
UnboundID® Identity Broker
Installation Guide

Version 5.1.0

UnboundID Corp

13809 Research Blvd., Suite 500

Austin, Texas 78750

Tel: +1 512.600.7700

Email: support@unboundid.com





Copyright

Copyright © 2015 UnboundID Corporation

All rights reserved.

This document constitutes an unpublished, copyrighted work and contains valuable trade
secrets and other confidential information belonging to UnboundID Corporation. None of the
material may be copied, duplicated, or disclosed to third parties without the express written
permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or
through such sites or resources. UnboundID will not be responsible or liable for any actual or
alleged damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such sites or
resources. UnboundID and the UnboundID Logo are trademarks or registered trademarks of
UnboundID Corp. in the United States and foreign countries. All other marks referenced are
those of their respective owners.



Table of Contents
Copyright i

Preface iv

About UnboundID iv

About This Guide v

Audience v

Documentation v

Chapter 1: Introduction 1

Identity Broker Overview 2

Identity Broker Features 2

Identity Broker Architecture 3

Installation Considerations 4

Chapter 2: System Requirements 6

Installation Prerequisites 7

Supported Platforms 7

Supported Storage Options 7

Configuring File Descriptor Limits 7

To Set the File Descriptor Limit 8

Setting the Maximum User Processes 8

Installing the dstat Utility on SuSE Linux 8

Chapter 3: Installation 10

Installing the JDK 11

About Encryption Keys 11

Installing the Identity Data Store 11

To Install the Identity Data Store 11

Identity Broker Installation Tools 14

Installation Process and Files Installed 14

Installing the Identity Broker 16

Configuring the Identity Broker 18

Installing a Clone Identity Broker 22

Planning a Scripted Install 23

Scripted Installation Process 25

To Install the Identity Broker with an Existing Truststore 27

Chapter 4: Management 28

- i -



Run the Identity Broker 29

To Run the Identity Broker 29

To Run the Identity Broker in the Foreground 29

Stop the Identity Broker 29

To Stop the Identity Broker 29

Schedule a Server Shutdown 29

To Run an In-Core Restart 30

Uninstalling the Identity Broker 30

To Uninstall the Identity Broker 30

Updating the Identity Broker, Broker Store, and User Stores 31

Identity Broker Files and Folders 32

Chapter 5: Configuration 34

Identity Broker Configuration Data 35

Identity Broker Configuration Tools 36

All Identity Broker Tools 36

Using the Web Console for Server Configuration 38

Install the Web Console 38

Log into the Web Console 40

Configure the Web Console 41

Using the dsconfig tool 42

To Run the dsconfig Tool 43

Using the Configuration API 44

Authentication and Authorization 44

Relationship Between the Configuration API and the dsconfig Tool 44

API Paths 45

Updating Properties 46

Administrative Actions 46

Configuration API Responses 47

About the Broker Store and User Store 48

About Data Views 48

About Store Adapters 49

About the LDAP Store Adapter 50

About User Metadata 51

Configuring a Separate Metadata Store 52

- ii -



Configuring Store Adapters 56

Example Store Adapter 57

Creating a JDBC Store Adapter 57

Account Recovery Configuration in the User Store 59

Managing Server Encryption Settings 60

System Alarms, Alerts, and Gauges 60

Alert Handlers 61

Test Alarms and Alerts 62

Server SDK Extensions 63

About the OAuth Service 64

About The Policy Service 64

To Configure the Policy Service 65

About Cross-Origin Resource Sharing Support 66

CORS Implementation 66

HTTP Servlet Services 66

HTTP Servlet Cross Origin Policies 67

Assigning a CORS Policy to an HTTP Servlet Extension 68

About Dashboards and Metrics 69

To Configure the Metrics Engine and Identity Broker to show Metrics Data 69

The sample-data-loader Tool 70

To Add Sample Users and Run the sample-data-loader Tool 71

Sample Requests and Policy Tests 72

Configure the Identity Broker Console on Tomcat 72

Changing the Identity Broker Console Redirect URI 73

Index 75

- iii -



Preface

The UnboundID Identity Broker Installation Guide provides procedures to install and configure
an identity infrastructure.

About UnboundID
UnboundID Corp is a leading identity infrastructure domain solutions provider with proven
experience in large-scale identity data solutions. The Identity Broker is part of the UnboundID
Platform. The UnboundID Platform is the consumer-grade identity access and management
platform—built specifically to handle the massive scale and real-time demands of hundreds of
millions of customers. It delivers a consistent, seamless, personalized brand experience that
makes each customer feel valued. The UnboundID Platform provides a unified view of
customer data across all applications, channels, partners, and lines of business.

The UnboundID Platform provides the following:

l Secure End-to-End Customer Data Privacy Solution – A comprehensive identity
platform with authorization and access controls to enforce privacy policies, control user
consent, and manage resource flows. The system protects data in all phases of its life
cycle (create, read, update, delete as well as static/unchanging and expiring).

l Purpose-Built Platform – Solutions to consolidate, secure, and deliver customer
consent-given identity data. The system provides unmatched security measures to
protect sensitive identity data and maintain its visibility. The broad range of services
include, policy management, cloud provisioning, federated authentication, data
aggregation, and directory services.

l Unmatched Performance across Scale and Breadth – Support for the three pillars
of performance-at-scale: users, response time, and throughput. The system manages
real-time data at large-scale consumer facing service providers.

- iv -



Preface

l Support for External APIs – Standards-based solutions that can interface with various
external APIs to access a broad range of services. APIs include XACML 3.0, SCIM, LDAP,
OAuth 2.0, and OpenID Connect.

About This Guide
This guide provides procedures to install and configure an Identity infrastructure, powered by
the UnboundID product suite. The guide references products in the UnboundID product family
including:

l UnboundID Identity Broker

l UnboundID Identity Data Store

l UnboundID Identity Proxy

l UnboundID Identity Data Sync Server

l UnboundID Identity Broker API

l UnboundID Server SDK

Additional documentation for each product is available.

Audience
This guide is intended for identity architects and administrators who are designing and
implementing an identity infrastructure solution. Familiarity with system-, user-, and network-
level security principles is assumed. Knowledge of directory services principles is
recommended.

To use this guide effectively, readers should be familiar with the following subjects:

l REST web services and principles

l JSON or XML serialization formats

l XACML 3.0

l OAuth 2.0 specification

l OAuth 2.0 Bearer Token specification

l SCIM Schema 1.0

l OpenID Connect 1.0

l Apache Velocity Project and templates

Documentation
The Identity Broker includes the following documents, available in the docs folder of the
server.

- v -



Preface

l UnboundID Identity Broker Installation Guide (PDF)

l UnboundID Identity Broker Administration Guide (PDF)

l UnboundID Identity Broker Application Developer Guide (PDF)

l UnboundID Identity Broker REST API Reference (HTML)

l UnboundID Identity Broker Configuration Reference Guide (HTML)

l UnboundID Identity Broker Command Line Reference (HTML)

- vi -



Chapter 1: Introduction

Companies need to be able to monetize this valuable user data, while balancing data privacy
regulations. The Identity Broker server provides solutions to manage and monitor the
authorization and authentication of user data access.

This section includes:

Identity Broker Overview

Identity Broker Features

Identity Broker Architecture

Installation Considerations

- 1 -



Chapter 1: Introduction

Identity Broker Overview
Most organizations today are working toward creating a unified customer profile. An essential
part of creating that common identity profile is to centralize multiple, overlapping accounts and
to define the logic for determining which applications should access data in a profile, and for
what purpose. The Identity Broker enables managing large amounts of customer data while
ensuring end-user privacy.

The Identity Broker can act as an authorization server, or both an authorization and resource
server.

l As an authorization server, the Identity Broker provides authorization decisions for client
applications, provisioning systems, API gateways and analytical tools in architectures
involving personal, account, or sensitive identity data.

l As a resource server, it provides restricted access to end users' information.

The Identity Broker is designed to make authorization decisions based on dynamic consumer
profile and consent data. It is both the policy decision point and the OAuth 2.0 provider for
externalized authorization. Because the Identity Broker centralizes the policy and consent
functions, regulatory and security rules are applied consistently across all applications. In
addition, the Identity Broker can be used to create a common identity and single view of the
customer through the use of attribute mapping from multiple backend data stores.

Identity Broker Features
The Identity Broker provides the following features for client applications to securely access
identity resources:

l Support for multiple backend data stores. The Identity Broker supports multiple
data stores, with native support for the UnboundID Data Store and extension points for
other data stores, such as relational databases. Applications can be written one time for
access to the Identity Broker and receive data from any type of infrastructure backend.

l Authorization based on Policy and Consent. The Identity Broker ensures that data
is provided to only authorized applications. Authorization can be based on industry rules,
corporate policy, or consent granted by customers.

l Unified Data Views. The Identity Broker provides a way to aggregate attributes from
multiple data stores into single views, such as a customer profile view, a subscriber
view, or a device view. Data Views specify attribute mapping and renaming across
multiple data stores. Applications can provide their end users a unified view of their
information based on the Data Views configured.

- 2 -



Identity Broker Architecture

l Support for social login. The Identity Broker can act as a relying party, enabling users
to log into client applications and update or create Identity Broker accounts with external
identity provider accounts such as Facebook or Google.

l Standards-based authorization. The Identity Broker Server provides OAuth 2.0-
compliant functionality for token generation, expiration, validation, and revocation. This
provides application developers with flexible, secure authorization flows that can be
tailored to multiple application types.

l User interface samples and templates. The Identity Broker installs a Profile
Manager and Sample Sign-In application, if the option is chosen during installation.
These applications can be used to demonstrate how a client application makes requests
of the Identity Broker for user data, how an end user can grant consent for the
application to access that data, and how the Identity Broker returns that data. Identity
Broker Server templates can be used for implementing custom user authentication and
consent flows.

Identity Broker Architecture
The Identity Broker can act as both the authorization server and resource server for client
applications requesting access to user data. Client applications are granted authorization
through an OAuth 2.0 flow and receive access through OpenID Connect and SCIM endpoints.

The Identity Broker can either be an identity provider, or it can be the relying party to an
external identity provider, or both. As a relying party, the Identity Broker can offload the
authentication responsibilities to a configured identity provider, and use the authenticated
principal and any attributes to link end user profiles, or create a new profile in a backend data
store.

- 3 -



Chapter 1: Introduction

Identity Broker Architecture

Planning an Identity Broker deployment should start with determining the applications that will
request access to data, how they will access the Identity Broker server, and what data can be
accessed and updated. Backend data stores are configured as User Stores during installation.
Data Views enable mapping resources from multiple User Stores into a unified view of a user
profile.

The Policy Engine is key in determining which applications can access resources and for what
purpose. Make sure that application development is done with consideration for how policies
process requests.

The Identity Broker also tracks the consent that end users grant for access to their data.
Consent and access history can be managed by a requesting application or separate
application.

Installation Considerations
Consider the following deployment-related issues prior to installing:

- 4 -



Installation Considerations

l Determine the role of the Identity Broker Server. The Identity Broker can serve
as a resource and authorization server, or a resource server. The role of the server will
determine the configuration requirements.

l Determine the Identity Broker Store Topology. The deployment determines where
the Identity Broker stores its policies, Data View Schemas, and OAuth 2.0 tokens for
each user.

l Determine the Identity Broker and Broker Store load balancing and
replication scenarios. Multiple Identity Brokers can be installed for load balancing.
Install one Identity Broker and use the clone feature to install additional Identity
Brokers, or plan a scripted installation. Multiple Identity Brokers can use a single Broker
Store. Make sure that the Broker Store has a backup or replication mechanism in place.
See About the Broker Store and User Store.

l Code required for Application and Resource Server. The Identity Broker provides
REST API endpoints for web, mobile, social and partner applications as well as resource
server access to the OAuth 2.0 and policy services and the administrative tools. See the
UnboundID Identity Broker Client Developer Guide for more information.

- 5 -



Chapter 2: System Requirements

The UnboundID Identity Broker requires few technical prerequisites and can be deployed in
multiple configurations. The Identity Broker can be deployed on virtualized and/or commodity
hardware, and monitored using the UnboundID Platform's built-in tools or through external
tools connected with the API.

This section includes:

Installation Prerequisites

Supported Platforms

Supported Storage Options

Configuring File Descriptor Limits

Setting the Maximum User Processes

Installing the dstat Utility

- 6 -



Chapter 2: System Requirements

Installation Prerequisites
The following are required before installing the Identity Broker:

l Java 7

l Minimum of 2 GB RAM

l UnboundID Identity Data Store 4.5 or later

Note
If using the log history service, the amount of disk space required will depend on the chosen
configuration. See the "Managing the Log History Service" section of the UnboundID Identity
Broker Administration Guide for information about the service and configuration details.

Supported Platforms
The Identity Broker is a pure Java application. It is intended to run within the Java Virtual
Machine on any Java Standard Edition (SE) or Enterprise Edition (EE) certified platform. For the
list of supported platforms and Java versions, access the UnboundID Customer Support Center
portal or contact an authorized support provider.

Supported Storage Options
The Identity Broker can be deployed in a variety of topologies depending on the existing
infrastructure. The following table lists the Identity Broker components that must reside on an
Identity Data Store, or can reside on a third-party data store.

Store Identity Data Store Third-Party Directory or Database

Consumer (end user)
Accounts

Yes Yes

Broker Store Yes No

Administrator Accounts Yes Yes

Summary of Storage Options

Configuring File Descriptor Limits
Identity Broker allows for an unlimited number of connections by default, but is restricted by
the file descriptor limit on the operating system. Many Linux distributions have a default file
descriptor limit of 1024 per process, which may be too low to handle a large number of
concurrent connections.

Set the maximum file descriptor limit per process to 65,535 on Linux systems.

- 7 -



Setting the Maximum User Processes

To Set the File Descriptor Limit
1. Display the current hard limit of your system. The hard limit is the maximum server limit

that can be set without tuning the kernel parameters in the proc filesystem.

$ ulimit -aH

2. Edit the /etc/sysctl.conf file. If the fs.file-max property is defined in the file, make
sure its value is set to at least 65535. If the line does not exist, add the following to the
end of the file:

fs.file-max = 65535

3. Edit the /etc/security/limits.conf file. If the file has lines that set the soft and hard
limits for the number of file descriptors, make sure the values are set to 65535. If the
lines are not present, add the following lines to the end of the file (before “#End of file”).
Insert a tab, rather than spaces, between the columns.

* soft nofile 65535
* hard nofile 65535

4. Reboot the system, and then use the ulimit command to verify that the file descriptor
limit is set to 65535.

$ ulimit -n

Setting the Maximum User Processes
Redhat Enterprise Linux Server/CentOS 6.x sets the default maximum number of user
processes to 1024, which is lower than the setting on older distributions. This may cause JVM
memory errors when running multiple servers on a machine because each Linux thread is
counted as a user process. This is not an issue on Solaris and AIX platforms as individual
threads are not counted as user processes.

At startup, Identity Broker attempts to raise this limit to 16,383 if the value reported by
ulimit is less. If the value cannot be set, an error message is displayed. Explicitly set the limit
in /etc/security/ limit.conf. For example:

* soft nproc 100000
* hard nproc 100000

The 16,383 value can also be set in the NUM_USER_PROCESSES environment variable, or by
setting the same variable in config/num-user-processes.

Installing the dstat Utility on SuSE Linux
The dstat utility is used by the collect-support-data tool to gather support data. It can be
obtained from the OpenSuSE project website. The following steps install the dstat utility on
SuSE Enterprise Linux 11 SP2:

- 8 -



Chapter 2: System Requirements

1. Log into the server as root.

2. Add the appropriate repository using the zypper tool:

$ zypper addrepo
http://download.opensuse.org/repositories/server:/monitoring/SLE_11_SP2
Monitoring

3. Install the dstat utility:

$ zypper install dstat

- 9 -



Chapter 3: Installation

Identity Broker provides installation tools to quickly configure the server.

This section includes:

Installing the JDK

About the Broker Store and User Stores

About Encryption Keys

Installing the Identity Data Store

Identity Broker Installation Tools

Installation Process and Files Installed

Installing the Identity Broker

Configuring the Identity Broker

Installing a Clone Identity Broker

Planning a Scripted Installation

- 10 -



Chapter 3: Installation

Installing the JDK
The Identity Broker requires the Java 64-bit JDK. Even if Java is already installed, create a
separate Java installation for use by Identity Broker to ensure that updates to the system-
wide Java installation do not inadvertently impact the Identity Broker.

Solaris systems require both the 32-bit (installed first) and 64-bit versions. The 64-bit version
of Java on Solaris relies on a number of files provided by the 32-bit installation.

About Encryption Keys
Encryption setting definitions are used to protect Identity Broker generated tokens and User
Store metadata. All Identity Broker Servers that share a Broker Store must use the same set
of definitions. Encryption setting definitions are managed using the encryption-settings
tool.

If the new encryption setting definition must be created, the new definition must be exported
using the encryption-settings tool and imported on all Identity Broker Servers. Only after
the new definition is imported on all servers can the new definition be used for subsequent
encryption operations.

See Managing the Server Encryption Settings for more information.

Installing the Identity Data Store
The Identity Broker requires at least one installed Identity Data Store server. This provides the
backend repository for the Broker Store, which contains the policy data, resources, actions,
applications, and Data View Schemas (to enable mapping of attributes between the Identity
Broker and one or more User Stores). A user store is also required by the Identity Broker,
which can be an instance of the Data Store or an external user store. The Broker Store can
reside with the User Store on a single Identity Data Store server, or multiple data stores can
be installed.

See About the Broker Store and User Store for details about these components.

Note
All sensitive data in the user store are encrypted.When using the UnboundID Data Store as
the user store, server-level encryption can be enabled as described in the "Encrypting
Sensitive Data" section in the UnboundID Identity Data Store Administration Guide.

To Install the Identity Data Store
Follow this procedure to install a single Identity Data Store server. All configuration settings
can be later modified through the dsconfig tool. The following information is needed during
the installation:

l Server hostname

l LDAPS port

- 11 -



Installing the Identity Data Store

l Root DN and password

l Base DN

l Location of user entries

Perform the following steps to install the Identity Data Store:

1. Download the Identity Data Store zip distribution, UnboundID-DS-<version>.zip.

2. Unzip the file in any location.

$ unzip UnboundID-DS-<version>.zip

3. Change to the top level UnboundID-DS folder.

$ cd UnboundID-DS

4. Run the setup command.

$ ./setup

5. Enter yes to agree to the license terms.

6. Enter the Directory Manager DN for the Data Store, or accept the default, (cn=Directory
Manager). This account has full access privileges.

7. Enter a password for the root user DN, and confirm it.

8. Choose the communication option for SCIM and the Configuration API. HTTPS is
recommended.

9. Enter the port to accept connections from HTTPS clients or press Enter to accept the
default. The default may be different depending on the account privileges of the user
installing. This port defines the URL port (such as https://<hostname>:8443/) required
when installing Identity Broker.

10. Enter the port to accept connections from LDAP clients, or press Enter to accept the
default.

11. Type yes to enable LDAPS, or press Enter to accept the default (no). When configuring
the Identity Broker, the create-initial-broker-config tool assumes that this is
enabled.

12. If enabling LDAPS, enter the port to accept connections, or press Enter to accept the
default LDAPS port.

13. Type yes to enable StartTLS for encrypted communication, or press Enter to accept the
default (no).

14. Select the certificate option for the server and provide the certificate location.

Certificate server options:

- 12 -



Chapter 3: Installation

1) Generate self-signed certificate (recommended for testing

purposes only

2) Use an existing certificate located on a Java KeyStore (JKS)

3) Use an existing certificate located on a PKCS12 keystore

4) Use an existing certificate on a PKCS11 token

15. The server listens on all available network interfaces. To specify particular IP addresses
that accept client connections, enter yes and then enter the IP addresses. To keep all
interfaces available for connections, press Enter to accept the default (no).

16. Specify the base DN for the Identity Data Store repository, for example
dc=company,dc=com.

17. Select an option to populate the database. If this data store will serve as a user store for
the Identity Broker, it should be populated with users. If the Leave the database
empty option is selected, an LDIF file with a base entry must be manually created at a
later time. Use ldapmodify to add the entry to the Identity Data Store.

18. If this machine is dedicated to the Data Store, tune the JVM memory allocation to use the
maximum amount of memory the Aggressive option). This ensures that communication
with the Data Store is given the maximum amount of memory. Choose the best memory
option for the system and press Enter.

19. Enter yes to automatically prime the database, or press Enter to accept the default
(no).

20. To start the server after the configuration, press Enter for (yes).

21. Review the Setup Summary, and enter an option to accept the configuration, redo it, or
cancel.

Setup Summary

=============

SCIM Web Services (SSL): https://<hostname>:443

Root User DN: cn=Directory Manager

LDAP Listener Port: 1389

HTTP Listener Port: disabled

Secure Access: Enable SSL on LDAP Port 636

Enable SSL on HTTP Port 443

Create a new Self-Signed Certificate

Directory Data: Create New Base DN dc=company,dc=com

Base DN Data: Import Automatically-Generated Data (2000 Entries)

The Identity Data Store will be started after configuration

What would you like to do?

- 13 -



Identity Broker Installation Tools

1) Set up the server with the parameters above

2) Provide the setup parameters again

3) Cancel the setup

22. Choose the LDAP option to connect to the Data Store on the host.

>>>>> Specify LDAP connection parameters

1) LDAP
2) LDAP with SSL

23. Enter the Administrator user bind DN (directory manager), or press Enter to accept the
default (cn=Directory Manager).

24. Enter and confirm a password for this account.

The Data Store configuration is displayed and the installation is complete.

Identity Broker Installation Tools
The Identity Broker provides a number of tools to install and configure the system.

l The setup tool performs the initial tasks needed to start the Identity Broker server,
including configuring JVM runtime settings and assigning listener ports for the Broker's
REST services and web applications.

l The create-initial-broker-config tool continues after setup and enables initial
system configuration. During the process, the prepare-external-store tool loads the
Broker Store with an initial data set, including an administrative account. If specified,
the configuration process calls the sample-data-loader tool, loads sample
applications, OAuth 2 scopes, resources, user consent records, and authorization
requests. Configuration can be written to a file to use for additional installations.

l The Broker Console interface or the broker-admin tool are used to define policies,
attributes, and data resources for the system. The Broker Console interface enables all
configuration that the broker-admin tool provides.

l Once the configuration is done, the dsconfig tool enables more granular configuration.

Installation Process and Files Installed
During the installation and configuration of the Identity Broker, there are opportunities to
install sample data and prepare the system for immediate use after the installation is
complete. For very advanced administrators, these steps can be scripted, or done manually
with the dsconfig and broker-admin tools. For a simplified and interactive installation, use
the integrated setup and create-initial-config tools.

- 14 -



Chapter 3: Installation

One of the Identity Broker's key features is the ability to create Data Views, which rely on a
SCIM schema to map attributes in a back-end data store to SCIM attributes or OpenID Connect
resources. When specifying a Broker Store during the create-initial-broker-config
process, the broker-admin script install-data-view-mappings.broker-admin is run. Data
View mappings for a SCIM schema are created for the default User Store Adapter and User
Data View. This enables an Identity Broker administrator to quickly map attributes from the
selected user store to SCIM attributes or OpenID Connect resources in the Identity Broker
Console. Additional user stores, Store Adapters, Data View Schemas, and Data Views can be
created and configured at any time.

One of the final steps to configuring the Identity Broker is to write the configuration to the
server and to a file. This activates all of the configuration settings entered and saves the
configuration to a dsconfig batch file. The dsconfig tool can be used to further configure the
server or configure additional Identity Brokers. The file resource/install-oidc-
objects.broker-admin is parameterized and run. This file will:

l Create a User Data View.

l Create OpenID Connect scopes (profile, email, address, phone).

l Create claims maps.

The final steps of configuring the Identity Broker enable default policies and install sample
data. This enables an Identity Broker administrator to use the Broker immediately. The default
policies can be used as is, modified, or used as templates for additional policies. The XML files
are imported into the Broker Store.

The installation enables installing sample policies as well as those required by the system:

Admin API Policy – Deny Identity Broker administrative access to unauthorized applications
or users. By default, access to administrative actions is allowed for a user with the broker_
admin entitlement and for resources that have the urn:unboundid:resources:broker_admin
prefix. This is required by the system and can be edited, but should not be deleted. See The
Identity Broker Administrative Resources for a list of actions that this policy allows and under
what conditions.

Consent Policy – Policy that will return a decision of Permit if the resource owner has
consented to allow access to all of the resources in a request. If the resource owner has failed
to grant consent for any resource in the request, the policy will return a Deny decision. If the
incoming request does not specify a resource owner, the policy decision will be Not Applicable.
This is required by the system.

Owned Resource Access Policy – Policy to deny access to resources unless the requester is
the owner of the resources or an actor that has a privileged entitlement. This policy is only
evaluated for requests that contain both an owner and actor attribute. This is required by the
system.

Tag Policy – Policy that will return a decision of Permit if the requesting application holds all
governance tags held by all requested resources.

Trust Level Policy – Policy that will return a decision of Permit if the maximum trust level of
all resources is less than or equal to the trust level of the requesting application.

- 15 -



Installing the Identity Broker

User Create and Update Policy – Policy for creating and updating a user through the SCIM
endpoint. This is required by the system and should not be deleted.

If sample data is installed, the following are performed:

l Two users are created over SCIM: sampleuser1 and sampleuser2.

l The sample-data-loader tool is run with the install subcommand. The newly created
users serve as XACML resource owners.

l The sample-data-loader tool will create:
o Tags, resources, trust levels, and scopes using the broker-admin tool.

o The consent-admin tool is run with a batch file that adds READ access consents to
the customer profiles for the newly installed applications.

See About the sample-data-loader Tool for details.

Installing the Identity Broker
To expedite the setup process, be prepared to enter the following information:

l An administrative account for the Identity Broker.

l An available port for the Identity Broker to accept HTTPS connections from REST API
clients. This port will be used by the Identity Broker's HTTPS Connection Handler.

l The web applications to install with this Identity Broker instance.

l An available port for the web applications' communication.

l An available port to accept LDAP client connections.

l Information related to the server's connection security, including the location of a
keystore containing the server certificate, the nickname of that server certificate, and
the location of a truststore.

l The network interfaces to be assigned to client communication. If specific interfaces are
not assigned, all available interfaces are used.

Perform the following steps for an interactive installation of the Identity Broker:

1. Download the latest zip distribution of the UnboundID Identity Broker software.

2. Unzip the file in any location.

$ unzip UnboundID-Broker-<version>.zip

3. Change to the top level UnboundID-Broker folder.

4. Run the setup command.

$ ./setup

5. Type yes to accept the terms of this license agreement.

- 16 -



Chapter 3: Installation

6. The setup tool enables cloning a configuration by adding to an existing Identity Broker
topology. For an initial installation, press Enter to accept the default (no).

7. Enter the fully qualified host name or IP address of the machine that hosts the Identity
Broker, or press Enter to accept the default (local hostname).

8. Enter the Directory Manager account DN for the Identity Broker. This account has full
access privileges. To accept the default (cn=Directory Manager), press Enter.

9. Enter and confirm a password for this account.

10. Enter the port for the Identity Broker REST APIs to accept HTTPS client connections.This
port is used by the Identity Broker to respond data requests or OAuth 2.0 requests. Press
Enter to accept the default.

11. To install the Identity Broker Console web application on this Identity Broker instance
press Enter to accept the default (yes).

12. Enter an HTTPS port to be used for the Identity Broker Console, or press Enter to accept
the default.

13. Enter the port to accept LDAP client connections, or press Enter to accept the default.

14. To enable LDAPS connections type yes and enter a port, or press Enter to accept the
default (no). If defined, the Identity Broker uses this port to access the backend user
store or Broker Store.

15. To enable StartTLS connections over regular LDAP connection type yes, or press Enter
to accept the default (no).

16. For secure connections (SSL or LDAPS), enter the certificate option for this server. 

17. By default, all network interfaces on this server are used to listen for client connections.
Type yes to designate specific addresses on which the Identity Broker listens for client
connections, or press Enter to accept the default (no).

18. If this machine is dedicated to the Identity Broker, tune the JVM memory to use the
maximum amount of memory (the Aggressive option). If this system supports other
applications, choose an appropriate option.

19. Press Enter (yes) to start the server when the configuration is applied.

20. Review the configuration options and press Enter to accept the default (set up the
server).

Setup Summary

=============

Broker Web Apps Port: 1445

Root User DN: cn=Directory Manager

LDAP Listener Port: 1389

HTTPS Listener Port:           1443

- 17 -



Configuring the Identity Broker

Secure Access: Enable SSL on LDAP Port 443

Create a new Self-Signed Certificate

Generate default trust store

The Identity Broker will be started after configuration

What would you like to do?

1) Set up the server with the parameters above

2) Provide the setup parameters again

3) Cancel the setup

The installation will continue with the create-initial-broker-config tool.

Configuring the Identity Broker
The next set of steps in the setup process rely on the create-initial-broker-config tool.
The setup tool will continue with the create-initial-broker-config tool to configure the
Identity Broker. Having the following in place will expedite the configuration:

l At least one Identity Broker Data Store is installed to host the Broker Store, which will
contain policy and configuration information. The Identity Broker Data Store can also be
used as a user store, which will contain user data and consent information. Have the host
name and communication port available.

l Any additional Identity Data Stores or Proxy Servers that act as user stores. Only
UnboundID Data Stores can be configured with this tool. Other user stores must be
configured outside of this process. Have the host names and communication ports
available.

l Locations for this and any other Identity Brokers for failover.

l The LDAP search filter to locate user entries in each user store, such as
(objectClass=person).

After the initial setup and configuration, run the dsconfig tool later to make configuration
adjustments.

Note
All of the configuration information in this procedure can be written to the broker-
cfg.dsconfig file and used to install additional servers, or additional servers can be
configured with the identical configuration. This file contains sensitive information and should
be secured.

- 18 -



Chapter 3: Installation

1. Press Enter (yes) to continue with create-initial-broker-config.

2. Define the physical location of the Identity Broker server. Locations, typically, refer to
the city where the data center resides. This location will be used to define where the
Broker Store is located. The Identity Broker and the Broker Store should be in the same
location for best performance.

Create a location name for this Identity Broker: austin

3. To define failover locations for other Identity Broker servers, enter yes. Failover
locations can be defined later when additional Identity Broker servers are installed or
cloned. Locations entered here are used to select the location of the Broker Store later in
this configuration. Press Enter to accept the default (no) until other Identity Brokers are
defined.

4. Define the account and password used by the Identity Broker to communicate with any
external store, or press Enter to accept the default (cn=Broker User,cn=Root

DNs,cn=config). An external store can hold user store data and/or be the location of the
Broker Store.

5. Specify the type of security that the Identity Broker uses when communicating with all
external store instances, or press Enter to accept the default (SSL).

6. Enter the host:port configured for the first Identity Data Store. The connection is
verified.

7. Select the location name for the Broker Store, or enter another location if not listed in
the menu.

8. Specify the base DN where the Broker Store data will be located on the Identity Data
Store server. Press Enter to accept the default (ou=Identity
Broker,dc=example,dc=com) or select the second option to enter another base DN.

9. Enter an administrative account to be used by Identity Broker Console and broker-
admin tool users, or press Enter to accept the default (admin). Enter and confirm a
password for this account.

10. Confirm that the identified host should be prepared. This is required if installing sample
data later in the install process. If additional servers will be added as backups to the
Broker Store, select the Yes, and all subsequent servers option. This enables the
identification of another server later in the configuration. The prepare-external-store
tool can also be used to perform these tasked at a later time.

Would you like to prepare host:636 for access by the Identity Broker?

1) Yes

2) No

- 19 -



Configuring the Identity Broker

3) Yes, and all subsequent servers

4) No, and all subsequent servers

Enter choice [3]:

11. Create the Identity Broker root user cn=Broker User,cn=Root DNs,cn=config account
on the Identity Data Store server, which enables server to server access. Administrators
or users do not use this account. Press Enter to accept the default (yes).

Would you like to create or modify root user 'cn=Broker User,

cn=Root DNs,cn=config' so that it is available for this

Identity Broker? (yes / no) [yes]:

12. Enter the DN and password credentials needed to create the root user cn=Broker
User,cn=Root DNs,cn=config account on the Identity Data Store. This is the root
account created in the initial setup, such as default (cn=Directory Manager. The
Identity Broker sets up the DN and tests that it can access the account. The Broker
Schema and Policy Structure are also imported and verified.

13. If there are additional servers that will host the Broker Store data, enter their host:port
for LDAP communication. If the option to prepare multiple servers was selected, the
additional servers will be prepared with the same configuration that was just defined. If
there are no additional servers to add, press Enter to continue.

14. If user data stores are ready to be configured (Identity Data Stores or Identity Proxy
servers), press Enter for (yes). The user store will be configured with a default Store
Adapter and Data View, which will enable mapping of resources in the user store to the
Identity Broker.

15. Enter the host:port for the first Identity Data Store or Identity Proxy Server, or press
Enter to accept the default.

16. Select an option to prepare the user store for access by the Identity Broker and press
Enter.

17. If there are additional user data store locations, enter their host:port. If there are no
additional servers to add, press Enter to continue.

18. Specify the base DN for locating user entries, such as ou=people,dc=example,dc=com
and press Enter.

19. Create an LDAP search filter for this DN and press Enter.

20. The filter is validated against the DN. Press Enter (yes) to use these settings.

21. Review the configuration summary, and then press Enter to accept the default (w) to
write the configuration to a dsconfig batch file. The configuration is written to <server-
root>/broker-cfg.dsconfig . Certificate files are written to external-server-
certs.zip.

- 20 -



Chapter 3: Installation

>>>> Configuration Summary

Admin Service URL: https://<hostname>:1443/auth/api/v1

OAuth2 Service URL: https://<hostname>:1443/oauth

Policy Service URL: https://<hostname>:1443/pdp/v1

User Metadata Service URL: https://<hostname>:1443/metadata/v1

OpenID Connect Service URL: https://<hostname>:1443/userinfo

SCIM Service URL: https://<hostname>:1443/scim/Users

Identity Broker Console: https://<hostname>:1445/broker-console

Identity Broker Location: austin

Broker Store

Base DN: ou=Identity Broker,dc=example,dc=com

Identity Broker User DN: cn=Broker User,cn=Root DNs,cn=config

Connection Security: SSL

Servers: <hostname>:389

User Store

Base DN: ou=people,dc=example,dc=com

Search Filter: (objectClass=inetOrgPerson)

Identity Broker User DN: cn=Broker User,cn=Root DNs,cn=config

Connection Security: SSL

Servers: <hostname>:389

What would you like to do?

b) back

q) quit

w) write configuration file

22. Press Enter (w) to confirm that the configuration should be applied to this Identity
Broker and written to the broker-cfg.dsconfig file.

23. Press Enter to confirm the configuration.

24. Install general-purpose policies that are ready for use or can be used as a starting point
in configuring additional policies. Press Enter to accept the default (yes).

- 21 -



Installing a Clone Identity Broker

25. Select the option to load sample data so that the Identity Broker can be used
immediately after setup and press Enter. If not, data can be added at a later time using
the sample-data-loader tool.

26. Two sample applications can be installed with the Identity Broker to demonstrate how a
client can access the Identity Broker's resources, and how end-users can view and
manage consent to access those resources. To install these applications, select option
(1).

27. This completes the initial configuration for the Identity Broker. Run the bin/status tool
to see that the Identity Broker server is up and running.

The UnboundID Identity Broker and its web applications are installed. Start the Identity Broker
Console, https:<hostname>:<8445>/broker-console to verify the connection.

Installing a Clone Identity Broker
An Identity Broker instance can be cloned to serve as an additional server. Cloning a server
copies the original Identity Broker's local configuration and links the two configurations. Both
Identity Brokers will share the same Broker Store and user stores.

For the installation process, the first Identity Broker is called the peer server. The new server
is called the cloned server. Review To Install the Identity Broker for details about each option.
Once the configuration is complete, the two servers are peers.

Note:When setting up a new Identity Broker from an existing peer, the existing HTTP(S)
connection handlers are not cloned. These connection handlers are created from scratch using
default values of the new server and any specified port values.

1. Unpack the zip distribution in a folder different from the peer Identity Broker.

2. Run the ./setup command in the <server-root> directory of the cloned server.

3. Accept the licensing agreement.

4. Enter yes to add this server to an existing Identity Broker topology.

5. Enter the host name of the peer Identity Broker server from which the configuration will
be copied.

6. Enter the port of the peer Identity Broker.

7. Choose the security communication to use to connect to the peer Identity Broker.

8. Enter the manager account DN and password for the peer Identity Broker, or press
Enter to accept the default (cn=Directory Manager). The connection is verified.

9. Enter the fully-qualified host name or IP address of the local host (the cloned server).

10. Enter the HTTPS client connection port for the Identity Broker, or press Enter to accept
the default.

11. Select the option to install the Identity Broker Console application, if desired.

- 22 -



Chapter 3: Installation

12. Enter the HTTPS connection port for the Identity Broker applications, or press Enter to
accept the default.

13. Enter the port on which the clone Identity Broker will accept connections from LDAP
clients, or press Enter to accept the default.

14. To enable LDAPS, enter yes.

15. To enable StartTLS, enter yes.

16. To specify particular addresses on which the server will listen to client connections enter
yes.

17. Enter yes to tune the JVM memory for performance. If yes, enter the amount of memory
to allocate to the JVM.

18. Enter no to so that he server is not started after configuration.

Note
The encryption settings backendmust be backed up from the instance being cloned, copied to
the Identity Broker being installed, and restored before the server can be started.

19. Review the information for the configuration, and press Enter to set up the server with
these parameters.

20. To write this configuration to a file, press Enter to accept the default (yes).

21. The clone is installed and configured based on the configuration settings of the peer.

After cloning the Identity Broker, the encryption settings backend must be backed up from the
instance being cloned, copied to the new Identity Broker, and restored with the following
commands:

backup —-backupDirectory /tmp/backup —-backendID encryption-settings

Copy /tmp/backup to the target server and then restore the backup to the cloned Identity
Broker:

restore —-backupDirectory /tmp/backup

Planning a Scripted Install
An interactive installation of an Identity Broker uses the setup and create-initial-broker
tools. This is the recommended installation method and should be used when possible. A
scripted installation can be performed, for scenarios that require a custom configuration or
automated deployment. The resulting broker-cfg.dsconfig batch file can then be used as a
basis for scripted installations.

When developing an installation script, it can be helpful to first install a reference Identity
Broker using the interactive process. The results from the installation script can then be
compared to the reference Identity Broker.

The following is performed by the create-initial-broker-config tool during an interactive
installation:

- 23 -



Planning a Scripted Install

External store preparation:

l For each UnboundID Data Store that comprises the Broker Store, the prepare-
external-store tool is run. This updates the Data Store’s schema, seeds the Broker
Store with default data, creates a privileged service account for use by the Identity
Broker with the DN cn=Broker User,cn=Root DNs,cn=config, and creates an admin
account.

l If the User Store is comprised of LDAP directory servers, the prepare-external-store
tool is run for every directory server that comprises the User Store. This updates the
directory server’s schema, and creates a privileged service account for use by the
Identity Broker with the DN cn=Broker User,cn=Root DNs,cn=config.

Server configuration with dsconfig:

l A broker-cfg.dsconfig batch file is generated and loaded to define the Identity
Broker’s server configuration. This creates external server and load balancing algorithm
configuration objects needed by the LDAP store adapter, configures important properties
of the OAuth 2.0 Service, and sets initialization parameters needed by the Identity
Broker Console application.

Broker Store configuration with broker-admin:

l The Broker Store is updated with the file <server-root>/resource/install-oidc-
objects.broker-admin. This creates the default User Data View and adds scopes and
UserInfo claims mappings needed for OpenID Connect support.

l The Broker Store is updated with the file <server-root>/resource/install-data-
view-mappings.broker-admin. This creates default attribute mappings from the User
Data View to the LDAP store adapter.

l Required XACML policies are loaded into the Broker Store.

l The default Consent Policy is linked to the OAuth Policy Sandbox.

Sample applications and data installation:

l Two test users are created and the sample-data-loader tool is run to generate sample
applications, scopes, resources, consent records, and XACML authorization requests.

l The sample Sign In application is installed.

l The sample Profile Manager application is installed.

Certain actions are performed dynamically and require special logic in a scripted installation:

Client credentials are dynamically generated for the Identity Broker command-line tools and
the Identity Broker Console application by prepare-external-store and stored in the file
<server-root>/tmp/create-initial-broker-config.props.

l The client credentials for the command-line tools must be set in the OAuth 2.0 Service
configuration object.

- 24 -



Chapter 3: Installation

l The client credentials for the Identity Broker Console application must be set in the
Broker-Admin-Console web application extension object.

A file path placeholder variable in the <server-root>/resource/install-oidc-
objects.broker-admin must be expanded.

Scripted Installation Process
If a scripted installation is done without the use of the create-initial-broker-config tool,
the process may look like this:

1. Set up and configure one or more Identity Data Stores. See To Install the Identity Data
Store.

2. Run the Identity Broker setup tool on the server that will host the Identity Broker.

3. Run prepare-external-store for the stores.

4. The client ID and secrets for the Broker Console and command-line tools are stored in
<server-root>/tmp/create-initial-broker-config.props. The following is an
example of the file contents:

client-secret=[command-line tools client secret]
client-id=[command-line tools client ID]
admin-console-client-secret=[Broker Console client secret]
admin-console-client-id=[Broker Console client ID]

The client credentials should be extracted from this file (using Perl or Unix tools such as
grep and cut) and inserted into the dsconfig batch file. For example:

$ dsconfig set-oauth-service-prop \
  --set "oauth-admin-client-id:[command-line tools client ID]” \
  --set "oauth-admin-client-secret:[command-line tools client secret]” \
  --set "id-token-issuer-name:broker.example.com

$ dsconfig set-web-application-extension-prop \
  --extension-name Broker-Admin-Console \
  --set "oauth-admin-client-id:[Broker Console client ID]” \
  --set "oauth-admin-client-secret:[Broker Console client secret]

5. Load the dsconfig batch file:

$ dsconfig --no prompt --batch-file broker-cfg.dsconfig

6. Substitute the Identity Broker server root path for the placeholder string $SERVER_ROOT
in <server-root>/resource/install-oidc-objects.broker-admin.

7. Run the broker-admincommand to load OpenID Connect objects:

$ broker-admin --no-prompt --batch-file <server-root>/resource/install-
oidc-objects.broker-admin

8. Run the broker-admincommand to load Data View mappings:

- 25 -



Planning a Scripted Install

$ broker-admin --no-prompt --batch-file <server-root>/resource/install-
data-view-mappings.broker-admin.

9. Import required policies with the broker-admin import-policy tool:

$ broker-admin import-policy \
  --enable --overwrite --xmlFile "<server-
root>/resource/AdminAccess.xml" \
  --name "Admin API Policy"

$ broker-admin import-policy \
--enable --overwrite --xmlFile "<server-
root>/resource/ConsentPolicy.xml" \
--name "Consent Policy"

$ broker-admin import-policy \
  --enable --overwrite --xmlFile "<server-
root>/resource/resource/GovernanceTagPolicy.xml" \
  --name "Tag Policy"

$ broker-admin import-policy \
  --enable --overwrite --xmlFile "<server-
root>/resource/resource/TrustLevelPolicy.xml" \
  --name "Trust Level Policy"

$ broker-admin import-policy \
  --enable --overwrite --xmlFile "<server-
root>/resource/UserCreateAndUpdatePolicy.xml" \
  --name "User Create and Update Policy"

$ broker-admin import-policy \
  --enable --overwrite --xmlFile "<server-
root>/resource/OwnedResourcePolicy.xml" \
  --name "Owned Resource Access Policy”

10. Configure the OAuth Policy Sandbox with the following command:

$ broker-admin set-policy-sandbox-prop \
  —id OAuthConsent@
  —set “policyIds:name=Consent Policy”

11. If desired, add two users to the User Store and run the sample-data-loader tool.

12. If desired, unzip <server-root>/samples/sign-in.zip and install the Sign In sample
application according to its README file.

13. If desired, unzip <server-root>/samples/profile-manager.zip and install the Profile
Manager sample application according to its README file.

14. Confirm that the Identity Broker Console application is configured properly by logging in
as the admin user. Do the same for the other sample applications, if they were installed.

15. When finished, delete the <server-root>/tmp/create-initial-broker-config.props
file.

- 26 -



Chapter 3: Installation

Note
The redirect URI that the Identity Broker Console uses (defined in the server
configuration as a property of the Broker-Admin-Console web application
extension) must match one of the redirect URIs that the Identity Broker expects
(defined as a property of the "UnboundID Broker Admin Console" application in the
Broker Store). See Changing the Identity Broker Console Redirect URI for
information.

To Install the Identity Broker with an Existing Truststore
By default, the setup command configures your certificates and installs the keystore and
truststore in the config directory (i.e., config/keystore and config/truststore). If you
want to use an existing keystore and truststore in a different path, you can run the setup tool,
then run the create-initial-broker-config separately. The following procedures run setup
from the command-line in non-interactive mode. You can also run it interactively, but do not
run the create-initial-broker-config tool during the same session.

1. On the Identity Broker, run setup non-interactively from the command line. In this
example, we assume the keystore and truststore passwords are the same . If the files
are not already present in their paths, the command will fail.

$./setup --cli --no-prompt --acceptLicense \

  --ldapPort 2389 --ldapsPort 2636 --httpsPort 8443 --rootUserPassword password \

  --useJavaTrustStore ~/tmp/keystores/truststore.jks \

  --useJavaKeystore ~/tmp/keystores/broker1keystore.jks \

  --trustStorePasswordFile ~/tmp/keystores/password.txt \

  --keystorePasswordFile ~/tmp/keystores/password.txt \

  --certNickname server-cert

2. Run the create-initial-broker-config tool non-interactively from the command line.
Provide the paths to both the --brokerTrustStorePath and the --trustStorePath with
their respective password.

$./bin/create-initial-broker-config \

  --brokerTrustStorePath ~/tmp/keystores/truststore.jks \

  --brokerTrustStorePasswordFile ~/tmp/keystores/password.txt

- 27 -



Chapter 4: Management

The Identity Broker provides server management tools needed to run basic functions, such as
stop, start, uninstall, and others. The tools are located in the server root directory or in the
bin directory of the server.

This section includes the following:

Running the Identity Broker

Stopping the Identity Broker

Uninstalling the Identity Broker

Updating the Identity Broker, Broker Store, and User Stores

Identity Broker Files and Folders

- 28 -



Chapter 4: Management

Run the Identity Broker
To start the Identity Broker, run the bin/start-broker tool on UNIX/Linux systems (the bat
command is in the same folder for Windows systems).

To Run the Identity Broker
On the command line, run the following command.

$ bin/start-broker

To Run the Identity Broker in the Foreground
1. Enter the bin/start-broker with the --nodetach option to launch the Identity Broker

as a foreground process.

$ bin/start-broker --nodetach

2. Stop the Identity Broker by pressing CNTRL-C in the terminal window where the server is
running or run the bin/stop-broker command from another window.

Stop the Identity Broker
The Identity Broker provides a shutdown script, bin/stop-broker, to stop the server.

To Stop the Identity Broker
Use the bin/stop-broker tool to shut down the server.

$ bin/stop-broker

Schedule a Server Shutdown
The Identity Broker enables scheduling a shutdown and sending a notification to the
server.out log file. The server uses the UTC time format if the provided timestamp includes a
trailing "Z," for example, 201304032300Z. The following example includes a --stopReason
option that writes the reason for the shutdown to the logs:

$ bin/stop-broker --task --hostname server1.example.com \
  --bindDN uid=admin,dc=example,dc=com \
  --bindPassword password \
  --stopReason "Scheduled offline maintenance" \
  --start 201504032300Z

- 29 -



Uninstalling the Identity Broker

To Run an In-Core Restart
Re-start the Identity Broker using the bin/stop-broker command with the --restart or -R
option. Running the command is equivalent to shutting down the server, exiting the JVM
session, and then starting up again. Shutting down and restarting the JVM requires a re-
priming of the JVM cache. To avoid destroying and re-creating the JVM, use an in-core restart,
which can be issued over LDAP. The in-core restart will keep the same Java process and avoid
any changes to the JVM options.

$bin/stop-broker --task --restart --hostname 127.0.0.1 \
--bindDN uid=admin,dc=example,dc=com --bindPassword password

Uninstalling the Identity Broker
The Identity Broker provides an uninstall tool to remove the components from the system.

To Uninstall the Identity Broker
1. From the server root directory, run the uninstall command.

$ ./uninstall

1. Select the option to remove all components or select the components to be removed.

Do you want to remove all components or select the components to remove?

1) Remove all components

2) Select the components to be removed

q) quit

Enter choice [1]: 2

2. To selected components, enter yes when prompted.

Remove Server Libraries and Administrative Tools? (yes / no) [yes]: yes

Remove Log Files? (yes / no) [yes]: no

Remove Configuration and Schema Files? (yes / no) [yes]: yes

Remove Backup Files Contained in bak Directory? (yes / no) [yes]: no

Remove LDIF Export Files Contained in ldif Directory? (yes / no) [yes]: no

The files will be permanently deleted, are you sure you want to continue? (yes / no)

[yes]:

3. Manually delete any remaining files or directories.

- 30 -



Chapter 4: Management

Updating the Identity Broker, Broker Store, and User
Stores
Updating an Identity Broker deployment includes:

l Updating the Broker Store using the prepare-external-store tool, which updates the
Broker Store's version, and may add schema elements and configuration elements
needed by the new Identity Broker release.

l Updating each configured User Store using the prepare-external-store tool.

l Updating the Identity Broker server(s) using the update tool, which updates the Identity
Broker itself.

The Identity Broker expects Broker Store data to be at least as current as the Identity Broker
server version, and an Identity Broker server will not start using a prior version of the Broker
Store. Therefore, the Broker Store must be updated prior to updating the Identity Broker
server.

Note
Upgrade is only supported for releases 5.0.0 or 5.0.1 to this release.

Perform the following steps to update the Broker Store:

1. Before updating the existing Broker Store, use the backup tool to backup the Broker
Store data.

2. Gather information about the existing Broker Store including the base DN and connection
information to the Data Store.

3. Obtain a new Identity Broker installation package and unzip the file in a temporary
directory on the same host as the Identity Broker instance to be updated.

4. Update the Broker Store by using the --update option with the prepare-external-
store tool. If there are multiple Data Stores replicating the Broker Store data, it is only
necessary to run the command on one of the servers:

$ prepare-external-store --update --isBrokerStore \
  --brokerStoreBaseDN <baseDN> \
  --hostname <host> \
  --port <port> \
  <--useSSL>
  --bindDN <directory-manager-bind-DN> \
  --bindPassword <directory-manager-bind-password>

5. The Broker Store is now current with the new Identity Broker package.

6. Run prepare-external-store --update on each configured User Store.

7. Run the update tool from the temporary directory with the new Identity Broker
installation package. For example:

- 31 -



Identity Broker Files and Folders

$ /path/to/new-broker-files/update --serverRoot /path/to/original-
broker-files

8. Test the new Identity Broker installation. There may be other manual, post-update steps
necessary. See the "Upgrade Considerations" section of the Identity Broker release
notes for information specific to this release.

9. Update any other Identity Broker instances.

Identity Broker Files and Folders
Once you have unzipped the Identity Broker distribution file, the following folders and
command-line utilities are available.

Directories/Files/Tools Description

LICENSE.txt Licensing agreement for the Identity Broker.

README README file that describes the steps to set up and start the Identity Broker.

bak Stores the physical backup files used with the backup command-line tool.

bat Stores Windows-based command-line tools for the Identity Data Store.

broker-cfg.txt Stores the configuration history for the Identity Broker. Appears after you have
configured the Identity Broker.

classes Stores any external classes for server extensions.

collector Stores collector files.

config Stores the configuration files and the directories for messages, schema, tools, and
updates.

docs Provides the release notes, Configuration Reference file and a basic Getting Started
Guide (HTML).

import-tmp Stores temporary imported items.

ldif Stores any LDIF files that you may have created or imported.

legal-notices Stores any legal notices for dependent software used with the Identity Broker.

lib Stores any scripts, jar, and library files needed for the server and its extensions.

locks Stores any lock files in the backends.

logs Stores log files for the Identity Broker.

metrics Stores files for the UnboundID Metrics Engine.

resource Stores the MIB files for SNMP.

revert-update The revert-update tool for UNIX/Linux systems.

revert-update.bat The revert-update tool for Windows systems.

setup The setup tool for UNIX/Linux systems.

setup.bat The setup tool for Windows systems.

Layout of the Identity Broker Folders

- 32 -



Chapter 4: Management

Directories/Files/Tools Description

tmp Temp directory.

unboundid_logo.png UnboundID logo

uninstall The uninstall tool for UNIX/Linux systems.

uninstall.bat The uninstall tool for Windows systems.

update The update tool for UNIX/Linux systems.

update.bat The update tool for Windows systems.

webapps Stores the war files for reference implementations.

- 33 -



Chapter 5: Configuration

This chapter describes how to configure optional components that may be needed to customize
the installation with Identity Broker tools and configuration.

Sections include the following:

Identity Broker Configuration Data

Identity Broker Configuration Tools

All Identity Broker Tools

Using the Web Console for Server Configuration

Using the dsconfig Tool

Using the Configuration API

About the Broker Store and User Store

About Data Views

About Store Adapters

Configuring Store Adapters

Account Recovery Configuration in the User Store

Managing Server Encryption Settings

System Alarms, Alerts, and Gauges

Server SDK Extensions

About the OAuth Service

About the Policy Service

About Cross Origin Resource Sharing

About Dashboards and Metrics

The sample-data-loader Tool

Configure the Identity Broker Console on Tomcat

- 34 -



Chapter 5: Configuration

Identity Broker Configuration Data
The Identity Broker’s non-user data consists of data in the server configuration and data in the
Broker Store. Generally, data in the server configuration define an individual Identity Broker
instance in its capacity as a network server and are primarily of interest to system
administrators. Data in the Broker Store define an entire Identity Broker deployment in its
capacity as an identity and authorization service and are of primary interest to identity service
administrators.

The server configuration is stored in an LDIF-based backend under the cn=config base DN. It
can be accessed using the LDAP protocol and is managed by the dsconfig tool or the Identity
Broker Console. Much of the data stored in the server configuration are settings that are used
by that particular Identity Broker instance. Examples of data in the server configuration
include connection handler listener ports and log publisher settings. When an Identity Broker is
set up from a peer, its server configuration is cloned to the new Identity Broker, and the two
configurations are linked such that changes to the configuration are applied to both Identity
Broker servers by default. See Installing a Clone Identity Broker.

The Broker Store is a logical data store layer backed by one or more UnboundID Identity Data
Stores and (optionally) one or more UnboundID Data Proxy servers. Data stored in the Broker
Store is accessed over HTTP using the Identity Broker’s Admin API and is managed using the
broker-admin tool, the Identity Broker Admin Console, or a custom Admin API client. The data
stored in the Broker Store are higher-level operational data or business logic used by the
Identity Broker service as a whole. When multiple Identity Broker servers exist in a topology,
the Broker Store data is always shared by all servers. Examples of Broker Store data are
policies, applications, scopes, and resources.

- 35 -



Identity Broker Configuration Tools

Identity Broker Configuration Tools
The command-line tools are located in the <server-root>/bin directory. The broker-admin
tool provides most of the same functionality as the Identity Broker Console. Each command-
line tool provides help options with examples. List all commands using the --help argument,
all sub-commands using the --help-subcommands argument, and a detailed help for a single
subcommand using the --help argument with the subcommand name.

$ bin/broker-admin --help
$ bin/broker-admin --help-subcommands
$ bin/broker-admin update-policy-template --help

The following tools manage the various Identity Broker administrative tasks. A full list of tools
is available in Identity Broker Tools.

l broker-admin – Runs administrative operations. Use this tool to create and configure
applications, policies, resources, tags, and trust levels. All of these actions can also be
done in the Identity Broker Console.

l consent-admin – Runs consent management operations. Use this tool to add consents,
list consent history, list applications and resources for which consent was granted, and
revoke consent.

l evaluate-policy –Requests a policy decision from the Identity Broker. Use this tool to
view policy decisions including a decision trace in XACML format.

l oauth2-request – Tests token functions of the Identity Broker. Use this tool to manage
OAuth2 tokens on behalf of a registered application.

l dsconfig – Provides additional configuration options for the Identity Broker
environment. This tool provides an interactive, menu-driven mode to facilitate tasks
such as adding additional user stores.

l prepare-external-store – Prepares the external data stores for the Identity Broker.
This is run as part of the create-initial-broker-config tool during installation, but
can be used to update the Broker Store or an external user store.

l collect-support-data – Collects system information useful in troubleshooting
problems. The information is packaged as a zip archive.

All Identity Broker Tools
Available Identity Broker tools are:

Tool Description

backup Run full or incremental backups on one or more Identity Brokers. This utility also
supports the use of a properties file to pass predefined command-line arguments.

Identity Broker Tools

- 36 -



Chapter 5: Configuration

Tool Description

base64 Encode raw data using the base64 algorithm or decode base64-encoded data back
to its raw representation.

broker-admin Invoke administrative operations over the Identity Broker REST API.

collect-support-data Collect and package system information useful in troubleshooting problems. The
information is packaged as a ZIP archive that can be sent to a technical support
representative.

consent-admin Manage a resource owner consent over the Identity Broker REST API. Consent is
authorized by a resource owner to allow access to resources by an application.

config-diff Generate a summary of the configuration changes in a local or remote server
instance. The tool can be used to compare configuration settings when
troubleshooting issues, or when verifying configuration settings on new servers.

create-initial-broker-config Create an initial Identity Broker configuration.

create-rc-script Create a Run Control (RC) script that can be used to start, stop, and restart the
Identity Broker on Unix-based systems.

dsconfig View and edit the Identity Broker configuration.

dsframework Manage administrative server groups or the global administrative user accounts that
are used to configure servers within server groups.

dsjavaproperties Configure the JVM arguments used to run the Identity Broker and its associated
tools. Before launching the command, edit the properties file located in
config/java.properties to specify the desired JVM arguments and the
JAVA_HOME environment variable.

encryption-settings Manage the server encryption settings database.

evaluate-policy Request a policy decision from the Identity Broker.

ldapmodify Perform LDAP modify, add, delete, and modify DN operations in the Identity Broker.

ldappasswordmodify Perform LDAP password modify operations in the Identity Broker.

ldapsearch Perform LDAP search operations in the Identity Broker.

ldif-diff Compare the contents of two LDIF files, the output being an LDIF file needed to bring
the source file in sync with the target.

ldifmodify Apply a set of modify, add, and delete operations against data in an LDIF file.

list-backends List the backends and base DNs configured in the Identity Broker.

manage-extension Install or update extension bundles. An extension bundle is a package of extension
(s) that utilize the Server SDK to extend the functionality of the Identity Broker. Any
added extensions require a server re-start.

oauth2-request Performs OAuth 2.0 requests on the Identity Broker. This tool can be used to test
OAuth 2.0 functions of the Identity Broker, and to manage OAuth 2.0 tokens on behalf
of registered applications.

prepare-external-store Prepares the external data stores for the Identity Broker. This is run as part of the
create-initial-broker-config tool during installation. This tool creates
the broker user account, sets the correct password, and configures the account with
required privileges. It will also install the necessary schema required by the Identity
Broker. This tool can also be used to update (with the --update option) an
external Broker Store or a data store schema.

remove-defunct-server Removes a permanently unavailable Identity Broker after it has been removed from

- 37 -



Using the Web Console for Server Configuration

Tool Description

its topology by the uninstall tool.

restore Restore a backup of the Identity Broker.

review-license Review and/or accept the product license.

sample-data-loader Install or remove sample data for Identity Broker testing and demonstration.

server-state View information about the current state of the Identity Broker processes.

start-broker Start the Identity Broker.

status Display basic server information.

stop-broker Stop or restart the Identity Broker.

sum-file-sizes Calculate the sum of the sizes for a set of files.

Using the Web Console for Server Configuration
All UnboundID servers can be managed with the UnboundID Web Console, or the dsconfig
command-line tool. The console provides configuration and schema management functionality
in addition to monitoring and server information. Like the dsconfig configuration tool, all
changes made using the console are recorded in logs/config-audit.log. In addition,
anytime a configuration is made to the system, the configuration backend is automatically
updated and saved as gzip-compressed files. Changes can be accessed in the
config/archived-configs folder. The console must be deployed in a servlet container that
supports the servlet API 2.5 or later. An installation using Apache Tomcat is described below
for illustration purposes.

Note
The console supports JBoss 7.1.1 or later. Refer to the JBossCompatibility section in the WEB-
INF/web.xml file for specific configuration steps.

This console is separate from the Identity Broker Console, which is used to configure the
identity environment.

Install the Web Console
1. Download and install Apache Tomcat.

2. Set the appropriate environment variables. The setclasspath.sh and catalina.sh files
are in the tomcat /bin directory.

$ echo "BASEDIR=/path/to/tomcat" >> setclasspath.sh
$ echo "CATALINA_HOME=/path/to/tomcat" >> catalina.sh

3. Download and unzip the console ZIP file, UnboundID-broker-web-console-
<version>.zip on the local host. The following files are available:

3RD-PARTY-LICENSE.TXT
LICENSE.TXT

- 38 -



Chapter 5: Configuration

README
dsconsole.war

4. Create a dsconsole directory in apache-tomcat-<version>/webapps/.

5. Copy the dsconsole.war file to apache-tomcat-<version>/webapps/dsconsole. If the
servlet is running and auto-deploy is enabled, copy the .war file to the /webapps
directory and it will install in the directory.

$ mkdir apache-tomcat-<version>/webapps/dsconsole
$ cp dsconsole.war apache-tomcat-<version>/webapps/dsconsole

6. Go to the apache-tomcat-<version>/webapps/dsconsole directory to extract the
contents of the console. The jar command is included with the JDK.

$ cd apache-tomcat-<version>/webapps/dsconsole
$ jar xvf dsconsole.war

7. Optional. Edit the WEB-INF/web.xml file to point to the correct Identity Broker instance.
The parameters in the web.xml file appear between as comments. Uncomment <!--
parameter --> the needed parameters. For example, specify the server or servers that
the console uses to authenticate with the following parameters:

<context-param>
  <param-name>ldap-servers</param-name>
  <param-value>localhost:389</param-value>
</context-param>

If the ldap-servers parameter is not specified, the web console displays a form field
for the user to enter the server host and port. If configured, the console also uses this
server to "discover" other servers in the topology, making them available for
monitoring and management in the console.

8. Optional. With the default configuration, Tomcat sessions will time out after 30 minutes
of inactivity. This can be changed on a servlet container wide basis by editing apache-
tomcat-<version>/conf/web.xml, and updating the value of this configuration
parameter:

<session-config>
  <session-timeout>120</session-timeout>
</session-config>

The session expires after the specified number of minutes. Changes to this setting
might not take effect until the servlet container is restarted, so consider changing the
value before starting the server for the first time.

9. Optional. To remove sensitive information from console error messages, such as LDAP
and server information, edit apache-tomcat-<version>/conf/web.xml, and change the
value of this configuration parameter to false:

<context-param>
  <param-name>detailedErrorMessages<param-name>

- 39 -



Using the Web Console for Server Configuration

  <param-value>false<param-value>
<context-param>

When set to false, the console will display a generic error page with server
information removed. Server logs will still contain detailed error information.

10. Start the Identity Broker if it is not already running, and then start the console using the
apache-tomcat-<version>/bin/startup.sh script. Use shutdown.sh to stop the
servlet container. (On Microsoft Windows, use startup.bat and shutdown.bat.) The
JAVA_HOME environment variable must be set to specify the location of the Java
installation to run the server.

$ env JAVA_HOME=/ds/java bin/startup.sh
Using CATALINA_BASE: /apache-tomcat-<version>
Using CATALINA_HOME: /apache-tomcat-<version>
Using CATALINA_TMPDIR: /apache-tomcat-<version>/temp
Using JRE_HOME: /ds/java

Open a browser to http://<hostname:8080>/dsconsole. By default, Tomcat listens on port
8080 for HTTP requests. If the Identity Broker is restarted, log out of the current console
session and then log back in.

Log into the Web Console
To log into the console, either use a DN (for example, cn=Directory Manager) or provide the
name of an administrator stored under cn=admin data.

1. Navigate to to the server root directory.

$ cd UnboundID-DS

2. Start the Identity Broker.

$ bin/start-ds

3. Start the Apache Tomcat application server.

$ /apache-tomcat-<version>/bin/startup.sh

4. In a browser, open http://<hostname:8080>/dsconsole/.

5. Type the root user DN (or any authorized administrator user name) and password, and
then click Login.

6. On the Console, click Configuration.

7. View the Configuration menu. By default, the console displays the Basic object type
properties. You can change the complexity level of the object types using the Object
Types drop-down list.

- 40 -



Chapter 5: Configuration

Configure the Web Console
The console uses a web.xml descriptor file for its configuration and deployment settings. In
addition to configuring one or more primary servers, the application time out, and a generic
web page in the previous procedure, the security and truststore settings for the console can
also be set.

To Configure SSL for the Primary Console Server
Configure the console to communicate with servers over SSL or StartTLS. See the previous
section on how to specify one or more primary servers.

1. Open the dsconsole/WEB-INF/web.xml file in a text editor to specify the type of
communication to authenticate. First, remove the comment tags (<!-- and -->) in the
security section.

2. Specify none, ssl, or starttls for the type of security that you are using to communicate
with the Identity Data Store.

<context-param>
  <param-name>security</param-name>
  <param-value>ssl</param-value>
</context-param>

3. Save the file.

To Configure a Truststore for the Console
For SSL and StartTLS communication, specify the truststore and its password (or password
file) in the web.xml file. If no truststore is specified, all server certificates will be blindly
trusted.

1. Open the dsconsole/WEB-INF/web.xml file in a text editor and remove the comment
tags (<!-- and -->) in the truststore section.

2. Specify the path to your truststore.

<context-param>
  <param-name>trustStore</param-name>
  <param-value>/path/to/truststore</param-value>
</context-param>

3. Specify the password or the path to the password pin file.

<context-param>
  <param-name>trustStorePassword</param-name>
  <param-value>password</param-value>
</context-param>

<context-param>
  <param-name>trustStorePasswordFile</param-name>
  <param-value>/path/to/truststore/pin/file</param-value>
</context-param>

- 41 -



Using the dsconfig tool

4. Save the file.

Upgrade the Web Console
Upgrade the console by moving the web.xml file to another location, unpacking the latest
console distribution, and then replacing the newly deployed web.xml file with the previous file.

1. Shut down the console and servlet container.

2. Move the current webapps/dsconsole/WEBINF/web.xml file to another location.

3. Download and deploy the latest version of the console. See Install the Web Console.

4. Perform a diff between the previous and newer version of the web.xml file to determine
changes that should be applied to the new file. Make any necessary changes to the new
file.

5. Start the servlet container.

Uninstall the Web Console
Uninstall the existing console by removing the webapps/dsconsole directory.

1. Close the console, and shut down the servlet container. (On Microsoft Windows, use
shutdown.bat.)

$ apache-tomcat-<version>/bin/shutdown.sh

2. Remove the webapps/dsconsole directory.

$ rm -rf webapps/dsconsole

3. Restart the servlet container instance if necessary. If no other applications are installed
in the servlet instance, the entire servlet installation can be removed.

Using the dsconfig tool
The dsconfig tool, like the Web Console, is used to view or edit the Identity Broker
configuration. This utility can be run in interactive mode, non-interactive mode, and batch
mode. Interactive mode provides an intuitive, menu-driven interface for accessing and
configuring the server.

To start dsconfig in interactive mode, enter the following command:

$ bin/dsconfig

The dsconfig tool provides a batching mechanism that reads multiple dsconfig invocations
from a file and executes them sequentially. The batch file advantage is that it minimizes LDAP
connections and JVM invocations required with scripting each call. To use batch mode to read
and execute a series of commands in a batch file, enter the following command:

$ dsconfig --bindDN uid=admin,dc=company,dc=com \
  --bindPassword password \

- 42 -



Chapter 5: Configuration

--no-prompt \
  --batch-file </path/to/config-batch.txt>

The logs/config-audit.log file can be used to review the configuration changes made to the
UnboundID Identity Broker and use them in the batch file.

To Run the dsconfig Tool
Initial configuration for the Identity Broker was defined during setup. Use this tool to refine or
change the initial configuration. The tool requires the Identity Broker server connection
information.

1. To start dsconfig in interactive mode, enter the following command:

$ bin/dsconfig

2. Enter the Identity Broker hostname or IP address and press Enter.

3. Specify the option to connect to the Identity Broker and press Enter.

4. Enter the connection port, or press Enter to confirm the default (1389).

5. Enter the administrator user bind DN, or press Enter to confirm the default
(cn=Directory Manager).

6. Enter the password for this account and press Enter. The Identity Broker configuration
main menu is displayed.

>>>> UnboundID Identity Broker configuration console main menu
What do you want to configure?

1) Alarm Manager 14) Load Balancing Algorithm
2) Alert Handler 15) Location
3) Broker Store 16) Log History Service
4) Connection Handler 17) Log Publisher
5) External Server 18) Log Retention Policy
6) Gauge           19) Log Rotation Policy
7) Gauge Data Source 20) Oauth Service
8) HTTP Authentication Scheme 21) Policy Service
9) HTTP Servlet Cross Origin Policy 22) Server Affinity Provider
10) HTTP Servlet Extension 23) Store Adapter
11) HTTP User Authenticator 24) Velocity Context Provider
12) Identity Provider Adapter 25) Velocity Template Loader
13) LDAP Health Check 26) Web Application Extension

o) 'Standard' objects are shown - change this
q) quit

7. Choose the configuration option and press Enter.

- 43 -



Using the Configuration API

Using the Configuration API
UnboundID servers provide a Configuration API, which may be useful in situations where using
LDAP to update the server configuration is not possible. The API features a REST-ful design and
uses JSON as a text exchange format, so all request headers should allow the application/json
content type.

The server includes a servlet extension that provides read and write access to the server’s
configuration over HTTP. The extension is enabled by default for new installations, and can be
enabled for existing deployments by simply adding the extension to one of the server’s HTTP
Connection Handlers, as follows:

$ bin/dsconfig set-connection-handler-prop \
  --handler-name "HTTPS Connection Handler" \
  --add http-servlet-extension:Configuration

The API is made available on the HTTPS Connection handler’s host:port in the /config
context. Due to the potentially sensitive nature of the server’s configuration, use a secure
connection handler such as the HTTPS Connection Handler, for hosting the Configuration
extension.

Authentication and Authorization
Clients must use HTTP Basic authentication to authenticate to the Configuration API. If the
username value is not a DN, then it will be resolved to a DN value using the identity mapper
associated with the Configuration servlet. By default, the Configuration API uses an identity
mapper that allows an entry’s UID value to be used as a username. To customize this
behavior, either customize the default identity mapper, or specify a different identity mapper
using the Configuration servlet’s identity-mapper property. For example:

$ bin/dsconfig set-http-servlet-extension-prop \
  --extension-name Configuration \
  --set "identity-mapper:Alternative Identity Mapper”

To access configuration information, users must have the appropriate privileges:

l To access the cn=config backend, users must have the bypass-acl privilege or be
allowed access to the configuration using an ACI.

l To read configuration information, users must have the config-read privilege.

l To update the configuration, users must have the config-write privilege.

Relationship Between the Configuration API and the dsconfig Tool
The Configuration API is designed to mirror the dsconfig tool, using the same names and
formats for configuration object types. Like the dsconfig tool, all configuration updates made
through the API are recorded in logs/config-audit.log.

Like dsconfig, the Configuration API can request specific properties to be returned in object
retrieval and object list operations. For list operations, the query parameter property can be
specified to indicate specific properties to include. Unless specifically requested, a small

- 44 -



Chapter 5: Configuration

subset of default properties is returned. The value '*' can be used as the value of the property
query parameter to request all properties be returned in an object listing.

Object retrieval operations, by default, return all properties for an object. The property query
parameter can be used to limit the set of properties returned to a specified set.

Operations supported by the API are those typically found in REST APIs:

HTTP Method Description Related dsconfig
Example

GET Lists the properties of an object when used with a path
representing an object, such as /config/global-
configuration or /config/backends/userRoot. Can
also list instances objects when used with a path representing a
parent relation, such as /config/backends.

get-backend-prop

list-backends

get-global-
configuration-
prop

POST Creates a new instance of an object when used with a relation
parent path, such as config/backends.

create-backend

PATCH Updates the properties of an existing object when used with a
path representing an object, such as
/config/backends/userRoot.

set-backend-prop

set-global-
configuration-
prop

DELETE Deletes an existing object when used with a path representing an
object, such as /config/backends/userRoot.

delete-backend

The OPTIONS method can also be used to determine the operations permitted for a particular
path.

Note
Use of the PUTmethod for object creation or modification is not supported.

Wherever object names are specified, such as userRoot in the Description column, the names
must be URL-encoded for use in the path segment of a URL. For example, %20 must be used in
place of spaces, and %25 is used in place of the percent (%) character. So the URL for
accessing the HTTP Connection Handler object is:

/config/connection-handlers/http%20connection%20handler

API Paths
The Configuration API is available under the /config path. A full listing of supported sub-paths
is available by accessing the base /config path. The following is a sample list:

{
  "status" : "OK", 
  "message" : "You have accessed the configuration base URL. You can use the following pa
ths to access the configuration.",
  "paths" : [
    "/access-control-handler",
    "/account-status-notification-handlers",
    "/account-status-notification-handlers/{handlerName}",
    "/alarm-manager",
...

- 45 -



Using the Configuration API

The schema’s paths element enumerates all available sub-paths. The path /config/backends
in the example can be used to get a listing of existing backends as well as create new ones. A
path containing an object name like /config/backends/{backendName}, where
{backendName} corresponds to an existing backend (such as userRoot) may be used to obtain
an object’s properties, update the properties, or delete the object.

Some paths reflect hierarchical relationships between objects. For example, properties of a
local DB VLV index for the userRoot backend are available using a path like
/config/backends/userRoot/local-db-indexes/uid. Some paths represent singleton
objects, which have properties but cannot be deleted nor created. These paths can be
differentiated from others by their singular, rather than plural, relation name (for example
global-configuration).

Updating Properties
Configuration object properties can be modified with an HTTP PATCH request on a path
representing an object or singleton object. Request bodies must consist of a JSON object
enumerating a property operation along with a set of property/value pairs, or a list of
properties. Operations correspond with and behave the same as the options used in dsconfig
set-{object}-prop subcommands. Multiple properties can be specified for each operation.

The following sample patch request updates a backend, setting the description property,
updating the multi-valued je-property, and resetting the id2children-index-entry-limit
to its original setting:

{
  "set" : [ { “description" : “The user backend" } ],
  "remove" : [ {
    "je-property" : "je.env.backgroundReadLimit=3000" } ],
  "add" : [ {
    "je-property” : “je.cleaner.adjustUtilization=false" }, {
    "je-property" : "je.env.backgroundReadLimit=0" } ],
  "reset" : [ "id2children-index-entry-limit" ]
}

Administrative Actions
Updating a property may require an administrative action before the change can take effect. If
so, the server will return 200 Success, and the request body will contain an encoded set of
actions to be performed. For example, changing the je-property of a backend will result in
the following:

{
  "required-actions" : [ {
  "property" : "je-property",
  "type" : "component-restart",
  "synopsis" : "In order for this modification to take effect, the component must be rest
arted, either by disabling and re-enabling it, or by restarting the server"
 } ]
}

- 46 -



Chapter 5: Configuration

Configuration API Responses
Clients of the API should examine the HTTP response code in order to determine the success or
failure of a request. The following are response codes and their meanings:

Response Code Description Response
Body

200 Success The requested operation succeeded, with the response body containing
the requested data, or further actions that are required.

List of objects,
or object
properties,
administrative
actions.

201 Created The requested operation to create a new object succeed. A link to the
newly created object is sent in the Location response header field.

None.

204 No Content The requested operation succeeded and no further information has
been provided, such as in the case of a DELETE operation.

None.

400 Bad Request The request contents are incorrectly formatted or a request is made for
an invalid API version.

Error summary
and optional
message.

401 Unauthorized User authentication is required. Some user agents such as browsers
may respond by prompting for credentials. If the request had specified
credentials in an Authorization header, they are invalid.

None.

403 Forbidden The requested operation is forbidden either because the user does not
have sufficient privileges or some other constraint such as an object is
edit-only and cannot be deleted.

None.

404 Not Found The requested path does not refer to an existing object or object
relation.

Error summary
and optional
message.

406 Not Acceptable The request is such that the Accept header does not indicate that JSON
is an acceptable format for a response.

None.

409 Conflict The requested operation could not be performed due to the current
state of the configuration. For example, an attempt was made to create
an object that already exists or an attempt was made to delete an object
that is referred to by another object.

Error summary
and optional
message.

500 Server Error The server encountered an unexpected error. Please report server
errors to customer support.

Error summary
and optional
message.

An application that uses the Configuration API should limit dependencies on particular text
appearing in error message content. These messages may change, and their presence may
depend on server configuration. Use the HTTP return code and the context of the request to
create a client error message. The following is an example encoded error message:

{
  status: "Not Found"
  message: "Relation ‘bad-relation' does not exist"
}

- 47 -



About the Broker Store and User Store

The Configuration extension has an omit-error-message-details property that suppresses
the message in error responses, preventing the server from inadvertently revealing sensitive
information. Set this property as follows:

$ bin/dsconfig set-http-servlet-extension-prop \
  --extension-name "Configuration" \
  --set omit-error-message-details:true

About the Broker Store and User Store
During the Identity Broker configuration, one or more UnboundID Identity Data Store or Proxy
instances are identified to store policy definitions, application registry, and identity service
configuration, and may also serve as a user store. The User Store is a repository of actual user
data. These data include user attributes such as names, email addresses, and preferences, as
well as user-specific metadata needed by the Identity Broker, such as authorization codes and
access tokens. The User Store may actually be composed of one or more physical data stores,
and they may be of varying types. For example, some user data may be stored in an LDAP
directory server while other user data may be stored in a relational database or a document
database. Data views, described further in the next section, provide a consistent abstracted
view of types of users in a User Store.

The user store is used to store user profile data, as well as metadata for authorization and
consent history. Some installations may have existing user stores that require the installation
of a separate metadata store, due to corporate policy or access restrictions. If an existing user
store is not allowed to write Identity Broker metadata for user access, see Configuring a
Separate Metadata Store for details.

The Broker Store is a repository of operational data and business logic that serve the Identity
Broker’s function as an authorization service, such as:

l Resource objects that represent end user identity attributes.

l Applications that represent entities that require access to end user resources.

l Actions that represent the kind of access desired by applications.

l Policies that define the logic that determines authorization decisions.

Note
If there aremultiple Identity Data Stores hosting the Broker Store, all instances should be
configured to replicate the data beneath the Broker Store base DN. See the UnboundID
Identity Data Store Administration Guide for replication information.

About Data Views
A user is represented in the Identity Broker as a Data View. A Data View represents user data
that are potentially aggregated from disparate sources in the User Store as a consistent,
unified profile. Applications that consume services provided by the Identity Broker, such as the
SCIM service, the Metadata API, or the policy decision point, address users and user attributes

- 48 -



Chapter 5: Configuration

in terms of a Data View and do not need to be concerned with details specific to the physical
data stores that back the User Store.

A Data View is defined in terms of a collection of attributes that a user may have expressed as
a SCIM 1.1 schema. All user attributes are named according to SCIM schema notation. For
example, a username may be urn:scim:schemas:core:1.0:userName. All attributes are
represented in the Broker Store as resources. For more information about configuring and
managing data views, see the UnboundID Identity Broker Administration Guide.

The following are required to enable Data Views:

User Stores – The Identity Broker requires at least one existing user store, which can be an
Identity Data Store, an existing LDAP directory, or other third-party directory. When a user
store is defined through the create-initial-broker-config tool, a Store Adapter and Store
Attribute Map are created. These enable mapping of the native schema attributes (attributes
native to the user store) to attributes that will be defined by a Data View Schema and surfaced
in a Data View.

Data View Schema – A SCIM schema must be created in JSON format and imported into the
Identity Broker Console. The schema will contain a number of SCIM attributes that should be
mapped to attributes in Identity Data Stores or third-party user stores. The schema can
represent a single SCIM resource, such as User or Group, which can contain one or more
attributes. The schema name and the Data View created for it must match exactly.

The Identity Broker provides a sample SCIM schema that can be used as a template in
<server-root>/resource/example-starter-schema.

Data View – A Data View is created in the Identity Broker Console application or with the
broker-admin tool, and is associated with a Data View Schema of the same name. Attributes
from the associated Data View schema are mapped to the attributes from the associated user
store or stores.

About Store Adapters
A store adapter acts as an interface between the Identity Broker’s Data View layer and an
external data store, such as an LDAP directory server, a relational database, or a REST
service. A Data View can have one or more associated store adapters, each corresponding to a
specific type of data store. When user data is retrieved or modified, the Data View calls the
appropriate store adapter, which performs the actual operations against the data store and
passes results back up to the Data View layer.

The Identity Broker provides a default store adapter that supports LDAP directory servers.
Custom store adapters can be written using the UnboundID Server SDK. So that the translation
between a store adapter and a Data View can be managed, store adapters expose user
attributes as a SCIM schema. Attributes from the store adapter schema are mapped to
attributes in the Data View schema. The mappings between these schemas are stored in the
Broker Store.

When a store adapter is added to the Identity Broker’s server configuration, a correlation
attribute can be defined for Data Views that are backed by multiple store adapters. The
correlation attribute defines an attribute for each store adapter that is used to uniquely identify

- 49 -



About Store Adapters

the same end user data across different store adapters. For example, if every data store in a
User Store stores a user’s email address, and an email address can always be considered a
primary key (that is, it is always unique per use), then each store adapter’s email address
attribute can be set as its correlation attribute.

Creating custom store adapters requires the UnboundID Server SDK. The Server SDK
documentation describes the API available to store adapter implementations. It is not usually
necessary to implement all features of the API for each store adapter. For example, if user
login credentials are stored in a specific data store, then only the store adapter for that data
store needs to support authentication. User metadata may be stored in another data store, so
only the corresponding store adapter needs to support user metadata. See Server Extensions
for information.

About the LDAP Store Adapter
The LDAP Store Adapter is a generic implementation of the store adapter, enabling it to
interface with any vendor's LDAP server, such as the Identity Data Store or Proxy Server, or
Oracle DSEE.

LDAP Store Adapter instances are configured using the dsconfig tool. Configuration
parameters include:

l correlation-attribute-urn – Determines the native SCIM attribute to use as the
correlation between resources when multiple Store Adapters are configured in a Data
View.

l modifies-as-creates – Determines if this store adapter will process a modify operation
as a create operation if the target resource does not exist.

l load-balancing-algorithm – Specifies the load balancing algorithm.

l structural-ldap-object-class – Determines the LDAP object class exposed by this
adapter.

l auxiliary-ldap-object-class – Optionally specifies one or more auxiliary LDAP
object classes to expose.

l include-base-DN – Determines the base DNs for the branches of the LDAP directory that
can be accessed by this LDAP Store Adapter.

l include-filter – Determines set of LDAP filters that define the LDAP entries that
should be included in this LDAP Store Adapter.

l scim-id-attribute – Determines the LDAP attribute to use as the SCIM ID when
returning entries in SCIM format.

l include-operational-attribute – Determines the set of operational LDAP attributes
to include in the native SCIM schema that is provided by this LDAP Store Adapter.

l create-DN-pattern – Determines the template to use for the DN when creating new
entries.

- 50 -



Chapter 5: Configuration

About User Metadata
User metadata is any user-specific data that is created and maintained by the Identity Broker
for its own purposes. This includes consent records, OAuth 2.0 authorization codes, and access
tokens. For any given data view, at least one store adapter must support storing user
metadata.

User metadata is divided into three categories. Each metadata type is multivalued.

l Small metadata – This includes consent records, OAuth 2.0 authorization codes, access
tokens, and refresh tokens. This data is generally small and is accessed frequently.

l Large metadata – This includes data such as consent history. This data can be large
and is accessed less frequently.

l Indexed metadata – This includes data such as links to user accounts at external
identity providers. This data should be indexed to allow for efficient equality searches.

The format of user metadata is entirely private to the Identity Broker, and should only be
accessed and manipulated through the Identity Broker’s Metadata API. All other uses are
unsupported. Store adapter implementations need not be concerned with the format of user
metadata but should consider the expected sizing, indexing, and access patterns.

The following should be considered when configuring a store adapter and determining where
user metadata is stored:

l Not all store adapters need to support storing user metadata, but at least one store
adapter in an Identity Broker environment must.

l For every Data View, at least one store adapter must handle user metadata.

l Metadata can be stored in multiple store adapters, for redundancy purposes. User stores
should be configured to support load balancing and failover.

A Data View stores the metadata in all store adapters that support it. For those store adapters
that do not need to store metadata, the user-metadata-attribute and user-large-
metadata-attribute properties can be disabled using the dsconfig tool.

In the case of an LDAP Store Adapter, both the small and large metadata attributes are multi-
valued, binary attributes. The LDAPStoreAdapter configuration object has the following
defaults:

user-metadata-attribute: id-broker-user-metadata
user-large-metadata-attribute: id-broker-user-large-metadata

An example user entry with user-metadata-attribute and user-large-metadata-
attribute attributes might look like this:

dn: uid=jsmith,ou=people,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetorgperson

- 51 -



About Store Adapters

uid: jsmith
cn: John Smith
givenName: John
sn: Smith
userPassword: {SSHA}rcYNUGsFQXdM27VS+s/Uat/ydb5wruBmR2avwg==
id-broker-user-metadata: dGVzdGluZzEyMyR0ZXN0aW5nNDU2
id-broker-user-metadata: dGVzdGluZzAxMiR0ZXN0aW5nMjEw
id-broker-user-metadata: JHRlc3Rpbmc3ODk=
id-broker-user-large-metadata: YXNkZ2YgYXNkIGFzZGYgYXNkZ2Fkc2ZaGFk
ZmhhZHNmaGFkc2ZoYWRzZmhhc2RmZ2FzZGYgYXNkZ2FzZGdoYXNkZmhhc2RnYXNkZ2
hhc2ZkaGFzZGZnYXNkZ2ggc0RGSEFTREZIQVNERkhzZGdzREcgQVNEIEdBU0RHIEFE
U0ZIIEFTUkhBU0RGQVNEIDIgQVNERkcgQVNEIFRRV1RHU0dBU0RH

Configuring a Separate Metadata Store
The Identity Broker stores metadata, such as tokens, authorization codes, consents, and
access history, on a per-user basis. By default, all user profile attributes and user metadata
are stored in the user store. If necessary, the user metadata and consent history can be stored
in a metadata store, separate from the user profile attributes.

This can be useful if installing the Identity Broker with an existing user store that is read-only,
or restricted. In this scenario, the Identity Broker will read attributes from the exiting user
store and store information about consent history and transactions in the metadata store. A
correlation attribute is used by the Data View to correlate entries from multiple store adapters
to the same user identity. See Configuring Custom Store Adapters for more information.

Preparing to Configure a Metadata Store
Before configuring the Identity Broker to use a metadata store, gather the following
information:

l Configuration details for the Data View that will use the metadata store. For example,
the name of the Data View and the store adapters used by the Data View.

l The correlation attribute to be used by all store adapters belonging to the Data View.

l The connection information to the data stores that will be used by the metadata store.

About the Correlation Attribute
When a Data View is linked to multiple store adapters, a correlation attribute must be defined
for each store adapter to identify user entries within each backend data store. The correlation
attribute must refer to an attribute from the store adapter's native schema. It can be a
different attribute for each store adapter associated with a Data View. However, the value of
the attribute must be the same across all adapters for a particular user. The value should be a
primary key, such as the username, which corresponds to the
urn:scim:schemas:core:1.0:userName attribute in the default User schema and
urn:unboundid:schemas:scim:ldap:1.0:uid in an LDAP store adapter's native schema.
Another possible choice is the unique ID, which corresponds to the
urn:scim:schemas:core:1.0:id attribute in the default User schema.

- 52 -



Chapter 5: Configuration

Example: Configuring an LDAP Metadata Store
In this example, an UnboundID Data Store is used as a metadata store, and it will be added to
an existing User Data View that uses another UnboundID Data Store as its User Store. See
Installing the Data Store for details.

For this example, user entries are assumed to already reside in the
ou=people,dc=example,dc=com base DN of the user store. The existing user entries are
managed by the UserStoreAdapter. Each user entry in the user store will have a
corresponding entry in the metadata store, but they will be created as they are needed. The
metadata store is managed by the MetadataStoreAdapter.

This example uses the user's unique ID as a correlation attribute.

The following table provides an overview of the configuration values that will be used
throughout this example.

Data View User

User Store Adapter UserStoreAdapter

User Store LBA User Store LBA

User Store Base DN ou=people,dc=example,dc=com

User Store Credentials cn=Broker User,cn=Root DNs,cn=config

User Store Correlation Attribute urn:scim:schemas:core:1.0:id

Metadata Store Adapter MetadataStoreAdapter

Metadata Store LBA Metadata Store LBA

Metadata Store Base DN ou=people,dc=example,dc=com

Metadata Store Credentials cn=Broker User,cn=Root DNs,cn=config

Metadata LDAP Object Class exampleIdentityBrokerUserMetadata

Metadata Entry Filter (objectClass=exampleIdentityBrokerUserMetadata)

Metadata Store Correlation Attribute example-broker-metadata-id

Metadata Store User Metadata Attribute ds-broker-user-metadata

Metadata Store User Large Metadata Attribute ds-broker-user-large-metadata

Metadata Store Create DN Pattern example-broker-metadata-id={example-broker-
metadata-id},ou=people,dc=example,dc=com

The example scenario will change if a third-party Data Store and custom store adapter are
used, but the general principles will apply.

Preparing the LDAP Data Store
The UnboundID Data Store as the metadata store is updated so that the schema defines an
object class for storing user metadata, and the attribute used for correlating user entries from
the user store to metadata entries on the metadata store is indexed.

1. Create a custom schema file:

- 53 -



About Store Adapters

dn: cn=schema
objectclass: top
objectclass: ldapSubentry
objectclass: subschema
cn: schema
attributeTypes: ( example-broker-metadata-id-oid NAME 'example-broker-
metadata-id'
   SYNTAX 1.3.6.1.1.16.1
   EQUALITY uuidMatch ORDERING uuidOrderingMatch
   SINGLE-VALUE X-ORIGIN 'user defined' )
objectClasses: ( example-broker-user-metadata-oid NAME
'exampleIdentityBrokerUserMetadata'
   DESC 'Container for example Identity Broker user metadata'
   SUP top STRUCTURAL MUST (example-broker-metadata-id )
   X-ORIGIN 'user defined' )

This schema file defines the custom object class
"exampleIdentityBrokerUserMetadata," which requires the LDAP attribute "example-
broker-metadata-id." The example-broker-metadata-id attribute uses the UUID
attribute syntax, with object ID "1.3.6.1.1.16.1." This syntax is chosen because these
attributes will contain SCIM ID values, which the Broker represents as UUIDs. The
attribute syntax depends on the correlation attribute chosen.

The actual metadata is stored as operational attributes of the metadata entries, which
are added to the server with the prepare-external-store tool in step 5.

2. Copy the schema file to <server-root>/config/schema/ as 99-broker-metadata-
store.ldif.

3. Restart the Data Store to activate the new schema.

4. Create the ou=People,dc=example,dc=com base DN in the metadata store, if it does not
already exist.

5. Run the prepare-external-store command against the metadata store with the --
isUserStore option. Though this data store will not be used as a user store, this will
create a cn=Broker User login account needed for use by the Identity Broker. For
example:

$ prepare-external-store
  --hostname <hostname>
  --port <port> \
  --bindDN "cn=Directory Manager" \
  --bindPassword <root DN password> \
  --isUserStore \
  --userStoreBaseDN ou=people,dc=example,dc=com

6. Create an equality index for the example-broker-metadata-id attribute.

$ dsconfig create-local-db-index \
  --index-name example-broker-metadata-id \

- 54 -



Chapter 5: Configuration

  --backend-name userRoot \
  --set index-type:equality

7. Stop the Data Store and rebuild the index.

$ rebuild-index \
  --baseDN "ou=people,dc=example,dc=com" \
  --index example-broker-metadata-id

8. Restart the Data Store. The data store is now ready to be used by the Identity Broker.

Configuring the Store Adapter
An LDAP store adapter is created to reference the LDAP Data Store that was previously
configured. This store adapter is added to the configuration for the User data view, and the
existing user store adapter's configuration is updated.

1. Create an external server entry on the Identity Broker to represent the metadata store
Data Store.

$ dsconfig create-external-server
  --server-name MetadataStoreDS1 \
  --type unboundid-ds \
  --set server-host-name:<hostname> \
  --set server-port <port> \
  --set location:<location> \
  --set bind-dn "cn=Broker User,cn=Root DNs,cn=config" \
  --set password:<password> \
  --set authorization-method:none

2. Create a load-balancing algorithm for the metadata store.

$ dsconfig create-load-balancing-algorithm \
  --algorithm-name "Metadata Store LBA" \
  --type failover --set enabled:true \
  --set backend-server:MetadataStoreDS1

3. Create a store adapter for the metadata store.

$ dsconfig create-store-adapter
  --adapter-name MetadataStoreAdapter \
  --type ldap \
  --set correlation-attribute-
urn:urn:unboundid:schemas:scim:ldap:1.0:example-broker-metadata-id \
  --set modifies-as-creates:true \
  --set include-ldap-objectclass:ExampleIdentityBrokerUserMetadata \
  --set include-base-dn:ou=People,dc=example,dc=com \
  --set user-metadata-attribute:ds-broker-user-metadata \
  --set user-large-metadata-attribute:ds-broker-user-large-metadata \
  --set "load-balancing-algorithm:Metadata Store LBA" \
  --set create-dn-pattern:example-broker-metadata-id={example-broker-
metadata-id},ou=people,dc=example,dc=com

- 55 -



Configuring Store Adapters

The correlation attribute referenced by this value is used to store the user's SCIM ID.

When modifies-as-creates is set to true, the store adapter will create an entry
instead of failing if the data view receives a modification request for an entry that does
not already exist. This enables metadata entries corresponding to entries on the user
store to be created on the fly in the metadata store. The create-dn-pattern property
defines a template that the store adapter uses to name new entries in the metadata
store.

4. Add the metadata store adapter to the User data view.

$ dsconfig set-data-view-prop
  --view-name User \
  --add store-adapter:MetadataStoreAdapter

5. Update the existing UserStoreAdapter. This store adapter is configured by default to
store user metadata, so that configuration will be removed.

$ dsconfig set-store-adapter-prop
  --adapter-name UserStoreAdapter \
  --set correlation-attribute-urn:urn:scim:schemas:core:1.0:id \
  --remove user-metadata-attribute:ds-broker-user-metadata \
  --remove user-large-metadata-attribute:ds-broker-user-large-metadata

The User data view needs to be re-initialized before the changes can take effect. Either
restart the Identity Broker server, or disable then enable the User data view.

Configuring the Data View
Modify the User Data View attribute mappings so that the correlation attribute has a mapping
for the metadata store adapter. In the Data View, the id attribute of the common schema is
mapped to the example-broker-metadata-id attribute of the metadata store adapter. This
establishes the correlation between the metadata entry and the corresponding user entry.

$ broker-admin set-dataview-mapping
  --dataview User \
  --adapter MetadataStoreAdapter \
  --commonURN urn:scim:schemas:core:1.0:id \
  --nativeURN urn:unboundid:schemas:scim:ldap:1.0:example-broker-metadata-id \
  --readable --writable --indexed

The metadata store is now ready. Test the configuration by performing an authorization with
the Sign-In Sample application, included with the Identity Broker. See the UnboundID
Application Developer Guide for information about the Sign-In Sample application.

Configuring Store Adapters
The Identity Broker comes with an LDAP store adapter that can be used to interface with
backend data stores. Data Views, configured in the Identity Broker Console, can then be used
to map the attributes in on or more data stores. This enables a unified view of data across
multiple stores.

- 56 -



Chapter 5: Configuration

Third-party adapters can be created for other data stores with the Server SDK available in the
unboundid-server-sdk-<version>.zip package.

Configuring a custom store adapter includes the following steps:

1. Create a store adapter.

2. Store it in the /extensions directory of the Identity Broker.

3. Create a Data View schema.

4. Map Store Adapter(s) and Data Views using the Identity Broker Console.

Example Store Adapter
The Server SDK provides an example implementation of a third-party store adapter. View the
example and associated Javadocs in the Server SDK docs/example-
html/ExampleStoreAdapter.java.html directory.

ExampleStoreAdapter.java is an implementation of a flat-file JSON store adapter, which
stores the SCIM user data in JSON. At startup, all resources are loaded from the json-file-
path parameter (resource/user-database.json). The example uses an in-memory hash
map of SCIM resources mapped to their SCIM ID.

The example provides full operations plus filterable search support for add, update, and
deletes. The example will perform a full-file rewrite on every change, because the file format
is a serialized list of Resources<BaseResource>. The code example does not support sorting
or resource versioning.

Creating a JDBC Store Adapter
The Server SDK provides an example implementation of a JDBC store adapter. The example
provides full operations plus search support for add, update, and deletes and persists it to the
SCIM_RESOURCES table. View the example and associated Javadocs in the docs/example-

html/ExampleJDBCStoreAdapter.java.html directory.

ExampleJDBCStoreAdapter.java shows how to implement a single-table JDBC store adapter
with generic SQL support. The adapter stores users in Java jdbc format, which enables
mirroring attributes on an RDBMS server. The example code depends on an Apache Derby
10.10.1.1 jdbc driver jar that must be copied into the server's lib directory. The default input
parameters are:

l jdbc-driver-class = org.apache.derby.jdbc.EmbeddedDriver

l jdbc-url = jdbc:derby:storeadapter

At startup, the code auto-initializes by looking for a sentinel file in the init-sql-schema-path
property, which has a default value of resource/example-jdbc-store-adapter/.example-
jdbc-schema-created. If the file does not exist, the database will create a table with a
;create=true URL and populate it with the core user schema from the create-scim-
table.sql table as follows:

CREATE TABLE SCIM_RESOURCES {

- 57 -



Configuring Store Adapters

ID VARCHAR(44) NOT NULL PRIMARY KEY,
EXTERNALID VARCHAR(64),
META LONG VARCHAR,
USERNAME VARCHAR(32),
NAME VARCHAR(32),
FAMILYNAME VARCHAR(32),
GIVENNAME VARCHAR(32),
MIDDLENAME VARCHAR(32),
HONORIFICPREFIX VARCHAR(16),
HONORIFICSUFFIX VARCHAR(16),
DISPLAYNAME VARCHAR(32),
NICKNAME VARCHAR(32),
PROFILEURL VARCHAR(255),
TITLE VARCHAR(32),
PREFERREDLANGUAGE VARCHAR(8),
LOCALE VARCHAR(8),
TIMEZONE VARCHAR(32),
ACTIVE BOOLEAN,
PASSWORD VARCHAR(128),
EMAILS LONG VARCHAR,
ADDRESSES LONG VARCHAR,
PHOTOS LONG VARCHAR,
GROUPS LONG VARCHAR,
ENTITLEMENTS VARCHAR(255),
ROLES VARCHAR(255),
x509CERTIFICATES VARCHAR(4096) FOR BIT DATA,
WEBSITE VARCHAR(255),
EMAILVERIFIED BOOLEAN,
GENDER VARCHAR(16),
BIRTHDATE DATE,
PHONENUMBERVERIFIED BOOLEAN,
JSON LONG VARCHAR NOT NULL

}

Extend or modify the schema by editing the create-scim-table.sql file.

Multi-valued attributes require a persistence mechanism, such as Spring Hibernate, so the full
JSON serialized object is stored in a JSON attribute.

The SQL statements are inline but could be placed in a properties file for customization without
recompilation.

If necessary, the storeadapter sub-directory in the resource/example-jdbc-store-
adapterdirectory can be deleted and recreated.

Building the Extension
Build the JDBC store adapter by following the instructions in the Server SDK package for
building an extension:

1. On the server where the adapter is configured, run the following command to create a
directory where the adapter can be built:

$ mkdir -p src/com/unboundid/directory/sdk/examples

- 58 -



Chapter 5: Configuration

2. Copy the example store adapter to the new directory:

$ cp docs/example-src/ExampleJDBCStoreAdapter.java
src/com/unboundid/directory/sdk/examples

3. Edit the extension.properties file to set values for the properties used to specify the
name, version, and vendor information for the extension bundle.

4. Run the build.sh shell script (or build.bat batch file on Windows systems) to build and
package the extension.

Installing the Extension
After the extension is built, perform the following to install it on the Identity Broker server:

1. On the Identity Broker server, run the following command:

$ ./bin/manage-extension \
  --install unboundid-server-sdk-
<version>/build/com.example.ExampleJDBC-1.0.zip

2. Downloaded the latest Derby driver derby-10.10.2.0.jar and copy it to the Identity
Broker /lib directory.

3. Run the following command:

$ ./bin/dsconfig create-store-adapter \
  --adapter-name ExampleJDBC \
  --type third-party \
  --set extension-
class:com.unboundid.directory.sdk.examples.ExampleJDBCStoreAdapter

Account Recovery Configuration in the User Store
End users can recover Identity Broker account information or reset a password, if an Identity
Data Store is configured as the primary User Store and one-time passwords (OTP) are
enabled.

On the Identity Broker server, configuration for account recovery and new account registration
are enabled by configuring the OAuth HTTP Servlet Extension with the dsconfig tool. See the
UnboundID Identity Broker Administration Guide for details.

Configuration on the Identity Data Store requires creating and enabling the OTP mechanism
and defining the delivery mechanism for reset tokens, as follows:

1. Create and enable the OTP delivery mechanism:

$ dsconfig create-otp-delivery-mechanism \
  --mechanism-name "Email OTP Delivery Mechanism" \
  --type email --set enabled:true \
  --set 'sender-address:do-not-reply@example.com'

2. Define the email server to deliver reset tokens:

- 59 -



Managing Server Encryption Settings

$ dsconfig create-external-server \
  --server-name "Example.com SMTP" \
  --type smtp --set server-host-name:smtp.example.com

$ dsconfig set-global-configuration-prop \
  --set "smtp-server:Example.com SMTP"

3. Create and enable the extended operations handlers to generate and send reset tokens:

$ dsconfig create-extended-operation-handler \
  --handler-name "Single Use Tokens" \
  --type single-use-tokens --set enabled:true \
  --set "password-generator:One-Time Password Generator" \
  --set "default-otp-delivery-mechanism:Email OTP Delivery Mechanism"

$ dsconfig create-extended-operation-handler \
  --handler-name "Deliver Password Reset Token" \
  --type deliver-password-reset-token --set enabled:true \
  --set "password-generator:One-Time Password Generator" \
  --set "default-token-delivery-mechanism:Email OTP Delivery Mechanism"

Managing Server Encryption Settings
The server encryption settings database is managed by the encryption-settings command-
line tool. The keys stored for the server are used to encrypt tokens, authorization codes,
account linking codes, and external identity provider tokens. Encryption settings definitions can
be created, listed, exported and imported. Help and examples are available with the following
command:

$ bin/encryption-settings --help

Information about the cipher algorithms and transformations available for use is located in the
Java Cryptography Architecture Reference Guide and Standard Algorithm Name Documentation
available at http://download.oracle.com/javase/6/docs/technotes/guides/security.

System Alarms, Alerts, and Gauges
UnboundID servers provide tools to monitor and manage the health of the system. The Identity
Broker Server provides delivery mechanisms (handlers) for administrative alerts using JMX or
SNMP, in addition to standard error logging. All can be configured with the dsconfig tool.

Alerts and alarms reflect state changes within the server that may be of interest to a user or
monitoring service. An alarm represents a stateful condition of the server or a resource that
may indicate a problem, such as low disk space or external server unavailability. A gauge
defines a set of threshold values with a specified severity that, when crossed, cause the server
to enter or exit an alarm state. Gauges are used for monitoring continuous values like CPU load
or free disk space (Numeric Gauge), or an enumerated set of values such as 'server available'
or ‘server unavailable’ (Indicator Gauge). Gauges generate alarms, when the gauge’s severity
changes due to changes in the monitored value. Like alerts, alarms have severity (NORMAL,
WARNING, MINOR, MAJOR, CRITICAL), name, and message. Alarms will always have a

- 60 -



Chapter 5: Configuration

Condition property, and may have a Specific Problem or Resource property. If surfaced
through SNMP, a Probable Cause property and Alarm Type property are also listed. Alarms can
be configured to generate alerts when the alarm's severity changes.

There are two alert types supported by the server - standard and alarm-specific. The server
constantly monitors for conditions that may attention by administrators, such as low disk
space. For this condition, the standard alert is low-disk-space-warning, and the alarm-
specific alert is alarm-warning. The server can be configured to generate alarm-specific alerts
instead of, or in addition to, standard alerts. By default, standard alerts are generated for
conditions internally monitored by the server. However, gauges can only generate alarm-
alerts.

The server installs gauges for CPU, disk, and memory usage that can be cloned or configured
through the dsconfig tool. Existing gauges can be tailored to fit each environment by adjusting
the update interval and threshold values. Configuration of system gauges determines the
criteria by which alarms are triggered. The Stats Logger can be used to view historical
information about the value and severity of all system gauges.

The server is compliant with the International Telecommunication Union CCITT
Recommendation X.733 (1992) standard for generating and clearing alarms. If configured,
entering or exiting an alarm state can result in one or more alerts. An alarm state is exited
when the condition no longer applies. An alarm_cleared alert type is generated by the system
when an alarm's severity changes from a non-normal severity to any other severity. An
alarm_cleared alert will correlate to a previous alarm when Condition and Resource property
are the same. The Alarm Manager, which governs the actions performed when an alarm state
is entered, is configurable through the dsconfig tool.

Like the Alerts Backend, which stores information in cn=alerts, the Alarm Backend stores
information within the cn=alarms backend. Unlike alerts, alarm thresholds have a state over
time that can change in severity and be cleared when a monitored value returns to normal.
Alarms can be viewed with the status tool.

As with other alert types, alert handlers can be configured to manage the alerts generated by
alarms. A complete listing of system alerts, alarms, and their severity is available in <server-
root>/docs/admin-alerts-list.csv.

Alert Handlers
Alert notifications can be sent to administrators when significant problems or events occur
during processing, such as problems during server startup or shutdown. The Identity Broker
Server provides a number of alert handler implementations configured with the dsconfig
tool, including:

l Error Log Alert Handler – Sends administrative alerts to the configured server error
logger(s).

l JMX Alert Handler – Sends administrative alerts to clients using the Java Management
Extensions (JMX) protocol. The server uses JMX for monitoring entries and requires that
the JMX connection handler be enabled.

- 61 -



System Alarms, Alerts, and Gauges

l SNMP Alert Handler – Sends administrative alerts to clients using the Simple Network
Monitoring Protocol (SNMP). The server must have an SNMP agent capable of
communicating via SNMP 2c.

If needed, the Server SDK can be used to implement additional, third-party alert handlers.

Test Alarms and Alerts
After gauges, alarms, and alert handlers are configured, verify that the server takes the
appropriate action when an alarm state changes by manually increasing the severity of a
gauge. Alarms and alerts can be verified with the status tool.

Perform the following steps to test alarms and alerts:

1. Configure a gauge with dsconfig and set the override-severity property to
critical. The following example uses the CPU Usage (Percent) gauge.

$ dsconfig set-gauge-prop \
  --gauge-name "CPU Usage (Percent)" \
  --set override-severity:critical

2. Run the status tool to verify that an alarm was generated with corresponding alerts.
The status tool provides a summary of the server’s current state with key metrics and
a list of recent alerts and alarms. The sample output has been shortened to show just the
alarms and alerts information.

$ bin/status

                           --- Administrative Alerts ---
Severity : Time : Message
---------:-------------:------------------------------------------------------
Error   : 11/Aug/2014 : Alarm [CPU Usage (Percent). Gauge CPU Usage (Percent)
         : 15:41:00 : for Host System Recent CPU and Memory has
         : -0500      : a current value of '18.583333333333332'.
         :            : The severity is currently OVERRIDDEN in the
         :            : Gauge's configuration to 'CRITICAL'.
         :            : The actual severity is: The severity is
         : : currently 'NORMAL', having assumed this severity
         : : Mon Aug 11 15:41:00 CDT 2014. If CPU use is high,
         : : check the server's current workload and make any
         : : needed adjustments. Reducing the load on the system
         :            : will lead to better response times.
         :            : Resource='Host System']
         :            : raised with critical severity
Shown are alerts of severity [Info,Warning,Error,Fatal] from the past 48 hours
Use the --maxAlerts and/or --alertSeverity options to filter this list

--- Alarms ---
Severity : Severity : Condition : Resource : Details
         : Start Time : : :
---------:------------:-----------:-------------:---------------------------
Critical : 11/Aug/2014: CPU Usage : Host System : Gauge CPU Usage (Percent) for
         : 15:41:00  : (Percent) : : Host System
         : -0500 : : : has a current value of
         : : : : '18.785714285714285'.

- 62 -



Chapter 5: Configuration

         : : : : The severity is currently
         : : : : 'CRITICAL', having assumed
         : : : : this severity Mon Aug 11
         : : : : 15:49:00 CDT 2014. If CPU use
         :           : : : is high, check the server's
         : : : : current workload and make any
         : : : : needed adjustments. Reducing
         : : : : the load on the system will
         : : : : lead to better response times

Shown are alarms of severity [Warning,Minor,Major,Critical]
Use the --alarmSeverity option to filter this list

Server SDK Extensions
Custom server extensions can be created with the UnboundID® Server SDK. Extension bundles
are installed from a .zip archive or a file system directory. Use the manage-extension tool to
install or update any extension that is packaged using the extension bundle format. It opens
and loads the extension bundle, confirms the correct extension to install, stops the server if
necessary, copies the bundle to the server install root, and then restarts the server.

Note
The manage-extension tool must be used with Java extensions packaged using the
extension bundle format. For more information, see the "Building and Deploying Java-Based
Extensions" section of the Server SDK documentation.

The UnboundID Server SDK enables creating extensions for the Identity Data Store, Identity
Proxy, Metrics Engine, Identity Broker, and Identity Data Sync servers. Cross-product
extensions include:

l Access Loggers

l Alert Handlers

l Error Loggers

l Key Manager Providers

l Monitor Providers

l Trust Manager Providers

l OAuth Token Handlers

l Manage Extension Plugins

Extensions for the Identity Broker include:

l Policy Information Provider

l Store Adapter

- 63 -



About the OAuth Service

About the OAuth Service
OpenID Connect, built on the OAuth 2.0 standard, is an identity layer that enables applications
to authenticate end users without performing the authentication themselves. It also enables
end-user identity data to be shared between interested parties with the end-users’ consent. It
provides two primary mechanisms for doing this:

l ID tokens. ID tokens are compact objects which provide information about
authentication events.

l The UserInfo endpoint. This is a bearer token-protected REST endpoint which provides
attributes (“claims”) about a specific identity.

The OAuth2 implementation uses the Spring Security OAuth Framework, providing the
necessary interfaces to develop an OAuth2 client application. After the Identity Broker is
installed, the OAuth service can be configured with the dsconfig tool. The following are
configuration options:

>>>> Configure the properties of the OAuth Service

Property Value(s)
--------------------------------------------------------------------------
1) authorization-code-validity-duration 1 m
2) access-token-validity-duration 12 h
3) refresh-token-validity-duration 4 w 2 d
4) reuse-refresh-tokens true
5) user-approval-page-url /view/oauth/approve
6) error-page-url /view/oauth/error
7) id-token-validity-duration 15 m
8) id-token-issuer-name server.com
9) signing-algorithm hs256

?) help
f) finish - apply any changes to the OAuth Service
a) show advanced properties of the OAuth Service
d) display the equivalent dsconfig arguments to apply pending changes
b) back
q) quit

Enter option [b]:

The encryption and decryption keys are used to protect tokens and authorization codes are
stored in the encryption settings database. See Managing Server Encryption Settings for
information.

About The Policy Service
Identity Broker policies are managed by the Policy Service. The default conditions of the Policy
Service can be viewed and changed with the dsconfig tool. For example:

- 64 -



Chapter 5: Configuration

l The broker-store option enables choosing a new location for the Broker Store.

l The combining-algorithm determines how decisions are made if multiple policies are
applied to a request for resources. The default for the Policy Service is deny-overrides,
which specifies that a "deny" decision from a policy should take priority over a "permit"
decision. The Identity Broker also supports permit-overrides, deny-unless-permit,
and permit-unless-deny. See the OASIS Committee Specification 01, eXtensible access
control markup language (XACML) Version 3.0. August 2010 (http://docs.oasis-open.org)
for details about each combining algorithm.

l The consent-validity-duration determines how long a consent to access data is valid
once sent. Applications can specify a different validity duration for consents, which will
overwrite this property.

See the UnboundID Identity Broker Administration Guide for details about policies and how
their configuration determines data access.

To Configure the Policy Service
1. Run the dsconfig tool. See To Run the dsconfig Tool.

2. Select the Policy Service option from the UnboundID Identity Broker configuration
console main menu. The following is displayed.

>>>> Policy Service management menu

What would you like to do?

1) View and edit the Policy Service

b) back
q) quit

3. Choose option 1. The settings for the Policy Service are displayed.

>>>> Configure the properties of the Policy Service

Property Value(s)
-------------------------------------------
1) broker-store Default
2) combining-algorithm deny-overrides
3) broker-store-poll-frequency 2 s
3) consent-validity-duration 52 w 1 d

?) help
f) finish - apply any changes to the Policy Service
a) show advanced properties of the Policy Service
d) display the equivalent dsconfig arguments to apply pending changes
b) back
q) quit

4. Enter an option to change.

- 65 -



About Cross-Origin Resource Sharing Support

About Cross-Origin Resource Sharing Support
Cross-Origin Resource Sharing (CORS) enables client applications to make JavaScript requests
to the Identity Broker Server (or Identity Data Store) by specifying the domain from which the
request is made.These cross-domain requests are generally not allowed by web browsers
without CORS support. CORS defines a way in which the browser and the server can interact to
determine whether a request is coming from a trusted domain.

CORS Implementation
CORS is implemented per HTTP servlet extension. Access is governed by HTTP Servlet Cross
Origin Policies defined through the dsconfig tool. Trusted domains can be added to these
policies or defined with registered applications in the Identity Broker Console or through the
broker-admin tool.

Note
By default, HTTP servlet extensions do not have CORS defined.Without a CORS policy
defined, the configuration of the browser will determine application access.

The following are configuration options in dsconfig:

>>>> HTTP Servlet Cross Origin Policy management menu

What would you like to do?

1) List existing HTTP Servlet Cross Origin Policies
2) Create a new HTTP Servlet Cross Origin Policy
3) View and edit an existing HTTP Servlet Cross Origin Policy
4) Delete an existing HTTP Servlet Cross Origin Policy

b) back
q) quit

Enter option [b]:

HTTP Servlet Services
Enabling CORS for a particular servlet can impact another service provided by the same
servlet. It is important to know which services will be affected when enabling CORS for an
Identity Broker servlet. The following are available servlets and their functions.

Servlet Functions

Identity Broker REST API
Servlet

Administration of Broker Store objects, such as applications, scopes, and resources.

OAuth Servlet OAuth authorization, token, revocation, and validation endpoints.

Policy Decision Point
Servlet

XACML PDP endpoint.

Privacy Servlet Consent management and consent history APIs.

SCIM Profile access by data view using SCIM.

- 66 -



Chapter 5: Configuration

Servlet Functions

Spring Security Authentication and authorization layer for the rest of the servlets. Identity Broker login
and registration endpoints.

UserInfo Servlet Profile access using OpenID Connect.

Velocity Velocity templates, including the Identity Broker's login, registration, and consent
interfaces.

Note
Any servlet accepting JavaScript calls from client applications, such as the Velocity servlet,
must have CORS enabled.

HTTP Servlet Cross Origin Policies
Two sample policies are available after installation. They can be associated with a servlet
extension, or used as templates for additional policies.

Per-Application Origins – This policy trusts origins that are listed as trusted by applications
registered with the Identity Broker.

Restrictive – This policy rejects all cross-origin requests unless explicitly defined with the
cors-allowed-origins property. Requests from application origins that are not specified are
rejected with a 403 Forbidden return code.

Each policy accepts values for the following properties.

Property Description

cors-enabled Specifies if the CORS protocol is allowed by the servlet. The default
value is false.

cors-allowed-methods Specifies the list of HTTP methods allowed for access to resources. The
default value is GET.

cors-enable-per-application-
origins

Specifies that a per-application list of allowed origins (stored in the
Broker Store) is consulted. The default value is false in the Restrictive
policy and true in the Per-Application Origins policy.

cors-allowed-origins Specifies a global list of allowed origins. If the cors-enable-per-
application-origins property is set to true, and there are
origins listed here, this list is consulted in addition to the per-application
list. A value of "*" specifies that all origins are allowed. The default is an
empty list.

cors-exposed-headers Specifies a list of HTTP headers that browsers are allowed to access.
Simple response headers, as defined in the Cross-Origin Resource
Sharing Specification, are allowed. The default is an empty list.

cors-allowed-headers Specifies the list of header field names that are supported for a
resource and can be specified in a cross-origin request. The default
values are Origin, Accept, X-Requested-With, Content-
Type, Access-Control-Request-Method, and Access-
Control-Request-Headers.

cors-preflight-max-age Specifies the maximum number of seconds that a preflight request can
be cached by the client. The default value is 1800 (30 minutes).

- 67 -



About Cross-Origin Resource Sharing Support

Property Description

cors-allow-credentials Specifies whether requests that include credentials are allowed. This
value should be false for servlets that use OAuth2 authorization. The
default value is false.

Assigning a CORS Policy to an HTTP Servlet Extension
CORS policies are assigned to HTTP servlet extensions through dsconfig.

The following are configuration options for the SCIM servlet extension:

>>>> Configure the properties of the Data View SCIM HTTP Servlet Extension
Property Value(s)
-----------------------------------------------------------------------

1) description -
2) cross-origin-policy No cross-origin policy is defined and no CORS headers are recogn
ized or returned.
3) base-context-path /scim

?) help
f) finish - apply any changes to the Data View SCIM HTTP Servlet Extension
a) show advanced properties of the Data View SCIM HTTP Servlet Extension
d) display the equivalent dsconfig command lines to either re-create this object or only
to apply pending changes
b) back
q) quit

Enter option [b]: 2

Choose the cross-origin-policy option. Defined policies are listed.

>>>> Configuring the 'cross-origin-policy' property
The cross-origin request policy to use for the HTTP Servlet Extension.

A cross-origin policy is a group of attributes defining the level of cross-origin request
supported by the HTTP Servlet Extension.

Do you want to modify the 'cross-origin-policy' property?

1) Keep the default behavior: No cross-origin policy is defined and no CORS headers are
recognized or returned.
2) Change it to the HTTP Servlet Cross Origin Policy: Per-Application Origins
3) Change it to the HTTP Servlet Cross Origin Policy: Restrictive
4) Create a new HTTP Servlet Cross Origin Policy

?) help
q) quit

Choose the CORS policy to assign to this servlet extension.

- 68 -



Chapter 5: Configuration

About Dashboards and Metrics
Dashboards are configured from the Metrics Engine and display data on the Metrics page of the
Identity Broker Console. Configuration is required on the Metrics Engine and the Identity
Broker server to surface data in the Identity Broker Console Metrics page. Data includes:

l Performance data for the Identity Broker.

l Authorizations granted and denied to client applications.

l Consents granted, denied, and abandoned by customers.

l Most requested data.

l Most requesting client applications.

See the UnboundID Metrics Engine Administration Guide for steps to install the Metrics Engine.
See the UnboundID Identity Broker Administration Guide for details about the Identity Broker
Console application and the Metrics page.

To Configure the Metrics Engine and Identity Broker to show Metrics
Data
This procedure assumes that an UnboundID Metrics Engine is already installed. See the
UnboundID Metrics Engine Administration Guide for details. Make sure that the following are
available:

l Make sure that the Metrics Engine was configured to use HTTPS or both HTTP and HTTPS.

l Make sure the Identity Broker is installed and configured with the create-initial-
broker-config tool, and that the Identity Broker Console web application was installed.
See To Configure the Identity Broker.

l Verify access to the Identity Broker Console at https://<host:port>/broker-console
and log in as the administrative user.

l Click the Metrics link in the Identity Broker Console. A page with empty charts will
display until the Metrics Engine is configured and data is generated.

Perform the following steps to configure the Metrics Engine:

1. From the Metrics Engine, use the monitored-servers tool to connect the Metrics Engine
to the Identity Broker. For example:

./UnboundID-Metrics-Engine/bin/monitored-servers -w <ME password> add-servers \
  --remoteServerHostname <Broker host name> \
  --remoteServerPort <Broker LDAP port> \
  --remoteServerBindPassword <Broker Host Password> \
  --monitoringUserBindPassword password -p <ME LDAP port>

- 69 -



The sample-data-loader Tool

2. In a browser, access the Metrics dashboard page https://<ME-host:https-
port>/view/broker-dashboard. Charts display (after a short period of time) with no
data, as the Metrics Engine has not taken samples from the Identity Broker yet.

3. From the Identity Broker server, use the dsconfig tool to configure the Broker-Admin-
Console web application extension for the dashboard URL:

./dsconfig set-web-application-extension-prop \
  --extension-name Broker-Admin-Console \
  --set dashboard-url:https://[ME-host:ME-https-port]/view/broker-dashboard

4. To enable the page in an inline frame, set the following:

./dsconfig set-velocity-context-provider-prop \
  --extension-name Velocity \
  --provider-name Dashboard \
  --add "response-header:X-Frame-Options: ALLOW-FROM
         https://<broker-host>:<broker-console-port>/"

The default is X-Frame-Options: DENY. This value must be changed for the Metrics
page in the Identity Broker Dashboard to function properly.

5. For the configuration setting to take effect, disable and then re-enable the Broker Apps
Connection Handler with the dsconfig tool:

./dsconfig set-connection-handler-prop \
  --handler-name "Broker Apps Connection Handler" \
--set enabled:false

./dsconfig set-connection-handler-prop \
  --handler-name "Broker Apps Connection Handler" \
  --set enabled:true

6. In a browser, access the Identity Broker Console Metrics page. The dashboard will be
embedded in the page.

The sample-data-loader Tool
During the setup process, the create-initial-broker-config tool prompts to install default
policies for the Identity Broker. See About the Installation Process and Files Installed for
details about these policies.

If this is not done during the configuration process, the sample-data-loader tool can be used
to install sample data at a later time. The sample-data-loader tool provides an install
subcommand to set up the sample data and a remove subcommand to delete the sample data if
needed.

Note: The create-initial-broker-config session installs two internal users, sampleuser1
and sampleuser2, which are used in the sample policies. The users sampleuser1 and
sampleuser2 corresponds to "John Public" and "Mary Private," and are installed in the backend
user store repository. The user sampleuser1 has consented to the applications,
InternalAppOne and ExternalAppTwo, accessing his Customer Profile and Billing History. The
user sampleuser2 has not consented to either application.

- 70 -



Chapter 5: Configuration

If adding the sample data after running the create-initial-broker-config tool, these users
must be manually added to the user store prior to running sample-data-loader. The following
example procedure shows how to do so.

To Add Sample Users and Run the sample-data-loader Tool
1. On the backend user store, add two internal entries, sampleuser1 and sampleuser2, to

be used with the sample-data-loader tool. Or, use two existing user accounts with the
sample-data-loader. The following shows a sample LDIF file that can be created using
any text editor, and added to the Data Store using the ldapmodify tool.

dn: uid=sampleuser1,ou=People,dc=example,dc=com
objectClass: top objectClass: person
objectClass: organizationalPerson
objectClass: inetorgperson
description: This is a test user to exercise sample data within the
UnboundID Identity Broker
uid: sampleuser1
cn: Sample
sn: User1
userPassword: password

dn: uid=sampleuser2,ou=People,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetorgperson
description: This is a test user to exercise sample data within the
UnboundID Identity Broker
uid: sampleuser2
cn: Sample
sn: User2
userPassword: password

bin/ldapmodify -p 1389 -D "uid=admin,dc=example,dc=com" -w passord -a -f
sample-data.ldif

2. On the Identity Broker, run the sample-data-loader tool to install the sample data.

sample-data-loader install \
  --trustAll --authID admin --authPassword password \
  --owner1 sampleuser1 --owner2 sampleuser2 --no-prompt

3. If sample data is no longer needed, run the sample-data-loader tool to remove the
sample data.

sample-data-loader remove \
  --trustAll --authID admin --authPassword password \
  --owner1 sampleuser1 --owner2 sampleuser2 --no-prompt

- 71 -



Configure the Identity Broker Console on Tomcat

Sample Requests and Policy Tests
After sample data is loaded, sample client requests can be used to test the Broker
configuration. The Broker Console web application contains four Policy tests, based on the data
that was loaded. See the UnboundID Identity Broker Administration Guide for details about
running Policy Tests.

Configure the Identity Broker Console on Tomcat
The Identity Broker runs it on an embedded Jetty servlet container by default. To deploy the
Identity Broker Console on Apache Tomcat, use the following procedure.

If the Profile Manager and Sample Sign-In sample applications were installed with the Identity
Broker, advanced configuration options are available in the README file (<server-
root>/samples) for each application package.

Configuring the Identity Broker Console application to use Tomcat may overwrite some of the
default properties defined in:

webapp/WEB-INF/classes/application.default.properties

Review this file before creating an application.properties file for the web applications. This
file can also be used as a template for creating the application.properties file.

1. Install Tomcat and put the WAR files for the Identity Broker Console from the Identity
Broker Server's /webapps directory in Tomcat's /webapps directory.

2. Optional. Modify $CATALINA_HOME/conf/server.xml to set the ports. By default, they
are set to 8080 and 8443, which is used by the Identity Data Store.

<Connector port="8080" protocol="HTTP/1.1"

connectionTimeout="20000"

redirectPort="8443" />

3. Run broker-admin get-application-prop on the Broker Store to find the client ID for
the Identity Broker Console application.

$ broker-admin get-application-prop \

  --id @BrokerConsole@ \

  --property clientId \

--script-friendly | cut -f 2

edd75465-a41a-422c-b4d5-2d69af1de50d

4.  Run the following command to determine the client secret for the Identity Broker
Console. The client secret must be base64 encoded in application.properties, and
should be removed from the file system once used.

- 72 -



Chapter 5: Configuration

$ broker-admin get-application-prop \

  --id @BrokerConsole@ \

  --property clientSecret

  --script-friendly | cut -f 2 > /tmp/secret

$ base64 encode -f /tmp/secret

S1hZMFNhUndjUwo=

$ rm /tmp/secret

5. Before starting Tomcat, create an application.properties file. This is the file that
applications read to determine the Identity Broker location. Use the previously
recovered client ID and secret. Save the properties file in the directory $HOME/.broker-
console. The properties file resembles the following:

serviceUrl=https://<hostname>:1443

trustStoreFile=/ds/<user>/tomcat/UnboundID-Broker/config/truststore

oauthAdminClientId=30c1605d-4eb3-4403-92c4-453029e96881

oauthAdminClientSecret=eUpmUzF6SGViWQ==

6. Start Tomcat.

7. The Identity Broker Console redirect URI will need to be updated. See Changing the
Identity Broker Console Redirect URI for details.

Changing the Identity Broker Console Redirect URI
The following set of commands updates the redirect URI for the Identity Broker Console’s web
application extension in the server configuration, and restarts the application's connection
handler. The redirect URI is used by the Identity Broker Console itself to form the OpenID
Connect request to the Identity Broker server during login.

$ dsconfig set-web-application-extension-prop \
  --extension-name Broker-Admin-Console \
  --set redirect-url:https://<example.com>/broker-console

$dsconfig set-connection-handler-prop \
  --handler-name "Broker Apps Connection Handler" \
  --set enabled:false

$ dsconfig set-connection-handler-prop \
  --handler-name "Broker Apps Connection Handler" \
  --set enabled:true

The following command adds a registered redirect URI value for the Identity Broker Console
application in the Broker Store. This redirect URI value is used by the Identity Broker’s
authorization endpoint to validate the redirect URI value received from the Identity Broker
Console when it makes an OpenID Connect request during login.

- 73 -



Configure the Identity Broker Console on Tomcat

$ broker-admin set-application-prop \
  --id @BrokerConsole@ \
  --add "redirectUrls:https://<example.com>/broker-console”

Note
The Identity Broker only accepts redirect URI values that have been registered to the
applicationmaking a request. Both of these redirect URI valuesmust match exactly.

- 74 -



Index

A

access token 64

account recovery configuration 59

administrative account

Identity Broker 19

B

backup tool 36

base DN

configure Broker Store 19

configure data store 13

configure user entries 20

base64 tool 37

broker-admin tool 36

described 37

broker-cfg.dsconfig

write file 21

Broker Console

get client ID 72

URL 22

broker store 48

configure backup location 20

described 11

C

client ID for Idnetity Broker 72

clone Identity Broker 22

collect-support-data tool 36-37

command-line tools 36

config-diff tool 37

consent-admin tool 36-37

CORS

configuration 66

create-initial-broker-config 18

create-initial-broker-config tool 37

create-rc-script tool 37

D

data stores

installing 11

data view schema

described 49

SCIM schema 49

data views

described 15, 48

dsconfig

CORS configuration 66

described 42

options 43

tool described 36-37

dsframework tool 37

dsjavaproperties tool 37

dstat

installing on SuSE Linux 8

E

encryption-settings tool 11, 37

encryption keys 11, 64

evaluate-policy tool 36-37

external identity provider

feature 3

F

file descriptor limits 7

H

HTTP Servlet Cross Origin Policy 67

HTTP servlet extension 68

- 75 -

Index: access token – HTTP servlet extension



Index: ID token – Sample Sign-In application

I

ID token 64

Identity Broker

architecture 3

attribute filtering 2

authorization 3

console URL 22

described 1

features 2

folders 32

installing 16

files installed 14

installing with existing truststore 27

pluggable authentication 2

social login 3

tools 36

installing

prerequisites 7

scripted install 23

J

Java

installing the JDK 11

supported versions 7

JDBC Store Adapter 57

JVM memory allocation

data store 13

Identity Broker 17

L

ldapmodify tool 37

ldappasswordmodify tool 37

LDAPS

configure data store 12

configure Identity Broker 17

ldapsearch tool 37

ldif-diff tool 37

ldifmodify tool 37

list-backends tool 37

M

manage-extension tool 37

metrics

configuring 69

described 69

O

OAuth HTTP Servlet Extension 59

oauth2-request tool 36-37

OAuth2.0

encryption keys 64

service configuration 64

OpenID Connect 15

P

policy

installed by default 15

prepare-external-store 19

prepare-external-store tool 36-37

Profile Manager application 3

R

remove-defunct-server tool 37

REST API

connection port 17

restore tool 38

review-licence tool 38

S

sample-data-loader 16

example of 71

sample-data-loader tool 38

Sample Sign-In application 3

- 76 -



Index: SCIM schema – UserMetaData

SCIM schema 15

server-state tool 38

start-broker

example of 29

running in the foreground 29

start-broker tool 38

status tool 38

stop-broker

example of 29

in-core restart 30

stop-broker tool 38

storage

options 7

store adapters

described 49

JDBC 57

third-party 57

sum-file-sizes tool 38

supported platforms 7

T

Third-Party Store Adapter 57

U

UnboundID

about iv

uninstall tool 30

user processes

configuring on Redhat/CentOS 8

user store 11, 48

UserInfo endpoint 64

UserMetaData

described 51

- 77 -


	Copyright
	Preface
	About UnboundID
	About This Guide
	Audience
	Documentation

	Chapter 1: Introduction
	Identity Broker Overview
	Identity Broker Features
	Identity Broker Architecture
	Installation Considerations

	Chapter 2: System Requirements
	Installation Prerequisites
	Supported Platforms
	Supported Storage Options
	Configuring File Descriptor Limits
	To Set the File Descriptor Limit

	Setting the Maximum User Processes
	Installing the dstat Utility on SuSE Linux

	Chapter 3: Installation
	Installing the JDK
	About Encryption Keys
	Installing the Identity Data Store
	To Install the Identity Data Store

	Identity Broker Installation Tools
	Installation Process and Files Installed
	Installing the Identity Broker
	Configuring the Identity Broker
	Installing a Clone Identity Broker
	Planning a Scripted Install
	Scripted Installation Process
	To Install the Identity Broker with an Existing Truststore


	Chapter 4: Management
	Run the Identity Broker
	To Run the Identity Broker
	To Run the Identity Broker in the Foreground

	Stop the Identity Broker
	To Stop the Identity Broker
	Schedule a Server Shutdown
	To Run an In-Core Restart

	Uninstalling the Identity Broker
	To Uninstall the Identity Broker

	Updating the Identity Broker, Broker Store, and User Stores
	Identity Broker Files and Folders

	Chapter 5: Configuration
	Identity Broker Configuration Data
	Identity Broker Configuration Tools
	All Identity Broker Tools
	Using the Web Console for Server Configuration
	Install the Web Console
	Log into the Web Console
	Configure the Web Console

	Using the dsconfig tool
	To Run the dsconfig Tool

	Using the Configuration API
	Authentication and Authorization
	Relationship Between the Configuration API and the dsconfig Tool
	API Paths
	Updating Properties
	Administrative Actions
	Configuration API Responses

	About the Broker Store and User Store
	About Data Views
	About Store Adapters
	About the LDAP Store Adapter
	About User Metadata
	Configuring a Separate Metadata Store

	Configuring Store Adapters
	Example Store Adapter
	Creating a JDBC Store Adapter

	Account Recovery Configuration in the User Store
	Managing Server Encryption Settings
	System Alarms, Alerts, and Gauges
	Alert Handlers
	Test Alarms and Alerts

	Server SDK Extensions
	About the OAuth Service
	About The Policy Service
	To Configure the Policy Service

	About Cross-Origin Resource Sharing Support
	CORS Implementation
	HTTP Servlet Services
	HTTP Servlet Cross Origin Policies
	Assigning a CORS Policy to an HTTP Servlet Extension

	About Dashboards and Metrics
	To Configure the Metrics Engine and Identity Broker to show Metrics Data

	The sample-data-loader Tool
	To Add Sample Users and Run the sample-data-loader Tool
	Sample Requests and Policy Tests

	Configure the Identity Broker Console on Tomcat
	Changing the Identity Broker Console Redirect URI


	Index

