute of a User scope.

Include Obligation - Specifies an argument that lists the attributes to be included in the
response. Each attribute must be formatted using SCIM Attribute Notation.

-90 -



Policies and Request Processing Per Endpoint

Any attributes not present in either argument list will be excluded from the response. The
following example illustrates an exclude obligation that will prevent the userName attribute
from being returned with a resource:

<ObligationExpressions>
<ObligationExpression ObligationId="exclude-attributes" FulfillOn="Permit">
<AttributeAssignmentExpression AttributeId="attributeNames">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
userName
</AttributeValue>
</AttributeAssignmentExpression>
</ObligationExpression>
</ObligationExpressions>

Policies and Request Processing Per Endpoint

Authorization requests from a client are evaluated by the policy rules configured for the Data
Governance Broker. Access to data is granted either at the scope level or at the resource level
based on the endpoint through which the request is made. This section describes each type of
policy request that may be made by the Data Governance Broker's policy enforcement points.
Review XACML Overview for illustrated processes.

OAuth2 Endpoint Policy Requests

Authorization requests coming through the OAuth2 endpoint are granted if the scopes specified
are allowed by configured policies. Before authorizing scopes, the Data Governance Broker
first determines if the current Authentication Context satisfies the effective ACRs for the
request, and if not, what authentication actions must be taken. To do this, the authorization
endpoint consults the XACML policies that enforce authentication rules. Each policy request is
to determine whether the current Authentication Context (which is mostly defined by the user's
session data) meets the requirements specified by a particular ACR.

To differentiate an authentication request from authorization requests and resource requests,
the Data Governance Broker uses the XACML action type "accept-authentication." Each
authentication policy request generated from the authorization endpoint contains the following
information:

OAuth2 Authentication Request Attributes

Attribute ID Attribute Category Value

subject-id access-subject The client name.
action-id accept-authentication grant,

resource-id resource The requested ACR name.
<JSON content> resource ACR properties.

<JSON content> access-subject The OAuth2 client properties.

The session properties including the
<JSON content> session authenticated user resource.

-91 -



Chapter 6: Configuring Scopes and XACML Policies

The authorization endpoint asks for an independent policy decision for each scope requested. If
the policy decision for any scope is deny, the Authentication Service can generate an access
token that grants a subset of the initially requested scopes. If all scopes are denied by policy,
the entire authorization request is rejected, no access token is issued, and an error response is
returned. Policies may return obligations on permit to instruct the Data Governance Broker to
perform additional steps before granting the scope.

Once a token is granted, it can be passed to either the SCIM or UserInfo endpoints to retrieve
user data. Policies are again evaluated, but at the resource level.

To differentiate authorization requests from resource requests, the Data Governance Broker
uses the XACML action type grant. This action indicates to XACML policies that the current
request is to authorize a scope grant.

Each policy request generated by the authorization endpoint contains the following information.
OAuth2 Authorization Request Attributes

Attribute ID Attribute Category Value
subject-id access-subject The client name.
action-id action grant,

The OAuth2 grant type, which is one of
one ofauthorization-code,
implicit,password orclient-

grant-type action credentials,
resource-id resource The requested scope name.
<JSON content> resource Scope properties.

<JSON content> access-subject The OAuth2 client properties.

The session properties including the
<JSON content> session authenticated user resource.

In addition to these attributes, policies that govern OAuth token requests can obtain, from the
XACML request context, details of the underlying HTTP request.

For OAuth2 Scope policy requests originating from the OAuth2 endpoint, details of the
requested scope can be accessed from policy using the attribute category
urn:oasis:names:tc:xacml:3.0:attribute-category:resource.

SCIM Resource Type Policy Evaluation

Each request to the SCIM endpoint explicitly specifies what action is being requested and on
what resources. As a REST interface, SCIM uses the HTTP method, query parameters, method
body, and URI path to specify request parameters.

All SCIM requests target a specific SCIM Resource Type. For example, a search targeted to
/scim/v2/Users is executed against the Users SCIM endpoint. An update targeted to
/scim/v2/ConsumerUsers/9f8a23-5f7ec932-55c4-347e-b757-ce74258ea9e6 is executed
against a user with ID 9f8a23-5f7ec932-55c4-347e-b757-ce74258ea%e6 in the Users SCIM
Resource Type.

-92 -



Policies and Request Processing Per Endpoint

SCIM Sub-Resource Operation Policy Evaluation

TheDirectory Server can return account status, password restrictions, consent records,
consent history, sessions, and external identity provider information for authenticated
identities. Policy evaluation for requests that include account, consent, or external identity
operations require that the requested OAuth2 scopes include the desired action, and the
request is made to the correct sub-resource endpoint.

Note
Account, password, and one-time token delivery operations depend on the Directory Server's
Password Policy State Extended Operation configuration. See the PingData Directory Server
Administration Guide for configuration details.

Sub-resource endpoints include:
e /scim/v2/<scim-resource-type>/<id>/account — Processes requests to retrieve or
replace an account's state.

e /scim/v2/<scim-resource-type>/<id>/consents — Processes requests to retrieve or
revoke a user's consent to access resources.

e /scim/v2/<scim-resource-type>/<id>/consentHistory — Processes requests to
retrieve a user's consent history.

e /scim/v2/<scim-resource-type>/<id>/externalldentities — Processes requests to
link, unlink, or retrieve account information from a configured external identity provider.

e /scim/v2/<scim-resource-type>/<id>/password — Processes requests to reset an
account password.

e /scim/v2/<scim-resource-type>/<id>/passwordQualityRequirements — Processes

requests to retrieve the configured password requirements as defined in the Directory
Server's default password policy.

e /scim/v2/<scim-resource-type>/<id>/sessions — Processes requests to retrieve or
revoke a user's session.

SCIM Search Request

A SCIM search request consists of a search filter and an optional specification of which
attributes to return from each record that satisfies the filter definition. The SCIM Resource
Type against which the search is to be conducted is derived from the relative URL path, such as
/scim/v2/Users.

The XACML request generated from a SCIM search request contains the following attributes.
SCIM Search Request Attributes

Attribute
ID/Content Attribute Category Attribute Value
Name of the requesting OAuth2 client, if it can be retrieved from
subject-id access-subject the OAuth2 access token.
action-id action search,

-03 -



Chapter 6: Configuring Scopes and XACML Policies

SCIM Search Request Attributes

Attribute

ID/Content Attribute Category Attribute Value

resource-id resource Relative URL of the SCIM endpoint, such as Users,
<JSON Content> access-token Access token properties.

<JSON Content>  applicable-scope Applicable scope objects.

After the search is run against the SCIM Resource Type, it generates XACML requests for each
record returned in the results to determine whether the requesting client has permission to
receive the record’s attributes. Each resource and attribute of each record is evaluated
independently through a separate policy request to determine if it can be returned. Any
resources or individual resource attributes that are denied by policy are omitted from the
response. These subsequent policy requests are identical to a SCIM GET request.

Note
The number of search results that can be returned is limited by the SCIM Resource Type’s
lookthroughLimit property, due to the potential cost of checking each response against
policy.

SCIM Get Request

The following is contained in the authorization request generated for a SCIM GET request for a
known resource.

SCIM GET Request Attributes

Attribute
ID/Content Attribute Category Value
Name of the requesting OAuth2 client, if it can be retrieved from
subject-id access-subject the OAuth2 access token.
action-id action retrieve,
Relative URL of the resource or sub resource to retrieve, such
resource-id resource as Users/12345¢or /Users/12345/consents,
<JSON Content> resource SCIM object representation of the requested resource.
<JSON Content> access-token Access token properties.
<JSON Content> applicable-scope Applicable scope objects.

The SCIM endpoint will perform the following actions based on the result of the XACML policy
authorization request:

« If the result is deny - The resource is not returned to the client and an error is returned.

« Iftheresultis permit — The initial attribute set to be returned to the client is
determined. Since multiple policies and/or rules may be consulted to make the permit
decision, it's possible that multiple obligations will be returned with the result. See About
Obligations and Advice. Include and exclude obligations are processed as follows:

-904 -



Policies and Request Processing Per Endpoint

o All attributes specified in an exclude obligation are removed from the attribute set.

o If there are include obligations, all attributes that are not specified by an include

obligation are removed from the attribute set.

o If no attributes remain in the attribute set, a 200 success response code is

returned but with an empty resource object.

These rules for each result type are used for all resources returned from the SCIM endpoint.

SCIM POST Request

The following is contained in the authorization request generated for a SCIM POST request.
SCIM POST Request Attributes

Attribute ID

Attribute Category

Value

subject-id

access-subject

The client application name.

action-id

action

create,

resource-id

resource

Relative URL of the SCIM Resource Type to
be created, such as Users or of the SCIM
sub resource to be created, such as
/Users/12345/consents.

<JSON Content>

scim-request

SCIM request body of the resource or sub
resource to be created.

<JSON Content>

access-token

Access token properties.

<JSON Content>

applicable-scope

Applicable scope objects.

If the POST operation is permitted, the new resource is created and the new object is returned
to the client. After the POST is complete, a second policy request is issued to determine which
attributes of the updated record the client can receive in the response.

SCIM PATCH and PUT Requests

PUT requests are internally converted into a PATCH operation, which is why they are handled
the same way by policy. The following is contained in the authorization request generated for a

SCIM PATCH or PUT request for a known resource.

SCIM PATCH Request Attributes

Attribute ID Attribute Category Value
subject-id access-subject The client application name.
action-id action modify.
Relative URL of the resource or sub
resource to be modified, such as
Users/12345 or
resource-id resource /Users/12345/account,

<JSON Content>

scim-request

The normalized SCIM PATCH request
body.

- 05 -



Chapter 6: Configuring Scopes and XACML Policies

SCIM PATCH Request Attributes

Attribute ID Attribute Category Value
<JSON Content> access-token Access token properties.
<JSON Content> applicable-scope Applicable scope objects.

If the PATCH or PUT operation is permitted, the resource is updated and returned to the client.
The updated resource is then subject to the same read criteria in a GET request.

SCIM Delete Request

The following is contained in the authorization request generated for a SCIM DELETE request
for a known resource.

SCIM DELETE Request Attributes

Attribute ID Attribute Category Value
subject-id access-subject The client application name.
action-id action delete,

Relative URL of the resource or sub-

resource to be deleted, such as
Users/12345 or

resource-id resource /Users/12345/account,
<JSON Content> access-token Access token properties.
<JSON Content> applicable-scope Applicable scope objects.

Userinfo Endpoint Policy Evaluation

The UserInfo endpoint interaction with the policy engine is identical to a SCIM GET operation
against the /Me endpoint.

Policy Decision Point (PDP) Endpoint

The PDP endpoint enables an external Policy Enforcement Point (PEP) to generate XACML
requests and send them directly to the Data Governance Broker for evaluation. The request is
passed directly to the policy engine. The request can contain any standard XACML attributes,
Data Governance Broker custom attributes, or other attributes that may be required by custom
policies. This endpoint requires that the client authenticate using HTTP basic authentication.

Policy Engine Request Context

The XACML policy request context contains the information that is available to the policy engine
to make a decision. A request for authorization (OAuth2) will provide information that helps the
policy engine determine whether or not an OAuth2 client should be granted or denied access to
a scope. A request for resources (SCIM or UserInfo) will provide information that will help
determine if the operations on attributes in the requested scopes can be performed.

- 06 -



Policy Engine Request Context

The request context contains attributes directly passed by a client when making an
authorization request to the policy engine. It is supplemented with additional attributes and
JSON objects that are retrieved from the attribute categories. In order to make a policy
decision, policies can reference any attribute or JSON object from the request context.

XACML Attribute Categories

All references from policy to objects that can be obtained from the request context are first
identified by their XACML attribute category.

e urn:oasis:names:tc:xacml:3.0:attribute-category:resource — This standard
XACML category definition is always used to reference the object to which authorization
is being requested. With a SCIM request, this is a SCIM resource whose type is
determined by the SCIM request path. With an OAuth2 request, it will reference a Scope
object. In either case, the request context exposes the resource as a JSON object that
policies can access using AttributeSelector elements. For the consent, account and
external-identity sub-resources, the JSON content will be that of the parent user
resource. See Resource Properties for details.

e urn:oasis:names:tc:xacml:1.0:subject-category:access-subject — This standard
XACML category definition can be used in an AttributeSelector to obtain attributes of
the OAuth2 client, on whose behalf the policy request has been made. See OAuth2 Client
Properties for details.

e urn:pingidentity:names:2.0:attribute-category:access-token — This custom
category provides access to properties of the OAuth2 access token that has been used to
make the current request. It exposes the access token as a JSON object that can be
accessed using AttributeSelector elements. See Processing Access Tokens for
details.

e urn:pingidentity:names:2.0:attribute-category:http-request — This custom
category provides access to properties of the incoming HTTP request that triggered the
policy request. HTTP headers and query parameters are available through PingData-
defined AttributeDescriptors. See HTTP Request Properties for details.

e urn:pingidentity:names:2.0:attribute-category:scim-request — This custom
category is populated by the Data Governance Broker SCIM endpoint and contains the
JSON request body of the SCIM request that triggered policy evaluation. Policies that
target SCIM requests can retrieve details of the incoming request using
AttributeSelector elements. The content from this attribute category is in standard
SCIM 2.0 format. See SCIM Request Properties for details.

e urn:pingidentity:names:2.0:applicable-scope — This custom category is populated
with the scopes from the access token that are applicable to authorize a resource
request. See Applicable Scopes for details.

-97-



Chapter 6: Configuring Scopes and XACML Policies

e urn:pingidentity:names:2.0:session — This custom category provides access to
properties of the current Data Governance Broker session, if one exists. See Session
Properties for details.

Other attribute categories can be defined by custom PIPs.

Standard XACML Attribute Use

The following request attributes are specified by the XACML specification. Unless otherwise
specified, these are always available in the Data Governance Broker’s XACML request context.

Per the XACML specification, any attribute retrieved from the request context with an
AttributeDescriptor element will be a 'bag' (XACML term) of attribute values. Where the
attribute has a single value, the value can be extracted from the bag using a type-one-and-
only XACML function (see section A.3.10 of the XACML specification, "Bag functions").

Standard XACML Attributes

XACML
Attribute URN Attribute Category Data Type Description

Contains the name of the
OAuth2 client thatis
submitting a policy request,
as specified when the client
urn:oasis:names:tc:xacml:1.0: urn:oasis:names:tc:xacml:1.0: is registered with the Data
subject:subject-id subject-category:access-subject  string Governance Broker.

Contains the originating IP
address of the client's
authorization request. The
availability and accuracy of
this attribute is dependent
upon the deployed Data
Governance Broker’s
network environment. When
available, the value is
retrieved from the
XFORWARDED_FOR
header of the clients HTTP
request. If that header is not
available, the IP address
returned may be that of the
urn:oasis:names:tc:xacml:3.0: urn:oasis:names:tc:xacml:1.0: last proxy to send the
subject:authnlocality:ip-address  subject-category:access-subject  ipAddress request.

urn:oasis:names:tc:xacml:1.0 urn:oasis:names:tc:xacml:3.0: Contains the URN of the
‘resource:resource-id attribute-category:resource anyURI resource being requested.

Contains the name of the
action being requested. The
action-id will be grant for
OAuth2 requests, and will
urn:oasis:names:tc:xacml:1.0 urn:oasis:names:tc:xacml:3.0: correspond to one of the
:action:action-id attribute-category:action string scope operations.

urn:oasis:names:tc:xacml:1.0: urn:oasis:names:tc:xacml:3.0: time The time at which the Data

- O8 -



Policy Engine Request Context

XACML
Attribute URN Attribute Category Data Type Description

Governance Broker began

processing the current
environment.current-time attribute-category:environment authorization request.

The date on which the
urn:oasis:names:tc:xacml:1.0 urn:oasis:names:tc:xacml:3.0: current authorization request
:environment.current-date attribute-category:environment date is being processed.

The date and time at which

the Data Governance Broker

began processing the
urn:oasis:names:tc:xacml:1.0 urn:oasis:names:tc:xacml:3.0 current authorization
:environment:.current-date Time :attribute-category:environment dateTime request.

Custom XACML Function

There is a single custom function implemented by the Data Governance Broker. All other
functions supported by the policy engine are XACML standard functions.

The urn:pingidentity:names:2.0:function:scimAttribute-subset function is similar to
the standard XACML string-subset function, except that the arguments are bags of SCIM
attribute names using SCIM attribute notation as described in the SCIM specification. The
custom function comprehends wildcard attribute specifications as supported in the
resourceAttributes property of a Data Governance Broker OAuth2 scope.

For example, if the second set passed to this function contains the string urn:mySchema: *, and
the first set contains urn:mySchema:myAttribute, the function may still return TRUE (the first
set is considered to be a subset of the second).

Resource Properties

SCIM Resource Type resources are exposed as JSON objects that can be accessed from policy
using AttributeSelector elements. By default, the only attribute that can be accessed using
an AttributeDesignator iS resource-id. For user-defined resources such as Users, the
format of the JSON object is determined by the structure of the underlying resource and the
mappings defined for its SCIM Resource Type. Depending on the type of request, the contents
of the resource category may be either a SCIM Resource or a scope.

ACR Properties

When evaluating whether the current Authentication Context meets the requirements of an
ACR, the resource category content is an ACR object. Policies that evaluate whether the ACR is
satisfied will usually compare values found in the user's current session with the ACR's
requirements.

- 99 -



Chapter 6: Configuring Scopes and XACML Policies

Scope Properties

When an OAuth2 client makes an authorization request using the standard OAuth2 endpoints,
the resource category content is a scope object. Based on the OAuth2 client’s configuration,
configured XACML policies, and consent requirements, the Data Governance Broker will decide
which scopes to grant in the access token.

By default, the Data Governance Broker only authorizes the scope. The OAuth2 client bearing
the granted token cannot use it to obtain any attributes or claims. See OAuth2 Scopes for
details about creating scopes.

SCIM Resource Properties

When an OAuth2 client makes a requet through the SCIM or Userinfo endpoints, the resource
category content is a SCIM Resource. For example, this AttributeSelector Wwill retrieve the
region sub-attribute of a user’s home address within the requested User resource.

<AttributeSelector
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
Path="addresses [type eq &gquot;home&quot;].region"
DataType="http://www.w3.0rg/2001/XMLSchema#String" />

Accessing Referenced SCIM Resource Attributes

The Data Governance Broker supports referenced attributes, as described in the SCIM 2.0 Core
Schema specification. When the reference is to another SCIM object, a policy can be used to
follow the reference link and retrieve attributes of the referenced object using an
AttributeSelector. The policy must use the ContextSelectorIid element of the
AttributeSelector as the path to the reference attribute. The path elementis then
interpreted as the JSON path into the referenced object.

In the following example, a Credit Cards SCIM Resource Type contains registered credit card
objects for all users, and a User SCIM Resource Type that has a multivalued paymentMethods
attribute that contains a list of payment object references, some of which are credit cards. The
following AttributeSelector will retrieve a XACML bag containing the expiration dates for all
credit cards registered to the user.

<AttributeSelector
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
Path="expirationDate"
ContextSelectorId="paymentMethods [paymentType eq &quot;credit&quot;].Sref"
DataType="http://www.w3.0rg/2001/XMLSchemaf#date" />

The value of the ContextSelectorid must resolve to (one or more) relative URIs whose value
is of the form CreditCards/<Id>, where the ID is a unique credit card object ID.

Note
Policies are not able to resolve SCIM reference attributes whose value is an external or
absolute URI.

- 100 -



Policy Engine Request Context

OAuth2 Client Properties

Properties of the requesting OAuth2 client are exposed as a JSON object under the XACML
attribute category urn:oasis:names:tc:xacml:1.0:subject-category:access-subject.

By default, the only attribute that can be accessed using an AttributeDesignator is
subject-id. Other attributes, defined when the OAuth2 client is added to the Data Governance
Broker, may be accessed using an AttributeSelector, including the following properties.

OAuth2 Client Properties

Property Data Type Description
grantType Multivalued string. A list of OAuth2 grant types that this client is authorized to use.
scope JSON Object array. The scopes associated with the OAuth2 client.
clientId String. The OAuth client ID.
name String. The OAuth client name.
tags Multivalued string. A list of tags associated with this OAuth2 client.
ACR Properties

Policies that evaluate whether the ACR is satisfied will usually compare values found in the
user's current session with the ACR's requirements. The following ACR properties are
evaluated.

ACR Properties

Data
Property Type Description
The length of time since the last login before the user is
loginExpirationInterval Duration. required to login again.
The login authentication chain, if any, that must be used
loginAuthenticationChain String.  to satisfy the ACR .

The length of time since the last second-factor

authentication before the user is required to enter a
secondFactorExpirationInterval Duration. second factor again.

The second factor authentication chain, if any, that must
secondFactorAuthenticationChain String. be used to satisfy the ACR.

Scope Properties

The default OAuth2 Scope policy allows scope operations as long as one of the scopes granted
in the access token allows the operation. Access to attributes allowed per operation is the
union of all resourceAttributes defined in Authenticated Identity or Resource scopes that
allow that operation.

In order for operations to be allowed on resources, the XACML policies that process the
requests must allow the operations requested in the scope. The following scope properties can
be evaluated by policies.

- 101 -



Chapter 6: Configuring Scopes and XACML Policies

Scope Properties

Property Data Type Description

tokenName String. The scope name as presented in an OAuth2 request.

The scope type, which is authenticated-identity for
authenticated identity scopes, resource for resource scopes, or

type String. ocauth?2 fora generic scope.
String. A list of Tags associated with a scope that can be examined by XACML
tags Multivalued. policies.

scimResourceType Aggregation. Ifa resource scope, the SCIM Resource Type that can be accessed.

Operations can include:
e create (POST) to endpoint /scim/v2
e search (GET) from endpoint /scim/v2
e retrieve (GET) from endpoint /scim/v2/<id>
e replace (PUT) to endpoint /scim/v2/<id>
o« modify (PATCH) to endpoint /scim/v2/<id>

Multivalued .
resourceOperations |ist. Optional. e delete (DELETE) from endpoint /scim/v2/<id>

A list of one or more SCIM attributes of the authenticated identity for
which this scope allows access. The type of access is determined by the
operation properties retrieve replace,and modify. A wildcard
value of * can be used for all attributes. A schema-specific wildcard
value of the form urn: <schemaName>: * can be used to represent all
attributes of a single schema namespace. Access to attributes allowed
Multivalued per operation is the union of all resourceAttributes allowed in

resourceAttributes string. the scope.
scimSubResource Multivalued The Sub Resource Type that can be accessed by this scope, such as
Type string. consent history, account state, or password criteria.

HTTP Request Properties

The XACML request context exposes some properties of the HTTP request. The HTTP request
will be either an OAuth2 request, a SCIM request, a UserInfo request, or a PDP request. All
access to the HTTP request is through the XACML attribute category
urn:pingidentity:names:2.0:attribute-category:http-request.

HTTP header values can be obtained using an AttributeDesignator with Attributeld of the
form urn:pingidentity:names:2.0:http-request:header:<header-name>, where header-
name is the name of the header requested. The following example retrieves the value of the
Cookie header:

<AttributeDesignator Category="urn:pingidentity:names:2.0:attribute-category:http-request"
AttributeId="urn:pingidentity:names:2.0:httpHeader:Cookie"
DataType="http://www.w3.0rg/2001/XMLSchema#string"
MustBePresent="false"/>

- 102 -



Policy Engine Request Context

HTTP query parameters can be obtained using an AttributeDesignator with AttributeIld of
the form urn:pingidentity:names:2.0:httpQueryParam:<parameter-name>, where
parameter-name is the name of the query attribute requested. The following example retrieves
the value of the query parameter with name channel:

<AttributeDesignator Category="urn:pingidentity:names:2.0:attribute-category:http-request"
AttributeId="urn:pingidentity:names:2.0:httpQueryParam:channel”
DataType="http://www.w3.0rg/2001/XMLSchemaf#string"
MustBePresent="false" />

SCIM Request Properties

For policy evaluation of SCIM requests, the HTTP message body, if one exists, is available as
the content of the scim-request attribute category. The content type of a SCIM request is
always JSON, so the request body can be accessed using an AttributeSelector with a JSON
path. For convenience, the attribute with ID urn:pingidentity:names:2.0:impacted-
attributes is also available. This attribute is computed by the policy engine and returns a
XACML bag of attribute names in SCIM attribute notation. It returns only the attributes that can
be created, modified, or deleted as a result of a SCIM POST, PUT, or PATCH request. See the
SCIM 2.0 specification for more details.

The following example retrieves all impacted attributes from the current SCIM request:

<AttributeDesignator
Category="urn:pingidentity:names:2.0:attribute-category:scim-request"
AttributeId="urn:pingidentity:names:2.0:impacted-attributes"
DataType="http://www.w3.0rg/2001/XMLSchema#string">

Applicable Scopes

An OAuth2 access token presented by an OAuth2 client to the Data Governance Broker can
contain many scopes, only some of which are applicable to the current request. The Data
Governance Broker’s PIP exposes the applicable scopes under the XACML attribute category
urn:pingidentity:names:2.0:attribute-category:applicable-scope. This category
contains a list of JSON scope objects, described in OAuth2 Scopes, for those scopes granted by
the access token that meet the following criteria:

« The current request’s action-id is contained in one of the scope’s operations properties.

« The type of resource requested matches the type of resource to which the scope grants
access. For Authenticated Identity scopes, they are only applicable to requests in which
the resource requested is the access token owner.

« Generic OAuth2 scopes are always included since their meaning is not defined by the
Data Governance Broker.

The following example retrieves all attributes that are granted access by all applicable scopes
of the access token:

<AttributeSelector
Category="urn:pingidentity:names:2.0:attribute-category:applicable-scope"
Path="scope.resourceAttributes"
DataType="http://www.w3.0rg/2001/XMLSchema#String" />

- 103 -



Chapter 6: Configuring Scopes and XACML Policies

Session Properties

An authenticated identity must be established to obtain an OAuth2 access token using all
OAuth2 grant types, except for Client Credentials. During policy evaluation of an OAuth2 access
token grant request, the XACML attributes category
urn:pingidentity:names:2.0:attribute-category:session contains JSON content
describing the currently authenticated user. The following properties are available in this
attribute category.

Session Properties

Property Data Type Description
Relative SCIM path to the authenticated user resource, such as
sub String Users/123456789,
subResource JSON object The SCIM resource object for the token owner.
Multi-valued
lastLoginMethods string A list of login methods used at the last login.
Multi-valued A list of second-factor methods used at the last second-factor
lastSecondFactorMethods string authentication (may be empty).
lastLoginTime DateTime The time of the user's last login.
The IP address of the user agent for the most recent
lastIpAddress String authentication event.
The user agent string presented by the user agent for the most
lastUAString String recent authentication event.
lastLoginChain String The authentication chain used for the last login.

Access Token Properties

The Data Governance Broker's Access Token Policy Information Provider (PIP) exposes Data
Governance Broker-generated access tokens as JSON objects under the XACML attribute
category urn:pingidentity:names:2.0:attribute-category:access-token. The
properties of a Data Governance Broker access token adhere to the JSON Web Token
specification, with some Data Governance Broker-specific extensions. Access tokens are
signed JSON Web Tokens.

The following properties are available in the access token category.

Access Token Properties

Property Data Type Description

Boolean.
active Required. True ifthe token is valid, false iftoken is invalid or has expired.
client_id String. The ID of the OAuth2 Client to which this token is granted.

The unique identifier for the token owner. For user tokens, this will be the
relative SCIM path to the user resource, such as Users/123456789, For
sub String. Client Credentials (aPP) tokens, this property is not present.

The SCIM resource object for the token owner. This is not present for app
subResource JSON object.  tokens.

- 104 -



Policy Engine Request Context

Access Token Properties

Property Data Type Description
Multivalued
scope string. A list of scope names granted by this token.
The name of the OAuth2 client for which this token was created. For

app String. application tokens, this value will be equal to sub,

iat DateTime. The date and time at which the token was created.

exp DateTime. The date and time at which the token will expire.

jti String. The unique token identifier.

token_type String. The type of token.

username String. The user name of the token owner (not present for application tokens).
Note

For OAuth2 grant requests, there is no access token available in the request context, since the
request is to obtain a new token.

The following example retrieves the entitlements of the access token owner:

<AttributeSelector
Category="urn:pingidentity:names:2.0:attribute-category:access-token"
Path="sub.entitlements"
DataType="http://www.w3.0rg/2001/XMLSchema#String" />

Policy Sections and Functions Described

The following is the Scope Validation policy, installed with the Data Governance Broker. This
policy is applied to all incoming SCIM requests. Each section and its function is described to
show how a policy is constructed. Use this to determine how to create new policies or modify
existing ones.

- 105 -



Chapter 6: Configuring Scopes and XACML Policies

The Scope Validation Policy

1<?xml version="1.0" encoding="UTF-8"?>
2<Policy xmlns="urn:ocasis:names:tc:xacml:3.0:core:schema:wd-17"

3
4
5

PolicyId="urn:pingidentity:policy:ScopeValidationPolicy"
Version="1"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-

overrides">

6

7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

<Description>
Authorizes requests based on the scopes granted by the provided access token.
</Description>
<Target/>
<!-- The XACML action-id (requested operation) -->
<VariableDefinition VariableId="action-id">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<AttributeDesignator
MustBePresent="true"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
</Rpply>
</VariableDefinition>
<!-- whether the granted scope(s) permit access to all resource attributes -->
<VariableDefinition VariableId="allAttributesAllowed">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
*
</AttributeValue>
<AttributeSelector Category="urn:pingidentity:names:2.0:attribute-

category:applicable-scope"

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Path="scope.resourceAttributes"
DataType="http://www.w3.0rg/2001/XMLSchema#string"
MustBePresent="false"/>
</Apply>
</VariableDefinition>
<Rule RulelId="urn:pingidentity:rule:ApplicableScope" Effect="Deny">
<Description>
Deny access if the requested action is not allowed by any scope in the access
token.
</Description>
<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:not">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">
<VariableReference VariableId="action-id"/>
<AttributeSelector Category="urn:pingidentity:names:2.0:attribute-

category:applicable-scope"

42
43
44
45
46
47
48
49
50
51
52

Path="scope.resourceOperations"
DataType="http://www.w3.0rg/2001/XMLSchema#string"
MustBePresent="false"/>
</Apply>
</Apply>
</Condition>
<AdviceExpressions>
<AdviceExpression AdvicelId="request-denied-reason" AppliesTo="Deny'">
<AttributeAssignmentExpression AttributelId="error">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
insufficient scope

- 106 -



Policy Engine Request Context

53 </AttributeValue>

54 </AttributeAssignmentExpression>

55 <AttributeAssignmentExpression AttributeId="error-description'>

56 <AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
57 Requested operation not allowed by the granted OAuth2 scopes.

58 </AttributeValue>

59 </AttributeAssignmentExpression>

60 </AdviceExpression>

61 </AdviceExpressions>

62 </Rule>

63 <Rule RulelId="urn:pingidentity:rule:AllowOnlyScopedAttributes" Effect="Deny">
64 <Description>

65 For create and modify operations, deny if the request impacts attributes
66 that are not allowed by the applicable scopes.

67 </Description>

68 <Condition>

69 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">

70 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">
71 <VariableReference VariableId="action-id"/>

72 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
73 <AttributevValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
74 create

75 </AttributeValue>

76 <AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
77 modify

78 </AttributeValue>

79 </Apply>

80 </Rpply>

81 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:not">

82 <VariableReference VariableId="allAttributesAllowed"/>

83 </Apply>

84 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:not">

85 <Apply FunctionId="urn:pingidentity:names:2.0:function:scimAttribute-
subset">

86 <AttributeDesignator Category="urn:pingidentity:names:2.0:attribute-
category:scim-request"

87 AttributelId="urn:pingidentity:names:2.0:impacted-
attributes"

88 DataType="http://www.w3.0rg/2001/XMLSchema#string"
89 MustBePresent="false"/>

90 <AttributeSelector Category="urn:pingidentity:names:2.0:attribute-
category:applicable-scope"

91 Path="scope.resourceAttributes"

92 DataType="http://www.w3.0rg/2001/XMLSchema#string"
93 MustBePresent="false"/>

94 </Rpply>

95 </Apply>

96 </Apply>

97 </Condition>

98 <AdviceExpressions>

99 <AdviceExpression Adviceld="request-denied-reason" AppliesTo="Deny">

100 <AttributeAssignmentExpression AttributeId="error">

101 <AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
102 insufficient scope

103 </AttributeValue>

104 </AttributeAssignmentExpression>

105 <AttributeAssignmentExpression AttributelId="error-description">

- 107 -



Chapter 6: Configuring Scopes and XACML Policies

106 <AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">

107 Request includes attributes not allowed by the granted OAuth2 scopes.
108 </Attributevalue>

109 </AttributeAssignmentExpression>

110 </AdviceExpression>

111 </AdviceExpressions>

112 </Rule>
113 <Rule RuleId="urn:pingidentity:rule:IncludeOnlyScopedAttributes" Effect="Permit">

114 <Description>

115 For retrieve requests, limit the attributes returned to those specifically
116 allowed by the applicable scopes.

117 </Description>

118 <Condition>

119 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">

120 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
121 <AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
122 retrieve

123 </AttributevValue>

124 <VariableReference VariableId="action-id"/>

125 </Apply>

126 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:not">

127 <VariableReference VariableId="allAttributesAllowed" />

128 </Apply>

129 </Apply>

130 </Condition>

131 <ObligationExpressions>

132 <ObligationExpression ObligationId="include-attributes" FulfillOn="Permit">
133 <AttributeAssignmentExpression AttributelId="attributeNames">

134 <AttributeSelector Category="urn:pingidentity:names:2.0:attribute-
category:applicable-scope"

135 Path="scope.resourceAttributes"

136 DataType="http://www.w3.0rg/2001/XMLSchema#string"
137 MustBePresent="false"/>

138 </AttributeAssignmentExpression>

139 </ObligationExpression>

140 </ObligationExpressions>

141 </Rule>

142</Policy>

Section Descriptions
Sections are described by line numbers.

« [3] The PolicyId specification, must be unique among all policies installed in the Data
Governance Broker.

e [5] The deny-overrides combining algorithm indicates that if any rule results in a deny,
then the result of the policy will be deny.

« [6-8] The description is displayed when this policy is viewed in the Administrative
Console. This policy authorizes requests based on the scopes granted by the provided
access token.

- 108 -



Policy Engine Request Context

[9] The Target specification for the policy. This is empty because the policy is intended
to be used inside a policy set that will set the target.

[10-19] Since the action-id is used multiple times in the policy, it is defined as a XACML
variable.

[21] This Boolean XACML variable will be true if the access token allows access to all
attributes of the requested resource.

[24-27] The AttributeSelector returns a XACML bag containing the value of the
resourceAttributes property for each scope granted by the access token. If any value
in the bag contains a wildcard (*), that indicates that all attributes are accessible.

[32-47] The first rule in the policy denies the request if the requested action is not
allowed by any scope in the access token.

[48-61] Provides an AdviceExpression that an error should be returned with the reason
that access was denied, "Requested operation not allowed by the granted
OAuth2 scopes." See Troubleshooting Denied Access.

[62-112] This rule only applies to create and modify requests, and does not allow any
request that impacts attributes that are not included in the access token's scopes.

[69] The rule's condition consists of three clauses that all must be true (with an AND
condition).

[70-80] This clause checks that the action requested is one of create or modify.

[81-83] This clause checks that the access token does not allow access to all attributes
(with a wild-card).

[84-96] This clause ensures that the attributes impacted by the incoming request are a
subset of the attributes granted by the access token's scopes.

[98-111] Provides an AdviceExpression that an error should be returned with the
reason that operations were denied, "Request includes attributes not allowed by

the granted OAuth2 scopes.'

[113-141] This rule applies only to retrieve requests, and uses an obligation to limit the
attributes returned in the response.

[132] The obligation is of type include-attributes. Itis only applied if the result of the
rule is Permit.

[133- 138] The obligation argument contains the names of all attributes that may be
returned. The AttributeSelector returns the union of attributes allowed by each
applicable scope.

- 109 -



Chapter 6: Configuring Scopes and XACML Policies

Configuring the Policy Service

XACML policies are managed by the Policy Service. The default conditions of the Policy Service
can be viewed and changed with the dsconfig tool, or through the Managment Console
Authorization and Policies -> XACML Policy Service.

The one property that can be changed is the combining-algorithm, which determines how
decisions are made if multiple policies or policy sets are applied to a request for resources.
The default for the Policy Service is deny-overrides, which specifies that a "deny" decision
from a policy should take priority over a "permit" decision. The Data Governance Broker also
supports permit-overrides, deny-unless-permit, and permit-unless-deny. See the OASIS
Committee Specification 01, eXtensible access control markup language (XACML) Version 3.0.
August 2010 for details about each combining algorithm.

Policy Information Providers

Policy Information Providers are used to retrieve XACML attribute(s) from the Policy
Information Point (PIP) during policy evaluation. See Standard XACML Attribute Use and
Custom XACML Attribute Use for information about these attributes. The Data Governance
Broker provides the following Policy Information Providers:

BuiltIn Policy Information Provider - Resolves XACML attributes that are implemented by
the Data Governance Broker.

SCIM Request Policy Information Provider - Resolves XACML attributes whose value can
be retrieved from an incoming SCIM request.

SCIM Resource Type Policy Information Provider - Resolves XACML attributes whose
value can be retrieved from a SCIM Resource Type configured on this Data Governance Broker
instance.

Token Policy Information Provider - Resolves XACML attributes whose value can be
retrieved from an OAuth2 access token generated by this Data Governance Broker instance.

PIP Evaluation Order

When multiple PIPs are defined, the evaluation order determines the correct provider to verify
a specified XACML attribute. Each PIP must have a unique evaluation value defined within a
Data Governance Broker instance. PIPs with a smaller value are evaluated first to determine if
they match a XACML attribute ID.

Creating XACML Policies

The Administrative Console, Authorization and Policies -> XACML Policies, or the
dsconfig tool can be used to create and manage XACML policies. Policies that are written or
imported must be syntactically correct and:

« Contain all required policy elements required by XACML 3.0.

« Not contain optional elements that are not supported by the Data Governance Broker.

- 110 -



Creating XACML Policies

« Pass XACML function checks for the correct number and type of parameters.

If any of these criteria are not met, the create or import fails.

Several policies are available by default and can be used as templates or adjusted to fit
specific requirements:

Account Verification - Determines whether the current user's account must be verified
before authentication can continue. This policy is only installed if create-initial-broker-
config was run after installation and the option to use starter schemas was chosen. Account
verification relies on policy. If starter schemas were not installed, an Account Verification
policy will need to be created and added to the Verify Account Flow handler.

Authentication Policy Set - A container for policies that apply to Authentication Context
Class evaluations. The combining algorithm for policies is ordered-deny-overrides, meaning
that each policy referenced below is evaluated in order. If any policy returns DENY, policies
below that are not evaluated.

Login - Determines whether the current session meets the login requirements of an
Authentication Context Class Reference (ACR).

OAuth2 Policy Set - A container for policies that apply to OAuth2 authorization requests.
Each policy referenced in this set is evaluated in order. If a policy returns a deny, policies
listed after that are not evaluated.

OAuth2 Scope - Determines whether a client making an OAuth2 authorization request should
be granted a requested scope. If any rule in the policy results in deny, the policy will deny the
scope. The OAuth2 client making the request must be configured in the Data Governance
Broker to request the scope. This policy includes a rule that will only permit a user to obtain a
Resource scope if the user has a privileged entitlement. The rule checks for a value of admin
in the user’s entitlements attribute. If the user’s schema contains no such attribute then the
policy will always deny Resource scopes to that user.

Offline Access - Enforces the OpenID Connect restrictions on permitting offline access to a
client requesting a refresh token.

SCIM Resource Policy Set - A container for policies that authorize requests for protected
resources, including SCIM and UserlInfo requests.

Scope Validation - Authorizes SCIM requests based on the scopes granted by the access
token provided. The scope must also be configured to enable a requested action. See OAuth2
Scopes for details.

Second Factor Authentication — Determines whether the current session meets the second-
factor authentication requirements of an Authentication Context Class Reference (ACR). This
policy includes a rule that checks for a boolean attribute secondFactorEnabled in the user’s
entry. If this attribute does not exist or is set to false, then the user will not be able to
authenticate with a second factor.

Token Validation - Denies all SCIM resource requests that do not contain a valid access
token.

- 111 -



Chapter 6: Configuring Scopes and XACML Policies

Creating a Policy Set

A policy set is an ordered collection of policies that work together to perform a policy task. The
policy set is a XACML-defined entity. The Data Governance Broker evaluates policy sets the
same way it evaluates policies.

Creation of a policy set is the same as that of a policy. A policy set must be created from
individual policies that have been configured in the Data Governance Broker.

Note
Policies that are part of a policy set should be disabled in the Data Governance Broker, once
the policy set is enabled. This will prevent policies from being evaluated twice.

Testing Policies

Policies can be tested by running request scenarios through the API Explorer to ensure that
they work as designed before deploying in production. The API Explorer can be used to create
an authorization request, specify the OAuth2 client that will request access to a user's
resources, the resources to access, and additional information from the user's entry to assist
in processing the request. See About Data Access Requests for an overview of the request
components.

Access the API Explorer from the Documentation Index page, <server-
root>/docs/index.html, or the server's HTTPS endpoint https://<host>:<http-
port>/explorer.

Troubleshooting Policies with Traces

Policy decisions are frequently the result of a complex series of logical steps. Identifying the
reason why a particular request is getting an unexpected result can be difficult. The Data
Governance Broker can generate a trace of any policy decision, and log traces with in the File
Based Trace Log Publisher with dsconfig or through the Administrative Console.

Note
Policy traces are logged in the File Based Trace Log Publisher. See Working with Logs and

Log Publishers.

A Policy Decision Trace is an XML document that is formatted like the XACML policies. It
demonstrates the sequence of steps taken by the policy engine to come to a decision for a
specific request. The elements of the trace parallel the policies, policy targets, and policy rules
that are evaluated. The following are included:

« The first line of the log entry identifies the message type as POLICY-DECISION-TRACE.

« The parameters of the XACML request being traced are listed, including the application,
action, and resources.

« Following this is the trace itself, which is included in the <DecisionTrace> XACML
element.

-112 -



Testing Policies

The trace also includes entries for each policy, rule, and target evaluated during the decision
process. Each entry contains a result XML attribute, which specifies the result of evaluating
the corresponding XACML element.

Troubleshooting Denied Access

Policies can issue XACML AdviceExpressions for any policy request that is denied. This passes
additional information to the client as to the reason for denying access. Both the OAuth2
endpoints and the SCIM endpoint will look for error advice returned from the policy engine and
include it in the error response generated for the client. If a policy denies a request without
advice, the error response is access denied.

The following error advice may be included in policy.

Policy Error Advice
Advice ID Attribute ID Value

Error identifier or code. For an OAuth2 response,
this value populates the error parameter in the
OAuth2 error response, as defined in the OAuth2
Authorization Framework. For SCIM responses,
this value will be used to populate the

error scimType error parameter.

The value ofthe error description
parameter of an OAuth2 error response, or the
request-denied-reason error_description  detail parameter of a SCIM error response.

The following is an example of XACML Advice specifying that an invalid scope error response
should be returned:

<AdviceExpressions>
<AdviceExpression Adviceld="request-denied-reason" AppliesTo="Deny">
<AttributeAssignmentExpression AttributeId="error">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
invalid scope
</AttributeValue>
</AttributeAssignmentExpression>
<AttributeAssignmentExpression AttributeId="error-description">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
Application not authorized for requested scope
</Attributevalue>
</AttributeAssignmentExpression>
</AdviceExpression>
</AdviceExpressions>

With this advice, the following error will be returned to the OAuth2 client:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Bearer

error="invalid scope",
error description="Application not authorized for requested scope"

-113-



Chapter 6: Configuring Scopes and XACML Policies

Unsupported XACML Features

When creating policies, the following XACML 3.0 features are not supported:

« No support for embedded XML content in a request. The following XACML
elements related to XML processing have not been implemented:

e <PolicyDefaults> and <PolicySetDefaults>

e <XPathVersion>

« XPath functions xpath-node-count, xpath-node-equal, and xpath-node-match.

« No support for versioning of policies. XACML incorporates the idea of maintaining
multiple versions of a policy, such as policy "X" version 1.0 and policy "X" version 2.0. A
policy set then can specify (by reference) which version of policy 'X' is to be applied
when evaluating a request. The Data Governance Broker only allows for a single instance
of policy X to be stored. It does not support referencing a particular version of that
policy. The following XACML elements related to versioning are not supported:

e <VersionMatchType> in PolicyIDReference Or PolicySetIDReference elements

« Limited Support for Multi Requests. XACML specifies several ways that a request for
multiple decisions can be contained within a single request context, described in the
XACML Multiple Decision Profile document. The Data Governance Broker only supports
one version of a multiple-decision request by using multiple <Attributes> of the same
category in the request. In addition, Data Governance Broker policies only support
multiple instances of the Resources category. As a result the following XACML elements
are not supported:

e <MultiRequests>

e <RequestReference>

e <AttributesReference>

e CombinedDecision attribute of the <Request> element

e xml:id attribute of the <Attributes> element

« No support for Attribute Issuer or Policy Issuer. These features allow for the

writing of policies that determine which other policies should be used when evaluating a
request. For example, a request may be subject only to policies whose issuer (author)
are from some trusted source. This is a second-order feature and not relevant for

environments where all policies are equal as to their trustworthiness. The following
XACML elements related to issuers are not supported:

e <PolicyIssuer>

« Issuer attribute of the <attribute> element

- 114 -



Unsupported XACML Features

« No support for Policy and Rule Combiner Parameters. A policy-combining
algorithm is a rule for how the decisions rendered by multiple applicable policies are to
be combined in order to form an ultimate decision by a policy set or the policy decision
point as a whole. Similarly, a rule-combining algorithm is a rule for how the decisions
rendered by multiple rules within a single policy are to be combined. The Policy and Rule
Combiner Parameters are relevant only if custom rule-combining or policy-combining
algorithms are in effect. Since the Data Governance Broker does not currently support
adding custom rule-combining or policy-combining algorithms, XACML elements for the
associated Combiner Parameters are not supported:

e <CombinerParameters>
¢ <RuleCombinerParameters>
e <PolicyCombinerParameters>

e <PolicySetCombinerParameters>

- 115 -



Chapter 7: Advanced Configuration

The Data Governance Broker’s non-user data consists of data in the server configuration.
Generally, data in the server configuration define an individual Data Governance Broker
instance, and can include its place in a server topology. Multiple server instances can be

grouped in two ways to share or mirror configuration settings:

Note

Server Groups - Servers that are added to a server group in the global configuration can
share configuration changes across the group, or not.

Cluster - This is a topology management setting that enables a set of servers to be
grouped by a functional purpose, and any change to one is mirrored to all. A master
server verifies any configuration change before it is propagated to other servers in the
group.

All configuration objects and settings are described in the HTML Configuration Reference,
which can be accessed from the Administrative Console or from the <server-
root>/docs/index.html page. Information in this chapter highlights configuration of interest
to a Data Governance Broker installation. For complete configuration options and details, see
the Configuration Reference.

Topics include:

General Server Configuration

Data Governance Broker Server Advanced Configuration

Configuring Data Governance Broker Login Pages

Topology Management

- 116 -



Chapter 7: Advanced Configuration

General Server Configuration

There are tools and settings that are common across all PingData servers. These enable
monitoring and managing the server, configuring and sending alerts and alarms, and managing
the server's communication with clients. These configuration objects can be changed at the
local server, with the option to apply changes to servers in a group.

Available Configuration Tools

There are several tools that can be used for server administration and maintenance in the /bin
directory. The following is a sample of the command-line configuration tools:

Command-line Tools

Tool Description

Run full or incremental backups on one or more Data Governance Brokers. This

utility also supports the use of a properties file to pass predefined command-line
backup arguments.

Encode raw data using the base64 algorithm or decode base64-encoded data back
base64 to its raw representation.

collect-support-data

Collect and package system information useful in troubleshooting problems. The
information is packaged as a ZIP archive that can be sent to a technical support
representative.

config-diff

Generate a summary of the configuration changes in a local or remote server
instance. The tool can be used to compare configuration settings when
troubleshooting issues, or when verifying configuration settings on new servers.

create-initial-broker-config

Create an initial Data Governance Broker configuration.

create-rc-script

Create a Run Control (RC) script that can be used to start, stop, and restart the Data
Governance Broker on Unix-based systems.

dsconfig View and edit the Data Governance Broker configuration.
Manage administrative server groups or the global administrative user accounts that
dsframework are used to configure servers within server groups.
Configure the JVM arguments used to run the Data Governance Broker and its
associated tools. Before launching the command, edit the properties file located in
config/java.properties to specify the desired JVM arguments and the
dsjavaproperties JAVA_ HOME environment variable.

encryption-settings

Manage the server encryption settings database.

evaluate-policy

Request a policy decision from the Data Governance Broker.

Idapdelete Perform an LDAP delete operation.
Idapcompare Perform an LDAP compare operation.

Perform LDAP modify, add, and modify DN operations in the Data Governance
Idapmodify Broker.

Idappasswordmodify

Perform LDAP password modify operations in the Data Governance Broker.

-117 -



General Server Configuration

Command-line Tools

Tool Description
Idapsearch Perform LDAP search operations in the Data Governance Broker.

Compare the contents of two LDIF files, the output being an LDIF file needed to bring
Idif-diff the source file in sync with the target.
Idifmodify Apply a set of modify, add, and delete operations against data in an LDIF file.
list-backends List the backends and base DNs configured in the Data Governance Broker.

Install or update extension bundles. An extension bundle is a package of extension
(s) that utilize the Server SDK to extend the functionality of the Data Governance
manage-extension Broker. Any added extensions require a server re-start.

Performs OAuth2 requests on the Data Governance Broker. This tool can be used to
test OAuth2 functions of the Data Governance Broker, and to manage OAuth2 tokens
oauth2-request on behalf of registered applications.

Prepares the external Directory Servers for the Data Governance Broker. This is run
as partofthe create-initial-broker-config tool during installation. This
tool creates the Data Governance Broker user account, sets the correct password,

and configures the account with required privileges. It will also install the necessary

prepare-external-store schema required by the Data Governance Broker.
Removes a permanently unavailable Data Governance Broker after it has been
remove-defunct-server removed from its topology by the uninstall tool.
restore Restore a backup of the Data Governance Broker.
review-license Review and/or accept the product license.
server-state View information about the current state of the Data Governance Broker processes.
start-broker Start the Data Governance Broker.
status Display basic server information.
stop-broker Stop or restart the Data Governance Broker.
sum-file-sizes Calculate the sum of the sizes for a set of files.

Using the dsconfig tool

The dsconfig tool, is used to view or edit the Data Governance Broker configuration, and is

parallel in functionality with the Administrative Console. This utility can be run in interactive

mode, non-interactive mode, and batch mode. Interactive mode provides an intuitive, menu-
driven interface for accessing and configuring the server.

To start dsconfig in interactive mode, enter the following command:

$ bin/dsconfig

The dsconfig tool provides a batching mechanism that reads multiple dsconfig invocations
from a file and executes them sequentially. The batch file advantage is that it minimizes LDAP
connections and JVM invocations required with scripting each call. To use batch mode to read
and execute a series of commands in a batch file, enter the following command:

$ dsconfig --bindDN uid=admin,dc=company,dc=com \
--bindPassword password \

-118 -



Chapter 7: Advanced Configuration

-—no-prompt \
--batch-file </path/to/config-batch.txt>

The 1logs/config-audit.log file can be used to review the configuration changes made to the
Data Governance Broker and use them in the batch file.

Administrative Accounts

Users that authenticate to the Config API or the Administrative Console are stored in cn=Root
DNs, cn=config. These users must exist on all instances of the Data Governance Broker to
manage a Topology of servers. The setup tool automatically copies one administrative
account when performing an installation from a peer, but if changed, the accounts must be
synchronized. Accounts can be added or changed with the dsconfig tool.

Using the Configuration API

PingData servers provide a Configuration API, which may be useful in situations where using
LDAP to update the server configuration is not possible. The API is consistent with the System
for Cross-domain Identity Management (SCIM) 2.0 protocol and uses JSON as a text exchange
format, so all request headers should allow the application/json content type.

The server includes a servlet extension that provides read and write access to the server’s
configuration over HTTP. The extension is enabled by default for new installations, and can be
enabled for existing deployments by simply adding the extension to one of the server’s HTTP
Connection Handlers, as follows:

$ bin/dsconfig set-connection-handler-prop \

--handler-name "HTTPS Connection Handler" \
-—-add http-servlet-extension:Configuration

The API is made available on the HTTPS Connection handler’s host:port inthe /config
context. Due to the potentially sensitive nature of the server’s configuration, the HTTPS
Connection Handler should be used, for hosting the Configuration extension.

Authentication and Authorization

Clients must use HTTP Basic authentication to authenticate to the Configuration API. If the
username value is not a DN, then it will be resolved to a DN value using the identity mapper
associated with the Configuration servlet. By default, the Configuration API uses an identity
mapper that allows an entry’s UID value to be used as a username. To customize this
behavior, either customize the default identity mapper, or specify a different identity mapper
using the Configuration servlet’'s identity-mapper property. For example:

$ bin/dsconfig set-http-servlet-extension-prop \
-—extension-name Configuration \
--set "identity-mapper:Alternative Identity Mapper”

To access configuration information, users must have the appropriate privileges:

« To access the cn=config backend, users must have the bypass-acl privilege or be
allowed access to the configuration using an ACI.

- 119 -



General Server Configuration

« To read configuration information, users must have the config-read privilege.

« To update the configuration, users must have the config-write privilege.

Relationship Between the Configuration APl and the dsconfig Tool

The Configuration API is designed to mirror the dsconfig tool, using the same names for
properties and object types. Property names are presented as hyphen case in dsconfig and
as camel-case attributes in the API. In API requests that specify property names, case is not
important. Therefore, baseDN is the same as baseDn. Object types are represented in hyphen
case. API paths mirror what is in dsconfig. For example, the dsconfig list-connection-
handlers command is analogous to the API's /config/connection-handlers path. Object
types that appear in the schema URNs adhere to a type: subtype syntax. For example, a Local
DB Backend's schema URN is
urn:pingidentity:schemas:configuration:2.0:backend:local-db. Like the dsconfig
tool, all configuration updates made through the API are recorded in 1logs/config-audit.log.

The API includes the filter, sort, and pagination query parameters described by the SCIM
specification. Specific attributes may be requested using the attributes query parameter,
whose value must be a comma-delimited list of properties to be returned, for example
attributes=baseDN, description. Likewise, attributes may be excluded from responses by
specifying the excludedattributes parameter. See Sorting and Filtering with the
Configuration API for more information on query parameters.

Operations supported by the API are those typically found in REST APIs:

Related dsconfig
HTTP Method Description Example

get-backend-prop
Lists the attributes of an object when used with a path

representing an object, such as /config/global-

configurationor/config/backends/userRoot. Can get-global-

also list objects when used with a path representing a parent configuration-
GET relation, such as /config/backends. prop

list-backends

Creates a new instance of an object when used with a relation
POST parent path, such as config/backends. create-backend

Replaces the existing attributes of an object. A PUT operation is
similar to a PATCH operation, except that the PATCH is
determined by determining the difference between an existing

target object and a supplied source object. Only those attributes in  S€t~Packend-prop

the source object are modified in the target object. The target set-global-
object is specified using a path, such as configuration-
PUT /config/backends/userRoot, prop

set-backend-prop

Updates the attributes of an existing object when used with a path set-global-
representing an object, such as /config/backends/userRoot. configuration-
PATCH See PATCH Example. prop

Deletes an existing object when used with a path representing an
DELETE object, such as /config/backends/userRoot. delete-backend

-120 -



Chapter 7: Advanced Configuration

The OPTIONS method can also be used to determine the operations permitted for a particular
path.

Object names, such as userrRoot in the Description column, must be URL-encoded in the path
segment of a URL. For example, $20 must be used in place of spaces, and %25 is used in place
of the percent (%) character. So the URL for accessing the HTTP Connection Handler object is:

/config/connection-handlers/http%20connection%20handler

GET Example

The following is a sample GET request for information about the userroot backend:

GET /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json

The response:
{

"schemas": [
"urn:pingidentity:schemas:configuration:2.0:backend:local-db"

1,

"id": "userRoot",
"meta": {
"resourceType": "Local DB Backend",

"location": "http://localhost:5033/config/backends/userRoot"
}’
"backendID": "userRoot2",
"backgroundPrime": "false",
"backupFilePermissions": "700",
"baseDN": [

"dc=example2,dc=com"
]I
"checkpointOnCloseCount": "2",
"cleanerThreadWaitTime": "120000",
"compressEntries": "false",
"continuePrimeAfterCacheFull": "false",
"dbBackgroundSyncInterval”: "1 s",
"dbCachePercent": "10",
"dbCacheSize": "0 b",
"dbCheckpointerBytesInterval"”: "20 mb",
"dbCheckpointerHighPriority": "false",
"dbCheckpointerWakeupInterval”: "1 m",
"dbCleanOnExplicitGC": "false",
"dbCleanerMinUtilization": "75",
"dbCompactKeyPrefixes": "true",
"dbDirectory": "db",
"dbDirectoryPermissions": "700",
"dbEvictorCriticalPercentage": "0",
"dbEvictorLruOnly": "false",
"dbEvictorNodesPerScan": "10",
"dbFileCacheSize": "1000",
"dbImportCachePercent": "o60",
"dbLogFileMax": "50 mb",
"dbLoggingFileHandlerOn": "true",
"dbLoggingLevel": "CONFIG",
"dbNumCleanerThreads": "0",

-121 -



General Server Configuration

"dbNumLockTables": "0",
"dbRunCleaner": "true",
"dbTxnNoSync": "false",
"dbTxnWriteNoSync": "true",
"dbUseThreadLocalHandles": "true",
"deadlockRetryLimit": "10",
"defaultCacheMode": "cache-keys-and-values",
"defaultTxnMaxLockTimeout": "10 s",
"defaultTxnMinLockTimeout": "10 s",
"enabled": "false",
"explodedIndexEntryThreshold": "4000",
"exportThreadCount": "0",
"externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
"externalTxnDefaultMaxLockTimeout": "100 ms",
"externalTxnDefaultMinLockTimeout": "100 ms",
"externalTxnDefaultRetryAttempts": "2",
"hashEntries": "false",
"id2childrenIndexEntryLimit": "66",
"importTempDirectory": "import-tmp",
"importThreadCount": "16",
"indexEntryLimit": "4000",
"isPrivateBackend": "false",
"javaClass": "com.unboundid.directory.server.backends. jeb.BackendImpl",
"jeProperty": [
"je.cleaner.adjustUtilization=false",
"je.nodeMaxEntries=32"
]I
"numRecentChanges": "50000",
"offlineProcessDatabaseOpenTimeout": "1 h",
"primeAllIndexes": "true",
"primeMethod": [
"none"
]I
"primeThreadCount": "2",
"primeTimeLimit": "0 ms",
"processFiltersWithUndefinedAttributeTypes": "false",
"returnUnavailableForUntrustedIndex": "true",
"returnUnavailableWhenDisabled": "true",
"setDegradedAlertForUntrustedIndex": "true",
"setDegradedAlertWhenDisabled": "true",
"subtreeDeleteBatchSize": "5000",
"subtreeDeleteSizeLimit": "5000",
"uncachedId2entryCacheMode": "cache-keys-only",
"writabilityMode": "enabled"
}

GET List Example

The following is a sample GET request for all local backends:

GET /config/backends
Host: example.com:5033
Accept: application/scim+json

The response (which has been shortened):

{

"schemas": [

-122 -



Chapter 7: Advanced Configuration

"urn:ietf:params:scim:api:messages:2.0:ListResponse"
]I
"totalResults": 24,
"Resources": [
{
"schemas": [
"urn:pingidentity:schemas:configuration:2.0:backend:1dif"

1y

"id": "adminRoot",
"meta": {
"resourceType": "LDIF Backend",

"location": "http://localhost:5033/config/backends/adminRoot"
s

"backendID": "adminRoot",
"backupFilePermissions": "700",
"baseDN": [

"cn=admin data"
1,

"enabled": "true",
"isPrivateBackend": "true",
"javaClass": "com.unboundid.directory.server.backends.LDIFBackend",
"1difFile": "config/admin-backend.ldif",
"returnUnavailableWhenDisabled": "true",
"setDegradedAlertWhenDisabled": "false",
"writabilityMode": "enabled"

}I

{
"schemas": [

"urn:pingidentity:schemas:configuration:2.0:backend:trust-store"

1y

"id": "ads-truststore",
"meta": |
"resourceType": "Trust Store Backend",

"location": "http://localhost:5033/config/backends/ads-truststore"
}I
"backendID": "ads-truststore",
"backupFilePermissions": "700",
"baseDN": [
"cn=ads-truststore"

1y

"enabled": "true",
"javaClass": "com.unboundid.directory.server.backends.TrustStoreBackend",
"returnUnavailableWhenDisabled": "true",
"setDegradedAlertWhenDisabled": "true",
"trustStoreFile": "config/server.keystore",
"trustStorePin": "XxExFExxkxl
"trustStoreType": "JKS",
"writabilityMode": "enabled"

}I

{
"schemas": [

"urn:pingidentity:schemas:configuration:2.0:backend:alarm"

1,

"id": "alarms",
"meta": {
"resourceType": "Alarm Backend",

"location": "http://localhost:5033/config/backends/alarms"

-123 -



General Server Configuration
}

PATCH Example

Configuration can be modified using the HTTP PATCH method. The PATCH request body is a
JSON object formatted according to the SCIM patch request. The Configuration API, supports a
subset of possible values for the path attribute, used to indicate the configuration attribute to
modify.

The configuration object's attributes can be modified in the following ways. These operations
are analogous to the dsconfig modify-[object] options.

« An operation to set the single-valued description attribute to a new value:

{

"op" : "replace",
"path" : "description",
"value" : "A new backend."

}

is analogous to:

S dsconfig set-backend-prop --backend-name userRoot \
--set "description:A new backend"

« An operation to add a new value to the multi-valued jeProperty attribute:

{

" Op" : "add" o
"path" : "jeProperty",
"value" : "je.env.backgroundReadLimit=0"

}

is analogous to:
$ dsconfig set-backend-prop --backend-name userRoot \
—--add je-property:je.env.backgroundReadLimit=0
« An operation to remove a value from a multi-valued property. In this case, path
specifies a SCIM filter identifying the value to remove:
{

"op" : "remove",
"path" : "[jeProperty eqg \"je.cleaner.adjustUtilization=false\"]"

}
is analogous to:
$ dsconfig set-backend-prop --backend-name userRoot \
—--remove Jje-property:je.cleaner.adjustUtilization=false
« A second operation to remove a value from a multi-valued property, where the path
specifies both an attribute to modify, and a SCIM filter whose attribute is value:
{

"op" : "remove",

- 124 -



Chapter 7: Advanced Configuration

"path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
--remove je-property:je.nodeMaxEntries=32

« An option to remove one or more values of a multi-valued attribute. This has the effect
of restoring the attribute's value to its default value:

{
"op" : "remove",
"path" : "id2childrenIndexEntryLimit"

}

is analogous to:

$ dsconfig set-backend-prop —--backend-name userRoot \

—--reset id2childrenIndexEntryLimit

The following is the full example request. The API responds with the entire modified
configuration object, which may include a SCIM extension attribute
urn:pingidentity:schemas:configuration:messages containing additional instructions:

Example request:

PATCH /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json

"schemas" : [ "urn:ietf:params:scim:api:messages:2.0:PatchOp" ],
"Operations" : [ {

"op" : "replace",

"path" : "description",

"value" : "A new backend."
oo A

"op" : "add",

"path" : "jeProperty",

"value" : "je.env.backgroundReadLimit=0"
b A

"op" : "remove",

"path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"
oo A

"op" : "remove",

"path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
b A

"op" : "remove",

"path" : "id2childrenIndexEntryLimit"

b
}

Example response:
{

"schemas": [
"urn:pingidentity:schemas:configuration:2.0:backend:local-db"

1,

- 125 -



General Server Configuration

"id": "userRoot2",
"meta": {
"resourceType": "Local DB Backend",
"location": "http://example.com:5033/config/backends/userRoot2"
}I
"backendID": "userRoot2",
"backgroundPrime": "false",
"backupFilePermissions": "700",
"baseDN": [

"dc=example2,dc=com"
]I
"checkpointOnCloseCount": "2",
"cleanerThreadWaitTime": "120000",
"compressEntries": "false",
"continuePrimeAfterCacheFull": "false",
"dbBackgroundSyncInterval": "1 s",
"dbCachePercent": "10",
"dbCacheSize": "0 b",
"dbCheckpointerBytesInterval”: "20 mb",
"dbCheckpointerHighPriority": "false",
"dbCheckpointerWakeupInterval”: "1 m",
"dbCleanOnExplicitGC": "false",
"dbCleanerMinUtilization": "75",
"dbCompactKeyPrefixes": "true",
"dbDirectory": "db",
"dbDirectoryPermissions": "700",
"dbEvictorCriticalPercentage": "0",
"dbEvictorLruOnly": "false",
"dbEvictorNodesPerScan": "10",
"dbFileCacheSize": "1000",
"dbImportCachePercent": "60",
"dbLogFileMax": "50 mb",
"dbLoggingFileHandlerOn": "true",
"dbLoggingLevel": "CONFIG",
"dbNumCleanerThreads": "0",
"dbNumLockTables": "0",
"dbRunCleaner": "true",
"dbTxnNoSync": "false",
"dbTxnWriteNoSync": "true",
"dbUseThreadLocalHandles": "true",
"deadlockRetryLimit": "10",
"defaultCacheMode": "cache-keys-and-values",
"defaultTxnMaxLockTimeout": "10 s",
"defaultTxnMinLockTimeout": "10 s",
"description": "123",
"enabled": "false",
"explodedIndexEntryThreshold": "4000",
"exportThreadCount": "0",
"externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
"externalTxnDefaultMaxLockTimeout™: "100 ms",
"externalTxnDefaultMinLockTimeout": "100 ms",
"externalTxnDefaultRetryAttempts": "2",
"hashEntries": "false",
"importTempDirectory": "import-tmp",
"importThreadCount": "16",
"indexEntryLimit": "4000",
"isPrivateBackend": "false",

-126 -



Chapter 7: Advanced Configuration

"javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
"jeProperty": [
"\"je.env.backgroundReadLimit=0\""
]I
"numRecentChanges": "50000",
"offlineProcessDatabaseOpenTimeout": "1 h",
"primeAllIndexes": "true",
"primeMethod": [
"none"
]I
"primeThreadCount": "2",
"primeTimeLimit": "O ms",
"processFiltersWithUndefinedAttributeTypes": "false",
"returnUnavailableForUntrustedIndex": "true",
"returnUnavailableWhenDisabled": "true",
"setDegradedAlertForUntrustedIndex": "true",
"setDegradedAlertWhenDisabled": "true",
"subtreeDeleteBatchSize": "5000",
"subtreeDeleteSizeLimit": "5000",
"uncachedId2entryCacheMode": "cache-keys-only",
"writabilityMode": "enabled",
"urn:pingidentity:schemas:configuration:messages:2.0": {
"requiredActions": [
{
"property": "jeProperty",
"type": "componentRestart",
"synopsis": "In order for this modification to take effect,
the component must be restarted, either by disabling and
re-enabling it, or by restarting the server"

"property": "id2childrenIndexEntryLimit",

"type": "other",

"synopsis": "If this limit is increased, then the contents
of the backend must be exported to LDIF and re-imported to
allow the new limit to be used for any id2children keys
that had already hit the previous limit."

API Paths

The Configuration API is available under the /config path. A full listing of root sub-paths can
be obtained from the /config/ResourceTypes endpoint:

GET /config/ResourceTypes
Host: example.com:5033
Accept: application/scim+json

Sample response (abbreviated):
{

"schemas": [
"urn:ietf:params:scim:api:messages:2.0:ListResponse"

1,

-127 -



General Server Configuration

"totalResults": 520,
"Resources": [
{
"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:ResourceType"

1,

"id": "dsee-compat-access-control-handler",
"name": "DSEE Compat Access Control Handler",
"description": "The DSEE Compat Access Control

Handler provides an implementation that uses syntax
compatible with the Sun Java System Directory Server
Enterprise Edition access control handler.",

"endpoint": "/access-control-handler",
"meta": {
"resourceType": "ResourceType",
"location": "http://example.com:5033/config/ResourceTypes/dsee—compat-access—

control-handler"
}
}I
{
"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:ResourceType"

1,

"id": "access-control-handler",
"name": "Access Control Handler",
"description": "Access Control Handlers manage the

application-wide access control. The server's access
control handler is defined through an extensible

interface, so that alternate implementations can be created.
Only one access control handler may be active in the server
at any given time.",

"endpoint": "/access-control-handler",
"meta": {
"resourceType": "ResourceType",
"location": "http://example.com:5033/config/ResourceTypes/access-control-handler"

The response's endpoint elements enumerate all available sub-paths. The path
/config/access-control-handler in the example can be used to get a list of existing access
control handlers, and create new ones. A path containing an object name like
/config/backends/{backendName}, where {backendName} corresponds to an existing
backend (such as userRoot) can be used to obtain an object’s properties, update the
properties, or delete the object.

Some paths reflect hierarchical relationships between objects. For example, properties of a
local DB VLV index for the userRoot backend are available using a path like
/config/backends/userRoot/local-db-indexes/uid. Some paths represent singleton
objects, which have properties but cannot be deleted nor created. These paths can be
differentiated from others by their singular, rather than plural, relation name (for example
global-configuration).

-128 -



Chapter 7: Advanced Configuration

Sorting and Filtering Configuration Objects

The Configuration API supports SCIM parameters for filter, sorting, and pagination. Search
operations can specify a SCIM filter used to narrow the number of elements returned. See the
SCIM specification for the full set of operations for SCIM filters. Clients may also specify sort
parameters, or paging parameters. As previously mentioned, clients may specify attributes to
include or exclude in both get and list operations.

GET Parameters for Sorting and Filtering
GET Parameter Description

Values can be simple SCIM filters such as 1d eq "userRoot" or
compound filters like meta.resourceType eq "Local DB Backend"

filter and baseDn co "dc=exmple,dc=com",

sortBy Specifies a property value by which to sort.

sortOrder Specifies either ascending ordescending alphabetical order.
startindex 1-based index of the first result to return.

count Indicates the number of results per page.

Updating Properties

The Configuration API supports the HTTP PUT method as an alternative to modifying objects
with HTTP PATCH. With PUT, the server computes the differences between the object in the
request with the current version in the server, and performs modifications where necessary.
The server will never remove attributes that are not specified in the request. The API responds
with the entire modified object.

Request:

PUT /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json
{
"description" : "A new description."

}
Response:
{

"schemas": [
"urn:pingidentity:schemas:configuration:2.0:backend:local-db"

1,

"id": "userRoot",
"meta": {
"resourceType": "Local DB Backend",
"location": "http://example.com:5033/config/backends/userRoot"
}I
"backendID": "userRoot",
"backgroundPrime": "false",
"backupFilePermissions": "700",
"baseDN": [

"dc=example, dc=com"
I

"checkpointOnCloseCount": "2",

- 129 -



General Server Configuration

"cleanerThreadWaitTime": "120000",
"compressEntries": "false",
"continuePrimeAfterCacheFull": "false",
"dbBackgroundSyncInterval": "1 s",
"dbCachePercent": "25",
"dbCacheSize": "0 b",
"dbCheckpointerBytesInterval”: "20 mb",
"dbCheckpointerHighPriority": "false",
"dbCheckpointerWakeupInterval"”: "30 s",
"dbCleanOnExplicitGC": "false",
"dbCleanerMinUtilization": "75",
"dbCompactKeyPrefixes": "true",
"dbDirectory": "db",
"dbDirectoryPermissions": "700",
"dbEvictorCriticalPercentage": "5",
"dbEvictorLruOnly": "false",
"dbEvictorNodesPerScan": "10",
"dbFileCacheSize": "1000",
"dbImportCachePercent": "60",
"dbLogFileMax": "50 mb",
"dbLoggingFileHandlerOn": "true",
"dbLoggingLevel": "CONFIG",
"dbNumCleanerThreads": "1",
"dbNumLockTables": "Q0",
"dbRunCleaner": "true",
"dbTxnNoSync": "false",
"dbTxnWriteNoSync": "true",
"dbUseThreadLocalHandles": "true",
"deadlockRetryLimit": "10",
"defaultCacheMode": "cache-keys-and-values",
"defaultTxnMaxLockTimeout": "10 s",
"defaultTxnMinLockTimeout": "10 s",
"description": "abc",
"enabled": "true",
"explodedIndexEntryThreshold": "4000",
"exportThreadCount": "0",
"externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
"externalTxnDefaultMaxLockTimeout": "100 ms",
"externalTxnDefaultMinLockTimeout": "100 ms",
"externalTxnDefaultRetryAttempts": "2",
"hashEntries": "true",
"importTempDirectory": "import-tmp",
"importThreadCount": "16",
"indexEntryLimit": "4000",
"isPrivateBackend": "false",
"javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
"numRecentChanges": "50000",
"offlineProcessDatabaseOpenTimeout": "1 h",
"primeAllIndexes": "true",
"primeMethod": [

"none"
]I
"primeThreadCount": "2",
"primeTimeLimit": "0 ms",
"processFiltersWithUndefinedAttributeTypes": "false",
"returnUnavailableForUntrustedIndex": "true",
"returnUnavailableWhenDisabled": "true",

-130 -



Chapter 7: Advanced Configuration

"setDegradedAlertForUntrustedIndex": "true",
"setDegradedAlertWhenDisabled": "true",
"subtreeDeleteBatchSize": "5000",
"subtreeDeleteSizeLimit": "100000",
"uncachedId2entryCacheMode": "cache-keys-only",
"writabilityMode": "enabled"

Administrative Actions

Updating a property may require an administrative action before the change can take effect. If
so, the server will return 200 Success, and any actions are returned in the
urn:pingidentity:schemas:configuration:messages:2.0 section of the JSON response
that represents the entire object that was created or modified.

For example, changing the jepProperty of a backend will result in the following:

"urn:pingidentity:schemas:configuration:messages:2.0": {
"requiredActions": [
{

"property": "baseContextPath",

"type": "componentRestart",

"synopsis": "In order for this modification to
take effect, the component must be restarted,
either by disabling and re-enabling it, or by
restarting the server"

"property": "id2childrenIndexEntryLimit",
"type": "other",
"synopsis": "If this limit is increased, then the

contents of the backend must be exported to LDIF
and re-imported to allow the new limit to be used
for any id2children keys that had already hit the
previous limit."

Updating Servers and Server Groups

Servers can be configured as part of a server group, so that configuration changes that are
applied to a single server, are then applied to all servers in a group. When managing a server
that is a member of a server group, creating or updating objects using the Configuration API
requires the applyChangeTo query parameter. The behavior and acceptable values for this
parameter are identical to the dsconfig parameter of the same name. A value of
singleServer Or serverGroup can be specified. For example:

https://example.com:5033/config/Backends/userRoot?applyChangeTo=singleServer

Note
This does not apply to mirrored subtree objects, which include Topology and Cluster level
objects. Changes made to mirrored objects are applied to all objects in the subtree.

-131 -



Configuration APl Responses

General Server Configuration

Clients of the API should examine the HTTP response code in order to determine the success or

failure of a request. The following are response codes and their meanings:

Response
Response Code Description Body
List of
The requested operation succeeded, with the response body being the objects, or
configuration object that was created or modified. If further actions are object
required, they are included in the properties,
urn:pingidentity:schemas:configuration:messages:2.0 administrative
200 Success object. actions.
The requested operation succeeded and no further information has been
204 No Content provided, such as in the case of a DELETE operation. None.
Error
summary and
The request contents are incorrectly formatted or a requestis made foran  optional
400 Bad Request invalid APl version. message.
User authentication is required. Some user agents such as browsers may
respond by prompting for credentials. If the request had specified
401 Unauthorized credentials in an Authorization header, they are invalid. None.
The requested operation is forbidden either because the user does not
have sufficient privileges or some other constraint such as an object is edit-
403 Forbidden only and cannot be deleted. None.
Error
summary and
optional
404 Not Found The requested path does not refer to an existing object or object relation. message.
The requested operation could not be performed due to the current state of Error
the configuration. For example, an attempt was made to create an object summary and
that already exists or an attempt was made to delete an object thatis optional
409 Conflict referred to by another object. message.
415 Unsupported The requestis such that the Accept header does notindicate that JSON is
Media Type an acceptable format for a response. None.
Error
summary and
The server encountered an unexpected error. Please report server errors to optional
500 Server Error customer support. message.

An application that uses the Configuration API should limit dependencies on particular text
appearing in error message content. These messages may change, and their presence may
depend on server configuration. Use the HTTP return code and the context of the request to
create a client error message. The following is an example encoded error message:

{

"schemas": [

"urn:ietf:params:scim:api:messages:2.0:Error"

1,
"status": 404,
"scimType": null,

-132 -



Chapter 7: Advanced Configuration

"detail": "The Local DB Index does not exist."

Configuring HTTP Connection Handlers

The server relies on the HTTP connection handler, which relies on one or more servlet
extensions. Servlet extensions are responsible for obtaining Java servlets and registering them
to be invoked using one or more context paths. For custom servlet extensions created using
the Server SDK, the process varies based on using a Java-based or Groovy-scripted extension.
See the Server SDK documentation for details.

HTTP connection handlers are responsible for managing the communication with HTTP clients
and invoking servlets to process requests from those clients. They can also be used to host
web applications on the server. Each HTTP connection handler must be configured with one or
more HTTP servlet extensions and zero or more HTTP operation log publishers.

If the HTTP Connection Handler cannot be started (for example, if its associated HTTP Servlet
Extension fails to initialize), this does not prevent the entire server from starting. The server's
start tool posts any errors to the error log.

The configuration properties available for use with an HTTP connection handler include:

e listen-address — Specifies the address on which the connection handler will listen for
requests from clients. If not specified, then requests will be accepted on all addresses
bound to the system.

« listen-port — Specifies the port on which the connection handler will listen for requests
from clients. Required.

« use-ssl - Indicates whether the connection handler will use SSL/TLS to secure
communications with clients (whether it uses HTTPS rather than HTTP). If SSL is
enabled, then key-manager-provider and trust-manager-provider values must also be
specified.

« http-servlet-extension — Specifies the set of servlet extensions that will be enabled
for use with the connection handler. You can have multiple HTTP connection handlers
(listening on different address/port combinations) with identical or different sets of
servlet extensions. At least one servlet extension must be configured.

e http-operation-log-publisher — Specifies the set of HTTP operation log publishers
that should be used with the connection handler. By default, no HTTP operation log
publishers will be used.

e ssl-cert-nickname — In scenarios where the multiple public-private key pairs are in a
JKS keystore, the LDAPConnectionHandler allows choosing a specific certificate alias
through the ssl-cert-nickname property. The HTTPConnectionHandler for HTTPS
connections should have the same option for parity.

e« key-manager-provider — Specifies the key manager provider that will be used to obtain
the certificate presented to clients if SSL is enabled.

-133 -



General Server Configuration

« trust-manager-provider — Specifies the trust manager provider that will be used to
determine whether to accept any client certificates presented to the server.

« num-request-handlers — Specifies the number of threads that should be used to
process requests from HTTP clients. These threads are separate from the worker threads
used to process other kinds of requests. The default value of zero means the number of
threads will be automatically selected based on the number of CPUs available to the JVM.

« web-application-extension- Specifies the web applications to be hosted by the
server.

For information about other connection handlers, see the Data Governance Broker
Configuration Reference Guide.

Domain Name Service (DNS) Caching

If needed, two global configuration properties can be used to control the caching of hostname-
to-numeric IP address (DNS lookup) results returned from the name resolution services of the
underlying operating system. Use the dsconfig tool to configure these properties.

network-address-cache-ttl- Sets the Java system property networkaddress.cache.ttl,
and controls the length of time in seconds that a hostname-to-IP address mapping can be
cached. The default behavior is to keep resolution results for one hour (3600 seconds). This
setting applies to the server and all extensions loaded by the server.

network-address-outage-cache-enabled - Caches hostname-to-IP address results in the
event of a DNS outage. This is set to true by default, meaning name resolution results are
cached. Unexpected service interruptions may occur during planned or unplanned
maintenance, network outages or an infrastructure attack. This cache may allow the server to
function during a DNS outage with minimal impact. This cache is not available to server
extensions.

IP Address Reverse Name Lookups

Ping Identity servers do not explicitly perform numeric IP address-to-hostname lookups.
However address masks configured in Access Control Lists (ACIs), Connection Handlers,
Connection Criteria, and Certificate handshake processing may trigger implicit reverse name
lookups. For more information about how address masks are configured in the server, review
the following information for each server:
« ACI dns: bind rules under Managing Access Control (Directory Server and Directory
Proxy Servers)

o ds-auth-allowed-address: Adding Operational Attributes that Restrict Authentication
(Directory Server)

« Connection Criteria: Restricting Server Access Based on Client IP Address (Directory
Server and Directory Proxy Servers)

- 134 -



Chapter 7: Advanced Configuration

« Connection Handlers: restrict server access using Connection Handlers (Configuration
Reference Guide for all servers)

Problems with SSL Communication

Enable TLS debugging in the server to troubleshoot SSL communication issues:

$ dsconfig create-debug-target \
--publisher-name "File-Based Debug Logger" \
-—target-name com.unboundid.directory.server.extensions.TLSConnectionSecurityProvider \
--set debug-level:verbose \
--set include-throwable-cause:true

$ dsconfig set-log-publisher-prop \
-—-publisher-name "File-Based Debug Logger" \
--set enabled:true \
—--set default-debug-level:disabled

In the java.properties file, add -Djavax.net.debug=ssl to the start-ds line, and run
bin/dsjavaproperties to make the option take effect on a scheduled server restart.

Conditions for Automatic Server Shutdown

All PingData servers will shutdown in an out of memory condition, a low disk space error state,
or for running out of file descriptors. The Directory Server will enter lockdown mode on
unrecoverable database environment errors, but can be configured to shutdown instead with
this setting:

$ dsconfig set-global-configuration-prop \
--set unrecoverable-database-error-mode:initiate-server-shutdown

Configuring Traffic Through a Load Balancer

If an Ping Identity server is sitting behind an intermediate HTTP server, such as a load
balancer, a reverse proxy, or a cache, it will log incoming requests as originating with the
intermediate HTTP server instead of the client that actually sent the request. If the actual
client's IP address should be recorded to the trace log, enable x-Forwarded-* handling in both
the intermediate HTTP server and PingData server. See the product documentation for the
device type. For PingData servers:

« Edit the appropriate Connection Handler object (HTTPS or HTTP) and set use-

forwarded-headers to true.

e« When use-forwarded-headers is set to true, the server will use the client IP address
and port information in the Xx-Forwarded-* headers instead of the address and port of
the entity that's actually sending the request, the load balancer. This client address
information will show up in logs where one would normally expect it to show up, such as
in the from field of the HTTP REQUEST and HTTP RESPONSE messages.

-135-



General Server Configuration

System Alarms, Alerts, and Gauges

PingData servers provide tools to monitor and manage the health of the system. The Data
Governance Broker provides delivery mechanisms (handlers) for administrative alerts using
JMX or SNMP, in addition to standard error logging. All can be configured with the dsconfig
tool.

Alerts and alarms reflect state changes within the server that may be of interest to a user or
monitoring service. An alarm represents a stateful condition of the server or a resource that
may indicate a problem, such as low disk space or external server unavailability. A gauge
defines a set of threshold values with a specified severity that, when crossed, cause the server
to enter or exit an alarm state. Gauges are used for monitoring continuous values like CPU load
or free disk space (Numeric Gauge), or an enumerated set of values such as 'server available'
or ‘server unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity
changes due to changes in the monitored value. Like alerts, alarms have severity (NORMAL,
WARNING, MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a
Condition property, and may have a Specific Problem or Resource property. If surfaced
through SNMP, a Probable Cause property and Alarm Type property are also listed. Alarms can
be configured to generate alerts when the alarm's severity changes.

There are two alert types supported by the server - standard and alarm-specific. The server
constantly monitors for conditions that may attention by administrators, such as low disk
space. For this condition, the standard alert is 1ow-disk-space-warning, and the alarm-
specific alert is alarm-warning. The server can be configured to generate alarm-specific alerts
instead of, or in addition to, standard alerts. By default, standard alerts are generated for
conditions internally monitored by the server. However, gauges can only generate alarm-
alerts.

The server installs gauges for CPU, disk, and memory usage that can be cloned or configured
through the dsconfig tool. Existing gauges can be tailored to fit each environment by adjusting
the update interval and threshold values. Configuration of system gauges determines the
criteria by which alarms are triggered. The Stats Logger can be used to view historical
information about the value and severity of all system gauges.

The server is compliant with the International Telecommunication Union CCITT
Recommendation X.733 (1992) standard for generating and clearing alarms. If configured,
entering or exiting an alarm state can result in one or more alerts. An alarm state is exited
when the condition no longer applies. An alarm cleared alert type is generated by the system
when an alarm's severity changes from a non-normal severity to any other severity. An

alarm cleared alert will correlate to a previous alarm when Condition and Resource property
are the same. The Alarm Manager, which governs the actions performed when an alarm state
is entered, is configurable through the dsconfig tool.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores
information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over
time that can change in severity and be cleared when a monitored value returns to normal.
Alarms can be viewed with the status tool.

As with other alert types, alert handlers can be configured to manage the alerts generated by
alarms. A complete listing of system alerts, alarms, and their severity is available in <server-
root>/docs/admin-alerts-list.csv.

- 136 -



Chapter 7: Advanced Configuration

Alert Handlers

Alert notifications can be sent to administrators when significant problems or events occur
during processing, such as problems during server startup or shutdown. The Data Governance
Broker provides a number of alert handler implementations configured with the dsconfig tool
or the Administrative Console, including:

« Error Log Alert Handler - Sends administrative alerts to the configured server error
logger(s).
« JMX Alert Handler - Sends administrative alerts to clients using the Java Management

Extensions (JMX) protocol. The server uses JMX for monitoring entries and requires that
the JMX connection handler be enabled.

« SNMP Alert Handler - Sends administrative alerts to clients using the Simple Network
Monitoring Protocol (SNMP). The server must have an SNMP agent capable of
communicating through SNMP 2c.

If needed, the Server SDK can be used to implement additional, third-party alert handlers.

Test Alarms and Alerts

After gauges, alarms, and alert handlers are configured, verify that the server takes the
appropriate action when an alarm state changes by manually increasing the severity of a
gauge. Alarms and alerts can be verified with the status tool.

Perform the following steps to test alarms and alerts:

1. Configure a gauge with dsconfig and set the override-severity property to
critical. The following example uses the CPU Usage (Percent) gauge.
$ dsconfig set-gauge-prop \
-—-gauge-name "CPU Usage (Percent)" \
--set override-severity:critical
2. Runthe status tool to verify that an alarm was generated with corresponding alerts.
The status tool provides a summary of the server’s current state with key metrics and
a list of recent alerts and alarms. The sample output has been shortened to show just the
alarms and alerts information.

$ bin/status

—-—— Administrative Alerts ---

Severity : Time : Message

Error : 11/Aug/2015 : Alarm [CPU Usage (Percent). Gauge CPU Usage (Percent)
15:41:00 : for Host System Recent CPU and Memory has
-0500 : a current value of '18.583333333333332"'.

: The severity is currently OVERRIDDEN in the

: Gauge's configuration to 'CRITICAL'.

: The actual severity is: The severity is

: currently 'NORMAL', having assumed this severity
: Mon Aug 11 15:41:00 CDT 2015. If CPU use is high,
: check the server's current workload and make any

-137 -



General Server Configuration

needed adjustments. Reducing the load on the system
: will lead to better response times.
: Resource='Host System']
: : raised with critical severity
Shown are alerts of severity [Info,Warning,Error,Fatal] from the past 48 hours
Use the --maxAlerts and/or --alertSeverity options to filter this list

--—- Alarms —---
Severity : Severity : Condition : Resource : Details
Start Time

Critical : 11/Aug/2015: CPU Usage : Host System : Gauge CPU Usage (Percent) for
: 15:41:00 : (Percent) : : Host System
-0500 3 3 : has a current value of
'18.785714285714285".
The severity is currently
'CRITICAL', having assumed
this severity Mon Aug 11
15:49:00 CDT 2015. If CPU use
is high, check the server's
current workload and make any
: needed adjustments. Reducing

the load on the system will
lead to better response times

Shown are alarms of severity [Warning,Minor,Major,Criticall]
Use the --alarmSeverity option to filter this list

Working with Logs and Log Publishers

PingData supports different types of log publishers that can be used to provide the monitoring
information for operations, access, debug, and error messages that occur during normal
server processing. The server provides default log files as well as mechanisms to configure
custom log publishers with their own log rotation and retention policies.

Types of Log Publishers
Log publishers can be used to log processing information about the server, including:

. Error loggers - provide information about warnings, errors, or significant events that
occur within the server.

. Trace logger - provides information about each HTTP, OAuth2, XACML policy, and SCIM
request and response that is processed by the Data Governance Broker.

Viewing and Configuring Log Publishers

Log publishers can be created or modified on each server using the dsconfig tool or through
the Administrative Console, Logging, monitoring, and notifications -> Log Publishers.

- 138 -



Chapter 7: Advanced Configuration

Creating a New Log Publisher

PingData provides customization options to create log publishers with the dsconfig command
or through the Administrative Console.

After creating a new log publisher, configure the log retention and rotation policies. For more
information, see Configuring Log Rotation and Configuring Log Retention.

The following example shows how to create a trace logger that collects debug information for
HTTP, external identity provider, XACML policy, and store adapter operations with the
dsconfig command:

$ bin/dsconfig create-log-publisher \
--publisher-name NewTracelLogger \
-—type file-based-trace \
--set enabled:true \
--set debug-message-type:external-identity-provider-request-and-response \
--set debug-message-type:http-full-request-and-response \
--set debug-message-type:policy-decision-trace \
--set debug-message-type:store-adapter—-processing \
--set http-message-type:request \
--set http-message-type:response \
--set xacml-policy-message-type:result
--set 'exclude-path-pattern:/**/*.css'
--set 'exclude-path-pattern:/**/*.gif'
--set 'exclude-path-pattern:/**/*.jpg’'
--set 'exclude-path-pattern:/**/*.png'

— = =

--set log-file:myfile \

-—-set "rotation-policy:24 Hours Time Limit Rotation Policy" \
--set "rotation-policy:Size Limit Rotation Policy" \

-—-set "retention-policy:File Count Retention Policy" \

--set "retention-policy:Free Disk Space Retention Policy" \
--set compression-mechanism:gzip

Compression cannot be disabled or turned off once configured for the logger. Determine
logging requirements before configuring this option.

Configuring Log Compression

PingData servers support the ability to compress log files as they are written. Because of the
inherent problems with mixing compressed and uncompressed data, compression can only be
enabled when the logger is created. Compression cannot be turned on or off once the logger is
configured. If the server encounters an existing log file at startup, it will rotate that file and
begin a new one rather than attempting to append it to the previous file.

Compression is performed using the standard gzip algorithm. Because it can be useful to have
an amount of uncompressed log data for troubleshooting, having a second logger defined that
does not use compression may be desired.

Configure compression by setting the compression-mechanism property to have the value of
gzip when creating a new logger. See Creating a New Log Publisher for details.

- 139 -



General Server Configuration

Configuring Log Signing

PingData servers support the ability to cryptographically sign a log to ensure that it has not
been modified. For example, financial institutions require tamper-proof audit logs files to
ensure that transactions can be properly validated and ensure that they have not been
modified by a third-party entity or internally by an unauthorized person.

When enabling signing for a logger that already exists, the first log file will not be completely
verifiable because it still contains unsigned content from before signing was enabled. Only log
files whose entire content was written with signing enabled will be considered completely
valid. For the same reason, if a log file is still open for writing, then signature validation will
not indicate that the log is completely valid because the log will not include the necessary "end
signed content" indicator at the end of the file.

To validate log file signatures, use the validate-file-signature tool provided in the bin
directory of the server (or the bat directory on Windows systems). Once this property is
enabled, disable and then re-enable the log publisher for the changes to take effect. Perform
the following steps to configure log signing:

1. Use dsconfig to enable log signing for a Log Publisher. In this example, set the sign-
log property on the File-based Trace Log Publisher.
S bin/dsconfig set-log-publisher-prop \

--publisher-name "File-Based Trace Logger" \
--set sign-log:true

2. Disable and then re-enable the Log Publisher for the change to take effect.

$ bin/dsconfig set-log-publisher-prop \
--publisher-name "File-Based Trace Logger" \
—-—-set enabled:false

S bin/dsconfig set-log-publisher-prop \
--publisher-name "File-Based Trace Logger" \
—--set enabled:true

3. To validate a signed file, use the validate-file-signature tool to check if a signed file
has been altered.
$ bin/validate-file-signature --file logs/trace
All signature information in file 'logs/trace' is valid
If any validations errors occur, a message displays that is similar to this:

One or more signature validation errors were encountered while
validating the contents of file 'logs/trace':

* The end of the input stream was encountered without encountering the
end of an active signature block. The contents of this signed block
cannot be trusted because the signature cannot be verified

Configuring Log Retention and Log Rotation Policies

PingData servers enable configuring log rotation and log retention policies.

- 140 -



Chapter 7: Advanced Configuration

Log Retention - When any retention limit is reached, the server removes the oldest archived
log prior to creating a new log. Log retention is only effective if a log rotation policy is in place.
A new log publisher must have at least one log retention policy configured. The following
policies are available:

File Count Retention Policy - Sets the nhumber of log files you want the sever to
retain. The default file count is 10 logs. If the file count is set to 1, the log will continue to
grow indefinitely without being rotated.

Free Disk Space Retention Policy - Sets the minimum amount of free disk space.
The default free disk space is 500 MB.

Size Limit Retention Policy - Sets the maximum size of the combined archived logs.
The default size limit is 500 MB.

Custom Retention Policy - Create a new retention policy that meets the server’s
requirements.

Never Delete Retention Policy - Used in a rare event that does not require log
deletion.

Log Rotation - When a rotation limit is reached, the server rotates the current log and starts
a new log. A new log publisher must have at least one log rotation policy configured. The
following policies are available:

Time Limit Rotation Policy - Rotates the log based on the length of time since the last
rotation. Default implementations are provided for rotation every 24 hours and every
seven days.

Fixed Time Rotation Policy - Rotates the logs every day at a specified time (based on
24-hour). The default time is 2359.

Size Limit Rotation Policy - Rotates the logs when the file reaches the maximum
size. The default size limit is 100 MB.

Never Rotate Policy - Used in a rare event that does not require log rotation.

Configure the Log Rotation Policy

Use dsconfig to modify the log rotation policy for the access logger:

$ bin/dsconfig set-log-publisher-prop \

-—-publisher-name "File-Based Error Logger" \

--remove "rotation-policy:24 Hours Time Limit Rotation Policy" \

--add "rotation-policy:7 Days Time Limit Rotation Policy"

Configure the Log Retention Policy

Use dsconfig to modify the log retention policy for the access logger:

$ bin/dsconfig set-log-publisher-prop \
-—-publisher-name "File-Based Error Logger" \

--set "retention-policy:Free Disk Space Retention Policy"

- 141 -



General Server Configuration

Monitoring the Server

While the server is running, it generates a significant amount of information available through
monitor entries. This section contains information about the following:

« Backend Monitor Entries

« Viewing System and Consent Data through the Data Metrics Server

« Using the status Tool

Backend Monitor Entries

Each PingData server exposes its monitoring information under the cn=monitor entry.
Administrators can use various means to monitor the servers through SNMP, LDAP command-
line tools, and the Stats Logger.

The Monitor Backend contains an entry per component or activity being monitored. The list of
all monitor entries can be seen using the 1dapsearch command as follows:

$ bin/ldapsearch --hostname serverl.example.com \
--port 1389 \
--bindDN "uid=admin, dc=example,dc=com" \
--bindPassword secret \
--baseDN "cn=monitor" " (objectclass=*)" cn

The following table lists a subset of monitor entries.

Monitoring Components

Component Description

Provides information about the operations currently being processed by the server
including the number of operations, information on each operation, and the
Active Operations number of active persistent searches.

Provides general information about the state of a server backend, including the
entry count. If the backend is a local database, there is a corresponding database
Backends environment monitor entry with information on cache usage and on-disk size.

Provides information about all client connections to the server including a name

followed by an equal sigh and a quoted value, such as connID="15",
Client Connections connectTime="201003082230382",

Provides information about the available connection handlers on the server
Connection Handlers including the LDAP and LDIF connection handlers.

Provides information about the disk space available to various components of the
Disk Space Usage server.

Provides general information about the state of the server, including product name,
General vendor name, and server version.

Provides information on each index including the number of preloaded keys and
counters for read, write, remove, open-cursor, and read-for-search actions. These
Index counters provide insightinto how useful an index is for a given workload.

Provides statistics about the interaction that the associated HTTP connection

handler has had with its clients, including the number of connections accepted,
HTTP/HTTPS Connection average requests per connection, average connection duration, total bytes
Handler Statistics returned, and average processing time by status code.

- 142 -



Chapter 7: Advanced Configuration

Monitoring Components

Component Description

JVM Stack Trace Provides a stack trace of all threads processing within the JVM.

Provides statistics about the interaction that the associated LDAP connection

handler has had with its clients, including the number of connections established
LDAP Connection Handler and closed, bytes read and written, LDAP messages read and written, and
Statistics operations initiated, completed, and abandoned.

Categorizes operation processing times into a number of user-defined buckets of
information, including the total number of operations processed, overall average
Processing Time Histogram response time (ms), and number of processing times between Oms and 1ms.

Provides general information about the system and the JVM on which the serveris
running, including system host name, operation system, JVM architecture, Java
System Information home, and Java version.

Provides information about the server version, including build ID, and revision
Version number.

Provides information about the state of the server work queue, which holds
requests until they can be processed by a worker thread, including the requests
rejected, current work queue size, number of worker threads, and number of busy
worker threads.

The work queue configuration has a monitor-queue-time property setto
true by default. This logs messages for new operations with a gt ime attribute

included in the log messages. Its value is expressed in milliseconds and
Work Queue represents the length of time that operations are held in the work queue.

Viewing System and Consent data Through the Data Metrics Server

The Data Metrics Server contains several charts to measure and monitor Data Governance
Broker system and user consent activity. Charts and data are configured from the Data Metrics
Server Server. The following categories can be made available through a Data Metrics Server
dashboard:

Authorization Requests - Displays the number of blocked and permitted token requests
from client applications.

Request Volume - Displays authorization activity according to grant or deny.

Grant Types - Displays the number of authorization grants by type.

Consent/Deny by Application - Displays authorization activity based on client application.
Consent/Deny by Data Type - Displays authorization activity based on data type.

Most Requested Data - Displays most requested data.

Most Active Applications - Displays most active client applications.

Most Active Policies - Displays most active policies.

See the PingData Data Metrics Server Administration Guide for more information.

- 143 -



General Server Configuration

Using the status Tool

PingData servers provide the status tool, which lists the health of the server. The status
tool polls the current health of the server and displays summary information about the number
of operations processed in the network. The tool provides the following information:

Status Tool Sections

Status Section Description

Server Status Displays the server start time, operation status, number of connections (open, max, and total).
Displays the server details including host name, administrative users, install path, server

Server Details version, and Java version.

Connection Displays the state of the connection handlers including address, port, protocol and current

Handlers state.

Displays the 15 administrative alerts that were generated over the last 48-hour period. Limit
the number of displayed alerts using the —-maxAlerts option. For example, status —-
Admin Alerts maxAlerts 0 suppresses all alerts.

Server SDK Extensions

Custom server extensions can be created with the Server SDK. Extension bundles are installed
from a .zip archive or a file system directory. Use the manage-extension tool to install or
update any extension that is packaged using the extension bundle format. It opens and loads
the extension bundle, confirms the correct extension to install, stops the server if necessary,
copies the bundle to the server install root, and then restarts the server.

Note
The manage-extension tool must be used with Java extensions packaged using the
extension bundle format. For more information, see the "Building and Deploying Java-Based
Extensions" section of the Server SDK documentation.

The Server SDK enables creating extensions for the Directory Server, Directory Proxy Server,
Data Metrics Server, Data Governance Broker, and Data Sync Server servers. Cross-product
extensions include:

« Access Loggers

« Alert Handlers

« Error Loggers

« Key Manager Providers
« Monitor Providers

« Trust Manager Providers
o OAuth Token Handlers

« Manage Extension Plugins

Extensions for the Data Governance Broker include:

- 144 -



Chapter 7: Advanced Configuration

« Policy Information Provider

« Store Adapter

Data Governance Broker Advanced Server
Configuration

When a Data Governance Broker is set up from a peer, its server configuration is cloned to the
new Data Governance Broker, and the two configurations are linked such that changes to the
configuration are applied to both Data Governance Broker servers by default. See Installing a
Clone Data Governance Broker. If a server is installed in an existing topology (an installation
option), the server configurations are also linked.

The server's configuration is stored in an LDIF-based backend under the cn=config base DN.
It can be accessed using the LDAP protocol and is managed by the dsconfig tool,
Configuration API, or the Administrative Console.

Configuring Third-Party Store Adapters

Third-party adapters can be created for directory servers, that are not the PingData Directory
Server, with the Server SDK available in the unboundid-server-sdk-<version>.zip
package.

Configuring a custom store adapter includes the following steps:

1. Create a store adapter.

2. Storeitinthe /extensions directory of the Data Governance Broker.
3. Create a SCIM Resource Type schema.
4

Map Store Adapter(s) and SCIM Resource Types using the Administrative Console or
dsconfig tool.

Example Third-Party Store Adapter

The Server SDK provides an example implementation of a third-party store adapter. View the
example and associated Javadocs in the Server SDK docs/example-
html/ExampleStoreAdapter.java.html directory.

ExampleStoreAdapter.java is an implementation of a flat-file JSON store adapter, which
stores the SCIM user data in JSON. At startup, all resources are loaded from the json-file-
path parameter (resource/user-database.json). The example uses an in-memory hash
map of SCIM resources mapped to their SCIM ID.

The example provides full operations plus filterable search support for add, update, and
deletes. The example will perform a full-file rewrite on every change, because the file format
is a serialized list of Resources<BaseResource>. The code example does not support sorting
or resource versioning.

- 145 -



Data Governance Broker Advanced Server Configuration

About Cross-Origin Resource Sharing Support

Cross-Origin Resource Sharing (CORS) enables client applications to make JavaScript requests
to the Data Governance Broker (or Directory Server) by specifying the domain from which the
request is made.These cross-domain requests are generally not allowed by web browsers
without CORS support. CORS defines a way in which the browser and the server can interact to
determine whether a request is coming from a trusted domain.

CORS Implementation

CORS is implemented per HTTP servlet extension. Access is governed by HTTP Servlet Cross
Origin Policies defined through the dsconfig tool. Trusted domains can be added to these
policies or defined with registered applications in the Administrative Console or with the
dsconfig tool.

Note
By default, HTTP servlet extensions do not have CORS defined. Without a CORS policy
defined, the configuration of the browser will determine application access.

The following are configuration options in dsconfig:

>>>> HTTP Servlet Cross Origin Policy menu

What would you like to do?

1) List existing HTTP Servlet Cross Origin Policies

2) Create a new HTTP Servlet Cross Origin Policy

3) View and edit an existing HTTP Servlet Cross Origin Policy
4) Delete an existing HTTP Servlet Cross Origin Policy

b) Dback

g) quit

Enter option [b]:

HTTP Servlet Services

Enabling CORS for a particular servlet can impact another service provided by the same
servlet. It is important to know which services will be affected when enabling CORS for an Data
Governance Broker servlet. The following are available servilets and their functions.

Servlet Functions

API Explorer

Servlet Manages requests to the API Explorer, which enables testing Data Governance Broker functions.
Authentication

Servlet Manages requests to the /authentication APlendpoint(used by the auth-ui),

Configuration Used to enable read and write access to the server's Configuration API.

Manages requests for the /docs content, which includes the index.html page, the
Documentation generated Configuration Reference Guide, and other product documents.

JWK Servlet Provides access to the JSON Web Key for token validation.

- 146 -



Chapter 7: Advanced Configuration

Servlet Functions

OAuth2 Servlet OAuth2 authorization, token, revocation, and validation endpoints.

Policy Decision
Point Servlet XACML PDP endpoint.

SCIM2 Profile access by SCIM Resource Type using SCIM.

Userinfo Servlet Profile access using OpenlD Connect.

Note
Any servlet accepting JavaScript calls from client applications that are hosted at a different
location than that of the Data Governance Broker APIs, such as the Velocity servlet, must have
CORS enabled.

HTTP Servlet Cross Origin Policies

Two sample policies are available after installation. They can be associated with a servlet
extension, or used as templates for additional policies.

Per-Application Origins - This policy trusts origins that are listed as trusted by applications
registered with the Data Governance Broker.

Restrictive - This policy rejects all cross-origin requests unless explicitly defined with the
cors-allowed-origins property. Requests from application origins that are not specified are
rejected with a 403 Forbidden return code.

Each policy accepts values for the following properties.

Property Description

Specifies if the CORS protocol is allowed by the servlet. The default
cors—enabled value is false,

Specifies the list of HTTP methods allowed for access to resources. The
cors-allowed-methods default value is GET.

Specifies that a per-application list of allowed origins is consulted. The
cors-enable-per-application- default value is false in the Restrictive policy and true in the Per-
origins Application Origins policy.

Specifies a global list of allowed origins. If the cors-enable-per-
application-origins propertyis setto true, and there are
origins listed here, this listis consulted in addition to the per-application

list. A value of "*" specifies that all origins are allowed. The defaultis an
cors-allowed-origins empty list.

Specifies a list of HTTP headers that browsers are allowed to access.
Simple response headers, as defined in the Cross-Origin Resource
cors-exposed-headers Sharing Specification, are allowed. The defaultis an empty list.

Specifies the list of header field names that are supported for a

resource and can be specified in a cross-origin request. The default

values are Origin Accept, X-Requested-With Content-

Type, Access—-Control-Request-Method, and Access-
cors—allowed-headers Control-Request-Headers,.

cors-preflight-max-age Specifies the maximum number of seconds that a preflight request can

- 147 -



Data Governance Broker Advanced Server Configuration

Property Description

be cached by the client. The default value is 1800 (30 minutes).

Specifies whether requests that include credentials are allowed. This
value should be false for servlets that use OAuth2 authorization. The
cors—-allow-credentials defaultvalue is false,

Assigning a CORS Policy to an HTTP Servlet Extension
CORS policies are assigned to HTTP servlet extensions through dsconfig.

The following are configuration options for the SCIM servlet extension:

>>>> Configure the properties of the SCIM Resource Type SCIM HTTP Servlet Extension
Property Value (s)

1) description =
2) cross-origin-policy No cross-origin policy is defined and no CORS headers are
recognized or returned.

3) base-context-path /scim

?) help

f) finish - apply any changes to the SCIM Resource Type SCIM HTTP Servlet Extension

a) show advanced properties of the SCIM Resource Type SCIM HTTP Servlet Extension

d) display the equivalent dsconfig command lines to either re-create this object or only
to apply pending changes

b) back

) quit

Enter option [b]: 2

Choose the cross-origin-policy option. Defined policies are listed.

>>>> Configuring the 'cross-origin-policy' property
The cross-origin request policy to use for the HTTP Servlet Extension.

A cross-origin policy is a group of attributes defining the level of cross-origin request
supported by the HTTP Servlet Extension.

Do you want to modify the 'cross-origin-policy' property?

1) Keep the default behavior: No cross-origin policy is defined and no CORS headers are
recognized or returned.

2) Change it to the HTTP Servlet Cross Origin Policy: Per-Application Origins

3) Change it to the HTTP Servlet Cross Origin Policy: Restrictive

4) Create a new HTTP Servlet Cross Origin Policy

?) help
a) quit

Choose the CORS policy to assign to this servlet extension.

- 148 -



Chapter 7: Advanced Configuration

Public and Private Key Store Configuration

The Data Governance Broker server can be configured to sign access tokens with a private key
and expose a public key to enable external resource servers or client applications to read the
content of and validate the tokens. If there are multiple Data Governance Brokers in an
environment, a key-pair created on one broker will automatically be mirrored on all other
brokers. The Data Governance Broker supports RSA key pairs.

A certificate key pair can be created by or imported to the server with the dsconfig tool, or
through the advanced setting System -> Key Pairs in the Administrative Console. For
example, the following command can be used to create a new key pair:

$ bin/dsconfig -n create-key-pair --pair-name jwt2

When a key-pair is created or imported, the private key is encrypted by the preferred
encryption settings definition in the encryption settings database and a Certificate Signing
Request attribute is created. The private key and Certificate Signing Request are read-only
properties, but not the certificate chain. The public key is wrapped in the certificate chain.

The Certificate Signing Request can be taken to a Certificate Signing Authority to obtain a
signed, public key certificate. This can then be imported with dsconfig to replace the self-
signed certificate.

Assign the key pair using the Access Token Signing Key Pair property in the Identity
Provider Service configuration.

Note
The Data Governance Broker does not automatically rotate expired keys. If using self-signed
certificates, reset the certificate-chain property when needed. This will regenerate a new
self-signed certificate with the specified validity (se1f-signed-certificate-validity).If
using signed certificates, renew the certificate (extend its validity) from the Certificate Signing
Authority and setthe certificate-chain property in the key-pair.

Long keys may require more CPU for processing and affect performance, if request volume is
high.

Configure Authentication with a SASL External Certificate

By default, the Data Governance Broker authenticates to the Directory Server using LDAP
simple authentication (with a bind DN and a password). However, the Data Governance Broker
can be configured to use SASL EXTERNAL to authenticate to the Directory Server with a client
certificate.

Note
This procedure assumes that Data Governance Broker instances are installed and configured
to communicate with the backend Directory Server instances using either SSL or StartTLS.

After the servers are configured, perform the following steps to configure SASL EXTERNAL
authentication:

1. Create a JKS keystore that includes a public and private key pair for a certificate that the
Data Governance Broker instance(s) will use to authenticate to the Directory Server

- 149 -



Data Governance Broker Advanced Server Configuration

instance(s). Run the following command in the instance root of one of the Data
Governance Broker instances. When prompted for a keystore password, enter a strong
password to protect the certificate. When prompted for the key password, press ENTER
to use the keystore password to protect the private key:
$ keytool -genkeypair \

-keystore config/broker-user-keystore \

-storetype JKS \

-keyalg RSA \

-keysize 2048 \

-alias broker-user-cert \

-dname "cn=Broker User,cn=Root DNs,cn=config" \
-validity 7300

Create a config/broker-user-keystore.pin file that contains a single line that is the
keystore password provided in the previous step.

If there are other Data Governance Broker instances in the topology, copy the broker-
user-keystore and broker-user-keystore.pin files into the config directory for all
instances.

Use the following command to export the public component of the user certificate to a
text file:

$ keytool -export \
-keystore config/broker-user-keystore \
-alias broker-user-cert \
-file config/broker-user-cert.txt

Copy the broker-user-cert.txt file into the config directory of all Directory Server
instances. Import that certificate into each server's primary trust store by running the
following command from the server root. When prompted for the keystore password,
enter the password contained in the config/truststore.pin file. When prompted to
trust the certificate, enter yes.
$ keytool —-import \
-keystore config/truststore \

-alias broker-user-cert \
-file config/broker-user-cert.txt

Update the configuration for each Data Governance Broker instance to create a new key
manager provider that will obtain its certificate from the config/broker-user-
keystore file. Run the following dsconfig command from the server root:

S dsconfig create-key-manager-provider \
--provider-name "Broker User Certificate" \
--type file-based \
--set enabled:true \
--set key-store-file:config/broker-user-keystore \
--set key-store-type:JKS \
--set key-store-pin-file:config/broker-user-keystore.pin

- 150 -



Chapter 7: Advanced Configuration

7. Update the configuration for each LDAP external server in each Data Governance Broker
instance to use the newly-created key manager provider, and also to use SASL
EXTERNAL authentication instead of LDAP simple authentication. Run the following
dsconfig command:

$ dsconfig set-external-server-prop \
--server—-name dsl.example.com:636 \
--set authentication-method:external \
--set "key-manager-provider:Broker User Certificate"

After these changes, the Data Governance Broker should re-establish connections to the LDAP
external server and authenticate with SASL EXTERNAL. Verify that the Data Governance Broker
is still able to communicate with all backend servers by running the bin/status command. All
of the servers listed in the "--- LDAP External Servers ---" section should have a status of
Available. Review the Directory Server access log can to make sure that the BIND RESULT
log messages used to authenticate the connections from the Data Governance Broker include
authType="SASL", saslMechanism="EXTERNAL", resultCode=0, and authDN="cn=Broker
User,cn=Root DNs,cn=config".

Managing Server Encryption Settings

The server encryption settings database is managed by the encryption-settings command-
line tool. The keys stored for the server are used to encrypt tokens, authorization codes,
account linking codes, and external identity provider tokens. Encryption settings definitions can
be created, listed, exported and imported. Help and examples are available with the following
command:

$ bin/encryption-settings —--help

Information about the cipher algorithms and transformations available for use is located in the
Java Cryptography Architecture Reference Guide and Standard Algorithm Name Documentation
available on the Oracle website.

Rotating the Encryption Key
Perform the following steps for routine rotation of the encryption key:
1. Create a new encryption settings definition.

$ encryption-settings create \
--cipher-algorithm AES \
--key-length-bits 128

Successfully created a new encryption settings definition with ID <ID>
2. Verify the new definition was created.

$ encryption-settings list

Encryption Settings Definition ID: <old-key>
Preferred for New Encryption: true
Cipher Transformation: AES
Key Length (bits): 128

- 151 -



Data Governance Broker Advanced Server Configuration

Encryption Settings Definition ID: <ID>
Preferred for New Encryption: false
Cipher Transformation: AES
Key Length (bits): 128

3. Create a PIN file that will be used for the exported definition.
$ echo "secret" > /tmp/exported-key.pin
4. Export the encrypt settings, referring to the generated encryption settings ID.

$ encryption-settings export \
--id <ID> \
-—output-file /tmp/exported-key \
--pin-file /tmp/exported-key.pin

Successfully exported encryption settings definition <ID> to file
/tmp/exported-key
5. For every Data Governance Broker instance in the topology, copy the exported definition
and PIN file to the Data Governance Broker's host. Import the encryption settings,
without setting them as preferred. Delete the exported settings and PIN file when
finished.
$ encryption-settings import \

—-—input-file /tmp/exported-key \
--pin-file /tmp/exported-key.pin

Successfully imported encryption settings definition <ID> from file
/tmp/exported-key

$ rm /tmp/exported-key
S rm /tmp/exported-key.pin
6. Perform the previous steps for all existing key pairs, as private keys will still be
encrypted with the previous preferred encryption definition. Delete the existing key pairs
and re-import them (which will automatically use the new preferred encryption definition
for the private key).

7. After importing the encryption settings definition to all Data Governance Brokers,
including the instance where the definition was originally created, set the new definition
as preferred.

$ encryption-settings set-preferred \
--id <ID>

Encryption settings definition <ID> is was successfully set as the
preferred definition for subsequent encryption operations.

- 152 -



Chapter 7: Advanced Configuration

Addressing a Compromised Encryption Key

If an encryption settings definition becomes compromised, perform the following to create a
new definition and update the Data Governance Broker servers. See the command line help for
the encryption-settings tool for arguments.

Note
If the Data Governance Broker's encryption key is compromised, and the Data Governance
Broker has been collecting access tokens for external identity providers through the relying
party feature, make sure those tokens are revoked.

Back up the encryption settings backend.
Back up the user store.

Revoke all authorizations for each client.

AW o=

Stop the HTTPS Connection Handler that is used for the Data Governance Broker's REST
APIs.

$ dsconfig set-connection-handler-prop \
--handler-name "HTTPS Connection Handler" \
--set enabled:false

5. Create a new encryption settings definition and set it as preferred. The following will
encrypt data using a 128-bit AES cipher:

$ encryption-settings create \
—--cipher-algorithm AES \
--key-length-bits 128
--set-preferred

6. Restart the HTTPS Connection Handler.

$ dsconfig set-connection-handler-prop \
--handler-name "HTTPS Connection Handler" \
--set enabled:true

If the deployment includes multiple Data Governance Brokers, all servers should be taken
offline, and the encryption settings database must be updated on every server.

Note
Do not delete the compromised encryption definition. It will still be used to decrypt tokens,
authorization codes, and links that were encrypted with the previous key.

Customizing the Authentication User Interface

The Data Governance Broker interface is implemented as a client-side Angular 2 application
without a backend server component. It is written using TypeScript and JavaScript. The
project’s build process leverages node and npm (like the Administrative Console), and is
packaged as a WAR file. See the Angular 2 documentation for more details about tools and
customization.

- 153 -



Data Governance Broker Advanced Server Configuration

The Data Governance Broker application is deployed as a Web Application Extension with a
base-context path of /auth-ui. The auth-ui source code is shipped with the Data Governance
Broker in the auth-ui-source.tar.gz file in the /webapps directory. This can be extracted
into a directory on a development machine for customization. There are additional details
included in a readme file.

Most of the npm scripts defined in the auth project’s package.json file are subcommands
used by the top-level scripts dev, test and prod.

Example usage:

npm run [dev | test | prod]

Note
The Data Governance Broker's Authentication API uses a cookie to track user sessions.
Cookie management and server domains should be considered when deploying any clients
that will use the Authentication API.

The auth-ui implementation uses the /oauth/authorize and the /authentication/* APIs
through AJAX to implement the following views and flows:

o Consent prompts

o Error messages

« Login fields and options

« Second-factor authentication

« Recover username or password
» Register new user account

o IDP-callback

Branding

The auth-ui interface styling comes from the assets/css/ubid-account.css file. To
override its styles, either this file can be edited directly, or an additional CSS override file can
be added to the project and included in the copy-assets scriptin package.json. For example:

1. Add afile called shopco.css to the assets/css directory.

2. Add the following to the file:

.login-div {
background-color: #222;

}

.login-container a,

.login-container a:hover {
color: #el5656;

}

3. Change the package.json file's copy-assets script to include the new file in the CSS by
replacing this:

cleancss -o ../dist/css/ubid-account.min.css css/ubid-account.css

- 154 -



Chapter 7: Advanced Configuration

with this:

cleancss -o ../dist/css/ubid-account.min.css css/ubid-account.css
css/shopco.css

Schema Changes

The auth-ui implementation assumes the sample reference schema is being used. To change
the reference schema, surface additional attributes, or use another schema, the auth-ui
project will need to be modified.

The following example adds the
urn:pingidentity:schemas:sample:profile:1.0:birthDate attribute from the sample
reference schema to the registration form:

1. Editthe app/register/register.html.ts file in the auth-ui project.
2. Add the following after the “"Mobile Number” field’s form-group element:

<div class="form-group">
<label for="birthDate" class="control-label">Birth Date</label>

<input

[ (ngModel) ]="resource

['urn:pingidentity:schemas:sample:profile:1.0:birthDate']"

type="date" class="form-control input-sm" name="birthDate"

placeholder="Birth Date" tabindex="9">

</div>

3. Optionally disable the customization warning message in
app/register/register.component.ts by replacing this:

isExpectedRegistrableAttributes = (registrableAttributes &&

registrableAttributes.length === 5 &&

registrableAttributes.indexOf ('userName') !== -1 &&

registrableAttributes.indexOf ('name') !== -1 &&

registrableAttributes.indexOf ('password') !== -1 &&

registrableAttributes.indexOf ('emails[type eq "home"].value') !== -1 &&
(

registrableAttributes.indexOf ('phoneNumbers [type eq "mobile"].value')

l== -1);
with this:
isExpectedRegistrableAttributes = true;

4. On the Data Governance Broker development server, add birthDate to the register-
resource-attribute for the Registration Identity Authenticator with the following
dsconfig command:

$ bin/dsconfig set-identity-authenticator-prop \
-—authenticator-name Registration \

--add register-resource-
attribute:urn:pingidentity:schemas:sample:profile:1.0:birthDate

- 155 -



Topology Configuration

Topology Configuration

Topology configuration enables grouping servers and mirroring configuration changes
automatically. It uses a master/slave architecture for mirroring shared data across the
topology. All writes and updates are forwarded to the master, which forwards them to all other
servers. Reads can be served by any server in the group.

Servers can be added to an existing topology at installation. See Adding Additional Data
Governance Brokers in a Topology for details.

Note
To remove a server from the topology, it must be uninstalled with the uninstall tool. See
Uninstalling theData Governance Broker for details.

Topology Master Requirements and Selection

A topology master server receives any configuration change from other servers in the
topology, verifies the change, then makes the change available to all connected servers when
they poll the master. The master always sends a digest of its subtree contents on each update.
If the node has a different digest than the master, it knows it's not synchronized. The servers
will pull the entire subtree from the master if they detect that they are not synchronized. A
server may detect it is not synchronized with the master under the following conditions:

« At the end of its periodic polling interval, if a server's subtree digest differs from that of
its master, then it knows it's not synchronized.

« If one or more servers have been added to or removed from the topology, the servers
will not synchronized.

The master of the topology is selected by prioritizing servers by minimum supported product
version, most available, newest server version, earliest start time, and startup UUID (a
smaller UUID is preferred).

After determining a master for the topology group (cluster), the topology data is reviewed
from all available servers (every five seconds by default) to determine if any new information
makes a server better suited to being the master. If a new server can be the master, it will
communicate that to the other servers, if no other server has advertised that it should be the
master. This ensures that all servers accept the same master at approximately the same time
(within a few milliseconds of each other). If there is no better master, the initial master
maintains the role.

After the best master has been selected for the given interval, the following conditions are
confirmed:

« A majority of servers is reachable from that master. (The master server itself is
considered while determining this majority.)

« There is only a single master in the entire topology.

- 156 -



Chapter 7: Advanced Configuration

If either of these conditions is not met, the topology is without a master and the peer polling
frequency is reduced to 100 milliseconds to find a new master as quickly as possible. If there is
no master in the topology for more than one minute, a mirrored-subtree-manager-no-
master-found alarm is raised. If one of the servers in the topology is forced as master with
the force-as-master-for-mirrored-data option in the Global Configuration configuration
object, a mirrored-subtree-manager-forced-as-master-warning warning alarm is raised.
If multiple servers have been forced as masters, then a mirrored-subtree-manager-forced-
as-master-error critical alarm will be raised.

Topology Components

When a server is installed, it can be added to an existing topology, which will clone the server's
. Topology settings are designed to operate without additional configuration. If required, some
settings can be adjusted to fit the needs of the environment.

Server Configuration Settings

Configuration settings for the topology are configured in the Global Configuration and in the
Config File Handler Backend. Though they are topology settings, they are unique to each server
and are not mirrored. Settings must be kept the same on all servers.

The Global Configuration object contains a single topology setting, force-as-master-for-
mirrored-data. This should be set to true on only one of the servers in the topology, and is
used only if a situation occurs where the topology cannot determine a master because a
majority of servers is not available. A server with this setting enabled will be assigned the role
of master, if no suitable master can be determined. See Topology Master Requirements and
Selection for details about how a master is selected for a topology.

The Config File Handler Backend defines three topology (mirrored-subtree) settings:

e« mirrored-subtree-peer-polling-interval — Specifies the frequency at which the
server polls its topology peers to determine if there are any changes that may warrant a
new master selection. A lower value will ensure a faster failover, but it will also cause
more traffic among the peers. The default value is five seconds. If no suitable master is
found, the polling frequency is adjusted to 100 milliseconds until a new master is
selected.

e mirrored-subtree-entry-update-timeout — Specifies the maximum length of time to
wait for an update operation (add, delete, modify or modify-dn) on an entry to be applied
by the master on all of the servers in the topology. The defaultis 10 seconds. In reality,
updates can take up to twice as much time as this timeout value if master selection is in
progress at the time the update operation was received.

e mirrored-subtree-search-timeout - Specifies the maximum length of time in
milliseconds to wait for search operations to complete. The default is 10 seconds.

- 157 -



Topology Configuration

Topology Settings

Topology meta-data is stored under the cn=topology, cn=config subtree and cluster data is
stored under the cn=cluster, cn=config subtree. The only setting that can be changed is the
cluster name.

Monitor Data For the Topology

Each server has a monitor that exposes that server's view of the topology in its monitor
backend, so that peer servers can periodically read this information to determine if there are
changes in the topology. Topology data includes the following:

The server ID of the current master, if the master is not known.

The instance name of the current master, or if a master is not set, a description stating
why a master is not set.

A flag indicating if this server thinks that it should be the master.
A flag indicating if this server is the current master.

A flag indicating if this server was forced as master.

The total number of configured peers in the topology group.

The peers connected to this server.

The current availability of this server

A flag indicating whether or not this server is not synchronized with its master, or
another node in the topology if the master is unknown.

The amount of time in milliseconds where multiple masters were detected by this server.
The amount of time in milliseconds where no suitable server is found to act as master.

A SHA-256 digest encoded as a base-64 string for the current subtree contents.

The following metrics are included if this server has processed any operations as master:

The number of operations processed by this server as master.

The number of operations processed by this server as master that were successful.
The number of operations processed by this server as master that failed to validate.
The number of operations processed by this server as master that failed to apply.

The average amount of time taken (in milliseconds) by this server to process operations
as the master.

The maximum amount of time taken (in milliseconds) by this server to process an
operation as the master.

- 158 -



Chapter 7: Advanced Configuration

Updating the Server Instance Listener Certificate

To change the SSL certificate for the server, update the keystore and truststore files with the
new certificate. The certificate file must have the new certificate in PEM-encoded format, such
as:

MIIDKTCCAhGgAWIBAgIEacgGrDANBgkghkiGOwOBAQsFADBFMRAWHAYDVQOKExVVbmIvdWS5kSUQgQ2VydGlmaWNhd
GUxIzAhBgNVBAMTGnZtLW11ZG1l1bS03My51bmIvdW5kaWQubGFiMBAXDTEIMTAXMJE1IMzUOOFOXDTMIMTAWNZE 1Mz
UOOFowRTEeMBWGA1UEChMVVWS51ib3VuZELIEIENl1cnRpZml jYXRIMSMwIQYDVQQODExp2bS1tZWRpdAWOtNzMudWw5ib3V
uZGlkLmxhYjCCASIwDQYJKoZIhvcNAQEBBOQADggEPADCCAQOCGgEBAKN4tAN309Yw6CrOhivwVDxJIgF6+aEi 9T r3W
GFYLSrggRNXs1AOfWkSMWAICS5vyF50J9D1IgvHL40ugP/YNEGZKDkgr6MwtUeVSK14+dCixygdGCOnY 7k+£0WSCHt
IHzrmc4WWdrZXmgb+qvILupS30JGOFXtcbGkYpjaKXIEqMg4ekz3B5cAVEOSQUFyXEAN4rWOn96nVEkb2CstbiPzA
gne2tu7pad6SGFOWOUF7v018XY1Im2WHBIoDOWC8nOVLTGI9zFUavaOxt1lt1T1hClkI4HRMNg8n2Et STAQR1zKuw9Dd
TXJBb6Kfvnp/nI73VHRyt47wUVueehEDfLtDP8pMCAWEAAaMhMB8WHQYDVROOBBYEFMrwjWx12K+yd9+Y650Kn0g5
JITgMAOGCSgGSIb3DQEBCWUAA4LIBAQBpsBYodblUGew+Hewqt02i8Wt+vAbt312zM5/kRvo6/+1iPEASTvZdCzIBcgl
etxKGKeCQOGPeHr42+erakiwmGD1UTYrU3LUSPTGTDLUR2I11TT5x1ERCWIGWipW4q3P13cX/Im2ffY/JLYDEfTJao
JvnXrh7Sg719skkHiWZQgOHX1kPLx5TxFGhAoVE1D4gLVRWGohdpWDrIgFhODVEfoyAn1Ws9ICCXdRayajFI4Lc6oKl
m6SA5+25Y9nno8BhVPE4g50W6+UDc8MsLbBsxpwvR6RIScv3ypfOriTehdsG+92Do7YeqVsTVGWALW3P1iSd9bYP/ 8
yu9Cy+0MfcWcSeAE

If clients that already have a secure connection established with this server need to be
maintained, information about both certificates can reside in the same file (each with their own
begin and end headers and footers).

After the keystore and truststore files are updated, run the following dsconfig command to
update the server's certificate in the topology registry:

$ bin/dsconfig set-server-instance-listener-prop \
-—-instance-name <server-instance-name> \
--listener-name ldap-listener-mirrored-config \
--set listener-certificate <path-to-new-certificate-file>

The listener-certificate in the topology registry is like a trust store. The public certificates
that it has are automatically trusted by the local server. When the local server attempts a
secure LDAP connection to a peer, and the peer presents it with its certificate, the local server
will check the 1istener-certificate property for that server in the topology registry. If the
property contains the peer server's certificate, the local server will trust the peer. After this
trust is established, the handshake is completed using the inter-server certificate.

- 159 -



Index: access token - create-rc-script tool

Index

A

access token 75, 80
accepting external tokens 77
access token properties 104
ACR properties in policy 99, 101
admin entitlement 82
administrative account
adding a root user account 119
Administrative Console
login account 22
URL 22
API Explorer 3, 112
attribute mappings 34
authoritative attribute 35, 41
complex attributes 41
described 31
indexing 40

mapping in SCIM Resource Types 40

userinfo claims 41
auth-ui
change branding 154
change schema 155
configuration 154
Authenticated Identity scope 81
authentication

define SCIM search filters for
usernames 62

server authentication with a SASL

External Certificate 149

Authentication UI

source files 24
authoritative attribute 35
authorization

viewing consent metrics 143

backend monitors

entries 142
backup tool 117
base DN

configure Directory Server 19

configure user entries 22
base64 tool 117
broker-cfg.dsconfig

write file 22

C

Claims Map

described 31
client

REST API endpoints 77
client-specific SCIM attributes 44
client identifier 55
client secret 55
collect-support-data tool 117
config-diff tool 117
Config File Handler Backend 157
correlation attribute 33
CORS

configuration 146
create-initial-broker-config 21
create-initial-broker-config tool 117

create-rc-script tool 117




Index: Data Governance Broker - JSON

D

Data Governance Broker

Administrative Console URL 22

architecture 3
attribute filtering 3
authorization 2
described 1
features 2
in a topology 23
installing 20
pluggable authentication 2
sample workflow 10
social login 3
tools 117

Directory Server
described 31
installing 17

DNS caching 134

dsconfig

changing policy-combining
algorithm 89

CORS configuration 146

described 118

tool described 117
dsframework tool 117
dsjavaproperties tool 117
dstat

installing on SuSE Linux 16

encryption-settings tool 17, 117

encryption keys 17, 80, 153
endpoints
described 31

SCIM 45
token 73
token revocation 75
token validation 73
userinfo 45
error logger 138
evaluate-policy tool 117
external access tokens 77
external identity providers
feature 3

external resource server support 75, 149
G

Global Configuration object 157

H

HTTP request properties 102

HTTP Servlet Cross Origin Policy 147

HTTP servlet extension 148
I
ID token 80

parameters 55
Identity Authenticator 58

define settings 61
installing

prerequisites 14

sample users 26

scripted install 25

IP address reverse name lookup 134
J
Java
installing the JDK 17
supported versions 14
JSON 34

- 161 -



Index: JVM memory allocation - policy

JVM memory allocation (o)
Data Governance Broker 20 OAuth2
Directory Server 19 authorization code grant 70
K client credentials 71
key pair configuration 149 described 80
L encryption keys 80
endpoints

Idapmodify tool 117
Idappasswordmodify tool 117 REST APLs 77
LDAPS

configure Data Governance Broker 20

implicit grant flow 71

policy processing 91

configure Directory Server 18 resource owner password flow 71
Idapsearch tool 118 response types 71
Idif-diff tool 118
Idifmodify tool 118

Linux configuration

userinfo claims mapping 41
oauth2-request tool 118
OAuth2 clients 71

enable client-specific SCIM
attributes 44

properties in XACML Policies 101

filesystem swapping 15
set file descriptor limit 14

list-backends tool 118 OpenID Connect

about 46
ID token 55

requests 55

load balancers 135
logging
available log publishers 138

configure log retention and responses 55
rotation 140 i

configure log signing 140 userinfo endpoint 78

create log publisher 139 P
log compression 139 PDP endpoint 96
login account 22 policy
M authorization scenarios 85

decision trace 112
described 79

manage-extension tool 118

metrics
managing 110

PDP endpoint 96

policy information providers 110

viewing 143

monitoring entries 142

- 162 -



Index: policy set — scopes

policy structure 89
request processing 91
test policies 112
troubleshoot denied access 113
viewing policy metrics 143
XACML 85
policy set
creating 112

prepare-external-store tool 22, 118
R

redirect-uri 65

referenced SCIM resource attributes 100

refresh token
process 76
relying party
add identity provider 64
create an accout 56
Facebook settings 66
Google settings 66
OpenID Connect settings 66
process overview 56
remove-defunct-server tool 28, 118
resource operations
scope properties 81, 102
resource properties 99
Resource Scope 82
REST API
connection port 20
endpoints 77
restore tool 118
review-licence tool 118
root user DN 22

S

SCIM
described 45

SCIM endpoint 31, 45
account operations 93
consent history operations 93
consent operations 93
DELETE operations 96

external identity provider
operations 93

GET operations 94

password operations 93

PATCH and PUT operations 95

POST operations 95

search considerations 35

search request 93

session operations 93

sub-resource operations 93
SCIM request properties 103
SCIM resource properties 100
SCIM Resource Type

creating 37

managing 36

map userinfo claims 63

REST API endpoints 77

store adapter mapping 40
SCIM schema

overview 34

username uniqueness 36
SCIM Sub Resource Type

creating 43
scope properties in policy 100
scopes

applicable scopes returned 103

- 163 -



Index: server-state tool — username

Authenticated Identity 81
managing 84
Resource scope 82
scope types and properties 80
server-state tool 118
server shutdown 135
session information 93
session properties 104
social login 56
SSL certificate 159
start-broker
running in the foreground 27
start-broker tool 118
status tool 118, 144
stop-broker
example of 27
in-core restart 28
stop-broker tool 118
store adapter
correlation attribute 33
described 31
mapping attributes 34
primary and secondary adapters 32
search considerations 35
third-party store adapters 145
store adapters
described 32
third-party 145
sum-file-sizes tool 118
supported platforms 14
system entropy 16

T
Third-Party Store Adapter 145

token endpoint 55, 77
token validation 73, 75
token validation 75
topology
force master setting 157
master selection 156
monitor data 158
overview 156
server configuration settings 157
subtree polling interval 156
update SSL certificate 159
topology configuration
update SSL Certificate 159
trace logger 138
trace policy decisions 112
troubleshooting
server shutdown 135
SSL 135

U
uid 36

uninstall tool 28
user processes
configuring on Redhat/CentOS 15
user store 17
Userinfo claims
create maps 63
managing 41
Userinfo endpoint 31, 45, 55, 80
described 31
policy requests 96
username

SCIM search filters for
authentication 62

- 164 -



Index: X-Forwarded values - XACML

X

X-Forwarded values 135
XACML
described 85
request attributes 93

unsupported features 114

- 165 -



	Copyright
	Preface
	Audience
	Documentation

	Chapter 1: Introduction
	Data Governance Broker Overview
	Data Governance Broker Features
	Data Governance Broker Architecture
	Data Governance Broker Configuration Overview
	Identity Provider Services
	SCIM
	Data Sources
	Authorization and Policies
	System
	Web Services and Applications
	LDAP Administration and Monitoring
	Logging, Monitoring, and Notifications

	Sample Data Governance Broker Configuration
	Data Governance Broker as both a Resource and Identity Provider Server
	Data Governance Broker as a Resource Server Only


	Chapter 2: Installation
	Installation Prerequisites
	Supported Platforms
	Set the File Descriptor Limit
	Setting the Maximum User Processes
	Disable Filesystem Swapping
	Installing the dstat Utility on SuSE Linux
	Managing System Entropy
	Enabling the Server to Listen on Privileged Ports on Linux
	Installing the JDK

	About Encryption Keys
	User Store Overview
	Installing the Directory Server
	Data Governance Broker Installation Tools
	Installing the Data Governance Broker
	Configuring the Data Governance Broker
	Logging into the Administrative Console
	Installing Additional Data Governance Brokers in a Topology
	Server Folders and Files
	Planning a Scripted Install
	Scripted Installation Process

	Installing Sample Users
	Run the Data Governance Broker
	Stop the Data Governance Broker
	Schedule a Server Shutdown
	Run an In-Core Restart

	Uninstalling the Data Governance Broker
	Using the Data Governance Broker Sample Application

	Chapter 3: Data Access and Mapping
	Data Components
	Public Endpoints: UserInfo and SCIM
	OpenID Connect Claims Map (UserInfo Map)
	Store Adapters
	Store Adapter Mappings
	Directory Servers

	Store Adapter Overview
	Primary and Secondary Store Adapters
	Defining Correlation Attributes
	Sample Configuration

	SCIM Schemas
	Store Adapter Mappings
	SCIM Attribute Search Considerations
	Maintaining Username Uniqueness
	Defining SCIM Resource Types
	Pass-through SCIM Resource Type
	Mapping SCIM Resource Type Attributes
	Creating a SCIM Resource Type
	Creating a Mapping SCIM Resource Type
	Creating a Pass Through SCIM Resource Type

	Editing Attribute and Sub-Attribute Properties
	Editing Store Adapter Mappings

	Defining OpenID Connect Claims
	OpenID Connect Claims and Scopes
	Complex Attribute Mapping

	Defining SCIM Sub Resource Type Handlers
	Creating a SCIM Sub Resource Type
	Creating a SCIM Sub Resource Type


	OAuth2 Client-Specific SCIM Attributes
	Accessing Data

	Chapter 4: Identity Provider Services and User Authentication
	Authentication Processing Overview
	Authentication Context
	Login and Second Factor Flows
	Authentication Chain

	Account Flow
	Identity Authenticators

	Authentication Configuration Examples
	Username Password Authentication
	Adding Social Login through an External Identity Provider
	Adding Account Registration
	Adding Second Factor Authentication
	Adding Account Recovery

	OpenID Connect Request
	OpenID Connect Response
	The Data Governance Broker as a Relying Party
	Creating an Account through Identity Provider Login

	Identity Provider Configuration
	Defining Access Token Providers
	Defining Account Flow Handlers
	Defining Authentication Chains
	Defining Authentication Context Classes
	Defining the Authentication Service
	Creating an Identity Authenticator
	Creating an OpenID Connect Claims Map
	Defining the OpenID Connect Service
	Creating an External Identity Provider
	Configuring a Redirect URI
	Properties For Facebook
	Properties For Google
	Properties For OpenID Connect
	Properties For SAML

	Defining Telephony Messaging Providers
	Defining Verification Code Generators


	Chapter 5: OAuth2 Clients and Token Access
	OAuth2 Client Considerations
	OAuth2 Authorization Grant Types
	OAuth2 Authorization Response Types
	Adding an OAuth2 Client
	The Data Governance Broker Token Endpoint
	Request
	Response

	Token Validation by the Data Governance Broker
	Request
	Response

	Token Revocation by the Data Governance Broker
	Token Validation by an External Resource Server
	Obtaining a Refresh Token
	Accepting External Access Tokens
	Data Governance Broker Endpoints for OAuth2 Clients

	Chapter 6: Configuring Scopes and XACML Policies
	OAuth2 Overview
	OAuth2 Scopes
	Authenticated Identity Scope
	Resource Scope

	Scope Authorization Processing
	Satisfy Authentication Context Requirements (ACRs)
	Prompt for and Capture Consent

	Creating Scopes
	Creating an Authenticated Identity OAuth2 Scope
	Creating a Resource OAuth2 Scope

	XACML Policy Overview
	Authenticating the End-user Prior to Granting an Access Token
	Requesting an Access Token
	Requesting Operations through SCIM or UserInfo

	Policy Structure
	Requesting JSON-Formatted Data
	Using Obligations and Advice
	Authentication Requests
	OAuth2 Authorization Requests
	SCIM Resource Requests


	Policies and Request Processing Per Endpoint
	OAuth2 Endpoint Policy Requests
	SCIM Resource Type Policy Evaluation
	SCIM Sub-Resource Operation Policy Evaluation
	SCIM Search Request
	SCIM Get Request
	SCIM POST Request
	SCIM PATCH and PUT Requests
	SCIM Delete Request

	UserInfo Endpoint Policy Evaluation
	Policy Decision Point (PDP) Endpoint

	Policy Engine Request Context
	XACML Attribute Categories
	Standard XACML Attribute Use
	Custom XACML Function
	Resource Properties
	ACR Properties
	Scope Properties
	SCIM Resource Properties
	Accessing Referenced SCIM Resource Attributes

	OAuth2 Client Properties
	ACR Properties
	Scope Properties
	HTTP Request Properties
	SCIM Request Properties
	Applicable Scopes
	Session Properties
	Access Token Properties
	Policy Sections and Functions Described
	The Scope Validation Policy
	Section Descriptions


	Configuring the Policy Service
	Policy Information Providers
	PIP Evaluation Order

	Creating XACML Policies
	Creating a Policy Set
	Testing Policies
	Troubleshooting Policies with Traces
	Troubleshooting Denied Access

	Unsupported XACML Features

	Chapter 7: Advanced Configuration
	General Server Configuration
	Available Configuration Tools
	Using the dsconfig tool
	Administrative Accounts
	Using the Configuration API
	Authentication and Authorization
	Relationship Between the Configuration API and the dsconfig Tool
	GET Example
	GET List Example
	PATCH Example

	API Paths
	Sorting and Filtering Configuration Objects
	Updating Properties
	Administrative Actions
	Updating Servers and Server Groups
	Configuration API Responses

	Configuring HTTP Connection Handlers
	Domain Name Service (DNS) Caching
	IP Address Reverse Name Lookups
	Problems with SSL Communication
	Conditions for Automatic Server Shutdown
	Configuring Traffic Through a Load Balancer
	System Alarms, Alerts, and Gauges
	Alert Handlers
	Test Alarms and Alerts

	Working with Logs and Log Publishers
	Types of Log Publishers
	Viewing and Configuring Log Publishers
	Creating a New Log Publisher
	Configuring Log Compression
	Configuring Log Signing
	Configuring Log Retention and Log Rotation Policies
	Configure the Log Rotation Policy
	Configure the Log Retention Policy

	Monitoring the Server
	Backend Monitor Entries
	Viewing System and Consent data Through the Data Metrics Server
	Using the status Tool

	Server SDK Extensions

	Data Governance Broker Advanced Server Configuration
	Configuring Third-Party Store Adapters
	Example Third-Party Store Adapter
	About Cross-Origin Resource Sharing Support
	CORS Implementation
	HTTP Servlet Services
	HTTP Servlet Cross Origin Policies
	Assigning a CORS Policy to an HTTP Servlet Extension

	Public and Private Key Store Configuration
	Configure Authentication with a SASL External Certificate
	Managing Server Encryption Settings
	Rotating the Encryption Key
	Addressing a Compromised Encryption Key

	Customizing the Authentication User Interface
	Branding
	Schema Changes


	Topology Configuration
	Topology Master Requirements and Selection
	Topology Components
	Server Configuration Settings
	Topology Settings

	Monitor Data For the Topology
	Updating the Server Instance Listener Certificate


	Index

