UnboundID® Identity Broker

Application Developer Guide
Version 5.1.0

UnboundID Corp

13809 Research Blvd., Suite 500
Austin, Texas 78750

Tel: +1 512.600.7700

Email: support@unboundid.com

Copyright

Copyright © 2015 UnboundID Corporation
All rights reserved.

This document constitutes an unpublished, copyrighted work and contains valuable trade
secrets and other confidential information belonging to UnboundID Corporation. None of the
material may be copied, duplicated, or disclosed to third parties without the express written
permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or
through such sites or resources. UnboundID will not be responsible or liable for any actual or
alleged damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such sites or
resources. UnboundID and the UnboundID Logo are trademarks or registered trademarks of
UnboundID Corp. in the United States and foreign countries. All other marks referenced are
those of their respective owners.

Table of Contents

CoPY Gt . i
P e A G \'
About Unboundl D .l v
AU N L vi
DOCUMENEAtION .. . Vi
Chapter 1: Introduction .. il 1
Identity Broker Features ... L 2
Identity Broker Architecture ... il 2
Identity Broker Endpoints for Client Applications 4
Chapter 2: Getting Started with Application Development 6
What is Needed from the Identity Broker L 7
OpenID CoNNECt SCOPES 8
How Policy Affects the Data Returned to an Application 8
About Data Access ReqUestS 10
About Policy Evaluation ... i 10
Accessing Resources by Consent 11
Obtaining Usernames and User IDs 11
Character Length of Authorization Codes and Tokens 12
Working with the Sample Sign In Application 12
Deploying the Sample Application 12
Sign In Sample Application Pages L 13
Working with the Profile Manager Application 16
Deploying the Sample Application 16
Profile Manager Application Pages 16
Chapter 3: Authentication 21
OpenID Connect ReqUEST L 22
OpenID Connect RESPONSE . L 22
The Identity Broker as Relying Party ... 23
Creating an Account through Identity Provider Login 24
Linking Identity Broker and External Identity Provider Accounts 25
Example Call for Links Data 26
The Identity Broker Logout Endpoint il 27
ReQUEST . 27

RES P ONS . .. 27

Chapter 4: Authorization FIOWS 28
AbOUEt OAULN 2.0 29
OAuth 2.0 Authorization Grant TYPeS ... o 29

Issuing Authorization Code Grant Requests 30
Example RedireCtion ... 30
EXample ReSPONSE . L 31
EXample ReqUeSt L 31
EXample ReSPONSE . L 31
EXample ReQUEST ... 32

Issuing Implicit Code Grant Requests 32
Example RedireCtion ... 32
Example Redirect Response .. il 33
EXample ReqUest L 33

Issuing Resource Owner Password Credentials Requests 33
EXample ReqUest L 34
EXample ReSPONSE . L 34

Issuing Client Credentials Code Requests 34
EXample ReQUEST ... 35
EXample RESPONSE . L 35

Issuing ID Token Grant Requests 35

The Identity Broker Token Endpoint L 37
REQUEST . 37
RES P ONS .. 38
Token Validation by the Identity Broker 39
Token Revocation by the Identity Broker il 40
Obtaining a Refresh ToKeN .. . 40

Chapter 5: Accessing Data 42
The Data View (SCIM) Endpoint .o 43
Data VieW EXamMI IS .. 44

GET (Data View SChemas) ... 44

G il 45

GET (by User ID) 46

PO ST il 47

UPD AT E 48

DELETE 49
UserInfo ACCess EXamiPle .o 50
R U 50
RS DO . .. 50
JQUENY EXaMIDle .l 51
User Metadata 51
Managing Access History ReCords 51
Managing CONSENtS .. 52
Adding an Identity Provider Link to an Account 56
Policy Authorization SCeNarios ... 59
Policy Decision Point (PDP) Endpoint 59
Policies and Request Processing Per Endpoint 59
OAuth 2.0 Endpoint Policy Evaluation 61
UserInfo Endpoint Policy Evaluation il 62
SCIM Endpoint Policy Evaluation 63
Self-Registration Policy Evaluation 66
Metadata API Policy Evaluation 66
Chapter 6: Reference Information 67
DoCcUM N At ON L 68
Reference Information o 68
IO X 69

iv

Preface

The UnboundID Identity Broker Application Developer Guide provides information for client
applications to interface with the UnboundID Identity Broker Server. We appreciate any
feedback and requests for specific topics to cover in future revisions of this guide. Please send
feedback to support@unboundid.com.

About UnboundID

UnboundID Corp is a leading identity infrastructure domain solutions provider with proven
experience in large-scale identity data solutions. The Identity Broker is part of the UnboundID
Platform. The UnboundID Platform is the consumer-grade identity access and management
platform—built specifically to handle the massive scale and real-time demands of hundreds of
millions of customers. It delivers a consistent, seamless, personalized brand experience that
makes each customer feel valued. The UnboundID Platform provides a unified view of
customer data across all applications, channels, partners, and lines of business.

The UnboundID Platform provides the following:

e Secure End-to-End Customer Data Privacy Solution - A comprehensive identity
platform with authorization and access controls to enforce privacy policies, control user
consent, and manage resource flows. The system protects data in all phases of its life
cycle (create, read, update, delete as well as static/unchanging and expiring).

« Purpose-Built Platform - Solutions to consolidate, secure, and deliver customer
consent-given identity data. The system provides unmatched security measures to
protect sensitive identity data and maintain its visibility. The broad range of services
include, policy management, cloud provisioning, federated authentication, data
aggregation, and directory services.

« Unmatched Performance across Scale and Breadth - Support for the three pillars
of performance-at-scale: users, response time, and throughput. The system manages
real-time data at large-scale consumer facing service providers.

mailto:support@unboundid.com?subject=Feedback on Product Documentation

Preface

« Support for External APIs - Standards-based solutions that can interface with various
external APIs to access a broad range of services. APIs include XACML 3.0, SCIM, LDAP,
OAuth 2.0, and OpenID Connect.

Audience

This guide is intended for software developers interested in developing applications that
communicate with the Identity Broker API endpoints and request access to resources.

It is assumed that an installation of the Identity Broker Server exists and is accessible.
Configuration must be performed and information must be gathered by the Identity Broker
administrator to enable a client application to access the server. See What is Needed From the
Identity Broker for more information.

To use this guide effectively, readers should be familiar with the following topics:

e RESTful web services and principles.

o OAuth2 and OAuth2 Bearer Token specifications.

e OpenlID Connect (OIDC).

e System for Cross-domain Identity Management (SCIM) protocol.

e Policy and attribute-based access control.

Documentation

The Identity Broker includes the following documents, available in the docs folder of the
server.

o UnboundID Identity Broker Installation Guide (PDF)

o UnboundID Identity Broker Administration Guide (PDF)

e UnboundID Identity Broker Application Developer Guide (PDF)

e UnboundID Identity Broker REST API Reference (HTML)

e UnboundID Identity Broker Configuration Reference Guide (HTML)
o UnboundID Identity Broker Command Line Reference (HTML)

Vi

Chapter 1: Introduction

The UnboundID Identity Broker is an authorization and policy enforcement engine that
securely exchanges customer data between applications and services. For companies
managing large amounts of customer data, the Identity Broker serves as a gatekeeper of data
access and automates the flow of customer data.

The Identity Broker Server powers OAuth 2.0, OpenID Connect, administration and policy
services, each capable of handling millions of operations per day. The Identity Broker
supports multiple REST API endpoints to enable client applications to access identity
attributes.

This section explains Identity Broker features and components and includes the following:

Identity Broker Features

Identity Broker Architecture

Identity Broker Endpoints for Client Applications

Chapter 1: Introduction

Identity Broker Features

The Identity Broker provides the following features for client applications to securely access
identity resources:

Support for multiple backend data stores. The Identity Broker supports multiple
data stores, with native support for the UnboundID Data Store and extension points for
other data stores, such as relational databases. Applications can be written one time for
access to the Identity Broker and receive data from any type of infrastructure backend.

Authorization based on Policy and Consent. The Identity Broker ensures that data
is provided to only authorized applications. Authorization can be based on industry rules,
corporate policy, or consent granted by customers.

Unified Data Views. The Identity Broker provides a way to aggregate attributes from
multiple data stores into single views, such as a customer profile view, a subscriber
view, or a device view. Data Views specify attribute mapping and renaming across
multiple data stores. Applications can provide their end users a unified view of their
information based on the Data Views configured.

Support for social login. The Identity Broker can act as a relying party, enabling users
to log into client applications and update or create Identity Broker accounts with external
identity provider accounts such as Facebook or Google.

Standards-based authorization. The Identity Broker Server provides OAuth 2.0-
compliant functionality for token generation, expiration, validation, and revocation. This
provides application developers with flexible, secure authorization flows that can be
tailored to multiple application types.

User interface samples and templates. The Identity Broker installs a Profile
Manager and Sample Sign-In application, if the option is chosen during installation.
These applications can be used to demonstrate how a client application makes requests
of the Identity Broker for user data, how an end user can grant consent for the
application to access that data, and how the Identity Broker returns that data. Identity
Broker Server templates can be used for implementing custom user authentication and
consent flows.

Identity Broker Architecture

The Identity Broker can act as both the authorization server and resource server for client
applications requesting access to user data. Client applications are granted authorization
through an OAuth 2.0 flow and receive access through OpenID Connect and SCIM endpoints.

Identity Broker Architecture

The Identity Broker can either be an identity provider, or it can be the relying party to an
external identity provider, or both. As a relying party, the Identity Broker can offload the
authentication responsibilities to a configured identity provider, and use the authenticated
principal and any attributes to link end user profiles, or create a new profile in a backend data
store.

get/put user profile and other data

User Agent Client
Application
(web browser) get access Pp
token
i invoke
fogin consent prompt &
dialog record y d onlh
consent read / write read only
OAuth2 /scim userinfo
icati - Metadata API [—| PDPAPI I
Authentication Authorization e for data for OIDC
consent, po_fif:y
linked accounts, decisions _
history /userinfo
Claims Map
Data View
. . - R PR Data View Data View
Built-In Policies ‘.Po||cy Engme’ Schema Mapping
____________ R — —
i Custom Policies
N L Fetch data
needed
for policy
evaluation
Check
credentials and/for T _C ““““ \ PNV VNNV — SRR '
against the usea | ustom ! ! Custom Policy Data Store . Custom Data |
User Store . f\iujrlepygaggri) L _| DfD_Fio_m_t_) _1 Adapter L §E0E A?g’zt?[_1
— < T S e S -~
! Policy Info ! |
Store Hist 1 Store 1 Other Data !
SOy (o . User Store | Othe |
- Store [t------ 1 Store 1
Contains | |
Data View defintions, L)
sch emas, pohc_/es, system Contains Contains Contains
configuration etc. Consent History, Consent Records User or other data
Access History Access Tokens
Policy Eval Results Optionally, user or other data

Identity Broker Architecture

Planning an Identity Broker deployment should start with determining the applications that will
request access to data, how they will access the Identity Broker server, and what data can be
accessed and updated.

The Policy Engine is key in determining which applications can access resources and for what
purpose. Make sure that application development is done with consideration for how policies
process requests. See Policies and Request Processing Per Endpoint.

The Identity Broker also tracks the consent that end users grant for access to their data.
Consent and access history can be managed by a requesting application or separate

Chapter 1: Introduction

application. See Working with the Profile Manager Sample Application for information about
managing end user consents.

Identity Broker Endpoints for Client Applications

The Identity Broker provides multiple REST endpoints for client access. The following list
presents a summary of the endpoints that may be called by a client application requesting user
profile data. All Identity Broker endpoints are available at <server-
root>/docs/restapi/index.html.

Note
The Metadata APls require a user ID. See Obtaining Usernames and UserIDs. If accessing
records for the current authorized user, the parameter se1f can be used as the <userID>.

Identity Broker Endpoints for Client Applications
Endpoint Description

Iscim

Iscim/<name> This is the SCIM 1.0 protocol endpoint used to retrieve a specified
data view, where <name> is the resource being accessed. This

endpoint supports all SCIM operations and implements its access
control through the Identity Broker's policies.

loauth

loauth/authorize The OAuth 2.0 standard authorization endpoint. This is the endpoint
that an application will use to get an authorization grant from the user.

/oauth/token The OAuth 2.0 token endpoint. This is the endpoint that an application
will use to request an access token from the Identity Broker Server to
access identity information.

loauth/revoke The Identity Broker endpoint used to revoke a token.

loauth/validate The Identity Broker endpoint used to validate a token.

luserinfo

luserinfo The OpenlD Connect endpoint. Use this endpoint for applications that
require read-only access to user profile data. Access to this endpoint
requires an OAuth 2.0 access token with the openid scope. The
client application will receive the aftributes granted by the scopes in
the access token. Either GET or POST actions can be used.

Imetadata/v1/<userIiD>/accessHistory

/<userlD>/accessHistory The Identity Broker endpoint used to retrieve a page of access history
records that satisfy the provided query, page and sort parameters for
the specified SCIM user ID. A request to this endpoint requires the
urn:unboundid:scope:read access_history scope.

Imetadata/v1/<useriD>/consentHistory

/<userID>/consentHistory The Identity Broker endpoint used to retrieve a page of consent history
records that satisfy the provided query, page and sort parameters for
the specified SCIM user ID. A request to this endpoint requires the

Identity Broker Endpoints for Client Applications

Endpoint Description

urn:unboundid:scope:read consents scope.

Imetadata/v1//<userlD>/consents

/<userlD>/consents The Identity Broker endpoint used to add, retrieve, or delete the
consent granted by the specified SCIM user ID for application access
to data. Either GET, POST, or DELETE actions can be used. A request
to this endpoint requires either the
urn:unboundid:scope:read consents scope orthe
urn:unboundid:scope:manage consents scope.

/<userlD>/consents/applications The Identity Broker endpoint used to retrieve the applications that
have been granted consent by the specified SCIM user ID. A request
to this endpoint requires the urn:unboundid: scope:read
consents scope.

/<userlD>/consents/resources The Identity Broker endpoint used to retrieve the resources to which
the specified SCIM user ID has granted access. A request to this
endpointrequires the urn:unboundid: scope:read
consents scope.

Imetadata/v1/<userID>/links

/<userlD>/links The Identity Broker endpoint used to add, retrieve, or delete the links
to external identity provider accounts for the specified SCIM user ID.
Either GET, POST, or DELETE actions can be used. A request to this
endpointrequires either the urn:unboundid: scope:read

links scope orthe urn:unboundid:scope:manage links
scope.

/<userlD>/links/interactive The Identity Broker endpoint used to initiate an interactive linking flow
with an external identity provider. A request to this endpoint requires
the urn:unboundid:scope:manage links scope.

Ipdp/v1/authorization

/pdp/v1/authorization The Identity Broker Policy Decision Point endpoint used by an
external Policy Enforcement Point (PEP) to generate XACML requests
and send them directly to the Identity Broker for evaluation. The
request is passed directly to the policy engine. This method supports
POST only. The body of the POST should contain the XACML request
as an XML string. A request to this endpoint requires using bearer
token authentication, and the token must have the
urn:unboundid:scope:invoke pdp scope.

Chapter 2: Getting Started with
Application Development

The Identity Broker Server provides two access endpoints for client applications to request
end user resources:

UserInfo - The Userlnfo endpoint (/userinfo) enables client applications to communicate
with the Identity Broker to request access to claims (attributes) about the authenticated end
user. The endpoint is read-only and cannot be used to update user data.

SCIM - The SCIM endpoint (/scim/<name>) enables client applications to connect with the
Identity Broker to request access to end-user resources. Actions can be performed against the
attributes if the Identity Broker policies allow.

Before designing an application to interact with the Identity Broker, determine the endpoint
that the application will use for access and the settings that are in place (such as scopes and
policies) that will affect the application's ability to access data.

This section describes what is required from the Identity Broker and includes the following:
What is Needed From the Identity Broker

OpenlID Connect Scopes

About Data Access Requests

How Policy Affects the Data Returned to an Application

Policies and Request Processing Per Endpoint

Accessing Resources by Consent

Obtaining Usernames and User IDs

Character Length of Authorization Codes and Tokens

The Identity Broker as Relying Party

Working with the Sign-In Sample Application

Working with the Profile Manager Sample Application

Chapter 2: Getting Started with Application Development

What is Needed from the Identity Broker

Identity Broker configuration details will affect the client application's implementation and
access to identity resources. The Identity Broker fully supports the role of Resource Server as
defined within an OAuth2 context. Identity Broker configuration is performed through the
Identity Broker Console interface or through the broker-admin command line tool. See the
UnboundID Identity Broker Administration Guide for information about the console and Identity
Broker configuration.

The Identity Broker administrator may have all of the configuration in place to enable access to
a client application or may need specifics from the application developer. To develop client
applications that can access the Identity Broker system, the following are required on the
Identity Broker Server:

+ Register the application - Registering an application with the Identity Broker defines
the URL, the OAuth 2.0 grant types, token requirements, and the scopes that the
application can use. A client ID and client secret are generated by the Identity Broker
and are needed by the client application to interface with the /ocauth endpoints. The
Identity Broker administrator will need a redirect URL during the registration process so
that the Identity Broker can redirect an end user back to the client application when
authorizing access to resources. Self registration of an application can only be done
through the Broker Admin APIs.

« Define External Identity Providers - If client applications are designed to enable
user login through an external identity provider (Facebook, Google, or OpenID Connect),
these providers must be configured for use through the Identity Broker. The Identity
Broker must also be registered with the providers. See About the Identity Broker as
Relying Party for details about the login and consent flow when external identity
providers are enabled.

« Define UserInfo Claims - If using the UserInfo endpoint to access the Identity Broker,
the client application will request the claims (identity resources) that the Identity Broker
administrator has configured. Standard and custom claims are supported by the Identity
Broker.

+ Define Scopes - Scopes define the OpenID Connect scope and name that is displayed to
end users of the client application, the claims that can be accessed, and the actions that
can be performed. Scopes must be defined in the Identity Broker Server before a client
application can include them in requests. Scopes are also used to capture consent for the
requested resources. If custom scopes are needed by the client application, the Identity
Broker administrator will need to create them.

« Cross-origin Resource Sharing (CORS) - Applications can make JavaScript calls to
Identity Broker services that have CORS enabled. Trusted origins required by an

OpenlD Connect Scopes

application can be specified when it is registered with the Identity Broker. HTTP Servlet
Cross Origin Policies are defined for the servlets that will accept applications' JavaScript
requests. See the UnboundID Identity Broker Installation Guide for details about HTTP
Servlet Cross Origin Policies.

« Customize Identity Broker Login and Consent pages - The Identity Broker login
and consent pages can be configured to display attributes of the client application. The
pages are generated from Velocity templates located on the Identity Broker Server.
Information about how to customize these templates is in the UnboundID Identity Broker
Administration Guide.

OpenID Connect Scopes

OpenID Connect defines a set of standard scopes to determine which of the OpenID Connect
claim values can be requested from the /userinfo endpoint. A set of standard scopes is
installed with the Identity Broker. Additional or custom scopes can be created by the Identity
Broker administrator.

In the Identity Broker, scopes are defined in terms of resources. Resource are generated from
attributes defined in the SCIM Data View Schemas configured for the back-end data store. The
OpenID Connect standard scopes are all predefined within the Identity Broker and reference
the user attributes represented in the default User schema. For example, the resource
urn:scim:schemas:core:1.0:email is defined by the OpenID Connect email scope.

OpenID Connect scopes and claims are documented in the specification
(www.openid.net/specs). The only required scope is openid, which informs the Identity Broker
that the client is making an OpenlID Connect request. If the openid scope value is present, the
Identity Broker will return an ID Token with an access token. The claims returned are
governed by both Identity Broker policies and the scopes represented by the access token sent
by the Identity Broker.

The scopes and claims available in the Identity Broker can be viewed in the Identity Broker
Console or with the broker-admin command line tool. See the UnboundID Identity Broker
Administration Guide for details.

How Policy Affects the Data Returned to an
Application

The policies defined by the Identity Broker administrator will determine the resources that are
returned to the client application. For example, if the client application requests the OpenID
Connect scope profile, the policies defined for the Identity Broker may restrict access to
sensitive attributes such as birthDate and userName, but return other attributes within that
scope.

Chapter 2: Getting Started with Application Development

This Attribute-Based Access Control (ABAC) model delivers partial results instead of denying
access to all attributes in the scope. If an application request to the Identity Broker is
delivering partial results, it may be due to policy settings.

See the UnboundID Identity Broker Administration Guide for more information about policies.

How Policy Affects the Data Returned to an Application

About Data Access Requests

The Identity Broker's policy engine governs the conditions by which an application can access
resources. Creating policies requires understanding the structure of a data access request. If
default policies were installed, the Consent Policy grants access to data requests based on
consent from the resource owner (usually an end user).

A request consists of the following parameters:
Subject - Identifies the application requesting access to specified resources.

Action - Identifies the operation that the application would like to perform on the specified
resources, such as "read."

Consent Owner - Identifies the owner who has the authority to grant permission to the
subject for action on the specified resources.

Purpose - Identifies the reason for the subject's request to access the specified resources.
This parameter is optional.

Resource - Identifies one or more sets of URNs (Uniform Resource Names) that identify the
data being requested. Each URN can represent a resource attribute or a resource group. The
representation of these is hierarchical. This hierarchy is important for policy evaluation. A top-
level resource collection is considered the ancestor, and any lower level resources or
attributes are considered descendants. For example,

e urn:scim:schemas:core:1.0:name, represents the components of a user's name.

e urn:scim:schemas:core:1.0:name.familyName, represents a resource as a sub-
attribute of the complex name attribute.

Resource Groups, like resources, are also identified with a URN. A resource group represents a
set of resources that are not in a hierarchy. The advantage of creating resource groups is that
a request can specify the group and not need to specify all of the attributes in a resource
hierarchy.

About Policy Evaluation

For a policy to be evaluated against an authorization request, the request needs to match the
values specified in the policy <Target> element first. If the target for the request matches the
target for the policy, the rules in the policy are evaluated. This occurs for each Identity Broker
policy.

Just as there is a target for the policy, there is a target for each rule. For the rule <Target>
element to be evaluated, a value in the request must match, as defined in the <Match>
element. If the request matches a value, the rest of the conditions of the rule are evaluated.

Note
If no target is specified for a policy or a rule, the policy or rule is always evaluated.

If the conditions of a rule are satisfied, the result can be either "permit" or "deny" for that
single rule. If there are multiple rules in a policy, the rule combining algorithm for the policy
determines how the rule evaluation results are combined into a single policy decision.

-10 -

Chapter 2: Getting Started with Application Development

If there are multiple policies that apply to the request, a policy-combining algorithm
determines how the decisions rendered by multiple applicable policies are to be combined to
form an ultimate decision by the Identity Broker. By default, the combining algorithm for
Identity Broker policies is deny-overrides. This can be changed with the dsconfig tool. See
the UnboundID Identity Broker Installation Guide for details.

Accessing Resources by Consent

A requested resource can be either a resource or a resource group. Access is granted to a
resource if one of the following is true:

« A consent object contains an exact match on the resource ID.
¢ A consent object contains an ancestor of the resource ID.
« A consent object contains a resource group, of which the resource is a member.

« A consent object contains a resource group, of which an ancestor of the resource is a
member.

« Consent has been granted to all descendant resources of the resource.

Consent is granted to a resource group if one of the following is true:
« A consent object contains an exact match on the resource group ID.

« Consent has been granted to all members of the resource group.

Obtaining Usernames and User IDs

The Identity Broker default authentication scheme requires username and password
credentials. To support additional authentication schemes, many of the Identity Broker REST
APIs, such as the /consents API endpoint, require that end users be identified using a unique
identifier rather than a username. This unique identifier is equivalent to a user's SCIM ID and
can be obtained in the following ways:

e Inthe user id field of an OAuth 2 token response.

e Inthe user id field of an OAuth 2 token validation response.
e Inthe sub claim of a parsed OpenID Connect ID token.

e Inthe sub claim of an OpenID Connect UserInfo response.

e Inthe urn:scim:schemas:core:1.0:id value of a user's SCIM representation.

The Identity Broker REST API will accept self as a user ID to retrieve information for the
owner of the OAuth 2.0 access token.

-11 -

Character Length of Authorization Codes and Tokens

Character Length of Authorization Codes and Tokens

The authorization codes, access tokens, and refresh tokens issued by the Identity Broker are
about 150 characters in length. This may be important for client applications persisting data.

Client IDs are standard universally unique identifiers (UUIDs) and are 36 characters.

Working with the Sample Sign In Application

A sample client application is installed with the Identity Broker Server. It can be used as a
model for a client application using the OpenID Connect /userinfo endpoint. The application
provides the OAuth 2.0 implicit grant flow of an end user signing into the Identity Broker, the
Identity Broker prompting the end user for consent to access resources, and the application
retrieving the information that is configured in the UserInfo Claims Map on the Identity Broker
Server.

The following are provided with the sample sign in application in <server-root>/UnboundID-
Broker/samples/sign-in.zip:
e README.txt — describes how to configure and deploy the application either on the
Identity Broker Server or on an external server.

e sign-in.war - the packaged web application that can be deployed on an external
server. Included in this package are:
= ubid-broker-client.js — a reusable script for the popup and redirect log in flows
to the Identity Broker Server, and the UserInfo claims retrieval. This script uses
OpenID Connect and the OAuth2 Implicit Grant authorization flow.

e setup.sh, setup.bat — the script to install the sample application on the Identity Broker
Server.

Deploying the Sample Application

If the sample applications were not installed with the Identity Broker initial configuration, or if
they need to be installed on a server other than the Identity Broker, perform the following
steps to deploy the sample application:
1. Inthe <server-root>/UnboundID-Broker/samples directory, unzip the sign-in.zip
file.

2. Review the README . txt file for instructions on deploying the application within the
Identity Broker Server or on an external server.

3. Launch the sample application in a browser with an address such as
https://<host:port>/samples/sign-in.

-12 -

Chapter 2: Getting Started with Application Development

Sign In Sample Application Pages

The following are the Sign In Sample application's pages. Launch the application to view and
reuse the template and login flows.

Landing Page
When the application is launched, the landing page displays.

Unbound Sign In Sample o-

This sample application demonstrates how to create an application that signs in to the Ildentity Broker using OpeniD
Connect and retrieves user information using the Userlnfo Endpoint. The source HTML and JavaScript can be found in
the WAR file in sign-in.zip in the samples directory of your |dentity Broker installation

Sign In to the Identity Broker to view your user information.

Sign In (popup) Sign In (redirect)

An end user can log in through a popup window, to maintain the client side state, or through a
redirect, if a popup must be avoided. Both are provided in the sample.

Login Page

This is the Identity Broker login page, which can be configured from the Identity Broker
Server. The end user enters account credentials into the fields. The account must exist in a
data store that is configured to communicate with the Identity Broker Server. If the client
application is configured to use an external identity provider to log in, an icon for that provider
is displayed on the page. See About the Identity Broker as Relying Party for information about
the login and account creation flows.

Account Sign In knboundiD

The UnboundID Sign In Sample application requested authorization

Sign in with Username and Password Sign in Using Another Account

Username

#§ Sign in Using Google
sampleuserl

ﬁ Sign in Using Facebook
Password

Not signed up yet?

Powered by UnboundD Identity Broker

The application sends its client ID and a request to the Identity Broker for the attributes in the
requested scopes. If no scope is provided, the Identity Broker will return the default values
configured for the application.

If enabled, usernames and passwords can be recovered. See Username Recovery and
Password Reset. Both require configuration on the Identity Broker server and the Identity Data
Store. See the UnboundID Identity Broker Administration Guide for details.

-13 -

Working with the Sample Sign In Application

If enabled, a user account can be created by clicking the Sign up for an account link. This
requires configuration on the Identity Broker server. See the UnboundID Identity Broker
Administration Guide for configuration details.

Account Registration

If registering a new user account, the following is displayed:

Account Sign Up lnboundID

Username

Joeuser

Name

Joe

User

Create Password
Confirm Password

Email

joe@example.com

Mobile Phone Number

000-000-0000)

SignIn | Powered by Unbound|D Identity Broker

Enter the required information. The new account is added to the default User schema and the
Users Data View. This function is enabled by default. To disable it, the OAuth Servlet Extension
register-enabled must be setto false with the dsconfig tool. See the UnboundID Identity
Broker Administration Guide for information.

Linked Accounts

If the application was configured to use an external identity provider as a login option, such as
Google or Facebook, the identity provider and Identity Broker accounts can be linked. This
requires the configuration of specific scopes. See the UnboundID Identity Broker
Administration Guide for information.

Confirm Consent Page

This is the Identity Broker consent page, which can be configured from the Identity Broker
Server. The application returns a request for end user consent.

-14 -

Chapter 2: Getting Started with Application Development

Information Access Request inboundID

UnboundID Sign In Sample
Sample application demonstrating [dentity Broker Sign In and Userinfo retrieval

Requests the Following Access to Your Account Information:

Wiew your profile data.

Manage your OpenlD Cennect data.

Deny Access

sampleuser! | Sign Out | Powered by UnboundID Identity Broker

The end user can view the data requested from the profile by clicking the links on the page.

Approval Page

If the end user clicks Allow, the approval page is displayed. The information that was
retrieved from the UserInfo Claims Map is listed under User Information.

WnboundiD Sign In Sample o-

This sample application demonstrates how to create an application that signs in to the Identity Broker using OpenlD
Connect and retrieves user information using the Userinfo Endpoint. The source HTML and JavaScript can be found
in the WAR file in sign-in.zip in the samples directory of your Identity Broker installation

The authorize request was successful.

You are signed in.

Access Token

AaTzDPoT9Th-LQLoUyUWS 79K afv AAAAAAAAAAAGhtz 82pwEZ 9F 4bOv2QGWLTWEA1Q6DyeHA OUTF99_D22SnE
Y G-_|pPoBojjPSY6EvniaelBs0bAM 3ginTSinRapBETRaJk CZ5dKNHNoTY jw

User Information

sub

98a23-9dc 49607-dBeb-dacc-889a-ha2bacd23a52
updated_at
1429302415

name

Sample Userl
family_name

Usert
preferred_username
sampleuser1
given_name

Sample

Sign Out

Sign Out

When an end user clicks Sign Out, the access token is invalidated but the user's consent
remains intact for this application.

-15 -

Working with the Profile Manager Application

Working with the Profile Manager Application

The Profile Manager application demonstrates how an end-user can view and manage the
consents given to a client application that requested access to information. The consent and
access history APIs used by this application are discussed in User Consent and Application
Access Records.

The following are provided with the application in <server-root>/UnboundID-
Broker/samples/profile-manager.zip:

e README.txt — describes how to configure and deploy the application either on the
Identity Broker Server or on an external server.

e profile-manager.war — the packaged web application that can be deployed on an
external server.

e setup.sh, setup.bat — the script to install the sample application on the Identity Broker
Server, if it was not installed during the Identity Broker installation.

Deploying the Sample Application

If the sample applications were not installed with the Identity Broker initial configuration, or if
they need to be installed on a server other than the Identity Broker, perform the following
steps:

1. Inthe <server-root>/UnboundID-Broker/samples directory, unzip the profile-

manager.zip file.

2. Review the README . txt file for instructions on deploying the application on an external
server.

3. Launch the sample application in a browser with an address such as
https://<host:port>/samples/profile-manager.

Profile Manager Application Pages

The following are the Profile Manager application's pages. Launch the application to view the
template and login flows.

Sign In Page
When the application is launched, the landing page displays.

- 16 -

Chapter 2: Getting Started with Application Development

Account Sign In binboundID

The Unbound|D Profile Manager Sample application requested autherization

Sign in with Username and Password Sign in Using Another Account

Username

*§ sianin Using Google
sampleuseri

n sign in Using Facebook
Password

Not signed up yet?

Powered by UnboundD Identity Broker

An end user can log into the Identity Broker. The account must exist in a data store that is
configured to communicate with the Identity Broker Server. If the client application is
configured to use an external identity provider to log in, an icon for that provider is displayed
on the page. See About the Identity Broker as Relying Party for information about the login and
account creation flows.

If enabled, usernames can be recovered and passwords can be changed. Both require
configuration on the Identity Broker server and the Identity Data Store. See the UnboundID
Identity Broker Administration Guide for details.

If enabled, a new user account can be created by clicking the Sign up for an account link.
See the UnboundID Identity Broker Administration Guide for details.

User Search Page

If logging into the application as the Identity Broker administrator, this page is displayed. End
users will not see this page.

Enter a name, email address, or phone number to retrieve information for an end user. A new
user account can also be created.

Unbound Profile Manager 2 aimn > O~

l Search ¥ Actions ~

Search for a user profile above by username, full name, email or phone

An existing user must reside in the backend user store that is configured for the Identity
Broker, and that user store must be mapped to a Data View in the Identity Broker. If the
Identity Broker was installed with sample data (an installation option), or if the 1oad-sample-
data tool was used post-install, two user accounts can be accessed: sampleuserl and
sampleuser2.

Account Registration

If registering a new user account, the following is displayed:

-17 -

Working with the Profile Manager Application

Account Sign Up nboundID
Create an Account Sign up Using Another Account
Usemame *

\ Sign up Using OIDC

-" Sign up Using Google
Name *

{3 sion up Using Facebook

Email

Mobile Phone Number

Create Password *

Confirm Password *

I'm not a robot

Signin | Powered by UnboundID Identity Broker

Enter the required information. The new account is added to the default User schema and the

Users Data View.

Information Access Request

If a user is logging into the application for the first time, the application can ask the user's

consent to access account information.

Information Access Request linboundID

UnboundID Profile Manager Sample
€| Sarple appication demonsirating user profite retioval and update via SCIM as well as Consent rerieval and updata via the consent REST APL

Requests the Following Access to Your Account Information:

Add or remove external identity providers that are linked to your account.

View your email adidress.

View your phone number.

View your profile data

View the consents that you have given to, or removed from, applications that have asked to access your information.
Update your phone number

Give or remove consent for one or more applications o access your information.

Update your postal address.

View your postal address.

Manage your OpeniD Connect data.

il
View the history of application requests o access your information. Ehpdats Svl
5 Purpose: Any
hange your password. Aoors Undets
Update your email address. Information Details
Deleta your entire profile. um:scim:schemas.core: 1,0:emails.preferred
Update your profile data. umn:unboundid:oide:1.0:emailVerified

View external identity providers that are linked to your account.

Deny Access

sampleuser! | SignOut | Powered by UnboundID Identity Broker

The details for each information type show the specific attributes that are accessed.

-18 -

Chapter 2: Getting Started with Application Development

Profile Results Page

The information that was retrieved or added for a user is displayed.

Wnbound Profile Manager 2 admin~ O~
Account Profile Interests

Name Sample User1

Usemame sampleuser1

Shared Information

View By: [Apps | Data

ExternalApplicationTwo
This is an untrusted extemnal application

InternalApplicationOne
This a trusted internal application

From this page, end users can perform the following:
« View and edit profile data.
« View consents granted to applications that request access to data.
+ View and remove the applications that can access data.

o View and edit the types of information (Interests) that the user would like to see from an
application.

Username Recovery and Password Reset

If enabled on the server, the Identity Broker can retrieve a username for an account or change
a password. Both require an Identity Data Store configured as a Broker User Store. On the
Sign In page, click the Forgot username? link.

Recover Username kinboundID

Enter Account Informaton
To start the process of recovering your usermname, enter the email address or phone number associated with your account.

Account Information *
I'm not a rebot

Signin | Powered by UnboundiD Identity Broker

-19 -

Working with the Profile Manager Application

The user can enter information related to the account. The reCAPTCHA option is also
configurable on the Identity Broker server. After the user clicks Continue, a verification code
is delivered through a method selected on the Identity Data Store.

Recover Username - Code Verification bnboundID

Recovery Code Sent

A usemame recovery code has been sent via your account recovery contact method. When you have received the code, enter it below. If you do
not receive the code, you can

Usemame Recovery Code

The user enters the verification code. If the verification code is incorrect, and reCAPTCHA is
enabled, the verification page will display a reCAPTCHA prompt for the user's next attempt.

If verification succeeds and the account was found, the login page is displayed. If the account
was not found, the verification will fail.

Note
No error is displayed to the user stating that the account was not found. This is to prevent
phishing or any other type of exploitation that can be used by discovering which users are
registered with this application. Text can be added to the server templates to help a user
navigate to the next step.

Linked Accounts

If the application was configured to use an external identity provider as a login option, such as
Google or Facebook, the identity provider and user accounts can be linked. This requires the
configuration of specific scopes. See the UnboundID Identity Broker Administration Guide for
information.

Linked Accounts

_‘] Google
n Facebook

-20 -

Chapter 3: Authentication

The Identity Broker supports the OpenID Connect Standard 1.0, which enables a client
application to use the Identity Broker as its Identity Provider. OpenID Connect enables the
application to offload its user authentication function to the Identity Broker, which will prompt
the end user for a login name and password and issue an ID Token that the client application
can use to validate the user's identity.

This chapter provides general information for applications to take the role of an OpenID
Connect Relying Party while the Identity Broker acts as the OpenlD Provider.

Obtaining an access tokens, refresh tokens, and token validation are fully documented in the
OpenID Connect 1.0 specification.

This section describes the OpenID Connect request and response flow through the Identity
Broker and includes the following:

OpenlID Connect Request

OpenID Connect Response

The Identity Broker Logout Endpoint

-21 -

Chapter 3: Authentication

OpenID Connect Request

To authenticate an end user, a client application must have the following information from the
Identity Broker Server administrator:

client identifier - An unique identifier issued to the client by the Identity Broker Server to
identify itself.

client secret - A shared secret established between the Identity Broker Server and the client
application that is used for signing the ID token when it is returned to the client application.

authorization, token, validate, endpoint URLs - The Identity Broker’s HTTP endpoint
addresses for authenticating the end user, obtaining authorization, and issuing and validating
access tokens. These are obtained from the Identity Broker administrator.

userinfo endpoint - The address of the resource that, when presented with a token by the
client, returns attributes about the end user.

The client application uses this information to create an OAuth 2.0 request to obtain an access
token.

The following example request uses the implicit grant flow:

GET /authorize?response type=token%20id token&client id6c7283d2-92d6-4767-9ceb-adablebeTe
0d&state=4848573984983&scope=openid$20profileé&

redirect uri=https%$3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

An OAuth 2.0 request becomes an OpenID Connect request with the inclusion of the openid
scope. With the openid scope and the response type=id token, the clientis requesting an
identifier for the user as well as the ID token. The Identity Broker Policies will determine the
attributes that the client application can access within any scopes that are defined.

OpenlID Connect Response

If the end user logged in properly and authorized the client application request, the response
from the Identity Broker Server includes an access token. If the request is an OpenID Connect
request (contains the openid scope and response type=id token) the OAuth 2.0 access
token response will include the access token and id token parameters. The following is
encoded as a JSON Web Token in the id token:

aud (audience) - The client for which this token is intended.

exp (expiration) — The time after which this token is no longer valid.

iat (integer). The time at which the token was issued.

sub (subject) - A locally unique identifier for the end user. This value is never reassigned.

iss (issuer) — An HTTPS URI that is the fully qualified host name of the issuer, which is paired
with the user identifier to create a globally unique identifier.

-22 -

The Identity Broker as Relying Party

nonce - The nonce value sent in the request to ensure that the response is original and cannot
be reused.

The id token parameter ensures that the data received by the client application has not been
modified. The Identity Broker can only issue assertions about registered applications and user
identifiers within its domain. The token is validated by the Identity Broker /oauth/validate
endpoint. The client application must do the following:

o Verify that the aud matches its client ID and iss matches the domain of the server that
issued the client ID.

e Store the user identifier and iss together.

The following is an example of a base64url decoded ID Token:
{

"iss": "https://server.example.com",
"sub": "24400320",

"aud": "s6BhdRkgt3",

"nonce": "n-0S6 WzA2Mj",

"exp": 1311281970,

"iat": 1311280970,

"auth time": 1311280969,

The Identity Broker as Relying Party

The Identity Broker, as relying party, acts as a client of an external identity provider service.
Users can log into the Identity Broker with external identity provider accounts. The Identity
Broker provides authentication claims, account linking, and profile retrieval services to the
client application.

1. Login or
Link Accounts i < >
I External Identity ldentlty Broker
Client Agent - Provider UnboundID
(Browser) I 2. Redirect Identity
_J Id Provider Data Store Data Store
s Loain? — Mapping Adapter ~
. Login
Consent 4. Redirect Data Store o
““““““ \ Adapt Other
I Custom External | Data View apter LDAP
slréj P?tr;y 5.Retrieve & | Id Provider(s) | Data Store
enti capture attributes 1 | T O
Provider | Id Provider | DSatz View i Custom Data ! —
| Mapping : chema |, Store Adapter_;
J— L)
63 —
Any other
Data Store
N

Data Flow with an External Identity Provider

The Identity Broker must be registered as an application with the identity provider to enable
this flow. External identity providers are configured through the Identity Broker Console or
through the broker-admin command-line tool.

-23-

Chapter 3: Authentication

A social login link (and icon) is displayed on the Identity Broker’s default login page for
applications configured to use an external identity provider. The login template reads this
information through the LoginPageContextProvider. See the UnboundID Identity Broker
Administration Guide for more information.

When an end user clicks an external identity provider link, a POST request is sent to the
/idpLogin.do endpoint with the following two form parameters:

idp=<external identity provider name>
client id=<requesting application client id>

The /idpLogin.do endpoint redirects the browser to the external provider's authorization
endpoint with an OpenID Connect code request:

response type=code

client id=<relying party application client id>

redirect uri=https://<rp host>/metadata/vl/providers/<external identity provider name>/ca
llback

state=<state value generated by the /idpLogin.do endpoint>
scope=<all scopes registered with the relying party application, including ‘openid’>

After the end user authenticates to the external identity provider and authorizes the OpenID
Connect request, the external provider redirects the browser to the Identity Broker's
/idpLogin.do endpoint, as provided in the redirect uri value. If a matching account is
found at the Identity Broker, then the end user will need to log in to link the Identity Broker
account and the account at the external provider. Otherwise, a new Identity Broker account
can be created.

Note
The redirect uri value used in this flow should be registered as a redirect URI with the
application used by the Identity Broker at the external identity provider. It should have the form
https://<identity broker>/idpLogin.do?idp=<idp name>.

Creating an Account through Identity Provider Login

If an end user does not have an Identity Broker account, one can be created by the Identity
Broker with the information obtained from the external identity provider.

The Identity Broker applies the Data View mappings for the identity provider (configured in the
Identity Broker Console, or with the broker-admin tool) to the retrieved profile data. If any
attribute value required by the Data View is missing, a registration form is displayed to prompt
the end user for missing data. The user supplies the information, which is submitted to the
SCIM /registration.do endpoint with the following parameters. If no additional information
is needed, a new Identity Broker account is created.

client id=<requesting application client id>

dataview=<dataview name>

resource=<dynamically generated SCIM representation of the account to be created>

idp token=<a token that contains state information about the authentication/registration
request>

The user is redirected to the authorization URI specified by the requesting client application,
and the flow continues to the consent page for the scopes requested by the application. If the
user consents, the application receives an access token issued by the Identity Broker.

-24 -

The Identity Broker as Relying Party

Linking Identity Broker and External Identity Provider Accounts

The Identity Broker provides information linking a local account to an external identity
provider account through the Metadata REST API at the /metadata/v1/<userId>/links
endpoint. Client applications can use this API to retrieve or remove an existing link, or to add a
new link.

Access to this endpoint is granted to an application by consent to use one of the following links
scopes:

Scopes for Linked Accounts

Scope name Function

read links Read the links attribute, excluding external IDP credentials.
read links_ authorizations Read external IDP credentials.

manage links Create, update or delete links.

Data provided by the /metadata/v1/<userId>/1links endpoint includes:
® accessToken
¢ expireTime
e refreshToken
e providerUserId

e provider

© name

° type

© description
© iconUri

o userInfoEndpoint (for OpenID Connect identity providers)

For information about using the /1inks endpoint, see the Identity Broker REST API Reference
online documentation. See Adding an Identity Provider Link to an Account for examples using
the /1inks endpoint to link accounts.

If any external identity provider attributes are mapped to the user's data view, values for
these attributes are copied to the user's local profile when logging in through an external
identity provider. Applications can also retrieve data from an external identity provider
account using data from the /metadata/v1/<userId>/1links endpoint.

Note
Access to external identity provider data requires consent from the end user.

-25-

Chapter 3: Authentication

Example Call for Links Data

If an application has an end user's unique SCIM ID and a bearer token for the read 1links and
read link authorizations scopes, it can obtain a list of the end user's linked identity
provider accounts, including the account IDs and access tokens needed for limited read access
to those accounts.

GET /metadata/v1/9f8a23-a7171c48-fde2-3224-9087-81167£65df2f/1inks HTTP/1.1
Accept: application/json
Authorization: Bearer VGltZSBwcmVzZW50IGFuZCBOaWllIHBhc3QgLyBBcmUgYm9O0aCBwZXJoYXBzIHByZXN
1bnQgaW4gdGltZSBmdXR1lcmU=

HTTP/1.1 200 OK
Content-Type: application/json

"count": 1,

"data": [
{
"accessToken": "SWYgYWxsIHRpbWUgaXMgZXR1lcm5hbGx5IHByZXN1bnQgLyBBbGwgdGltZSBp
cyBlbnJ1ZGV1bWFibGUu",
"expireTime": 1414178475000,
"provider": {

"appId": null,

"clientSecret": null,

"deletable": true,

"description": null,

"editable": true,

"iconUri": "https://<example.com>/icons/facebook 32.png",
"id": "DATTA",

"modifyTimestamp": null,

"name": "Facebook Relying Party App",
"permissions": null,
"type": "facebook"

}s
"providerUserId": "26091888",
"refreshToken": null

1,

"startIndex": O,

"totalResults": 1
}

Based on the accessToken, providerUserId, and provider. type values in the above
response, the application can formulate a profile request for the external identity provider. For
example, the following is a Facebook Graph API 2.0 request:

GET /v2.0/26091888 HTTP/1.1

Accept: application/json

Authorization: Bearer SWYgYWxsIHRpbWUgaXMgZXR1lcm5hbGx5IHBYZXN1bnQgLyBBbGwgdGltZSBpcyBlbnd
1ZGV1bWFibGUu

Host: graph.facebook.com

HTTP/1.1 200 OK
Content-Type: application/json

-26 -

The Identity Broker Logout Endpoint

"email": "tom.eliot@example.com",

"first name": "Tom",

"gender": "male",

"id": "26091888",

"last name": "Eliot",

"link": "https://www.facebook.com/app scoped user i1d/26091888/",
"locale": "en US",

"name": "Tom Eliot",

"timezone": O,
"updated time": "2014-06-10T20:38:29+0000",
"verified": true

}

Note
External identity provider APls are subject to change. See the external identity provider's
documentation for information.

The Identity Broker Logout Endpoint

A POST to the logout.do endpoint will invalidate a user’s session with the Identity Broker and
revoke the user's access tokens with either a single application or all applications registered
with the Identity Broker. The client id and redirect uri query parameters are both
optional.

If aclient idis not provided, all of that user’s access tokens will be revoked. If a client id
is provided, then only the access tokens for that application are revoked.

If a redirect uri is not provided, the browser will be redirected to the configured default-
logout-success-url for the Spring Security HTTP Servlet Extension (which defaults to
/view/login). If @ redirect uri is provided, then client id must also be provided. The
redirect uri value must match one of the redirect URIs configured for the application (which
is retrieved by the client id). The browser will be redirected to the provided redirect uri
after logout.

Request

The following is an example POST to the Identity Broker 1ogout.do endpoint:

POST /logout.do?client id=385b45d0-88bd-4973-a%c-06484ad27e42&redirect uri=https://examp
le-app.com/

Host: example.com

Content-Length: 0

Cookie: JSESSIONID=xpdpr7z6fxh31lrjdpygcmcelc

Response

The following is an example response:

HTTP/1.1 302 Found
Location: https://example-app.com/
Content-Length: 0

-27 -

Chapter 4: Authorization Flows

The Identity Broker provides an OAuth 2.0, token-based authorization service that supports all
OAuth 2.0 grant types outlined in RFC 6749. This service also provides additional functions to
validate and revoke access tokens.

This section describes the different OAuth 2.0 authorization flows through the Identity Broker
and includes the following:

About OAuth 2.0
The OAuth 2.0 Authorization Grant Types

Issuing Authorization Code Grant Requests

Issuing Implicit Code Grant Requests

Issuing Resource Owner Password Credentials Grant Requests

Issuing Client Credential Code Requests

Issuing ID Token Grant Requests

The Identity Broker Token Endpoint

-28 -

Chapter 4: Authorization Flows

About OAuth 2.0

The OAuth 2.0 authorization framework enables client applications to obtain access to
protected resources by using tokens. The security and privacy of user information relies on the
access requirements and consent flows configured for the client application. Consider the
following when configuring an application to connect with the Identity Broker:

Assign only the grant types needed by the application. For example, it should be rare
that an application needs to use both the code and the implicit grant types.

The application should request only needed scopes. Requesting only necessary
information ensures that a user's privacy is respected and maintained.

When a client receives an access token, it should not assume that all requested scopes
were granted. The token response will often contain the list of granted scopes. In the
case of the implicit grant type, the list of granted scopes will only be provided if they
differ from the requested scopes. The validation endpoint can always be used to get the
list of granted scopes.

Access tokens granted using the implicit grant type should be configured to be short-
lived.

Access tokens should be validated to confirm that they are intended for the client
application.

Any state information that must be preserved between requests should be stored using
the state parameter. The redirect uri value should not be used to store state.

OAuth 2.0 Authorization Grant Types

The OAuth 2.0 specification states that a client application must receive authorization from a
resource owner through an access token, to retrieve the owner's protected resources. The
Identity Broker supports all OAuth 2.0 authorization grant types:

Authorization Code Grant - This is a server-side redirection-based flow. The client
application redirects the end user (user agent) to the authorization endpoint (Identity
Broker) to grant or deny access to a resource. If access is granted, the Identity Broker
returns a redirection URI with an authorization code and then redirects the end user back
to the client application. The client application uses the authorization code to request an
access token from the Identity Broker Server. The Identity Broker validates the
authorization code and returns an access or refresh token to the client. The client
application can now use the access token to request resources. The access token serves
as both authentication of the client, and authorization to access the resources.

Implicit Code Grant - This is another redirection-flow, designed for web applications,
such as mobile applications or JavaScript applications running in browsers. The flow is

- 29 -

OAuth 2.0 Authorization Grant Types

similar to the authorization grant flow, except that the Identity Broker redirects the
client application with an embedded access token in the URI, rather than an authorization
code requiring a separate token request. The client secret is not used because it would
be stored (and be vulnerable) in the client. No refresh token is sent as this grant type is
designed for short-lived access to a resource.

Resource Owner Password Credentials Grant - This flow enables a user to log in
with a username and password to receive an access token. The client application can
then keep the access token for access to resources. The client is expected to discard the
username and password and keep the access token. This flow should only be used for
trusted client applications.

Client Credentials Grant - This flow enables a client's application server to exchange
the client ID and the client secret for an access token. This enables applications to
directly access resources that are specific to the application and are not tied to an
identity.

ID Token Grant - This enables a set of trusted applications to allow one application to
use an OpenlID Connect ID token, obtained by another application, as a credential for
obtaining an access token on behalf of an end user.

Issuing Authorization Code Grant Requests

The Authorization Code Grant flow follows these basic steps:

1.

2
3.
4
5

Redirect the user agent (end user) to the Identity Broker's authorization endpoint.
Resource owner authenticates and grants authorization.

Identity Broker redirects the user to a web application with an authorization code.

. The authorization code is exchanged for an access token.

A request to access resources is sent to the Identity Broker using the access token.

Step 1. Redirect the User Agent to the Identity Broker's Authorization Endpoint

The client application requires access to a protected resource and needs an access token that
represents the required permissions. The client application redirects the end user to the
Identity Broker's authorization endpoint (/oath/authorize). The HTTP request URL includes
the response type=code, the client id, and optional values for the redirect uri
specifying the redirect URL to redirect.

Example Redirection

GET /oauth/authorize?response type=code&client id=0d5e5af7-420c-4241-8cff-0cfd9d806e59&sc
ope=profile%20email&state=48389488&redirect uri=https%3A%2F%2Fwww.example.com%3A8443%2Fre
direct&prompt=login HTTP/1.1

Host:

<server.example.com>

-30 -

Chapter 4: Authorization Flows

Step 2. Resource Owner Authenticates and Grants Authorization

The authorization request is run through the Identity Broker Policies. If a policy rule results in
a denial, an error is generated. If the authorization request passes the policy rules, the
resource owner is sent an Identity Broker web page to provide credentials and consent if not
previously provided.

Step 3. Identity Broker Redirects User Agent to Web Application with
Authorization Code

If the resource owner has granted access to the client application, the Identity Broker redirects
the user back to the client web application and includes an authorization code that can be
exchanged for an access token.

Example Response

HTTP/1.1 302 Found

Location: https://<server2.example.com>?code=MF2AAQGBBlpxSGUtUYJQ020B1lplkw3CNcM5QRmok-vzK
YV1tlykXrZE2AGOF3J3mQjUYOSP3dCOaleYEUWSKmMAQVx6mCTmT9gzt In45K9KKJ22p8I1JHILXGEg20UVastate=
48389488

Step 4. Exchange Authorization Code for an Access Token

The client application posts a request to the token endpoint (Identity Broker Server) to acquire
an access token. This step is not performed by the browser.The client request must supply the
client IDand client secret using HTTP Basic authentication.

Example Request

POST /oauth/token HTTP/1.1

Host: <server.example.com>

Authorization: Basic czQER9k3dD94aldplr957Udk8
Content-Type: application/w-www-form-urlencoded

grant type=authorization code&code=MF2AAQGBBlpxSGUtUYJQ020Blplkw3CNcM5QRmok-vzKYV1tlykXrZ
E2AGOF3J3mQjUYOSP3dCOaleYEUWSKnav aXvvyuxT30ogtZT-dgNZEnk6X0XaoPf6BVI1VRibA
&redirect uri=https%3A%2F%2Fserver2%2Eexamples2Ecom

The Identity Broker Server validates the authorization code and verifies that the redirect uri
is the same as in Step 1. The response may include a refresh token and/or an ID token,
depending on the request. If successful, the server issues the following response:

Example Response

HTTP/1.1 200 OK

Cache-Control: no-store

Pragma: no-cache

Content-Type: applicaton/json;charset=UTF-8
Transfer-Encoding: chunked

Server: Jetty(8.1.12.v20130726)

-31 -

OAuth 2.0 Authorization Grant Types

"access token":"MF2AAQGBBlpxSGUtUYJQo20Blplkw3CNcM5QRmMok-vzKYV1t1lykXrZE2AGOF3JI3mQjUYOSP
3dCOaIeYEUWSKMYeiJy-24paR9YLEZpKDc-mwlE4MLELRGAYhPMtAOBA",

"token type":"bearer",

"expires in":41558,

"scope":"email profile"

Step 5: Request Access to the Resources Using the Access Token

The client application can now query the Identity Broker server (acting as the resource server)
for a restricted resource by passing along the access token in the authorization header of the
request.

Example Request

GET /scim/resource HTTP/1.1

Host: server.example.com

Authorization: Bearer MF2AAQGBBlpxSGUtUYJQ020Blplkw3CNcMS5QRmok-vzKYV1tlykXrZE2AGOF3J3mQjU
YOSP3dCOaIeYEUWSKMYeiJy-24paR9YLEZpKDc-mwlE4ML8LRGAYhPMt AOBA

The resource server returns the requested information.

Issuing Implicit Code Grant Requests

The Implicit Code Grant flow follows these basic steps:
1. Redirect the user agent (end user) to the Identity Broker's authorization endpoint.
2. Resource owner (end user) authenticates and grants authorization.

3. Redirect user agent to a web application with a URI fragment containing the access
token.

4. Client-side web application responds with an HTML page with a script that retrieves the
access token from the URI fragment.

5. Request access to resources using access token.

Step 1. Redirect the User Agent to the Identity Broker's Authorization endpoint

The client application, redirects the end user to the Identity Broker's authorization endpoint.
The HTTP request URL includes the response type=token, the client id, which was
determined at application registration, the redirect uri, and scope.

Example Redirection

GET /oauth/authorize?response type=token&client id=6c7283d2-92d6-4767-9ceb-adab6le5e7e0d&s
tate=4848573984983&redirect uri=https$3A%2F%2Fserver2%2Eexample%2Ecom&scope=profiles20ema
il HTTP/1.1

Host: <server2.example.com>

-32-

Chapter 4: Authorization Flows

Step 2. Resource Owner Authenticates and Grants Authorization

The authorization request is run through the Identity Broker Policies. If a policy rule results in
a denial, an error is generated. If the authorization request passes the policy rules, the
resource owner is sent an Identity Broker web page to provide credentials and consent if not
previously provided.

Step 3. Redirect User Agent to Web Application with Access Token URI Fragment

Once the resource owner has granted access rights to the client application, the Identity Broker
sends a redirect response, sending the user back to the client (web application). The redirect
URI includes an access code in the #hash fragment of the URI.

Example Redirect Response

HTTP/1.1 302 Found

Location: https://<server2.example.com>/callback#access token=1MF2AAQGBBlpxSGUtUYJQo20Blp
1kw3CNcM5QRmok-vzKYV1tlykXrZE2AGOF3J3mQjUYOSP3dCOaleYEUWSKMYeiJy-24paROYLEZpKDc-mwlE4MLEL
RgAyhPMtAoBA&token type=bearer&state=4848573984983&expires in=43062

Step 4. Client-Side Web Application Responds with an HTML Page

The user agent (browser) is redirected to the URL and the client application responds by
serving an HTML page containing scripts to parse the access token from the URI. If a state
value is present, the script should evaluate the parameter.

Step 5: Request Access to the Resources Using the Access Token

The client can now query the Identity Broker Server (as the resource server) for resources by
passing along the access token in the authorization header of the request.

Example Request

GET /scim/resource HTTP/1.1

Host: <server.example.com>

Authorization: Bearer MF2AAQGBBlpxSGUtUYJQo20Blplkw3CNcM5QRmok-vzKYV1tlykXrZE2AGOF3J3mQjU
YOSP3dCOaIeYEUWSKMYeiJy-24paR9YLEZpKDc-mwlE4ML8LRgAYhPMtAOBA

The resource server returns the requested information.

Issuing Resource Owner Password Credentials Requests
The Resource Owner Password Credentials Grant flow follows these basic steps:
1. Client asks for the resource owner's (end user's) credentials.

2. Client makes an authorization request to the Identity Broker's token endpoint
(/oauth/token).

Client receives the access token.

4. Request access to resources using the access token.

-33-

OAuth 2.0 Authorization Grant Types

Step 1. Client Asks for Resource Owner's Credentials

The client application prompts for the resource owner's username and password when the
application requires access to resources that are protected by the Identity Broker, but has not
yet acquired an access token. This flow should only be used for trusted client applications.

Step 2. Client Makes an Authorization Request at Token Endpoint

The client makes an authorization request to the Identity Broker's token endpoint by passing in
the client idand client secret and the resource owner's username and password. The
client idandclient secret can be passed on intwo ways: as a basic authentication
request header or as part of the parameters passed in the body of the request.

Example Request

The following HTTP request uses basic authentication with the client id and client secret,
concatenated, encoded, and separated by a colon. The format is:

Authorization: Basic <Baset4-encoded client id:client secret>

POST /oauth/token

Host: <server.example.com>

Authorization: Basic czQER9k3dD94alIdplr957Udk8
Content-Type: application/w-www-form-urlencoded

grant type=password&username=johndoeé&password=A3ddj3w

If the request is valid, the Identity Broker returns an access token (and possibly a refresh
and/or ID token) to the client application. Once the client receives the response, it should
discard the resource owner's username and password.

Example Response

HTTP/1.1 200 OK

Cache-Control: no-store

Pragma: no-cache

Content-Type: applicaton/json;charset=UTF-8
Transfer-Encoding: chunked

Server: Jetty(8.1.12v20130726)

{

"access token":"MF2AAQGBBlpxSGUtUYJQo20Blplkw3CNcM50RmMok-vzKYV1t1lykXrZE2AGOF3J3mQjUYOSP
3dCO0aleYEUWSKFEDrIpaEn5NOMfAM1BjZ50YLHU0L823L2JsMn71i2wug",

"token type":"bearer",

"expires in":42203,

"scope":"profile",

}

Issuing Client Credentials Code Requests

The client credentials grant flow follows these basic steps:
1. Client makes an authorization request to the Identity Broker's token endpoint.

2. Client receives the access token.

-34-

Chapter 4: Authorization Flows

Step 1. Client Makes an Authorization Request at Token Endpoint

The client makes an authorization request to the Identity Broker's Token endpoint by passing
the client idand client secret . The client idand client secret can be passedonin
two ways: as a basic authentication request header or as part of the parameters passed in the
body of the request.

The following HTTP request uses basic authentication with the client id and client secret,
concatenated, and encoded.

Example Request

POST /oauth/token HTTP/1.1

Authorization: Basic amFiYmVyd29ja3k=

Content-Length: 41

Content-Type: application/x-www-form-urlencoded; charset=utf-8
Host: server.example.com

grant type=client credentialsé&scope=email

Step 2. Client Receives the Access Token

If the request is valid, the Identity Broker returns an access token. If the access token expires,
the client credentials grant can be rerun to obtain a new access token.

Example Response

HTTP/1.1 200 OK

Cache-Control: no-store

Pragma: no-cache

Content-Type: applicaton/json;charset=UTF-8
Transfer-Encoding: chunked

Server: Jetty(8.1.12v20130726)

{

"access token":"MF2AAQGBBlpxSGUtUYJQ020Bl1plkw3CNcM5QRmok-vzKYVItlykXrZE2AGOF3J3mQjUYOSP
3dCO0aIeYEUWSKFEDrIpaEnSNOMfAM1B]j Z50YLHU0L823L2dsMn712wug",

"token type":"bearer",

"expires in":42203,

"scope":"profile",

}

Issuing ID Token Grant Requests

A set of cooperating, trusted applications can use the ID Token Grant type to allow one
application to use an OpenID Connect ID token, obtained by another application, as a
credential for obtaining an access token on behalf of an end user. This enables a set of non-
web-based applications to obtain access tokens for a particular end user, without the need for
repeated prompts the end user for credentials. This grant type is based on the JSON Web
Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants (draft-ietf-
oauth-jwt-bearer-12) specification, but is not intended to conform strictly to that spec.

-35-

OAuth 2.0 Authorization Grant Types

A request made using the ID Token Grant type is similar to a request made using the Resource
Owner Password Credentials Grant type. However, the username and password parameters
are replaced by an assertion parameter, with a valid JWT ID token as its value.

To use this grant type:

o All applications involved must be registered with the Identity Broker to use the ID Token
grant type. When using the Identity Broker Console, the ID Token grant type should be
selected when adding an application. When using the broker-admin tool, specify the
urn:unboundid:oauth:grant type:id token grant type.

e A shared ID token can be obtained using any standard OpenID Connect grant type. In
addition, the Identity Broker allows a client using the Resource Owner Password
Credentials Grant type to obtain an ID token by using a response type parameter with a
value of id_token.

e An ID token obtained by an application that is not registered to use the ID Token Grant
type cannot be used to make an ID Token Grant type request. Conversely, any
application registered to use the ID Token Grant type may use an ID token obtained by
any other application registered to use the ID Token Grant type.

« All applications should be secure and highly trusted. It is the responsibility of the
applications to make sure that ID tokens are stored and shared in a secure manner.

The following example shows an application using the Resource Owner Password Credentials
Grant type to obtain an access token and an ID token. The client provides a response type
parameter with a value of 1d_token, which instructs the server to return an ID token. (The
response has been shortened in the example.) Once the token is received, the application must
be able to securely store it and share it with other trusted applications.

POST /oauth/token HTTP/1.1

Authorization: Basic OTZhNmV]jY2MtMWEyMSOOOWRJLTg4YzQtNmUSODE2NDY20DRhO1BxY3ZkVFZCM3I=
Content-Length: 97

Content-Type: application/x-www-form-urlencoded; charset=utf-8

Accept: application/json

Host: server.example.com

grant type=password&username=user.l00&password=password&response type=id token&scope=open
id+email

HTTP/1.1 200 OK

Cache-Control: no-store

Content-Type: application/json;charset=UTF-8
Pragma: no-cache

Server: Jetty(8.1.16.v20140903)
Transfer-Encoding: chunked

{

"access token": "AVCGkIwEoDOKeQotjBQ8gVZvNq4HAAAAAAAAAADr3dRArNAS3AN]XsFfu686hNNQ8ZN2 1
Otky2tQun0g7Z21VgRrKAcfjQ62cazYbyzse3SIKIKfbnlnxRYqlIGEzD xHSDtepE04JhrzXs2cB0Q",

"expires in": 43199,

"id token": "eyJhbGciOiJIUzI1NiJ9.eyJhdXRoX3RpbWUiOjEOMzI20DUWNDYsImV4cCI6MTQzM]Y4ANTkO

- 36 -

Chapter 4: Authorization Flows

Niwic3ViIjoiOWY4YTIzLTASOWMAYmQ3LTQ2YTItMzd1Zi11iYzIOLWYIMDESNTImYmMRjYiIsImF1ZCI6WyIS5NmE2Z
WNJ Yy0xYTIXLTQ5ZGMtODhjNC02ZTk4MTYON] Y4NGEiXSwiaXNzIjoiaHROCHM6XC9cL3gyM]UwLTAXLMVAYW1wbG
UuY29tIiwiaWFO0IjoxNDMyNjglMDQ2fQ.4w-XBeo8iawOXh7WVEJDk8yWvScfHan2M2v3gyyZYhw",

"scope": "email openid",

"token type": "bearer",

"user id": "9£8a23-099c8bd7-46a2-37ef-bc24-£501959fbdcb"
}

The following example shows how a second, trusted application might then use the ID token
grant type to obtain its own access token. A grant type value of
urn:unboundid:oauth:grant type:id token is used, and the ID token is provided as the
value of the assertion parameter.

POST /oauth/token HTTP/1.1

Authorization: Basic YjcOMzQwMWEtNDk3MSOOM]jYwLWIzN]jktMjBl1OWNhNTNjMzAxOnV4ekxJdjBGVzQ=
Content-Length: 410

Content-Type: application/x-www-form-urlencoded; charset=utf-8

Accept: application/json

Host: server.example.com

grant type=urn%3Aunboundid%3Acauth%3Agrant type%3Aid token&scope=profiles&assertion=eyJhbG
ci0iJIUZzIINiJ9.eyJhdXRoX3RpbWUi0jEOMzI20DUWNDYSImV4cCI6MTQzM)Y4ANTkONiwic3ViIjoiOWY4YTIZzLT
AS50WM4YmQ3LTQ2YTItMzd1Z211iYzIOLWYIMDESNTImYmMRIYiTIsImF1ZCI6WyISNmME2 ZWN]Yy0xYTIXLTQ5ZGMtODh
JNC02ZTk4MTYONJY4NGEiXSwiaXNzIjoiaHROCHM6XCIcL3gyMjUwWLTAXLMV4AYWlwbGUuY29tIiwiaWF0IjoxNDMy
NjglMDQ2fQ.4w-XBeo8iawOXh7WVEJIDk8yWvScfHqn2M2v3gyyZYhw

HTTP/1.1 200 OK

Cache-Control: no-store

Content-Type: application/json;charset=UTF-8
Pragma: no-cache

Server: Jetty(8.1.16.v20140903)
Transfer-Encoding: chunked

"access token": "AVCGkIwEoDOKeQotjBQ8gVZvNq4HAAAAAAAAAADr3dRArNAS3AN]XsFfu686hNNQ8ZN21
Otky2tQun0g7Z1VgRrKAcfjQ62caZY¥byzt9pKrLcCljtdwhzybz6KjKLA8Ma85gywk36Z24jTEMhjg",

"expires in": 43199,

"scope": "profile",

"token type": "bearer",

"user id": "9£8a23-099c8bd7-46a2-37ef-bc24-£501959fbdcb"

The Identity Broker Token Endpoint

The client application uses the token endpoint (/oauth/token) to obtain an access token by
presenting its authorization grant. The endpoint can also issue a refresh token if the original
access token has become invalid or expires. The authorization header of the client request will
contain the Base64 encoded client IDand client secret credentials.

Request

The following example makes a token request to the endpoint:

-37 -

The Identity Broker Token Endpoint

POST /oauth/token HTTP/1.1

Host: <example.com>

Authorization: Basic aXQncyBkYW5nZXJvdXMgdG8gZ28gYWxvbmU6dGFrZSB0aGlz
Content-Type: application/x-www-form-urlencoded

grant type=authorization code&code=SplxlOBeZQQYbYS6WxSbIA&redirect uri=https%3A%2F%2Fclie
nt$2Eexample%$2Ecom$2Fcb

Response

If the token request is authorized, the Identity Broker server returns:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragma: no-cache

"access token": "2YotnFZFEjrlzCsicMWpAA",
"token type": "bearer",
"expires in": 3600,
"scope": "openid email profile",
"scope info": {
"email": {
"action": "Read",
"purpose": "Any",
"resources": [
"urn:scim:schemas:core:1.0:emails.preferred",
"urn:unboundid:oidc:1.0:emailVerified"

by

"openid": {
"action": "Any",
"purpose": "Any",
"resources": [

"urn:unboundid:resources:broker:IDToken"

by
"profile": {

"action": "Read",
"purpose": "Any",
"resources": [

"urn:scim:schemas:core: :name.formatted",

"urn:scim:schemas:core: :name. familyName",
"urn:scim:schemas:core: :name.givenName",
:name .middleName",
:nickName",
:userName",
:profileUrl",
"urn:scim:schemas:core:1.0:photos.preferred",
"urn:unboundid:oidc:1.0:birthDate",

"urn:scim:schemas:core:1.0:timezone",

"urn:scim:schemas:core:
n

urn:scim:schemas:core:
"urn:scim:schemas:core:

O O O O O O o

urn:scim:schemas:core:

N e

"urn:scim:schemas:core:1.0:1locale",
"urn:scim:schemas:core:1.0:meta.lastModified"

by

- 38 -

Chapter 4: Authorization Flows

"user id": "9f8a23-cccc76ee-d07b-3b8c-922¢c-ddd809c4cl73",

"id token": "eyJhbGciOiJIUzI1NiJ9.eyJhdXRoX3RpbWUiOjEOM]jE4ODEXMDMsImV4
cCI6MTQyMTg4MjAWOSWic3ViIjolOWY4YTIzLWN]Y2M3NmMVILWQWN2TItM2 T
4Yy05MjJjLWRkZDgwOWMOYzE3MyIsImF1ZCI6WyJhY211T10sImlzcyI6Im
hO0dHBzO1lwvXC94MjI1MCOWMS51eGFtcGx1LmNvbSIsImlhdCI6MTQyMTg4M
TEwOX0.CZYpxocXZ- DEPttmHgSiQlFU8Pplb8I-70K3PMp4-Y"

Token Validation by the Identity Broker

The Identity Broker token validation endpoint (/ocauth/validate) uses pre-shared client
credentials to validate access tokens. To validate an access token, a POST is sent to the
Identity Broker's /oauth/validate endpoint, which returns a response with additional
information about the resource owner and scopes.

Parameters can be provided as query parameters appended to the token validation endpoint
URL. The access token parameter is required. The id token parameter is optional. If both
are provided, the validation endpoint verifies that the ID token was issued with the access
token.

An application can validate an ID token itself, if designed to do so. Refer to the OpenlID Connect
Core 1.0 specification for information. If a nonce value was provided during an implicit
OpenlD request flow, an ID token validation response should include the same nonce value.
The client application should make sure that the values match.

If aclient id value is provided, it must belong to the same application that was used to
request the access token.

Request

The following is a request to validate a token:

POST /oauth/validate?token=<access token>&id token=<id token>
Host: example.com
Accept: application/json

Response

If the operation is successful, the Identity Broker responds with a JSON object with the
following parameters:

response:
{
"user ID":"scim userID",
"scope info": {
"profile": {
resource: [<resource urns>],
action: <action>,
purpose: <purpose>
}I
"nonce":"165297",
"user i1d":"d9%548c-31c06853-13e3-4aca-841f-bdc0bl8b3004",
"client id":"@sample-sign-in@",

-39 -

Token Revocation by the Identity Broker

"issued at":"20140514153805zZ",
"expires in":43200,

"auth time":"20140514153804z",

"id token issued at":"20140514153805z"
}

If validation fails for any reason, an HTTP 400 status code is returned.

Token Revocation by the Identity Broker

The token revocation endpoint (/oauth/revoke) enables clients to send a POST request to the
Identity Broker to revoke access or refresh tokens. This may be used when the client logs out
of or uninstalls the application. Revoking a token does not remove any associated consents.

During the revocation process, the Identity Broker validates the client credentials, and verifies
that the client making the request originally issued the token. If the validation fails, the
request is refused and an error response is sent. If validation is successful, the Identity Broker
revokes or invalidates the token.

For example, he following revokes a token:

Authorization: Basic MC2AAQGBBlpxSGUtUYIgQI8FlrTZdspnJxDamsIKKxei8Wdj E3DUXscVpiw6u8
POST /oauth/revoke HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Token=MC2AAQGBBlpxSGUtUYIgQI8F1lrTZdspndxDamsIKKxei8Wdj E3DUXscVpiw6u8

If the operation is successful, the Identity Broker responds with the HTTP status code 200.

The revocation endpoint requires HTTP Basic authentication using the client id and client
secret, just like the /oauth/token endpoint.

Obtaining a Refresh Token

To request an OAuth 2.0 refresh token, either the offline access or
urn:unboundid:scope:refresh token scope should be requested in the client application's
authorization request. The client application's use and consent requirements will dictate the
choice of scope:

e The offline access scope is provided for compliance with the OpenID Connect
specification. To successfully obtain a refresh token, a client using this scope must also
specify the prompt authorization request parameter with a value of consent. End users
must provide explicit consent to grant a refresh token every time one is requested.

e The urn:unboundid:scope:refresh token does not require the use of the prompt
authorization parameter.

Refresh tokens can only be requested with an authorization code grant request or a resource
owner password credentials grant request. For example:

GET /oauth/authorize?
response type=codeé& client id=<0d5e5af7-420c-4241-8cff-0cfd9d806e59& scope=profile%20emai
1%20o0ffline accessé&

- 40 -

Chapter 4: Authorization Flows

prompt=consenté&
state=48389488& redirect uri=https33A%2F%2Fwww.example.com?¥3A8443%2Fredirect

The refresh token will be provided in the refresh token field of the token response. The client
may use a refresh token to extend the duration of an authorization without end user interaction

by making a refresh request to the token endpoint to obtain a new access token. The following
POST parameters are used:

e grant type — Required. Value must be set to refresh token.
e refresh token — Required. The refresh token issued to the client.

e scope — Optional. The scope of the access request. The requested scope cannot include
any scope not originally granted by the resource owner.

The response will look like the following:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragma: no-cache

"access token":"VGhlIGFwcGFyaXRpb24gb2YgdGhlc2UgZmFjZXMgaW4gdGhlIGNyb3dkOw=="",
"refresh token": "UGVOYWxzIGOuIGEgd2VOLCBibGFjayBib3VnaC4=",

"token type":"bearer",

"expires in":3600,

"scope": "profile email"

-41 -

Chapter 5: Accessing Data

The Identity Broker server supports two user profile endpoints:

o The Data View SCIM endpoint provides full operations on user profile data through the
SCIM protocol. The endpoint's URL context path is /scim/ {name}. Each Data View
resource type, specified in the Data View Schema, is exposed as an endpoint. For
example, the URL path /scim/Users would be used to access the Users Data View
resource type.

e The OpenID Connect UserInfo endpoint enables the Identity Broker to function as a
resource server. The endpoint's URL context path is /userinfo. The UserInfo endpoint
is read-only and uses GET actions to retrieve user profile data.

Access to resources is determined by the policies that are configured on the Identity Broker
Server. If an application request to the Identity Broker is delivering partial results, it may be
due to policy settings. See How Policy Affects the Data Returned to an Application.

This section describes data access from the Identity Broker and includes the following:
The Data View Endpoint

Data View Examples

UserInfo Access Example

User Metadata

Policy Authorization Scenarios

-42 -

Chapter 5: Accessing Data

The Data View (SCIM) Endpoint

The Identity Broker Data View endpoint enables applications to perform actions on an end
user's resources, if Identity Broker Policies permit. The following are important to consider
when using the Data View SCIM endpoint:

No Support for HTTP PUT. The SCIM endpoint does not support the HTTP PUT operation,
because PUT assumes that the client has access to all the attributes. The client application may
not have access to some attributes based on policies or consents.

No Sorting. The Data View endpoint does not support sorting search results.

Self Resource. The Identity Broker supports a special resource type, self, to retrieve
attributes of the currently authenticated user without knowing the SCIM ID. Retrieve attributes
with the SCIM ID sel £ with the following:

/scim/Self/Self

Or retrieve the profile using the list/query method, which always returns one resource:

/scim/Self

Authentication. The SCIM endpoints are protected by bearer token authentication, obtained
from the Identity Broker. See Authentication for details.

The following table describes SCIM features and whether they are supported by the Identity
Broker.

SCIM Feature Description
JSON Yes
XML* Yes
Authentication/Authorization Yes
Service Provider Configuration Yes
Schema endpoint Yes
Resource retrieval via GET Yes
List/query resources Yes
Query filtering* Yes
Query result sorting* No
Query result pagination* Yes
Resource updates via PUT No
Partial resource updates via PATCH* Yes
Resource deletes via DELETE Yes
Resource versioning* No
Bulk* Yes
HTTP method overloading Yes

-43 -

Data View Examples

* Denotes an optional feature of the SCIM Protocol.

Data View Examples

A client application accesses the /scim/{name} endpoint by passing an HTTP GET , POST,
PATCH, OrF DELETE request with an access token parameter to the Identity Broker Server. The
response is a JSON object.

GET (Data View Schemas)

The following is an example call to the Identity Broker /scim/Schemas/{name} endpoint to get
the Identity Broker schema User. If a {name} is not specified, all Identity Broker schemas are
returned.

Request

GET /scim/Schemas/User

Host: example.com

Accept: application/json

Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOgihaEJvCvPok4pYLROa-9XOHkWCQqJIwCHB66kwESoaO-
LHJIGSkZwAd3dYWPVERzIAy-VczegSxSR2c51u0iFgSyQFfC yOkLyl5L4iTT

Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length:
{
"name" :"User",
"description":"..",
"schema" :"urn:unboundid:schemas:broker:1.0",
"endpoint":"/Users",
"id":"urn:unboundid:schemas:broker:1.0:User",
"meta":{ "location":"https://<example.com>:8445/scim/v1/Schemas/urn:unboundid:schemas:b
roker:1.0:Usexr"
}I
"attributes": [
{
"name" :"displayName",
"type":"string",
"multiValued":false,
"description":"The name of the User, suitable for display to end-users.",
"schema":"urn:scim:schemas:core:1.0",
"readOnly":false,
"required":false,
"caseExact":false
}I
// other attributes

-44 -

Chapter 5: Accessing Data

jQuery Example

S.ajax ({
type: "GET",
url: "https://example.com/scim/Schemas/User",
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function (schemas) {
}
});

GET

The following is an example call to the Identity Broker /scim/{name} endpoint to get entries
with the filter of user name starting with sam.

Request

GET /scim/Users?startIndex=1&count=10&filter=userName+sw+%22sam%$22

Host: example.com

Accept: application/json

Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOgihaEJvCvPok4pYLROa-9XOHkWCQqJ9wCHB66kwESoaO-
LHJIGSkZwWAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC yOkLyl5L4iTI

Response

The data returned is dependent on the Identity Broker configuration and the Policies in place.

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length:

{

"totalResults":1,

"itemsPerPage":1,

"startIndex":1,

"schemas": [
"urn:unboundid:oidc:1.0",
"urn:scim:schemas:core:1.0",
"urn:unboundid:profile:1.0"

]I

"Resources": [

{

"name" : {
"givenName" :"Sample",
"familyName":"Userl",
"formatted":"Sample Userl"
}I
...// other user properties

}!

...// other users

-45 -

Data View Examples

jQuery Example

S.ajax ({

type: "GET",

url: "https://example.com/scim/Users",

data: { startIndex: 1, count: 10, filter: 'userName sw "sam"'},
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",

success: function (usersPage) {
// application can do something with returned data...

}

1)

GET (by User ID)

The following is an example call to the Identity Broker /scim/{name} endpoint to get a single
user entry with the ID of 9f8a23-47¢c7be45-0ce5-3105-8ea8-fc3c39c47£91.

Request

GET /scim/Users/9f8a23-47c7bed45-0ce5-3105-8ea8-£fc3c39c47£91

Host: example.com

Accept: application/json

Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOgihaEJvCvPok4pYLROa-9XOHkWCQqJI9wCHB66kwESoaO-
LHIGSkZwAd3dYWPVERZIAy-VczegSxSR2c51u0iFgSyQFfC yOkLyl5L41iTT

Response

The data returned is dependent on the Identity Broker configuration and the Policies in place.

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length:

{

"schemas": [
"urn:unboundid:oidc:1.0",
"urn:scim:schemas:core:1.0",
"urn:unboundid:profile:1.0"

]I

"name" : {
"givenName":"Sample",
"familyName":"Userl",
"formatted":"Sample Userl"

}I

// other user properties

- 46 -

Chapter 5: Accessing Data

jQuery

S.ajax ({

type: "GET",

url: "https://example.com/scim/Users/", +userId,

data: { startIndex: 1, count: 10, filter: 'userName sw "sam"'},
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",

success: function (user) {
// application can do something with returned data...

}

P

POST

The following is an example call to the Identity Broker /scim/{name} endpoint that creates a
user entry for Another Sample User III.

Request

POST /scim/Users

Host: example.com

Accept: application/json

Content-Type: application/json

Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOgihaEJvCvPok4pYLROa-9XOHkWCQqJIwCHB66kwESoaO-
LHJGSkZwAd3dYWPVERZIAy-VczegSxSR2¢c51u0iFgSyQFfC yOkLyl5LA41iTT

Content-Length:

{

"schemas": ["urn:unboundid:oidc:1.0", "urn:scim:schemas:core:1.0"],
"name": {
"formatted": "Another Sample User III",

"familyName":"User",
"givenName":"Another",
"middleName":"Sample"

}I
"userName":"sampleuser3"

}

Response

The data returned is dependent on the Identity Broker configuration and the Policies in place.

HTTP/1.1 201

Created Content-Type: application/json
Content-Length:

{

"schemas": [
"urn:unboundid:oidc:1.0",
"urn:scim:schemas:core:1.0",
"urn:unboundid:profile:1.0"

]I

"name" : {

"givenName" :"Another",
"familyName":"User",

-47 -

Data View Examples

"formatted":"Another Sample User III"
}I
"id":"9£8a23-3562ddf5-50d0-4aac-a761-7ecb9bcb7633",
"userName":"sampleuser3",
"meta": {
"created":"2014-09-04T19:06:22.5472",
"lastModified":"2014-09-04T19:06:22.547z",
"location":"https://example.com/scim/v1/Users/9£8a23-3562ddf5-50d0-4aac-a761-7ecb9bcb
7633"
}

jQuery Example

$.ajax ({

type: "POST",

url: "https://example.com/scim/Users",
data: JSON.stringify ({

"schemas": ["urn:unboundid:oidc:1.0", "urn:scim:schemas:core:1.0"],
"name": {
"formatted": "Another Sample User III",

"familyName":"User",
"givenName":"Another",
"middleName" :"Sample"
}I
"userName" :"sampleuser3"

I

headers: { "Authorization": "Bearer " + accessToken },
contentType: "application/json"

dataType: "json",

success: function (user) {
// returned data sample...

}

1)

Note
Creating a user through SCIM is governed by Identity Broker Policy. The Identity Broker
administrator will need to provide specifics about what this Policy will allow.

UPDATE

The following is an example call to the Identity Broker /scim/{name} endpoint that updates a
user entry for ID 9f8a23-31¢c5b68d-2c8d-4dd2-987b-09627cblff2d.

Request

PATCH /scim/Users/9f8a23-31c5b68d-2c8d-4dd2-987b-09627cblff2d

Host: example.com

Accept: application/json

Content-Type: application/json

Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOgihaEJvCvPok4pYLR0Oa-9XOHkWCQqJOwCHB66kwES0aO—
LHJIGSkZWAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC yOkLyl5L41iTI

Content-Length:

- 48 -

Chapter 5: Accessing Data

{

"schemas": ["urn:unboundid:oidc:1.0", "urn:scim:schemas:core:1.0"],
"name": {
"formatted": "My Sample Tester III",

"familyName":"Tester",
"givenName":"My",
"middleName" :"Sample"
}

}

Response

HTTP/1.1 204 No Content

jQuery Example

S.ajax ({
type: "PATCH",
url: "https://example.com/scim/Users/"+userId,
data: JSON.stringify ({
"schemas": ["urn:unboundid:oidc:1.0", "urn:scim:schemas:core:1.0" 1],
"name": {
"formatted": "My Sample Tester III",
"familyName":"Tester",
"givenName" :"My",
"middleName":"Sample"
}
}) o,

headers: { "Authorization": "Bearer " + accessToken },
contentType: "application/json",

success: function () {
// no data returned...

}

})

DELETE

The following is an example call to the Identity Broker /scim/{name} endpoint that deletes a
user entry for ID 9f8a23-47c7be45-0ce5-3105-8ea8-fc3c39c47£91

Request

DELETE /scim/Users/9f8a23-47c7bed5-0ce5-3105-8ea8-£fc3c39c47£91

Host: example.com

Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOgihaEJvCvPok4pYLROa-9XOHkWCQqJIwCHB66kwESoaO-
LHJIGSkZwAd3dYWPVERzIAy-VczegSxSR2c51u0iFgSyQFfC yOkLyl5L41iTT
/9f8a23-47c7Tbed5-0ce5-3105-8ea8-fc3c39c47f91==the user's ID

Response

HTTP/1.1 200 OK
Content-Length: 0

-49 -

UserInfo Access Example

jQuery Example

S.ajax ({

type: "DELETE",

url: "https://example.com/scim/Users/"+userId,
headers: { "Authorization": "Bearer " + accessToken },
success: function () {

// no data returned...

UserInfo Access Example

A client application accesses the /userinfo endpoint by passing an HTTP GET request with an
access token parameter to the Identity Broker Server. The response is a JSON object.

Request

The following is a Java Script example call to the Identity Broker /userinfo end point:

GET /userinfo

Host: <example.com>

Accept: application/json

Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOgihaEJvCvPok4pYLROa-9XOHkWCQgJ9wCHB66kwESoaO-
LHJIGSkZWAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC yOkLyl5L44iTI

Response

The data returned is dependent on the Identity Broker configuration and the Policies in place.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length:
{
"sub":"9f8a23-78d5a9b2-2b46-40ed-9d0a-57963e£50d1b",
"phone number":"+1 410 030 3103",
"updated at":1409857981,
"address": {
"region":"Wv",
"formatted":"Sample Userl1$30650 Cherry StreetS$Pensacola, WV 06057",
"postal code":"06057",
"locality":"Pensacola",
"street address":"30650 Cherry Street"
}I
"name" :"Sample Userl",
"family name":"Userl",
"preferred username":"sampleuserl",
"given name":"Sample"

-50 -

Chapter 5: Accessing Data

jQuery Example

$S.ajax ({

type: "GET",

url: "https://example.com/userinfo",

headers: { "Authorization": "Bearer " + accessToken },

dataType: "json",
success: function (userinfo) {
// sample returned data...
}
}):

User Metadata

An application can provide consent management to end users through a series of Metadata
APIs. These are all illustrated by the Profile Manager sample application. These APIs rely on
scopes and resources, and must pass through the Identity Broker policy engine to access data.

Note
The scopes that are listed in this section are those that were installed with the Identity Broker.
They can be changed or new scopes can be added to tailor access to data. Review the defined
scopes and policy requirements with the Identity Broker administrator.

For each endpoint, a value of se1£ can be used for the <userID>variable. This will retrieve
data for the currently authenticated owner of the access token.

Managing Access History Records

Data access history can be retrieved for an end user by calling the
/metadata/vl/<userID>/accessHistory endpoint. The Identity Broker installs the following
scope to retrieve access history records:

read access history - Enables reading the access history records for the specified user ID,
and includes the following resource:

urn:unboundid:resources:broker metadata:accessHistory

Read Access History Examples

Request:

GET /metadata/vl1/9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b/accessHistory?application=My
Appé&decision=PERMIT&sortBy=timestamp&sortOrder=descending&startIndex=0&count=1

Host: <example.com>

Accept: application/json

Authorization: Bearer Aes-6SPszrDDpFxKuCdDgDxoZSdgAAAAAAAAAAB-sedGtKSBOaJdg3opJsRtLyqgF k
uE921iVFvi0LIgXYc]jrgQK-6HVhqGUyWiDP84kpmZaMmOpestt402PVyV1Wrd 6wad4rU NLVelrleA

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Transfer-Encoding: chunked

{

-51 -

User Metadata

"startIndex":0,
"count":10,
"totalResults":45,
"data": [
{
"action": {
"name" :"Read",
// other action properties
}I
"application": {
"name" : "MyApp",
// other application properties
}V
"appliedPolicies": [
"urn:unboundid:policy:TrustLevelPolicy",
"urn:unboundid:policy:GovernanceTagPolicy",
"urn:unboundid:policy:Basic Consent"
}I
"decision" :"PERMIT",
"owner":"9f8a23-78d5a9%b2-2b46-40ed-9d0a-57963ef50d1b",
"purpose": {
"name" :"Any",
// other purpose properties
}I
"resources": |
{
"urn":"urn:scim:schemas:core:1.0:name.formatted"”,
// other resource properties
}I
// other resources
JI
"timestamp":1409779918000
}I
// other data entries
]
}

jQuery Example:

$S.ajax ({

type: "GET",

url: "https://<example.com>/metadata/v1/" + userId + "/accessHistory?application=MyAppé&
decision=PERMIT&sortBy=timestamp&sortOrder=descending&startIndex=0&count=10",

headers: { "Authorization": "Bearer " + accessToken },

dataType: "json",

success: function (data) {

// do something interesting with the returned history records

}

1)

Managing Consents

A client application can enable its end users to view and manage the consents that they grant
for data access by making calls to the following endpoints:

-52-

Chapter 5: Accessing Data

e /metadata/vl/<userID>/consentHistory — Retrieves consent history for the specified
user ID.

e /metadata/vl/<userID>/consents — Retrieves, adds, or deletes a consent for a given
application, action, purpose, and resource(s).

e /metadata/vl/<userID>/consents/applications — Retrieves a list of all applications
to which the specified user ID has given consented.

e /metadata/vl/<userID>/consents/resources — Retrieves a list of all resources to
which the specified user ID has given consented.

The Identity Broker installs the following scopes to access consent data:

read consents — Enables reading the consents or consent history records for the specified
user ID, and includes the following resources:

urn:unboundid:resources:broker metadata:consents
urn:unboundid:resources:broker metadata:consentHistory

manage consents - Enables adding, updating, or deleting the consents for the specified user
ID, and includes the following resources:

urn:unboundid:resources:broker metadata:consents

Read Consent Examples

Request:

GET /metadata/v1/9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b/consents?application=MyApp
Host: <example.com>

Accept: application/json

Authorization: Bearer Aes-6SPszrDDpFxKuCdDgDxoZSdgAAAAAAAAAAB-sedGtKSBOaJdg3opJsRtLyqgF k
uE921iVFvi0LIgXYc]jrgQK-6HVhqGUyWiDP84kpmZaMmOpestt402PVyV1Wrd 6wad4rU NLVelrleA
Content-Type: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length:
{
"startIndex":0,
"count":1,
"totalResults":1,
"data": [
{
"action": {
"name" : "Read",
// other action properties
}I
"actorCompositeKey": "9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef£50d1b",
"application": {
"name" : "MyApp",
// other application properties
}V
"ownerCompositeKey": "9£f8a23-78d5a902-2b46-40ed-9d0a-57963e£50d1b",
"purpose": |

- 53 -

User Metadata

"name" :"Any",
"description":"Wild card that matches any purpose.",
// other purpose properties
}I
"resourceMap": {
"2014-09-03T14:32:41.000+0000": [
{
"urn":"urn:example:resource:customer-profile",
"name" :"Customer Profile",
// other resource properties
}I
// other resources
]I
// other map entries
}
}I

// other consent entries

}
jQuery Example:

$.ajax ({
type: "GET",
url: "https://<example.com>/metadata/v1/" + userId + "/consents?application=MyApp",
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function (data) {
// do something interesting with the returned consent records
}
1)

Read Consented Applications Examples

Request:

GET /metadata/v1/9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1lb/consents/applications

Host: <example.com>

Accept: application/json

Authorization: Bearer Aes-6SPszrDDpFxKuCdDgDxoZSAgAAAAAAAAAAB-sedGtKSBOaJdg3opJsRtLyqqgF k
UE921iVFvi0LIgXYcjrqQK-6HVhqGUyWiDP8UULLWNSYDssa4tVl5fmSCpYZ70NXycne 00D JCUUIOQ

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Transfer-Encoding: chunked
{
"startIndex":0,
"count":4,
"totalResults":4,
"data": [
{
"name" : "MyApp",
// other application properties
}I
// other applications

-54 -

Chapter 5: Accessing Data

}
jQuery Example:

S.ajax ({
type: "GET",
url: "https://<example.com>/metadata/v1l/" + userId + "/consents/applications",
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function(data) {
// do something interesting with the returned applications

}

1)

Add Consent Examples

Request:

POST /metadata/v1/9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b/consents?application=MyApp&
purpose=Marketing&resource=urn%3Ascim$3Aschemas$3Acore%3Al.0%3Aecmails.preferred

Host: <example.com>

Authorization: Bearer Aes-6SPszrDDpFxKuCdDgDxoZSdgAAAAAAAAAAB-sedGtKSBOaJdg3opJsRtLyqggF k
uE921iVFviOLIgXYcjrgQK-6HVhgGUyWiDP8UUtLWNS5YDssa4tV15fmSCpYZ7QNXycne00D]jJCUUJOQ

Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length:
{
"action": {
"name" : "Read",
// other action properties
}I
"actorCompositeKey":null,
"application": {
"name" : "MyApp",
// other application properties
}I
"ownerCompositeKey":"9f8a23-78d5a902-2b46-40ed-9d0a-57963e£50d1b",
"purpose": {
"name" :"Marketing",
...// other purpose properties
}I
"resourceMap": {
"2014-09-04T16:14:10.985+0000": [
{
"urn":"urn:scim:schemas:core:1.0:emails.preferred",
// other resource properties
}I
// other resources
]I
...// other map entries

}

-55-

User Metadata

jQuery Example:

S.ajax ({

type: "POST",

url: "https://<example.com>/metadata/v1/" + userId + "/consents?application=MyApp&purpo
se=Marketing&resource=urn%$3Ascim$3Aschemas$3Acore%$3Al.0%3Aemails.preferred",

headers: { "Authorization": "Bearer " + accessToken }, contentType: "application/json"

dataType: "json",

success: function (consent) {

// do something interesting with the returned consent record

}

1)

Revoke Consent Examples

Request:

DELETE /metadata/v1/9f8a23-78d5a902-2b46-40ed-9d0a-57963ef50d1b/consents?application=MyAp
p&purpose=Marketingé&resource=urn%3Ascim®3Aschemas%3Acore$3A1l.0%3Aemails.preferred

Host: example.com

Authorization: Bearer Aes-6SPszrDDpFxKuCdDgDxoZSdAgAAAAAAAAAAB-sedGtKSBOaJdg3opJsRtLyqqgF k
uE921iiVFviOLIgXYcjrgQK-6HVhgGUyWiDP8UUtLWNS5YDssa4tV15£fmSCpYZ7Q0NXycne00D]jJCUUJOQ

Response:

HTTP/1.1 204 No Content
jQuery Example:

S.ajax ({

type: "DELETE",

url: "https://<example.com>/metadata/v1/" + userId + "/consents?application=MyApp&purpo
se=Marketing&resource=urn%3Ascim¥3Aschemas%$3Acore%s3Al.0%3Aemails.preferred",

headers: { "Authorization": "Bearer " + accessToken },

success: function () {

// no data returned...

}

1)

Adding an Identity Provider Link to an Account

An application can provide the means to link a local Identity Broker account with an account at
an external identity provider. There are two ways to do this, as outlined in the following
sample flows. The choice of flow depends on the client application. In both cases, the end user
should already be authenticated, and the application should possess a bearer token for the
manage links SCOpe€.

Note
The redirect uri value should be registered as a redirect URI with the application used by
the Identity Broker at the external identity provider. It should have the form
https://<identity broker>/metadata/vl/providers/<provider name>/callback

- 56 -

Chapter 5: Accessing Data

For Server-Side Applications

This flow is designed for server-side web applications where the access token should not be
exposed to the client.

The server-side application initiates the linking flow by sending a server-to-server GET request
to the Identity Broker's Metadata API at the end user's 1inks/interactive resource.

Request:

GET /metadata/vl/{userID}/links/interactive?provider=<idp name>&flow=server&redirectUri=<
application redirect URI>

Authorization: Bearer <bearer token>

Accept: application/json

The Identity Broker responds with a URI containing a one-time IDP link code.

Response:

HTTP/1.1 302 FOUND
Location: https://<identity broker>/metadata/vl/providers/link?code=<one-time link code>

The application should then redirect the web browser to the Identity Broker URI containing the
link code from the previous response.

Request:

GET /metadata/vl/providers/link?code=<one-time link code>

If the code is valid, the Identity Broker responds by redirecting the web browser to the

external identity provider. The Location value will vary depending upon the external identity
provider type and its configuration with the Identity Broker.

Response:

302 FOUND

Location: https://<identity provider>/oauth/authorize?response type=code&client id=<ident
ity broker client id>&scope=openidtprofiletemail&state=XXX&redirect uri=https://<identity
broker>/metadata/vl/providers/<idp name>/callback

At the external identity provider, the end user may be prompted to log in and to authorize the
request. Once the OAuth 2.0 flow is complete at the external identity provider, the external
identity provider will redirect the browser back to the IDP callback URI.

Request:

GET https://<identity broker>/metadata/vl/providers/<idp name>/callback

The Identity Broker will complete the linking process by saving identity provider linking data to
the end user's profile, and then redirect the web browser to the application's redirect URI.

Response:

302 FOUND
Location: https://{application host}/<redirect path>?statusCode=200&provider=<idp name>&p
roviderUserId=<idp userID>

Query parameters identifying the linking flow status, identity provider name, and the end
user's unique ID at the identity provider are appended to the redirect URI as query
parameters.

-57 -

User Metadata

For Client-Side Applications

The second flow is designed for client-side or native applications, where the access token must
be stored in a potentially untrusted client-side environment. This flow skips the initial REST call
that initiates the linking process by generating a one-time code.

The client-side application initiates the flow by sending a GET request to the Identity Broker's
Metadata API at the end user's 1inks/interactive resource:.

Request:

GET /metadata/vl/{userID}/links/interactive?provider=<idp name>&flow=clienté&redirectUri=<
application redirect URI>

Authorization: Bearer <bearer token>

Accept: application/json

The Identity Broker responds with a JSON document containing a single redirectUrl field.
This response is provided rather than a 302 redirect response to avoid potential cross-origin
request difficulties for JavaScript applications. The redirectUrl value depends upon the
external identity provider type and its configuration with the Identity Broker.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
{

"redirectUrl": "https://<external identity provider>/oauth/authorize?response type=code
&client id=<identity broker client id>&scope=openid+profiletemailé&state=XXX&redirect uri=
https://<identity broker>/metadata/vl/providers/<idp name>/callback"

}

The client-side application then redirects the browser using a GET to the redirectUrl value.
This redirects the end user to the external identity provider.

At the external identity provider, the end user may be prompted to log in and authorize the
request. Once the OAuth 2.0 flow is complete at the external identity provider, the external
identity provider will redirect the browser back to the provider's callback URI.

Request:

GET https://{identity broker}/metadata/vl/providers/<idp name>/callback

The Identity Broker completes the linking process by saving the identity provider linking data
to the end user's profile, and then redirects the web browser to the application's redirect URI.

Response:

302 FOUND
Location: https://<application host>/<redirect path>?statusCode=200&provider=<idp name>&p
roviderUserId=<idp userID>

Query parameters identifying the linking flow status, identity provider name, and the end
user's unique ID at the identity provider are appended to the redirect URI as query
parameters.

- 58 -

Chapter 5: Accessing Data

Policy Authorization Scenarios

Policies are evaluated by the Identity Broker in response to the following requests made by
client applications:

¢ An authorization/token request to the OAuth 2.0 endpoint.
e A request to the UserInfo endpoint.

e All SCIM requests:
o Search request

o Get request
o Update request
o Create request
o Delete request
« Self registration request.
o All requests to the Metadata API.
o A XACML request to the PDP endpoint.

To create a body of policies and policy sets that will work as expected, or to create applications
that can access data correctly, review the parameters and attributes that will be included in the
XACML requests for each of the scenarios provided.

Policy Decision Point (PDP) Endpoint

The PDP endpoint enables an external Policy Enforcement Point (PEP) to generate XACML
requests and send them directly to the Identity Broker for evaluation. The request is passed
directly to the policy engine. The request can contain any standard XACML attributes, Identity
Broker custom attributes, or other attributes that may be required by custom policies. This
endpoint requires that the client authenticate using bearer token authentication, and that the
token must have the urn:unboundid: scope:invoke pdp Scope.

Policies and Request Processing Per Endpoint

Requests from a client application are evaluated by the policy rules configured for the Identity
Broker. Access to data is granted either at the scope level or at the resource level based on the
endpoint through which the request is made.

Note
The any purpose, if added to a scope, will match any purpose value. If a scope is created
without an explicit purpose, any will be assigned to it. This is important for OAuth 2.0 and
Userinfo endpoint processing.

- 590 -

Policy Authorization Scenarios

Requests Through the OAuth 2.0 Endpoint

Requests coming through the OAuth 2.0 endpoint are given an access token if the scopes
specified are allowed by configured policies. Only the scope is granted or denied, not the
resources contained within the scope. The token returned may not be valid for all the scopes
that were included in the original request. The client application will receive a list of approved
scopes with the access token. If all scopes are denied, then no access token is issued.

Once a token is granted, it can be passed to either the SCIM or UserInfo endpoints to retrieve
user data. Policies are again evaluated, but at the resource level.

Requests Through the UserIinfo Endpoint

A request to the UserInfo endpoint has no arguments other than the access token itself. A
UserInfo request is authorized with a single XACML request. The data returned is limited to the
resources included in the scopes that were granted in the token.

Requests Through the SCIM Endpoint

A request to the SCIM endpoint includes the token and arguments that describe which
attributes the requestor would like to retrieve. The request can contain attributes that are not
granted by the token. Policies are checked again to make sure nothing is returned that is not
allowed.

The following actions are submitted in the generated XACML request depending on the SCIM
operation being performed.

Action Performed Based on XACML Request

SCIM Operation Type Action in XACML request
POST Create

GET Read

PATCH or PUT Update

DELETE Delete

Example Request Flow

For example, if an application requested access to Scope A and Scope B, the following would
be considered:

e Scope A contains resources 1, 2, and 3.
e Scope B contains resources 4 and 5.

o Policy evaluation determines that access to resources 1, 2, 4, and 5 can be granted.
Resource 3 is denied.

o Because one of the resources in Scope A is denied, the scope is not included in the access
token sent back to the client application. The token contains a grant for Scope B.

- 60 -

Chapter 5: Accessing Data

o If the client application sends a request with the access token to the UserInfo endpoint,
only the resources in Scope B are returned.

¢ If the client application sends a request for resources 1, 2, 3, 4, and 5 (with the access
token) to the SCIM endpoint, Policy is reevaluated, and only resources 1, 2, 4, and 5 are
returned.

OAuth 2.0 Endpoint Policy Evaluation

The OAuth 2.0 endpoint relies on the policy engine to determine whether an access token or
authorization code should be granted to a requesting client. An independent XACML request is
evaluated for each scope requested by the client. The token that is issued to the client may be
valid for only a subset of the scopes originally requested.

The attributes included in the XACML request will vary depending upon the OAuth 2.0 grant type
being requested. See the UnboundID Identity Broker Application Developer Guide for details
about OAuth 2.0 grant types.

Authorization Code and Implicit Grant Types

Because of the interactive nature of these two OAuth 2.0 flows, the OAuth 2.0 endpoint splits
policy checking into two phases. The first phase checks whether the token request would be
allowed by all installed policies except for consent policy. If the result of this first phase is
DENY then the second phase is not executed.

The second phase checks whether the end user’s consent is required before the requested
scope can be granted. If so the flow proceeds to prompt the user for consent. If the second
phase indicates that the user’s consent is not required (either by rule or because they have
already consented), then the OAuth 2.0 endpoint issues the requested token or authorization
code.

The phase one XACML request contains the attributes below. It is executed once for each scope
in the token request. Note that resource owner is not included in the request, which results in
the consent policy (which is based upon resource ownership) to not be applied.

XACML Attribute Attribute Value

actor-id SCIM Id of the currently authenticated user.

subject-id Application name, obtained from the OAuth request's client ID parameter.
action-id Action name obtained from the scope definition.

purpose-id Purpose name obtained from the scope definition.

resource-id Bag of resource URNSs, obtained from the scope definition.

The phase two XACML request is sent to the OAuth Consent Evaluation policy sandbox (see the
UnboundID Identity Broker Administration Guide) rather than to the global policy engine. This
results in only consent policy being applied to the request. This request contains the attributes
specified in the table below.

-61 -

Policy Authorization Scenarios

XACML Attribute Attribute Value

owner-id SCIM ID of the currently authenticated user (for OAuth requests, owner ID is always
the same as the actor ID).

actor-id SCIM ID of the currently authenticated user.

subject-id Application name, obtained from the OAuth request’s client ID parameter.

action-id Action name obtained from the scope definition.

purpose-id Purpose name obtained from the scope definition.

resource-id Bag of resource URNs, obtained from the scope definition.

The OAuth Consent Evaluation sandbox isolates consent checking from other policies. The
contents of the sandbox may be modified in order to customize consent policy, however the
sandbox itself cannot be deleted.

Client Credentials Grant Type

A client credentials OAuth request is a request by an application for access to its own
resources. It does not require that a user currently be authenticated to the Identity Broker.
Like all OAuth interactions, one policy evaluation is made for each scope requested. The
attributes of the XACML request generated for this grant type are specified in the table below.

XACML Attribute Attribute Value

subject-id Application name.

action-id Action name obtained from the scope definition.
purpose-id Purpose name obtained from the scope definition.
resource-id Bag of resource URNs, obtained from the scope definition.

Resource Owner Grant Type

The Resource Owner grant type does not require consent. In general, only trusted applications
should be allowed to use this grant type. It evaluates policy independently for each scope
contained in the request. Each XACML request is identical to that specified in phase one of the
Authorization Code and Implicit Grant Types.

UserInfo Endpoint Policy Evaluation

A request to the UserInfo endpoint does not require any parameters other than an OAuth2.0
access token. The scopes represented by the token indicate what resources and attributes are
being requested by the client application, and the token’s owner identifies the resource owner.
(Since a client credentials token has no owner, it cannot be used with the UserInfo endpoint.)

UserlInfo is a read-only interface. Any scopes whose associated action is not read are
discarded. The UserInfo endpoint also consults the Claims Map for the user’s Data View and
will only do policy checks on resources that are mapped through the Claims Map.

-62 -

Chapter 5: Accessing Data

A single request to the UserInfo endpoint will result in several XACML policy evaluations since
the access token can represent multiple scopes, and each scope can represent many
resources. Each resource is evaluated independently by policy, and only those resources that
are permitted by policy are returned as claims to the client application.

Each XACML request generated by UserInfo contains the following attributes:

XACML Attribute Attribute Value

owner-id SCIM ID of the access token owner.

subject-id Name of the application associated with the access token.

action-id Always set to “Read.”

purpose-id Purpose name obtained from a scope associated with the access token.
resource-id A single resource URN obtained from the same scope.

SCIM Endpoint Policy Evaluation

Each request to the SCIM endpoint explicitly specifies what action is being requested and on
what resources. As a REST interface, SCIM uses the HTTP method, query parameters, method
body, and URI path to specify request parameters. Policy evaluations generated by the SCIM
endpoint depend on these REST parameters, as well as the supplied OAuth 2.0 bearer token,
which is used mainly for authentication.

All SCIM requests target a specific Data View. For all request types, the SCIM endpoint first
consults the appropriate Data View mapping and will pare out any unmapped request attributes
before it generates policy requests.

For example, a search targeted to /scim/Users is executed against the Users Data View. An
update targeted to /scim/ConsumerUsers/9f8a23-5f7ec932-55c4-347e-b757-ce74258ea9%6
is executed against a user with ID 9f8a23-5f7ec932-55c4-347e-b757-ce74258ea9%e6 in the
ConsumerUsers Data View.

SCIM Search Request

A SCIM search request consists of a search filter and an optional specification of which
attributes to return from each record that satisfies the filter definition. The Data View against
which the search is to be conducted is derived from the URI path, such as /scim/Users.

After the SCIM endpoint executes the search against the Data View, it generates XACML
requests for each record returned in the search results in order to determine whether the
requesting client has permission to receive the record’s attributes. Each resource and attribute
of each record is evaluated independently through a separate policy request.

Note
The number of search results that can be returned is limited by the Data View’s
lookthroughLimit property, due to the potential cost of checking each response against
policy.

Each XACML request contains the following attributes:

- 63 -

Policy Authorization Scenarios

XACML Attribute Attribute Value
owner-id SCIM ID of the returned result record.
actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included in

the request if the access token was obtained through a Client Credentials grant.

subject-id Application name of the requesting application, retrieved from the OAuth access
token.

action-id Always “Read,” since this is a search request.

purpose-id Always “Any,” since the SCIM standard does notinclude a purpose specification.

resource-id A single Resource URN from the returned result record.

Any resources or individual resource attributes that are denied by policy are omitted from the
search response.

SCIM Get Request

A SCIM request to obtain a single record is handled similarly to the search request, except that
there is only a single result record. The previous table applies.

SCIM Update Request

A SCIM update request (HTTP PATCH) contains in the message body the attributes to be
updated and/or deleted. Deleting an attribute from a record is considered an update action by
the SCIM endpoint. The response to an update request contains the updated record. Using
query attributes the SCIM client can request that only a subset of the updated record be
returned in the response.

The SCIM endpoint issues two sets of policy evaluations in response to an update request. The
first set determines which attributes the client is permitted to update. These XACML requests
contain the following:

XACML Attribute Attribute Value

owner-id SCIM ID of the record to be updated.

actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included
in the request if the access token was obtained through a Client Credentials
grant.

subject-id Application name of the requesting application, retrieved from the OAuth 2.0
access token.

action-id Always “Update.”

purpose-id Always “Any,” since the SCIM standard does notinclude a purpose specification.

resource-id A single Resource URN obtained from the request’'s message body.

An update-operation attribute (urn:unboundid:names:1.0:update-operation) is present
in the request context when the value of action-id is Update. Itis populated by the SCIM
endpoint to provide information about the type of update being performed. Currently, only
delete is supported, which is set when a request updates a record by deleting an attribute or
deleting a value from a multivalued attribute. If the attribute is not present as part of an

- 64 -

Chapter 5: Accessing Data

update request, a policy may assume that the update is either replacing or adding an attribute
value.

Note
The policy engine has access to the resource URN, but not the proposed new value for the
corresponding attribute. Therefore, policy can check whether the application is allowed to
update the attribute, but cannot do data validation on the attribute value.

After the update is complete, a second set of policy requests is issued to determine which
attributes of the updated record the client can receive in the response. These requests are
formatted exactly as for a SCIM Get or Search request.

SCIM Create Request

Like an update request, a SCIM create request contains the attributes of the new record in the
message body. The response to the request is the contents of the new record, which optionally
can be pared by query parameters that specify which attributes the client wants to receive in
the response.

Policy checks for SCIM create requests (HTTP POST) are different in that there is no existing
resource owner. The owner is being created as a result of the request. Also, the entire set of
attributes is evaluated by a single XACML request. Either the entire request is accepted or
denied, there is never a partial success where some attributes are saved but not others. The
create policy request therefore contains attributes as follows:

XACML Attribute Attribute Value
actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included
in the request if the access token was obtained through a Client Credentials
grant.
subject-id Application name of the requesting application, retrieved from the OAuth 2.0
access token.
action-id Always “Create.”
purpose-id Always “Any,” since the SCIM standard does notinclude a purpose specification.
resource-id A list of all resource URNSs specified in the request’'s message body.
Note

The policy engine has access to the resource URN, but not the proposed new value for the
corresponding attribute. Therefore, policy can check whether the application is allowed to
update the attribute, but cannot do data validation on the attribute value.

SCIM Delete Request

A SCIM delete request is a request to delete a record from the underlying Data View. To
determine whether the delete request should be permitted, the SCIM endpoint will invoke the
policy engine with a XACML request that includes the following attributes:

XACML Attribute Attribute Value
owner-id SCIM ID of the record to be deleted.
actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included

- 65 -

Policy Authorization Scenarios

XACML Attribute Attribute Value
in the request if the access token was obtained through a Client Credentials
grant.

subject-id Application name of the requesting application, retrieved from the OAuth 2.0
access token.

action-id Always “Delete.”

purpose-id Always “Any,” since the SCIM standard does not include a purpose specification.

resource-id Alist of all top-level resource URNs defined by the Data View schema.

Self-Registration Policy Evaluation

Self-registration is an unauthenticated activity that allows a visitor to an application site to
create an account. A request to the Identity Broker’s registration endpoint is a HTTP POST
whose content must include the requesting application’s client ID, the name of the Data View in
which to register the new user, and the new user’s attribute values. The registration endpoint
constructs a XACML request from these arguments so that the policy engine can evaluate
whether the registration should be allowed. The XACML request is formatted with the following
attributes:

XACML Attribute Attribute Value

subject-id Name of the requesting application.

action-id Always “Create.”

purpose-id Always “Registration.”

resource-id A list of all resource URNSs specified in the request’'s message body.

Metadata API Policy Evaluation

The exact policy request generated by the Metadata endpoint will depend on which API is
invoked, but in general will contain the following attributes:

XACML Attribute Attribute Value

owner-id SCIM ID of the user whose metadata is being accessed.

actor-id SCIM ID of the OAuth 2.0 access token owner. This will always be present as a Client
Credentials token is not allowed by the Metadata API.

subject-id Application name of the requesting application, retrieved from the OAuth 2.0 access
token.

action-id Either “Read” or “Update,” depending on which Metadata API has been invoked.

Creation or deletion of consents and identity provider links are considered updates to
a user’s record, therefore the action will be “Update” for those methods.

purpose-id Always “Any.”

resource-id The resource URN(s) to which access is being requested. These resources are
predefined by the Identity Broker and will always begin with
urn:unboundid:resources:broker metadata:.Fora complete list of
metadata resource URNSs, see Accessing User Metadata.

- 66 -

Chapter 6: Reference Information

The functionality for authorization, authentication, and data access is well documented by the
OpenID Connect, OAuth2, and SCIM foundations.

This chapter provides references to that documentation and documentation for using the
Identity Broker API endpoints.

Documentation

Related Information

-67 -

Chapter 6: Reference Information

Documentation

The Identity Broker includes the following documents, available in the docs folder of the
server.

UnboundID Identity Broker Installation Guide (PDF)

UnboundID Identity Broker Administration Guide (PDF)
UnboundID Identity Broker Application Developer Guide (PDF)
UnboundID Identity Broker REST API Reference (HTML)
UnboundID Identity Broker Configuration Reference Guide (HTML)
UnboundID Identity Broker Command Line Reference (HTML)

Reference Information

The following are useful references to information in this guide:

JavaScript Object Notation (JSON) and JSON Web Token (JWT). JSON is a
serialized text-based data interchange format using name-value pairs and ordered or
unordered lists of values as its data structure. JSON Web Token (JWT) is a string
representing a set of claims (attributes) as a JSON object that is encoded in a JSON Web
Signature (JWS), enabling the claims to be digitally signed.

OAuth2 Specification. The OAuth 2.0 Authorization Framework (RFC 6749) is an open
standard that enables client applications to obtain the authorization to access resources
on behalf of the resource owner.

OAuth2 Bearer Token Specification. The OAuth2 Authorization Framework: Bearer
Token Usage specification (RFC 6750) describes how to use bearer tokens in
HTTP requests to gain access to resources.

OpenID Connect Drafts. The Identity Broker provides the libraries and software
packages to fully function as a standalone OpenlID Provider or resource server.

XACML 3.0 Specification. The Policy Service is XACML 3.0-compliant and requires a
working knowledge of its core concepts.

Cross-Origin Resource Sharing (CORS). Applications that make JavaScript requests
to the Identity Broker should be registered with their trusted domains defined. The CORS
specification is a W3C recommendation.

External Identity Provider Login. The Identity Broker Server supports login through
Google, Facebook, and OpenID Connect providers. Configuration information is included
in the UnboundID Identity Broker Administration Guide.

- 68 -

Index: access token - Identity Broker

Index

A

access token
authorization code grant 31
client credentials code grant 35
implicit code grant 33
password credentials code grant 34
accessHistory API 4, 51
account creation 14, 17
account registration 14, 17

account username and password
recovery 13-14, 17

application

redirect URL 7

registering with Identity Broker 7
application access records 51
Attribute-Based Access Control 9
authorization code character length 12

authorization code grant request 30
B

broker-admin tool 8

C

client applications
REST API endpoints 4
client credentials code grant request 34
client identifier 22, 32, 34-35
client secret 22, 34-35
consent history API 4
consent records 51
consentHistory API 53
consents API 5, 53

CORS
Identity Broker configuration 7

reference 68
D

data access

using policies 10
data view schema 44
data views

REST API endpoints 4
dsconfig

changing policy-combining
algorithm 10

endpoint

logout.do 27

SCIM 43

SCIM examples 44

userinfo 42
endpoints

SCIM 42

token 37

token revocation 40

token validation 39
external identity provider

feature 2

reference information 68

external identity providers 7
I
ID token 22

parameters 22
ID Token Grant requests 35
Identity Broker

architecture 2

- 69 -

Index: implicit code grant request — Sample Sign In application

attribute filtering 2 reference 68
authorization 2 requests 22
described 1 responses 22
features 2 scopes 8
pluggable authentication 2 userinfo endpoint 4
social login 2 P

implicit code grant request 32 password credentials code grant
J request 33
JSON password reset 19

object examples 44 PDP endpoint 59

reference 68 policy

JWT token grant type 35 authorization scenarios 59
data access requests 10

PDP endpoint 59

L

links attribute 25
policy evaluation 10
login page 13, 16)
request processing 59

M Profile Manager application 2, 16

metadata APIs 51 new user registration 17

(o) user search 17
OAuth2 purposes

authorization code grant 29 using the any purpose 59
OAuth2.0 28 R

client credentials 30 reCAPTCHA 19

described 29 redirect URI 24

endpoints relying party 3, 68

REST APIs 4 create an accout 24
ID token 30

link an account 25

implicit grant flow 29 process overview 23

policy processing 60 REST API

reference 68 endpoints 4

resource owner password flow 30 S
OpenID Connect
about 21

ID token 22

Sample Sign-In application 2, 12
Sample Sign In application 12

-70 -

SCIM
described 43
supported features 43
SCIM endpoint 42
policy processing 60
search request 63
update operations 64
scopes
defined 7
for linking accounts 25
using the any purpose 59
Self resource 43

social login 24
T

token character length 12
token endpoint 4, 22
token validation 39-40
U
UnboundID
about v
URN
hierarchy in policy evaluation 10
UserlInfo claims 7
UserInfo endpoint 22, 42
example 50
policy processing 60
username recovery 19

X
XACML

request attributes 63

Index: SCIM - XACML

-71-

-72 -

	Copyright
	Preface
	About UnboundID
	Audience
	Documentation

	Chapter 1: Introduction
	Identity Broker Features
	Identity Broker Architecture
	Identity Broker Endpoints for Client Applications

	Chapter 2: Getting Started with Application Development
	What is Needed from the Identity Broker
	OpenID Connect Scopes
	How Policy Affects the Data Returned to an Application
	About Data Access Requests
	About Policy Evaluation
	Accessing Resources by Consent

	Obtaining Usernames and User IDs
	Character Length of Authorization Codes and Tokens
	Working with the Sample Sign In Application
	Deploying the Sample Application
	Sign In Sample Application Pages

	Working with the Profile Manager Application
	Deploying the Sample Application
	Profile Manager Application Pages

	Chapter 3: Authentication
	OpenID Connect Request
	OpenID Connect Response
	The Identity Broker as Relying Party
	Creating an Account through Identity Provider Login
	Linking Identity Broker and External Identity Provider Accounts
	Example Call for Links Data

	The Identity Broker Logout Endpoint
	Request
	Response

	Chapter 4: Authorization Flows
	About OAuth 2.0
	OAuth 2.0 Authorization Grant Types
	Issuing Authorization Code Grant Requests
	Example Redirection
	Example Response
	Example Request
	Example Response
	Example Request

	Issuing Implicit Code Grant Requests
	Example Redirection
	Example Redirect Response
	Example Request

	Issuing Resource Owner Password Credentials Requests
	Example Request
	Example Response

	Issuing Client Credentials Code Requests
	Example Request
	Example Response

	Issuing ID Token Grant Requests

	The Identity Broker Token Endpoint
	Request
	Response

	Token Validation by the Identity Broker
	Token Revocation by the Identity Broker
	Obtaining a Refresh Token

	Chapter 5: Accessing Data
	The Data View (SCIM) Endpoint
	Data View Examples
	GET (Data View Schemas)
	GET
	GET (by User ID)
	POST
	UPDATE
	DELETE

	UserInfo Access Example
	Request
	Response
	jQuery Example

	User Metadata
	Managing Access History Records
	Managing Consents
	Adding an Identity Provider Link to an Account

	Policy Authorization Scenarios
	Policy Decision Point (PDP) Endpoint
	Policies and Request Processing Per Endpoint
	OAuth 2.0 Endpoint Policy Evaluation
	UserInfo Endpoint Policy Evaluation
	SCIM Endpoint Policy Evaluation
	Self-Registration Policy Evaluation
	Metadata API Policy Evaluation

	Chapter 6: Reference Information
	Documentation
	Reference Information

	Index

