
UnboundID® Data Broker
Administration Guide

Version 5.2.0.1

UnboundID Corp

13809 Research Blvd., Suite 500

Austin, Texas 78750

Tel: +1 512.600.7700

Email: support@unboundid.com

Copyright
Copyright © 2016 UnboundID Corporation

All rights reserved.

This document constitutes an unpublished, copyrighted work and contains valuable trade
secrets and other confidential information belonging to UnboundID Corporation. None of the
material may be copied, duplicated, or disclosed to third parties without the express written
permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or
through such sites or resources. UnboundID will not be responsible or liable for any actual or
alleged damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such sites or
resources. UnboundID and the UnboundID Logo are trademarks or registered trademarks of
UnboundID Corp. in the United States and foreign countries. All other marks referenced are
those of their respective owners.

Table of Contents
Copyright i

Preface ix

About UnboundID ix

Audience x

Documentation x

Chapter 1: Introduction 1

Data Broker Overview 2

Data Broker Features 2

Data Broker Architecture 3

Data Broker Configuration Overview 5

Identity Provider Services 5

SCIM 6

Data Sources 6

Authorization and Policies 6

System 7

Logging, Monitoring, and Notifications 7

Sample Data Broker Configuration 8

Data Broker as both a Resource and Identity Provider Server 8

Data Broker as a Resource Server Only 9

Chapter 2: Installation 10

Installation Prerequisites 11

Supported Platforms 11

Set the File Descriptor Limit 11

Setting the Maximum User Processes 12

Installing the dstat Utility on SuSE Linux 12

Managing System Entropy 12

Installing the JDK 13

About Encryption Keys 13

User Store Overview 13

Installing the Data Store 13

Data Broker Installation Tools 15

Installing the Data Broker 15

Configuring the Data Broker 17

- ii -

Logging into the Management Console 18

Installing Additional Data Brokers in a Topology 19

Server Folders and Files 20

Planning a Scripted Install 21

Scripted Installation Process 21

Installing the Data Broker with an Existing Truststore 22

Installing Sample Users 23

Run the Data Broker 24

Stop the Data Broker 24

Schedule a Server Shutdown 24

Run an In-Core Restart 25

Uninstalling the Data Broker 25

Using the Data Broker Sample Applications 26

The Profile Manager Application 26

The Sign-In Sample Application 31

User Account Registration and Recovery 35

Chapter 3: Data Access and Mapping 36

Data Components 37

Public Endpoints: UserInfo and SCIM 37

OpenID Connect Claims Map (UserInfo Map) 37

Store Adapters 37

Store Adapter Mappings 37

Data Stores 37

Store Adapter Overview 38

Primary and Secondary Store Adapters 38

Defining Correlation Attributes 38

Sample Configuration 39

SCIM Schemas 40

Store Adapter Mappings 40

SCIM Attribute Search Considerations 41

Maintaining Username Uniqueness 41

Defining SCIM Resource Types 42

Pass-through SCIM Resource Type 42

- iii -

Mapping SCIM Resource Type Attributes 42

Creating a SCIM Resource Type 42

Editing Attribute and Sub-Attribute Properties 44

Editing Store Adapter Mappings 45

Defining OpenID Connect Claims 46

OpenID Connect Claims and Scopes 47

Complex Attribute Mapping 47

Creating an OpenID Connect Claims Map 47

OAuth2 Client-Specific SCIM Attributes 48

Chapter 4: Identity Provider Service and Scopes 50

OAuth2 Overview 51

OAuth2 Scopes 51

Authenticated Identity Scope 52

Resource Scope 53

Creating Scopes 55

Creating an Authenticated Identity OAuth2 Scope 56

Creating a Resource OAuth2 Scope 56

Identity Provider Configuration 56

Defining the Identity Provider Service 57

Creating an Identity Authenticator 60

Chapter 5: User Authentication 62

HTTP Authentication Schemes 63

OpenID Connect Request 63

OpenID Connect Response 63

The Data Broker as a Relying Party 64

Creating an Account through Identity Provider Login 65

Creating an External Identity Provider 65

Chapter 6: OAuth2 Clients and Token Access 68

OAuth2 Client Considerations 69

OAuth2 Authorization Grant Types 69

OAuth2 Authorization Response Types 70

Issuing Authorization Code Grant Requests 70

Example Redirection 71

Example Response 71

Example Request 71

- iv -

Example Response 71

Example Request 72

Issuing Implicit Code Grant Requests 72

Example Redirection 72

Example Redirect Response 73

Example Request 73

Issuing Resource Owner Password Credentials Requests 73

Example Request 74

Example Response 74

Issuing Client Credentials Requests 75

Example Request 75

Example Response 75

Issuing ID Token Grant Requests 76

Adding an OAuth2 Client 78

The Data Broker Token Endpoint 79

Request 79

Response 79

Token Validation by the Data Broker 80

Token Revocation by the Data Broker 81

Obtaining a Refresh Token 81

Accepting External Access Tokens 82

The Data Broker Logout Endpoint 83

Request 83

Response 83

Chapter 7: Accessing Data 84

Data Broker Endpoints for OAuth2 Clients 85

The SCIM Endpoint 86

SCIM Examples 86

GET 86

GET (by User ID) 87

POST 88

UPDATE 89

DELETE 90

- v -

UserInfo Access Example 91

Request 91

Response 91

jQuery Example 92

Chapter 8: Configuring XACML Policies 93

XACML Policy Overview 94

Requesting an Access Token 94

Requesting Operations through SCIM or UserInfo 95

Policy Structure 96

Requesting JSON-Formatted Data 97

Using Obligations and Advice 97

Policies and Request Processing Per Endpoint 98

OAuth2 Endpoint Policy Requests 98

SCIM Resource Type Policy Evaluation 99

SCIM Sub-Resource Operation Policy Evaluation 102

UserInfo Endpoint Policy Evaluation 104

Policy Decision Point (PDP) Endpoint 104

Policy Engine Request Context 104

XACML Attribute Categories 104

Standard XACML Attribute Use 105

Custom XACML Function 106

Resource Properties 107

OAuth2 Client Properties 108

Scope Properties 108

HTTP Request Properties 110

SCIM Request Properties 110

Applicable Scopes 111

Session Properties 111

Access Token Properties 112

Policy Sections and Functions Described 112

Configuring the Policy Service 117

Policy Information Providers 117

PIP Evaluation Order 117

Creating XACML Policies 117

Creating a Policy Set 118

- vi -

Testing Policies 118

Troubleshooting Policies with Traces 119

Troubleshooting Denied Access 119

Unsupported XACML Features 120

Chapter 9: Advanced Configuration 123

General Server Configuration 124

Available Configuration Tools 124

Using the dsconfig tool 125

Administrative Accounts 126

Using the Configuration API 128

Authentication and Authorization 129

Relationship Between the Configuration API and the dsconfig Tool 129

API Paths 137

Sorting and Filtering Configuration Objects 138

Updating Properties 139

Administrative Actions 140

Updating Servers and Server Groups 141

Configuration API Responses 141

Domain Name Service (DNS) Caching 142

IP Address Reverse Name Lookups 143

System Alarms, Alerts, and Gauges 143

Working with Logs and Log Publishers 146

Monitoring the Server 149

Server SDK Extensions 151

Data Broker Advanced Server Configuration 152

Configuring Third-Party Store Adapters 152

Example Third-Party Store Adapter 153

About Cross-Origin Resource Sharing Support 153

Managing Server Encryption Settings 156

Account Recovery Configuration in the Data Store 158

Configuring the Data Broker Templates 159

Supporting Multiple Content Types 161

Velocity Context Providers 162

- vii -

Configuring HTTP Header Fields 162

Handling Specific HTTP Methods in Third-Party Providers 163

Velocity Tools Context Provider 164

Configuring the Broker Login and Consent Pages 164

Customizing the Data Broker Application Logo 166

Configuring Web Applications for Localization 167

Preserving Customized Files 168

Topology Configuration 168

Topology Master Requirements and Selection 168

Topology Components 169

Monitor Data For the Topology 170

Index 172

- viii -

Preface
The UnboundID Data Broker Administration Guide contains concepts and procedures to
configure an Identity Provider server, Resource server, or both. This includes defining Identity
Provider settings, token requirements, XACML policies, OAuth2 clients, and the resources that
can be requested. Management tasks and tools are also described.

About UnboundID
UnboundID Corp is a leading identity infrastructure solutions provider with proven experience
in large-scale identity data environments. The Data Broker is part of the UnboundID Platform,
which is an identity access and management platform—built specifically to handle the scale
and real-time demands of millions of customers. The UnboundID Platform provides a unified
view of customer data across all applications, channels, partners, and lines of business.

The UnboundID Platform provides the following:

l Secure End-to-End Customer Data Privacy Solution – A comprehensive identity
platform with authorization and access controls to enforce privacy policies, control user
consent, and manage resource flows. The platform protects data in all phases of its life
cycle (create, read, update, delete, as well as static/unchanging and expiring).

l Purpose-Built Platform – Solutions to consolidate, secure, and deliver customer
consent-given identity data. The platform provides unmatched security measures to
protect sensitive identity data and maintain its visibility. The broad range of services
include, policy management, cloud provisioning, federated authentication, data
aggregation, and directory services.

l Unmatched Performance across Scale and Breadth – Support for the three pillars
of performance-at-scale: users, response time, and throughput. The platform manages
real-time data at large-scale consumer facing service providers.

- ix -

Preface

l Support for External APIs – Standards-based solutions that can interface with various
external APIs to access a broad range of services. APIs include XACML 3.0, SCIM, LDAP,
OAuth2, and OpenID Connect.

Audience
This guide is intended for identity architects and administrators who are designing and
implementing an identity infrastructure solution. Familiarity with system-, user-, and network-
level security principles is assumed. Knowledge of directory services principles is
recommended.

To use this guide effectively, readers should be familiar with the following subjects:

l REST web services and principles

l JSON or XML serialization formats

l XACML 3.0

l OAuth2 specification

l OAuth2 Bearer Token specification

l SCIM Schema 2.0

l OpenID Connect 1.0

l Apache Velocity Project and templates

Documentation
The Data Broker includes the following documents, available from the index.html page in the
docs folder of the server.

l UnboundID Data Broker Administration Guide (PDF)

l UnboundID Data Broker REST API Reference (HTML)

l UnboundID Data Broker Configuration Reference Guide (HTML)

l UnboundID Data Broker Command Line Reference (HTML)

l UnboundID Data Broker API Explorer

- x -

Chapter 1: Introduction
Companies need to be able to monetize valuable user data, while balancing data privacy
regulations. The Data Broker provides solutions to manage and monitor the authorization and
authentication of user data access.

Topics include:

Data Broker Overview

Data Broker Features

Data Broker Architecture

Data Broker Configuration Overview

Sample Data Broker Configuration

- 1 -

Chapter 1: Introduction

Data Broker Overview
Most organizations today are working toward creating a unified customer profile. An essential
part of creating that common identity profile is to centralize multiple, overlapping accounts and
to define the logic for determining which applications should access data in a profile. The Data
Broker enables managing large amounts of customer data while ensuring end-user privacy.

The Data Broker can act as a Resource server, or both a Resource server and Identity Provider
server.

l As a Resource and Identity Provider server, the Data Broker provides authorization
decisions for client applications, provisioning systems, API gateways and analytical tools
in architectures involving personal, account, or sensitive identity data.

l As a Resource server, it provides restricted access to end users' information.

The Data Broker is designed to make authorization decisions based on XACML Policies and user
consent. It is both the policy decision point and the OAuth2 Identity Provider for externalized
authorization. Because the Data Broker centralizes the policy and consent functions, security
rules are applied consistently across all applications. In addition, a common identity and single
view of the customer can be configured by mapping account resources from multiple backend
data stores to SCIM Resource Types defined in the Data Broker.

Data Broker Features
The Data Broker provides the following features for OAuth2 clients to securely access
resources:

l Support for multiple backend data stores. The Data Broker supports multiple data
stores, with native support for the UnboundID Data Store and extension points for
others. Data stores serve as user stores to provide the resources that are requested by
OAuth2 clients. OAuth2 clients can be written one time for access to the Data Broker and
receive data from any type of infrastructure backend.

l Standards-based authentication and authorization. The Data Broker provides
OAuth2 and OpenID Connect-compliant functionality for authentication with the Data
Broker and authorization to account resources. OpenID Connect provides the
authentication layer on top of the OAuth2 protocol. It enables OAuth2 clients to verify the
identity of a user based on the authentication performed by an Authorization Server, and
obtain information about the user based on authorization flows and policy rules.

l Authorization based on XACML policy and User Consent. The Data Broker ensures
that data is provided to authorized OAuth2 clients through the use of defined OAuth2
Scopes and XACML policies. The XACML (eXtensible Access Control Markup Language)
standard is used to define XML access control policies, and the processing model that

- 2 -

Data Broker Architecture

determines how to evaluate requests based on rules defined in the policies. Policies can
be based on industry rules, corporate policy, or consent granted by customers.

l SCIM Resource Types. SCIM Resource Types determine what attributes can be
accessed by an OAuth2 client through the Data Broker. The SCIM resource type defines
the resource name, endpoint URL, schemas, and other metadata that indicate where a
resource is managed and how it is composed.

l Support for social login. The Data Broker can act as a relying party, enabling users to
log into OAuth2 clients and update or create Data Broker accounts with external identity
provider accounts from Facebook, Google, or an OpenID Connect provider.

l User interface samples and templates. The Profile Manager and Sample Sign-In
applications can be installed with the Data Broker to demonstrate how a client
application makes requests for user data, how an end user can grant consent for the
application to access that data, and how the Data Broker returns that data. Data Broker
templates can be used for implementing custom user authentication and consent flows.

l API Explorer. The API Explorer is an interactive way to test data requests against
various endpoints, and determine if authorization and XACML policy configuration is
correct. The API Explorer works directly with the Data Broker so that configuration,
testing, and updates can be done seamlessly. Access the API Explorer from the
Documentation Index page, <server-root>/docs/index.html, or the server's HTTPS
endpoint https://<host>:<http-port>/explorer.

Data Broker Architecture
The Data Broker can act as both the Identity Provider and Resource server for OAuth2 clients
requesting access to user data. Clients are granted authorization through an OAuth2 flow and
receive access through OpenID Connect and SCIM endpoints. The Data Broker performs the
following functions:

l Authorize an OAuth2 access token request, where the scopes requested represent
resources that are served by the Data Broker’s SCIM endpoint.

l Authorize an OAuth2 access token request, where the scopes requested represent
resources that are served by an external Resource server.

l Authorize a resource (SCIM) request where the access token provided was generated by
the Data Broker’s Identity Provider Service.

l Authorize a resource (SCIM) request where the access token provided was generated by
an external identity provider.

The following illustrates the Data Broker architecture and its components.

- 3 -

Chapter 1: Introduction

Planning a Data Broker deployment should start with determining its role as a Resource server.
This includes defining what data can be accessed and updated from backend data stores, which
can be configured as User Stores that supply or store user data. User Stores that have a
schema defined can surface attributes and attribute properties. SCIM Resource Types are then
defined to enable access to OAuth2 clients, and provide a unified view of identity data found in
multiple data stores through Store Adapter Mappings. OAuth2 scopes are created to define the
resources that can be requested by an OAuth2 client and the actions that can be performed on
those resources.

If using the Data Broker as an Identity Provider, the Identity Provider Service must be defined.
This includes setting OAuth2 authorization token and OpenID Connect access token
requirements, the default SCIM Resource Type, the authentication scheme and any account
registration or recovery actions that can be performed. An external identity provider can also
be configured to manage authentication.

- 4 -

Data Broker Configuration Overview

OAuth2 clients that can request access to scopes are defined, including the OAuth2 grant types
that can be used to access resources. Access token settings are inherited from the Identity
Provider Service. Make sure that application development is done with consideration for the
scopes that will be requested and how XACML policies will process these requests. See Policies
and Request Processing Per Endpoint.

XACML policies determine if a client can access requested scopes, based on the information
provided with the request. Obligations within the policy can define conditions for access, such
as requiring user's consent. XACML policies then determine the operations that can be
performed on attributes within the requested scopes. Obligations can again define conditions
for limiting access to certain attributes.

The Data Broker also tracks the consent that end users grant for access to their data. Consent
can be managed by a requesting application or separate application through requested
operations in OAuth2 scopes.

Data Broker Configuration Overview
Data Broker configuration defines all server services, policies, applications, resources, and the
mapping of data from one or more backend data stores. Configuration can be done from the
command line with the dsconfig tool or through the Management Console interface. All
settings have associated help text in the interface and in the linked Configuration Guide. The
Configuration Guide contains details and relationship specifics for all configuration objects and
is available from the Management Console interface or from the <server-
root>/docs/index.html page.

Identity Provider Services
Identity Provider Services contain the components and services that the Data Broker needs to
process requests as an identity provider or through an external identity provider. If multiple
Data Brokers are grouped in a topology, all configuration of these settings is mirrored across
all servers in the topology. See Topology Management for more information. Identity Provider
services include:

l External Identity Providers – Specifies the identity providers that can be used to log
into the Data Broker, such as Google or Facebook.

l Identity Authenticators – Defines the authentication schemes that can be used to log
into the Data Broker. This is required by the Identity Provider Service.

l Identity Provider Service – Defines the OAuth2 and OpenID Connect authorization
and approval flow for self-service account management and access to Data Broker
resources.

l OAuth2 Client – Specifies the OAuth2 clients that can request access to resources
based on authorization and policy.

l OpenID Connect Claims – If using the /userinfo endpoint to access resources,
claims are defined to determine the information that can be accessed.

- 5 -

Chapter 1: Introduction

SCIM
The SCIM protocol is an application-level, REST protocol for provisioning and managing identity
data. The SCIM Schema provides a schema and extension for representing users and groups.
Only those attributes defined in the SCIM Resource Type can be accessed through the Data
Broker. Any changes to these settings are saved to all Data Brokers in a topology.

l SCIM Resource Types – Defines attribute mapping from a SCIM schema to native
attributes found in data store entries, which provides a unified view of identity data
found in multiple data stores. A pass-through SCIM Resource Type can also be created to
allow the addition of new attributes that are not mapped to any in a data store. The SCIM
schema defines the attributes that comprise a SCIM Resource Type. The SCIM Resource
Type determines the attributes that can be accessed by a client application.

l SCIM Schemas – Specifies the SCIM 2.0 schemas for data that can be accessed from
backend data stores. Schemas provide the basis for creating SCIM Resource Types.

Data Sources
Data sources are the servers that house the resources governed by the Data Broker.

l External Servers – Lists the LDAP data store instances that are configured with the
Data Broker.

l LDAP Health Checks – Checks the status of external LDAP servers on a regular basis,
and examines failures to determine if the server has become unavailable.

l Load Balancing Algorithms – Used to determine the appropriate LDAP external server
to use to process a request. They may be used to provide improved availability and
performance by distributing the workload across multiple backend servers.

l Store Adapters – Provides a data store interface to the Data Broker. Changes or
additions to Store Adapters are saved to all Data Brokers in a topology. Third-party store
adapters can be created with the UnboundID Server SDK.

Authorization and Policies
These settings define the rules for accessing resources through the Data Broker. Any changes
to these settings are saved to all Data Brokers in a topology.

l OAuth Scopes – Specifies the data being requested with an OAuth2 authorization
request from an OAuth2 client.

l XACML Policies – Specifies the rules for how requested resources can be shared with
OAuth2 clients, based on the OASIS Committee Specification 01, eXtensible access
control markup language (XACML) Version 3.0. The Data Broker provides several default
policies that can be used or modified.

- 6 -

Data Broker Configuration Overview

l XACML Policy Service – Contains the properties that affect the overall operation of the
Data Broker Policy Decision Point (PDP).

System
System settings define communication, connection, and the criteria for triggering alarms
regarding the server's resources. Changes to these setting can be saved to the local server or
saved to a group of servers. They are not mirrored across a topology. See General Server
Configuration for more information.

l Alarm Manager – Defines the severity of alarms to be raised.

l Connection Handlers – Defines the settings for handling all interaction with the clients,
including accepting connections, reading requests, and sending responses.

l Gauges – Specifies server performance thresholds and circumstances that merit the
raising of an alarm.

l Gauge Data Sources – Defines the source of gauge data obtained from the server,
including available memory and disk space.

l Global Configuration – Specifies the SMTP server, password policies, and LDAP
request criteria configured for this server.

l HTTP Servlet Cross Origin Policies – Defines the configuration for handling Cross-
Origin HTTP requests using the Cross Origin Resource Sharing (CORS) protocol. An
instance of HTTP Servlet Cross Origin Policy can be associated with multiple HTTP
Servlet Extensions.

l HTTP Servlet Extensions – Defines classes and initialization parameters used by a
servlet invoked by an HTTP connection handler.

l Locations – Lists the locations in which servers that are accessed by the Data Broker
reside.

l Web Application Extensions – Specifies the configuration settings for the
Management Console and any other web applications that are configured to work with
the Data Broker.

Logging, Monitoring, and Notifications
These settings define the notification criteria for system alerts, and the logging criteria for
actions within the Data Broker. Changes to these setting can be saved to the local server or
saved to a group of servers. They are not mirrored across a topology. See General Server
Configuration for more information.

l Alert Handlers – Specifies the Alert Handlers used to notify administrators of problems
or events that occur in the Data Broker.

- 7 -

Chapter 1: Introduction

l Log Publishers – Defines the distribution of log messages from different loggers to a
destination.

l Log Retention Policies – Defines how long logs should be kept.

l Log Rotation Policies – Specifies when log files should be rotated.

Sample Data Broker Configuration
The following provides a reference sequence of tasks based on the role that the Data Broker
will perform in an existing environment. These tasks can be performed from the Data Broker
Management Console or with the dsconfig tool. All components of the identity infrastructure
should be identified before beginning system configuration.

Data Broker as both a Resource and Identity Provider Server
The following is a sample workflow for the Data Broker as both an Identity Provider and
Resource server:

1. Determine how user data will be made available to OAuth2 clients. This includes
determining the backend user stores that can be accessed, and how data across multiple
stores will be correlated. A store adapter is installed with any LDAP data store, or third-
party adapters can be created with the UnboundID Server SDK. A SCIM Schema can be
used to surface attributes in the data store, and is needed if mapping attributes from
multiple data stores to create a unified identity.

2. After SCIM Schemas are configured, resources from each configured user store are
available for mapping. Configure SCIM Resource Types to make resources available to
requesting OAuth2 clients. A SCIM Resource Type is required for the Identity Provider
Service.

3. Configure the Identity Provider Service and the authentication used by the Data Broker.
Settings enable the OpenID Connect and OAuth2 functionality, and self-service account
flows, if needed.

4. Identify the OAuth2 scopes that can be accessed. OAuth2 scopes define the attributes
that can be requested and the actions that can be performed. Scopes are required by
OAuth2 clients when sending requests to the Data Broker.

5. Add the OAuth2 clients that can request access to data. The application client ID, client
secret, scopes, and OAuth2 flows are defined with each client. This information will be
needed by any client requesting data from the Data Broker.

6. Determine the XACML policies that will govern data access. Policies determine access
based on the OAuth2 client making the request, the attributes requested, and the
intended action to be taken on each attribute. Policies that are installed with the Data
Broker are configured to use the OAuth2 scopes that are installed as well. Both can be

- 8 -

Sample Data Broker Configuration

customized. If policies need to access decision-making information outside of the Data
Broker configuration, a custom Policy Information Provider can be configured with the
UnboundID SDK, or with the help of UnboundID Professional Services.

7. Policies determine what and how OAuth2 clients access resources. Make sure that policy
rules work as expected by using Policy Trace Filters and other Log Publishers to verify
that the requests to and responses from the Data Broker are as expected.

8. If using the /userinfo endpoint, data must be mapped from the Identity Provider SCIM
Resource Type with OpenID Connect Claims.

9. OAuth2 clients can be configured to surface an external identity provider (Facebook,
Google, or OpenID Connect) for end users to log into the Data Broker.

10. If there is an UnboundID Metrics Engine installed, it can be configured to display system
and consent metrics for the Data Broker. See the UnboundID Metrics Engine
Administration Guide for information about configuring the Metrics Engine.

Data Broker as a Resource Server Only
If using the Data Broker as a Resource server only, resources will need to be created
manually, and SCIM Resource Types configured. Configuration in this scenario will rely on an
existing identity deployment and the type of authorization that the Data Broker is expected to
provide. The following is a sample workflow for a Resource server:

1. Create the OAuth2 Resource Scopes that can be accessed by OAuth2 clients.

2. Register the OAuth2 clients that can request access to data. The application client ID,
client secret, scopes, and OAuth2 flows are defined with the client.

3. Determine the XACML policies that will govern data access. Policies can base access
decisions on the OAuth2 client making the request, the attributes requested, the
environment information that is available, and the intended action to be taken on each
attribute. Policies that are installed with the Data Broker are configured to use the
OAuth2 scopes that are installed as well. Both can be customized.

4. Since the Data Broker is not the Identity Service Provider, a custom Policy Information
Provider must be configured with the UnboundID SDK to validate access tokens from an
external authorization server.

5. Policies determine what and how OAuth2 clients access resources. Make sure that policy
rules work as expected by using Policy Trace Filters and other Log Publishers to verify
that the requests to and responses from the Data Broker are as expected.

6. If using the /userinfo endpoint, map data with OpenID Connect Claims.

7. OAuth2 clients can use an external identity provider (Facebook, Google, or OpenID
Connect) accounts to access the Data Broker.

- 9 -

Chapter 2: Installation
The Data Broker installation requires few prerequisites, and can be deployed on virtualized
and/or commodity hardware.

Topics include:

Installation Prerequisites

About Encryption Keys

User Store Overview

Installing the Data Store

Installation Tools

Installing the Data Broker

Configuring the Data Broker

Logging into the Management Console

Installing Additional Data Brokers in a Topology

Server Folders and Files

Planning a Scripted Installation

Installing the Data Broker with an Existing Trust Store

Installing Sample Users

Running the Data Broker

Stopping the Data Broker

Uninstalling the Data Broker

Using the Sample Web Applications

- 10 -

Chapter 2: Installation

Installation Prerequisites
The following are required before installing the Data Broker:

l Java 7

l Minimum of 2 GB RAM

l UnboundID Data Store 5.2

Supported Platforms
The Data Broker is a pure Java application. It is intended to run within the Java Virtual Machine
on any Java Standard Edition (SE) or Enterprise Edition (EE) certified platform. For the list of
supported platforms and Java versions, access the UnboundID Customer Support Center portal
or contact an authorized support provider.

Note
It is highly recommended that a Network Time Protocol (NTP) system be in place so that multi-
server environments are synchronized and timestamps are accurate.

Set the File Descriptor Limit
The server allows for an unlimited number of connections by default, but is restricted by the
file descriptor limit on the operating system. The file descriptor limit on the operating system
can be increased with the following procedure.

Note
If the operating system relies on systemd, refer to the Linux operating system documentation
for instructions on setting the file descriptor limit.

1. Display the current hard limit of the system. The hard limit is the maximum server limit
that can be set without tuning the kernel parameters in the proc filesystem.

ulimit -aH

2. Edit the /etc/sysctl.conf file. If the fs.file-max property is defined in the file, make
sure its value is set to at least 65535. If the line does not exist, add the following to the
end of the file:

fs.file-max = 65535

3. Edit the /etc/security/limits.conf file. If the file has lines that set the soft and hard
limits for the number of file descriptors, make sure the values are set to 65535. If the
lines are not present, add the following lines to the end of the file (before #End of

file). Insert a tab between the columns.

* soft nofile 65535
* hard nofile 65535

- 11 -

Installation Prerequisites

4. Reboot the server, and then use the ulimit command to verify that the file descriptor
limit is set to 65535 with the following command:

ulimit -n

Once the operating system limit is set, the number of file descriptors that the server will use
can be configured by either using a NUM_FILE_DESCRIPTORS environment variable, or by
creating a config/num-file-descriptors file with a single line such as, NUM_FILE_
DESCRIPTORS=12345. If these are not set, the default of 65535 is used. This is strictly optional
if wanting to ensure that the server shuts down safely prior to reaching the file descriptor limit.

Setting the Maximum User Processes
Redhat Enterprise Linux Server/CentOS 6.x sets the default maximum number of user
processes to 1024, which is lower than the setting on older distributions. This may cause JVM
memory errors when running multiple servers on a machine because each Linux thread is
counted as a user process. This is not an issue on Solaris and AIX platforms as individual
threads are not counted as user processes.

At startup, the Data Broker attempts to raise this limit to 16,383 if the value reported by
ulimit is less. If the value cannot be set, an error message is displayed. Explicitly set the limit
in /etc/security/ limit.conf. For example:

* soft nproc 100000
* hard nproc 100000

The 16,383 value can also be set in the NUM_USER_PROCESSES environment variable, or by
setting the same variable in config/num-user-processes.

Installing the dstat Utility on SuSE Linux
The dstat utility is used by the collect-support-data tool to gather support data. It can be
obtained from the OpenSuSE project website. Perform the following steps to install the dstat
utility:

1. Log into the server as root.

2. Add the appropriate repository using the zypper tool.

3. Install the dstat utility:

$ zypper install dstat

Managing System Entropy
Entropy is used to calculate random data that is used by the system in cryptographic
operations. Some environments with low entropy may have intermittent performance issues
with SSL-based communication. This is more typical on virtual machines, but can occur in
physical instances as well. Monitor the kernel.random.entropy_avail in sysctl value for
best results.

- 12 -

Chapter 2: Installation

If necessary, update $JAVA_HOME/jre/lib/security/java.security to use
file:/dev/./urandom for the securerandom.source property.

Installing the JDK
The Data Broker requires the Java 64-bit JDK. Even if Java is already installed, create a
separate Java installation for use by Data Broker to ensure that updates to the system-wide
Java installation do not inadvertently impact the Data Broker.

Solaris systems require the 32-bit and 64-bit versions. The 64-bit version of Java on Solaris
relies on a number of files provided by the 32-bit version, so the latter should be installed first.

About Encryption Keys
Encryption setting definitions are used to protect Data Broker generated tokens and User Store
metadata. All Data Broker instances must use the same set of definitions. Encryption setting
definitions are managed using the encryption-settings tool.

If new encryption settings must be defined, the new definition must be exported using the
encryption-settings tool and imported on all Data Broker instances. Only after the new
definition is imported on all servers can the new definition be used for subsequent encryption
operations.

See Managing the Server Encryption Settings for more information.

User Store Overview
During the Data Broker installation, at least one UnboundID Data Store is defined to serve as a
user store, and to store user credentials. The user store is a repository of user data, such as
names, email addresses, and preferences, as well as user-specific metadata needed by the
Data Broker. For example, some user data may be stored in an LDAP directory server while
other attributes may be stored in a relational database or a document database. SCIM
Resource Types are defined to enable access to a user store's resources, and provide a
consistent abstracted view of a user's profile that may cross multiple data stores.

Any LDAP data store added after the initial Data Broker installation must be configured with the
prepare-external-store tool before it can be used as a user store. See Data Broker
Installation Tools.

Installing the Data Store
The Data Broker requires at least one installed UnboundID Data Store. This enables much of
the account management and password recovery functionality. The Data Broker can be
configured with multiple user stores.

Note
All sensitive data in the user store can be encrypted.When using the UnboundID Data Store

- 13 -

Installing the Data Store

as the user store, server-level encryption can be enabled as described in the "Encrypting
Sensitive Data" section in the UnboundID Data Store Administration Guide.

The following information is needed during the installation:

l Server hostname

l LDAPS port

l Root DN and password

l Base DN

l Location of user entries

All configuration settings can be later modified through the dsconfig tool.

Perform the following steps to install the Data Store:

1. Download the Data Store zip distribution, UnboundID-DS-<version>.zip.

2. Unzip the file in any location.

$ unzip UnboundID-DS-<version>.zip

3. Change to the top level UnboundID-DS folder.

$ cd UnboundID-DS

4. Run the setup command.

$./setup

5. Enter yes to agree to the license terms.

6. Enter the fully qualified host name or IP address of the local host, or press Enter to
accept the default.

7. Create the initial root user DN for the Data Store, or accept the default, (cn=Directory
Manager). This account has full access privileges.

8. Enter a password for this account, and confirm it.

9. To enable the Platform APIs over HTTPS, enter yes. These are the product's
configuration APIs.

10. Enter the port to accept connections from HTTPS clients, or press Enter to accept the
default. The default may be different depending on the account privileges of the user
installing.

11. Enter the port to accept connections from LDAP clients, or press Enter to accept the
default.

12. Type yes to enable LDAPS, or press Enter to accept the default (no). If enabling LDAPS,
enter the port to accept connections, or press Enter to accept the default LDAPS port.

- 14 -

Chapter 2: Installation

13. Type yes to enable StartTLS for encrypted communication, or press Enter to accept the
default (no).

14. Select the certificate option for the server and provide the certificate location.

15. Specify the base DN for the Data Store repository, for example dc=company,dc=com.

16. Select an option to populate the database.

17. If this machine is dedicated to the Data Store, tune the JVM memory allocation to use the
maximum amount of memory the Aggressive option). This ensures that communication
with the Data Store is given the maximum amount of memory. Choose the best memory
option for the system and press Enter.

18. Enter yes to configure the server on startup and load the backend into memory before
accepting connections, or press Enter to accept the default (no).

19. To start the server after the configuration, press Enter for (yes).

20. Review the Setup Summary, and enter an option to accept the configuration, redo it, or
cancel.

Data Broker Installation Tools
The Data Broker provides a number of tools to install and configure the system.

l The setup tool performs the initial tasks needed to start the Data Broker server,
including configuring JVM runtime settings and assigning listener ports for the Broker's
REST services and web applications.

l The create-initial-broker-config tool continues after setup and configures
connectivity between the user store and the Data Broker. During the process, the
prepare-external-store tool prepares each UnboundID Data Store to serve as a user
store by the Data Broker. Configuration can be written to a file to use for additional
installations.

l Once the configuration is done, the dsconfig tool and the Management Console enable
more granular configuration.

Installing the Data Broker
To expedite the setup process, be prepared to enter the following information:

l An administrative account for the Data Broker.

l An available port for the Data Broker to accept HTTPS connections from REST API clients.

l An available port for the Management Console web application's communication.

l An available port to accept LDAP client connections.

- 15 -

Installing the Data Broker

l Information related to the server's connection security, including the location of a
keystore containing the server certificate, the nickname of that server certificate, and
the location of a truststore.

Perform the following steps for an interactive installation of the Data Broker:

1. Download the latest zip distribution of the UnboundID Data Broker software.

2. Unzip the file in any location.

$ unzip UnboundID-Broker-<version>.zip

3. Change to the top level UnboundID-Broker folder.

4. Run the setup command.

$./setup

5. Type yes to accept the terms of this license agreement.

6. The setup tool enables cloning a configuration by adding to an existing Data Broker
topology. For an initial installation, press Enter to accept the default (no). When adding
additional Data Broker instances, an existing peer can be chosen to mirror configuration.

7. Enter the fully qualified host name or IP address of the machine that hosts the Data
Broker, or press Enter to accept the default (local hostname).

8. Create the initial root user DN for the Data Broker. This account has full access
privileges. To accept the default (cn=Directory Manager), press Enter.

9. Enter and confirm a password for this account.

10. Define a port for Data Broker Platform REST APIs to accept HTTPS connections, or press
Enter to accept the default.

11. To enable the Management Console web application, press Enter. This is the web
application used to manage the Data Broker server.

12. Enter the port for the Management Console to accept HTTPS connections, or press Enter
to accept the default.

13. Enter the port to accept LDAP client connections, or press Enter to accept the default.

14. To enable LDAPS connections type yes and enter a port, or press Enter to accept the
default (no).

15. To enable StartTLS connections over regular LDAP connection type yes, or press Enter
to accept the default (no).

16. Enter the certificate option for this server. If needed, the server will generate self-signed
certificates that should be replaced before the server is put into production.

- 16 -

Chapter 2: Installation

17. If this machine is dedicated to the Data Broker, tune the JVM memory to use the
maximum amount of memory (the Aggressive option). If this system supports other
applications, choose an appropriate option.

18. Enter a location name for this server. The location is used for failover purposes if this
server belongs to a server group.

19. Enter an instance name for this Data Broker, or press Enter to accept the default
(<location> Broker 1). The name must be unique in a topology and cannot be changed
once configured.

20. Press Enter (yes) to start the server when the configuration is applied.

21. Review the configuration options and press Enter to accept the default (set up the
server).

The installation will continue with the create-initial-broker-config tool.

Configuring the Data Broker
The next set of steps in the setup process rely on the create-initial-broker-config tool.
The setup tool will continue with the create-initial-broker-config tool to configure the
Data Broker. Having the following in place will expedite the configuration:

l At least one UnboundID Data Store is installed. Have the host name and communication
port available.

l Any additional Data Stores that act as user stores. Only UnboundID Data Stores can be
configured with this tool. Other user stores must be configured outside of this process.
Have the host names and communication ports available.

l Locations for this and any other Data Brokers for failover.

After the initial setup and configuration, run the dsconfig tool later to make configuration
adjustments. Perform the following steps to configure the Data Broker:

1. Press Enter (yes) to continue with create-initial-broker-config. If for some reason
the initial configuration cannot be completed in one session, manually restart create-
initial-broker-config later.

2. Define the account used by the Data Broker to communicate with an external User Store,
or press Enter to accept the default (cn=Broker User,cn=Root DNs,cn=config).

3. Enter and confirm the account password.

4. Specify the type of security that the Data Broker uses when communicating with all
external store instances, or press Enter to accept the default (SSL).

5. Enter the host:port configured for the first Data Store. The connection is verified.

- 17 -

Logging into the Management Console

6. Select the location name for the Data Store (or user store server), or enter another
location if not listed in the menu.

7. Confirm that the identified host should be prepared. If additional servers will be added as
backups, select the Yes, and all subsequent servers option. This enables the
identification of another server later in the configuration. The prepare-external-store
tool can also be used to perform these tasks at a later time.

8. Enter the account and password needed to create the root user cn=Broker
User,cn=Root DNs,cn=config account on the Data Store. This is the root account
created in the initial setup, such as the default (cn=Directory Manager. The Data
Broker sets up the DN and tests that it can access the account. This is also the account
used to log into the Management Console.

9. To configure the initial user store, press Enter for (yes). The user store will be
configured with a default Store Adapter and SCIM Resource Type, which will enable
mapping of resources in the user store.

10. If there are additional data store locations, enter their host:port. If there are no
additional servers to add, press Enter to continue.

11. Choose one of the predefined schemas (the standard user schema and optionally the
reference application schema), or no schema.

12. Specify the base DN for locating user entries, such as ou=people,dc=example,dc=com
and press Enter.

13. Review the configuration summary, and press Enter to accept the default (w) to write
the configuration to a dsconfig batch file. The configuration is written to <server-
root>/resource/broker-cfg.dsconfig . Certificate files are written to external-
server-certs.zip.

14. Press Enter (yes) to confirm that the configuration should be applied to this Data Broker
and written to the broker-cfg.dsconfig file.

This completes the initial configuration for the Data Broker. Run the bin/status tool to see
that the Data Broker server is up and running.

Logging into the Management Console
After the Data Broker is installed, access the Management Console,
https://<host>:<port>/console/, to verify the configuration. The root user DN or the
common name of a root user DN is required to log into the Management Console. For example,
if the DN created in Configuring the Data Broker was cn=Directory Manager, directory
manager can be used to log into the Management Console.

- 18 -

Chapter 2: Installation

Installing Additional Data Brokers in a Topology
A Data Broker instance can be cloned to serve as an additional server in a topology. Adding a
server to an existing topology copies the original Data Broker's local configuration and links
the two configurations. The configuration of Data Broker's cluster items and the topology
settings are automatically mirrored across servers in a topology. See Topology Overview for
details.

Note
When setting up a new Data Broker from an existing peer, the existing HTTP(S) connection
handlers are not cloned. These connection handlers are created from scratch using default
values of the new server and any specified port values.

1. Unpack the zip distribution in a folder different from the peer Data Broker.

2. Run the ./setup command in the <server-root> directory of the new server.

3. Accept the licensing agreement.

4. Enter yes to add this server to an existing Data Broker topology.

5. Enter the host name of the peer Data Broker server from which the configuration will be
copied.

6. Enter the port of the peer Data Broker.

7. Choose the security communication to use to connect to the peer Data Broker.

8. Enter the manager account DN and password for the peer Data Broker. The connection is
verified.

9. Enter the fully-qualified host name or IP address of the local host (the new server).

10. Enter the HTTPS client connection port for the Data Broker, or press Enter to accept the
default.

11. Select the option to install the Management Console application, if desired.

12. Enter the HTTPS connection port for the Management Console application, or press Enter
to accept the default.

13. Enter the port on which the new Data Broker will accept connections from LDAP clients,
or press Enter to accept the default.

14. Choose a certificate option for this Data Broker.

15. Choose the amount of memory to allocate to the JVM.

16. Choose the location for this server. The location of the peer is listed as an option, or a
new location can be defined. Regardless, the new server will have its topology and
cluster settings mirrored with its peer.

17. Enter a name for this server. The name cannot be changed after installation.

18. Press Enter to start the server after configuration.

- 19 -

Server Folders and Files

19. Review the information for the configuration, and press Enter to set up the server with
these parameters.

20. To write this configuration to a file, press Enter to accept the default (yes).

Server Folders and Files
After the distribution file is unzipped, the following folders and command-line utilities are
available:

Directories/Files/Tools Description

ldif Stores any LDIF files that have been created or imported.

import-tmp Stores temporary imported items.

classes Stores any external classes for server extensions.

bak Stores the physical backup files used with the backup command-line tool.

velocity

This directory is where custom velocity static files and templates reside. The server
files are stored in config/velocity (and should not be modified directly).
See Preserving Customized Files.

update.bat, and update

The update tool for UNIX/Linux systems and Windows systems.

(Update is not supported for 5.2)

uninstall.bat, and uninstall The uninstall tool for UNIX/Linux systems and Windows systems.

unboundid_logo.png The image file for the UnboundID logo.

setup.bat, and setup The setup tool for UNIX/Linux systems and Windows systems.

revert-update.bat, and revert-
update The revert-update tool for UNIX/Linux systems and Windows systems.

README README file that describes the steps to set up and start the server.

License.txt Licensing agreement for the product.

legal-notices Legal notices for dependent software used with the product.

docs
Provides the release notes, Configuration Reference Guide (HTML), API
Reference, and all other product documentation.

metrics
Stores the metrics that can be gathered for this server and surfaced in the
UnboundID Metrics Engine.

bin Stores UNIX/Linux-based command-line tools.

bat Stores Windows-based command-line tools.

webapps Stores the Management Console .war file and third-party licenses.

samples Stores the sample application .zip files.

lib
Stores any scripts, jar files, and library files needed for the server and its
extensions.

collector Used by the server to make monitored statistics available to the Metrics Engine.

locks Stores any lock files in the backends.

- 20 -

Chapter 2: Installation

Directories/Files/Tools Description

tmp Stores temporary files.

resource

Stores the MIB files for SNMP and can include ldif files, make-ldif templates,
schema files, dsconfig batch files, and other items for configuring or managing the
server.

config
Stores the configuration files for the backends (admin, config) as well as the
directories for messages, schema, tools, and updates.

logs Stores log files.

Planning a Scripted Install
An interactive installation of an Data Broker uses the setup and create-initial-broker
tools. This is the recommended installation method and should be used when possible. A
scripted installation can be performed, for scenarios that require a custom configuration or
automated deployment. The resulting broker-cfg.dsconfig batch file, created with the
create-initial-broker-config tool, can then be used as a basis for scripted installations.

The following is performed by the create-initial-broker-config tool during an interactive
installation:

External store preparation:

l For each UnboundID Data Store, the prepare-external-store tool is run. This updates
the Data Store’s schema, creates a privileged service account for use by the Data Broker
with the DN cn=Broker User,cn=Root DNs,cn=config, and creates an administrative
account.

l If the user store is comprised of LDAP directory servers, the prepare-external-store
tool is run for every server that comprises the user store. This updates the directory
server’s schema, and creates a privileged service account for use by the Data Broker
with the DN cn=Broker User,cn=Root DNs,cn=config.

Server configuration with dsconfig:

The create-initial-broker-config command has a --dry-run option that can be used to
generate the broker-cfg.dsconfig file in non-interactive, or interactive mode, without
applying the configuration to the local server.

Scripted Installation Process
The following is a sample of the commands that should be included in a scripted installation:

1. Set up and configure one or more Data Stores. See Installing the Data Store.

2. Run the Data Broker setup command on the server that will host the Data Broker.

$./setup --cli --no-prompt --acceptLicense \
 --ldapPort <2389> --ldapsPort <2636> --httpsPort <8443> \
 --location <Austin> \
 --rootUserPassword <password> \

- 21 -

Installing the Data Broker with an Existing Truststore

 --useJavaTrustStore ~/tmp/keystores/truststore.jks \
 --useJavaKeystore ~/tmp/keystores/broker1keystore.jks \
 --trustStorePasswordFile ~/tmp/keystores/password.txt \
 --keystorePasswordFile ~/tmp/keystores/password.txt \
 --certNickname <server-cert>

3. Run prepare-external-store for each user store.

$ bin/prepare-external-store --no-prompt \
 --port <1636> --useSSL \
 --userStoreBaseDN "<o=Broker,dc=example,dc=com>"
 --brokerBindPassword <password>
 --bindDN "<cn=directory manager>"
 --bindPassword <password>

4. Run the create-initial-broker-config tool.

$ bin/create-initial-broker-config --no-prompt \
 --port <2636>
 --bindDN "<cn=Directory Manager>"
 --bindPassword <password>
 --brokerBindPassword <password>
 --externalServerConnectionSecurity useSSL
 --userStoreBaseDN "<o=Broker,dc=example,dc=com>"
 --userStore <d1.example.com:1636:Austin>

Installing the Data Broker with an Existing Truststore
By default, the setup command configures certificates and installs the keystore and truststore
in the config directory (config/keystore and config/truststore). To use an existing
keystore and truststore in a different path, run the setup tool, then run the create-initial-
broker-config separately. The following procedures run setup from the command-line in
non-interactive mode.

1. On the Data Broker, run setup non-interactively from the command line. In this
example, the keystore and truststore passwords are the same. If the files are not
already present in their paths, the command will fail.

$./setup --cli --no-prompt --acceptLicense \

 --ldapPort 2389 --ldapsPort 2636 --httpsPort 8443 --rootUserPassword password \

 --useJavaTrustStore ~/tmp/keystores/truststore.jks \

 --useJavaKeystore ~/tmp/keystores/broker1keystore.jks \

 --trustStorePasswordFile ~/tmp/keystores/password.txt \

 --keystorePasswordFile ~/tmp/keystores/password.txt \

 --certNickname server-cert

2. Run the create-initial-broker-config tool from the command line. Provide the paths
to both the --brokerTrustStorePath and the --trustStorePath with their respective

- 22 -

Chapter 2: Installation

password.

$./bin/create-initial-broker-config \

 --brokerTrustStorePath ~/tmp/keystores/truststore.jks \

 --brokerTrustStorePasswordFile ~/tmp/keystores/password.txt

Installing Sample Users
The Data Broker provides a template to create a set of users (1000) that can be used by the
sample applications. The schema must be created from <server-root>/resource/starter-
schemas/reference-apps-make-ldif.template and installed on the UnboundID Data Store.
Once complete, a set of users (user.0 through user.999) is available. Passwords for each are
password.

Perform the following steps to modify the data store entries according to the directives in the
LDIF file:

1. From the Data Store server root, stop the server.

$ <UnboundID-DS>/bin/stop-ds

2. From the Data Broker server root, create the users LDIF file from the template provided.
A success message is displayed when complete.

$ <UnboundID-Broker>/bin/make-ldif \
 --templateFile <UnboundID-Broker>/resource/starter-schemas/

reference-apps-make-ldif.template \
 --ldifFile <UnboundID-DS>/ldif/reference-apps-user-entries.ldif

3. From the Data Store server root, import the users. A successful import message is
displayed when complete.

$ <UnboundID-DS>/bin/import-ldif \
 --ldifFile <UnboundID-DS>/ldif/reference-apps-user-entries.ldif \
 --includeBranch dc=example,dc=com \
 --rejectFile <UnboundID-DS>/ldif/reject.ldif

If sample data was loaded in the Data Store installation, add the following command to
this step:

 --overwriteExistingEntries

The Profile Manager sample application has an administrative view that enables editing a
user's profile and consents for data access. This requires granting an entitlement to one of the
users created. The sample schema template does not grant entitlements to any users. An
entitlements file is available in resources/starter-schemas/entitlements-ldap-
modify.ldif for adding the admin entitlement to user.999. If needed, it can be edited to add
other entitlements or modify other users.

Note
This does not grant administrative rights to manage Data Broker configuration.

- 23 -

Run the Data Broker

When installed, the Profile Manager setup creates a CSR resource scope, and it is the presence
of that scope in the user's access token that the application uses to grant access to the
administrative functionality.

Perform the following steps to add the admin entitlement to a user:

1. If necessary, start the Data Store.

$ UnboundID-DS>/bin/start-ds

2. From the Data Store server root, run the following command to add this file.

$ <UnboundID-DS>/bin/ldapmodify -p <ldap-port> \
 --bindDN "cn=directory manager" \
 --bindPassword password \
 -f entitlements-ldap-modify.ldif

Run the Data Broker
To start the Data Broker, run the bin/start-broker tool on UNIX/Linux systems (the bat
command is in the same folder for Windows systems).

To Run the Data Broker in the foreground:

1. Enter the bin/start-broker with the --nodetach option to launch the Data Broker as a
foreground process.

$ bin/start-broker --nodetach

2. Stop the Data Broker by pressing CTRL-C in the terminal window where the server is
running or run the bin/stop-broker command from another window.

Stop the Data Broker
The Data Broker provides a shutdown script, bin/stop-broker, to stop the server.

Schedule a Server Shutdown
The Data Broker enables scheduling a shutdown and sending a notification to the server.out
log file. The server uses the UTC time format if the provided timestamp includes a trailing "Z,"
for example, 201304032300Z. The following example includes a --stopReason option that
writes the reason for the shutdown to the logs:

$ bin/stop-broker --task \
 --hostname <server1.example.com> \
 --bindDN uid=admin,dc=example,dc=com \
 --bindPassword <password> \
 --stopReason "Scheduled offline maintenance" \
 --start 201504032300Z

- 24 -

Chapter 2: Installation

Run an In-Core Restart
Re-start the Data Broker using the bin/stop-broker command with the --restart or -R
option. Running the command is equivalent to shutting down the server, exiting the JVM
session, and then starting up again. Shutting down and restarting the JVM requires a re-
priming of the JVM cache. To avoid destroying and re-creating the JVM, use an in-core restart,
which can be issued over LDAP. The in-core restart will keep the same Java process and avoid
any changes to the JVM options.

$ bin/stop-broker \
 --task \
 --restart \
 --hostname <server1.example.com> \
 --bindDN uid=admin,dc=example,dc=com \
 --bindPassword <password>

Uninstalling the Data Broker
The Data Broker provides an uninstall tool to remove the components from the system. If
this instance is a member of a topology of Data Broker servers, the uninstall tool will
remove it from the topology.

Note
If a Data Broker is amember of a topology, and the uninstall tool is not used to remove it (it
was shutdown and deletedmanually), it will not be removed from the topology registry. In this
scenario, use the bin/remove-defunct-server tool to remove the instance from the
topology.

Perform the following to uninstall the Data Broker:

1. From the server root directory, run the uninstall command.

$./uninstall

1. Select the option to remove all components or select the components to be removed.

2. To selected components, enter yes when prompted.

Remove Server Libraries and Administrative Tools? (yes / no) [yes]: yes

Remove Log Files? (yes / no) [yes]: no

Remove Configuration and Schema Files? (yes / no) [yes]: yes

Remove Backup Files Contained in bak Directory? (yes / no) [yes]: no

Remove LDIF Export Files Contained in ldif Directory? (yes / no) [yes]: no

The files will be permanently deleted, are you sure you want to continue? (yes / no)

[yes]:

3. Manually delete any remaining files or directories.

- 25 -

Using the Data Broker Sample Applications

Using the Data Broker Sample Applications
Two sample applications can be installed in addition to the Management Console application.
These applications are designed to illustrate a client's view of how data can be requested and
delivered from the Data Broker, or an administrative view of a user's profile. Sample
applications are located in <server-root>/samples.

To use these applications, sample users must be installed in the configured UnboundID Data
Store. See Installing Sample Users for details. Applications can be customized.

Note
Because the sample applications use the Data Broker server for authentication, if bookmarking
the application pages, bookmark the sample application landing pages, not the login page.
Navigating to the bookmarked login page will cause authentication errors.

The Profile Manager Application
The Data Broker can be installed with a sample application called the Profile Manager. The
interface operates as a customer portal to enable:

l Viewing consent for third-party access to the end-user's resources (typically from a web
site).

l Revoking consent from OAuth2 clients.

l Editing a user's profile.

l Changing an account password.

l Accessing user accounts through an administrative (customer service) view (determined
by admin entitlement) and:

o Managing users' profiles, preferences, and consent.

o Changing users' passwords.

o Viewing user profile details (as JSON).

l Account linking to external identity providers, such as Facebook and Google.

l Editing account preferences, such as retail interests.

The following are provided with the application in <server-root>/samples/profile-
manager.zip:

l README.txt – Describes how to configure and deploy the application either on the Data
Broker server or on an external server.

l profile-manager.war – The packaged web application that can be deployed on an
external server.

l setup.dsconfig – The script to install the sample application on the Data Broker server.

- 26 -

Chapter 2: Installation

Deploying the Profile Manager Application
To deploy the sample applications, perform the following steps:

1. In the <server-root>/samples directory, unzip the profile-manager.zip file. The
file must be unzipped in /samples/profile-manager to avoid errors during installation.

2. Review the README.txt file for instructions on deploying the application on an external
server. Perform a simple deployment to the local server with the following command:

$ bin/dsconfig --batch-file setup.dsconfig

1. Launch the sample application in a browser with an address such as
https://<host:http-port>/samples/profile-manager.

Profile Manager Application Pages
The following are the Profile Manager application's pages. Launch the application to view the
template and login flows.

Sign In Page
This is the Data Broker login page, which can be configured from the Data Broker server.
Sample users installed in the Data Store can be used to login, such as user.0, with password
password.

An end user can log into the Data Broker. The account must exist in a data store that is
configured to communicate with the Data Broker. If an external identity provider is configured,
an icon for that provider is displayed on the login page. See About the Data Broker as Relying
Party for information about the login and account creation flows.

If enabled, usernames can be recovered and passwords can be changed. Both require
configuration on the Data Broker and the Data Store.

If enabled, a new user account can be created by clicking the Sign up for an accountlink.

User Search Page
If logging into the application as a user with the admin entitlement, this page is displayed. End
users will not see this page.

- 27 -

Using the Data Broker Sample Applications

Enter a name, email address, or phone number to retrieve information for an end user. A new
user account can also be created.

An existing user must reside in the backend user store that is configured for the Data Broker,
and that user store must be mapped to a SCIM Resource Type in the Data Broker.

Account Registration
Account registration is configured in the Data Broker Identity Provider Service. This is a Data
Broker page. When configured, the following is displayed for account registration:

Enter the required information. The new account is added to the SCIM Resource Type
configured for the Identity Provider Service.

Information Access Request
If a user is logging into the application for the first time, the application can ask the user's
consent to access account information. This is also a Data Broker page.

- 28 -

Chapter 2: Installation

The details for each information type show the specific attributes that are accessed.

Profile Results Page
The information that was retrieved or added for a user is displayed.

From this page, end users can perform the following:

l View and edit profile data.

l View consents granted to OAuth2 clients that request access to data.

- 29 -

Using the Data Broker Sample Applications

l View and remove the OAuth2 clients that can access data.

l View and edit the types of information (Interests) that the user would like to see.

Username Recovery and Password Reset
If enabled on the server, the Data Broker can retrieve a username for an account or change a
password. Both require an UnboundID Data Store configured as a user store. The recovery
options are enabled in Data Store Password Policies, and defined for the Data Broker in the
Identity Provider Service. On the Sign In page, click the Forgot username? link.

The user can enter information related to the account. The reCAPTCHA option is also
configurable in the Identity Provider Service. After the user clicks Continue, a verification
code is delivered through a method selected on the Data Store.

The user enters the verification code. If the verification code is incorrect, and reCAPTCHA is
enabled, the verification page will display a reCAPTCHA prompt for the user's next attempt.

If verification succeeds and the account was found, the login page is displayed. If the account
was not found, the verification will fail.

Note
No error is displayed to the user stating that the account was not found. This is to prevent
phishing or any other type of exploitation that can be used by discovering which users are
registered with this client. Text can be added to the server templates to help a user navigate to
the next step.

- 30 -

Chapter 2: Installation

Linked Accounts
If the Data Broker is configured to use an external identity provider as a login option, such as
Google or Facebook, the identity provider and user accounts can be linked.

The Sign-In Sample Application
The Sign-In Sample application can be installed with the Data Broker and used as a model for
an OAuth2 client using the OpenID Connect, including the /userinfo endpoint. The application
demonstrates signing an end user into the Data Broker using the implicit grant flow, the Data
Broker prompting the end user for consent to access resources, and the application retrieving
the information that is configured in the OpenID Connect Claims Map.

The following are provided with the Sign-In Sample application in <server-
root>/samples/sign-in.zip:

l README.txt – Describes how to configure and deploy the application either on the Data
Broker Server or on an external server.

l sign-in.war – The packaged web application that can be deployed on an external
server. Included in this package is:

o ubid-broker-client.js – A reusable script for the popup and redirect log in flows
to the Data Broker server, and UserInfo claims retrieval. This script uses OpenID
Connect and the OAuth2 Implicit Grant authorization flow.

l setup.dsconfig – The script to install the sample application on the Data Broker server.

Deploying the Sample Application
Perform the following steps to deploy the sample application:

1. In the <server-root>/samples directory, unzip the sign-in.zip file. The file must be
unziped in /samples/sign-in to avoid errors during installation.

2. Review the README.txt file for instructions on deploying the application within the Data
Broker server or on an external server. Perform a simple deployment to the local server
with the following command:

$ bin/dsconfig --batch-file setup.dsconfig

- 31 -

Using the Data Broker Sample Applications

3. Launch the sample application in a browser with an address such as
https://<host:http-port>/samples/sign-in.

Sign In Sample Application Pages
The following are the Sign In Sample application's pages. Launch the application to view and
reuse the template and login flows.

Landing Page
When the application is launched, the landing page displays.

An end user can log in through a popup window, to maintain the client side state, or through a
redirect, if a popup must be avoided. Both are provided in the sample.

Login Page
This is the Data Broker login page, which can be configured from the Data Broker server. The
end user enters account credentials into the fields. The account must exist in an UnboundID
Data Store that is configured to communicate with the Data Broker. If the OAuth2 client is
configured to use an external identity provider to log in, an icon for that provider can be
displayed on the page. See About the Data Broker as Relying Party for information about the
login and account creation flows.

Sample users installed in the Data Store can be used to login, such as user.0, with password
password.

- 32 -

Chapter 2: Installation

The application sends its client ID and a request to the Data Broker for the attributes in the
requested scopes. If no scope is provided, the Data Broker will return the default values
configured for the application.

If enabled, usernames and passwords can be recovered. See Username Recovery and
Password Reset. Both require configuration on the Data Broker server and the Data Store.

If enabled, a user account can be created by clicking the Sign up for an account link. This
requires configuration on the Data Broker server.

Account Registration
If registering a new user account, the following is displayed:

Enter the required information. This is a Data Broker page. The new account is added to the
default User SCIM schema and the Users SCIM Resource Type. This function is disabled by
default. To enable it, enable the Identity Provider Service Register Enabled property.

Linked Accounts
If the application was configured to use an external identity provider as a login option, such as
Google or Facebook, the identity provider and Data Broker accounts can be linked. This
requires the configuration of specific scopes.

Confirm Consent Page
This is the Data Broker consent page, which can be configured from the Data Broker server.
The client returns a request for end user consent.

- 33 -

Using the Data Broker Sample Applications

Confirmation Page
If the end user clicks Allow, the approval page is displayed. The information that was
retrieved from the OpenID Connect Claims Map is listed under User Information.

Sign Out
When an end user clicks Sign Out, the access token is invalidated but the user's consent
remains intact for this client.

- 34 -

Chapter 2: Installation

User Account Registration and Recovery
The Data Broker can register a new user, retrieve a username, or change a password for an
account.

This requires the configuration of an UnboundID Data Store as the primary User Store. The
templates for the login page and these functions are configured with Velocity templates. See
Configuring the Broker Login and Consent Pages.

Options for account recovery and new account registration are enabled by configuring the
Identity Provider Service with the dsconfig tool or through the Management Console.

Note
Options for username recovery and password change are defined by the Data Store password
configuration.

If an account is not found, no error is displayed to the user. This is to prevent phishing or any
other type of exploitation that can be used by discovering which users are registered with this
application. Text can be added to the server templates to help a user navigate to the next step.
If the end user does not receive a verification code, it may be a problemwith the account
information provided or the OTP DeliveryMechanismmay be referencing an email or phone
number that is not valid.

- 35 -

Chapter 3: Data Access and Mapping
Data stores provide the resources that can be accessed by OAuth2 clients. Attributes can be
mapped from multiple data stores to create a unified identity in a SCIM Resource Type. The
SCIM Resource Type is the component that makes resources available to OAuth2 clients.

Topics include:

Data Components

Store Adapter Overview

Primary and Secondary Store Adapters

SCIM Schemas

Store Adapter Mappings

SCIM Attribute Search Considerations

Maintaining Username Uniqueness

Defining SCIM Resource Types

Defining OpenID Connect Claims

OAuth2 Client-Specific SCIM Attributes

- 36 -

Chapter 3: Data Access and Mapping

Data Components
When a data store is configured, a Store Adapter is installed to read and return native SCIM
objects. Custom store adapters can be created for non-LDAP data stores with the UnboundID
Server SDK. The attributes surfaced for each backend store are mapped in SCIM Resource
Types to enable a unified view of a user profile, and to make them available to OAuth2 clients.

Public Endpoints: UserInfo and SCIM
The Data Broker, acting as a resource server, provides read access to user profile data through
the UserInfo endpoint (/userinfo) and provides full read/write access through the SCIM
Resource Type (/scim/v2/me). The access to these resources is subject to policy rules and
restrictions.

OpenID Connect Claims Map (UserInfo Map)
A claims map maps OpenID Connect UserInfo claims to attributes defined in the SCIM Schema.
Access to resources is read-only. Configure an OpenID Connect Claims map only if using the
UserInfo endpoint.

Store Adapters
A store adapter connects the data coming into the Data Broker with an UnboundID Data Store
or other external data store. For example, an LDAP Store Adapter manages the attribute
mappings from an LDAP data store to a SCIM schema used for a corresponding SCIM Resource
Type. The Data Broker provides an LDAP store adapter.

Store Adapter Mappings
A SCIM Resource Type enables attribute mappings between the native store adapter schema
and the SCIM Schema. The Store Adapter mapping can contain additional information as to
whether the native attribute is readable, writable, searchable, or authoritative. One must be
authoritative. A SCIM Resource Type can map attributes from multiple data stores and
determine which attributes are the authoritative resource for a user profile. See Using SCIM
Resource Type Attributes in Policy for details about policy evaluation.

Data Stores
The data stores are the user repositories or data resources, which can be one or more
UnboundID Data Stores, Proxy servers, or third-party directory servers. SCIM Resource Type
mappings can be used to aggregate attributes from multiple data stores into a unified view.

When a Store Adapter is added to the Data Broker’s server configuration, a correlation
attribute must be defined for SCIM Resource Types that are backed by multiple store adapters.
The correlation attribute defines an attribute for each Store Adapter that is used to uniquely

- 37 -

Store Adapter Overview

identify the same end user data across different store adapters. For example, if every data
store stores a user’s email address, and an email address can always be considered a primary
key (that is, it is always unique per use), then each Store Adapter’s email address attribute can
be set as its correlation attribute.

Store Adapter Overview
A store adapter acts as an interface between the Data Broker’s SCIM Resource Type layer and
an external data store, such as an LDAP directory server, a relational database, or a REST
service. A SCIM Resource Type can have one or more associated store adapters, each
corresponding to a specific type of data store. When user data is retrieved or modified, the
SCIM Resource Type calls the appropriate store adapter, which performs the actual operations
against the data store, and passes results back up to the SCIM Resource Type layer.

The Data Broker provides a default store adapter that supports LDAP directory servers. Custom
store adapters can be written using the UnboundID Server SDK. So that the translation
between a store adapter and a SCIM Resource Type can be managed, store adapters expose
user attributes as a SCIM schema. Attributes from the store adapter schema are mapped to
attributes in the SCIM Resource Type schema.

Creating custom store adapters requires the UnboundID Server SDK. See Server Extensions
for information.

Primary and Secondary Store Adapters
If the Data Broker is used to aggregate user attributes from multiple data stores, secondary
store adapters can be configured. Store adapters contain the configuration that the Data
Broker uses to interact directly with external data stores. Every data store providing a distinct
set of user data must have a store adapter entry in the configuration.

"Primary store adapter" and "Secondary store adapter" designate how a SCIM Resource Type
prioritizes user data lookups to multiple store adapters. The primary store adapter is always
checked first when processing a request for a user resource, and then any secondary store
adapters are checked. A user account effectively does not exist if a record does not exist for it
on the primary store adapter. The primary store adapter should be used to store a user's core
attributes, while a secondary store adapter can store additional attributes.

Defining Correlation Attributes
When handling a request for a particular user, the Data Broker needs a way to correlate an
entry in the primary store adapter with any related entries in secondary store adapters. This is
done by correlating the value of an attribute shared across the store adapters. This is
configured using the secondary store adapter's primary-correlation-attribute and
secondary-correlation-attribute properties. The correlation attribute should have a value
that is unique for each user.

For example, user entries can be correlated across store adapters by email address:

- 38 -

Chapter 3: Data Access and Mapping

$ dsconfig create-secondary-store-adapter \
 --type-name Users \
 --adapter-name MarketingData \
 --set store-adapter:DemographicsStoreAdapter \
 --set primary-correlation-attribute:mail \
 --set secondary-correlation-attribute:emailAddress

Sample Configuration
An environment may have two LDAP data stores with distinct sets of data. Set A may have user
credentials and profile attributes, and is configured with the primary store adapter. Set B may
have demographic data about these users, and is configured with the secondary store adapter.
The following can be configured for this scenario:

1. Configure each server in Set A.

$ bin/dsconfig create-external-server \
 --server-name profile-server \
 --type unboundid-ds \
 ...

2. Configure each server in Set B.

$ dsconfig create-external-server \
 --server-name demographics-server \
 --type unboundid-ds \
 ...

3. Create LDAP load balancing algorithms.

$ dsconfig create-load-balancing-algorithm \
 --algorithm-name "Profile Store LBA" \
 --type failover \
 --set enabled:true \
 --set backend-server:profile-server

$ dsconfig create-load-balancing-algorithm \
 --algorithm-name "Demographics Store LBA" \
 --type failover \
 --set enabled:true \
 --set backend-server:demographics-server

4. Create Store Adapters.

$ dsconfig --adapter-name ProfileStoreAdapter \
 --type ldap \
 --set enabled:true \
 --set "load-balancing-algorithm:Profile Store LBA"
 ...

$ dsconfig --adapter-name ProfileStoreAdapter \
 --type ldap \
 --set enabled:true \
 --set "load-balancing-algorithm:Demographics Store LBA"
 ...

- 39 -

SCIM Schemas

5. Designate the primary store adapter.

$ dsconfig create-scim-resource-type \
 --type-name Users \
 --type mapping \
 --set enabled:true \
 --set endpoint:Users \
 --set primary-store-adapter:ProfileStoreAdapter \
 --set core-schema:urn:example:schemas:Profile:1.0 \
 --set optional-schema-extension:urn:example:schemas:Demographics:1.0

6. Designate the secondary store adapter and correlation attributes.

$ dsconfig create-secondary-store-adapter \
 --type-name Users \
 --adapter-name MarketingData \
 --set store-adapter:DemographicsStoreAdapter \
 --set primary-correlation-attribute:mail \
 --set secondary-correlation-attribute:emailAddress

SCIM Schemas
Each SCIM Resource Type maps to one core SCIM Schema and optional extension schemas.
SCIM schemas are used to define the resources that can be retrieved from a backend data
store. Each SCIM Resource Type represents one type of resource, such as "user" or "account,"
and the schema defines the attributes of that resource.

Store Adapter Mappings
The Data Broker uses Store Adapter Mappings to determine which store adapter handles which
attribute from the SCIM schema. The secondary-store-adapter property of a Store Adapter
Mapping designates the store adapter to use.

The Data Broker can handle cases in which an attribute can be found on multiple store
adapters. In these cases, one Store Adapter Mapping should be created for each combination
of attribute and store adapter. One of these mappings must have the shared attribute set as
authoritative. This designates the store adapter that will be the authoritative source when
multiple possible values are found across a set of store adapters.

In the following example, the SCIM attribute
urn:unboundid:schemas:sample:profile:1.0:topicPreferences is mapped to the LDAP
attribute ubidXTopicPreferenceJSON from the Marketing Data store adapter:

$ bin/dsconfig create-store-adapter-mapping \
 --type-name Users \
 --mapping-name topicPreferences \
 --set secondary-store-adapter:DemographicsStoreAdapter \
 --set scim-resource-type-attribute:urn:example:schemas:Demographics:1.0:topicPreferences
\
 --set store-adapter-attribute:ubidXTopicPreferenceJSON \
 --set authoritative:true

- 40 -

Chapter 3: Data Access and Mapping

SCIM Attribute Search Considerations
In order to provide paging and sorting, the Data Broker holds an entire search result set in
memory while it processes a SCIM search request. This is true for searches that do not request
paging or sorting. The SCIM Resource Type lookthrough-limit property sets an upper bound
for searches, so that clients do not exhaust the server resources. If the number of search
results for a given request exceeds this value, an error is returned to the client indicating that
the search matched too many results. A request that causes an unindexed search is also
restricted to the size limit of the lookthrough-limit setting.

The Data Broker attempts to find a single store adapter that can process the provided search
filter. The primary store adapter is checked first to see if it can process the search filter. If it
cannot, the secondary store adapters are consulted in no particular order. The first store
adapter capable of processing the search filter is chosen. The store adapter must be able to
return a superset of possible matches for the filter. The attributes in the search filter must
correspond to at least one searchable native attribute in the store adapter. If the SCIM
Resource Type is a Mapping SCIM Resource Type, the store adapter mapping for the search
filter attribute must be marked as searchable.

If no store adapters can process the search, the Data Broker returns an error. For each
candidate search result from a store adapter, the Data Broker assembles a complete SCIM
resource by retrieving the native resource for every other store adapter using the store
adapter correlation attributes (set when secondary store adapters are defined) and merging
them together. Each resulting candidate SCIM resource is checked to see if it matches the
provided search filter and is discarded if it does not match.

Maintaining Username Uniqueness
The Data Broker's default schema configuration uses "uid" as the RDN attribute of user DNs,
which ensures that all uid values are unique for that branch of the DIT. In the default
configuration, uid is recognized as a user's username. The following Data Broker functions
rely on this:

l The default-identity-autheticator property of the Identity Provider Service. This
relies on a configuration object with a SCIM filter, which should be configured to only
match zero or one resource.

l The Match Filter property of the default Username Password Identity Authenticator.

l The Store Adapter Mapping for the userName attribute of the default starter schema.

l Username recovery and password reset. When made available to end users through the
Identity Provider Service, these features depend on recover-username-search-filter
or recover-password-search-filter delivering a single result.

It may be the case that the attribute used for the username is also an RDN attribute in the data
store. If every entry resides on the same branch, these attribute values will always be unique.
Any configuration changes that do not maintain this structure must ensure that usernames are

- 41 -

Defining SCIM Resource Types

unique. The UnboundID Data Store provides the attribute uniqueness plugin that can be used if
configuration changes are required. See the UnboundID Data Store Administration Guide.

Defining SCIM Resource Types
SCIM Resource Types provide a unified view of resources between the Data Broker and one or
more underlying data stores, and correspond to the SCIM 2.0 SCIM Resource Type. SCIM
Resource Types determine what resources can be accessed from a data store. Each SCIM
Resource Type represents one resource, such as "user" or "account" and the schema defines
the attributes of that resource.

Note
Whenmapping attributes, data store attributes and SCIMResource Type attributesmust be of
compatible types. For example, an attribute with an integer valuemust bemapped to another
attribute with an integer value. An attribute with a string value can only bemapped to attributes
with boolean, integer, or date-time if it can be parsed.

There are two types of SCIM Resource Types: Pass-through SCIM Resource Type and Mapping
SCIM Resource Type. A Mapping SCIM Resource Type relies on a SCIM Schema, which is
installed with the configuration of a user store on an UnboundID Data Store.

Pass-through SCIM Resource Type
This type of SCIM Resource Type simply exposes the primary store adapter’s data as core
attributes, while secondary store adapter’s data are exposed as schema extensions. No
schema needs to be defined at the SCIM Resource Type and all schema enforcement is at the
responsibility of the store adapters. Since no schema is defined at the SCIM Resource Type,
attribute mappings are not defined. If the configured store adapter exposes a schema, it will
be enforced as the core or extension schemas for the SCIM Resource Type.

Mapping SCIM Resource Type Attributes
Attributes associated with a SCIM Resource Type are configured by specifying at least one core
schema and one or more schema extensions. The core schema defines attributes that can
appear at the root level of the SCIM resource exposed by the SCIM Resource Type. Schema
extensions define attributes that are namespaced by the Schema’s URI. Schema extensions
can be optional or required. When processing client requests, the SCIM resource from the
OAuth2 client is first checked against the schemas defined for the SCIM Resource Type (core or
extension). The request is then mapped to a store adapter object, using the store adapter
mappings, and then processed.

Creating a SCIM Resource Type
After user stores and Store Adapters are in place, SCIM Resource Types can be defined to
provide a unified view of identity data found in multiple data stores. The SCIM Resource Type
determines the attributes that can be accessed by an OAuth2 client.

The following is a sample command for creating a mapping SCIM Resource Type:

- 42 -

Chapter 3: Data Access and Mapping

$ bin/dsconfig create-scim-resource-type \
 --type-name Users \
 --type mapping \
 --set "description:Users Resource Type" \
 --set enabled:true \
 --set endpoint:/Users \
 --set primary-store-adapter:UserStoreAdapter \
 --set core-schema:urn:unboundid:schemas:User:1.0 \
 --set required-schema-extension:urn:unboundid:schemas:sample:profile:1.0

SCIM Resource Types can also be configured in the Management Console through SCIM ->
SCIM Resource Types.

Creating a Mapping SCIM Resource Type
The following information is used to configure a Mapping SCIM Resource Type:

l A name for this SCIM Resource Type.

l An optional description for the SCIM Resource Type.

l The SCIM Resource Type's endpoint HTTP address, which will be relative to the /scim/v2
base URL.

l A primary store adapter to persist the data for this SCIM Resource Type.

l The primary store adapter attribute to use as the value for the SCIM object ID. The
object ID is a unique, immutable identifier for fetch, update, and delete operations on an
object. The entryUUID attribute is the default for an LDAP store adapter.

l A look-through limit for the maximum number of resources that the SCIM Resource Type
should scan when processing a search request. This prevents an OAuth2 client from
taking too many of the server's resources for a single search.

l The core schema for the primary store adapter and any extension schemas.

Creating a Pass Through SCIM Resource Type
The following information is used to configure a Pass Through SCIM Resource Type:

l A name for this SCIM Resource Type.

l An optional description for the SCIM Resource Type.

l The SCIM Resource Type's endpoint HTTP address, which will be relative to the /scim/v2
base URL.

l A primary store adapter to persist the data for this SCIM Resource Type.

l The primary store adapter attribute to use as the value for the SCIM object ID. The
object ID is a unique, immutable identifier for fetch, update, and delete operations on an
object. The entryUUID attribute is the default for an LDAP Store Adapter.

- 43 -

Defining SCIM Resource Types

l A look-through limit for the maximum number of resources that the SCIM Resource Type
should scan when processing a search request. This prevents an OAuth2 client from
taking too many of the server's resources for a single search.

Editing Attribute and Sub-Attribute Properties
Attribute properties in the schema can be configured to change the actions that can be
performed, and when an attribute is returned to a requesting OAuth2 client. If the attribute
contains sub-attributes, those can be configured as well.

$ bin/dsconfig set-scim-attribute-prop \
 --schema-name urn:unboundid:schemas:User:1.0 \
 --attribute-name displayName \
 --set "description:User's name."
 --set required:true \
 --set case-exact:true \
 --set mutability:read-only

This can be configured in the Management Console by editing a schema in SCIM -> SCIM
Schemas. Select a schema and edit any of the attributes listed. The following can be
configured for an attribute or sub-attribute:

l An optional description of the attribute.

l The attribute type, which can be:
o string - A sequence of zero or more Unicode characters encoded using UTF-8.

o boolean - The literal true or false.

o datetime - A date and time encoded as a valid xsd:dateTime (for example, 2008-
01-23T04:56:22Z).

o decimal - A real number with at least one digit to the left and right of the period.

o integer - A decimal number with no fractional digits.

o binary - Arbitrary binary data.

o reference - A URI for a resource. A resource can be a SCIM resource, an external
link to a resource (such as a photo), or an identifier such as a URN. The
reference-type property must be specified for these attributes.

o complex - A singular or multi-valued attribute whose value is a composition of
one or more sub-attributes.

l Specify if the attribute is required.

l Specify if the attribute is case-sensitive.

l Specify if the attribute can have multiple values.

l Specify suggested canonical values that can be used (such as work and home).

l The circumstances under which the values of the attribute can be written (mutability).
Values include:

- 44 -

Chapter 3: Data Access and Mapping

o read-only - The attribute cannot be modified.

o read-write - The attribute can be updated and read.

o immutable - The attribute may have its initial value set, but cannot be modified
after.

o write-only - The attribute can be updated but cannot be read.

l The circumstances under which the values of the attribute are returned in response to a
request. Values include:

o by-default - The attribute is returned by default in all SCIM responses where
attribute values are returned.

o upon-request - The attribute is returned in response to any PUT, POST, or PATCH
operations if the attribute was specified by the client (for example, the attribute
was modified).

o always - The attribute is always returned.

o never - The attribute is never returned.

l The SCIM Resource Types that can be referenced. This property is only applicable for
attributes that are of type reference. Valid values are a defined SCIM Resource Type,
external indicating the resource is an external resource (such as a photo), or uri
indicating that the reference is to a service endpoint or an identifier (such as a schema
urn).

l If the attribute is complex and has sub-attributes, they can be edited as well with these
values.

Editing Store Adapter Mappings
Store adapters are designed to surface the schema of a backend data store. Store Adapter
Mappings define a mapping between SCIM Resource Type attributes and store adapter
attributes. When the Data Broker is installed with an UnboundID Data Store, the schema
attributes are automatically mapped to a User SCIM Schema Resource Type.

Note
If the SCIMResource Type attribute name changes, make sure that scopes andOpenID
Connect Claims are updated to reflect the change.

The following is a sample command for editing a Store Adapter attribute mapping:

$ bin/dsconfig set-store-adapter-mapping-prop \
 --type-name Users \
 --mapping-name communicationOpts \
 --set store-adapter-attribute:ubidXCommunicationOptJSON \
 --set writable:false \
 --set searchable:true \
 --reset authoritative

- 45 -

Defining OpenID Connect Claims

Store Adapter Mappings can also be configured in the Management Console through SCIM ->
SCIM Resource Types. Click Actions -> Edit Store Adapter Mappings for a SCIM
Resource Type. The following is displayed:

Individual attributes can be changed, or all can be edited by clicking Bulk Edit. For each
attribute, the following can be configured:

l The store adapter attribute that is mapped to the SCIM Resource Type attribute.

l Readable – The SCIM Resource Type can read this attribute.

l Writable – The SCIM Resource Type can write to this attribute.

l Searchable – This specifies whether the attribute is efficiently searchable in the
underlying data store. Indexed data store attributes determine what attributes (from the
SCIM Resource Type Schema) can be used in a SCIM filter when performing a query. If
an attribute is not indexed in the data store, it should not be marked as Searchable here.

l Authoritative – If there are multiple mappings for this attribute (from multiple data
stores), one must be marked Authoritative.

Defining OpenID Connect Claims
A UserInfo endpoint is an OAuth2 protected resource that returns information about an
authenticated end user. UserInfo Mapping enables mapping the Identity Service Provider's
SCIM Resource Type attributes to claims returned from the UserInfo endpoint. The standard
UserInfo data and claims are detailed in the OpenID Connect Authentication 1.0 Specification.
Any custom claims can be defined and exposed at the UserInfo endpoint by adding (non-
standard) entries in the UserInfo map.

- 46 -

Chapter 3: Data Access and Mapping

OpenID Connect Claims and Scopes
For an OAuth2 client to successfully retrieve an OpenID Connect claim from the UserInfo
endpoint, it must request and get consent to use a corresponding scope. Make sure that
configured scopes contain the attributes that clients will request. Make sure that any changes
to the SCIM schema or attribute mapping are also made in the scope configuration.

Complex Attribute Mapping
If an attribute is complex (such as urn:scim:schemas:core:1.0:name), the UserInfo endpoint
returns a JSON object with property names matching the complex attribute's sub-attributes.
For example, if urn:scim:schemas:core:1.0:name were mapped to a custom name_object
OpenID Connect claim, the following would be returned for this claim:

"name_object":{"formatted":"Mort Kurio","familyName":"Kurio","givenName":"Mort"}

Sub-claims are mapped only if the OpenID Connect claim itself is correctly mapped to a SCIM
Resource Type attribute.

Creating an OpenID Connect Claims Map
OpenID Connect Claims define a claim that can be exposed through the UserInfo endpoint, and
its mapping to attribute(s) of the SCIM Resource Type that is defined for the Identity Provider
Service. Claims can be defined by name or the path, for example:

l name - Defines the name claim whose value is mapped from an attribute in the SCIM
Resource Type that is defined for the Identity Provider Service.

l name.last - Defines the name claim whose value is a JSON object where the field last
is mapped from an attribute in the SCIM Resource Type that is defined for the Identity
Provider Service.

l * - All core or extension identity resource attributes are defined as claims with the same
name and value.

l urn:extension:* - Maps all extension attributes identified by extension URN
urn:extension in the SCIM Resource Type that is defined for the Identity Provider
Service.

l addresses[type eq "preferred"].postalCode - Maps the postalCode sub-attribute
of the address, where the sub-attribute type equals preferred.

The following is a sample command line for adding a claim:

$ bin/dsconfig create-openid-connect-claim \
 --claim-name email_work \
 --set 'identity-resource-attribute:emails[primary eq "true"].value'

Maps can also be edited and created in the Management Console under Identity Provider ->
OpenID Connect Claims. The following information is needed to create a claims map:

- 47 -

OAuth2 Client-Specific SCIM Attributes

l The name of the claim.

l The attribute name as represented in the SCIM Resource Type that is defined for the
Identity Provider Service.

OAuth2 Client-Specific SCIM Attributes
Some environments may find it useful to designate a namespaced, schema-less portion of a
SCIM user resource, in which an OAuth2 client can store its data. For example, a resource type
could be configured such that an application may write any previously undefined attributes that
are prefixed with urn:customApp1.

To enable this, the data store schema must first have a single-valued JSON attribute defined to
hold application-specific attributes. For example, for an LDAP attribute called customApp:

customApp: { "urn:customApp1":{ "wine":["Napa Cabs","French Burgundy","Lodi Zinfandel"],
"age":"2000-2010" } }

This value should appear in the SCIM resource as follows:

 'urn:customApp1' : {
 'wine' : ['Napa Cabs', 'French Burgundy', 'Lodi Zinfandel'],
 'age' : '2000-2010'
 }

The following is a command line sample of the steps needed to configure this type of
functionality in the Data Broker, or this process can be done in the Management Console.

1. Create a store adapter mapping from "*" (SCIM) to "customApp" (LDAP). Using a
wildcard SCIM attribute, client-specific SCIM attributes do not need to be defined in
advance. To map only attributes from a single SCIM schema to an LDAP attribute, use a
schema-specific SCIM wildcard such as urn:myExtensionSchema:*.

$ bin/dsconfig create-store-adapter-mapping \
 --type-name "Users" \
 --mapping-name "customAppWildcard" \
 --set "scim-resource-type-attribute:*" \
 --set store-adapter-attribute:customApp

2. Set the SCIM Resource Type's schema-checking-option property to allow-undefined-
attributes.

$ bin/dsconfig set-scim-resource-type-prop \
 --type-name "Users" \
 --add schema-checking-option:allow-undefined-attributes

3. Define a wildcard scope that uses the client-specific namespace urn:customApp1 as a
prefix. Since the mapping is a wildcard, this prevents the client from reading or writing
any user attribute, and client-specific attributes do not need to be defined in advance.

$ bin/dsconfig create-oauth2-scope \
 --scope-name Wildcard-Scope \
 --type authenticated-identity \

- 48 -

Chapter 3: Data Access and Mapping

 --set "consent-prompt-text:Save application data to your account!" \
 --set "resource-attribute:urn:customApp1:*" \
 --set resource-operation:modify \
 --set resource-operation:retrieve

4. Create the OAuth2 client and assign the wildcard scope to it.

$ bin/dsconfig create-oauth2-client \
 --client-name "App1" \
 --set client-id:<App-ID> \
 --set client-secret:<secret> \
 --set grant-type:authorization-code \
 --set grant-type:implicit \
 --set scope:openid \
 --set scope:email \

--set scope:Wildcard-Scope \
 --set redirect-url:https://company.com:<port>/client/

- 49 -

Chapter 4: Identity Provider Service and
Scopes
Scopes define the attributes that an OAuth2 client can request, the name that is displayed to
end users, the claims that can be accessed, and the actions that can be performed on each
attribute. Scopes must be defined in the Data Broker server before a client can include them in
requests. Scopes are also used to capture consent for the requested resources.

The Identity Provider Service defines the OAuth2 and OpenID Connect properties for access to
the Data Broker. Self-service account registration, username retrieval, and password reset
configuration is also defined here.

Topics include:

OAuth2 Overview

OAuth2 Scopes

Creating Scopes

Identity Provider Settings

- 50 -

Chapter 4: Identity Provider Service and Scopes

OAuth2 Overview
The Data Broker, as an Identity Provider, uses the OAuth2 authorization framework, which
enables clients to obtain access to protected resources by using tokens. The security and
privacy of user information relies on the access requirements and consent flows configured for
the OAuth2 client.

OpenID Connect, built on the OAuth2 standard, is the identity layer that enables clients to
authenticate end users without performing the authentication themselves. It also enables end-
user identity data to be shared between interested parties with the end-users’ consent. It
provides two primary mechanisms for doing this:

l ID tokens. ID tokens are compact objects which identifies the user making the request
and provide information about authentication events.

l The UserInfo endpoint. This is a bearer token-protected REST endpoint which provides
attributes (“claims”) about the identity of the access token owner.

The OAuth2 implementation, defined in the Identity Provider Service, provides the necessary
interfaces to define access requirements and develop an OAuth2 client. After the Data Broker
is installed, the Identity Provider Service can be configured with the dsconfig tool or through
the Management Console.

The encryption and decryption keys used to protect tokens and authorization codes are stored
in the encryption settings database. See Managing Server Encryption Settings for information.

OAuth2 Scopes
When an OAuth2 client makes an authorization request using the standard OAuth2 endpoints, it
specifies the level of access that it requires using scopes. Based on the application’s
configuration, the XACML policies that process the request, and consents granted by a user, the
Data Broker will decide which scopes to return in an access token.

There are three scope types:

l Generic OAuth2 scope (used for external Resource servers).

l Authenticated Identity scope.

l Resource scope.

Consents can be captured for any scope requested during authorization by using the prompt
consent obligation in a XACML Policy.

A Generic OAuth2 scope includes the following properties, which are the base properties for the
Authenticated Identity and Resource scopes.

- 51 -

OAuth2 Scopes

Property Description

Token Name The scope name as presented in an OAuth2 request.

Type The scope type, which is oauth2 for generic scopes.

Description A description of the scope for administrative use.

Consent Prompt Text A description of the scope that will be presented in a consent dialog.

Tags
A list of Tags associated with this scope. Tags are arbitrary additional properties that
can be examined by XACML policies.

Generic OAth2 Scope Properties

Authenticated Identity Scope
This scope is granted for an authenticated end user. Once granted, the scope can be used to
access the attributes of that authenticated identity. The attributes can be obtained through
SCIM endpoints using the /Me authenticated subject alias as well as the URI of the SCIM
resource, or obtained as OpenID Connect claims using the /UserInfo endpoint.

Properties in this scope include those in the standard OAuth2 scope and the following
properties. At least one of the operation properties must have a value. Policy processing of
requests that contain account, consent, or external identity provider operations is described in
SCIM Sub-Resource Operation Policy Evaluation.

Property Description

Type
The scope type, which is authenticated-identity for authenticated
identity scopes.

Resource Operations
Operations can include retrieve (GET) or modify (PATCH or PUT) to
endpoint /scim/v2/<id>.

Account Operations

Operations can include:

l reset-password (PUT) to endpoint
/scim/v2/<id>/password

l retrieve-password-quality-requirements (GET) from
endpoint /scim/v2/<id>/
passwordQualityRequirements

l retrieve-account-state (GET) from endpoint
/scim/v2/<id>/account

l replace-account-state (PUT) to endpoint
/scim/v2/<id>/account

Consent Operations

Operations can include:

l retrieve-consent (GET) from endpoint
/scim/v2/<id>/consents or
/scim/v2/<id>/consents/<id>

Authenticated Identity Scope Properties

- 52 -

Chapter 4: Identity Provider Service and Scopes

Property Description

l revoke-consent (DELETE) from endpoint
/scim/v2/<id>/consents/<id>

l retrieve-consent-history (GET) from endpoint
/scim/v2/<id>/consentHistory/<id>

External Identity Operations

Operations can include:

l retrieve-external-identity (GET) from endpoint
/scim/v2/<id>/externalIdentities or
/scim/v2/<id>/externalIdentities/<id>

This will expose access tokens from the identity provider.

l unlink-external-identity (DELETE) from endpoint
/scim/v2/<id>/externalIdentities/<id>

Resource Attributes

A list of one or more SCIM attributes of the authenticated identity for which this
scope allows access. The type of access is determined by the operation
properties retrieve, replace, and modify. A wildcard value of * can be
used for all attributes. A schema-specific wildcard value of the form
urn:<schemaName>:* can be used to represent all attributes of a single
schema namespace. Access to attributes allowed per operation is the union of
all resourceAttributes allowed in the scope.

Authenticated Identity Scope Properties

Resource Scope
An OAuth2 scope that allows an OAuth2 client bearing a granted token to access resources of a
specified SCIM Resource Type. It defines the SCIM operations (search, create, retrieve,
update, and delete) that can be performed by the client, and the attributes that can be
retrieved or updated. A Resource scope is similar to an Authenticated Identity scope, but
potentially allows access (subject to XACML policy) to all resources of a specified SCIM
Resource Type.

Properties in this scope include those in the Authenticated Identity scope and the following
properties. At least one of the operations must have a value. Policy processing of requests that
contain account, consent, or external identity provider operations is described in SCIM Sub-
Resource Operation Policy Evaluation.

Property Description

Type The scope type, which is resource for resource scopes.

Scim Resource Type The SCIM Resource Type that can be accessed with this scope.

Resource Operations

Operations can include:

l create (POST) to endpoint /scim/v2

l search (GET) from endpoint /scim/v2

Resource Scope Properties

- 53 -

OAuth2 Scopes

Property Description

l retrieve (GET) from endpoint /scim/v2/<id>

l replace (PUT) to endpoint /scim/v2/<id>

l modify (PATCH) to endpoint /scim/v2/<id>

l delete (DELETE) from endpoint /scim/v2/<id>

Account Operations

Only allowed if the SCIM Resource Type is User. Operations can include:

l resetPassword (PUT) to endpoint
/scim/v2/<id>/password

l retrievePasswordQualityRequirements (GET) from
endpoint /scim/v2/<id>/
passwordQualityRequirements

l retrieveAccountState (GET) from endpoint
/scim/v2/<id>/account

l replaceAccountState (PUT) to endpoint
/scim/v2/<id>/account

Consent Operations

Only allowed if the SCIM Resource Type is User. Operations can include:

l retrieve-consent (GET) from endpoint
/scim/v2/<id>/consents or
/scim/v2/<id>/consents/<id>

l revoke-consent (DELETE) from endpoint
/scim/v2/<id>/consents/<id>

l retrieve-consent-history (GET) from endpoint
/scim/v2/<id>/consents or
/scim/v2/<id>/consents/<id>

Resource Scope Properties

- 54 -

Chapter 4: Identity Provider Service and Scopes

Property Description

External Identity Operations

Only allowed if the SCIM Resource Type is User.

Operations can include:

l retrieve-external-identity (GET) from endpoint
/scim/v2/<id>/externalIdentities or
/scim/v2/<id>/

externalIdentities/<id>

This will expose access tokens from the identity provider.

l unlink-external-identity (DELETE) from endpoint
/scim/v2/<id>/externalIdentities/<id>

Resource Attributes

A list of one or more SCIM attributes of the authenticated identity for which
this scope allows access. The type of access is determined by the
operation properties create, retrieve, replace, and modify. A
wildcard value of * can be used for all attributes. A schema-specific
wildcard value of the form urn:<schemaName>:* can be used to
represent all attributes of a single schema namespace. Access to attributes
allowed per operation is the union of all resourceAttributes
allowed in the scope.

Resource Scope Properties

For granting access to Data Broker resources, the values of the resourceAttributes property
are attribute notation strings as defined in the SCIM 2.0, with the addition of being able to
specify wildcards for all attributes.

Note
The default OAuth2 Scope policy will deny requests for Resource scopes unless the client
credentials grant type is used (or, if a different grant type is used and the end user has the
admin entitlement).

Creating Scopes
An OAuth2 scope indicates which data are being requested with an OAuth2 authorization
request. Typically, one or more scopes are submitted with each request. Scopes are created
based on the access and authentication requirements of the data requested. A standard set of
OpenID Connect scopes is installed with the Data Broker, and additional scopes can be created.

The following is a sample command for creating a scope:

$ bin/dsconfig create-oauth2-scope \
 --scope-name workPhone \
 --type authenticated-identity \
 --set "consent-prompt-text:Can I access your work phone number?" \
 --set consent-operation:retrieve-consent \
 --set external-identity-operation:link-external-identity \
 --set account-operation:retrieve-account-state \
 --set resource-attribute:work-phone \
 --set resource-operation:modify

- 55 -

Identity Provider Configuration

Scopes can also be created in the Management Console through Authorization and Policies
-> OAuth2 Scopes.

Creating an Authenticated Identity OAuth2 Scope
The following information is used to configure an Authenticated Identity scope. See
Authenticated Identity Scope for details about the values allowed for consent, external identity
provider, account, and resource operations.

l An OAuth2 access token name that is compliant with the OAuth 2.0 Specification (RFC
6749). The following characters are not permitted: space, '"', '\', '+' and ','.

l An optional description.

l Any optional tags associated with this scope. Tags are arbitrary additional properties that
can be examined by XACML policies for authorization decisions, such as HIPAA or
billing.

l The text displayed to a user when prompting for consent to access this scope.

l Specify the operations allowed by this scope on a consent sub-resource.

l If performing authentication through an external identity provider, specify actions
allowed by this scope on an external identity sub-resource.

l Specify the account management operations allowed by this scope. These actions rely on
configuration in the Data Store.

l Specify the resource attributes for which this scope allows access. The type of access is
determined by the Resource Operation property. A value of "*" indicates that all
attributes are accessible.

l Specify the operations allowed by this scope on the specified resource attributes.

Creating a Resource OAuth2 Scope
All of the Authenticated Identity values are available for the Resource scope, with the addition
of the SCIM Resource Type that specifies the type of resource to which the scope provides
access. See Resource Scope for details about the values allowed for consent, external identity
provider, account, and resource operations.

Identity Provider Configuration
The Data Broker as an Identity Provider is responsible for providing token and authorization
code identifiers for users trying to interact with the system. Authentication can be performed
by the Data Broker, or the Data Broker can rely on a configured external identity provider. The
following are configured for the Data Broker:

l External Identity Provider – Configure Facebook, Google Plus, or an OpenID Connect
provider for authentication.

- 56 -

Chapter 4: Identity Provider Service and Scopes

l External Identity Provider Attribute Mapping – Map External Identity Provider attributes
to SCIM Resource Types, and define what should occur at login if there is a change to an
attribute.

l Identity Authenticator – The default Username Password Identity Authenticator is
configured, but can be changed, or another authenticator can be created. Identity
Authenticators define how a user authenticates with the Data Broker.

l Identity Provider Service – Defines the properties that affect the Data Broker OAuth2
service including access token settings, password recovery options, account recovery
options, and the use of reCAPTCHA.

Settings for the previous features are used to configure the following:

l OAuth2 Client – Define the OAuth2 clients that can request access to resources through
the Data Broker.

l OpenID Connect Claim – OpenID Connect Claims define a claim that can be exposed
through the UserInfo endpoint, and its mapping to attribute(s) of the identity resource.

Defining the Identity Provider Service
The Identity Provider Service defines the properties that affect the Data Broker OAuth2
functions. These settings are used to define the actions that the Data Broker can perform as an
Identity Provider, including token rules and restrictions, log in and registration parameters,
and username and password recovery restrictions.

The following is a sample command line configuration:

$ bin/dsconfig set-identity-provider-service-prop \
 --set "authorization-code-validity-duration:2 m" \
 --set "access-token-validity-duration:11 h" \
 --set "refresh-token-validity-duration:3 w 1 d" \
 --set register-enabled:true \
 --add register-resource-attribute:address \
 --set recover-password-enabled:true \
 --set recaptcha-key:<key> \
 --set recaptcha-secret:<secret>

The username and password recovery features are dependent on the configuration in the Data
Store. See Account Recovery Configuration in the Data Store for details.

The Identity Provider Service can also be configured in the Management Console under
Identity Provider -> Identity Provider Service. The following information is needed to
configure the Identity Provider Service.

OAuth2 and OpenID Connect Settings
l Authorization code validity duration specifies the length of time an authorization code is
valid. OAuth2 client configuration can specify a different validity duration that is specific
to authorization codes generated for that client, which will override this property.

- 57 -

Identity Provider Configuration

l Access token validity duration specifies the length of time an access token is valid.
OAuth2 client configuration can specify a different validity duration that is specific to
access tokens granted for that application, which will override this property.

l Refresh token validity duration. OAuth2 client configuration can specify a different
validity duration that is specific to refresh tokens generated for that application, which
will override this property. A value of 0 will disable the generation of refresh tokens.

l ID Token validity duration specifies the length of time an OpenID Connect token is valid.
OAuth2 client configuration can specify a different validity duration that is specific to ID
tokens granted for that client, which will override this property.

l ID Token issuer name specifies a unique identifier for the Issuer (iss) claim of an ID
token. This value is inserted into a URL of the form https://issuer_name when
returned as the unique issuer identifier in an OpenID Connect ID token. The default value
for this property is the host name of the Data Broker installation.

l The signing algorithm to use when generating an OpenID Connect ID token. OAuth2 client
configuration can specify a different signing algorithm that is specific to responses
generated for that client, which will override this property.

General Settings
l SCIM Resource Type containing the attributes of identities that can be authenticated by
the Data Broker, which must be configured with a primary LDAP store adapter connected
to an UnboundID Data Store or an UnboundID Proxy Server. The Data Broker performs
authentication against this SCIM Resource Type using the credentials provided through
the login interfaces and REST APIs. Attributes of the authenticated identity can be
retrieved and provided to clients through the SCIM /Me endpoint or OpenID Connect
claims. Account management, password management, consent management, external
identity provider login and linking, and self-registration are performed against identities
in this SCIM Resource Type.

l The default login and logout URLs.

l The default Identity Authenticator, which determines the authentication scheme for the
Data Broker's Identity provider function.

Self-Service Account Flows
The following settings determine the features that are enabled for user registration, account
recovery, and password reset. See User Account Registration and Recovery and Account
Recovery Configuration in the Data Store for examples and additional requirements.

l Register Enabled – Specifies whether or not the register self-service account flow
should be enabled. When disabled, the link will not be rendered on the login view and any
attempts to access the register endpoint will result in a 403 Forbidden HTTP status code.

- 58 -

Chapter 4: Identity Provider Service and Scopes

l Register Resource Attribute – Specifies the resource attribute paths that the
registration account flow should allow the client to set. Registration will fail if a client
submits a resource with attributes having paths that are not in this list.

l Recover Username Enabled – Specifies whether or not the username recover self-
service account flow should be enabled. When disabled, the link will not be rendered on
the login view and any attempts to access the username recovery endpoint will result in
a 403 Forbidden HTTP status code. If enabled, the Data Store should be configured with
an OTP (one time password) Delivery Mechanism and a single-use-token Extended
Operation Handler.

l Recover Username Search Filter – Specifies the SCIM query used when the
username recover self-service account flow searches for the account to recover. This
SCIM filter expression should refer to attributes available in the SCIM Resource Type
specified for Identity Provider Service. This filter should be constructed to not return
more than a single result entry, and should not cause the primary store adapter to
perform unindexed searches.

l Recover Username Validity Duration – Specifies the duration the username recover
code is valid before expiring.

l Recover Username Full Text – Specifies the full text sent with the username recover
code, if the one time password mechanism supports long text.

l Recover Username Compact Text – Specifies the compact text sent with the
username recover code, if the one time password mechanism does not support long text.

l Recover Username Subject – Specifies the subject sent with the username recover
code when the one time password mechanism supports subjects.

l Recover Password Enabled – Specifies whether or not the password recover self-
service account flow should be enabled. When disabled, the link does not display on the
login page and any attempts to access the password recovery endpoint will result in a
403 Forbidden HTTP status code. If enabled, the Data Store should be configured with an
OTP Delivery Mechanism and a deliver-password-reset-token Extended Operation
Handler.

l Recover Password Search Filter – Specifies the SCIM query used when the password
recovery self-service account flow searches for the account to recover. This SCIM filter
expression should refer to attributes available in the SCIM Resource Type specified for
Identity Provider Service. This filter should be constructed to not return more than a
single result entry, and should not cause the primary store adapter to perform unindexed
searches.

l Recover Password Full Text – Specifies the full text sent with the password reset
code, if the Data Store's one time password mechanism supports long text.

- 59 -

Identity Provider Configuration

l Recover Password Compact Text – Specifies the compact text sent with the
password reset code, if the Data Store's one time password mechanism does not support
long text.

l Recover Password Subject – Specifies the subject sent with the password reset code
when the one time password mechanism supports subjects.

l Recaptcha Key – Specifies the Google reCAPTCHA API key the register and recover
self-service account flows should use. If a key is not specified, reCAPTCHA is not used.

l Recaptcha Secret – Specifies the Google reCAPTCHA API secret the register and
recover self-service account flows should use. If a secret is not specified, reCAPTCHA
will not be used by those flows.

Creating an Identity Authenticator
Identity Authenticators define how a user can authenticate with the Data Broker. A default
Username Password Authenticator is enabled, and can be changed, or a new authenticator can
be configured.

The following is a sample command:

$ bin/dsconfig create-identity-authenticator \
 --authenticator-name "New Authenticator" \
 --type username-password \
 --set enabled:true \
 --set 'match-filter:userName eq "$1"'

Configure the following for an Identity Authenticator:

l The a name and optional description for this authenticator.

l A match filter, which specifies the SCIM search filter that should be used when
performing searches to map the provided username to a backend user resource. The
filter pattern can include a string from a capturing group matched by the match pattern
by using a dollar sign ($) followed by an integer value that indicates which capturing
group should be used. Capture group 0 refers to the entire username that matched. For
example, the match-filter userName eq $1 and organization eq $2 with a match
pattern of ^(.*)@(.*)$ will substitute $1 and $2 with the portions before and after the
'@' symbol in the username.

l A match pattern, which specifies the regular expression pattern used to identify portions
of a username. Any portion of the username that matches this pattern is replaced with
the provided match-filter replace pattern. If multiple substrings within the given
username match this pattern, all occurrences are replaced. If no part of the given
username matches this pattern, the match-filter is not altered. It must be a valid regular
expression as described in the API documentation for the java.util.regex.Pattern
class, including support for capturing groups. For example, a match-pattern of ^(.*)@
(.*)$ will match an e-mail address username. The match filter userName eq $1 and

- 60 -

Chapter 4: Identity Provider Service and Scopes

organization eq $2 can then be used to substitute $1 and $2 with the portions before
and after the '@' symbol in the username.

Note Make sure that SCIM search functions are designed to return one, unique username. See
Maintaining UsernameUniqueness for details.

- 61 -

Chapter 5: User Authentication
The Data Broker supports the OpenID Connect Standard 1.0, which enables an OAuth2 client to
use the Data Broker as its Identity Provider. OpenID Connect enables the client to offload its
user authentication function to the Data Broker, which will prompt the end user for a login
name and password and issue an ID Token that the client can use to validate the user's
identity.

Obtaining an access tokens, refresh tokens, and token validation are fully documented in the
OpenID Connect 1.0 specification.

Topics include:

HTTP Authentication Schemes

OpenID Connect Request

OpenID Connect Response

Using the Data Broker as Relying Party

Creating an External Identity Provider

- 62 -

Chapter 5: User Authentication

HTTP Authentication Schemes
Three basic authentication schemes are provided for logging into or registering with the Data
Broker. These schemes define the URLs that manage requests, produce failure pages, and
determine where an end user is directed after successfully authenticating.

l Form Login HTTP Authentication Scheme – Used to provide a form login configuration for
authentication with a username and password.

l External Identity Provider HTTP Authentication Scheme – Used to provide a login
configuration for authentication with an external identity provider.

l Registration HTTP Authentication Scheme – Used to create a new user from attributes
submitted using a form and then authenticate as that user.

OpenID Connect Request
To authenticate an end user, an OAuth2 client must have the following information from the
Data Broker server administrator:

client identifier - An unique identifier issued to the client by the Data Broker server to
identify itself.

client secret - A shared secret established between the Data Broker Server and the client
application that is used for signing the ID token when it is returned to the client.

authorization, token, validate, endpoint URLs - The Data Broker’s HTTP endpoint
addresses for authenticating the end user, obtaining authorization, and issuing and validating
access tokens. See Data Broker Endpoints for OAuth2 Clients for details.

userinfo endpoint - The address of the resource that, when presented with a token by the
client, returns attributes about the end user.

The client uses this information to create an OAuth2 request to obtain an access token.

The following example request uses the implicit grant flow:

GET /authorize?response_type=token%20id_token&client_id6c7283d2-92d6-4767-9ceb-
ada61e5e7e0d&state=4848573984983&scope=openid%20profile&

redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

An OAuth2 request becomes an OpenID Connect request with the inclusion of the openid
scope. With the openid scope and the response_type=id_token, the client is requesting an
identifier for the user as well as the ID token. The Data Broker XACML policies will determine
the attributes that the clients can access within any scopes that are defined.

OpenID Connect Response
If the end user logged in properly and authorized the OAuth2 client request, the response from
the Data Broker server includes an access token. If the request is an OpenID Connect request
(contains the openid scope and response_type=id_token), the OAuth2 access token

- 63 -

The Data Broker as a Relying Party

response will include the access_token and id_token parameters. The following is encoded as
a JSON Web token in the id_token:

aud (audience) – The client for which this token is intended.

exp (expiration) – The time after which this token is no longer valid.

iat (integer). The time at which the token was issued.

sub (subject) – A locally unique identifier for the end user. This value is never reassigned.

iss (issuer) – An HTTPS URI that is the fully qualified host name of the issuer, which is paired
with the user identifier to create a globally unique identifier.

nonce – The nonce value sent in the request to ensure that the response is original and cannot
be reused.

The id_token parameter ensures that the data received by the OAuth2 client has not been
modified. The Data Broker can only issue assertions about registered clients and user
identifiers within its domain. The token is validated by the Data Broker /oauth/validate
endpoint. The client must do the following:

l Verify that the aud matches its client ID and iss matches the domain of the server that
issued the client ID.

l Store the user identifier and iss together.

The following is an example of a base64url decoded ID token:

{
"iss": "https://server.example.com",
"sub": "24400320",
"aud": "s6BhdRkqt3",
"nonce": "n-0S6_WzA2Mj",
"exp": 1311281970,
"iat": 1311280970,
"auth_time": 1311280969,

}

The Data Broker as a Relying Party
The Data Broker, as relying party, acts as a client of an external identity provider service.
Users can log into the Data Broker with external identity provider accounts. The Data Broker
provides authentication claims, account linking, and profile retrieval services to the OAuth2
client. The Data Broker must be registered with the identity provider to enable this flow.

A social login link (and icon) can be configured and displayed on the Data Broker’s default login
page for clients configured to use an external identity provider. The login template reads this
information through the LoginPageContextProvider. See About Velocity Templates for more
information.

When an end user clicks an external identity provider link, a GET request is sent to the
/oauth/account/idpLogin endpoint with the following two form parameters:

idp=<external identity provider name>
client_id=<requesting client id>

- 64 -

Chapter 5: User Authentication

The /oauth/account/idpLogin endpoint redirects the browser to the external provider's
authorization endpoint with an OpenID Connect code request:

response_type=code
client_id=<relying party client id>
redirect_uri=https://<host>:<port>/oauth/account/idpCallback/<externaIdpName>
state=<state value generated by the /oauth/account/idpLogin endpoint>
scope=<all scopes registered with the relying party client, including ‘openid’>

The <externaIdpName> is the name given to this provider in the Data Broker. After the end
user authenticates to the external identity provider and authorizes the OpenID Connect
request, the external provider redirects the browser to the Data Broker's
/oauth/account/idpLogin endpoint, as provided in the redirect_uri value. If a matching
account is found at the Data Broker, the end user will need to log in to link the Data Broker
account and the account at the external provider. Otherwise, a new Data Broker account can be
created.

Note
The redirect_uri value used in this flow should be registered as a redirect URI with the
application used by the Data Broker at the external identity provider. It should have the form
https://<DataBrokerServer>:<port>/oauth/account/idpCallback/<externaIdpNa

me>.

Creating an Account through Identity Provider Login
If an end user does not have a Data Broker account, one can be created by the Data Broker
with the information obtained from the external identity provider.

The Data Broker applies the SCIM Resource Type mappings for the identity provider to the
retrieved profile data. A 'Create and Link Account' form is displayed to the user. The user
supplies the information, which is submitted to the SCIM /registration.do endpoint with the
following parameters. If no additional information is needed, a new Data Broker account is
created.

client_id=<requesting client id>
identityResource=<dynamically generated SCIM representation of the account to be created>
idpToken=<a token that contains state information about the authentication/registration
request>

The user is redirected to the authorization URI specified by the requesting client, and the flow
continues to the consent page for the scopes requested by the client. If the user consents, the
client receives an access token issued by the Data Broker.

Creating an External Identity Provider
An External Identity Provider can be used to provide a social log in option to users, reset or
retrieve account usernames and passwords, and link existing account data to data in a SCIM
Resource Type. The options for these actions are defined in the Identity Provider Service.

The Data Broker provides templates for creating Facebook and Google identity providers, or an
OpenID Connect provider can be configured. All can be created through the Management
Console or from the command line.

- 65 -

Creating an External Identity Provider

The following is a sample command for creating a Facebook identity provider:

$ bin/dsconfig create-external-identity-provider \
 --provider-name "Facebook Provider" \
 --type facebook \
 --set "description:Facebook for Web App access" \
 --set enabled:true \
 --set app-id:847392057829512 \
 --set "app-secret:AACbIFDY0ke7lyMjDhfBVsgYk+9BczWYM24=" \
 --set permission:email

The following general information is needed to add any identity provider:

l A name and an optional description for this provider.

l The location URI for the icon that will represent the identity provider on the Data Broker
login page.

l The hostname verification method for making sure the identity provider's hostname
matches the name(s) stored inside the server's X.509 certificate. This is only needed if
SSL is being used for connection security. Options are:

o allow-all - Turns hostname verification off.

o strict - Works like the Java Runtime Environment, and accepts wildcards. The
hostname must match any of the Subject Alternative Names or the first CN. A
wildcard can be present in the CN, and in any of the Subject Alternative Names. A
wildcard such as *.example.com matches only subdomains in the same level, for
example a.example.com. It does not match deeper nested subdomains.

l If using SSL, provide the location (DN) of the Key Manager and Trust Manager. If not
provided, The Java Runtime Environment's default Key Manager and Trust Manager will
be used.

l Attribute mapping for each provider defines how the value of a single SCIM Resource
Type attribute is determined from an External Identity Provider attribute. The SCIM
Resource Type is defined in the Identity Provider Service.

For Facebook
l The App ID that was given to the Data Broker when it was registered with Facebook.

l The App Secret that was given to the Data Broker when it was registered with Facebook.

l Facebook permissions. These are the Facebook scopes that can be requested from a
registered Data Broker OAuth2 client.

For Google
l The Client ID that was given to the Data Broker when it was registered with Google.

l The Client Secret that was given to the Data Broker when it was registered with Google.

l The Google scopes that can be requested from a registered Data Broker OAuth2 client.

- 66 -

Chapter 5: User Authentication

For OpenID Connect
l The Client ID that was given to the Data Broker when it was registered with the identity
provider.

l The Client Secret that was given to the Data Broker when it was registered with the
identity provider.

l The OpenID Connect scopes that can be requested from a registered Data Broker OAuth2
client.

l Choose the authentication method to use when the OAuth2 client connects to the identity
provider's token endpoint.

l The URL that the identity provider recognizes as its issuer identifier.

l The URL for the identity provider's OAuth2 authorization endpoint.

l The URL for the identity provider's OAuth2 token endpoint.

l The URL for the identity provider's OAuth2 UserInfo endpoint.

- 67 -

Chapter 6: OAuth2 Clients and Token
Access
OAuth2 clients request access to scopes. Each request is processed by XACML policies, which
determine whether the scope can be granted. Adding an OAuth2 client to the Data Broker
defines the URL, the OAuth2 grant types, token requirements, and the scopes that the client
can use. A client ID and client secret are defined and are needed by the OAuth2 client to
interface with the /oauth endpoints. A redirect URL is needed during the registration process
so that the Data Broker can redirect an end user back to the client when authorizing access to
resources.

Topics include:

OAuth2 Client Considerations

Using Applicable Scopes

Creating OAuth2 Clients

OAuth2 Authorization Grant Types

OAuth2 Authorization Response Types

Processing Access Tokens

The Data Broker Token Endpoint

Token Validation by the Data Broker

Token Revocation by the Data Broker

Obtaining a Refresh Token

Accepting External Access Tokens

The Data Broker Logout Endpoint

- 68 -

Chapter 6: OAuth2 Clients and Token Access

OAuth2 Client Considerations
Consider the following when configuring an OAuth2 client to connect with the Data Broker:

l Assign only the grant types needed by the OAuth2 client. For example, it should be rare
that a client needs to use both the code and the implicit grant types.

l The client should request only needed scopes. Requesting only necessary information
ensures that a user's privacy is respected and maintained.

l When a client receives an access token, it should not assume that all requested scopes
were granted. The token response will often contain the list of granted scopes. In the
case of the implicit grant type, the list of granted scopes will only be provided if they
differ from the requested scopes. The validation endpoint can always be used to get the
list of granted scopes.

l Access tokens granted using the implicit grant type should be configured to be short-
lived.

l Access tokens should be validated to confirm that they are intended for the client.

l Any state information that must be preserved between requests should be stored using
the state parameter. The redirect_uri value should not be used to store state.

OAuth2 Authorization Grant Types
The OAuth2 specification states that a client application must receive authorization from a
resource owner through an access token, to retrieve the owner's protected resources. The
Data Broker supports all OAuth2 authorization grant types:

l Authorization Code Grant – This is a server-side redirection-based flow. The OAuth2
client redirects the end user (user agent) to the authorization endpoint (Data Broker) to
grant or deny access to a resource. If access is granted, the Data Broker returns a
redirection URI with an authorization code and then redirects the end user back to the
client. The client uses the authorization code to request an access token from the Data
Broker server. The Data Broker validates the authorization code and returns an access
and optionally a refresh token to the client. The client can now use the access token to
request resources. The access token serves as both authentication of the client, and
authorization to access the resources.

l Implicit Code Grant – This is another redirection-flow, designed for web clients, such
as mobile applications or JavaScript applications running in browsers. The flow is similar
to the authorization grant flow, except that the Data Broker redirects the client with an
embedded access token in the URI, rather than an authorization code requiring a
separate token request. The client secret is not used because it would be stored (and be

- 69 -

OAuth2 Authorization Response Types

vulnerable) in the client. No refresh token is sent as this grant type is designed for short-
lived access to a resource.

l Resource Owner Password Credentials Grant – This flow enables a user to log in
with a username and password to receive an access token. The OAuth2 client can then
keep the access token for access to resources. The client is expected to discard the
username and password and keep the access token. This flow should only be used for
clients that are trusted to handle the user password in the clear, as well as detailed
account and credential validation errors.

l Client Credentials Grant – This flow enables a client's application server to exchange
the client ID and the client secret for an access token. This enables clients to directly
access resources that are specific to the client and are not tied to an identity.

l ID Token Grant – This enables a set of trusted clients to allow one application to use an
OpenID Connect ID token, obtained by another application, as a credential for obtaining
an access token on behalf of an end user.

OAuth2 Authorization Response Types
The Data Broker supports the following OAuth2 and Open ID Connect response types:

l code – to request an authorization code.

l token – to request an access token.

l token id_token – to request both an access token and an ID token.

Issuing Authorization Code Grant Requests
The Authorization Code Grant flow follows these basic steps:

1. Redirect the user agent (end user) to the Data Broker's authorization endpoint.

2. Resource owner authenticates and grants authorization.

3. Data Broker redirects the user to a web application with an authorization code.

4. The authorization code is exchanged for an access token.

5. A request to access resources is sent to the Data Broker using the access token.

Step 1. Redirect the User Agent to the Data Broker's Authorization Endpoint
The OAuth2 client requires access to a protected resource and needs an access token that
represents the required permissions. The client redirects the end user to the Data Broker's
authorization endpoint (/oath/authorize). The HTTP request URL includes the response_
type=code, the client_id, and optional values for the redirect_uri specifying the redirect
URL to redirect.

- 70 -

Chapter 6: OAuth2 Clients and Token Access

Example Redirection

GET /oauth/authorize?response_type=code&client_id=0d5e5af7-420c-4241-8cff-
0cfd9d806e59&scope=profile%20email&state=48389488&redirect_
uri=https%3A%2F%2Fwww.example.com%3A8443%2Fredirect&prompt=login HTTP/1.1
Host: <server.example.com>

Step 2. Resource Owner Authenticates and Grants Authorization
The authorization request is run through XACML policies. If a policy rule results in a denial, an
error is generated. If the authorization request passes the policy rules, the resource owner is
sent a Data Broker web page to provide credentials and consent, if not previously provided.

Step 3. Data Broker Redirects User Agent to Web Application with Authorization
Code
If the resource owner has granted access to the OAuth2 client, the Data Broker redirects the
user back to the client web application and includes an authorization code that can be
exchanged for an access token.

Example Response

HTTP/1.1 302 Found
Location: https://<server2.example.com>?code=MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-
vzKYVltlykXrZE2AG0F3J3mQjUYOSP3dCOaIeYEUWSKm4QVx6mCTmT9gztIn45K9KKJ22p8IiJHiLXGEg2oUV&sta
te=48389488

Step 4. Exchange Authorization Code for an Access Token
The OAuth2 client posts a request to the token endpoint (Data Broker) to acquire an access
token. This step is not performed by the browser. The client request must supply the client_
ID and client_secret using HTTP Basic authentication.

Example Request

POST /oauth/token HTTP/1.1
Host: <server.example.com>
Authorization: Basic czQER9k3dD94aIdplr957Udk8
Content-Type: application/w-www-form-urlencoded

grant_type=authorization_code&code=MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-
vzKYVltlykXrZE2AG0F3J3mQjUYOSP3dCOaIeYEUWSKnav_aXvvyuxT3ogtZT-dgNZEnk6X0XaoPf6BVlVRibA
&redirect_uri=https%3A%2F%2Fserver2%2Eexample%2Ecom

The Data Broker validates the authorization code and verifies that the redirect_uri is the
same as in Step 1. The response may include a refresh token and/or an ID token, depending on
the request. If successful, the server issues the following response:

Example Response

HTTP/1.1 200 OK
Cache-Control: no-store
Pragma: no-cache

- 71 -

OAuth2 Authorization Response Types

Content-Type: applicaton/json;charset=UTF-8
Transfer-Encoding: chunked
Server: Jetty(8.1.12.v20130726)

{
"access_token":"MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-

vzKYVltlykXrZE2AG0F3J3mQjUYOSP3dCOaIeYEUWSKMYeiJy-24paR9YLEZpKDc-mwlE4ML8LRqAyhPMtAoBA",
"token_type":"bearer",
"expires_in":41558,
"scope":"email profile"

}

Step 5: Request Access to the Resources Using the Access Token
The client can now query the Data Broker (acting as the Resource server) for a restricted
resource by passing along the access token in the authorization header of the request.

Example Request

GET /scim/resource HTTP/1.1
Host: server.example.com
Authorization: Bearer MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-
vzKYVltlykXrZE2AG0F3J3mQjUYOSP3dCOaIeYEUWSKMYeiJy-24paR9YLEZpKDc-mwlE4ML8LRqAyhPMtAoBA

The Data Broker returns the requested information.

Issuing Implicit Code Grant Requests
The Implicit Code Grant flow follows these basic steps:

1. Redirect the user agent (end user) to the Data Broker's authorization endpoint.

2. Resource owner (end user) authenticates and grants authorization.

3. Redirect user agent to a web application with a URI fragment containing the access
token.

4. Client-side web application responds with an HTML page with a script that retrieves the
access token from the URI fragment.

5. Request access to resources using access token.

Step 1. Redirect the User Agent to the Data Broker's Authorization endpoint
The client redirects the end user to the Data Broker's authorization endpoint. The HTTP request
URL includes the response_type=token, the client_id, which was determined when the
client was added to the Data Broker, the redirect_uri, and scope.

Example Redirection

GET /oauth/authorize?response_type=token&client_id=6c7283d2-92d6-4767-9ceb-
ada61e5e7e0d&state=4848573984983&redirect_
uri=https%3A%2F%2Fserver2%2Eexample%2Ecom&scope=profile%20email HTTP/1.1
Host: <server2.example.com>

- 72 -

Chapter 6: OAuth2 Clients and Token Access

Step 2. Resource Owner Authenticates and Grants Authorization
The authorization request is run through XACML policies. If a policy rule results in a denial, an
error is generated. If the authorization request passes the policy rules, the resource owner is
sent a Data Broker web page to provide credentials and consent if not previously provided.

Step 3. Redirect User Agent to Web Application with Access Token URI Fragment
Once the resource owner has granted access rights to the OAuth2 client, the Data Broker sends
a redirect response, sending the user back to the client (web application). The redirect URI
includes an access code in the #hash fragment of the URI.

Example Redirect Response

HTTP/1.1 302 Found
Location: https://<server2.example.com>/callback#access_
token=1MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-
vzKYVltlykXrZE2AG0F3J3mQjUYOSP3dCOaIeYEUWSKMYeiJy-24paR9YLEZpKDc-
mwlE4ML8LRqAyhPMtAoBA&token_type=bearer&state=4848573984983&expires_in=43062

Step 4. Client-Side Web Application Responds with an HTML Page
The user agent (browser) is redirected to the URL and the client responds by serving an HTML
page containing scripts to parse the access token from the URI. If a state value is present, the
script should evaluate the parameter.

Step 5: Request Access to the Resources Using the Access Token
The OAuth2 client can now query the Data Broker (as Resource server) for resources by
passing along the access token in the authorization header of the request.

Example Request

GET /scim/resource HTTP/1.1
Host: <server.example.com>
Authorization: Bearer MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-
vzKYVltlykXrZE2AG0F3J3mQjUYOSP3dCOaIeYEUWSKMYeiJy-24paR9YLEZpKDc-mwlE4ML8LRqAyhPMtAoBA

The Data Broker returns the requested information.

Issuing Resource Owner Password Credentials Requests
The Resource Owner Password Credentials Grant flow follows these basic steps:

1. Client asks for the resource owner's (end user's) credentials.

2. Client makes an authorization request to the Data Broker's token endpoint
(/oauth/token).

3. Client receives the access token.

4. Request access to resources using the access token.

- 73 -

OAuth2 Authorization Response Types

Step 1. Client Asks for Resource Owner's Credentials
The OAuth2 client prompts for the resource owner's username and password when the
application requires access to resources that are protected by the Data Broker, but has not yet
acquired an access token. This flow should only be used for trusted clients.

Note
If requested, account usability notices, warnings, and errors for a user can be returned in the
token endpoint responseswhen using the resource owner password credentials grant type.
Thismay be helpful for a trusted OAuth2 client to validate elements of an authentication flow.
For example, the client can check for account usability errors in a successful token response to
see if it needs to prompt a user for password changes.

Step 2. Client Makes an Authorization Request at Token Endpoint
The OAuth2 client makes an authorization request to the Data Broker's token endpoint by
passing in the client_id and client_secret and the resource owner's username and
password. The client credentials must be passed through a basic authentication request
header.

Example Request

The following HTTP request uses basic authentication with the client_id and client_secret,
concatenated, encoded, and separated by a colon. The format is:

Authorization: Basic <Base64-encoded client_id:client_secret>

POST /oauth/token
Host: <server.example.com>
Authorization: Basic czQER9k3dD94aIdplr957Udk8
Content-Type: application/w-www-form-urlencoded

grant_type=password&username=johndoe&password=A3ddj3w

If the request is valid, the Data Broker returns an access token (and possibly a refresh and/or
ID token) to the client. Once the client receives the response, it should discard the resource
owner's username and password.

Example Response

HTTP/1.1 200 OK
Cache-Control: no-store
Pragma: no-cache
Content-Type: applicaton/json;charset=UTF-8
Transfer-Encoding: chunked
Server: Jetty(8.1.12v20130726)

{
"access_token":"MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-

vzKYVltlykXrZE2AG0F3J3mQjUYOSP3dCOaIeYEUWSKFEDrIpaEn5N9MfAm1BjZ5OYLHu0L823L2JsMn7i2wug",
"token_type":"bearer",
"expires_in":42203,
"scope":"profile",

}

- 74 -

Chapter 6: OAuth2 Clients and Token Access

Issuing Client Credentials Requests
The client credentials grant flow follows these basic steps:

1. Client makes an authorization request to the Data Broker's token endpoint.

2. Client receives the access token.

Step 1. Client Makes an Authorization Request at Token Endpoint
The OAuth2 client makes an authorization request to the Data Broker's token endpoint by
passing the client_id and client_secret. The client credentials must be passed through a
basic authentication request header.

The following HTTP request uses basic authentication with the client_id and client_secret,
concatenated, and encoded.

Example Request

POST /oauth/token HTTP/1.1
Authorization: Basic amFiYmVyd29ja3k=
Content-Length: 41
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Host: server.example.com

grant_type=client_credentials&scope=email

Step 2. Client Receives the Access Token
If the request is valid, the Data Broker returns an access token. If the access token expires,
the client credentials grant can be rerun to obtain a new access token.

Example Response

HTTP/1.1 200 OK
Cache-Control: no-store
Pragma: no-cache
Content-Type: applicaton/json;charset=UTF-8
Transfer-Encoding: chunked
Server: Jetty(8.1.12v20130726)

{
"access_token":"MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-

vzKYVltlykXrZE2AG0F3J3mQjUYOSP3dCOaIeYEUWSKFEDrIpaEn5N9MfAm1BjZ5OYLHu0L823L2JsMn7i2wug",
"token_type":"bearer",
"expires_in":42203,
"scope":"profile",

}

Considerations for using this Grant Type
The default OAuth2 Consent policy will deny requests for generic or Authenticated Identity
Scopes if the client credentials grant type is used. Those scope types are expected to require

- 75 -

OAuth2 Authorization Response Types

user consent, and the client credentials grant type does not involve an interaction with an end
user.

The default OAuth2 Scope policy will deny requests for Resource Scopes unless the client
credentials grant type is used (or, if a different grant type is used and the end user has the
admin entitlement).

Access tokens obtained using the client credentials grant type are called 'application tokens,'
since they are granted on behalf of an OAuth2 client instead of an end user. Application tokens
are not persisted to the Data Broker configuration or the backend User Store. They are entirely
self-contained, and the Broker can interpret them without having to retrieve information from
a backend User Store.

An individual application token cannot be revoked using the Data Broker's token revocation
endpoint, and should be used with care. The client credentials grant type should only be used
by trusted applications, and the access token validity duration should be short. See Defining
the Identity Provider Service for token configuration.

Issuing ID Token Grant Requests
A set of cooperating, trusted clients can use the ID Token Grant type to allow one client to use
an OpenID Connect ID token, obtained by another client, as a credential for obtaining an
access token on behalf of an end user. This enables a set of non-web-based applications to
obtain access tokens for a particular end user, without the need for repeated prompts the end
user for credentials. This grant type is based on the JSON Web Token (JWT) Profile for OAuth2
Client Authentication and Authorization Grants (draft-ietf-oauth-jwt-bearer-12) specification,
but is not intended to conform strictly to that spec.

A request made using the ID Token Grant type is similar to a request made using the Resource
Owner Password Credentials Grant type. However, the username and password parameters
are replaced by an assertion parameter, with a valid JWT ID token as its value.

To use this grant type:

l All OAuth2 clients involved must be registered with the Data Broker to use the ID Token
grant type.

l A shared ID token can be obtained using any standard OpenID Connect grant type. In
addition, the Data Broker allows a client using the Resource Owner Password Credentials
Grant type to obtain an ID token by using a response_type parameter with a value of
id_token.

l An ID token obtained by an client that is not registered to use the ID Token Grant type
cannot be used to make an ID Token Grant type request. Conversely, any OAuth2 client
registered to use the ID Token Grant type may use an ID token obtained by any other
client registered to use the ID Token Grant type.

l All clients should be secure and highly trusted. It is the responsibility of the clients to
make sure that ID tokens are stored and shared in a secure manner.

- 76 -

Chapter 6: OAuth2 Clients and Token Access

The following example shows an OAuth2 client using the Resource Owner Password Credentials
Grant type to obtain an access token and an ID token. The client provides a response_type
parameter with a value of id_token, which instructs the server to return an ID token. (The
response has been shortened in the example.) Once the token is received, the client must be
able to securely store it and share it with other trusted clients.

POST /oauth/token HTTP/1.1
Authorization: Basic OTZhNmVjY2MtMWEyMS00OWRjLTg4YzQtNmU5ODE2NDY2ODRhOlBxY3ZkVFZCM3I=
Content-Length: 97
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Accept: application/json
Host: server.example.com

grant_type=password&username=user.100&password=password&response_type=id_
token&scope=openid+email

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json;charset=UTF-8
Pragma: no-cache
Server: Jetty(8.1.16.v20140903)
Transfer-Encoding: chunked

{
 "access_token":
"AVCGkIwEoDOKeQotjBQ8gVZvNq4HAAAAAAAAAADr3dRArNA53ANjXsFfu686hNNQ8ZN2iOtky2tQun0g7Z1VgRrK
AcfjQ62caZYbyzse3SIK9Kfbn1nxRYq1GEzD_xHSDtepE04JhrZXs2cB0Q",
 "expires_in": 43199,
 "id_token":
"eyJhbGciOiJIUzI1NiJ9.eyJhdXRoX3RpbWUiOjE0MzI2ODUwNDYsImV4cCI6MTQzMjY4NTk0Niwic3ViIjoiOWY
4YTIzLTA5OWM4YmQ3LTQ2YTItMzdlZi1iYzI0LWY1MDE5NTlmYmRjYiIsImF1ZCI6WyI5NmE2ZWNjYy0xYTIxLTQ5
ZGMtODhjNC02ZTk4MTY0NjY4NGEiXSwiaXNzIjoiaHR0cHM6XC9cL3gyMjUwLTAxLmV4YW1wbGUuY29tIiwiaWF0I
joxNDMyNjg1MDQ2fQ.4w-XBeo8iawOXh7WVfJDk8yWvScfHqn2M2v3gyyZYhw",
 "scope": "email openid",
 "token_type": "bearer",
}

The following example shows how a second, trusted client might then use the ID token grant
type to obtain its own access token. A grant_type value of unboundid_id_token is used, and
the ID token is provided as the value of the assertion parameter.

POST /oauth/token HTTP/1.1
Authorization: Basic Yjc0MzQwMWEtNDk3MS00MjYwLWIzNjktMjBlOWNhNTNjMzAxOnV4ekxJdjBGVzQ=
Content-Length: 410
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Accept: application/json
Host: server.example.com

grant_type=unboundid_id_
token&scope=profile&assertion=eyJhbGciOiJIUzI1NiJ9.eyJhdXRoX3RpbWUiOjE0MzI2ODUwNDYsImV4cC
I6MTQzMjY4NTk0Niwic3ViIjoiOWY4YTIzLTA5OWM4YmQ3LTQ2YTItMzdlZi1iYzI0LWY1MDE5NTlmYmRjYiIsImF
1ZCI6WyI5NmE2ZWNjYy0xYTIxLTQ5ZGMtODhjNC02ZTk4MTY0NjY4NGEiXSwiaXNzIjoiaHR0cHM6XC9cL3gyMjUw
LTAxLmV4YW1wbGUuY29tIiwiaWF0IjoxNDMyNjg1MDQ2fQ.4w-XBeo8iawOXh7WVfJDk8yWvScfHqn2M2v3gyyZYhw

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json;charset=UTF-8

- 77 -

Adding an OAuth2 Client

Pragma: no-cache
Server: Jetty(8.1.16.v20140903)
Transfer-Encoding: chunked

{
 "access_token":
"AVCGkIwEoDOKeQotjBQ8gVZvNq4HAAAAAAAAAADr3dRArNA53ANjXsFfu686hNNQ8ZN2iOtky2tQun0g7Z1VgRrK
AcfjQ62caZYbyzt9pKrLcCljtJwhzybz6KjKLd8Ma85gywk36Z4jTEMhjg",
 "expires_in": 43199,
 "scope": "profile",
 "token_type": "bearer",
}

Adding an OAuth2 Client
Create and maintain OAuth2 clients that can request access to resources based on XACML
policy, or any other privacy restrictions. The information used to register the client with the
Data Broker will be needed by the OAuth2 client to request resources. Clients can be added
through the Management Console or from the command-line, such as:

$ bin/dsconfig create-oauth2-client \
 --client-name "Web App Client"
 --set scope:email

The information used to configure an OAuth2 client includes:

l The name of the client.

l Optional description, and contact email address for this OAuth2 client.

l The client ID and client secret can be generated by the Data Broker when the OAuth2
client is created, or they can be entered manually.

l The OAuth2 access grant types, which include:
o authorization-code - The authorization code grant, which is used to request an
access token from an authorization code.

o client-credentials - The client credentials grant, which can be used by a client to
request an access token using only its client credentials.

o implicit - The implicit grant, where an access token can be requested without
obtaining intermediate credentials (such as an authorization code).

o password - The password grant, where an access token can be requested directly
from the resource owner credentials.

o refresh-token - The refresh token grant, where a new access token can be
requested from a refresh token.

o unboundid-id-token - ID token grant, where an access token can be requested
using an ID Token assertion as authentication.

l Access token duration, and consent requirements.

- 78 -

Chapter 6: OAuth2 Clients and Token Access

l The client URL and any redirect URIs, which must also be registered with the Data
Broker.

l The scopes that can be requested by an OAuth2 client.

l (missing or bad snippet)

l The trusted origin(s) of the client if making JavaScript requests.

l Any external identity providers that can be used to authenticate an end user account
(Advanced setting).

l If necessary, the access and authentication token settings can be specified per client. If
not specified when creating the OAuth2 client, the Identity Provider Service settings are
used.

The Data Broker Token Endpoint
An OAuth2 client uses the token endpoint (/oauth/token) to obtain an access token by
presenting its authorization grant. The endpoint can also issue a refresh token if the original
access token has become invalid or expires. The authorization header of the client request will
contain the Base64 encoded client_ID and client_secret credentials.

Note
The token endpoint can return errors, warnings, and notices related to the login identity's
password and account state when using the ResourceOwner Password Credentials Grant
type.

Request
The following example makes a token request to the endpoint:

POST /oauth/token HTTP/1.1
Host: <example.com>
Authorization: Basic aXQncyBkYW5nZXJvdXMgdG8gZ28gYWxvbmU6dGFrZSB0aGlz
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA&redirect_
uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

Response
If the token request is authorized, the Data Broker server returns:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "access_token": "2YotnFZFEjr1zCsicMWpAA",
 "token_type": "bearer",
 "expires_in": 3600,

- 79 -

Token Validation by the Data Broker

 "scope": "openid email profile",
 "id_token": "eyJhbGciOiJIUzI1NiJ9.eyJhdXRoX3RpbWUiOjE0MjE4ODExMDMsImV4
 cCI6MTQyMTg4MjAwOSwic3ViIjoiOWY4YTIzLWNjY2M3NmVlLWQwN2ItM2I
 4Yy05MjJjLWRkZDgwOWM0YzE3MyIsImF1ZCI6WyJhY21lIl0sImlzcyI6Im
 h0dHBzOlwvXC94MjI1MC0wMS5leGFtcGxlLmNvbSIsImlhdCI6MTQyMTg4M
 TEwOX0.CZYpxocXZ-_DEPttmHqSiQ1FU8Pplb8I-7oK3PMp4-Y"
}

Token Validation by the Data Broker
The Data Broker token validation endpoint (/oauth/validate) enables OAuth2 clients and
external resource servers to determine the state of an access token, as well as additional
metadata about the token. To validate an access token, a POST is sent to the Data Broker's
/oauth/validate endpoint, which returns a response with information about the token's
validity and scopeThe validation endpoint is based on the OAuth 2.0 Token Introspection
standard, RFC 7662.

Parameters are provided either as form parameters or as query parameters appended to the
token validation endpoint URL. Though, using query parameters is discouraged because it will
cause the access token to be logged.

The token parameter is required. A client_id parameter is optional. If both are provided,
the validation endpoint verifies that the access token was issued to the provided client.

The token response includes a jti claim (JWT ID), which provides a unique identifier for the
access token. The jti value also appears in the Data Broker's trace log output, and can be
used to find requests using this access token.

Note
OAuth2 clients using OpenID Connect are responsible for validating ID tokens received from
the Data Broker. Refer to the OpenID Connect Core 1.0 specification for information.

Request
The following is a request to validate a token:

POST /oauth/validate HTTP/1.1
Accept: application/json
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Host: example.com:443

token=<access token>&client_id=<client ID>

Response
If the operation is successful, the Data Broker responds with a JSON object with the following
parameters:

HTTP/1.1 200 OK
Cache-Control: no-store
Pragma: no-cache
Content-Type: application/json;charset=UTF-8

{

- 80 -

Chapter 6: OAuth2 Clients and Token Access

 "active": true,
 "sub": "Users/1d998887-87bc-4271-aa0c-27652bf02d6c",
 "client_id": "<client ID>",
 "exp": 1448008233,
 "iat": 1447971141,
 "scope": "openid profile email"
 "jti": "IPaSog"
}

Token validation failures occur if the token is malformed, expired, or revoked. Failures will
also occur if the provided client_id does not match the application for which the access token
was issued. If validation fails, the response will indicate that the token is inactive:

HTTP/1.1 200 OK
Content-Length: 16
Content-Type: application/json;charset=UTF-8

{
 "active": false
}

Token Revocation by the Data Broker
The token revocation endpoint (/oauth/revoke) enables OAuth2 clients to send a POST
request to the Data Broker to revoke access or refresh tokens. Revoking a token does not
remove any associated consents.

During the revocation process, the Data Broker validates the client credentials, and verifies
that the client making the request originally issued the token. If the validation fails, the
request is refused and an error response is sent. If validation is successful, the Data Broker
revokes or invalidates the token.

For example, he following revokes a token:

Authorization: Basic MC2AAQGBBlpxSGUtUYIgQI8F1rTZdspnJxDamsIKKxei8Wdj_E3DUXscVpiw6u8
POST /oauth/revoke HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Token=MC2AAQGBBlpxSGUtUYIgQI8F1rTZdspnJxDamsIKKxei8Wdj_E3DUXscVpiw6u8

If the operation is successful, the Data Broker responds with the HTTP status code 200.

The revocation endpoint requires HTTP Basic authentication using the client_id and client_
secret, just like the /oauth/token endpoint.

Obtaining a Refresh Token
To request an OAuth2 refresh token, the offline_access scope should be requested in the
client's authorization request. The client application's use and consent requirements will
dictate the choice of scope:

The offline_access scope is provided for compliance with the OpenID Connect specification.
To successfully obtain a refresh token, a client using this scope must also specify the prompt

- 81 -

Accepting External Access Tokens

authorization request parameter with a value of consent. End users must provide explicit
consent to grant a refresh token every time one is requested.

Refresh tokens can only be requested with an authorization code grant request or a resource
owner password credentials grant request. For example:

GET /oauth/authorize?
response_type=code& client_id=<0d5e5af7-420c-4241-8cff-0cfd9d806e59&
scope=profile%20email%20offline_access&
prompt=consent&
state=48389488& redirect_uri=https%3A%2F%2Fwww.example.com%3A8443%2Fredirect

The refresh token will be provided in the refresh_token field of the token response. The client
may use a refresh token to extend the duration of an authorization without end user interaction
by making a refresh request to the token endpoint to obtain a new access token. The following
POST parameters are used:

l grant_type – Required. Value must be set to refresh_token.

l refresh_token – Required. The refresh token issued to the client.

l scope – Optional. The scope of the access request. The requested scope cannot include
any scope not originally granted by the resource owner.

The response will look like the following:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "access_token":"VGhlIGFwcGFyaXRpb24gb2YgdGhlc2UgZmFjZXMgaW4gdGhlIGNyb3dkOw==",
 "refresh_token": "UGV0YWxzIG9uIGEgd2V0LCBibGFjayBib3VnaC4=",
 "token_type":"bearer",
 "expires_in":3600,
 "scope": "profile email"
}

Accepting External Access Tokens
As a Resource server, the Data Broker supports receipt of access tokens from a third-party
OAuth2 provider. Authorization of requests that use externally-defined access tokens require a
custom Policy Information Provider (PIP) to interpret the capabilities granted to the token,
which can be created with the UnboundID Server SDK.

Access tokens must be validated by XACML policy. The Token Policy Information Provider is
responsible for determining the capabilities of internally-issued access tokens and making
them available to the policy engine.

If an externally-issued access token is presented with a request, the Token Policy Information
Provider will be unable to interpret it. The policy engine in that case will continue through its
list of configured PIPs until it finds one that can decode the token.

- 82 -

Chapter 6: OAuth2 Clients and Token Access

Though not required, a third-party PIP can offer the same JSON interface as the Data Broker's
PIP, therefore making the type of token transparent to policy. This type of PIP must at least
return a JSON object populated with the active, sub, and scope properties. A third-party PIP
that provides a different interface would require policies to be written with specific knowledge
of different token types.

The Data Broker Logout Endpoint
A POST to the logout.do endpoint will invalidate a user’s session with the Data Broker and
revoke the user's access tokens with either a single client or all clients registered with the Data
Broker. The client_id and post_logout_redirect_uri query parameters are both optional.

If a client_id is not provided, all of the user’s access tokens will be revoked. If a client_id
is provided, then only the access tokens for that client are revoked.

If a post_logout_redirect_uri is not provided, the browser will be redirected to the
configured default-logout-success-url for the Identity Provider Service (which defaults to
/view/login). If a post_logout_redirect_uri is provided, then client_id must also be
provided. The post_logout_redirect_uri value must match one of the redirect URIs
configured for the client (which is retrieved by the client_id). The browser will be redirected
to the provided post_logout_redirect_uri after logout.

Request
The following is an example POST to the Data Broker logout.do endpoint:

POST /logout.do?client_id=385b45d0-88bd-4973-a9bc-06484ad27e42&redirect_
uri=https://example-app.com/
Host: example.com
Content-Length: 0
Cookie: JSESSIONID=xpdpr7z6fxh31rjdpygcmce0c

Response
The following is an example response:

HTTP/1.1 302 Found
Location: https://example-app.com/
Content-Length: 0

- 83 -

Chapter 7: Accessing Data
The Data Broker server supports two user profile endpoints:

l The SCIM endpoint provides full operations on user profile data through the SCIM
protocol. The endpoint's URL context path is /scim/v2/{name}. Each SCIM resource,
specified in the SCIM Schema, is exposed as an endpoint. For example, the URL path
/scim/v2/Users would be used to access the Users SCIM resource.

l The OpenID Connect UserInfo endpoint enables the Data Broker to function as a
Resource server. The endpoint's URL context path is /userinfo. The UserInfo endpoint
is read-only and uses GET actions to retrieve user profile data.

Access to resources is determined by the XACML policies that are configured for the Data
Broker. If a request to the Data Broker is delivering partial results, it may be due to policy
settings. See How Policy Affects Access to Scopes.

Topics include:

Data Broker Endpoints for OAuth2 Clients

The SCIM Endpoint

SCIM Examples

UserInfo Access Example

- 84 -

Chapter 7: Accessing Data

Data Broker Endpoints for OAuth2 Clients
The Data Broker provides multiple REST endpoints for client access. The following list presents
a summary of the endpoints that may be called by a client application requesting user profile
data. All Data Broker endpoints are available at <server-root>/docs/restapi/index.html.

A request to each endpoint should have a scope with the desired actions included. Review the
properties and values available for Authenticated Identity Scopes and Resource Scopes.

Endpoint Description

/scim

/scim//v2/<name>

This is the SCIM 2.0 protocol endpoint used to retrieve a specified
SCIM Resource Type, where <name> is the SCIM Resource Type
being accessed. This endpoint supports all SCIM operations and
implements its access control through the XACML policies. A request
to this endpoint requires a scope that includes a
resourceOperations value that represents the desired action.

/oauth

/oauth/authorize
The OAuth2 standard authorization endpoint. This is the endpoint that
an application will use to get an authorization grant from the user.

/oauth/token

The OAuth2 token endpoint. This is the endpoint that an application
will use to request an access token from the Data Broker Server to
access identity information.

/oauth/revoke The Data Broker endpoint used to revoke a token.

/oauth/validate The Data Broker endpoint used to validate a token.

/userinfo

/userinfo

The OpenID Connect endpoint. Use this endpoint for applications that
require read-only access to user profile data. Access to this endpoint
requires an OAuth2 access token with the openid scope. The client
application will receive the attributes granted by the scopes in the
access token. Either GET or POST actions can be used.

/pdp/v1/authorization

/pdp/v1/authorization

The Data Broker Policy Decision Point endpoint used by an external
Policy Enforcement Point (PEP) to generate XACML requests and
send them directly to the Data Broker for evaluation. The request is
passed directly to the policy engine. This method supports POST only.
The body of the POST should contain the XACML request as an XML
string.

Data Broker Endpoints for Clients

- 85 -

The SCIM Endpoint

The SCIM Endpoint
The Data Broker SCIM endpoint enables applications to perform actions on an end user's
resources, if XACML policies permit. The following are important to consider when using the
SCIM endpoint:

/Me. SCIM supports a special endpoint to retrieve attributes of the currently authenticated
user without knowing the SCIM ID. Retrieve attributes of the currently authenticated user with
the following:

/scim/v2/Me

Authentication. The SCIM endpoints are protected by bearer token authentication, obtained
from the Data Broker. See Authentication for details.

Note
/Bulk and /Groups are not supported.

SCIM Examples
A client application accesses the /scim/v2/{name} endpoint by passing an HTTP GET , POST,
PATCH, or DELETE request with an access token parameter to the Data Broker Server. The
response is a JSON object.

GET
The following is an example call to the Data Broker /scim/v2/{name} endpoint to get entries
with the filter of user name starting with sam.

Note
A GET operation should not be performedwith 'sensitive' attributes.

Request
GET /scim/v2/Users?startIndex=1&count=10&filter=userName+sw+%22sam%22
Host: example.com
Accept: application/json
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI

Response
The data returned is dependent on the Data Broker configuration and the XACML policies in
place.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: …
{
 "totalResults":1,

- 86 -

Chapter 7: Accessing Data

 "schemas":[
 "urn:ietf:params:scim:api:messages:2.0:ListResponse:schema",
],
 "Resources":[

{
 "name":{
 "givenName":"Sample",
 "familyName":"User1",
 "formatted":"Sample User1"
 },
 ...// other user properties
 },
 ...// other users
]
}

jQuery Example
$.ajax({
type: "GET",
url: "https://example.com/scim/v2/Users",
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function(usersPage) {
// application can do something with returned data...
 }
});

GET (by User ID)
The following is an example call to the Data Broker /scim/v2/{name} endpoint to get a single
user entry with the ID of 9f8a23-47c7be45-0ce5-3105-8ea8-fc3c39c47f91.

Request
GET /scim/v2/Users/9f8a23-47c7be45-0ce5-3105-8ea8-fc3c39c47f91
Host: example.com
Accept: application/json
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI

Response
The data returned is dependent on the Data Broker configuration and the XACML policies in
place.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: …
{
 "schemas":[
 "urn:ietf:params:scim:api:messages:2.0:ListResponse:schema",
],
 "name":{

- 87 -

SCIM Examples

 "givenName":"Sample",
 "familyName":"User1",
 "formatted":"Sample User1"
 },
... // other user properties

}

jQuery
$.ajax({
type: "GET",
url: "https://example.com/scim/v2/Users/",+userId,
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function(user) {
// application can do something with returned data...
}
});

POST
The following is an example call to the Data Broker /scim/v2/{name} endpoint that creates a
user entry for Another Sample User III.

Request
POST /scim/v2/Users
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI
Content-Length: ...
{
"schemas": ["urn:ietf:params:scim:api:messages:2.0:ListResponse:schema"],
"name": {
"formatted": "Another Sample User III",
"familyName":"User",
"givenName":"Another",
"middleName":"Sample"
},
"userName":"sampleuser3"
}

Response
The data returned is dependent on the Data Broker configuration and the XACML policies in
place.

HTTP/1.1 201
Created Content-Type: application/json
Content-Length: …
{
 "schemas":[

- 88 -

Chapter 7: Accessing Data

 "urn:ietf:params:scim:api:messages:2.0:ListResponse:schema",
],
 "name":{
 "givenName":"Another",
 "familyName":"User",
 "formatted":"Another Sample User III"
 },
 "id":"9f8a23-3562ddf5-50d0-4aac-a761-7ecb9bcb7633",
 "userName":"sampleuser3",
 "meta":{
 "created":"2014-09-04T19:06:22.547Z",
 "lastModified":"2014-09-04T19:06:22.547Z",
 "location":"https://example.com/scim/v2/Users/9f8a23-3562ddf5-50d0-4aac-a761-
7ecb9bcb7633"
 }
}

jQuery Example
$.ajax({
type: "POST",
url: "https://example.com/scim/v2/Users",
data: JSON.stringify({
"schemas": ["urn:ietf:params:scim:api:messages:2.0:ListResponse:schema"],
"name": {
"formatted": "Another Sample User III",
"familyName":"User",
"givenName":"Another",
"middleName":"Sample"

},
"userName":"sampleuser3"
}),
headers: { "Authorization": "Bearer " + accessToken },
contentType: "application/json"
dataType: "json",
success: function(user) {
// returned data sample...
}
});

UPDATE
The following is an example call to the Data Broker /scim/v2/{name} endpoint that updates a
user entry for ID 9f8a23-31c5b68d-2c8d-4dd2-987b-09627cb1ff2d.

Request
PATCH /scim/v2/Users/9f8a23-31c5b68d-2c8d-4dd2-987b-09627cb1ff2d
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI
Content-Length: ...

- 89 -

SCIM Examples

{
"schemas": ["urn:ietf:params:scim:api:messages:2.0:ListResponse:schema"],
"name": {
"formatted": "My Sample Tester III",
"familyName":"Tester",
"givenName":"My",
"middleName":"Sample"
}
}

Response
HTTP/1.1 204 No Content

jQuery Example
$.ajax({
type: "PATCH",
url: "https://example.com/scim/v2/Users/"+userId,
data: JSON.stringify({
"schemas": ["urn:ietf:params:scim:api:messages:2.0:ListResponse:schema"],
"name": {
"formatted": "My Sample Tester III",
"familyName":"Tester",
"givenName":"My",
"middleName":"Sample"
}
}),
headers: { "Authorization": "Bearer " + accessToken },
contentType: "application/json",
success: function(){
// no data returned...
}
});

DELETE
The following is an example call to the Data Broker /scim/v2/{name} endpoint that deletes a
user entry for ID 9f8a23-47c7be45-0ce5-3105-8ea8-fc3c39c47f91.

Request
DELETE /scim/v2/Users/9f8a23-47c7be45-0ce5-3105-8ea8-fc3c39c47f91
Host: example.com
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI
/9f8a23-47c7be45-0ce5-3105-8ea8-fc3c39c47f91==the user's ID

Response
HTTP/1.1 200 OK
Content-Length: 0

- 90 -

Chapter 7: Accessing Data

jQuery Example
$.ajax({
type: "DELETE",
url: "https://example.com/scim/v2/Users/"+userId,
headers: { "Authorization": "Bearer " + accessToken },
success: function(){

// no data returned...

}
});

UserInfo Access Example
An OAuth2 client accesses the /userinfo endpoint by passing an HTTP GET request with an
access token parameter to the Data Broker. The response is a JSON object.

Request
The following is a Java Script example call to the Data Broker /userinfo endpoint:

GET /userinfo
Host: <example.com>
Accept: application/json
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI

Response
The data returned is dependent on the Data Broker configuration and the XACML policies in
place.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: ...
{
 "sub":"9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b",
 "phone_number":"+1 410 030 3103",
 "updated_at":1409857981,
 "address":{
 "region":"WV",
 "formatted":"Sample User1$30650 Cherry Street$Pensacola, WV 06057",
 "postal_code":"06057",
 "locality":"Pensacola",
 "street_address":"30650 Cherry Street"
 },
 "name":"Sample User1",
 "family_name":"User1",
 "preferred_username":"sampleuser1",
 "given_name":"Sample"
}

- 91 -

UserInfo Access Example

jQuery Example
$.ajax({
type: "GET",
url: "https://example.com/userinfo",
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function(userinfo) {
// sample returned data...
}
});

- 92 -

Chapter 8: Configuring XACML Policies
XACML policies are the rules that determine what scopes are shared with OAuth2 clients and
under what conditions. Policies include the criteria by which access decisions are made using
targets, rules, conditions, obligations, and a rule combining algorithm. Several default policies
are available, or custom policies can be written.

Topics include:

XACML Policy Overview

Policy Structure

Policy Request Processing Per Endpoint

Policy Engine Request Context

Policy Sections and Functions Described

Configuring the Policy Service

Policy Information Providers

Creating Policies

Creating a Policy Set

Testing Policies

Unsupported XACML Features

- 93 -

Chapter 8: Configuring XACML Policies

XACML Policy Overview
Policies determine the scopes that can be accessed by requesting OAuth2 clients through the
use of an access token, and the operations on attributes within the scope that are allowed.
Policy creation must balance the privacy requirements of the organization with the resource
access requirements of the OAuth2 clients. Policies are expressed using the eXtensible access
control markup language (XACML) as specified in the OASIS Committee Specification 01,
eXtensible access control markup language (XACML) Version 3.0, and can contain targets,
rules, conditions, and a rule combining algorithm.

XACML policies are evaluated by the Data Broker in response to the following requests made
by OAuth2 clients:

l An authorization/token request to the OAuth2 endpoint.

l A request to the UserInfo endpoint.

l All SCIM requests:
o Search request

o Get request

o Update request

o Create request

o Delete request

o Sub-resource request

l A XACML request to the PDP endpoint.

To create XACML policies that will work as expected, or to create OAuth2 clients that can
access data correctly, review the parameters and attributes that will be included in the XACML
requests for each of the scenarios provided.

Requesting an Access Token
An OAuth2 client requests an access token, receives the token from the Data Broker or a third-
party, and then sends the token to the Data Broker with a set of requested scopes. Each
requested scope will generate a policy evaluation, resulting in a permit or deny to access.
Obligations can be used to define conditions for access to each scope, such as requiring user's
consent. The token returned to the client after policy evaluation may contain a subset of the
requested scopes, or if none of the scopes are granted, no token is returned (the client
receives an error response).

The following illustrates the policy flow for a token request.

- 94 -

XACML Policy Overview

Requesting Operations through SCIM or UserInfo
The scopes that policies permit access to are returned in the access token to the OAuth2 client.
The token, which represents the privileges granted to the OAuth2 client, may then be sent to
either the SCIM or UserInfo endpoint. The Data Broker uses XACML policies again to determine
whether the requested operation should be authorized given the scopes granted in the access
token. Obligations can again be used to define conditions for limiting access to certain
attributes. The requested attributes are returned to the client, and any permitted operation
(such as adding or modifying an address) is performed.

The following illustrates the policy flow for a SCIM or UserInfo request.

- 95 -

Chapter 8: Configuring XACML Policies

Policy Structure
For a policy to be evaluated against a request, the request needs to match the values specified
in the policy <Target> element first. If the target for the request matches the target for the
policy, the rules in the policy are evaluated. This occurs for each XACML policy.

Just as there is a target for the policy, there is a target for each rule. For the rule <Target>
element to be evaluated, a value in the request must match, as defined in the <Match>
element. If the request matches a value, the rest of the conditions of the rule are evaluated.

Note
If no target is specified for a policy or a rule, the policy or rule is always evaluated.

- 96 -

Policy Structure

If the conditions of a rule are satisfied, the result can be either permit or deny for that single
rule. If there are multiple rules in a policy, the rule combining algorithm for the policy
determines how the rule evaluation results are combined into a single policy decision.

If there are multiple policies that apply to the request, a policy-combining algorithm
determines how the decisions rendered by multiple policies are combined to form a decision by
the Data Broker. By default, the combining algorithm for Data Broker policies is deny-
overrides. This can be changed in the Policy Service through the Management Console or with
the dsconfig tool.

Requesting JSON-Formatted Data
The AttributeSelector element can be used in a policy to retrieve structured data returned
in JSON-format. Differing from the XACML specification, the Path references in the
AttributeSelector are interpreted as JSON paths rather than XPath.

In the following example, an AttributeSelector element is used to obtain the region sub-
attribute of a user’s home address:

<AttributeSelector
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
 Path="addresses[type eq home].region"
 DataType="http://www.w3.org/2001/XMLSchema#String"/>

Depending on the path specification, an AttributeSelector may return multiple nodes from
a JSON object, resulting in a XACML “bag” of attribute values. The DataType specification of
the AttributeSelector must specify the type of the node(s) returned. If the nodes returned
from the path evaluation are JSON objects rather than a simple data type, then the
AttributeSelector’s DataType must be http://www.w3.org/2001/XMLSchema#String and the
node value is returned to the Policy Engine as a JSON string.

Using Obligations and Advice
The XACML specification defines an obligation as a specified operation that should be
performed by the Policy Enforcement Point (PEP) based on an authorization decision. For
example, if certain criteria in a policy rule are met, an obligation for user consent or an
additional authorization step may be enforced. Advice is additional information provided to the
PEP based on a policy decision, and can be used by the requesting OAuth2 client to determine
why access to a scope or resource was denied. The Data Broker provides the following
obligation types.

OAuth2 Authorization Requests
Prompt for Consent Obligation – When returned with a permit decision, this obligation
indicates that while policies permit the application to have the requested scope, the Data
Broker is required to prompt the user for consent before granting a final access token. The
obligation may include a mustGrant argument. If true, the entire OAuth2 request will be
rejected if consent is not granted by the end-user. If false, and consent is denied by the user,
the Identity Provider Service can generate an access token that grants a subset of the initially
requested scopes. The default value for mustGrant is true.

- 97 -

Chapter 8: Configuring XACML Policies

The following is XACML syntax for a sample consent obligation:

<ObligationExpressions>
 <ObligationExpression ObligationId="obtain-consent" FulfillOn="Permit">
 <AttributeAssignmentExpression AttributeId="must-grant">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
 false
 </AttributeValue>
 </AttributeAssignmentExpression>
 </ObligationExpression>
</ObligationExpressions>

SCIM Resource Requests
Exclude Obligation – Specifies an argument that lists the attributes to be excluded from the
response. Each attribute must be formatted using SCIM Attribute Notation, such as
urn:scim:schemas:core:2.0:User:userName for the userName attribute of a User scope.

Include Obligation – Specifies an argument that lists the attributes to be included in the
response. Each attribute must be formatted using SCIM Attribute Notation.

Any attributes not present in either argument list will be excluded from the response. The
following example illustrates an exclude obligation that will prevent the userName attribute
from being returned with a resource:

<ObligationExpressions>
 <ObligationExpression ObligationId="exclude-attributes" FulfillOn="Permit">
 <AttributeAssignmentExpression AttributeId="attributeNames">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
 userName
 </AttributeValue>
 </AttributeAssignmentExpression>
 </ObligationExpression>
</ObligationExpressions>

Policies and Request Processing Per Endpoint
Authorization requests from a client are evaluated by the policy rules configured for the Data
Broker. Access to data is granted either at the scope level or at the resource level based on the
endpoint through which the request is made. This section describes each type of policy request
that may be made by the Data Broker's policy enforcement points. Review XACML Overview
for illustrated processes.

OAuth2 Endpoint Policy Requests
Authorization requests coming through the OAuth2 endpoint are granted if the scopes specified
are allowed by configured policies. The authorization endpoint asks for an independent policy
decision for each scope requested. If the policy decision for any scope is deny, the Identity
Provider Service can generate an access token that grants a subset of the initially requested
scopes. If all scopes are denied by policy, the entire authorization request is rejected, no
access token is issued, and an error response is returned. Policies may return obligations on
permit to instruct the Data Broker to perform additional steps before granting the scope.

- 98 -

Policies and Request Processing Per Endpoint

Once a token is granted, it can be passed to either the SCIM or UserInfo endpoints to retrieve
user data. Policies are again evaluated, but at the resource level.

To differentiate authorization requests from resource requests, the Data Broker uses the
XACML action type grant. This action indicates to XACML policies that the current request is to
authorize a scope grant.

Each policy request generated by the authorization endpoint contains the following information.

Attribute ID Attribute Category Value

subject-id access-subject The client name.

action-id action grant.

grant-type action

The OAuth2 grant type, which is one of
one of authorization_code,
implicit, password, or client_
credentials.

resource-id resource The requested scope name.

<JSON content> resource Scope properties.

<JSON content> access-subject The OAuth2 client properties.

<JSON content> session
The session properties including the
authenticated user resource.

OAuth2 Authorization Request Attributes

In addition to these attributes, policies that govern OAuth token requests can obtain, from the
XACML request context, details of the underlying HTTP request.

For OAuth2 Scope policy requests originating from the OAuth2 endpoint, details of the
requested scope can be accessed from policy using the attribute category
urn:oasis:names:tc:xacml:3.0:attribute-category:resource. The following example
retrieves the list of all operations defined by the scope as a XACML bag:

<AttributeSelector
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
 Path="allOperations"
 DataType="http://www.w3.org/2001/XMLSchema#String"/>

SCIM Resource Type Policy Evaluation
Each request to the SCIM endpoint explicitly specifies what action is being requested and on
what resources. As a REST interface, SCIM uses the HTTP method, query parameters, method
body, and URI path to specify request parameters. Policy evaluations generated by the SCIM
Resource Type depend on these REST parameters, as well as the supplied OAuth2 bearer
token.

All SCIM requests target a specific SCIM Resource Type. For example, a search targeted to
/scim/v2/Users is executed against the Users SCIM endpoint. An update targeted to
/scim/v2/ConsumerUsers/9f8a23-5f7ec932-55c4-347e-b757-ce74258ea9e6 is executed
against a user with ID 9f8a23-5f7ec932-55c4-347e-b757-ce74258ea9e6 in the Users SCIM
Resource Type.

- 99 -

Chapter 8: Configuring XACML Policies

SCIM Search Request
A SCIM search request consists of a search filter and an optional specification of which
attributes to return from each record that satisfies the filter definition. The SCIM Resource
Type against which the search is to be conducted is derived from the relative URL path, such as
/scim/v2/Users.

The XACML request generated from a SCIM search request contains the following attributes.

Attribute
ID/Content Attribute Category Attribute Value

subject-id access-subject
Name of the requesting OAuth2 client, if it can be retrieved from
the OAuth2 access token.

action-id action search.

resource-id resource Relative URL of the SCIM endpoint, such as Users.

<JSON Content> access-token Access token properties.

<JSON Content> applicable-scope Applicable scope objects.

SCIM Search Request Attributes

After the search is run against the SCIM Resource Type, it generates XACML requests for each
record returned in the results to determine whether the requesting client has permission to
receive the record’s attributes. Each resource and attribute of each record is evaluated
independently through a separate policy request to determine if it can be returned. Any
resources or individual resource attributes that are denied by policy are omitted from the
response. These subsequent policy requests are identical to a SCIM GET request.

Note
The number of search results that can be returned is limited by the SCIMResource Type’s
lookthroughLimit property, due to the potential cost of checking each response against
policy.

SCIM Get Request
The following is contained in the authorization request generated for a SCIM GET request for a
known resource.

Attribute
ID/Content Attribute Category Value

subject-id access-subject
Name of the requesting OAuth2 client, if it can be retrieved from
the OAuth2 access token.

action-id action retrieve.

resource-id resource
Relative URL of the resource to retrieve, such as
Users/12345.

<JSON Content> resource SCIM object representation of the requested resource.

<JSON Content> access-token Access token properties.

<JSON Content> applicable-scope Applicable scope objects.

SCIM GET Request Attributes

- 100 -

Policies and Request Processing Per Endpoint

The SCIM endpoint will perform the following actions based on the result of the XACML policy
authorization request:

l If the result is deny – The resource is not returned to the client and an error is returned.

l If the result is permit – The initial attribute set to be returned to the client is
determined. Since multiple policies and/or rules may be consulted to make the permit
decision, it’s possible that multiple obligations will be returned with the result. See About
Obligations and Advice. Include and exclude obligations are processed as follows:

o All attributes specified in an exclude obligation are removed from the attribute set.

o If there are include obligations, all attributes that are not specified by an include
obligation are removed from the attribute set.

o If no attributes remain in the attribute set, a 200 success response code is
returned but with an empty resource object.

These rules for each result type are used for all resources returned from the SCIM endpoint.

SCIM POST Request
The following is contained in the authorization request generated for a SCIM POST request.

Attribute ID Attribute Category Value

subject-id access-subject The client application name.

action-id action create.

resource-id resource
Relative URL of the SCIM Resource
Type to be created, such as Users.

<JSON Content> scim-request
SCIM request body of the resource to
be created.

<JSON Content> access-token Access token properties.

<JSON Content> applicable-scope Applicable scope objects.

SCIM POST Request Attributes

If the POST operation is permitted, the new resource is created and the new object is returned
to the client. After the POST is complete, a second policy request is issued to determine which
attributes of the updated record the client can receive in the response.

SCIM PATCH and PUT Requests
PUT requests are internally converted into a PATCH operation, which is why they are handled
the same way by policy. The following is contained in the authorization request generated for a
SCIM PATCH or PUT request for a known resource.

Attribute ID Attribute Category Value

subject-id access-subject The client application name.

action-id action modify.

SCIM PATCH Request Attributes

- 101 -

Chapter 8: Configuring XACML Policies

Attribute ID Attribute Category Value

resource-id resource
Relative URL of the resource to be
modified, such as Users/12345.

<JSON Content> scim-request
The normalized SCIM PATCH request
body.

<JSON Content> access-token Access token properties.

<JSON Content> applicable-scope Applicable scope objects.

SCIM PATCH Request Attributes

If the PATCH or PUT operation is permitted, the resource is updated and returned to the client.
The updated resource is then subject to the same read criteria in a GET request.

SCIM Delete Request
The following is contained in the authorization request generated for a SCIM DELETE request
for a known resource.

Attribute ID Attribute Category Value

subject-id access-subject The client application name.

action-id action delete.

resource-id resource
Relative URL of the resource to be
deleted, such as Users/12345

<JSON Content> access-token Access token properties.

<JSON Content> applicable-scope Applicable scope objects.

SCIM DELETE Request Attributes

SCIM Sub-Resource Operation Policy Evaluation
The Data Broker can return account status, password restrictions, consent records, consent
history, and external identity provider information for authenticated identities. Policy
evaluation for requests that include account, consent, or external identity operations require
that the requested OAuth2 scopes include the desired action, and the request is made to the
correct sub-resource endpoint.

Note
Account, password, and one-time token delivery operations depend on the Data Store's
Password Policy State ExtendedOperation configuration. See the UnboundID Data Store
Administration Guide for configuration details.

Sub-resource endpoints include:

l /scim/v2/<scim-resource-type>/<id>/account – Processes requests to retrieve or
replace an account's state.

l /scim/v2/<scim-resource-type>/<id>/consents – Processes requests to retrieve or
revoke a user's consent to access resources.

- 102 -

Policies and Request Processing Per Endpoint

l /scim/v2/<scim-resource-type>/<id>/externalIdentities – Processes requests to
link, unlink, or retrieve account information from a configured external identity provider.

l /scim/v2/<scim-resource-type>/<id>/password – Processes requests to reset an
account password.

l /scim/v2/<scim-resource-type>/<id>/passwordQualityRequirements – Processes
requests to retrieve the configured password requirements as defined in the Data Store's
default password policy.

Account Operations
The following are included in the authorization request generated for an account operation
request for a known resource.

Attribute ID Attribute Category Value

subject-id access-subject
The OAuth2 client name, if it can be obtained from the
access token.

resource-id resource
Relative URL of the parent resource, such as
/Users/12345.

action-id action
The account action to perform as listed in the requested
scope.

SCIM Account Operation Request Attributes

Consent Operations
The following are included in the authorization request generated for a consent operation
request for a known resource.

Attribute ID Attribute Category Value

subject-id access-subject
The OAuth2 client name, if it can be obtained from the
access token.

resource-id resource
Relative URL of the parent resource, such as
/Users/12345.

action-id action
The consent action to perform as listed in the requested
scope.

SCIM Consent Operation Request Attributes

External Identity Provider Operations
The following are included in the authorization request generated for a consent operation
request for a known resource.

- 103 -

Chapter 8: Configuring XACML Policies

Attribute ID Attribute Category Value

subject-id access-subject
The OAuth2 client name, if it can be obtained from the
access token.

resource-id resource
Relative URL of the parent resource, such as
/Users/12345.

action-id action
The external identity account action to perform as listed
in the requested scope.

SCIM External Identity Provider Operation Request Attributes

UserInfo Endpoint Policy Evaluation
The UserInfo endpoint interaction with the policy engine is identical to a SCIM GET operation
against the /Me endpoint.

Policy Decision Point (PDP) Endpoint
The PDP endpoint enables an external Policy Enforcement Point (PEP) to generate XACML
requests and send them directly to the Data Broker for evaluation. The request is passed
directly to the policy engine. The request can contain any standard XACML attributes, Data
Broker custom attributes, or other attributes that may be required by custom policies. This
endpoint requires that the client authenticate using HTTP basic authentication.

Policy Engine Request Context
The XACML policy request context contains the information that is available to the policy engine
to make a decision. A request for authorization (OAuth2) will provide information that helps the
policy engine determine whether or not an OAuth2 client should be granted or denied access to
a scope. A request for resources (SCIM or UserInfo) will provide information that will help
determine if the operations on attributes in the requested scopes can be performed.

The request context contains attributes directly passed by a client when making an
authorization request to the policy engine. It is supplemented with additional attributes and
JSON objects that are retrieved from the attribute categories. In order to make a policy
decision, policies can reference any attribute or JSON object from the request context.

XACML Attribute Categories
All references from policy to objects that can be obtained from the request context are first
identified by their XACML attribute category.

l urn:oasis:names:tc:xacml:3.0:attribute-category:resource – This standard
XACML category definition is always used to reference the object to which authorization
is being requested. With a SCIM request, this is a SCIM resource whose type is
determined by the SCIM request path. With an OAuth2 request, it will reference a Scope
object. In either case, the request context exposes the resource as a JSON object that

- 104 -

Policy Engine Request Context

policies can access using AttributeSelector elements. For the consent, account and
external-identity sub-resources, the JSON content will be that of the parent user
resource. See Resource Properties for details.

l urn:oasis:names:tc:xacml:1.0:subject-category:access-subject – This standard
XACML category definition can be used in an AttributeSelector to obtain attributes of
the OAuth2 client, on whose behalf the policy request has been made. See OAuth2 Client
Properties for details.

l urn:unboundid:names:2.0:attribute-category:access-token – This custom
category provides access to properties of the OAuth2 access token that has been used to
make the current request. It exposes the access token as a JSON object that can be
accessed using AttributeSelector elements. See Processing Access Tokens for
details.

l urn:unboundid:names:2.0:attribute-category:http-request – This custom
category provides access to properties of the incoming HTTP request that triggered the
policy request. HTTP headers and query parameters are available through UnboundID-
defined AttributeDescriptors. See HTTP Request Properties for details.

l urn:unboundid:names:2.0:attribute-category:scim-request – This custom
category is populated by the Data Broker SCIM endpoint and contains the JSON request
body of the SCIM request that triggered policy evaluation. Policies that target SCIM
requests can retrieve details of the incoming request using AttributeSelector
elements. The content from this attribute category is in standard SCIM 2.0 format. See
SCIM Request Properties for details.

l urn:unboundid:names:2.0:applicable-scope – This custom category is populated
with the scopes from the access token that are applicable to authorize a resource
request. See Applicable Scopes for details.

l urn:unboundid:names:2.0:session – This custom category provides access to
properties of the current Data Broker session, if one exists. See Session Properties for
details.

Other attribute categories can be defined by custom PIPs.

Standard XACML Attribute Use
The following request attributes are specified by the XACML specification. Unless otherwise
specified, these are always available in the Data Broker’s XACML request context.

Per the XACML specification, any attribute retrieved from the request context with an
AttributeDescriptor element will be a 'bag' (XACML term) of attribute values. Where the
attribute has a single value, the value can be extracted from the bag using a type-one-and-
only XACML function (see section A.3.10 of the XACML specification, "Bag functions").

- 105 -

Chapter 8: Configuring XACML Policies

Attribute URN Attribute Category
XACML
Data Type Description

urn:oasis:names:tc:xacml:1.0:
subject:subject-id

urn:oasis:names:tc:xacml:1.0:
subject-category:access-subject string

Contains the name of the
OAuth2 client that is
submitting a policy request,
as specified when the client
is registered with the Data
Broker.

urn:oasis:names:tc:xacml:3.0:
subject:authnlocality:ip-address

urn:oasis:names:tc:xacml:1.0:
subject-category:access-subject ipAddress

Contains the originating IP
address of the client’s
authorization request. The
availability and accuracy of
this attribute is dependent
upon the deployed Data
Broker’s network
environment. When
available, the value is
retrieved from the
XFORWARDED_FOR
header of the client’s HTTP
request. If that header is not
available, the IP address
returned may be that of the
last proxy to send the
request.

urn:oasis:names:tc:xacml:1.0
:resource:resource-id

urn:oasis:names:tc:xacml:3.0:
attribute-category:resource anyURI

Contains the URN of the
resource being requested.

urn:oasis:names:tc:xacml:1.0
:action:action-id

urn:oasis:names:tc:xacml:3.0:
attribute-category:action string

Contains the name of the
action being requested. The
action-id will be grant for
OAuth2 requests, and will
correspond to one of the
scope operations.

urn:oasis:names:tc:xacml:1.0:
environment:current-time

urn:oasis:names:tc:xacml:3.0:
attribute-category:environment time

The time at which the Data
Broker began processing the
current authorization
request.

urn:oasis:names:tc:xacml:1.0
:environment:current-date

urn:oasis:names:tc:xacml:3.0:
attribute-category:environment date

The date on which the
current authorization request
is being processed.

urn:oasis:names:tc:xacml:1.0
:environment:current-dateTime

urn:oasis:names:tc:xacml:3.0
:attribute-category:environment dateTime

The date and time at which
the Data Broker began
processing the current
authorization request.

Standard XACML Attributes

Custom XACML Function
There is a single custom function implemented by the Data Broker. All other functions
supported by the policy engine are XACML standard functions.

- 106 -

Policy Engine Request Context

The urn:unboundid:names:2.0:function:scimAttribute-subset function is similar to the
standard XACML string-subset function, except that the arguments are bags of SCIM attribute
names using SCIM attribute notation as described in the SCIM specification. The custom
function comprehends wildcard attribute specifications as supported in the
resourceAttributes property of a Data Broker OAuth2 scope.

For example, if the second set passed to this function contains the string urn:mySchema:*, and
the first set contains urn:mySchema:myAttribute, the function may still return TRUE (the first
set is considered to be a subset of the second).

Resource Properties
SCIM Resource Type resources are exposed as JSON objects that can be accessed from policy
using AttributeSelector elements. By default, the only attribute that can be accessed using
an AttributeDesignator is resource-id. For user-defined resources such as Users, the
format of the JSON object is determined by the structure of the underlying resource and the
mappings defined for its SCIM Resource Type. Depending on the type of request, the contents
of the resource category may be either a SCIM Resource or a scope.

Scope Properties
When an OAuth2 client makes an authorization request using the standard OAuth2 endpoints,
the resource category content is a scope object. Based on the OAuth2 client’s configuration,
configured XACML policies, and consent requirements, the Data Broker will decide which
scopes to grant in the access token.

By default, the Data Broker only authorizes the scope. The OAuth2 client bearing the granted
token cannot use it to obtain any attributes or claims. See OAuth2 Scopes for details about
creating scopes.

SCIM Resource Properties
When an OAuth2 client makes a requet through the SCIM or Userinfo endpoints, the resource
category content is a SCIM Resource. For example, this AttributeSelector will retrieve the
region sub-attribute of a user’s home address within the requested User resource.

<AttributeSelector
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
 Path="addresses[type eq "home"].region"
 DataType="http://www.w3.org/2001/XMLSchema#String"/>

Accessing Referenced SCIM Resource Attributes
The Data Broker supports referenced attributes, as described in the SCIM 2.0 Core Schema
specification. When the reference is to another SCIM object, a policy can be used to follow the
reference link and retrieve attributes of the referenced object using an AttributeSelector.
The policy must use the ContextSelectorId element of the AttributeSelector as the path
to the reference attribute. The Path element is then interpreted as the JSON path into the
referenced object.

- 107 -

Chapter 8: Configuring XACML Policies

In the following example, a Credit Cards SCIM Resource Type contains registered credit card
objects for all users, and a User SCIM Resource Type that has a multivalued paymentMethods
attribute that contains a list of payment object references, some of which are credit cards. The
following AttributeSelector will retrieve a XACML bag containing the expiration dates for all
credit cards registered to the user.

<AttributeSelector
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"

Path="expirationDate"
 ContextSelectorId="paymentMethods[paymentType eq "credit"].$ref"
 DataType="http://www.w3.org/2001/XMLSchema#date"/>

The value of the ContextSelectorId must resolve to (one or more) relative URIs whose value
is of the form CreditCards/<Id>, where the ID is a unique credit card object ID.

Note
Policies are not able to resolve SCIM reference attributeswhose value is an external or
absolute URI.

OAuth2 Client Properties
Properties of the requesting OAuth2 client are exposed as a JSON object under the XACML
attribute category urn:oasis:names:tc:xacml:1.0:subject-category:access-subject.

By default, the only attribute that can be accessed using an AttributeDesignator is
subject-id. Other attributes, defined when the OAuth2 client is added to the Data Broker,
may be accessed using an AttributeSelector, including the following properties.

Property Data Type Description

grantType Multivalued string. A list of OAuth2 grant types that this client is authorized to use.

scope JSON Object array. The scopes associated with the OAuth2 client.

clientId String. The OAuth client ID.

name String. The OAuth client name.

tags Multivalued string. A list of tags associated with this OAuth2 client.

OAuth2 Client Properties

Scope Properties
The default OAuth2 Scope policy allows scope operations as long as one of the scopes granted
in the access token allows the operation. Access to attributes allowed per operation is the
union of all resourceAttributes defined in Authenticated Identity or Resource scopes that
allow that operation.

In order for operations to be allowed on resources, the XACML policies that process the
requests must allow the operations requested in the scope. The following scope properties can
be evaluated by policies.

- 108 -

Policy Engine Request Context

Property Data Type Description

tokenName String. The scope name as presented in an OAuth2 request.

type String.

The scope type, which is authenticated-identity for
authenticated identity scopes, resource for resource scopes, or
oauth2 for a generic scope.

tags
String.
Multivalued.

A list of Tags associated with a scope that can be examined by XACML
policies.

scimResourceType Aggregation. If a resource scope, the SCIM Resource Type that can be accessed.

resourceOperations
Multivalued
list. Optional.

Operations can include:

l retrieve (GET) from endpoint /scim/v2/<id>

l modify (PATCH or PUT) to endpoint /scim/v2/<id>

accountOperations
Multivalued
list. Optional.

Operations can include:

l reset-password (PUT) to endpoint
/scim/v2/<id>/password

l retrieve-password-quality-requirements (GET)
from endpoint
/scim/v2/<id>/passwordQualityRequirements

l retrieve-account-state (GET) from endpoint
/scim/v2/<id>/account

l replace-account-state (PUT) to endpoint
/scim/v2/<id>/account

consentOperations
Multivalued
list. Optional.

Operations can include:

l retrieve-consent (GET) from endpoint
/scim/v2/<id>/consents or
/scim/v2/<id>/consents/<id>

l revoke-consent (DELETE) from endpoint
/scim/v2/<id>/consents/<id>

l retrieve-consent-history (GET) from endpoint
/scim/v2/<id>/consentHistory/<id>

externalIdentity
Operations

Multivalued
list. Optional.

Operations can include:

l retrieve-external-identity (GET) from endpoint
/scim/v2/<id>/externalIdentities or
/scim/v2/<id>/externalIdentities/<id>

This will expose access tokens from the identity provider.

l unlink-external-identity (DELETE) from

Scope Properties

- 109 -

Chapter 8: Configuring XACML Policies

Property Data Type Description

endpoint
/scim/v2/<id>/externalIdentities/<id>

allOperations
Multivalued
list.

A computed value containing the union of all operations defined by
resourceOperations, accountOperations,
consentOperations, and externalIdentityOperations.

resourceAttributes
Multivalued
string.

A list of one or more SCIM attributes of the authenticated identity for
which this scope allows access. The type of access is determined by the
operation properties retrieve, replace, and modify. A wildcard
value of * can be used for all attributes. A schema-specific wildcard
value of the form urn:<schemaName>:* can be used to represent all
attributes of a single schema namespace. Access to attributes allowed
per operation is the union of all resourceAttributes allowed in
the scope.

Scope Properties

HTTP Request Properties
The XACML request context exposes some properties of the HTTP request. The HTTP request
will be either an OAuth2 request, a SCIM request, a UserInfo request, or a PDP request. All
access to the HTTP request is through the XACML attribute category
urn:unboundid:names:2.0:attribute-category:http-request.

HTTP header values can be obtained using an AttributeDesignator with AttributeId of the
form urn:unboundid:names:2.0:http-request:header:<header-name>, where header-
name is the name of the header requested. The following example retrieves the value of the
Cookie header:

<AttributeDesignator Category="urn:unboundid:names:2.0:attribute-category:http-request"
 AttributeId="urn:unboundid:names:2.0:httpHeader:Cookie"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 MustBePresent="false"/>

HTTP query parameters can be obtained using an AttributeDesignator with AttributeId of
the form urn:unboundid:names:2.0:httpQueryParam:<parameter-name>, where
parameter-name is the name of the query attribute requested. The following example retrieves
the value of the query parameter with name channel:

<AttributeDesignator Category="urn:unboundid:names:2.0:attribute-category:http-request"
 AttributeId="urn:unboundid:names:2.0:httpQueryParam:channel"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 MustBePresent="false"/>

SCIM Request Properties
For policy evaluation of SCIM requests, the HTTP message body, if one exists, is available as
the content of the scim-request attribute category. The content type of a SCIM request is
always JSON, so the request body can be accessed using an AttributeSelector with a JSON
path. For convenience, the attribute with ID urn:unboundid:names:2.0:impacted-

- 110 -

Policy Engine Request Context

attributes is also available. This attribute is computed by the policy engine and returns a
XACML bag of attribute names in SCIM attribute notation. It returns only the attributes that can
be created, modified, or deleted as a result of a SCIM POST, PUT, or PATCH request. See the
SCIM 2.0 specification for more details.

The following example retrieves all impacted attributes from the current SCIM request:

<AttributeDesignator
 Category="urn:unboundid:names:2.0:attribute-category:scim-request"
 AttributeId="urn:unboundid:names:2.0:impacted-attributes"
 DataType="http://www.w3.org/2001/XMLSchema#string">

Applicable Scopes
An OAuth2 access token presented by an OAuth2 client to the Data Broker can contain many
scopes, only some of which are applicable to the current request. The Data Broker’s PIP
exposes the applicable scopes under the XACML attribute category
urn:unboundid:names:2.0:attribute-category:applicable-scope. This category contains
a list of JSON scope objects, described in OAuth2 Scopes, for those scopes granted by the
access token that meet the following criteria:

l The current request’s action-id is contained in one of the scope’s operations properties.

l The type of resource requested matches the type of resource to which the scope grants
access. For Authenticated Identity scopes, they are only applicable to requests in which
the resource requested is the access token owner.

l Generic OAuth2 scopes are always included since their meaning is not defined by the
Data Broker.

The following example retrieves all attributes that are granted access by all applicable scopes
of the access token:

<AttributeSelector
 Category="urn:unboundid:names:2.0:attribute-category:applicable-scope"
 Path="scope.resourceAttributes"
 DataType="http://www.w3.org/2001/XMLSchema#String"/>

Session Properties
An authenticated identity must be established to obtain an OAuth2 access token using all
OAuth2 grant types, except for Client Credentials. During policy evaluation of an OAuth2 access
token grant request, the XACML attributes category urn:unboundid:names:2.0:attribute-
category:session contains JSON content describing the currently authenticated user. The
following properties are available in this attribute category.

Property Data Type Description

sub String
Relative SCIM path to the authenticated user resource, such as
Users/123456789.

subResource JSON object The SCIM resource object for the token owner.

Session Properties

- 111 -

Chapter 8: Configuring XACML Policies

Access Token Properties
The Data Broker's Access Token Policy Information Provider (PIP) exposes Data Broker-
generated access tokens as JSON objects under the XACML attribute category
urn:unboundid:names:2.0:attribute-category:access-token. The properties of a Data
Broker access token adhere to the JSON Web Token specification, with some Broker-specific
extensions.

The following properties are available in the access token category.

Property Data Type Description

active
Boolean.
Required. True if the token is valid, false if token is invalid or has expired.

sub
String.
Required.

The unique identifier for the token owner. For user tokens, this will be the
relative SCIM path to the user resource, such as Users/123456789. For
Client Credentials (app) tokens, this is populated with the OAuth2 client
name.

subResource JSON object.
The SCIM resource object for the token owner. This is not present for app
tokens.

typ String. The type of token, either user or app.

scope
Multivalued
string. A list of scope names granted by this token.

app String.
The name of the OAuth2 client for which this token was created. For
application tokens, this value will be equal to sub.

iat DateTime. The date and time at which the token was created.

exp DateTime. The date and time at which the token will expire.

jti String. The unique token identifier.

Access Token Properties

Note
For OAuth2 grant requests, there is no access token available in the request context, since the
request is to obtain a new token.

The following example retrieves the entitlements of the access token owner:

<AttributeSelector
 Category="urn:unboundid:names:2.0:attribute-category:access-token"
 Path="sub.entitlements"
 DataType="http://www.w3.org/2001/XMLSchema#String"/>

Policy Sections and Functions Described
The following is the Scope Validation policy, installed with the Data Broker. This policy is
applied to all incoming SCIM requests. Each section and its function is described to show how a
policy is constructed. Use this to determine how to create new policies or modify existing ones.

- 112 -

Policy Engine Request Context

The Scope Validation Policy
1<?xml version="1.0" encoding="UTF-8"?>
2<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
3 PolicyId="urn:unboundid:policy:ScopeValidationPolicy"
4 Version="1"
5 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-
overrides">
6 <Description>
7 Authorizes requests based on the scopes granted by the provided access token.
8 </Description>
9 <Target/>
10 <!-- The XACML action-id (requested operation) -->
11 <VariableDefinition VariableId="action-id">
12 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
13 <AttributeDesignator
14 MustBePresent="true"
15 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
16 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
17 DataType="http://www.w3.org/2001/XMLSchema#string"/>
18 </Apply>
19 </VariableDefinition>
20 <!-- whether the granted scope(s) permit access to all resource attributes -->
21 <VariableDefinition VariableId="allAttributesAllowed">
22 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">
23 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
24 *
25 </AttributeValue>
26 <AttributeSelector Category="urn:unboundid:names:2.0:attribute-
category:applicable-scope"
27 Path="scope.resourceAttributes"
28 DataType="http://www.w3.org/2001/XMLSchema#string"
29 MustBePresent="false"/>
30 </Apply>
31 </VariableDefinition>
32 <Rule RuleId="urn:unboundid:rule:ApplicableScope" Effect="Deny">
33 <Description>
34 Deny access if the requested action is not allowed by any scope in the access
35 token.
36 </Description>
37 <Condition>
38 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:not">
39 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">
40 <VariableReference VariableId="action-id"/>
41 <AttributeSelector Category="urn:unboundid:names:2.0:attribute-
category:applicable-scope"
42 Path="scope.allOperations"
43 DataType="http://www.w3.org/2001/XMLSchema#string"
44 MustBePresent="false"/>
45 </Apply>
46 </Apply>
47 </Condition>
48 <AdviceExpressions>
49 <AdviceExpression AdviceId="request-denied-reason" AppliesTo="Deny">
50 <AttributeAssignmentExpression AttributeId="error">
51 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
52 insufficient_scope

- 113 -

Chapter 8: Configuring XACML Policies

53 </AttributeValue>
54 </AttributeAssignmentExpression>
55 <AttributeAssignmentExpression AttributeId="error-description">
56 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
57 Requested operation not allowed by the granted OAuth2 scopes.
58 </AttributeValue>
59 </AttributeAssignmentExpression>
60 </AdviceExpression>
61 </AdviceExpressions>
62 </Rule>
63 <Rule RuleId="urn:unboundid:rule:AllowOnlyScopedAttributes" Effect="Deny">
64 <Description>
65 For create and modify operations, deny if the request impacts attributes
66 that are not allowed by the applicable scopes.
67 </Description>
68 <Condition>
69 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
70 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">
71 <VariableReference VariableId="action-id"/>
72 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
73 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
74 create
75 </AttributeValue>
76 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
77 modify
78 </AttributeValue>
79 </Apply>
80 </Apply>
81 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:not">
82 <VariableReference VariableId="allAttributesAllowed"/>
83 </Apply>
84 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:not">
85 <Apply FunctionId="urn:unboundid:names:2.0:function:scimAttribute-subset">
86 <AttributeDesignator Category="urn:unboundid:names:2.0:attribute-
category:scim-request"
87 AttributeId="urn:unboundid:names:2.0:impacted-
attributes"
88 DataType="http://www.w3.org/2001/XMLSchema#string"
89 MustBePresent="false"/>
90 <AttributeSelector Category="urn:unboundid:names:2.0:attribute-
category:applicable-scope"
91 Path="scope.resourceAttributes"
92 DataType="http://www.w3.org/2001/XMLSchema#string"
93 MustBePresent="false"/>
94 </Apply>
95 </Apply>
96 </Apply>
97 </Condition>
98 <AdviceExpressions>
99 <AdviceExpression AdviceId="request-denied-reason" AppliesTo="Deny">
100 <AttributeAssignmentExpression AttributeId="error">
101 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
102 insufficient_scope
103 </AttributeValue>
104 </AttributeAssignmentExpression>
105 <AttributeAssignmentExpression AttributeId="error-description">
106 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

- 114 -

Policy Engine Request Context

107 Request includes attributes not allowed by the granted OAuth2 scopes.
108 </AttributeValue>
109 </AttributeAssignmentExpression>
110 </AdviceExpression>
111 </AdviceExpressions>
112 </Rule>
113 <Rule RuleId="urn:unboundid:rule:IncludeOnlyScopedAttributes" Effect="Permit">
114 <Description>
115 For retrieve requests, limit the attributes returned to those specifically
116 allowed by the applicable scopes.
117 </Description>
118 <Condition>
119 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
120 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
121 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
122 retrieve
123 </AttributeValue>
124 <VariableReference VariableId="action-id"/>
125 </Apply>
126 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:not">
127 <VariableReference VariableId="allAttributesAllowed"/>
128 </Apply>
129 </Apply>
130 </Condition>
131 <ObligationExpressions>
132 <ObligationExpression ObligationId="include-attributes" FulfillOn="Permit">
133 <AttributeAssignmentExpression AttributeId="attributeNames">
134 <AttributeSelector Category="urn:unboundid:names:2.0:attribute-
category:applicable-scope"
135 Path="scope.resourceAttributes"
136 DataType="http://www.w3.org/2001/XMLSchema#string"
137 MustBePresent="false"/>
138 </AttributeAssignmentExpression>
139 </ObligationExpression>
140 </ObligationExpressions>
141 </Rule>
142</Policy>

Section Descriptions
Sections are described by line numbers.

l [3] The PolicyId specification, must be unique among all policies installed in the Data
Broker.

l [5] The deny-overrides combining algorithm indicates that if any rule results in a deny,
then the result of the policy will be deny.

l [6-8] The description is displayed when this policy is viewed in the Management Console.
This policy authorizes requests based on the scopes granted by the provided access
token.

l [9] The Target specification for the policy. This is empty because the policy is intended
to be used inside a policy set that will set the target.

- 115 -

Chapter 8: Configuring XACML Policies

l [10-19] Since the action-id is used multiple times in the policy, it is defined as a XACML
variable.

l [21] This boolean XACML variable will be true if the access token allows access to all
attributes of the requested resource.

l [24-27] The AttributeSelector returns a XACML bag containing the value of the
resourceAttributes property for each scope granted by the access token. If any value
in the bag contains a wildcard (*), that indicates that all attributes are accessible.

l [32-47] The first rule in the policy denies the request if the requested action is not
allowed by any scope in the access token.

l [48-61] Provides an AdviceExpression that an error should be returned with the reason
that access was denied, "Requested operation not allowed by the granted

OAuth2 scopes." See Troubleshooting Denied Access.

l [62-112] This rule only applies to create and modify requests, and does not allow any
request that impacts attributes that are not included in the access token's scopes.

l [69] The rule's condition consists of three clauses that all must be true (with an AND
condition).

l [70-80] This clause checks that the action requested is one of create or modify.

l [81-83] This clause checks that the access token does not allow access to all attributes
(with a wild-card).

l [84-96] This clause ensures that the attributes impacted by the incoming request are a
subset of the attributes granted by the access token's scopes.

l [98-111] Provides an AdviceExpression that an error should be returned with the
reason that operations were denied, "Request includes attributes not allowed by

the granted OAuth2 scopes."

l [113-141] This rule applies only to retrieve requests, and uses an obligation to limit the
attributes returned in the response.

l [132] The obligation is of type include-attributes. It is only applied if the result of the
rule is Permit.

l [133- 138] The obligation argument contains the names of all attributes that may be
returned. The AttributeSelector returns the union of attributes allowed by each
applicable scope.

- 116 -

Configuring the Policy Service

Configuring the Policy Service
XACML policies are managed by the Policy Service. The default conditions of the Policy Service
can be viewed and changed with the dsconfig tool, or through the Managment Console
Authorization and Policies -> XACML Policy Service.

The one property that can be changed is the combining-algorithm, which determines how
decisions are made if multiple policies or policy sets are applied to a request for resources.
The default for the Policy Service is deny-overrides, which specifies that a "deny" decision
from a policy should take priority over a "permit" decision. The Data Broker also supports
permit-overrides, deny-unless-permit, and permit-unless-deny. See the OASIS
Committee Specification 01, eXtensible access control markup language (XACML) Version 3.0.
August 2010 for details about each combining algorithm.

Policy Information Providers
Policy Information Providers are used to retrieve XACML attribute(s) from the Policy
Information Point (PIP) during policy evaluation. See Standard XACML Attribute Use and
Custom XACML Attribute Use for information about these attributes. The Data Broker provides
the following Policy Information Providers:

BuiltIn Policy Information Provider – Resolves XACML attributes that are implemented by
the Data Broker.

SCIM Request Policy Information Provider – Resolves XACML attributes whose value can
be retrieved from an incoming SCIM request.

SCIM Resource Type Policy Information Provider – Resolves XACML attributes whose
value can be retrieved from a SCIM Resource Type configured on this Data Broker instance.

Token Policy Information Provider – Resolves XACML attributes whose value can be
retrieved from an OAuth2 access token generated by this Data Broker instance.

Note
If XACML policiesmust process requests that rely on third-party tokens or data, a customPIP
must be created with the UnboundID Server SDK.

PIP Evaluation Order
When multiple PIPs are defined, the evaluation order determines the correct provider to verify
a specified XACML attribute. Each PIP must have a unique evaluation value defined within a
Data Broker instance. PIPs with a smaller value are evaluated first to determine if they match
a XACML attribute ID.

Creating XACML Policies
The Management Console, Authorization and Policies -> XACML Policies, or the
dsconfig tool can be used to create and manage XACML policies. Policies that are written or
imported must be syntactically correct and:

- 117 -

Chapter 8: Configuring XACML Policies

l Contain all required policy elements required by XACML 3.0.

l Not contain optional elements that are not supported by the Data Broker.

l Pass XACML function checks for the correct number and type of parameters.

If any of these criteria are not met, the create or import fails.

Several policies are available by default and can be used as templates or adjusted to fit
specific requirements:

OAuth2 Policy Set – A container for policies that apply to OAuth2 authorization requests.
Each policy referenced in this set is evaluated in order. If a policy returns a deny, policies
listed after that are not evaluated.

OAuth2 Consent – Determines whether consent is required before granting the requested
scope to an OAuth2 client. This policy will deny scopes of type OAuth2 if the grant type is
Client Credentials, since user consent cannot be obtained with this grant type.

OAuth2 Scope – Determines whether a client making an OAuth2 authorization request should
be granted a requested scope. If any rule in the policy results in deny, the policy will deny the
scope. The OAuth2 client making the request must be configured in the Data Broker to request
the scope.

SCIM Resource Policy Set – A container for policies that authorize requests for protected
resources, including SCIM and UserInfo requests.

Scope Validation – Authorizes SCIM requests based on the scopes granted by the access
token provided. The scope must also be configured to enable a requested action. See OAuth2
Scopes for details.

Token Validation – Denies all SCIM resource requests that do not contain a valid access
token.

Creating a Policy Set
A policy set is an ordered collection of policies that work together to perform a policy task. The
policy set is a XACML-defined entity. The Data Broker evaluates policy sets the same way it
evaluates policies.

Creation of a policy set is the same as that of a policy. A policy set must be created from
individual policies that have been configured in the Data Broker.

Note
Policies that are part of a policy set should be disabled in the Data Broker, once the policy set is
enabled. This will prevent policies from being evaluated twice.

Testing Policies
Policies can be tested by running request scenarios through the API Explorer to ensure that
they work as designed before deploying in production. The API Explorer can be used to create
an authorization request, specify the OAuth2 client that will request access to a user's

- 118 -

Testing Policies

resources, the resources to access, and additional information from the user's entry to assist
in processing the request. See About Data Access Requests for an overview of the request
components.

Access the API Explorer from the Documentation Index page, <server-
root>/docs/index.html, or the server's HTTPS endpoint https://<host>:<http-
port>/explorer.

Troubleshooting Policies with Traces
Policy decisions are frequently the result of a complex series of logical steps. Identifying the
reason why a particular request is getting an unexpected result can be difficult. The Data
Broker can generate a trace of any policy decision, and log traces with in the File Based Trace
Log Publisher, or with XACML Policy Trace Filters created with dsconfig or through the
Management Console, Authorization and Policies -> XACML Policy Trace Filters.

Note
Policy traces are logged in the File Based Trace Log Publisher. SeeWorking with Logs and
Log Publishers.

A Policy Decision Trace is an XML document that is formatted like the XACML policies. It
demonstrates the sequence of steps taken by the policy engine to come to a decision for a
specific request. The elements of the trace parallel the policies, policy targets, and policy rules
that are evaluated. The following are included:

l The first line of the log entry identifies the message type as POLICY-DECISION-TRACE.

l The parameters of the XACML request being traced are listed, including the application,
action, and resources.

l Following this is the trace itself, which is included in the <DecisionTrace> XACML
element.

The trace also includes entries for each policy, rule, and target evaluated during the decision
process. Each entry contains a result XML attribute, which specifies the result of evaluating
the corresponding XACML element.

Troubleshooting Denied Access
Policies can issue XACML AdviceExpressions for any policy request that is denied. This passes
additional information to the client as to the reason for denying access. Both the OAuth2
endpoints and the SCIM endpoint will look for error advice returned from the policy engine and
include it in the error response generated for the client. If a policy denies a request without
advice, the error response is access_denied.

The following error advice may be included in policy.

- 119 -

Chapter 8: Configuring XACML Policies

Advice ID Attribute ID Value

request-denied-reason

error

Error identifier or code. For an OAuth2 response,
this value populates the error parameter in the
OAuth2 error response, as defined in the OAuth2
Authorization Framework. For SCIM responses,
this value will be used to populate the
scimType error parameter.

error_description

The value of the error_description
parameter of an OAuth2 error response, or the
detail parameter of a SCIM error response.

Policy Error Advice

The following is an example of XACML Advice specifying that an invalid_scope error response
should be returned:

<AdviceExpressions>
 <AdviceExpression AdviceId="request-denied-reason" AppliesTo="Deny">
 <AttributeAssignmentExpression AttributeId="error">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
 invalid_scope
 </AttributeValue>
 </AttributeAssignmentExpression>
 <AttributeAssignmentExpression AttributeId="error-description">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
 Application not authorized for requested scope
 </AttributeValue>
 </AttributeAssignmentExpression>

 </AdviceExpression>
</AdviceExpressions>

With this advice, the following error will be returned to the OAuth2 client:

HTTP/1.1 401 Unauthorized
 WWW-Authenticate: Bearer
 error="invalid_scope",
 error_description="Application not authorized for requested scope"

Unsupported XACML Features
When creating policies, the following XACML 3.0 features are not supported:

l No support for embedded XML content in a request. The following XACML
elements related to XML processing have not been implemented:

l <PolicyDefaults> and <PolicySetDefaults>

l <XPathVersion>

l XPath functions xpath-node-count, xpath-node-equal, and xpath-node-match.

l No support for versioning of policies. XACML incorporates the idea of maintaining
multiple versions of a policy, such as policy "X" version 1.0 and policy "X" version 2.0. A
policy set then can specify (by reference) which version of policy 'X' is to be applied

- 120 -

Unsupported XACML Features

when evaluating a request. The Data Broker only allows for a single instance of policy X
to be stored. It does not support referencing a particular version of that policy. The
following XACML elements related to versioning are not supported:

l <VersionMatchType> in PolicyIDReference or PolicySetIDReference elements

l Limited Support for Multi Requests. XACML specifies several ways that a request for
multiple decisions can be contained within a single request context, described in the
XACML Multiple Decision Profile document. The Data Broker only supports one version of
a multiple-decision request by using multiple <Attributes> of the same category in the
request. In addition, Data Broker policies only support multiple instances of the
Resources category. As a result the following XACML elements are not supported:

l <MultiRequests>

l <RequestReference>

l <AttributesReference>

l CombinedDecision attribute of the <Request> element

l xml:id attribute of the <Attributes> element

l No support for Attribute Issuer or Policy Issuer. These features allow for the
writing of policies that determine which other policies should be used when evaluating a
request. For example, a request may be subject only to policies whose issuer (author)
are from some trusted source. This is a second-order feature and not relevant for
environments where all policies are equal as to their trustworthiness. The following
XACML elements related to issuers are not supported:

l <PolicyIssuer>

l Issuer attribute of the <Attribute> element

l No support for Policy and Rule Combiner Parameters. A policy-combining
algorithm is a rule for how the decisions rendered by multiple applicable policies are to
be combined in order to form an ultimate decision by a policy set or the policy decision
point as a whole. Similarly, a rule-combining algorithm is a rule for how the decisions
rendered by multiple rules within a single policy are to be combined. The Policy and Rule
Combiner Parameters are relevant only if custom rule-combining or policy-combining
algorithms are in effect. Since the Data Broker does not currently support adding custom
rule-combining or policy-combining algorithms, XACML elements for the associated
Combiner Parameters are not supported:

l <CombinerParameters>

l <RuleCombinerParameters>

- 121 -

Chapter 8: Configuring XACML Policies

l <PolicyCombinerParameters>

l <PolicySetCombinerParameters>

- 122 -

Chapter 9: Advanced Configuration
The Data Broker’s non-user data consists of data in the server configuration. Generally, data
in the server configuration define an individual Data Broker instance, and can include its place
in a server topology. Multiple server instances can be grouped in two ways to share or mirror
configuration settings:

l Server Groups – Servers that are added to a server group in the global configuration can
share configuration changes across the group, or not.

l Cluster – This is a topology management setting that enables a set of servers to be
grouped by a functional purpose, and any change to one is mirrored to all. A master
server verifies any configuration change before it is propagated to other servers in the
group.

Note
All configuration objects and settings are described in the HTMLConfiguration Reference,
which can be accessed from theManagement Console or from the <server-
root>/docs/index.html page. Information in this chapter highlights configuration of interest
to a Data Broker installation. For complete configuration options and details, see the
Configuration Reference.

Topics include:

General Server Configuration

Data Broker Server Advanced Configuration

Configuring Data Broker Templates

Topology Management

- 123 -

Chapter 9: Advanced Configuration

General Server Configuration
There are tools and settings that are common across all UnboundID servers. These enable
monitoring and managing the server, configuring and sending alerts and alarms, and managing
the server's communication with clients. These configuration objects can be changed at the
local server, with the option to apply changes to servers in a group.

Available Configuration Tools
Available command-line configuration tools include:

Tool Description

backup
Run full or incremental backups on one or more Data Brokers. This utility also
supports the use of a properties file to pass predefined command-line arguments.

base64
Encode raw data using the base64 algorithm or decode base64-encoded data back
to its raw representation.

collect-support-data

Collect and package system information useful in troubleshooting problems. The
information is packaged as a ZIP archive that can be sent to a technical support
representative.

consent-admin
Manage a resource owner consent over the Data Broker REST API. Consent is
authorized by a resource owner to allow access to resources by an application.

config-diff

Generate a summary of the configuration changes in a local or remote server
instance. The tool can be used to compare configuration settings when
troubleshooting issues, or when verifying configuration settings on new servers.

create-initial-broker-config Create an initial Data Broker configuration.

create-rc-script
Create a Run Control (RC) script that can be used to start, stop, and restart the Data
Broker on Unix-based systems.

dsconfig View and edit the Data Broker configuration.

dsframework
Manage administrative server groups or the global administrative user accounts that
are used to configure servers within server groups.

dsjavaproperties

Configure the JVM arguments used to run the Data Broker and its associated tools.
Before launching the command, edit the properties file located in
config/java.properties to specify the desired JVM arguments and the
JAVA_HOME environment variable.

encryption-settings Manage the server encryption settings database.

evaluate-policy Request a policy decision from the Data Broker.

ldapmodify Perform LDAP modify, add, delete, and modify DN operations in the Data Broker.

ldappasswordmodify Perform LDAP password modify operations in the Data Broker.

ldapsearch Perform LDAP search operations in the Data Broker.

ldif-diff
Compare the contents of two LDIF files, the output being an LDIF file needed to bring
the source file in sync with the target.

ldifmodify Apply a set of modify, add, and delete operations against data in an LDIF file.

Command-line Tools

- 124 -

General Server Configuration

Tool Description

list-backends List the backends and base DNs configured in the Data Broker.

manage-extension

Install or update extension bundles. An extension bundle is a package of extension
(s) that utilize the Server SDK to extend the functionality of the Data Broker. Any
added extensions require a server re-start.

oauth2-request

Performs OAuth2 requests on the Data Broker. This tool can be used to test OAuth2
functions of the Data Broker, and to manage OAuth2 tokens on behalf of registered
applications.

prepare-external-store

Prepares the external data stores for the Data Broker. This is run as part of the
create-initial-broker-config tool during installation. This tool creates
the broker user account, sets the correct password, and configures the account with
required privileges. It will also install the necessary schema required by the Data
Broker.

remove-defunct-server
Removes a permanently unavailable Data Broker after it has been removed from its
topology by the uninstall tool.

restore Restore a backup of the Data Broker.

review-license Review and/or accept the product license.

server-state View information about the current state of the Data Broker processes.

start-broker Start the Data Broker.

status Display basic server information.

stop-broker Stop or restart the Data Broker.

sum-file-sizes Calculate the sum of the sizes for a set of files.

Command-line Tools

Using the dsconfig tool
The dsconfig tool, is used to view or edit the Data Broker configuration, and is parallel in
functionality with the Management Console. This utility can be run in interactive mode, non-
interactive mode, and batch mode. Interactive mode provides an intuitive, menu-driven
interface for accessing and configuring the server.

To start dsconfig in interactive mode, enter the following command:

$ bin/dsconfig

The dsconfig tool provides a batching mechanism that reads multiple dsconfig invocations
from a file and executes them sequentially. The batch file advantage is that it minimizes LDAP
connections and JVM invocations required with scripting each call. To use batch mode to read
and execute a series of commands in a batch file, enter the following command:

$ dsconfig --bindDN uid=admin,dc=company,dc=com \
 --bindPassword password \
--no-prompt \

 --batch-file </path/to/config-batch.txt>

The logs/config-audit.log file can be used to review the configuration changes made to the
Data Broker and use them in the batch file.

- 125 -

Chapter 9: Advanced Configuration

Administrative Accounts
Users that authenticate to the Config API or the Management Console are stored in cn=Root
DNs,cn=config, not the user store that is configured for the Data Broker. These users must
exist on all instances of the Data Broker to manage a Topology of servers. The setup tool
automatically copies one administrative account when performing an installation from a peer,
but if changed, the accounts must be synchronized.

Managing Root User Accounts
A default root user, cn=Directory Manager, is created during installation and is stored in the
server's configuration file (under cn=Root DNs,cn=config). The root user is the LDAP-
equivalent of a UNIX super-user account and inherits its read-write privileges from the default
root privilege set. Root user entries are stored in the server’s configuration and not in backend
data.

To limit full access, create separate administrator user accounts with limited privileges.
Having separate user accounts for each administrator also makes it possible to enable
password policy functionality (such as password expiration, password history, and requiring
secure authentication) for each administrator.

Default Root Privileges
The UnboundID servers have a privilege subsystem that allows for a more fine-grained control
of privilege assignments. The following set of root privileges are available to each root user
DN:

Privilege Description

audit-data-security Allows the associated user to execute data security auditing tasks.

backend-backup Allows the user to perform backend backup operations.

backend-restore Allows the user to perform backend restore operations.

bypass-acl Allows the user to bypass access control evaluation.

config-read Allows the user to read the server configuration.

config-write Allows the user to update the server configuration.

disconnect-client Allows the user to terminate arbitrary client connections.

ldif-export Allows the user to perform LDIF export operations.

ldif-import Allows the user to perform LDIF import operations.

lockdown-mode Allows the user to request a server lockdown.

manage-topology Allows the user to make configuration changes to the topology.

modify-acl Allows the user to modify access control rules.

password-reset

Allows the user to reset user passwords but not their own. The user must also
have privileges granted by access control to write the user password to the
target entry.

Default Root Privileges

- 126 -

General Server Configuration

Privilege Description

permit-get-password-
policy-state-issues Allows the user to retrieve the state of a user account.

privilege-change
Allows the user to change the set of privileges for a specific user, or to
change the set of privileges automatically assigned to a root user.

server-restart Allows the user to request a server restart.

server-shutdown Allows the user to request a server shutdown.

soft-delete-read Allows the user access to soft-deleted entries.

stream-values

Allows the user to perform a stream values extended operation that obtains
all entry DNs and/or all values for one or more attributes for a specified
portion of the DIT.

third-party-task Allows the associated user to invoke tasks created by third-party developers.

unindexed-search
Allows the user to perform an unindexed search in the Oracle Berkeley DB
Java Edition backend.

update-schema Allows the user to update the server schema.

use-admin-session
Allows the associated user to use an administrative session to request that
operations be processed using a dedicated pool of worker threads.

Default Root Privileges

Creating a Root User
Additional root users can be added under cn=Root DNs,cn=config. Whether the new root DN
inherits the default set of root privileges is determined by the value of ds-cfginherit-
default-root-privileges.

The following steps need to be repeated on every server in the topology.

1. Open a text editor, and create a file containing the root user entry.

dn: cn=Data Admin,cn=Root DNs,cn=config
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: ubidPerson
objectClass: ds-cfg-root-dn-user
userPassword: password
cn: Data Admin
sn: Admin
ds-cfg-alternate-bind-dn: cn=Data Admin
givenName: Data
ds-cfg-inherit-default-root-privileges: false
ds-privilege-name: bypass-acl
ds-privilege-name: password-reset
ds-privilege-name: update-schema
ds-privilege-name: unindexed-search
ds-privilege-name: use-admin-session
ds-privilege-name: manage-topology

- 127 -

Chapter 9: Advanced Configuration

2. Use ldapmodify to add the entry.

$ bin/ldapmodify --port <ldap-port> \
 --bindDN "cn=Directory Manager" \
 --bindPassword <password> \
 --defaultAdd
 --filename "rootuser.ldif"

Modifying the Root User Password
To change a root user's password, use the ldappasswordmodify tool.

1. Open a text editor and create a text file containing the new password, such as
rootuser.txt.

$ echo password > rootuser.txt

2. Use ldappasswordmodify to change the root user’s password.

$ bin/ldappasswordmodify \
 --port <ldap-port> \
 --bindDN "cn=Directory Manager" \
 --bindPassword <password> \
 --newPasswordFile rootuser.txt

3. Remove the text file.

Using the Configuration API
UnboundID servers provide a Configuration API, which may be useful in situations where using
LDAP to update the server configuration is not possible. The API is consistent with the System
for Cross-domain Identity Management (SCIM) 2.0 protocol and uses JSON as a text exchange
format, so all request headers should allow the application/json content type.

The server includes a servlet extension that provides read and write access to the server’s
configuration over HTTP. The extension is enabled by default for new installations, and can be
enabled for existing deployments by simply adding the extension to one of the server’s HTTP
Connection Handlers, as follows:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --add http-servlet-extension:Configuration

The API is made available on the HTTPS Connection handler’s host:port in the /config
context. Due to the potentially sensitive nature of the server’s configuration, the HTTPS
Connection Handler should be used, for hosting the Configuration extension.

- 128 -

Using the Configuration API

Authentication and Authorization
Clients must use HTTP Basic authentication to authenticate to the Configuration API. If the
username value is not a DN, then it will be resolved to a DN value using the identity mapper
associated with the Configuration servlet. By default, the Configuration API uses an identity
mapper that allows an entry’s UID value to be used as a username. To customize this
behavior, either customize the default identity mapper, or specify a different identity mapper
using the Configuration servlet’s identity-mapper property. For example:

$ bin/dsconfig set-http-servlet-extension-prop \
 --extension-name Configuration \
 --set "identity-mapper:Alternative Identity Mapper”

To access configuration information, users must have the appropriate privileges:

l To access the cn=config backend, users must have the bypass-acl privilege or be
allowed access to the configuration using an ACI.

l To read configuration information, users must have the config-read privilege.

l To update the configuration, users must have the config-write privilege.

Relationship Between the Configuration API and the dsconfig Tool
The Configuration API is designed to mirror the dsconfig tool, using the same names for
properties and object types. Property names are presented as hyphen case in dsconfig and
as camel-case attributes in the API. In API requests that specify property names, case is not
important. Therefore, baseDN is the same as baseDn. Object types are represented in hyphen
case. API paths mirror what is in dsconfig. For example, the dsconfig list-connection-
handlers command is analogous to the API's /config/connection-handlers path. Object
types that appear in the schema URNs adhere to a type:subtype syntax. For example, a Local
DB Backend's schema URN is urn:unboundid:schemas:configuration:2.0:backend:local-
db. Like the dsconfig tool, all configuration updates made through the API are recorded in
logs/config-audit.log.

The API includes the filter, sort, and pagination query parameters described by the SCIM
specification. Specific attributes may be requested using the attributes query parameter,
whose value must be a comma-delimited list of properties to be returned, for example
attributes=baseDN,description. Likewise, attributes may be excluded from responses by
specifying the excludedAttributes parameter. See Sorting and Filtering with the
Configuration API for more information on query parameters.

Operations supported by the API are those typically found in REST APIs:

- 129 -

Chapter 9: Advanced Configuration

HTTP Method Description
Related dsconfig
Example

GET

Lists the attributes of an object when used with a path
representing an object, such as /config/global-
configuration or /config/backends/userRoot. Can
also list objects when used with a path representing a parent
relation, such as /config/backends.

get-backend-prop

list-backends

get-global-
configuration-
prop

POST
Creates a new instance of an object when used with a relation
parent path, such as config/backends. create-backend

PUT

Replaces the existing attributes of an object. A PUT operation is
similar to a PATCH operation, except that the PATCH is
determined by determining the difference between an existing
target object and a supplied source object. Only those attributes in
the source object are modified in the target object. The target
object is specified using a path, such as
/config/backends/userRoot.

set-backend-prop

set-global-
configuration-
prop

PATCH

Updates the attributes of an existing object when used with a path
representing an object, such as /config/backends/userRoot.
See PATCH Example.

set-backend-prop

set-global-
configuration-
prop

DELETE
Deletes an existing object when used with a path representing an
object, such as /config/backends/userRoot. delete-backend

The OPTIONS method can also be used to determine the operations permitted for a particular
path.

Object names, such as userRoot in the Description column, must be URL-encoded in the path
segment of a URL. For example, %20 must be used in place of spaces, and %25 is used in place
of the percent (%) character. So the URL for accessing the HTTP Connection Handler object is:

/config/connection-handlers/http%20connection%20handler

GET Example
The following is a sample GET request for information about the userRoot backend:

GET /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json

The response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://localhost:5033/config/backends/userRoot"
 },
 "backendID": "userRoot2",
 "backgroundPrime": "false",

- 130 -

Using the Configuration API

 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example2,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "10",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "1 m",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "0",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "0",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "enabled": "false",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "false",
 "id2childrenIndexEntryLimit": "66",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "jeProperty": [
 "je.cleaner.adjustUtilization=false",
 "je.nodeMaxEntries=32"
],
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",

- 131 -

Chapter 9: Advanced Configuration

 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "5000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled"
}

GET List Example
The following is a sample GET request for all local backends:

GET /config/backends
Host: example.com:5033
Accept: application/scim+json

The response (which has been shortened):

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
 "totalResults": 24,
 "Resources": [

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:ldif"
],
 "id": "adminRoot",
 "meta": {
 "resourceType": "LDIF Backend",
 "location": "http://localhost:5033/config/backends/adminRoot"
 },
 "backendID": "adminRoot",
 "backupFilePermissions": "700",
 "baseDN": [
 "cn=admin data"
],
 "enabled": "true",
 "isPrivateBackend": "true",
 "javaClass": "com.unboundid.directory.server.backends.LDIFBackend",
 "ldifFile": "config/admin-backend.ldif",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertWhenDisabled": "false",
 "writabilityMode": "enabled"
 },

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:trust-store"

- 132 -

Using the Configuration API

],
 "id": "ads-truststore",
 "meta": {
 "resourceType": "Trust Store Backend",
 "location": "http://localhost:5033/config/backends/ads-truststore"
 },
 "backendID": "ads-truststore",
 "backupFilePermissions": "700",
 "baseDN": [
 "cn=ads-truststore"
],
 "enabled": "true",
 "javaClass": "com.unboundid.directory.server.backends.TrustStoreBackend",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertWhenDisabled": "true",
 "trustStoreFile": "config/server.keystore",
 "trustStorePin": "********",
 "trustStoreType": "JKS",
 "writabilityMode": "enabled"
 },

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:alarm"
],
 "id": "alarms",
 "meta": {
 "resourceType": "Alarm Backend",
 "location": "http://localhost:5033/config/backends/alarms"
 },
 ...

PATCH Example
Configuration can be modified using the HTTP PATCH method. The PATCH request body is a
JSON object formatted according to the SCIM patch request. The Configuration API, supports a
subset of possible values for the path attribute, used to indicate the configuration attribute to
modify.

The configuration object's attributes can be modified in the following ways. These operations
are analogous to the dsconfig modify-[object] options.

l An operation to set the single-valued description attribute to a new value:

{
 "op" : "replace",
 "path" : "description",
 "value" : "A new backend."
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --set "description:A new backend"

l An operation to add a new value to the multi-valued jeProperty attribute:

- 133 -

Chapter 9: Advanced Configuration

{
 "op" : "add",
 "path" : "jeProperty",
 "value" : "je.env.backgroundReadLimit=0"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --add je-property:je.env.backgroundReadLimit=0

l An operation to remove a value from a multi-valued property. In this case, path
specifies a SCIM filter identifying the value to remove:

{
 "op" : "remove",
 "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --remove je-property:je.cleaner.adjustUtilization=false

l A second operation to remove a value from a multi-valued property, where the path
specifies both an attribute to modify, and a SCIM filter whose attribute is value:

{
 "op" : "remove",
 "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --remove je-property:je.nodeMaxEntries=32

l An option to remove one or more values of a multi-valued attribute. This has the effect
of restoring the attribute's value to its default value:

{
 "op" : "remove",
 "path" : "id2childrenIndexEntryLimit"
}

is analogous to:

$ dsconfig set-backend-prop --backend-name userRoot \
 --reset id2childrenIndexEntryLimit

The following is the full example request. The API responds with the entire modified
configuration object, which may include a SCIM extension attribute
urn:unboundid:schemas:configuration:messages containing additional instructions:

Example request:

PATCH /config/backends/userRoot
Host: example.com:5033

- 134 -

Using the Configuration API

Accept: application/scim+json

{
 "schemas" : ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations" : [{
 "op" : "replace",
 "path" : "description",
 "value" : "A new backend."
 }, {
 "op" : "add",
 "path" : "jeProperty",
 "value" : "je.env.backgroundReadLimit=0"
 }, {
 "op" : "remove",
 "path" : "[jeProperty eq \"je.cleaner.adjustUtilization=false\"]"
 }, {
 "op" : "remove",
 "path" : "jeProperty[value eq \"je.nodeMaxEntries=32\"]"
 }, {
 "op" : "remove",
 "path" : "id2childrenIndexEntryLimit"
 }]
}

Example response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot2",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://example.com:5033/config/backends/userRoot2"
 },
 "backendID": "userRoot2",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example2,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "10",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "1 m",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "0",
 "dbEvictorLruOnly": "false",

- 135 -

Chapter 9: Advanced Configuration

 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",
 "dbNumCleanerThreads": "0",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "description": "123",
 "enabled": "false",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "false",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "jeProperty": [
 "\"je.env.backgroundReadLimit=0\""
],
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "5000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled",
 "urn:unboundid:schemas:configuration:messages:2.0": {
 "requiredActions": [

{
 "property": "jeProperty",
 "type": "componentRestart",
 "synopsis": "In order for this modification to take effect,

- 136 -

Using the Configuration API

 the component must be restarted, either by disabling and
 re-enabling it, or by restarting the server"
 },

{
 "property": "id2childrenIndexEntryLimit",
 "type": "other",
 "synopsis": "If this limit is increased, then the contents
 of the backend must be exported to LDIF and re-imported to
 allow the new limit to be used for any id2children keys
 that had already hit the previous limit."
 }
]
 }
}

API Paths
The Configuration API is available under the /config path. A full listing of root sub-paths can
be obtained from the /config/ResourceTypes endpoint:

GET /config/ResourceTypes
Host: example.com:5033
Accept: application/scim+json

Sample response (abbreviated):

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
 "totalResults": 520,
 "Resources": [

{
 "schemas": [
 "urn:ietf:params:scim:schemas:core:2.0:ResourceType"
],
 "id": "dsee-compat-access-control-handler",
 "name": "DSEE Compat Access Control Handler",
 "description": "The DSEE Compat Access Control
 Handler provides an implementation that uses syntax

compatible with the Sun Java System Directory Server
 Enterprise Edition access control handler.",
 "endpoint": "/access-control-handler",
 "meta": {
 "resourceType": "ResourceType",
 "location": "http://example.com:5033/config/ResourceTypes/dsee-compat-access-
control-handler"
 }
 },

{
 "schemas": [
 "urn:ietf:params:scim:schemas:core:2.0:ResourceType"
],
 "id": "access-control-handler",
 "name": "Access Control Handler",
 "description": "Access Control Handlers manage the

- 137 -

Chapter 9: Advanced Configuration

 application-wide access control. The server's access
 control handler is defined through an extensible
 interface, so that alternate implementations can be created.
 Only one access control handler may be active in the server
 at any given time.",
 "endpoint": "/access-control-handler",
 "meta": {
 "resourceType": "ResourceType",
 "location": "http://example.com:5033/config/ResourceTypes/access-control-handler"
 }
 },

{
...

The response's endpoint elements enumerate all available sub-paths. The path
/config/access-control-handler in the example can be used to get a list of existing access
control handlers, and create new ones. A path containing an object name like
/config/backends/{backendName}, where {backendName} corresponds to an existing
backend (such as userRoot) can be used to obtain an object’s properties, update the
properties, or delete the object.

Some paths reflect hierarchical relationships between objects. For example, properties of a
local DB VLV index for the userRoot backend are available using a path like
/config/backends/userRoot/local-db-indexes/uid. Some paths represent singleton
objects, which have properties but cannot be deleted nor created. These paths can be
differentiated from others by their singular, rather than plural, relation name (for example
global-configuration).

Sorting and Filtering Configuration Objects
The Configuration API supports SCIM parameters for filter, sorting, and pagination. Search
operations can specify a SCIM filter used to narrow the number of elements returned. See the
SCIM specification for the full set of operations for SCIM filters. Clients may also specify sort
parameters, or paging parameters. As previously mentioned, clients may specify attributes to
include or exclude in both get and list operations.

GET Parameter Description

filter

Values can be simple SCIM filters such as id eq "userRoot" or
compound filters like meta.resourceType eq "Local DB Backend"
and baseDn co "dc=exmple,dc=com".

sortBy Specifies a property value by which to sort.

sortOrder Specifies either ascending or descending alphabetical order.

startIndex 1-based index of the first result to return.

count Indicates the number of results per page.

GET Parameters for Sorting and Filtering

- 138 -

Using the Configuration API

Updating Properties
The Configuration API supports the HTTP PUT method as an alternative to modifying objects
with HTTP PATCH. With PUT, the server computes the differences between the object in the
request with the current version in the server, and performs modifications where necessary.
The server will never remove attributes that are not specified in the request. The API responds
with the entire modified object.

Request:

PUT /config/backends/userRoot
Host: example.com:5033
Accept: application/scim+json
{
 "description" : "A new description."
}

Response:

{
 "schemas": [
 "urn:unboundid:schemas:configuration:2.0:backend:local-db"
],
 "id": "userRoot",
 "meta": {
 "resourceType": "Local DB Backend",
 "location": "http://example.com:5033/config/backends/userRoot"
 },
 "backendID": "userRoot",
 "backgroundPrime": "false",
 "backupFilePermissions": "700",
 "baseDN": [
 "dc=example,dc=com"
],
 "checkpointOnCloseCount": "2",
 "cleanerThreadWaitTime": "120000",
 "compressEntries": "false",
 "continuePrimeAfterCacheFull": "false",
 "dbBackgroundSyncInterval": "1 s",
 "dbCachePercent": "25",
 "dbCacheSize": "0 b",
 "dbCheckpointerBytesInterval": "20 mb",
 "dbCheckpointerHighPriority": "false",
 "dbCheckpointerWakeupInterval": "30 s",
 "dbCleanOnExplicitGC": "false",
 "dbCleanerMinUtilization": "75",
 "dbCompactKeyPrefixes": "true",
 "dbDirectory": "db",
 "dbDirectoryPermissions": "700",
 "dbEvictorCriticalPercentage": "5",
 "dbEvictorLruOnly": "false",
 "dbEvictorNodesPerScan": "10",
 "dbFileCacheSize": "1000",
 "dbImportCachePercent": "60",
 "dbLogFileMax": "50 mb",
 "dbLoggingFileHandlerOn": "true",
 "dbLoggingLevel": "CONFIG",

- 139 -

Chapter 9: Advanced Configuration

 "dbNumCleanerThreads": "1",
 "dbNumLockTables": "0",
 "dbRunCleaner": "true",
 "dbTxnNoSync": "false",
 "dbTxnWriteNoSync": "true",
 "dbUseThreadLocalHandles": "true",
 "deadlockRetryLimit": "10",
 "defaultCacheMode": "cache-keys-and-values",
 "defaultTxnMaxLockTimeout": "10 s",
 "defaultTxnMinLockTimeout": "10 s",
 "description": "abc",
 "enabled": "true",
 "explodedIndexEntryThreshold": "4000",
 "exportThreadCount": "0",
 "externalTxnDefaultBackendLockBehavior": "acquire-before-retries",
 "externalTxnDefaultMaxLockTimeout": "100 ms",
 "externalTxnDefaultMinLockTimeout": "100 ms",
 "externalTxnDefaultRetryAttempts": "2",
 "hashEntries": "true",
 "importTempDirectory": "import-tmp",
 "importThreadCount": "16",
 "indexEntryLimit": "4000",
 "isPrivateBackend": "false",
 "javaClass": "com.unboundid.directory.server.backends.jeb.BackendImpl",
 "numRecentChanges": "50000",
 "offlineProcessDatabaseOpenTimeout": "1 h",
 "primeAllIndexes": "true",
 "primeMethod": [
 "none"
],
 "primeThreadCount": "2",
 "primeTimeLimit": "0 ms",
 "processFiltersWithUndefinedAttributeTypes": "false",
 "returnUnavailableForUntrustedIndex": "true",
 "returnUnavailableWhenDisabled": "true",
 "setDegradedAlertForUntrustedIndex": "true",
 "setDegradedAlertWhenDisabled": "true",
 "subtreeDeleteBatchSize": "5000",
 "subtreeDeleteSizeLimit": "100000",
 "uncachedId2entryCacheMode": "cache-keys-only",
 "writabilityMode": "enabled"
}

Administrative Actions
Updating a property may require an administrative action before the change can take effect. If
so, the server will return 200 Success, and any actions are returned in the
urn:unboundid:schemas:configuration:messages:2.0 section of the JSON response that
represents the entire object that was created or modified.

For example, changing the jeProperty of a backend will result in the following:

"urn:unboundid:schemas:configuration:messages:2.0": {
 "requiredActions": [

{
 "property": "baseContextPath",

- 140 -

Using the Configuration API

 "type": "componentRestart",
 "synopsis": "In order for this modification to
 take effect, the component must be restarted,
 either by disabling and re-enabling it, or by
 restarting the server"
 },

{
 "property": "id2childrenIndexEntryLimit",
 "type": "other",
 "synopsis": "If this limit is increased, then the
 contents of the backend must be exported to LDIF
 and re-imported to allow the new limit to be used
 for any id2children keys that had already hit the
 previous limit."
 }
]
}
...

Updating Servers and Server Groups
Servers can be configured as part of a server group, so that configuration changes that are
applied to a single server, are then applied to all servers in a group. When managing a server
that is a member of a server group, creating or updating objects using the Configuration API
requires the applyChangeTo query parameter. The behavior and acceptable values for this
parameter are identical to the dsconfig parameter of the same name. A value of
singleServer or serverGroup can be specified. For example:

https://example.com:5033/config/Backends/userRoot?applyChangeTo=singleServer

Note
This does not apply to mirrored subtree objects, which include Topology and Cluster level
objects. Changesmade tomirrored objects are applied to all objects in the subtree.

Configuration API Responses
Clients of the API should examine the HTTP response code in order to determine the success or
failure of a request. The following are response codes and their meanings:

Response Code Description
Response
Body

200 Success

The requested operation succeeded, with the response body being the
configuration object that was created or modified. If further actions are
required, they are included in the
urn:unboundid:schemas:configuration:messages:2.0
object.

List of objects,
or object
properties,
administrative
actions.

204 No Content
The requested operation succeeded and no further information has
been provided, such as in the case of a DELETE operation. None.

400 Bad Request
The request contents are incorrectly formatted or a request is made for
an invalid API version.

Error summary
and optional
message.

- 141 -

Chapter 9: Advanced Configuration

Response Code Description
Response
Body

401 Unauthorized

User authentication is required. Some user agents such as browsers
may respond by prompting for credentials. If the request had specified
credentials in an Authorization header, they are invalid. None.

403 Forbidden

The requested operation is forbidden either because the user does not
have sufficient privileges or some other constraint such as an object is
edit-only and cannot be deleted. None.

404 Not Found
The requested path does not refer to an existing object or object
relation.

Error summary
and optional
message.

409 Conflict

The requested operation could not be performed due to the current
state of the configuration. For example, an attempt was made to create
an object that already exists or an attempt was made to delete an object
that is referred to by another object.

Error summary
and optional
message.

415 Unsupported
Media Type

The request is such that the Accept header does not indicate that JSON
is an acceptable format for a response. None.

500 Server Error
The server encountered an unexpected error. Please report server
errors to customer support.

Error summary
and optional
message.

An application that uses the Configuration API should limit dependencies on particular text
appearing in error message content. These messages may change, and their presence may
depend on server configuration. Use the HTTP return code and the context of the request to
create a client error message. The following is an example encoded error message:

{
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:Error"
],
 "status": 404,
 "scimType": null,
 "detail": "The Local DB Index does not exist."
}

Domain Name Service (DNS) Caching
If needed, two global configuration properties can be used to control the caching of hostname-
to-numeric IP address (DNS lookup) results returned from the name resolution services of the
underlying operating system. Use the dsconfig tool to configure these properties.

network-address-cache-ttl– Sets the Java system property networkaddress.cache.ttl,
and controls the length of time in seconds that a hostname-to-IP address mapping can be
cached. The default behavior is to keep resolution results for one hour (3600 seconds). This
setting applies to the server and all extensions loaded by the server.

network-address-outage-cache-enabled – Caches hostname-to-IP address results in the
event of a DNS outage. This is set to true by default, meaning name resolution results are
cached. Unexpected service interruptions may occur during planned or unplanned
maintenance, network outages or an infrastructure attack. This cache may allow the server to

- 142 -

Using the Configuration API

function during a DNS outage with minimal impact. This cache is not available to server
extensions.

IP Address Reverse Name Lookups
UnboundID servers do not explicitly perform numeric IP address-to-hostname lookups.
However address masks configured in Access Control Lists (ACIs), Connection Handlers,
Connection Criteria, and Certificate handshake processing may trigger implicit reverse name
lookups. For more information about how address masks are configured in the server, review
the following information for each server:

l ACI dns: bind rules under Managing Access Control (Data Store and Proxy Servers)

l ds-auth-allowed-address: Adding Operational Attributes that Restrict Authentication
(Data Store)

l Connection Criteria: Restricting Server Access Based on Client IP Address (Data Store
and Proxy Servers)

l Connection Handlers: restrict server access using Connection Handlers (Configuration
Reference Guide for all servers)

System Alarms, Alerts, and Gauges
UnboundID servers provide tools to monitor and manage the health of the system. The Data
Broker provides delivery mechanisms (handlers) for administrative alerts using JMX or SNMP,
in addition to standard error logging. All can be configured with the dsconfig tool.

Alerts and alarms reflect state changes within the server that may be of interest to a user or
monitoring service. An alarm represents a stateful condition of the server or a resource that
may indicate a problem, such as low disk space or external server unavailability. A gauge
defines a set of threshold values with a specified severity that, when crossed, cause the server
to enter or exit an alarm state. Gauges are used for monitoring continuous values like CPU load
or free disk space (Numeric Gauge), or an enumerated set of values such as 'server available'
or ‘server unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity
changes due to changes in the monitored value. Like alerts, alarms have severity (NORMAL,
WARNING, MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a
Condition property, and may have a Specific Problem or Resource property. If surfaced
through SNMP, a Probable Cause property and Alarm Type property are also listed. Alarms can
be configured to generate alerts when the alarm's severity changes.

There are two alert types supported by the server - standard and alarm-specific. The server
constantly monitors for conditions that may attention by administrators, such as low disk
space. For this condition, the standard alert is low-disk-space-warning, and the alarm-
specific alert is alarm-warning. The server can be configured to generate alarm-specific alerts
instead of, or in addition to, standard alerts. By default, standard alerts are generated for
conditions internally monitored by the server. However, gauges can only generate alarm-
alerts.

- 143 -

Chapter 9: Advanced Configuration

The server installs gauges for CPU, disk, and memory usage that can be cloned or configured
through the dsconfig tool. Existing gauges can be tailored to fit each environment by adjusting
the update interval and threshold values. Configuration of system gauges determines the
criteria by which alarms are triggered. The Stats Logger can be used to view historical
information about the value and severity of all system gauges.

The server is compliant with the International Telecommunication Union CCITT
Recommendation X.733 (1992) standard for generating and clearing alarms. If configured,
entering or exiting an alarm state can result in one or more alerts. An alarm state is exited
when the condition no longer applies. An alarm_cleared alert type is generated by the system
when an alarm's severity changes from a non-normal severity to any other severity. An
alarm_cleared alert will correlate to a previous alarm when Condition and Resource property
are the same. The Alarm Manager, which governs the actions performed when an alarm state
is entered, is configurable through the dsconfig tool.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores
information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over
time that can change in severity and be cleared when a monitored value returns to normal.
Alarms can be viewed with the status tool.

As with other alert types, alert handlers can be configured to manage the alerts generated by
alarms. A complete listing of system alerts, alarms, and their severity is available in <server-
root>/docs/admin-alerts-list.csv.

Alert Handlers
Alert notifications can be sent to administrators when significant problems or events occur
during processing, such as problems during server startup or shutdown. The Data Broker
provides a number of alert handler implementations configured with the dsconfig tool or the
Management Console, including:

l Error Log Alert Handler – Sends administrative alerts to the configured server error
logger(s).

l JMX Alert Handler – Sends administrative alerts to clients using the Java Management
Extensions (JMX) protocol. The server uses JMX for monitoring entries and requires that
the JMX connection handler be enabled.

l SNMP Alert Handler – Sends administrative alerts to clients using the Simple Network
Monitoring Protocol (SNMP). The server must have an SNMP agent capable of
communicating via SNMP 2c.

If needed, the Server SDK can be used to implement additional, third-party alert handlers.

Test Alarms and Alerts
After gauges, alarms, and alert handlers are configured, verify that the server takes the
appropriate action when an alarm state changes by manually increasing the severity of a
gauge. Alarms and alerts can be verified with the status tool.

Perform the following steps to test alarms and alerts:

- 144 -

Using the Configuration API

1. Configure a gauge with dsconfig and set the override-severity property to
critical. The following example uses the CPU Usage (Percent) gauge.

$ dsconfig set-gauge-prop \
 --gauge-name "CPU Usage (Percent)" \
 --set override-severity:critical

2. Run the status tool to verify that an alarm was generated with corresponding alerts.
The status tool provides a summary of the server’s current state with key metrics and
a list of recent alerts and alarms. The sample output has been shortened to show just the
alarms and alerts information.

$ bin/status

 --- Administrative Alerts ---
Severity : Time : Message
---------:-------------:--
Error : 11/Aug/2015 : Alarm [CPU Usage (Percent). Gauge CPU Usage (Percent)
 : 15:41:00 : for Host System Recent CPU and Memory has
 : -0500 : a current value of '18.583333333333332'.
 : : The severity is currently OVERRIDDEN in the
 : : Gauge's configuration to 'CRITICAL'.
 : : The actual severity is: The severity is
 : : currently 'NORMAL', having assumed this severity
 : : Mon Aug 11 15:41:00 CDT 2015. If CPU use is high,
 : : check the server's current workload and make any
 : : needed adjustments. Reducing the load on the system
 : : will lead to better response times.
 : : Resource='Host System']
 : : raised with critical severity
Shown are alerts of severity [Info,Warning,Error,Fatal] from the past 48 hours
Use the --maxAlerts and/or --alertSeverity options to filter this list

--- Alarms ---
Severity : Severity : Condition : Resource : Details
 : Start Time : : :
---------:------------:-----------:-------------:---------------------------
Critical : 11/Aug/2015: CPU Usage : Host System : Gauge CPU Usage (Percent) for
 : 15:41:00 : (Percent) : : Host System
 : -0500 : : : has a current value of
 : : : : '18.785714285714285'.
 : : : : The severity is currently
 : : : : 'CRITICAL', having assumed
 : : : : this severity Mon Aug 11
 : : : : 15:49:00 CDT 2015. If CPU use
 : : : : is high, check the server's
 : : : : current workload and make any
 : : : : needed adjustments. Reducing
 : : : : the load on the system will
 : : : : lead to better response times

Shown are alarms of severity [Warning,Minor,Major,Critical]
Use the --alarmSeverity option to filter this list

- 145 -

Chapter 9: Advanced Configuration

Working with Logs and Log Publishers
UnboundID supports different types of log publishers that can be used to provide the
monitoring information for operations, access, debug, and error messages that occur during
normal server processing. The server provides default log files as well as mechanisms to
configure custom log publishers with their own log rotation and retention policies.

Types of Log Publishers
Log publishers can be used to log processing information about the server, including:

l Error loggers – provide information about warnings, errors, or significant events that
occur within the server.

l Trace logger – provides information about each HTTP, OAuth2, XACML policy, and SCIM
request and response that is processed by the Data Broker.

Viewing and Configuring Log Publishers
Log publishers can be created or modified on each server using the dsconfig tool or through
the Management Console, Logging, monitoring, and notifications -> Log Publishers.

Creating a New Log Publisher
UnboundID provides customization options to create log publishers with the dsconfig
command or through the Management Console.

After creating a new log publisher, configure the log retention and rotation policies. For more
information, see Configuring Log Rotation and Configuring Log Retention.

The following example shows how to create a trace logger that collects debug information for
HTTP, external identity provider, XACML policy, and store adapter operations with the
dsconfig command:

$ bin/dsconfig create-log-publisher \
 --publisher-name NewTraceLogger \
 --type file-based-trace \
 --set enabled:true \
 --set debug-message-type:external-identity-provider-request-and-response \
 --set debug-message-type:http-full-request-and-response \
 --set debug-message-type:policy-decision-trace \
 --set debug-message-type:store-adapter-processing \
 --set http-message-type:request \
 --set http-message-type:response \
 --set xacml-policy-message-type:result \
 --set 'exclude-path-pattern:/**/*.css' \
 --set 'exclude-path-pattern:/**/*.gif' \
 --set 'exclude-path-pattern:/**/*.jpg' \
 --set 'exclude-path-pattern:/**/*.png' \
 --set log-file:myfile \
 --set "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --set "rotation-policy:Size Limit Rotation Policy" \
 --set "retention-policy:File Count Retention Policy" \

- 146 -

Using the Configuration API

 --set "retention-policy:Free Disk Space Retention Policy" \
 --set compression-mechanism:gzip

Compression cannot be disabled or turned off once configured for the logger. Determine
logging requirements before configuring this option.

Configuring Log Compression
UnboundID servers support the ability to compress log files as they are written. Because of the
inherent problems with mixing compressed and uncompressed data, compression can only be
enabled when the logger is created. Compression cannot be turned on or off once the logger is
configured. If the server encounters an existing log file at startup, it will rotate that file and
begin a new one rather than attempting to append it to the previous file.

Compression is performed using the standard gzip algorithm. Because it can be useful to have
an amount of uncompressed log data for troubleshooting, having a second logger defined that
does not use compression may be desired.

Configure compression by setting the compression-mechanism property to have the value of
gzip when creating a new logger. See Creating a New Log Publisher for details.

Configuring Log Signing
UnboundID servers support the ability to cryptographically sign a log to ensure that it has not
been modified. For example, financial institutions require tamper-proof audit logs files to
ensure that transactions can be properly validated and ensure that they have not been
modified by a third-party entity or internally by an unauthorized person.

When enabling signing for a logger that already exists, the first log file will not be completely
verifiable because it still contains unsigned content from before signing was enabled. Only log
files whose entire content was written with signing enabled will be considered completely
valid. For the same reason, if a log file is still open for writing, then signature validation will
not indicate that the log is completely valid because the log will not include the necessary "end
signed content" indicator at the end of the file.

To validate log file signatures, use the validate-file-signature tool provided in the bin
directory of the server (or the bat directory on Windows systems). Once this property is
enabled, disable and then re-enable the log publisher for the changes to take effect. Perform
the following steps to configure log signing:

1. Use dsconfig to enable log signing for a Log Publisher. In this example, set the sign-
log property on the File-based Trace Log Publisher.

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Trace Logger" \
 --set sign-log:true

2. Disable and then re-enable the Log Publisher for the change to take effect.

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Trace Logger" \
 --set enabled:false

- 147 -

Chapter 9: Advanced Configuration

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Trace Logger" \
 --set enabled:true

3. To validate a signed file, use the validate-file-signature tool to check if a signed file
has been altered.

$ bin/validate-file-signature --file logs/trace

All signature information in file 'logs/trace' is valid

If any validations errors occur, a message displays that is similar to this:

One or more signature validation errors were encountered while
validating the contents of file 'logs/trace':
* The end of the input stream was encountered without encountering the
end of an active signature block. The contents of this signed block
cannot be trusted because the signature cannot be verified

Configuring Log Retention and Log Rotation Policies
UnboundID servers enable configuring log rotation and log retention policies.

Log Retention – When any retention limit is reached, the server removes the oldest archived
log prior to creating a new log. Log retention is only effective if a log rotation policy is in place.
A new log publisher must have at least one log retention policy configured. The following
policies are available:

l File Count Retention Policy – Sets the number of log files you want the sever to
retain. The default file count is 10 logs. If the file count is set to 1, the log will continue to
grow indefinitely without being rotated.

l Free Disk Space Retention Policy – Sets the minimum amount of free disk space.
The default free disk space is 500 MB.

l Size Limit Retention Policy – Sets the maximum size of the combined archived logs.
The default size limit is 500 MB.

l Custom Retention Policy – Create a new retention policy that meets the server’s
requirements.

l Never Delete Retention Policy – Used in a rare event that does not require log
deletion.

Log Rotation – When a rotation limit is reached, the server rotates the current log and starts
a new log. A new log publisher must have at least one log rotation policy configured. The
following policies are available:

l Time Limit Rotation Policy – Rotates the log based on the length of time since the last
rotation. Default implementations are provided for rotation every 24 hours and every
seven days.

- 148 -

Using the Configuration API

l Fixed Time Rotation Policy – Rotates the logs every day at a specified time (based on
24-hour). The default time is 2359.

l Size Limit Rotation Policy – Rotates the logs when the file reaches the maximum
size. The default size limit is 100 MB.

l Never Rotate Policy – Used in a rare event that does not require log rotation.

Configure the Log Rotation Policy
Use dsconfig to modify the log rotation policy for the access logger:

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Error Logger" \
 --remove "rotation-policy:24 Hours Time Limit Rotation Policy" \
 --add "rotation-policy:7 Days Time Limit Rotation Policy"

Configure the Log Retention Policy
Use dsconfig to modify the log retention policy for the access logger:

$ bin/dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Error Logger" \
 --set "retention-policy:Free Disk Space Retention Policy"

Monitoring the Server
While the server is running, it generates a significant amount of information available through
monitor entries. This section contains information about the following:

l Backend Monitor Entries

l Viewing System and Consent Data through the Metrics Engine

l Using the status Tool

Backend Monitor Entries
Each UnboundID server exposes its monitoring information under the cn=monitor entry.
Administrators can use various means to monitor the servers through SNMP, LDAP command-
line tools, and the Stats Logger.

The Monitor Backend contains an entry per component or activity being monitored. The list of
all monitor entries can be seen using the ldapsearch command as follows:

$ bin/ldapsearch --hostname server1.example.com \
 --port 1389 \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPassword secret \
 --baseDN "cn=monitor" "(objectclass=*)" cn

The following table lists a subset of monitor entries.

- 149 -

Chapter 9: Advanced Configuration

Component Description

Active Operations

Provides information about the operations currently being processed by the server
including the number of operations, information on each operation, and the
number of active persistent searches.

Backends

Provides general information about the state of a server backend, including the
entry count. If the backend is a local database, there is a corresponding database
environment monitor entry with information on cache usage and on-disk size.

Client Connections

Provides information about all client connections to the server including a name
followed by an equal sign and a quoted value, such as connID="15",
connectTime="20100308223038Z".

Connection Handlers
Provides information about the available connection handlers on the server
including the LDAP and LDIF connection handlers.

Disk Space Usage
Provides information about the disk space available to various components of the
server.

General
Provides general information about the state of the server, including product name,
vendor name, and server version.

Index

Provides information on each index including the number of preloaded keys and
counters for read, write, remove, open-cursor, and read-for-search actions. These
counters provide insight into how useful an index is for a given workload.

HTTP/HTTPS Connection
Handler Statistics

Provides statistics about the interaction that the associated HTTP connection
handler has had with its clients, including the number of connections accepted,
average requests per connection, average connection duration, total bytes
returned, and average processing time by status code.

JVM Stack Trace Provides a stack trace of all threads processing within the JVM.

LDAP Connection Handler
Statistics

Provides statistics about the interaction that the associated LDAP connection
handler has had with its clients, including the number of connections established
and closed, bytes read and written, LDAP messages read and written, and
operations initiated, completed, and abandoned.

Processing Time Histogram

Categorizes operation processing times into a number of user-defined buckets of
information, including the total number of operations processed, overall average
response time (ms), and number of processing times between 0ms and 1ms.

System Information

Provides general information about the system and the JVM on which the server is
running, including system host name, operation system, JVM architecture, Java
home, and Java version.

Version
Provides information about the server version, including build ID, and revision
number.

Work Queue

Provides information about the state of the server work queue, which holds
requests until they can be processed by a worker thread, including the requests
rejected, current work queue size, number of worker threads, and number of busy
worker threads.

The work queue configuration has a monitor-queue-time property set to
true by default. This logs messages for new operations with a qtime attribute
included in the log messages. Its value is expressed in milliseconds and
represents the length of time that operations are held in the work queue.

Monitoring Components

- 150 -

Using the Configuration API

Viewing System and Consent data Through the Metrics Engine
The Metrics Engine contains several charts to measure and monitor Data Broker system and
user consent activity. Charts and data are configured from the Metrics Engine Server. The
following categories can be made available through a Metrics Engine dashboard:

Authorization Requests – Displays the number of blocked and permitted token requests
from client applications.

Request Volume – Displays authorization activity according to grant or deny.

Grant Types – Displays the number of authorization grants by type.

Consent/Deny by Application – Displays authorization activity based on client application.

Consent/Deny by Data Type – Displays authorization activity based on data type.

Most Requested Data – Displays most requested data.

Most Active Applications – Displays most active client applications.

Most Active Policies – Displays most active policies.

See the UnboundID Metrics Engine Administration Guide for more information.

Using the status Tool
UnboundID servers provide the status tool, which lists the health of the server. The status
tool polls the current health of the server and displays summary information about the number
of operations processed in the network. The tool provides the following information:

Status Section Description

Server Status Displays the server start time, operation status, number of connections (open, max, and total).

Server Details
Displays the server details including host name, administrative users, install path, server
version, and Java version.

Connection
Handlers

Displays the state of the connection handlers including address, port, protocol and current
state.

Admin Alerts

Displays the 15 administrative alerts that were generated over the last 48-hour period. Limit
the number of displayed alerts using the --maxAlerts option. For example, status --
maxAlerts 0 suppresses all alerts.

Status Tool Sections

Server SDK Extensions
Custom server extensions can be created with the UnboundID Server SDK. Extension bundles
are installed from a .zip archive or a file system directory. Use the manage-extension tool to
install or update any extension that is packaged using the extension bundle format. It opens
and loads the extension bundle, confirms the correct extension to install, stops the server if
necessary, copies the bundle to the server install root, and then restarts the server.

Note
The manage-extension tool must be used with Java extensions packaged using the

- 151 -

Chapter 9: Advanced Configuration

extension bundle format. For more information, see the "Building and Deploying Java-Based
Extensions" section of the Server SDK documentation.

The UnboundID Server SDK enables creating extensions for the Data Store, Proxy, Metrics
Engine, Data Broker, and Data Sync servers. Cross-product extensions include:

l Access Loggers

l Alert Handlers

l Error Loggers

l Key Manager Providers

l Monitor Providers

l Trust Manager Providers

l OAuth Token Handlers

l Manage Extension Plugins

Extensions for the Data Broker include:

l Policy Information Provider

l Store Adapter

Data Broker Advanced Server Configuration
When a Data Broker is set up from a peer, its server configuration is cloned to the new Data
Broker, and the two configurations are linked such that changes to the configuration are
applied to both Data Broker servers by default. See Installing a Clone Data Broker. If a server
is installed in an existing topology (an installation option), the server configurations are also
linked.

The server's configuration is stored in an LDIF-based backend under the cn=config base DN.
It can be accessed using the LDAP protocol and is managed by the dsconfig tool,
Configuration API, or the Data Broker Console.

Configuring Third-Party Store Adapters
Third-party adapters can be created for data stores, that are not the UnboundID Data Store,
with the Server SDK available in the unboundid-server-sdk-<version>.zip package.

Configuring a custom store adapter includes the following steps:

1. Create a store adapter.

2. Store it in the /extensions directory of the Data Broker.

3. Create a SCIM Resource Type schema.

4. Map Store Adapter(s) and SCIM Resource Types using the Management Console or
dsconfig tool.

- 152 -

Data Broker Advanced Server Configuration

Example Third-Party Store Adapter
The Server SDK provides an example implementation of a third-party store adapter. View the
example and associated Javadocs in the Server SDK docs/example-
html/ExampleStoreAdapter.java.html directory.

ExampleStoreAdapter.java is an implementation of a flat-file JSON store adapter, which
stores the SCIM user data in JSON. At startup, all resources are loaded from the json-file-
path parameter (resource/user-database.json). The example uses an in-memory hash
map of SCIM resources mapped to their SCIM ID.

The example provides full operations plus filterable search support for add, update, and
deletes. The example will perform a full-file rewrite on every change, because the file format
is a serialized list of Resources<BaseResource>. The code example does not support sorting
or resource versioning.

About Cross-Origin Resource Sharing Support
Cross-Origin Resource Sharing (CORS) enables client applications to make JavaScript requests
to the Data Broker (or Data Store) by specifying the domain from which the request is
made.These cross-domain requests are generally not allowed by web browsers without CORS
support. CORS defines a way in which the browser and the server can interact to determine
whether a request is coming from a trusted domain.

CORS Implementation
CORS is implemented per HTTP servlet extension. Access is governed by HTTP Servlet Cross
Origin Policies defined through the dsconfig tool. Trusted domains can be added to these
policies or defined with registered applications in the Data Broker Console or through the
broker-admin tool.

Note
By default, HTTP servlet extensions do not have CORS defined.Without a CORS policy
defined, the configuration of the browser will determine application access.

The following are configuration options in dsconfig:

>>>> HTTP Servlet Cross Origin Policy management menu

What would you like to do?

1) List existing HTTP Servlet Cross Origin Policies
2) Create a new HTTP Servlet Cross Origin Policy
3) View and edit an existing HTTP Servlet Cross Origin Policy
4) Delete an existing HTTP Servlet Cross Origin Policy

b) back
q) quit

Enter option [b]:

- 153 -

Chapter 9: Advanced Configuration

HTTP Servlet Services
Enabling CORS for a particular servlet can impact another service provided by the same
servlet. It is important to know which services will be affected when enabling CORS for an Data
Broker servlet. The following are available servlets and their functions.

Servlet Functions

API Explorer
Servlet Manages requests to the API Explorer, which enables testing Data Broker functions.

Configuration Used to enable read and write access to the server's Configuration API.

Documentation
Manages requests for the /docs content, which includes the index.html page, the
generated Configuration Reference Guide, and other product documents.

OAuth Servlet OAuth2 authorization, token, revocation, and validation endpoints.

Policy Decision
Point Servlet XACML PDP endpoint.

SCIM2 Profile access by SCIM Resource Type using SCIM.

Spring Security
Authentication and authorization layer for the rest of the servlets. Data Broker login and
registration endpoints.

UserInfo Servlet Profile access using OpenID Connect.

Velocity Velocity templates, including the Data Broker's login, registration, and consent interfaces.

Note
Any servlet accepting JavaScript calls from client applications that are hosted at a different
location than that of the Data Broker APIs, such as the Velocity servlet, must have CORS
enabled.

HTTP Servlet Cross Origin Policies
Two sample policies are available after installation. They can be associated with a servlet
extension, or used as templates for additional policies.

Per-Application Origins – This policy trusts origins that are listed as trusted by applications
registered with the Data Broker.

Restrictive – This policy rejects all cross-origin requests unless explicitly defined with the
cors-allowed-origins property. Requests from application origins that are not specified are
rejected with a 403 Forbidden return code.

Each policy accepts values for the following properties.

Property Description

cors-enabled
Specifies if the CORS protocol is allowed by the servlet. The default
value is false.

cors-allowed-methods
Specifies the list of HTTP methods allowed for access to resources. The
default value is GET.

cors-enable-per-application-
origins

Specifies that a per-application list of allowed origins is consulted. The
default value is false in the Restrictive policy and true in the Per-
Application Origins policy.

- 154 -

Data Broker Advanced Server Configuration

Property Description

cors-allowed-origins

Specifies a global list of allowed origins. If the cors-enable-per-
application-origins property is set to true, and there are
origins listed here, this list is consulted in addition to the per-application
list. A value of "*" specifies that all origins are allowed. The default is an
empty list.

cors-exposed-headers

Specifies a list of HTTP headers that browsers are allowed to access.
Simple response headers, as defined in the Cross-Origin Resource
Sharing Specification, are allowed. The default is an empty list.

cors-allowed-headers

Specifies the list of header field names that are supported for a
resource and can be specified in a cross-origin request. The default
values are Origin, Accept, X-Requested-With, Content-
Type, Access-Control-Request-Method, and Access-
Control-Request-Headers.

cors-preflight-max-age
Specifies the maximum number of seconds that a preflight request can
be cached by the client. The default value is 1800 (30 minutes).

cors-allow-credentials

Specifies whether requests that include credentials are allowed. This
value should be false for servlets that use OAuth2 authorization. The
default value is false.

Assigning a CORS Policy to an HTTP Servlet Extension
CORS policies are assigned to HTTP servlet extensions through dsconfig.

The following are configuration options for the SCIM servlet extension:

>>>> Configure the properties of the SCIM Resource Type SCIM HTTP Servlet Extension
Property Value(s)

1) description -
2) cross-origin-policy No cross-origin policy is defined and no CORS headers are
recognized or returned.
3) base-context-path /scim

?) help
f) finish - apply any changes to the SCIM Resource Type SCIM HTTP Servlet Extension
a) show advanced properties of the SCIM Resource Type SCIM HTTP Servlet Extension
d) display the equivalent dsconfig command lines to either re-create this object or only
to apply pending changes
b) back
q) quit

Enter option [b]: 2

Choose the cross-origin-policy option. Defined policies are listed.

>>>> Configuring the 'cross-origin-policy' property
The cross-origin request policy to use for the HTTP Servlet Extension.

A cross-origin policy is a group of attributes defining the level of cross-origin request
supported by the HTTP Servlet Extension.

- 155 -

Chapter 9: Advanced Configuration

Do you want to modify the 'cross-origin-policy' property?

1) Keep the default behavior: No cross-origin policy is defined and no CORS headers are
recognized or returned.
2) Change it to the HTTP Servlet Cross Origin Policy: Per-Application Origins
3) Change it to the HTTP Servlet Cross Origin Policy: Restrictive
4) Create a new HTTP Servlet Cross Origin Policy

?) help
q) quit

Choose the CORS policy to assign to this servlet extension.

Managing Server Encryption Settings
The server encryption settings database is managed by the encryption-settings command-
line tool. The keys stored for the server are used to encrypt tokens, authorization codes,
account linking codes, and external identity provider tokens. Encryption settings definitions can
be created, listed, exported and imported. Help and examples are available with the following
command:

$ bin/encryption-settings --help

Information about the cipher algorithms and transformations available for use is located in the
Java Cryptography Architecture Reference Guide and Standard Algorithm Name Documentation
available on the Oracle website.

Rotating the Encryption Key
Perform the following steps for routine rotation of the encryption key:

1. Create a new encryption settings definition.

$ encryption-settings create \
 --cipher-algorithm AES \
 --key-length-bits 128

Successfully created a new encryption settings definition with ID <ID>

2. Verify the new definition was created.

$ encryption-settings list
Encryption Settings Definition ID: <old-key>
 Preferred for New Encryption: true
 Cipher Transformation: AES
 Key Length (bits): 128

Encryption Settings Definition ID: <ID>
 Preferred for New Encryption: false
 Cipher Transformation: AES
 Key Length (bits): 128

3. Create a PIN file that will be used for the exported definition.

$ echo "secret" > /tmp/exported-key.pin

- 156 -

Data Broker Advanced Server Configuration

4. Export the encrypt settings, referring to the generated encryption settings ID.

$ encryption-settings export \
 --id <ID> \
 --output-file /tmp/exported-key \
 --pin-file /tmp/exported-key.pin

Successfully exported encryption settings definition <ID> to file
/tmp/exported-key

5. For every Data Broker instance in the topology, copy the exported definition and PIN file
to the Data Broker's host. Import the encryption settings, without setting them as
preferred. Delete the exported settings and PIN file when finished.

$ encryption-settings import \
 --input-file /tmp/exported-key \
 --pin-file /tmp/exported-key.pin

Successfully imported encryption settings definition <ID> from file
/tmp/exported-key

$ rm /tmp/exported-key
$ rm /tmp/exported-key.pin

6. After importing the encryption settings definition to all Brokers, for each one, including
the Broker where the definition was originally created, set the new definition as
preferred.

$ encryption-settings set-preferred \
 --id <ID>

Encryption settings definition <ID> is was successfully set as the
preferred definition for subsequent encryption operations.

Addressing a Compromised Encryption Key
If an encryption settings definition becomes compromised, perform the following to create a
new definition and update the Data Broker servers. See the command line help for the
encryption-settings tool for arguments.

Note
If the Data Broker's encryption key is compromised, and the Broker has been collecting access
tokens for external identity providers through the relying party feature, make sure those tokens
are revoked.

1. Back up the encryption settings backend.

2. Back up the user store.

3. Revoke all authorizations for each client.

4. Stop the HTTPS Connection Handler that is used for the Data Broker's REST APIs.

- 157 -

Chapter 9: Advanced Configuration

$ dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:false

5. Create a new encryption settings definition and set it as preferred. The following will
encrypt data using a 128-bit AES cipher:

$ encryption-settings create \
 --cipher-algorithm AES \
 --key-length-bits 128
 --set-preferred

6. Restart the HTTPS Connection Handler.

$ dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:true

If the deployment includes multiple Data Brokers, all servers should be taken offline, and the
encryption settings database must be updated on every server.

Note
Do not delete the compromised encryption definition. It will still be used to decrypt tokens,
authorization codes, and links that were encrypted with the previous key.

Account Recovery Configuration in the Data Store
End users can recover Data Broker account information or reset a password, if a Data Store is
configured as the primary User Store and one-time passwords (OTP) are enabled. See the
UnboundID Data Store Administration Guide for details about configuring one-time passwords.

On the Data Broker server, configuration for account recovery and new account registration
are enabled by configuring the Identity Provider Service through the Management Console or
with the dsconfig tool.

Configuration on the Data Store requires creating and enabling the OTP mechanism and
defining the delivery mechanism for reset tokens, as follows:

1. Create and enable the OTP delivery mechanism. The following uses the sample user
starter schema that is enabled for the sample applications.

$ bin/dsconfig create-otp-delivery-mechanism \
 --mechanism-name "Email OTP Delivery Mechanism" \
 --type email \
 --set enabled:true \
 --set email-address-attribute-type:ubidemailjson \
 --set email-address-json-field:value \
 --set 'email-address-json-object-filter:

(ubidemailjson:jsonObjectFilterExtensibleMatch:={
"filterType":"equals",

"field":"verified", "value":true })' \
 --set 'sender-address:do-not-reply@example.com'

- 158 -

Configuring the Data Broker Templates

2. Define the email server to deliver reset tokens:

$ bin/dsconfig create-external-server \
 --server-name "Example.com SMTP" \
 --type smtp \
 --set server-host-name:smtp.example.com

$ bin/dsconfig set-global-configuration-prop \
 --set "smtp-server:Example.com SMTP"

3. Create and enable the extended operations handlers to generate and send reset tokens:

$ bin/dsconfig create-extended-operation-handler \
 --handler-name "Single Use Tokens" \
 --type single-use-tokens \
 --set enabled:true \
 --set "password-generator:One-Time Password Generator" \
 --set "default-otp-delivery-mechanism:Email OTP Delivery Mechanism"

$ bin/dsconfig create-extended-operation-handler \
 --handler-name "Deliver Password Reset Token" \
 --type deliver-password-reset-token \
 --set enabled:true \
 --set "password-generator:One-Time Password Generator" \
 --set "default-token-delivery-mechanism:Email OTP Delivery Mechanism"

Configuring the Data Broker Templates
The Data Broker exposes several Velocity pages through an HTTP Servlet Extension. The pages
are for login, for OAuth consent, account recovery and registration, and an error page that can
be surfaced for end users and are located in:

<server-root>/config/velocity/templates

See Configuring the Broker Login and Consent Pages for information about these files.

To enable Velocity support, add the Velocity HTTP Servlet Extension to an enabled HTTP or
HTTPS connection handler:

$ bin/dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
--add http-servlet-extension:Velocity

Velocity template files contain presentation content and variables that are replaced when the
content is requested. Variables are expressed using a $ followed by an identifier that refers to
an object put into a context (VelocityContext) by the server.

Velocity extensions can be configured to expose a number of objects in the context using the
expose-* properties:

l expose-request-attributes – Indicates whether HTTP request attributes are accessible
to templates using the $ubid_request variable. In general, request attributes are added
by server components processing the HTTP request. Also the HTTP request parameters

- 159 -

Chapter 9: Advanced Configuration

map is available as $ubid_request.parameters. Request parameters are supplied by
the requester, usually in the request URL query string or in the body of the request itself.

l expose-session-attributes – Indicates whether HTTP session attributes are accessible
to templates using the $ubid_session variable. Like request attributes, session
attributes are also added by server components processing the HTTP request. The
lifetime of these attributes persists until the user’s session has ended.

l expose-server-context – Indicates whether a Server SDK server context is accessible
to templates using the $ubid_server variable. The server context provides access to
properties and additional information about the server. See the Unbound ID Server SDK
documentation for more details.

The following are other properties of the Velocity HTTP Servlet Extension:

l base-context-path – URL base context for the Velocity Servlet.

l static-content-directory – In addition to templates, the Velocity Servlet will serve
miscellaneous static content related to the templates. This property defines the directory
where these resources are found.

l static-context-path – URL path beneath the base context where static content can be
accessed.

l mime-types-file – Specifies a file that is used to map file extensions of static content to
a Content Type to be returned with requests.

l default-mime-type – The default Content Type for HTTP responses. Additional content
types are supported by defining on or more additional Velocity Template Loaders.

l template-directory – The directory where templates are stored. This directory also
serves as a default for Template Loaders that do not have a template directory specified
explicitly.

The VelocityContext object can be further customized by configuring additional Velocity context
providers. The dot notation used for context references can be extended arbitrarily to access
properties and methods of objects in context using Java Bean semantics. For example, if the
HTTP request URL includes a name query string parameter like:

http://example.com:8080/view/hello?name=Karl&name=Vladimir+Ilyich&name=Steve

An HTML template like the following could be used to generate a page containing a friendly
greeting to the end user:

<html>
 <body>
 Hello, $ubid_request.parameters.name[0], $ubid_request.parameters.name[1], and
 $ubid_request.parameters.name[2]!
 </body>
</html>

Note
For security, all template substitutions are HTML escaped by default. To substitute unescaped

- 160 -

Configuring the Data Broker Templates

content, a variable name ending with "WithHtml" must be used. For example,
$addressWithHtml, would substitute the contents of the $addressWithHtml variable into the
page generated from the HTML template without escaping it.

By default, the Velocity Servlet Extension expects to access content in subdirectories of the
server’s config/velocity directory:

l templates – This directory contains Velocity template files that are used to generate
pages in response to client requests.

l statics – This directory contains static content such as CSS, HTML, and JavaScript files
as well as images and third-party libraries.

Supporting Multiple Content Types
By default, the Velocity Servlet Extension is configured to respond to HTTP requests with a
content type text/html. Change this request type by setting the default MIME type using
dsconfig. For example, the following can be used to set the default type to XML:

$ bin/dsconfig set-http-servlet-extension-prop \
--extension-name Velocity \
--set default-mime-type:application/xml

HTML requests can be supported as well as clients that seek content in other formats. Create
one or more Velocity Template Loaders to load templates for other content types like XML or
JSON.

The ability to serve multiple formats of a document to clients at the same URL is typically
called content negotiation. HTTP clients indicate the type of content desired using the Accept
header. A client may use a header like the following to indicate that they prefer content in XML
but will fallback to HTML if necessary:

Accept: application/xml,text/html;q=0.9

The following can be used to create a Velocity Template Loader for XML content:

$ bin/dsconfig create-velocity-template-loader \
--extension-name Velocity \
--loader-name XML \
-–set evaluation-order-index:502 \
--set mime-type-matcher:application/xml \
–-set mime-type:application/xml \
-–set template-suffix:.vm.xml

Upon receiving a request, the Velocity Servlet first creates an ordered list of requested media
types from most desired to least based on the value of the Accept header. Starting from the
most desired type, it will then iterate over the defined Template Loaders according to the
evaluation-order-index property from lowest value to highest.

A Template Loader may indicate that it can handle content for requested media type by
comparing the requested type to its mime-type-matcher property. A loader may be configured
to load templates from a specific directory or load template files having a particular suffix. In
this case, where XML templates are expected to be named using a .vm.xml suffix. If a loader
indicates it handles the requested content type and a template exists for the requested view,

- 161 -

Chapter 9: Advanced Configuration

the template is loaded and used to generate a response to the client. If no loaders are found
for the requested media type, the next most preferred media type (if any) is tried. If no
loaders indicated that they could satisfy the requested view, the client is sent an HTTP 404
(not found) error. If no loaders could provide acceptable media but the requested view exists
in some other format, the client is sent an HTTP 406 (not acceptable) error.

In this example, a template file called hello.vm.xml can be used to generate a response in
XML:

<hello name=”$_request.parameters.name”/>

In this case, the response will contain an HTTP Content-Type header with the value of the
mime-type property of the Velocity Template Loader.

Velocity Context Providers
The previous examples make use of value supplied as an HTTP request query string parameter
to form a response. The templates contain a variable $_request.parameters.name that was
replaced at runtime with a value from the Velocity Context.

The Velocity Extension can be configured to make some information available in the Velocity
Context such as the HTTP request, session, and Server SDK Server Context. Velocity Context
Providers provide more flexibility in populating the Velocity Context for template use.

Here are some of the properties of a Velocity Context Provider:

l enabled – Indicates whether the provider will contribute content for any requests.

l object-scope – Indicates to the provider how often objects contributed to the Velocity
Context should be re-initialized. Possible values are: request, session, or
application.

l included-view/excluded-view – These properties can be used to restrict the views
for which a provider contributes content. A view name is the request URL’s path to the
resource without the Velocity Servlet’s context or a leading forward slash. If one or more
views are included, the provider will service requests for just the specified views. If one
or more views are excluded, the provider will service requests for all but the excluded
views.

Note
If the scope of the Velocity Tools context provider is constrained by setting the included-view
property, the OAuth2 consent flow may be affected. The included-view property should not
be changed, unless all system default templates are included when setting the property.

Configuring HTTP Header Fields
By default, the Velocity Extension returns a set of standard HTTP header fields in every request
served by the extension, including those for directing cache policies of user agents and frame-
hosting options. These header fields can be configured in the following ways:

- 162 -

Configuring the Data Broker Templates

l The Velocity Servlet Extension's response-header configuration property can be specified
to add a request header to every template request. The static-response-header
property can be specified to add a header field to requests for static content like images
and script files.

l Header fields for individual pages can be configured by using the response-header
property of the Velocity Context Provider objects, which will add the header fields to just
those pages served by the provider. Headers specified here will overwrite those
specified by the Velocity Extension.

l Header fields can be manipulated directly by third-party Velocity Context Providers in
code, adding or removing existing headers by manipulating the HTTP servlet response
directly.

Handling Specific HTTP Methods in Third-Party Providers
In addition to contributing content to the Velocity Context, Velocity Context Providers can
perform actions in response to particular HTTP methods. For example, a template can be used
to POST a form of user data to a provider, which in turn would create a user in the User Store.
In addition to handling HTTP GET and POST operations, a provider can handle any number of
the standard HTTP methods (PUT, PATCH, DELETE, HEAD). Handling these methods is a two
step process.

1. When creating a third-party Velocity Context Provider, configure the HTTP methods the
provider will handle using the http-method property. For example, the following
command might be used to configure a provider to handle GET and POST requests:

$ dsconfig create-velocity-context-provider \
 --extension-name Velocity \
 --provider-name "My Provider" \
 --type third-party \
 --set http-method:GET \
 --set http-method:POST \
 --set extension-class:com.example.MyProvider

Or update an existing provider:

$ dsconfig set-velocity-context-provider-prop \
 --extension-name Velocity \
 --provider-name "My Provider" \
 --add http-method:POST

2. When implementing the Java class, override the handlePost() method adding code for
handling POST operations. For example, use the internal ServerContext object to
establish a connection to the server and create a new user using form data from a POST
operation. Logic related to updating the context for the response may be implemented
directly in the handle<XXX>() method or in the updateContext() method, which is
called immediately after the relevant handle<XXX>() method.

- 163 -

Chapter 9: Advanced Configuration

Velocity Tools Context Provider
Apache’s Velocity Tools project is focused on providing utility classes useful in template
development. The Velocity Context can be configured by specifying Velocity Tool classes to be
automatically added to the Velocity Context for template development. For more information
about the Velocity Tools project, see the online product documentation.

The following command can be used to list the set of Velocity Tools that are included in the
Velocity Context for general use by templates:

$ bin/dsconfig get-velocity-context-provider-prop \
 --extension-name Velocity \
 --provider-name "Velocity Tools" \
 --property request-tool \
 --property session-tool \
 --property application-tool

Configuring the Broker Login and Consent Pages
The Data Broker exposes Velocity pages through an HTTP Servlet Extension. Templates are
located in:

/<server-root>/config/velocity/templates

Account registration and password recovery require server configuration. See User Account
Registration and Recovery.

login.vm – Defines the Data Broker log in page and includes icons for external identity
provider login. A registration form is also provided for users to create an account through the
external identity provider login.

approve.vm – Defines the OAuth approval page presented to end users who need to approve
access to resources. This file resides in the /templates/oauth directory.

error.vm – Defines the presentation of error messages displayed to end users if there is a
problem with the login or consent. This file resides in the /templates/oauth directory.

recover-password.vm – Defines the prompt for information to search for a user account so
the password can be changed. This file resides in the /templates/account directory.

recover-password-verify.vm – Defines the prompt for the password change code sent by
the Data Broker and the new password. This file resides in the account directory of the
/templates directory.

recover-password-success.vm – Defines the password change success notification. This
file resides in the /templates/account directory.

recover-username.vm – Defines the prompt for information to search for an account
username. This file resides in the /templates/account directory.

recover-username-verify.vm – Defines the prompt for the username recover code sent by
the Data Broker. This file resides in the /templates/account directory.

recover-username-success.vm – Displays the account username. This file resides in the
/templates/account directory.

- 164 -

Configuring the Data Broker Templates

register.vm – Provides a form for creating a new user account. This file resides in the
/templates/account directory.

register-success.vm – Defines the notification that the user account was successfully
created. This file resides in the /templates/account directory.

If more than one template modification is needed, additional data can be added by adjusting or
adding to the context objects that are present. See About Velocity Templates for general
information about adding context. Use the following two consent objects when customizing
these pages:

$principal

$requestContext

The $principal Object
The OAuth2 consent page header displays the currently logged in user's name as
$principal.getObjectNode().get("userName").textValue(). This is the placeholder
variable used in the Velocity template. The Velocity template can be changed to display other
attributes of the $principal object.

All of the SCIM principal attributes can be referenced by OAuth2 templates using SCIM's
standard attribute notation. The following are examples for a SCIM object exposed as
principal in the Velocity context.

Retrieving a simple attribute value:

$principal.getObjectNode().get("userName").textValue()
$principal.urn:ietf:params:scim:api:messages:2.0:employeeNumber

Retrieving a complex attribute value:

$principal.name.givenName
$principal.urn:ietf:params:scim:api:messages:2.0:manager.managerId

Retrieving multi-valued attribute values:

#foreach ($email in $principal.emails)
$email.type: $email.value
#end

The $requestContext Object
This is the context placeholder for request-specific state, such as the current web application
context, the current locale, or the current theme. The following are examples of
requestContext in the Velocity context.

Retrieving the locale of the request:

$requestContext.locale

Retrieving a Spring model object called 'token':

$requestContext.getModelObject('token')

- 165 -

Chapter 9: Advanced Configuration

Customizing the Data Broker Application Logo
The Data Broker's pages, can be changed or re-branded with a company logo. The application
uses a cascading style sheet to determine appearance. The default style sheet file can be over
written by creating a new style sheet for the Management Console with the following naming
convention:

$HOME/.broker-console/branding-override.css

If this file is present, the Data Broker uses it to overwrite the existing style sheet.

The following is an example of the style sheet used to display the default logo in the title bar:

.product-logo {
width: 18px;
height: 24px;
background-image: url("../img/unboundid-u30.png");
background-size: 100% 100%;
}

Style changes take affect after the application is restarted.

To Customize the Logo
By default, the web applications look for the following branding override CSS file:

~/.broker-console/branding-override.css

where "~" is replaced for the home directory of the account the web server/application is
running under. It is also possible to override this file name and location by setting the
"branding.override.file" System Property. If this file is found, it is included after all of the
other CSS files, so that it can override any of the application's styles.

The following is an example of the CSS used to display the default logo in the title bar:

.product-logo {
width: 18px;
height: 24px;
background-image: url("../img/unboundid-u30.png");
background-size: 100% 100%;

}

A branding-override.css file at ~/.broker-console with the following contents will display
a new logo after (restart the application after creating the file):

.product-logo {
width: 550px;
height: 190px;
background-image: url(https://www.google.com/images/srpr/logo4w.png);
background-size: 100% 100%;

}

- 166 -

Configuring the Data Broker Templates

Configuring Web Applications for Localization
To localize the Data Broker web pages, create a set of resource bundles, for each language.
Locale-specific data must be tailored according to the conventions of the language and region,
and isolated into locale-specific objects in a Java ResourceBundle. The standard naming
convention is basename_<language1>_<country1>_<variant1>. For example:

messages_en_US.properties

messages_fr_FR.properties

messages_de.properties

Each should have the same set of keys (for example login_prompt, unknown_user) and
values, which are raw text in the appropriate language. Resource Bundles and
internationalization for Java are described in the Oracle documentation.

The resource bundles are loaded from the classpath as jar files in the /lib or
/lib/extensions directories, or can be loaded as properties files in the server's /classes
directory.

A Velocity Context Provider is then created to provide access to the resource bundles. Velocity
Tools provide one that selects the appropriate bundle based on the locale determined from the
incoming HTTP request and provides the messages from that bundle to the Velocity template.
This tool class can be found at:

https://velocity.apache.org/tools/devel/javadoc/org/apache/velocity/tools/generic/Resourc
eTool.html

Configure an instance of this tool and specify the name of the resource bundle family
("messages" in this example). Create another properties file to configure the Velocity Tools
classes:

/config/velocity/ResourceToolConfig.properties

Add the following lines:

bundles=Messages

#locale=en_US This can be used to enforce a specific locale.

Run the following dsconfig command to create and configure the Velocity Context Provider:

$ bin/dsconfig create-velocity-context-provider \
 --extension-name Velocity \
 --provider-name ResourceBundleProvider \
 --type velocity-tools \
 --set object-scope:session \
 --set included-view:/path/to/template \
 --set request
tool:org.apache.velocity.tools.generic.ResourceTool;config/velocity/ResourceTool.properti
es

- 167 -

Chapter 9: Advanced Configuration

The included-view is only necessary to make the localized messages available to only a
certain set of templates.

Preserving Customized Files
Any files that are customized should be copied from the config/velocity subdirectories to
the same subdirectory of the velocity directory under the server root (<server-
root>/velocity). The files in config/velocity should not be modified. They are updated
when the product is updated.

By default, any file of the same name under <server-root>/velocity will be loaded in place
of <server-root>/config/velocity. This enables the preservation of customized files after a
product upgrade.

After a product upgrade, review the files in config/velocity to determine if any changes
should be incorporated into customized templates.

Topology Configuration
Topology configuration enables grouping servers and mirroring configuration changes
automatically. It uses a master/slave architecture for mirroring shared data across the
topology. All writes and updates are forwarded to the master, which forwards them to all other
servers. Reads can be served by any server in the group.

Servers can be added to an existing topology at installation. See Adding Additional Data
Brokers in a Topology for details.

Note
To remove a server from the topology, it must be uninstalled with the uninstall tool. See
Uninstalling the Data Broker for details.

Topology Master Requirements and Selection
A topology master server receives any configuration change from other servers in the
topology, verifies the change, then makes the change available to all connected servers when
they poll the master. The master always sends a digest of its subtree contents on each update.
If the node has a different digest than the master, it knows it's not synchronized. The servers
will pull the entire subtree from the master if they detect that they are not synchronized. A
server may detect it is not synchronized with the master under the following conditions:

l At the end of its periodic polling interval, if a server's subtree digest differs from that of
its master, then it knows it's not synchronized.

l If one or more servers have been added to or removed from the topology, the servers
will not synchronized.

The master of the topology is selected by prioritizing servers by minimum supported product
version, most available, newest server version, earliest start time, and startup UUID (a
smaller UUID is preferred).

- 168 -

Topology Configuration

After determining a master for the topology group (cluster), the topology data is reviewed
from all available servers (every five seconds by default) to determine if any new information
makes a server better suited to being the master. If a new server can be the master, it will
communicate that to the other servers, if no other server has advertised that it should be the
master. This ensures that all servers accept the same master at approximately the same time
(within a few milliseconds of each other). If there is no better master, the initial master
maintains the role.

After the best master has been selected for the given interval, the following conditions are
confirmed:

l A majority of servers is reachable from that master. (The master server itself is
considered while determining this majority.)

l There is only a single master in the entire topology.

If either of these conditions is not met, the topology is without a master and the peer polling
frequency is reduced to 100 milliseconds to find a new master as quickly as possible. If there is
no master in the topology for more than one minute, a mirrored-subtree-manager-no-
master-found alarm is raised. If one of the servers in the topology is forced as master with
the force-as-master-for-mirrored-data option in the Global Configuration configuration
object, a mirrored-subtree-manager-forced-as-master-warning warning alarm is raised.
If multiple servers have been forced as masters, then a mirrored-subtree-manager-forced-
as-master-error critical alarm will be raised.

Topology Components
When a server is installed, it can be added to an existing topology, which will clone the server's
. Topology settings are designed to operate without additional configuration. If required, some
settings can be adjusted to fit the needs of the environment.

Server Configuration Settings
Configuration settings for the topology are configured in the Global Configuration and in the
Config File Handler Backend. Though they are topology settings, they are unique to each server
and are not mirrored. Settings must be kept the same on all servers.

The Global Configuration object contains a single topology setting, force-as-master-for-
mirrored-data. This should be set to true on only one of the servers in the topology, and is
used only if a situation occurs where the topology cannot determine a master because a
majority of servers is not available. A server with this setting enabled will be assigned the role
of master, if no suitable master can be determined. See Topology Master Requirements and
Selection for details about how a master is selected for a topology.

The Config File Handler Backend defines three topology (mirrored-subtree) settings:

l mirrored-subtree-peer-polling-interval – Specifies the frequency at which the
server polls its topology peers to determine if there are any changes that may warrant a
new master selection. A lower value will ensure a faster failover, but it will also cause
more traffic among the peers. The default value is five seconds. If no suitable master is

- 169 -

Chapter 9: Advanced Configuration

found, the polling frequency is adjusted to 100 milliseconds until a new master is
selected.

l mirrored-subtree-entry-update-timeout – Specifies the maximum length of time to
wait for an update operation (add, delete, modify or modify-dn) on an entry to be applied
by the master on all of the servers in the topology. The default is 10 seconds. In reality,
updates can take up to twice as much time as this timeout value if master selection is in
progress at the time the update operation was received.

l mirrored-subtree-search-timeout – Specifies the maximum length of time in
milliseconds to wait for search operations to complete. The default is 10 seconds.

Topology Settings
Topology meta-data is stored under the cn=topology,cn=config subtree and cluster data is
stored under the cn=cluster,cn=config subtree. The only setting that can be changed is the
cluster name.

Monitor Data For the Topology
Each server has a monitor that exposes that server's view of the topology in its monitor
backend, so that peer servers can periodically read this information to determine if there are
changes in the topology. Topology data includes the following:

l The server ID of the current master, if the master is not known.

l The instance name of the current master, or if a master is not set, a description stating
why a master is not set.

l A flag indicating if this server thinks that it should be the master.

l A flag indicating if this server is the current master.

l A flag indicating if this server was forced as master.

l The total number of configured peers in the topology group.

l The peers connected to this server.

l The current availability of this server

l A flag indicating whether or not this server is not synchronized with its master, or
another node in the topology if the master is unknown.

l The amount of time in milliseconds where multiple masters were detected by this server.

l The amount of time in milliseconds where no suitable server is found to act as master.

l A SHA-256 digest encoded as a base-64 string for the current subtree contents.

The following metrics are included if this server has processed any operations as master:

l The number of operations processed by this server as master.

l The number of operations processed by this server as master that were successful.

- 170 -

Topology Configuration

l The number of operations processed by this server as master that failed to validate.

l The number of operations processed by this server as master that failed to apply.

l The average amount of time taken (in milliseconds) by this server to process operations
as the master.

l The maximum amount of time taken (in milliseconds) by this server to process an
operation as the master.

- 171 -

Index

A

access token 51

accepting external tokens 82

authorization code grant 71

client credentials code grant 75

implicit code grant 73

password credentials code grant 74

access token properties 112

account creation 27, 33

account operation requests 103

account operations

scope properties 52, 109

account recovery configuration 158

account registration 28, 33

Identity Provider settings 58

account registration template 165

account username and password
recovery 27, 33

admin entitlement 55, 76

administrative account

adding a root user account 126

root user privileges 126

API Explorer 3, 118

attribute mappings 40

authoritative attribute 40, 46

complex attributes 47

described 37

indexing 46

mapping in SCIM Resource Types 46

userinfo claims 46

Authenticated Identity scope 52

authentication

define SCIM search filters for
usernames 60

authoritative attribute 40

authorization

viewing consent metrics 151

authorization code grant request 70

B

backend monitors

entries 149

backup tool 124

base DN

configure data store 15

configure user entries 18

base64 tool 124

broker-cfg.dsconfig

write file 18

C

Claims Map

described 37

client

REST API endpoints 85

client-specific SCIM attributes 48

client credentials code grant request 75

considerations 75

client identifier 63, 72, 74-75

client secret 63, 74-75

collect-support-data tool 124

config-diff tool 124

Config File Handler Backend 169

consent-admin tool 124

consent operation requests 103

- 172 -

Index: access token – consent operation requests

Index: correlation attribute – ID Token Grant requests

correlation attribute 38

CORS

configuration 153

create-initial-broker-config 17

create-initial-broker-config tool 124

create-rc-script tool 124

D

Data Broker

architecture 3

attribute filtering 2-3

authorization 2

described 1

features 2

in a topology 19

installing 16

installing with existing truststore 22

Management Console URL 18

pluggable authentication 2

sample workflow 8

social login 3

tools 124

data stores

described 37

installing 13

DNS caching 142

dsconfig

changing policy-combining
algorithm 96

CORS configuration 153

described 125

tool described 124

dsframework tool 124

dsjavaproperties tool 124

dstat

installing on SuSE Linux 12

E

encryption-settings tool 13, 124

encryption keys 13, 51, 157

endpoints

described 37

logout.do 83

SCIM 84

SCIM examples 86

token 79

token revocation 81

token validation 80

userinfo 84

error logger 146

error message template 164

evaluate-policy tool 124

external access tokens 82

external identity operations 53, 109

external identity provider operation
requests 103

external identity providers

feature 3

G

Global Configuration object 169

H

HTTP request properties 110

HTTP Servlet Cross Origin Policy 154

HTTP servlet extension 155

I

ID token 51, 63

parameters 64

ID Token Grant requests 76

- 173 -

Index: Identity Authenticator – oauth2-request tool

Identity Authenticator 57

define settings 60

Identity Provider Service 158

account recovery settings 35

implicit code grant request 72

installing

prerequisites 11

sample users 23

scripted install 21

IP address reverse name lookup 143

J

Java

installing the JDK 13

supported versions 11

JSON 40

object examples 86

JVM memory allocation

Data Broker 17

data store 15

JWT token grant type 76

L

ldapmodify tool 124

ldappasswordmodify tool 124

LDAPS

configure Data Broker 16

configure data store 14

ldapsearch tool 124

ldif-diff tool 124

ldifmodify tool 124

Linux configuration

set file descriptor limit 11

list-backends tool 125

localization for web applications 167

logging

available log publishers 146

configure log retention and
rotation 148

configure log signing 147

create log publisher 146

log compression 147

login account 18

login page 27, 32

logout endpoint 83

M

manage-extension tool 125

Management Console

login account 18

URL 18

metrics

viewing 151

monitoring entries 150

O

OAuth2

authorization code grant 69

client credentials 70

described 51

encryption keys 51

endpoints

REST APIs 85

ID token 70

implicit grant flow 69

policy processing 98

resource owner password flow 70

response types 70

userinfo claims mapping 46

oauth2-request tool 125

- 174 -

Index: OAuth2 clients – Resource Scope

OAuth2 clients 78

enable client-specific SCIM
attributes 48

properties in XACML Policies 108

OpenID Connect

about 62

ID token 63

requests 63

responses 63

userinfo endpoint 85

P

password credentials code grant
request 73

password recovery 35

Identity Provider settings 59

password reset 30

PDP endpoint 104

policy

authorization scenarios 94

decision trace 119

described 93

managing 117

PDP endpoint 104

policy information providers 117

policy structure 96

request processing 98

test policies 118

troubleshoot denied access 119

viewing policy metrics 151

XACML 94

policy set

creating 118

prepare-external-store tool 18, 125

Profile Manager application 3

new user registration 28

overview 26

user search 27

R

reCAPTCHA 30

enable in Identity Provider Service 57

reCAPTCHA API

Identity provider settings 60

recover account username and
password 35

recover password template 164

recover username template 164

redirect URI 65

referenced SCIM resource attributes 107

refresh token

process 81

register new account 35

relying party

add identity provider 65

create an accout 65

Facebook settings 66

Google settings 66

login template 164

OpenID Connect settings 67

process overview 64

remove-defunct-server tool 25, 125

resource operations

scope properties 52, 109

resource properties 107

Resource Scope 53

use client credential grant type 76

- 175 -

Index: REST API – supported platforms

REST API

connection port 16

endpoints 85

restore tool 125

review-licence tool 125

root user DN 18

root user privileges 126

S

Sample Sign-In application 3, 31

SCIM

described 86

SCIM endpoint 37, 84

account operations 103

consent operations 103

DELETE operations 102

external identity provider
operations 103

GET operations 100

PATCH and PUT operations 101

POST operations 101

search considerations 41

search request 100

sub-resource operations 102

SCIM request properties 110

SCIM resource properties 107

SCIM Resource Type

creating 42

managing 42

map userinfo claims 47

REST API endpoints 85

store adapter mapping 45

SCIM schema

overview 40

username uniqueness 41

scope properties in policy 107

scopes

applicable scopes returned 111

Authenticated Identity 52

external idenity operations 53, 109

managing 55

Resource scope 53

scope types and properties 51

self-service account flows 58

server-state tool 125

session properties 111

social login 64

start-broker

running in the foreground 24

start-broker tool 125

status tool 125, 151

stop-broker

example of 24

in-core restart 25

stop-broker tool 125

store adapter

correlation attribute 38

described 37

mapping attributes 40

primary and secondary adapters 38

search considerations 41

third-party store adapters 152

store adapters

described 38

third-party 153

sum-file-sizes tool 125

supported platforms 11

- 176 -

Index: system entropy – XACML

system entropy 12

T

Third-Party Store Adapter 153

token endpoint 63, 85

token validation 80-81

topology

force master setting 169

master selection 168

monitor data 170

overview 168

server configuration settings 169

subtree polling interval 168

trace logger 146

trace policy decisions 119

U

uid 41

uninstall tool 25

user processes

configuring on Redhat/CentOS 12

user store 13

Userinfo claims

create maps 47

managing 46

Userinfo endpoint 37, 51, 63, 84

described 37

example 91

policy requests 104

username

SCIM search filters for
authentication 60

username recovery 30, 35

username recovery settings 59

V

Velocity templates 35

configuring pages 159, 164

HTTP header fields 162

HTTP methods in third-party
providers 163

X

XACML

described 94

request attributes 100

unsupported features 120

- 177 -

	Copyright
	Preface
	About UnboundID
	Audience
	Documentation

	Chapter 1: Introduction
	Data Broker Overview
	Data Broker Features
	Data Broker Architecture
	Data Broker Configuration Overview
	Identity Provider Services
	SCIM
	Data Sources
	Authorization and Policies
	System
	Logging, Monitoring, and Notifications

	Sample Data Broker Configuration
	Data Broker as both a Resource and Identity Provider Server
	Data Broker as a Resource Server Only

	Chapter 2: Installation
	Installation Prerequisites
	Supported Platforms
	Set the File Descriptor Limit
	Setting the Maximum User Processes
	Installing the dstat Utility on SuSE Linux
	Managing System Entropy
	Installing the JDK

	About Encryption Keys
	User Store Overview
	Installing the Data Store
	Data Broker Installation Tools
	Installing the Data Broker
	Configuring the Data Broker
	Logging into the Management Console
	Installing Additional Data Brokers in a Topology
	Server Folders and Files
	Planning a Scripted Install
	Scripted Installation Process

	Installing the Data Broker with an Existing Truststore
	Installing Sample Users
	Run the Data Broker
	Stop the Data Broker
	Schedule a Server Shutdown
	Run an In-Core Restart

	Uninstalling the Data Broker
	Using the Data Broker Sample Applications
	The Profile Manager Application
	The Sign-In Sample Application
	User Account Registration and Recovery

	Chapter 3: Data Access and Mapping
	Data Components
	Public Endpoints: UserInfo and SCIM
	OpenID Connect Claims Map (UserInfo Map)
	Store Adapters
	Store Adapter Mappings
	Data Stores

	Store Adapter Overview
	Primary and Secondary Store Adapters
	Defining Correlation Attributes
	Sample Configuration

	SCIM Schemas
	Store Adapter Mappings
	SCIM Attribute Search Considerations
	Maintaining Username Uniqueness
	Defining SCIM Resource Types
	Pass-through SCIM Resource Type
	Mapping SCIM Resource Type Attributes
	Creating a SCIM Resource Type
	Editing Attribute and Sub-Attribute Properties
	Editing Store Adapter Mappings

	Defining OpenID Connect Claims
	OpenID Connect Claims and Scopes
	Complex Attribute Mapping
	Creating an OpenID Connect Claims Map

	OAuth2 Client-Specific SCIM Attributes

	Chapter 4: Identity Provider Service and Scopes
	OAuth2 Overview
	OAuth2 Scopes
	Authenticated Identity Scope
	Resource Scope

	Creating Scopes
	Creating an Authenticated Identity OAuth2 Scope
	Creating a Resource OAuth2 Scope

	Identity Provider Configuration
	Defining the Identity Provider Service
	Creating an Identity Authenticator

	Chapter 5: User Authentication
	HTTP Authentication Schemes
	OpenID Connect Request
	OpenID Connect Response
	The Data Broker as a Relying Party
	Creating an Account through Identity Provider Login

	Creating an External Identity Provider

	Chapter 6: OAuth2 Clients and Token Access
	OAuth2 Client Considerations
	OAuth2 Authorization Grant Types
	OAuth2 Authorization Response Types
	Issuing Authorization Code Grant Requests
	Example Redirection
	Example Response
	Example Request
	Example Response
	Example Request

	Issuing Implicit Code Grant Requests
	Example Redirection
	Example Redirect Response
	Example Request

	Issuing Resource Owner Password Credentials Requests
	Example Request
	Example Response

	Issuing Client Credentials Requests
	Example Request
	Example Response

	Issuing ID Token Grant Requests

	Adding an OAuth2 Client
	The Data Broker Token Endpoint
	Request
	Response

	Token Validation by the Data Broker
	Token Revocation by the Data Broker
	Obtaining a Refresh Token
	Accepting External Access Tokens
	The Data Broker Logout Endpoint
	Request
	Response

	Chapter 7: Accessing Data
	Data Broker Endpoints for OAuth2 Clients
	The SCIM Endpoint
	SCIM Examples
	GET
	GET (by User ID)
	POST
	UPDATE
	DELETE

	UserInfo Access Example
	Request
	Response
	jQuery Example

	Chapter 8: Configuring XACML Policies
	XACML Policy Overview
	Requesting an Access Token
	Requesting Operations through SCIM or UserInfo

	Policy Structure
	Requesting JSON-Formatted Data
	Using Obligations and Advice

	Policies and Request Processing Per Endpoint
	OAuth2 Endpoint Policy Requests
	SCIM Resource Type Policy Evaluation
	SCIM Sub-Resource Operation Policy Evaluation
	UserInfo Endpoint Policy Evaluation
	Policy Decision Point (PDP) Endpoint

	Policy Engine Request Context
	XACML Attribute Categories
	Standard XACML Attribute Use
	Custom XACML Function
	Resource Properties
	OAuth2 Client Properties
	Scope Properties
	HTTP Request Properties
	SCIM Request Properties
	Applicable Scopes
	Session Properties
	Access Token Properties
	Policy Sections and Functions Described

	Configuring the Policy Service
	Policy Information Providers
	PIP Evaluation Order

	Creating XACML Policies
	Creating a Policy Set
	Testing Policies
	Troubleshooting Policies with Traces
	Troubleshooting Denied Access

	Unsupported XACML Features

	Chapter 9: Advanced Configuration
	General Server Configuration
	Available Configuration Tools
	Using the dsconfig tool
	Administrative Accounts

	Using the Configuration API
	Authentication and Authorization
	Relationship Between the Configuration API and the dsconfig Tool
	API Paths
	Sorting and Filtering Configuration Objects
	Updating Properties
	Administrative Actions
	Updating Servers and Server Groups
	Configuration API Responses
	Domain Name Service (DNS) Caching
	IP Address Reverse Name Lookups
	System Alarms, Alerts, and Gauges
	Working with Logs and Log Publishers
	Monitoring the Server
	Server SDK Extensions

	Data Broker Advanced Server Configuration
	Configuring Third-Party Store Adapters
	Example Third-Party Store Adapter
	About Cross-Origin Resource Sharing Support
	Managing Server Encryption Settings
	Account Recovery Configuration in the Data Store

	Configuring the Data Broker Templates
	Supporting Multiple Content Types
	Velocity Context Providers
	Configuring HTTP Header Fields
	Handling Specific HTTP Methods in Third-Party Providers
	Velocity Tools Context Provider
	Configuring the Broker Login and Consent Pages
	Customizing the Data Broker Application Logo
	Configuring Web Applications for Localization
	Preserving Customized Files

	Topology Configuration
	Topology Master Requirements and Selection
	Topology Components
	Monitor Data For the Topology

	Index

