
UnboundID® Identity Broker
Administration Guide

Version 5.1.0

UnboundID Corp

13809 Research Blvd., Suite 500

Austin, Texas 78750

Tel: +1 512.600.7700

Email: support@unboundid.com





Copyright

Copyright © 2015 UnboundID Corporation

All rights reserved.

This document constitutes an unpublished, copyrighted work and contains valuable trade
secrets and other confidential information belonging to UnboundID Corporation. None of the
material may be copied, duplicated, or disclosed to third parties without the express written
permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or
through such sites or resources. UnboundID will not be responsible or liable for any actual or
alleged damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such sites or
resources. UnboundID and the UnboundID Logo are trademarks or registered trademarks of
UnboundID Corp. in the United States and foreign countries. All other marks referenced are
those of their respective owners.



Table of Contents
Copyright i

Preface viii

About UnboundID viii

Audience ix

Documentation ix

Chapter 1: Introduction 1

Identity Broker Overview 2

Identity Broker Features 2

Identity Broker Console Overview 3

Identity Broker Architecture 4

Sample Identity Broker Configuration 5

Identity Broker as both a Resource and Authorization Server 5

Identity Broker as an Authorization Server Only 6

Chapter 2: Data Requestors 7

Data Requestors and Data Classification Components 8

Managing Applications 9

To Register a New Application 9

To Edit an Application 10

To Reset a Client Secret 11

To Revoke All Authorizations 12

To Delete an Application 12

To Assign Client Credentials to Resource Servers 12

Managing Application Groups 12

To Create a New Application Group 12

To Edit an Application Group 13

To Delete an Application Group 13

Managing Actions 13

To Create a New Action 13

To Edit an Action 13

To Delete an Action 14

Managing Purposes 14

To Create a New Purpose 14

To Edit a Purpose 14

- ii -



To Delete a Purpose 14

Chapter 3: Data Classification 16

Data Classification Components 17

Data Stores and Data View Components 18

Identity Broker Scopes 19

Administrative Scopes 19

Application Scopes 20

Identity Broker Administrative Resources 21

The Identity Broker as Relying Party 22

Creating an Account through Identity Provider Login 23

Linking Identity Broker and External Identity Provider Accounts 24

Example Call for Links Data 24

Managing Resources 26

To Create a New Resource 26

To Edit a Resource 27

To Delete a Resource 27

Managing Resource Groups 27

To Create a Resource Group 28

To Edit a Resource Group 28

To Delete a Resource Group 28

Managing Scopes 28

To Create a New Scope 29

To Edit a Scope 29

To Delete a Scope 30

Managing Data Views 30

Simple Multivalued Attribute Mapping 31

Complex Attribute Mapping 31

To Create a New Data View 31

To Edit a Data View 32

To Edit Store Adapter Mappings 33

To Export a Data View Schema 33

To Delete a Data View 33

Managing External Identity Providers 34

To Create a New Identity Provider 35

- iii -



To Edit an Identity Provider 36

To Edit Identity Provider Mappings 37

To Delete an Identity Provider 38

Managing UserInfo Mappings 38

UserInfo Claims and Scopes 38

Complex Attribute Mapping 38

To Create a New UserInfo Mapping 39

To Edit a UserInfo Map 39

To Delete a UserInfo Map 39

Chapter 4: Categories 40

Managing Tags 41

To Create a New Tag 41

To Edit a Tag 41

To Delete a Tag 42

Managing Trust Levels 42

To Create a New Trust Level 42

To Edit a Trust Level 43

To Create a New Trust Level more than the Selected Trust Level 43

To Create a New Trust Level less than Selected Trust Level 43

To Delete a Trust Level 44

Chapter 5: Policies 45

Policy Engine Request Context 46

How Policy Affects the Data Returned to an Application 46

About Data Access Requests 47

About Policy Evaluation 47

Accessing Resources by Consent 48

Policy Authorization Scenarios 48

Policy Decision Point (PDP) Endpoint 49

Policies and Request Processing Per Endpoint 49

OAuth 2.0 Endpoint Policy Evaluation 50

UserInfo Endpoint Policy Evaluation 52

SCIM Endpoint Policy Evaluation 52

Self-Registration Policy Evaluation 55

Metadata API Policy Evaluation 56

Policy Writing Guidelines 56

- iv -



About Policy Templates 57

Standard XACML Attribute Use 58

Custom XACML Attribute Use 59

Identity Broker Custom XACML Function 61

Unsupported XACML Features 61

Using Data View Attributes in Policy 63

Policy Sections and Functions Described 64

Managing Policies 67

To Create a New Policy 68

To Edit a Policy 68

To Export a XACML Policy 68

To Enable or Disable a Policy in Production 69

To Delete a Policy 69

Managing Policy Sets 69

To Create a Policy Set 69

To Edit a Policy Set 69

To Export a Policy Set 70

To Disable a Policy Set 70

To Delete a Policy Set 70

Managing Policy Sandboxes 70

To Create a New Policy Sandbox 70

To Edit a Policy Sandbox 71

To Run a Policy Test 71

To Delete a Policy Sandbox 72

Managing Policy Templates 72

To Import a New Policy Template 72

To Edit a Policy Template 72

To Export a XACML Policy Template 73

To Delete a Policy Template 73

Managing Policy Tests 73

To Create a New Policy Test 73

To Edit a Policy Test 74

To Delete a Policy Test 75

Chapter 6: Monitoring the Identity Broker 76

- v -



Dashboards and Metrics 77

About System and Consent Metrics 77

To Change Metrics Data 77

Chapter 7: Testing 79

Testing the Sample Policies 80

To Test the Sample Policies 80

Testing the OAuth2 Authorization Flows 80

To Test the OAuth2 Client Credentials Grant Type 80

To Test the OAuth2 Auth Code and Implicit Grant Types 81

Troubleshooting Policies with Traces 81

Configuring the Policy Debug Authorization Logger 84

Configuring the Authorization Logger 85

Chapter 8: System Administration 86

Identity Broker Configuration Tools 87

All Identity Broker Tools 87

About the Tools Authentication Arguments 89

Administrative Access 89

Adding Additional Administrative Accounts 90

Sample for Adding an Administrator 92

Application Access to the Identity Broker Admin API 94

Managing the Broker Web Applications 95

The Profile Manager Application 95

The Sign-In Sample Application 96

Configuring the Broker Login and Consent Pages 96

User Account Registration and Recovery 97

Customizing the Identity Broker Application Logo 100

Configuring Web Applications for Localization 101

About Velocity Templates 102

Supporting Multiple Content Types 104

Velocity Context Providers 105

Configuring HTTP Header Fields 105

Handling Specific HTTP Methods in Third-Party Providers 106

Velocity Tools Context Provider 106

Preserving Customized Files 107

Addressing a Compromised Encryption Key 107

- vi -



Managing the Log History Service 108

About Multi-Broker Authorization Log Collection and Indexing 108

About Index Latency 109

Configuring Log Collection and Indexing 109

About the Log History Service REST API Redirection 110

Index 112

- vii -



Preface

The UnboundID Identity Broker Administration Guide contains procedures to create and
manage policies, register applications, and set up resources. It also contains information about
management tasks and tools.

About UnboundID
UnboundID Corp is a leading identity infrastructure domain solutions provider with proven
experience in large-scale identity data solutions. The Identity Broker is part of the UnboundID
Platform. The UnboundID Platform is the consumer-grade identity access and management
platform—built specifically to handle the massive scale and real-time demands of hundreds of
millions of customers. It delivers a consistent, seamless, personalized brand experience that
makes each customer feel valued. The UnboundID Platform provides a unified view of
customer data across all applications, channels, partners, and lines of business.

The UnboundID Platform provides the following:

l Secure End-to-End Customer Data Privacy Solution – A comprehensive identity
platform with authorization and access controls to enforce privacy policies, control user
consent, and manage resource flows. The system protects data in all phases of its life
cycle (create, read, update, delete as well as static/unchanging and expiring).

l Purpose-Built Platform – Solutions to consolidate, secure, and deliver customer
consent-given identity data. The system provides unmatched security measures to
protect sensitive identity data and maintain its visibility. The broad range of services
include, policy management, cloud provisioning, federated authentication, data
aggregation, and directory services.

l Unmatched Performance across Scale and Breadth – Support for the three pillars
of performance-at-scale: users, response time, and throughput. The system manages
real-time data at large-scale consumer facing service providers.

- viii -



Preface

l Support for External APIs – Standards-based solutions that can interface with various
external APIs to access a broad range of services. APIs include XACML 3.0, SCIM, LDAP,
OAuth 2.0, and OpenID Connect.

Audience
This guide is intended for identity architects and administrators who are designing and
implementing an identity infrastructure solution. Familiarity with system-, user-, and network-
level security principles is assumed. Knowledge of directory services principles is
recommended.

To use this guide effectively, readers should be familiar with the following subjects:

l REST web services and principles

l JSON or XML serialization formats

l XACML 3.0

l OAuth 2.0 specification

l OAuth 2.0 Bearer Token specification

l SCIM Schema 1.0

l OpenID Connect 1.0

l Apache Velocity Project and templates

Documentation
The Identity Broker includes the following documents, available in the docs folder of the
server.

l UnboundID Identity Broker Installation Guide (PDF)

l UnboundID Identity Broker Administration Guide (PDF)

l UnboundID Identity Broker Application Developer Guide (PDF)

l UnboundID Identity Broker REST API Reference (HTML)

l UnboundID Identity Broker Configuration Reference Guide (HTML)

l UnboundID Identity Broker Command Line Reference (HTML)

- ix -



Chapter 1: Introduction

Companies need to be able to monetize this valuable user data, while balancing data privacy
regulations. The Identity Broker server provides solutions to manage and monitor the
authorization and authentication of user data access. This section includes:

Identity Broker Overview

Identity Broker Features

Identity Broker Architecture

Identity Broker Console Overview

Sample Identity Broker Workflow

- 1 -



Chapter 1: Introduction

Identity Broker Overview
Most organizations today are working toward creating a unified customer profile. An essential
part of creating that common identity profile is to centralize multiple, overlapping accounts and
to define the logic for determining which applications should access data in a profile, and for
what purpose. The Identity Broker enables managing large amounts of customer data while
ensuring end-user privacy.

The Identity Broker can act as an authorization serverauthorization server, or both an
authorization and resource server authorization and resource server.

l As an authorization server, the Identity Broker provides authorization decisions for client
applications, provisioning systems, API gateways and analytical tools in architectures
involving personal, account, or sensitive identity data.

l As a resource server, it provides restricted access to end users' information.

The Identity Broker is designed to make authorization decisions based on dynamic consumer
profile and consent data. It is both the policy decision pointpolicy decision point and the OAuth
2.0 provider for externalized authorization. Because the Identity Broker centralizes the policy
and consent functions, regulatory and security rules are applied consistently across all
applications. In addition, the Identity Broker can be used to create a common identity and
single view of the customer through the use of attribute mapping from multiple backend data
stores.

Identity Broker Features
The Identity Broker provides the following features for client applications to securely access
identity resources:

l Support for multiple backend data stores. The Identity Broker supports multiple
data stores, with native support for the UnboundID Data Store and extension points for
other data stores, such as relational databases. Applications can be written one time for
access to the Identity Broker and receive data from any type of infrastructure backend.

l Authorization based on Policy and Consent. The Identity Broker ensures that data
is provided to only authorized applications. Authorization can be based on industry rules,
corporate policy, or consent granted by customers.

l Unified Data Views. The Identity Broker provides a way to aggregate attributes from
multiple data stores into single views, such as a customer profile view, a subscriber
view, or a device view. Data Views specify attribute mapping and renaming across
multiple data stores. Applications can provide their end users a unified view of their
information based on the Data Views configured.

- 2 -



Identity Broker Console Overview

l Support for social login. The Identity Broker can act as a relying party, enabling users
to log into client applications and update or create Identity Broker accounts with external
identity provider accounts such as Facebook or Google.

l Standards-based authorization. The Identity Broker Server provides OAuth 2.0-
compliant functionality for token generation, expiration, validation, and revocation. This
provides application developers with flexible, secure authorization flows that can be
tailored to multiple application types.

l User interface samples and templates. The Identity Broker installs a Profile
Manager and Sample Sign-In application, if the option is chosen during installation.
These applications can be used to demonstrate how a client application makes requests
of the Identity Broker for user data, how an end user can grant consent for the
application to access that data, and how the Identity Broker returns that data. Identity
Broker Server templates can be used for implementing custom user authentication and
consent flows.

Identity Broker Console Overview
The Identity Broker Console is an administrative web application designed to manage policies,
applications, resources, and the mapping of data from multiple backend data stores. It also
provides system and consent metrics, if configured, to surface data gathered from an
UnboundID Metrics Engine.

The Identity Broker Console is organized into the following main categories:

l Privacy Policies – Specifies what data (resources) is shared with data requestors or
applications.

l Data Requestors – Specifies the applications that want access to resources and for
what purpose.

l Data Classification – Specifies the types of resources that requestors may want to
access and what action can be taken on a resource. Enables mapping of attributes and
configuration of an external identity provider to perform client application
authentication.

l Categories – Specifies the governance tags and trust levels that are assigned to
applications and resources.

l Metrics – Displays request and consent data that has been processed by the system, if
the UnboundID Metrics Engine is installed.

Review the component diagrams to understand the relationships between each:

Data Stores and Data Views

Data Requestors and Data Classification

Policies

- 3 -



Chapter 1: Introduction

Identity Broker Architecture
The Identity Broker can act as both the authorization server and resource server for client
applications requesting access to user data. Client applications are granted authorization
through an OAuth 2.0 flow and receive access through OpenID Connect and SCIM endpoints.

The Identity Broker can either be an identity provider, or it can be the relying party to an
external identity provider, or both. As a relying party, the Identity Broker can offload the
authentication responsibilities to a configured identity provider, and use the authenticated
principal and any attributes to link end user profiles, or create a new profile in a backend data
store.

Identity Broker Architecture

Planning an Identity Broker deployment should start with determining the applications that will
request access to data, how they will access the Identity Broker server, and what data can be
accessed and updated.

- 4 -



Sample Identity Broker Configuration

The Policy Engine is key in determining which applications can access resources and for what
purpose. Make sure that application development is done with consideration for how policies
process requests. See Policies and Request Processing Per Endpoint.

The Identity Broker also tracks the consent that end users grant for access to their data.
Consent and access history can be managed by a requesting application or separate
application.

Sample Identity Broker Configuration
The following provides a reference sequence of tasks based on the role that the Identity Broker
will perform in an existing environment. These tasks can be performed from the Identity
Broker Console application or with the broker-admin tool. It is recommended that all of the
components of an identity infrastructure be identified before beginning any system
configuration.

Identity Broker as both a Resource and Authorization Server
The following is a sample workflow for the Identity Broker as both a resource server and
authorization server:

1. Determine how user data will be made available to client applications. This includes
determining the backend user stores that can be accessed, and how data across multiple
stores will be correlated. A store adapter is installed with any LDAP data store. Custom
store adapters can be created with the help of UnboundID Professional Services. If
mapping attributes from multiple backend data stores, create a Data View Schema for
each.

2. Resources can be mapped from multiple data stores to create a unified identity. After
Data View Schemas are created and imported into the the Identity Broker Console,
resources from each configured user store are available for mapping. Configure Data
Views to map resources from multiple backends.

3. If working in an OAuth 2.0 environment, identify the Scopes that can be accessed.
Scopes are comprised of Resources, Actions, and optional Purposes. Scopes and actions
are required by client applications when sending requests to the Identity Broker.

4. Register the Applications that can request access to data. The application client ID, client
secret, scopes, and OAuth 2.0 flows are defined here. This information will be needed by
any client application requesting data from the Identity Broker.

5. Determine the Policies and Policy Sets that will govern data access. Policies can base
access decisions on the application making the request, the resources requested, the
owner of the resource, and the intended action to be taken on the resource. If policies
need to access decision-making information outside of the Identity Broker configuration,

- 5 -



Chapter 1: Introduction

a custom Policy Information Provider can be configured with the help of UnboundID
Professional Services.

6. Applications and resources can be assigned governance tags and trust levels. These
enable enforcing regulatory requirements and provide added security when data is
requested from outside sources. These components are optional.

7. Policies determine what and how client applications access resources. To make sure that
policy rules work as expected by using Policy Tests and Policy Sandboxes.

8. If using the /userinfo endpoint, data must be mapped from backend user stores with
User Info Mappings.

9. Client applications can use an external identity provider (Facebook, Google, or OpenID
Connect) accounts to access the Identity Broker.

10. If there is an UnboundID Metrics Engine installed, it can be configured to display system
and consent metrics for the Identity Broker. See the UnboundID Identity Broker
Installation Guide for information about configuring the Metrics Engine and Identity
Broker server to surface data in the Identity Broker Console.

Identity Broker as an Authorization Server Only
If using the Identity Broker as an authorization server only, resources will need to be created
manually, unless Data View Schemas are configured. Configuration in this scenario will rely on
the existing identity deployment and the type of authorization that the Identity Broker is
expected to provide. The following is a sample workflow for an authorization server:

1. Identify the resources and data that can be requested by applications. See Resources
and Resource Groups.

2. Determine if OAuth2 will be used to authorize access to resources. If so, identify the
Scopes that can be accessed, Actions that can be performed, and optional Purposes.

3. Continue with steps 4-10 of the previous workflow.

- 6 -



Chapter 2: Data Requestors

Data requestors are the client Applications that ask the Identity Broker for access to
protected resources. Each request through the Policy Engine must contain an Action and can
contain a Purpose. Actions specify the type of access requested, such as read or write.
Purposes are the reason an application is requesting access to a resource, such as Marketing
or Billing Verification.

This section explains how to manage data requestor components in the Identity Broker
Console application. In this section, the following tasks are performed:

Managing Applications

Managing Application Groups

Managing Actions

Managing Purposes

- 7 -



Chapter 2: Data Requestors

Data Requestors and Data Classification Components
The following illustrates the relationship between the resource components that are configured
for the system, the applications that can request access to them, and the actions that can be
performed.

Data Requestors and Data Classification Components

These are the components that are used to determine what a client application can request,
and what consent flow is needed for access. The security requirements for data access, OAuth
2.0 grant types, and end-user consent should all be determined prior to registering an
application with the Identity Broker. Much of this configuration information is needed when
configuring or creating client applications that will access Identity Broker resources.

- 8 -



Managing Applications

Managing Applications
Create and maintain applications that can request access to resources based on policy, trust
level, and any other privacy restrictions. The information used to register the application with
the Identity Broker will be needed by the application to request resources. This information
includes:

l The client ID and client secret that are generated when the application is registered.

l The OAuth access grant types, token duration, and consent requirements configured for
the application.

l Application redirect URIs, which must also be registered with the Identity Broker.

l The scopes that can be requested by an application.

l If an application is given a governance tag or trust level assignment, the assignment
must correspond to any tags or trusts assigned to the resources that the application will
request. For example, if an application is considered less trusted than a resource, the
default Trust Level policy will not allow the application to access that resource. If a
resource is tagged as HIPAA, the default Governance Tag policy will only allow
applications with the HIPAA tag to access it.

l The trusted origin(s) of the client application if making JavaScript requests. See the
UnboundID Application Developer Guide for information about how client applications
access the Identity Broker resources.

l Any external identity providers that can be used to authenticate an end user account.

To Register a New Application
1. Click Data Requestors, and select Applications.

2. On the Applications page, click New Application.

3. On the General tab, enter a name and optional description for the application.
a. Enter an optional application URL in the Application URL box. This can be

displayed on an end user's profile page.

b. Enter an optional URL for the application icon, which displays on the Applications
page.

c. Enter an optional contact email for the application's vendor in the Contact Email
box. This can be displayed on an end user's profile page.

d. To assign this application to a group, select one from the Application Groups
drop-down list.

- 9 -



Chapter 2: Data Requestors

4. On the Policy tab, assign a trust level to the application or assign a tag to identify any
governance policies that is applied to the application. An assigned trust level must
correspond to trust levels applied to resources that the application may want to access.
If an application is considered less trusted than a resource, the application will not be
allowed to access to that resource.

5. On the OAuth tab, determine how the OAuth 2.0 token will be issued and authorized to a
client.
a. OAuth 2.0 defines different access grant types with different authorization

mechanisms. Select the OAuth 2.0 grant type for the application.

b. Enter the duration for grants, tokens, authorization and consents. In each box,
enter 0 for no expiration, or specify a number and unit of time (s=seconds,
m=minutes, h=hours, d=days, w=weeks).

c. Select the Override Refresh Token Validity Duration box if the refresh token
is one of the permitted grant types. Enter the duration value.

d. Choose a signing algorithm from the drop-down list.

6. On the Redirect URIs tab, enter the redirect URI for the application.

7. On the Scopes tab, add or remove the type of resources that can be accessed. For
example, First Name, Last Name, or Email and others.

8. On the Trusted Origins tab, add origins to identify trusted sources of client-side
JavaScript requests to Identity Broker APIs. This enables Cross-Origin Resource Sharing.
This requires additional configuration on the Identity Broker Server.

9. On the External Identity Providers tab, choose the external identity providers that
this application can use for authentication. These providers are defined in Data
Classification and are used to validate existing user credentials with identity providers
such as Facebook and Google.

10. Review the settings, and click Save.

To Edit an Application
1. Click Data Requestors, and select Applications.

2. On the Applications page, click the Edit button for the application to modify.

3. On the General tab, enter a name and optional description for the application.

a. Enter or change the application URL in the Application URL box.

b. Enter or change a URL for the application icon to display on the Applications page.

c. Enter or change a contact email for the application's vendor in the Contact Email
box.

- 10 -



Managing Applications

d. To assign this application to a group, select one from the Application Groups
drop-down list.

4. On the Policy tab, assign a trust level to the application or assign a tag to identify any
governance policies that is applied to the application.

5. On the OAuth tab, determine how the OAuth 2.0 token will be issued and authorized.
a. Select the OAuth 2.0 grant types for the token: Web Application, Client Credentials,

Implicit, Password.

b. Enter the duration for grants, tokens, authorization and consents. In each box,
enter 0 for no expiration, or specify a number and unit of time (s=seconds,
m=minutes, h=hours, d=days, w=weeks).

c. Select the Override Refresh Token Validity Duration box if the refresh token
is one of the permitted grant types. Enter the duration value.

d. Choose a signing algorithm from the drop-down list.

6. On the Redirect URIs tab, enter the redirect URI for the application. If there are more
than one for different applications, enter it here.

7. On the Scopes tab, add or remove the type of resources that will be accessed. For
example, First Name, Last Name, or Email and others.

8. On the Trusted Origins tab, add any Application Trusted Origins to identify trusted
sources of client-side JavaScript requests to Identity Broker APIs.

9. On the External Identity Providers tab, add or remove the external identity providers
that this application can use for authentication. These providers are defined in Data
Classification.

10. Review the settings, and click Save.

To Reset a Client Secret
1. Click Data Requestors and select Applications.

2. On the Applications page, click the drop-down arrow next to the Edit button for the
application to modify.

3. Click Reset client secret. This resets the OAuth 2.0 application client secret associated
with the client ID. The application receives a new, auto-generated secret, which can be
viewed in the OAuth tab of the Edit dialog.

4. Confirm the action.

- 11 -



Chapter 2: Data Requestors

To Revoke All Authorizations
1. Click Data Requestors and select Applications.

2. On the Applications page, click the drop-down arrow next to the Edit button for the
application to change.

3. Click Revoke Authorizations. Any authorizations to access resources are revoked. For
OAuth applications, this includes all tokens.

4. Confirm the action.

To Delete an Application
1. Click Data Requestors and select Applications.

2. On the Applications page, click the drop-down arrow next to the Edit button for the
application to delete.

3. Click Delete.

4. Confirm the action.

To Assign Client Credentials to Resource Servers
An application is assigned a client ID and client secret in the following ways:

l At time of creation: if both grant types and scopes are specified.

l At time of update: if the client secret is reset.

Some client applications, such as resource servers, may need to validate access tokens but do
not need to request access tokens. These applications need client credentials but do not need
to be assigned grant types or scopes. For resource servers, create an application with no grant
types or scopes specified. After creating the app, reset the client secret and use the new client
ID and secret listed on the OAuth tab of the Edit Application dialog.

Managing Application Groups
Associate applications into groups for easier management. For example, create a "Partners"
group that includes applications specific to business partners. Or, create groups for "Internal"
and "External" applications. This is optional.

To Create a New Application Group
1. Click Data Requestors and select Application Groups.

2. On the Application Groups page, click New Application Group.

3. On the General tab, enter a name for the application group in the Name box.

- 12 -



Managing Actions

4. In the Description box, enter a description for the application group.

5. Click the Applications tab, and then select the applications to add to this group.

6. Click Save.

To Edit an Application Group
1. Click Data Requestors and select Application Groups.

2. On the Application Groups page, click the Edit button for the group to modify.

3. On the General tab, change or description of the group.

4. On the Applications tab, add or remove applications from this group.

5. Click Save.

To Delete an Application Group
1. Click Data Requestors and select Application Groups.

2. On the Application Groups page, click the drop-down arrow next to the Edit button for
the group to delete.

3. Select Delete.

4. Confirm the action. The group is deleted, but the applications are still available.

Managing Actions
An action identifies the operation the application intends to perform on the specified resources.
Typically, these actions are "read" and "write." Add or edit actions that define what can be
done with protected resources. Actions are required for defining scopes. Scopes are required
for OAuth 2.0 requests.

To Create a New Action
1. Click Data Requestors and select Actions.

2. On the Actions page, click New Action.

3. Enter a name for this action in the Name box.

4. Enter an optional description of the action.

5. Click Save.

To Edit an Action
1. Click Data Requestors and select Actions.

2. On the Actions page, click Edit for the action to be modified.

- 13 -



Chapter 2: Data Requestors

3. Change the name or description of the action.

4. Click Save.

To Delete an Action
1. Click Data Requestors and select Actions.

2. On the Actions page, click the drop-down arrow next to the Edit button for the action to
delete.

3. Select Delete.

4. Confirm the action.

Managing Purposes
A purpose identifies the reason why an application is requesting access to a resource. For
example, a purpose may represent "Billing Verification" or "Marketing." This is optional.

To Create a New Purpose
1. Click Data Requestors and select Purposes.

2. On the Purposes page, click New Purpose.

3. Enter a name to identify the purpose in the Name box.

4. Enter a description.

5. Click Save.

To Edit a Purpose
1. Click Data Requestors and select Purposes.

2. On the Purposes page, click the Edit button for the purpose to modify.

3. In the Name box, change the purpose name.

4. In the Description box, change the purpose description.

5. Click Save.

To Delete a Purpose
1. Click Data Requestors and select Purposes.

2. On the Purposes page, click the drop-down arrow next to the Edit button for the purpose
to delete.

- 14 -



Managing Purposes

3. Select Delete.

4. Confirm the action.

- 15 -



Chapter 3: Data Classification

Data Classification identifies and manages the data that applications want to access.

This section explains how to manage data classification components in the Identity Broker
Console application. In this section, the following tasks are performed:

Managing Resources

Managing Resource Groups

Managing Scopes

Managing Data Views

Managing External Identity Providers

Managing User Info Mappings

- 16 -



Chapter 3: Data Classification

Data Classification Components
Data Classification includes the following components:

l Data Views map attributes in a Data View Schema to native attributes found in data
store entries, which provides a unified view of identity data found in multiple data stores.
Data View Schemas are expressed using the standard SCIM schema format and define
the attributes that comprise a Data View. The Data View determines the attributes that
can be accessed by a client application.

Resource groups are created for each Data View. These resource groups consist of all
resources created for the attributes from the Data View schema. This group may be
used in scopes so client applications can request access to all attributes in the Data
View without having to list them individually.

l Resources and Resource Groups are the Identity Broker's means of tracking the
types of information that can be requested by applications. A Resource uses a URN
(Unique Resource Names) to identify the data being requested. A Resource Group is an
arbitrary collection of resources that do not necessarily fall within a single portion of the
URN hierarchy.

l Scopes are defined by OAuth 2.0 as defining a type of resource access. A request from a
client application includes an OAuth2 scope which identifies which resources are being
requested, such as a user’s mailing address and phone number. Scopes are defined
within the Identity Broker and are tied to the resources that can be requested, the action
that can be taken on that resource, and the optional purpose for the action.

l External Identity Providers enable the Identity Broker to authenticate an existing
user, or create a new user when that user logs into the Identity Broker through an
external identity provider. If configured, the Identity Broker login page will display a
Facebook, Google, or other OpenID Connect provider login option. If the end user
chooses to login through an external provider, that provider will perform the account
authentication. The Identity Broker will still manage the OAuth2 authorization flow. If the
account is new to the Identity Broker, and attributes required by the associated Data
View are missing from those gathered with the authentication step, the Identity Broker
login page will display a registration form to request the missing information from the
user.

l User Info Mappings map OpenID Connect claims to attributes in the Data View, based
on the Open ID Connect standard. This is only required if making requests through the
UserInfo endpoint.

- 17 -



Data Stores and Data View Components

Data Stores and Data View Components
The following illustrates the relationship between the backend data stores and the Data Views
that can be created to map resources from multiple sources.

Data Mapping Components

When a user store is configured, a Data Store Adapter is installed to read and return native
SCIM objects. Custom store adapters can be created for non-LDAP data stores with the Server
SDK. The attributes surfaced for each backend user store are mapped in Data Views to enable
a unified view of a user profile.

Public Endpoints: UserInfo and SCIM
The Identity Broker, acting as a resource server, retrieves user profile data through the
UserInfo endpoint (/userinfo) or provides full read/write access through the SCIM endpoint
(/scim/{name}). The access to these resources is subject to policy rules and restrictions.

Claims Map (UserInfo Map)
A claims map maps OpenID Connect UserInfo claims to attributes defined in the Data View
Schema. Access to resources is read-only. Configure a UserInfo map only if using the UserInfo
endpoint.

Data View Schema
When the Data View schema is imported, the Identity Broker generates resource objects that
represent a single attribute or resource. The format for the Data View schema is defined in the
SCIM specification. It is created and imported as a JSON file. An example Data View schema is
located in the Identity Broker <server-root>/resource/defaultUserSchema.json.

Store Adapters
A store adapter connects the data coming into the Identity Broker with an Identity Data Store
or other external data store. For example, an LDAP Store Adapter manages the attribute
mappings from an LDAP data store to a SCIM schema used for a corresponding Data View. The

- 18 -



Chapter 3: Data Classification

Identity Broker provides an LDAP store adapter. Third-party store adapters can be created with
Server SDK extensions.

Data View Mappings
A Data View enables attribute mappings between the native store adapter schema and the Data
View Schema. The Data View mapping can contain additional information as to whether the
native attribute is readable, writable, searchable, and authoritative. One must be
authoritative. A Data View can map attributes from multiple data stores and determine which
attributes are the authoritative resource for a user profile. See Using Data View Attributes in
Policy for details about policy evaluation.

Data Stores
The data stores are the user repositories or data resources, which can be one or more
Identity Data Stores, Identity Data Proxy servers, or third-party directory servers. Data View
mappings can be used to aggregate attributes from multiple data stores into a unified view.

When a store adapter is added to the Identity Broker’s server configuration, a correlation
attribute can be defined for Data Views that are backed by multiple store adapters. The
correlation attribute defines an attribute for each store adapter that is used to uniquely identify
the same end user data across different store adapters. For example, if every data store in a
User Store stores a user’s email address, and an email address can always be considered a
primary key (that is, it is always unique per use), then each store adapter’s email address
attribute can be set as its correlation attribute.

Identity Broker Scopes
Several scopes are installed with the Identity Broker. Each can be configured to best suit
administrative needs and the needs of client applications. See Identity Broker Administrative
Resources for a listing of all resources that can be used in administrative scopes.

Administrative Scopes
The Identity Broker installs a set of administrative scopes that are required to perform Identity
Broker tasks. The Identity Broker Console and the broker-admin command line tool are the
only applications configured to use these scopes initially. All administrative scopes contain
resources with the the urn:unboundid:resources:broker_admin prefix. The default Admin
API Policy enables access to accounts with the broker_admin entitlement for administrative
resources, which are grouped in the following scopes. These scopes should be edited with
caution.

Admin Token Refresh – Enables an administrator to acquire a refresh token.

Export Configuration – Enables exporting the Identity Broker configuration stored in the
Broker Store. This includes the top-level resource for Identity Broker administrative
resources, which if granted, enables the requester to access all Identity Broker administrative
functions.

- 19 -



Identity Broker Scopes

Import Configuration – Enables importing the Identity Broker configuration stored in the
Broker Store. This includes the top-level resource for Identity Broker administrative
resources, which if granted, enables the requester to access all Identity Broker administrative
functions.

Invoke PDP – Generally used by third-party resource servers. This is used to invoke the
policy decision point without going through the Identity Broker's OAuth 2.0 authentication
mechanism.

Read Configuration – Enables reading Identity Broker configuration details for applications,
actions, purposes, requests, scopes, resources, tags, trust levels, trace filters, external
identity providers, data views, and claims maps.

Read XACML Policies – Enables reading the policies that are configured for the Identity
Broker.

Update XACML Policies – Enables create, edit and delete operations on policies configured
for the Identity Broker.

Update Configuration – Enables create, edit and delete operations for all Identity Broker
functions.

Application Scopes
The rest of the installed scopes are for use by client applications requesting access to Identity
Broker resources or functions. They can be modified to best fit the resource requests of
specific applications. Make sure that policies are configured to provide or deny access on any
new scopes defined.

Billing – A sample scope for a client requesting billing history resources. This is installed if the
"Install Sample Data" option was selected during installation.

Consumer Data – A sample scope for a client requesting consumer data and preferences.
This is installed if the "Install Sample Data" option was selected during installation.

Delete Profile – Enables an application to delete a user profile.

Manage Consents – Enables an application to perform create, edit, and delete operations on
the consents granted for data access.

Manage Links – Enables create, edit, and delete operations on the links that have been
created with external identity provider accounts.

Offline Access – Enables an application to cache data and make it available when the
requesting application is not online.

openid – The required scope for all OpenID Connect client application requests.

Read Access History – Enables an application to read the granted and revoked consent
records for requested user information.

Read Address – Enables an application to read the OpenID Connect address resource for an
Identity Broker account.

Read Consents – Enables an application to read the consent information for an Identity
Broker account.

- 20 -



Chapter 3: Data Classification

Read Email – Enables an application to read the OpenID Connect email resource for an
Identity Broker account.

Read Link Authorization – Enables an application to read the authorization credentials for
external identity provider accounts that are linked to an Identity Broker account.

Read Links – Enables an application to read the link data, such as external identity provider
name, for linked accounts.

Read Phone – Enables an application to read the OpenID Connect phone resource for an
Identity Broker account.

Read Profile – Enables an application to read the OpenID Connect profile resource for an
Identity Broker account.

Update Address – Enables an application to perform all actions on the OpenID Connect
address scope for an Identity Broker account.

Update Email – Enables an application to perform create, edit, and delete actions on the
OpenID Connect email resource for an Identity Broker account.

Update Phone – Enables an application to perform create, edit, and delete actions on the
OpenID Connect phone resource for an Identity Broker account.

Update Profile – Enables an application to perform create, edit, and delete actions on the
OpenID Connect profile resource for an Identity Broker account.

Identity Broker Administrative Resources
The ability to perform operations through the Identity Broker's Admin API, the Console, and
with the broker-admin tool is determined by policy. By default, the Admin API Policy denies
access to any user that does not have the broker_admin entitlement or any application that
does not request a scope that contains resources with the
urn:unboundid:resources:broker_admin prefix.

The Identity Broker installs all of the necessary scopes and resources to manage the system.
See Identity Broker Scopes for a list of installed scopes. All administrative tasks are defined by
scopes that contain the following resources:

l urn:unboundid:resources:broker_admin – Top level resource that includes actions
for import and export of Broker Store, and for modifying the deletable and editable
properties.

l urn:unboundid:resources:broker_admin:policies – Includes tasks for Policy, Policy
Sandboxes, and Policy Sets.

l urn:unboundid:resources:broker_admin:applications – Includes tasks for
Applications and Application Groups.

l urn:unboundid:resources:broker_admin:actions – Includes tasks for Actions.

l urn:unboundid:resources:broker_admin:purposes – Includes tasks for Purposes

l urn:unboundid:resources:broker_admin:requests – Includes tasks for Requests

- 21 -



The Identity Broker as Relying Party

l urn:unboundid:resources:broker_admin:resources – Includes tasks for Resources,
Resource Aliases, and Resource Groups

l urn:unboundid:resources:broker_admin:scopes – Includes tasks for Scopes.

l urn:unboundid:resources:broker_admin:tags – Includes tasks for Tags.

l urn:unboundid:resources:broker_admin:traceFilters – Includes tasks for
managing policy trace filters.

l urn:unboundid:resources:broker_admin:trustLevels – Includes tasks for Trust
Levels.

l urn:unboundid:resources:broker_admin:externalIdentityProviders – Includes
tasks for External Identity Providers and managing Identity Provider data.

l urn:unboundid:resources:broker_admin:dataViews – Includes tasks for Data Views
and managing Store Adapter Data.

l urn:unboundid:resources:broker_admin:claimsMaps – Includes tasks for Claims
Maps.

l urn:unboundid:resources:broker_admin:pdp – Includes tasks for invoking the Policy
Decision Point.

The Identity Broker as Relying Party
The Identity Broker, as relying party, acts as a client of an external identity provider service.
Users can log into the Identity Broker with external identity provider accounts. The Identity
Broker provides authentication claims, account linking, and profile retrieval services to the
client application.

Data Flow with an External Identity Provider

The Identity Broker must be registered as an application with the identity provider to enable
this flow. External identity providers are configured through the Identity Broker Console
External Identity Providers pages or through the broker-admin command-line tool.

- 22 -



Chapter 3: Data Classification

A social login link (and icon) is displayed on the Identity Broker’s default login page for
applications configured to use an external identity provider. The login template reads this
information through the LoginPageContextProvider. See About Velocity Templates for more
information.

When an end user clicks an external identity provider link, a POST request is sent to the
/idpLogin.do endpoint with the following two form parameters:

idp=<external identity provider name>
client_id=<requesting application client id>

The /idpLogin.do endpoint redirects the browser to the external provider's authorization
endpoint with an OpenID Connect code request:

response_type=code
client_id=<relying party application client id>
redirect_uri=https://<rp_host>/metadata/v1/providers/<external identity provider name>/ca
llback
state=<state value generated by the /idpLogin.do endpoint>
scope=<all scopes registered with the relying party application, including ‘openid’>

After the end user authenticates to the external identity provider and authorizes the OpenID
Connect request, the external provider redirects the browser to the Identity Broker's
/idpLogin.do endpoint, as provided in the redirect_uri value. If a matching account is
found at the Identity Broker, then the end user will need to log in to link the Identity Broker
account and the account at the external provider. Otherwise, a new Identity Broker account
can be created.

Note
The redirect_uri value used in this flow should be registered as a redirect URI with the
application used by the Identity Broker at the external identity provider. It should have the form
https://<identity broker>/idpLogin.do?idp=<idp name>.

Creating an Account through Identity Provider Login
If an end user does not have an Identity Broker account, one can be created by the Identity
Broker with the information obtained from the external identity provider.

The Identity Broker applies the Data View mappings for the identity provider (configured in the
Identity Broker Console, or with the broker-admin tool) to the retrieved profile data. If any
attribute value required by the Data View is missing, a registration form is displayed to prompt
the end user for missing data. The user supplies the information, which is submitted to the
SCIM /registration.do endpoint with the following parameters. If no additional information
is needed, a new Identity Broker account is created.

client_id=<requesting application client id>
dataview=<dataview name>
resource=<dynamically generated SCIM representation of the account to be created>
idp_token=<a token that contains state information about the authentication/registration
request>

The user is redirected to the authorization URI specified by the requesting client application,
and the flow continues to the consent page for the scopes requested by the application. If the
user consents, the application receives an access token issued by the Identity Broker.

- 23 -



The Identity Broker as Relying Party

Linking Identity Broker and External Identity Provider Accounts
The Identity Broker provides information linking a local account to an external identity
provider account through the Metadata REST API at the /metadata/v1/<userId>/links
endpoint. Client applications can use this API to retrieve or remove an existing link, or to add a
new link.

Access to this endpoint is granted to an application by consent to use one of the following links
scopes:

Scope name Function

read_links Read the links attribute, excluding external IDP credentials.

read_links_authorizations Read external IDP credentials.

manage_links Create, update or delete links.

Scopes for Linked Accounts

Data provided by the /metadata/v1/<userId>/links endpoint includes:

l accessToken

l expireTime

l refreshToken

l providerUserId

l provider
o name

o type

o description

o iconUri

o userInfoEndpoint (for OpenID Connect identity providers)

For information about using the /links endpoint, see the Identity Broker REST API Reference
online documentation.

If any external identity provider attributes are mapped to the user's data view, values for
these attributes are copied to the user's local profile when logging in through an external
identity provider. Applications can also retrieve data from an external identity provider
account using data from the /metadata/v1/<userId>/links endpoint.

Note
Access to external identity provider data requires consent from the end user.

Example Call for Links Data
If an application has an end user's unique SCIM ID and a bearer token for the read_links and
read_link_authorizations scopes, it can obtain a list of the end user's linked identity

- 24 -



Chapter 3: Data Classification

provider accounts, including the account IDs and access tokens needed for limited read access
to those accounts.

GET /metadata/v1/9f8a23-a7171c48-fde2-3224-9087-81167f65df2f/links HTTP/1.1
Accept: application/json
Authorization: Bearer VGltZSBwcmVzZW50IGFuZCB0aW1lIHBhc3QgLyBBcmUgYm90aCBwZXJoYXBzIHByZXN
lbnQgaW4gdGltZSBmdXR1cmU=

HTTP/1.1 200 OK
Content-Type: application/json

{
    "count": 1,
    "data": [

{
             "accessToken": "SWYgYWxsIHRpbWUgaXMgZXRlcm5hbGx5IHByZXNlbnQgLyBBbGwgdGltZSBp
cyB1bnJlZGVlbWFibGUu",
             "expireTime": 1414178475000,
             "provider": {
                 "appId": null,
                 "clientSecret": null,
                 "deletable": true,
                 "description": null,
                 "editable": true,
                 "iconUri": "https://<example.com>/icons/facebook_32.png",
                 "id": "DATTA",
                 "modifyTimestamp": null,
                 "name": "Facebook Relying Party App",
                 "permissions": null,
                 "type": "facebook"
             },
             "providerUserId": "26091888",
             "refreshToken": null
         }
    ],
    "startIndex": 0,
    "totalResults": 1
}

Based on the accessToken, providerUserId, and provider.type values in the above
response, the application can formulate a profile request for the external identity provider. For
example, the following is a Facebook Graph API 2.0 request:

GET /v2.0/26091888 HTTP/1.1
Accept: application/json
Authorization: Bearer SWYgYWxsIHRpbWUgaXMgZXRlcm5hbGx5IHByZXNlbnQgLyBBbGwgdGltZSBpcyB1bnJ
lZGVlbWFibGUu
Host: graph.facebook.com

HTTP/1.1 200 OK
Content-Type: application/json

{
   "email": "tom.eliot@example.com",
   "first_name": "Tom",
   "gender": "male",
   "id": "26091888",

- 25 -



Managing Resources

   "last_name": "Eliot",
   "link": "https://www.facebook.com/app_scoped_user_id/26091888/",
   "locale": "en_US",
   "name": "Tom Eliot",
   "timezone": 0,
   "updated_time": "2014-06-10T20:38:29+0000",
   "verified": true
}

Note
External identity provider APIs are subject to change. See the external identity provider's
documentation for information.

Managing Resources
A resource is a collection, attribute, or thing that represents an organizational data asset. It is
a multi-valued set of URNs (Unique Resource Names) that identifies the data being requested.
Each URN can represent a Resource, a Resource attribute, or a sub-attribute.

For example, a Resource object might represent:

l an entire Resource urn:unboundid:resource:user

l a Resource attribute urn:unboundid:resource:identity:User.address

l or a sub-attribute urn:unboundid:resource:identity:User.usernamepostalCode

The resources listed on the Resources page represent the default SCIM and UserInfo schemas
configured for the backend data stores.

To Create a New Resource
1. Click Data Classification and select Resources.

2. On the Resources page, click New Resource.

3. On the General tab, enter a name to identity the resource.

4. Enter an optional description for the resource.

5. In the URN box, enter the URN (unique resource name) for the resource. The format is
namespace:collection:attribute.

6. Enter an optional trust level for the resource. An assigned trust level may affect a
requesting application's access to it. If an application is considered less trusted than a
resource, the application will not be allowed to access to that resource.

7. Enter an optional tag for the resource. For example, if a resource is tagged as HIPAA,
only applications registered with the HIPAA tag can access it.

8. Click the Aliases tab.

9. Enter an alternate name for the resource.

10. Click the Resource Groups tab.

- 26 -



Chapter 3: Data Classification

11. Select the group in the list to associate with the resource.

12. Click Save.

To Edit a Resource
1. Click Data Classification and select Resources.

2. On the Resources page, click the Edit button for the resource to modify.

3. On the General tab, change the resource name or description.

4. In the URN box, edit the URN (unique resource name) for the resource. The format is
namespace:collection:attribute.

5. Enter or change the trust level for the resource.

6. Enter or change the tag for the resource.

7. Click the Aliases tab.

8. Enter an alternate name for the resource.

9. Click the Resource Groups tab.

10. Select the group in the list to associate with the resource.

11. Click Save.

To Delete a Resource
1. Click Data Classification and select Resources.

2. On the Resources page, click the drop-down arrow button next to the Edit button for the
resource to delete.

3. Click Delete.

4. Confirm the action.

Managing Resource Groups
Resource Groups can be created for a collection of resources that do not necessarily fall within
a single portion of the URN (Unique Resource Name) hierarchy. For example, request to access
a resource urn:unboundid:resource:address would return all of its sub-attributes, such as
street_address, region, country, and postal_code. Instead, a resource group can be
created to include only certain sub-attributes, such as street_address and postal_code, not
all that fall under the attribute hierarchy.

In order for access to a resource group to be granted to a client application, the application
must request the group ID and an end user must consent to the group as an entity. If the group
ID is not specified, an end user must consent to all resources contained in the group.

- 27 -



Managing Scopes

To Create a Resource Group
1. Click Data Classification and select Resource Groups.

2. On the Resource Groups page, click New Resource Group.

3. On the General tab, enter a name to identity the resource group.

4. Enter an optional description for the resource group.

5. In the URN box, enter the URN for the resource group. The format is
namespace:collection:attribute.

6. Click the Resources tab.

7. Select the resources to add to the group.

8. Click Save.

To Edit a Resource Group
1. Click Data Classification and select Resource Groups.

2. On the Resource Groups page, click the Edit button for the resource group to modify.

3. On the General tab, change the name or description for the resource group.

4. In the URN box, enter the URN for the resource group. The format is
namespace:collection:attribute.

5. Click the Resources tab.

6. Select the resources to add to the group.

7. Click Save.

To Delete a Resource Group
1. Click Data Classification and select Resource Groups.

2. On the Resource Groups page, click the drop-down arrow next to the Edit button for the
resource group to delete.

3. Select Delete.

4. Confirm the action.

Managing Scopes
A scope indicates which data are being requested with an OAuth 2.0 authorization request.
Typically, one or more scopes are submitted with each request. Scopes are tied to the
resources that can be requested, the actions that can be taken on that resource, and the
optional purpose for the actions.

- 28 -



Chapter 3: Data Classification

Note
If a scope's action, purpose, or resource is updated, all tokens containing that scope will be
revoked.

To Create a New Scope
1. Click Data Classification and select Scopes.

2. On the Scopes page, click New Scope.

3. On the General tab, enter a name for this scope. This name will be displayed to end-
users when they are asked to provide consent.

4. In the OAuth Name box, enter the OAuth name for this scope. This is the name that
client applications need to request the scope from the Identity Broker.

5. Enter an optional description for the scope.

6. To have a message display on an authorization approval page, enter text in the
Approval Page Summary box.

7. Select the type of action to apply to this scope from the Action drop-down list.

8. Select the purpose for this scope from the Purpose drop-down list.

9. If the scope requires approval from the resource owner when requested, check the
Requires approval when requested box.

10. Click the Resources tab.

11. Select the resources to add to the scope.

12. Click the Resource Groups tab.

13. Select the groups to apply to the scope.

14. Click Save.

To Edit a Scope
Any change to an existing scope's action or purpose will invalidate all tokens containing that
scope. Before making changes to scopes, make sure that dependent tokens are no longer
needed.

1. Click Data Classification and select Scopes.

2. On the Scopes page, click the Edit button for the scope to modify.

3. On the General tab, change the scope name. This name will be displayed to end-users.

4. In the OAuth Name box, enter the OAuth name for this scope.

5. Enter or change an optional description for the scope.

6. To have a message display on an authorization approval page, enter text in the
Approval Page Summary box.

- 29 -



Managing Data Views

7. Select the type of action to apply to this scope from the Action drop-down list.

8. Select the purpose for this scope from the Purpose drop-down list.

9. If the scope requires approval from the resource owner when requested, check the
Requires approval when requested box.

10. Click the Resources tab.

11. Select the resources to apply to the scope.

12. Click the Resource Groups tab.

13. Select the groups to apply to the scope.

14. Click Save.

To Delete a Scope
1. Click Data Classification and select Scopes.

2. On the Scopes page, click the drop-down arrow next to the Edit button for the scope to
delete.

3. Click Delete.

4. Confirm the action.

Managing Data Views
Data Views provide a unified view of resources between the Identity Broker and one or more
underlying data stores. Each Data View relies on a single Data View Schema, which must have
the same name.

A Data View relies on a Data View Schema, which is imported into the Identity Broker Console.
The Data View Schema is a JSON-formatted SCIM schema that is used to define what attributes
can be retrieved from a backend data store. The Identity Broker provides a sample SCIM
schema that can be used as a template in <server-root>/resource/example-starter-
schema.

Each Data View represents one resource type, such as "user" or "account" and the schema
defines the attributes of that resource. A DataViewSchema object is a Broker Store object,
which is a container for the SCIM Resource Schema for that particular Data View.

Note
Whenmapping attributes, data store attributes and Data View attributesmust be of compatible
types. For example, an attribute with an integer valuemust bemapped to another attribute with
an integer value. An attribute with a string value can only bemapped to attributeswith boolean,
integer, or date-time if it can be parsed.

See Using Data View Attributes in Policy for details about policy evaluation.

- 30 -



Chapter 3: Data Classification

Simple Multivalued Attribute Mapping
If the Data View schema contains a multivalued attribute that has a "value" sub-attribute, the
Identity Broker will consider this a "simple" multivalued attribute (a collection of simple
attributes). In this case, only the "value" sub-attribute is mappable to a Store Adapter
attribute. The Store Adapter attribute should be multivalued.

An example of this attribute type, from the SCIM 1.1 Core Schema specification, is the User
entitlements attribute.

Complex Attribute Mapping
If the Data View schema contains a multivalued complex attribute that does not have a "type"
sub-attribute (does not specify canonical types) and does not have a "value" sub-attribute, the
Identity Broker can map that attribute to a multivalued string attribute in a Store Adapter.
When the Identity Broker writes to the Store Adapter, each complex value of the Data View
attribute is encoded as a JSON string. When reading from the Store Adapter, the JSON string is
converted back into a complex structure.

All other complex attributes, including single-valued, simple multivalued attributes, and
canonically-typed multivalued attributes, must be mapped at the sub-attribute level.

To Create a New Data View
Creating a Data View requires knowledge of the data stores and store adapters that have been
implemented to support the identity infrastructure.

It also requires the manual creation of a Data View Schema that defines the attributes that can
be mapped to resources in the backend user stores. This provides a unified view of a user's
data across multiple backend user stores.

1. Click Data Classification and select Data Views.

2. On the Data Views page, click New Data View.

3. On the General tab, choose a Data View Schema to import into the Identity Broker. This
file defines the attributes that will be mapped to resources in the back-end store
adapters and must be in JSON format. See the SCIM Core Schema 1.1 Specification for
information about formatting this file. A sample SCIM schema is located in <server-
root>/resource/example-starter-schema.

4. Enter a name for this Data View. If not specified, the name will be populated from the
Data View Schema file.

5. Enter an optional description for the Data View.

6. Enter the Schema URI (unique resource identifier). If not specified, the URI will be
populated from the Data View Schema file.

7. Enter the Data View's endpoint HTTP address, which will be relative to the /scim base
URL.

- 31 -



Managing Data Views

8. Enter an optional look-through limit for the maximum number of resources that the Data
View should scan when processing a search request. This prevents a client from taking
too many of the server's resources for a single search.

9. Click the Enabled check box to make the Data View's contents available for Identity
Broker processing.

10. On the Store Adapters tab, choose one or more store adapters on which this Data View
will rely for attribute mapping. Store adapters can be listed in the order in which
attribute searches should take place.

11. Click Save.

To Edit a Data View
1. Click Data Classification and select Data Views.

2. On the Scopes page, click the Edit button for the Data View to modify.

3. On the General tab, choose a Data View Schema to import into the Identity Broker.

4. Change the name for this Data View. If not specified, the name will be populated from
the Data View Schema file.

5. Enter or change the optional description for the Data View.

6. Change the Schema URI (unique resource identifier). If not specified, the URI will be
populated from the Data View Schema file.

7. Change the Data View's endpoint HTTP address, which will be relative to the /scim base
URL.

8. Enter or change an optional look-through limit for the maximum number of resources
that the Data View should scan when processing a search request. This prevents a client
from taking too many of the server's resources for a single search.

9. Click the Enabled check box to make the Data View's contents available for Identity
Broker processing.

10. On the Store Adapters tab, choose one or more store adapters on which this Data View
will rely for attribute mapping. Store adapters can be listed in the order in which
attribute searches should take place.

11. On the Attributes tab, view the attributes that are populated by the schema file.

12. Click Save.

- 32 -



Chapter 3: Data Classification

To Edit Store Adapter Mappings
1. Click Data Classification and select Data Views.

2. Click the drop-down arrow next to the Edit button for the Data View, and click Edit
Store Adapter Mappings.

3. On the Edit Data View dialog, review the Data View Schema on the left and the related
Storage Adapter Mapping on the right.

4. Click any of the attributes to be mapped between the Data View Schema and the storage
adapter, or click Edit All next to the store adapter to list and edit all attributes.

5. For each Data View attribute, select the attribute to map from the drop-down list. If
multiple store adapters are associated with this Data View, each will present a list of
attributes.

6. Select the actions that can be performed on an attribute.
o Readable – The Data View can read this attribute.

o Authoritative – If there are multiple attributes of this type (from multiple data
stores), one must be marked Authoritative.

o Writable – The Data View can write to this attribute.

o Indexed – This specifies whether the attribute is efficiently searchable in the
underlying data store. Indexed data store attributes determine what attributes
(from the Data View Schema) can be used in a SCIM filter when performing a
query. If an attribute is not indexed in the data store, it should not be marked as
indexed here.

7. Click Done Editing.

8. Click Save on the Edit Data View Store Adapter Mappings dialog.

To Export a Data View Schema
1. Click Data Classification and select click Data View Schemas.

2. On the Data View Schemas page, click the drop-down arrow next to the Edit button in a
row.

3. Select Export JSON.

4. Open or save the file to an location.

To Delete a Data View
1. Click Data Classification and select Data Views.

2. On the Data Views page, click the drop-down arrow next to the Edit button for the Data
View to delete.

- 33 -



Managing External Identity Providers

3. Click Delete.

4. Confirm the action.

Managing External Identity Providers
Configuring External Identity Providers enables the Identity Broker to authenticate a user with
a registered application. If the user does not already exist in any of the backend user stores,
an account can be created with the username and other optional attributes.

The rules that determine how and when an identity can be created are defined in the User
Create and Update Policy. See Managing Policies for more information.

The Identity Broker supports three provider types. Before configuring an external identity
provider, the following is needed:

For Google

l Register the Identity Broker with Google to obtain a client ID and secret. See
https://developers.google.com/accounts/docs/OAuth2 for details.

l Determine the identity provider's scopes that will be used for authorization. The default
for Google is provided.

l Determine the Identity Broker Data Views that will be used to map a user's Google
profile attributes to the Identity Broker backend user store.

For Facebook

l Register the Identity Broker with Facebook to obtain a client ID and secret. See
https://developers.facebook.com/docs/web/tutorials/scrumptious/register-facebook-
application/ for details.

l Determine the Identity Broker Data Views that will be used to map a user's Facebook
profile attributes to the Identity Broker backend user store.

l Determine the Facebook permissions for which a user can grant access.

For an OpenID Connect Provider

l Register the Identity Broker with the provider to obtain a client ID and secret.

l Determine the Identity Broker Data Views that will be used to map a user's profile
attributes to the Identity Broker backend user store.

l Determine the identity provider's scopes that will be used for authorization.

l Determine the authentication method for the client to use.

l Obtain the URLs of the provider's issuer identifier, the authorization endpoint, the token
endpoint, and the userinfo endpoint.

- 34 -



Chapter 3: Data Classification

l If using a custom OpenID Connect schema, create (or obtain) a JSON-formatted schema
file to import. This enables the Identity Broker to use the provider's claims mapping for
mapping attributes to the backend user store.

l The Identity Broker will use TLS server validation to authenticate OpenID Connect
providers instead of validating ID token signatures when the token endpoint is secure
(HTTPS). Only ID tokens signed with MAC-based algorithms such as HS256, HS384, or
HS512 are supported when validating ID tokens over a non-secure connection.

To Create a New Identity Provider
1. Click Data Classification and select External Identity Providers.

2. On the External Identity Providers page, click New External Identity Provider.

3. On the General tab, enter a name for this provider.

4. Enter an optional description.

5. Select the identity provider type from the drop-down list. Supported providers are
Facebook, Google, or OpenID Connect.

6. The Facebook and Google icons are available and will be added to the Identity Broker
login page if configured. To add a custom icon to the login page, enter the location URI.

7. Select one or more Data Views to associate with the identity provider's attribute
mapping.

8. On the Connection tab, supply the connection information for the selected identity
provider. The options are specific to each provider type. The Identity Broker application
must be registered with the provider.

For Facebook

1. Enter the Application ID that was given to the Identity Broker when it was registered
with Facebook.

2. Enter the Application Secret that was given to the Identity Broker when it was
registered with Facebook.

3. Select the Data to Request (Facebook permissions) from the drop-down list. These are
the Facebook scopes that can be requested from a registered Identity Broker client
application.

For Google

1. Enter the Client ID that was given to the Identity Broker when it was registered with
Google.

- 35 -



Managing External Identity Providers

2. Enter the Client Secret that was given to the Identity Broker when it was registered
with Google.

3. Select the Data to Request (Google scopes) from the drop-down list. These are the
Google scopes that can be requested from a registered Identity Broker client application.

For OpenID Connect

1. Enter the Client ID that was given to the Identity Broker when it was registered with the
identity provider.

2. Enter the Client Secret that was given to the Identity Broker when it was registered
with the identity provider.

3. Select the Data to Request (scopes) from the drop-down list. These are the identity
provider scopes that can be requested from a registered Identity Broker client
application.

4. Choose the authentication method to use when the Identity Broker client application
connects to the identity provider's token endpoint.

5. Enter the URL that the identity provider recognizes as its issuer identifier.

6. Enter the URL for the identity provider's OAuth 2.0 authorization endpoint.

7. Enter the URL for the identity provider's OAuth 2.0 token endpoint.

8. Enter the URL for the identity provider's OAuth 2.0 userInfo endpoint.

To Edit an Identity Provider
1. Click Data Classification and select External Identity Providers.

2. On the External Identity Providers page, click the Edit button for the provider to modify.

3. On the General tab, change the name for this provider.

4. Enter or change an optional description.

5. The Facebook and Google icons are available and will be added to the Identity Broker
login page if configured. To add a custom icon to the login page, enter the location URI.

6. Select one or more Data Views to associate with the identity provider's attribute
mapping.

7. On the Connection tab, supply the connection information for the selected identity
provider. The options are specific to each provider type. The Identity Broker application
must be registered with the provider.

l For Facebook

l For Google

- 36 -



Chapter 3: Data Classification

l For OpenID Connect

To Edit Identity Provider Mappings
1. Click Data Classification and select External Identity Providers.

2. On the External Identity Providers page, click the drop-down arrow next to the Edit
button for the provider.

3. Click Edit Data View Mappings.

4. The attributes that can be requested for this identity provider are listed on the left.
Attributes are based on the scopes or permissions that were configured when the
provider was added. The Data Views that were configured for this provider are listed on
the right.

5. To change the permissions that were configured for this provider, click Select
Permissions. Permissions determine the attributes that are listed for the provider.

6. To add a custom claim to the provider's list, click Add Custom Claim. The custom claim
can be mapped to any of the Data View attributes.

Note
In order for custom claimswith multiple levels of nested attributes to bemapped, each nested
attributemust be added as individual claims. This only applies if user attributeswill be updated
based on a claim retrieved from anOpenID Connect identity provider. Claimswith top level
JSON arrays are supported and represented asmulti-valued SCIM attributes. However,
claimswith nested JSON structures containing arrays are not supported and are not
mappable.

7. If more than one Data View was configured, click Edit All at the top of the list to display
all Data Views.

8. Click Define Mapping for each attribute that should be mapped to a Data View.

9. Select the Data View attribute to map from the drop-down list.

10. If the value for the Data View attribute should overwrite the identity provider attribute
value, select Always Overwrite or Overwrite Only if Value is Missing. If the Data
View value should not be overwritten, select Never Overwrite.

Note
Mappings for attirbutes used for login, such as username or id, should have the update option
set to "Never Overwrite."

11. Click Done Editing to save settings.

12. Click Save when finished mapping attributes.

- 37 -



Managing UserInfo Mappings

To Delete an Identity Provider
1. Click Data Classification and select External Identity Providers.

2. On the External Identity Providers page, click the drop-down arrow next to the Edit
button for the provider to delete.

3. Click Delete.

4. Confirm the action.

Managing UserInfo Mappings
A UserInfo endpoint is an OAuth 2.0 protected resource that returns information about an
authenticated end user. UserInfo Mapping enables mapping Data View Schema attributes to
claims returned from the UserInfo endpoint. The standard UserInfo data and claims are
detailed in the OpenID Connect Authentication 1.0 Specification. Any custom claims can be
defined and exposed at the UserInfo endpoint by adding (non-standard) entries in the UserInfo
map.

Note
A UserInfomap should be created for each Data View.

UserInfo Claims and Scopes
For a client application to successfully retrieve an OpenID Connect claim from the UserInfo
endpoint, it must request and get consent to use a corresponding scope. However, claims
correspond to specific resources, which are contained within scopes. Make sure that configured
scopes contain the resources that client applications will request from the UserInfo endpoint.
Make sure that any changes to resource mapping are also made in the scope configuration.

For example, if the address UserInfo claim is configured to return work addresses, the
address scope must be changed as well. By default, the address scope is mapped to
urn:scim:schemas:core:1.0:addresses.preferred. It should be updated to
urn:scim:schemas:core:1.0:addresses.work. If the UserInfo mapping and the scope
configuration do not match, a client applications that requests the address scope will have no
value returned for the UserInfo endpoint’s address claim.

Complex Attribute Mapping
If an attribute is complex (such as urn:scim:schemas:core:1.0:name, or
urn:scim:schemas:core:1.0:addresses.preferred), the UserInfo endpoint returns a JSON
object with property names matching the complex attribute's sub-attributes. For example, if
urn:scim:schemas:core:1.0:name were mapped to a custom name_object OpenID Connect
claim, the following would be returned for this claim:

"name_object":{"formatted":"Mort Kurio","familyName":"Kurio","givenName":"Mort"}

- 38 -



Chapter 3: Data Classification

Sub-claims are mapped only if the OpenID Connect claim itself is correctly mapped to a Data
View attribute that corresponds to the SCIM core attribute. Complex attribute mapping can
only be done through the broker-admin tool, except for the standard address claim. The
Identity Broker Console automatically displays the sub-attributes for the address claim in the
Edit dialog.

To Create a New UserInfo Mapping
1. Click Data Classification and select User Info Mappings.

2. On the User Info Mappings page, click New User Info Mapping.

3. On the General tab, enter a name for the new mapping and optional description.

4. Select a Data View Schema from the drop-down list.

5. On the OIDC Claim Mapping tab, map any of the schema attributes to an OIDC Claim.

6. Click Save.

To Edit a UserInfo Map
1. Click Data Classification and select User Info Mappings.

2. On the User Info Mappings page, click Edit for the item to modify.

3. On the General tab, change the name for the mapping and optional description.

4. Select or change a Data View Schema from the drop-down list.

5. On the OIDC Claim Mapping tab, map any of the schema attributes to an OIDC Claim.

6. Click Save.

To Delete a UserInfo Map
1. Click Data Classification and select User Info Mappings.

2. On the User Info Mappings page, click the drop-down arrow next to the Edit button for
the item to delete.

3. Select Delete.

4. Confirm the action.

- 39 -



Chapter 4: Categories

Categories organize and identify applications and resources using Tags and Trust levels.
Both Tags and Trust levels need policies enabled to have an affect on authorization decisions.
The Governance Tag Policy and the Trust Level Policy are installed as default policies during
the configuration of the Identity Broker. These policies can be customized or new policies can
be written based on configured Tags and Trust levels.

If an application is given a governance tag or trust level assignment, the assignment must
correspond to any tags or trusts assigned to the resources that the application will request.
For example, if an application is considered less trusted than a resource, the default Trust
Level policy will not allow the application to access that resource. If a resource is tagged as
HIPAA, the default Governance Tag policy will only allow applications with the HIPAA tag to
access it.

This section explains how to manage data category components in the Identity Broker Console
application. In this section, the following tasks are performed:

Managing Tags

Managing Trust Levels

- 40 -



Chapter 4: Categories

Managing Tags
Tags are optional labels assigned to applications or resources for organization and
management. Tags can be created for identifying regulatory or business standards, such as
HIPAA (Health Insurance portability and Accountability Act) or GLBA (Gramm–Leach–Bliley
Act), or Tags can also be used in policies, so that a single policy can be used for applications or
resources based on the tag.

The Governance Tag Policy is similar to Consent policy in that it accounts for the hierarchical
nature of resources. An application is granted access to a resource if it possess all governance
tags that are associated with the resource.

Note
If a Resource has no Tags assigned to it, it will inherit the Tags of its first ancestor that does.

To Create a New Tag
1. Click Categories and select Tags.

2. On the Tags page, click New Tag.

3. On the General tab, enter a name to identity the tag.

4. Enter an optional description for the tag.

5. Enter an optional URL for reference information about the tag. This is generally for
background information related to the purpose of the tag.

6. Click the Applications tab.

7. Select the applications to which this tag will apply.

8. Click the Resource tab.

9. Select the resources to which this tag will apply.

10. Click Save.

To Edit a Tag
1. Click Categories and select Tags.

2. On the Tags page, click the Edit button for the tag to modify.

3. On the General tab, change the tag name.

4. Enter or change an optional description for the tag.

5. Enter or change an optional URL for reference information about the tag.

6. Click the Applications tab.

7. Select the applications to which this tag will apply.

8. Click the Resource tab.

- 41 -



Managing Trust Levels

9. Select the resources to which this tag will apply.

10. Click Save.

To Delete a Tag
1. Click Categories and select Tags.

2. On the Tags page, click the drop-down arrow next to the Edit button for the tag to delete.

3. Click Delete.

4. Confirm the action.

Managing Trust Levels
Each optional trust level has a single numeric value that is assigned to an application or a
resource. For example, an internally developed application can be assigned a higher trust level
than a third-party application. A resource representing a social security number would be
assigned a higher trust level than a favorite color resource.

Unlike Governance Tags, only one trust level can be associated with a resource or application.
If trust level X is associated with a resource, then a requesting application must have a trust
level greater than or equal to X to be granted access to the resource.

The Trust Level Policy ensures that if any resource has a trust level, the application requesting
access to that resource must have trust level greater or equal to the highest trust level of the
resource in the request. For example, if you define a "Medium Trust Level" and give it a value,
then assign that trust level to a Personal Phone Number resource, any application requesting
access to the resource must have the same trust level or greater.

Note
If a Resource has no Tags (or Trust Level) assigned to it, it will inherit the Tags (or Trust Level)
of its first ancestor that does.

To Create a New Trust Level
1. Click the Categories and select Trust Levels.

2. On the Trust Levels page, click New Trust Level.

3. In the Name box, enter a name to identify the trust level.

4. Enter an optional description for the trust level.

5. Enter a numeric value in the Value box, or move the slider from lowest to highest to set
a value for the trust level.

6. Click Save.

- 42 -



Chapter 4: Categories

To Edit a Trust Level
1. Click the Categories and select Trust Levels.

2. On the Trust Levels page, click the Edit button for the trust level to modify.

3. Change the name of the trust level.

4. Enter or change an optional description for the trust level.

5. Change the numeric value in the Value box, or move the slider from lowest to highest to
set a value for the trust level.

6. Click Save.

To Create a New Trust Level more than the Selected Trust Level
1. Click Categories and select Trust Levels.

2. On the Trust Levels page, click the drop-down arrow next to the Edit button for a trust
level.

3. Select New Trust Level more than <listed trust level>.

4. Enter a name to identify the trust level in the Name box.

5. Enter an optional description for the trust level.

6. The default value of the new trust level will be incremented by one for the selected trust
level. Enter a higher value, or move the slider from lowest to highest to set a value.

7. Click Save.

To Create a New Trust Level less than Selected Trust Level
1. Click Categories and select Trust Levels.

2. On the Trust Levels page, click the drop-down arrow next to the Edit button for a trust
level.

3. Select New Trust Level more than <listed trust level>.

4. Enter a name to identify the trust level in the Name box.

5. Enter an optional description for the trust level.

6. The default value of the new trust level will be incremented by one less for the selected
trust level. Enter a lower value, or move the slider from the highest to lowest to set a
value.

7. Click Save.

- 43 -



Managing Trust Levels

To Delete a Trust Level
1. Click the Categories and select Trust Levels.

2. On the Trust Levels page, click the drop-down arrow next to the Edit button for the trust
level to delete.

3. Click Delete.

4. Confirm the action.

- 44 -



Chapter 5: Policies

Policies are the rules that determine what data is shared with data requestors or client
applications, and for what action or purpose.

Policies are specified with a syntax defined in the OASIS Committee Specification 01,
eXtensible access control markup language (XACML) Version 3.0 (http://docs.oasis-open.org),
and can contain targets, rules, conditions, and a rule combining algorithm.

Sample policies can be installed with the initial Identity Broker configuration. A sample
template (IPAddressTemplate.xml) is available in the /resources directory of the Identity
Broker distribution.

This section explains how to manage policy components in the Identity Broker Console
application. In this section, the following tasks are performed:

Policy Engine Request Context

How Policy Affects the Data Returned to an Application

Policy Authorization Scenarios

Policy Writing Guidelines

Managing Policies

Managing Policy Sets

Managing Policy Sandboxes

Managing Policy Templates

Managing Policy Tests

- 45 -



Chapter 5: Policies

Policy Engine Request Context
The input to any XACML authorization policy is the request context. The request context
contains attributes directly passed by a (PDP) client when making an authorization request to
the policy engine. It can be supplemented with additional attributes that are retrieved from the
“environment” by the PDP’s Context Handler. In order to make a policy decision, policies can
reference any attribute from the request context including those that come from the larger
environment. In the case of the Identity Broker, this larger environment includes attribute
values that may be retrieved from the Identity Broker’s Data Views, as well as the value of
pertinent objects from the Broker Store.

Writing and/or customizing policies in the Identity Broker requires knowledge not only of the
XACML markup language but also of the specific ways in which the Identity Broker utilizes
policy, such as:

l Which of the standard XACML request attributes are supported by the Identity Broker?

l What custom XACML request attributes are defined by the Identity Broker?

l What custom XACML functions are defined by the Identity Broker?

l Under what conditions does the Identity Broker generate a policy request?

l What are the details of each type of policy request generated by the Identity Broker?

l Which optional features defined by XACML 3.0 are not supported by the Identity Broker?

l How are Data View attributes used when making policy decisions?

After policies are written they should be tested to make sure the information that is accessed
or denied is as expected. See Managing Policy Tests and Testing for more information.

How Policy Affects the Data Returned to an
Application
The policies defined by the Identity Broker administrator will determine the resources that are
returned to the client application. For example, if the client application requests the OpenID
Connect scope profile, the policies defined for the Identity Broker may restrict access to
sensitive attributes such as birthDate and userName, but return other attributes within that
scope.

This Attribute-Based Access Control (ABAC) model delivers partial results instead of denying
access to all attributes in the scope. If an application request to the Identity Broker is
delivering partial results, it may be due to policy settings.

- 46 -



How Policy Affects the Data Returned to an Application

About Data Access Requests
The Identity Broker's policy engine governs the conditions by which an application can access
resources. Creating policies requires understanding the structure of a data access request. If
default policies were installed, the Consent Policy grants access to data requests based on
consent from the resource owner (usually an end user).

A request consists of the following parameters:

Subject – Identifies the application requesting access to specified resources.

Action – Identifies the operation that the application would like to perform on the specified
resources, such as "read."

Consent Owner – Identifies the owner who has the authority to grant permission to the
subject for action on the specified resources.

Purpose – Identifies the reason for the subject's request to access the specified resources.
This parameter is optional.

Resource – Identifies one or more sets of URNs (Uniform Resource Names) that identify the
data being requested. Each URN can represent a resource attribute or a resource group. The
representation of these is hierarchical. This hierarchy is important for policy evaluation. A top-
level resource collection is considered the ancestor, and any lower level resources or
attributes are considered descendants. For example,

l urn:scim:schemas:core:1.0:name, represents the components of a user's name.

l urn:scim:schemas:core:1.0:name.familyName, represents a resource as a sub-
attribute of the complex name attribute.

Resource Groups, like resources, are also identified with a URN. A resource group represents a
set of resources that are not in a hierarchy. The advantage of creating resource groups is that
a request can specify the group and not need to specify all of the attributes in a resource
hierarchy.

See Data Classification for more information about resources and resource groups.

About Policy Evaluation
For a policy to be evaluated against an authorization request, the request needs to match the
values specified in the policy <Target> element first. If the target for the request matches the
target for the policy, the rules in the policy are evaluated. This occurs for each Identity Broker
policy.

Just as there is a target for the policy, there is a target for each rule. For the rule <Target>
element to be evaluated, a value in the request must match, as defined in the <Match>
element. If the request matches a value, the rest of the conditions of the rule are evaluated.

Note
If no target is specified for a policy or a rule, the policy or rule is always evaluated.

- 47 -



Chapter 5: Policies

If the conditions of a rule are satisfied, the result can be either "permit" or "deny" for that
single rule. If there are multiple rules in a policy, the rule combining algorithm for the policy
determines how the rule evaluation results are combined into a single policy decision.

If there are multiple policies that apply to the request, a policy-combining algorithm
determines how the decisions rendered by multiple applicable policies are to be combined to
form an ultimate decision by the Identity Broker. By default, the combining algorithm for
Identity Broker policies is deny-overrides. This can be changed with the dsconfig tool. See
the UnboundID Identity Broker Installation Guide for details.

Accessing Resources by Consent
A requested resource can be either a resource or a resource group. Access is granted to a
resource if one of the following is true:

l A consent object contains an exact match on the resource ID.

l A consent object contains an ancestor of the resource ID.

l A consent object contains a resource group, of which the resource is a member.

l A consent object contains a resource group, of which an ancestor of the resource is a
member.

l Consent has been granted to all descendant resources of the resource.

Consent is granted to a resource group if one of the following is true:

l A consent object contains an exact match on the resource group ID.

l Consent has been granted to all members of the resource group.

Policy Authorization Scenarios
Policies are evaluated by the Identity Broker in response to the following requests made by
client applications:

l An authorization/token request to the OAuth 2.0 endpoint.

l A request to the UserInfo endpoint.

l All SCIM requests:
o Search request

o Get request

o Update request

o Create request

o Delete request

l Self registration request.

- 48 -



Policy Authorization Scenarios

l All requests to the Metadata API.

l A XACML request to the PDP endpoint.

To create a body of policies and policy sets that will work as expected, or to create applications
that can access data correctly, review the parameters and attributes that will be included in the
XACML requests for each of the scenarios provided.

Policy Decision Point (PDP) Endpoint
The PDP endpoint enables an external Policy Enforcement Point (PEP) to generate XACML
requests and send them directly to the Identity Broker for evaluation. The request is passed
directly to the policy engine. The request can contain any standard XACML attributes, Identity
Broker custom attributes, or other attributes that may be required by custom policies. This
endpoint requires that the client authenticate using bearer token authentication, and that the
token must have the urn:unboundid:scope:invoke_pdp scope.

Policies and Request Processing Per Endpoint
Requests from a client application are evaluated by the policy rules configured for the Identity
Broker. Access to data is granted either at the scope level or at the resource level based on the
endpoint through which the request is made.

Note
The Any purpose, if added to a scope, will match any purpose value. If a scope is created
without an explicit purpose, Anywill be assigned to it. This is important for OAuth 2.0 and
UserInfo endpoint processing.

Requests Through the OAuth 2.0 Endpoint
Requests coming through the OAuth 2.0 endpoint are given an access token if the scopes
specified are allowed by configured policies. Only the scope is granted or denied, not the
resources contained within the scope. The token returned may not be valid for all the scopes
that were included in the original request. The client application will receive a list of approved
scopes with the access token. If all scopes are denied, then no access token is issued.

Once a token is granted, it can be passed to either the SCIM or UserInfo endpoints to retrieve
user data. Policies are again evaluated, but at the resource level.

Requests Through the UserInfo Endpoint
A request to the UserInfo endpoint has no arguments other than the access token itself. A
UserInfo request is authorized with a single XACML request. The data returned is limited to the
resources included in the scopes that were granted in the token.

Requests Through the SCIM Endpoint
A request to the SCIM endpoint includes the token and arguments that describe which
attributes the requestor would like to retrieve. The request can contain attributes that are not

- 49 -



Chapter 5: Policies

granted by the token. Policies are checked again to make sure nothing is returned that is not
allowed.

The following actions are submitted in the generated XACML request depending on the SCIM
operation being performed.

SCIM Operation Type Action in XACML request

POST Create

GET Read

PATCH or PUT Update

DELETE Delete

Action Performed Based on XACML Request

Example Request Flow
For example, if an application requested access to Scope A and Scope B, the following would
be considered:

l Scope A contains resources 1, 2, and 3.

l Scope B contains resources 4 and 5.

l Policy evaluation determines that access to resources 1, 2, 4, and 5 can be granted.
Resource 3 is denied.

l Because one of the resources in Scope A is denied, the scope is not included in the access
token sent back to the client application. The token contains a grant for Scope B.

l If the client application sends a request with the access token to the UserInfo endpoint,
only the resources in Scope B are returned.

l If the client application sends a request for resources 1, 2, 3, 4, and 5 (with the access
token) to the SCIM endpoint, Policy is reevaluated, and only resources 1, 2, 4, and 5 are
returned.

OAuth 2.0 Endpoint Policy Evaluation
The OAuth 2.0 endpoint relies on the policy engine to determine whether an access token or
authorization code should be granted to a requesting client. An independent XACML request is
evaluated for each scope requested by the client. The token that is issued to the client may be
valid for only a subset of the scopes originally requested.

The attributes included in the XACML request will vary depending upon the OAuth 2.0 grant type
being requested. See the UnboundID Identity Broker Application Developer Guide for details
about OAuth 2.0 grant types.

- 50 -



Policy Authorization Scenarios

Authorization Code and Implicit Grant Types
Because of the interactive nature of these two OAuth 2.0 flows, the OAuth 2.0 endpoint splits
policy checking into two phases. The first phase checks whether the token request would be
allowed by all installed policies except for consent policy. If the result of this first phase is
DENY then the second phase is not executed.

The second phase checks whether the end user’s consent is required before the requested
scope can be granted. If so the flow proceeds to prompt the user for consent. If the second
phase indicates that the user’s consent is not required (either by rule or because they have
already consented), then the OAuth 2.0 endpoint issues the requested token or authorization
code.

The phase one XACML request contains the attributes below. It is executed once for each scope
in the token request. Note that resource owner is not included in the request, which results in
the consent policy (which is based upon resource ownership) to not be applied.

XACML Attribute Attribute Value

actor-id SCIM Id of the currently authenticated user.

subject-id Application name, obtained from the OAuth request’s client ID parameter.

action-id Action name obtained from the scope definition.

purpose-id Purpose name obtained from the scope definition.

resource-id Bag of resource URNs, obtained from the scope definition.

The phase two XACML request is sent to the OAuth Consent Evaluation policy sandbox rather
than to the global policy engine. This results in only consent policy being applied to the request.
This request contains the attributes specified in the table below.

XACML Attribute Attribute Value

owner-id SCIM ID of the currently authenticated user (for OAuth requests, owner ID is always
the same as the actor ID).

actor-id SCIM ID of the currently authenticated user.

subject-id Application name, obtained from the OAuth request’s client ID parameter.

action-id Action name obtained from the scope definition.

purpose-id Purpose name obtained from the scope definition.

resource-id Bag of resource URNs, obtained from the scope definition.

The OAuth Consent Evaluation sandbox isolates consent checking from other policies. The
contents of the sandbox may be modified in order to customize consent policy, however the
sandbox itself cannot be deleted.

Client Credentials Grant Type
A client credentials OAuth request is a request by an application for access to its own
resources. It does not require that a user currently be authenticated to the Identity Broker.
Like all OAuth interactions, one policy evaluation is made for each scope requested. The
attributes of the XACML request generated for this grant type are specified in the table below.

- 51 -



Chapter 5: Policies

XACML Attribute Attribute Value

subject-id Application name.

action-id Action name obtained from the scope definition.

purpose-id Purpose name obtained from the scope definition.

resource-id Bag of resource URNs, obtained from the scope definition.

Resource Owner Grant Type
The Resource Owner grant type does not require consent. In general, only trusted applications
should be allowed to use this grant type. It evaluates policy independently for each scope
contained in the request. Each XACML request is identical to that specified in phase one of the
Authorization Code and Implicit Grant Types.

UserInfo Endpoint Policy Evaluation
A request to the UserInfo endpoint does not require any parameters other than an OAuth2.0
access token. The scopes represented by the token indicate what resources and attributes are
being requested by the client application, and the token’s owner identifies the resource owner.
(Since a client credentials token has no owner, it cannot be used with the UserInfo endpoint.)

UserInfo is a read-only interface. Any scopes whose associated action is not read are
discarded. The UserInfo endpoint also consults the Claims Map for the user’s Data View and
will only do policy checks on resources that are mapped through the Claims Map.

A single request to the UserInfo endpoint will result in several XACML policy evaluations since
the access token can represent multiple scopes, and each scope can represent many
resources. Each resource is evaluated independently by policy, and only those resources that
are permitted by policy are returned as claims to the client application.

Each XACML request generated by UserInfo contains the following attributes:

XACML Attribute Attribute Value

owner-id SCIM ID of the access token owner.

subject-id Name of the application associated with the access token.

action-id Always set to “Read.”

purpose-id Purpose name obtained from a scope associated with the access token.

resource-id A single resource URN obtained from the same scope.

SCIM Endpoint Policy Evaluation
Each request to the SCIM endpoint explicitly specifies what action is being requested and on
what resources. As a REST interface, SCIM uses the HTTP method, query parameters, method
body, and URI path to specify request parameters. Policy evaluations generated by the SCIM
endpoint depend on these REST parameters, as well as the supplied OAuth 2.0 bearer token,
which is used mainly for authentication.

- 52 -



Policy Authorization Scenarios

All SCIM requests target a specific Data View. For all request types, the SCIM endpoint first
consults the appropriate Data View mapping and will pare out any unmapped request attributes
before it generates policy requests.

For example, a search targeted to /scim/Users is executed against the Users Data View. An
update targeted to /scim/ConsumerUsers/9f8a23-5f7ec932-55c4-347e-b757-ce74258ea9e6
is executed against a user with ID 9f8a23-5f7ec932-55c4-347e-b757-ce74258ea9e6 in the
ConsumerUsers Data View.

SCIM Search Request
A SCIM search request consists of a search filter and an optional specification of which
attributes to return from each record that satisfies the filter definition. The Data View against
which the search is to be conducted is derived from the URI path, such as /scim/Users.

After the SCIM endpoint executes the search against the Data View, it generates XACML
requests for each record returned in the search results in order to determine whether the
requesting client has permission to receive the record’s attributes. Each resource and attribute
of each record is evaluated independently through a separate policy request.

Note
The number of search results that can be returned is limited by the Data View’s
lookthroughLimit property, due to the potential cost of checking each response against
policy.

Each XACML request contains the following attributes:

XACML Attribute Attribute Value

owner-id SCIM ID of the returned result record.

actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included in
the request if the access token was obtained through a Client Credentials grant.

subject-id Application name of the requesting application, retrieved from the OAuth access
token.

action-id Always “Read,” since this is a search request.

purpose-id Always “Any,” since the SCIM standard does not include a purpose specification.

resource-id A single Resource URN from the returned result record.

Any resources or individual resource attributes that are denied by policy are omitted from the
search response.

SCIM Get Request
A SCIM request to obtain a single record is handled similarly to the search request, except that
there is only a single result record. The previous table applies.

- 53 -



Chapter 5: Policies

SCIM Update Request
A SCIM update request (HTTP PATCH) contains in the message body the attributes to be
updated and/or deleted. Deleting an attribute from a record is considered an update action by
the SCIM endpoint. The response to an update request contains the updated record. Using
query attributes the SCIM client can request that only a subset of the updated record be
returned in the response.

The SCIM endpoint issues two sets of policy evaluations in response to an update request. The
first set determines which attributes the client is permitted to update. These XACML requests
contain the following:

XACML Attribute Attribute Value

owner-id SCIM ID of the record to be updated.

actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included
in the request if the access token was obtained through a Client Credentials
grant.

subject-id Application name of the requesting application, retrieved from the OAuth 2.0
access token.

action-id Always “Update.”

purpose-id Always “Any,” since the SCIM standard does not include a purpose specification.

resource-id A single Resource URN obtained from the request’s message body.

An update-operation attribute (urn:unboundid:names:1.0:update-operation) is present
in the request context when the value of action-id is Update. It is populated by the SCIM
endpoint to provide information about the type of update being performed. Currently, only
delete is supported, which is set when a request updates a record by deleting an attribute or
deleting a value from a multivalued attribute. If the attribute is not present as part of an
update request, a policy may assume that the update is either replacing or adding an attribute
value.

Note
The policy engine has access to the resource URN, but not the proposed new value for the
corresponding attribute. Therefore, policy can checkwhether the application is allowed to
update the attribute, but cannot do data validation on the attribute value.

After the update is complete, a second set of policy requests is issued to determine which
attributes of the updated record the client can receive in the response. These requests are
formatted exactly as for a SCIM Get or Search request.

SCIM Create Request
Like an update request, a SCIM create request contains the attributes of the new record in the
message body. The response to the request is the contents of the new record, which optionally
can be pared by query parameters that specify which attributes the client wants to receive in
the response.

- 54 -



Policy Authorization Scenarios

Policy checks for SCIM create requests (HTTP POST) are different in that there is no existing
resource owner. The owner is being created as a result of the request. Also, the entire set of
attributes is evaluated by a single XACML request. Either the entire request is accepted or
denied, there is never a partial success where some attributes are saved but not others. The
create policy request therefore contains attributes as follows:

XACML Attribute Attribute Value

actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included
in the request if the access token was obtained through a Client Credentials
grant.

subject-id Application name of the requesting application, retrieved from the OAuth 2.0
access token.

action-id Always “Create.”

purpose-id Always “Any,” since the SCIM standard does not include a purpose specification.

resource-id A list of all resource URNs specified in the request’s message body.

Note
The policy engine has access to the resource URN, but not the proposed new value for the
corresponding attribute. Therefore, policy can checkwhether the application is allowed to
update the attribute, but cannot do data validation on the attribute value.

SCIM Delete Request
A SCIM delete request is a request to delete a record from the underlying Data View. To
determine whether the delete request should be permitted, the SCIM endpoint will invoke the
policy engine with a XACML request that includes the following attributes:

XACML Attribute Attribute Value

owner-id SCIM ID of the record to be deleted.

actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included
in the request if the access token was obtained through a Client Credentials
grant.

subject-id Application name of the requesting application, retrieved from the OAuth 2.0
access token.

action-id Always “Delete.”

purpose-id Always “Any,” since the SCIM standard does not include a purpose specification.

resource-id A list of all top-level resource URNs defined by the Data View schema.

Self-Registration Policy Evaluation
Self-registration is an unauthenticated activity that allows a visitor to an application site to
create an account. A request to the Identity Broker’s registration endpoint is a HTTP POST
whose content must include the requesting application’s client ID, the name of the Data View in
which to register the new user, and the new user’s attribute values. The registration endpoint
constructs a XACML request from these arguments so that the policy engine can evaluate

- 55 -



Chapter 5: Policies

whether the registration should be allowed. The XACML request is formatted with the following
attributes:

XACML Attribute Attribute Value

subject-id Name of the requesting application.

action-id Always “Create.”

purpose-id Always “Registration.”

resource-id A list of all resource URNs specified in the request’s message body.

Metadata API Policy Evaluation
Calls to the Metadata API require an OAuth 2.0 access token and are subject to approval by
policy. The operations supported by the Metadata API include:

l creation, deletion, and retrieval of user consents

l retrieval of user consent history

l retrieval of user access history

l creation, deletion, and retrieval of user external identity provider links

The exact policy request generated by the Metadata endpoint will depend on which API is
invoked, but in general will contain the following attributes:

XACML Attribute Attribute Value

owner-id SCIM ID of the user whose metadata is being accessed.

actor-id SCIM ID of the OAuth 2.0 access token owner. This will always be present as a Client
Credentials token is not allowed by the Metadata API.

subject-id Application name of the requesting application, retrieved from the OAuth 2.0 access
token.

action-id Either “Read” or “Update,” depending on which Metadata API has been invoked.
Creation or deletion of consents and identity provider links are considered updates to
a user’s record, therefore the action will be “Update” for those methods.

purpose-id Always “Any.”

resource-id The resource URN(s) to which access is being requested. These resources are
predefined by the Identity Broker and will always begin with
urn:unboundid:resources:broker_metadata:. For a complete list of
metadata resource URNs, see the UnboundID Identity Broker Application Developer
Guide.

Policy Writing Guidelines
Policies are the rules or set of rules that determine whether resources can be accessed, by
whom, under what conditions, and for what action. The basic outline for a policy looks like this:

Policy
xmlns
PolicyID

- 56 -



Policy Writing Guidelines

RuleCombiningAlgID
Description
Target
Rule

RuleID
Effect
Description
Target
Condition

A policy must have:

l A unique identifier (PolicyID).

l A rule combining algorithm. This is a XACML attribute that defines the procedure for
making an authorization decision given the results of a set of rules within a policy or for
all policies in a policy set.

l A target, which determines the requests to which a policy applies.

l One or more rules, which includes a target, an effect, and a condition for making a
request decision.

Policies can also contain Actors, Actions and Purposes. These settings are used to narrow
access to particular applications or users for specific actions.

Policies can be edited or exported in XACML format and used as a template for new policies.
Several policies are available after installation, if the option to install default policies was
selected.

See the OASIS Committee Specification 01, eXtensible access control markup language
(XACML) Version 3.0 (http://docs.oasis-open.org) for detailed information about policy
components.

About Policy Templates
Policy templates are basically policies with parameterized attribute values. A policy template
specifies one or more <AttributeValue> elements with ParameterId extensions containing
string names. When a template is used to create a Policy, the process binds specific data to the
parameters defined in the template. A policy template can be used to create any number of
policies. A policy can refer to only one template. Policy templates are stored in the Broker
Store as separate object types from policies.

Policy Template Parameters and Attributes
A policy template is useful for creating policies that are similar in structure, but maybe values
change slightly or can be represented as a range. Two parts of a policy support
parameterization: the <Target> specification and <Rule> specifications. In both cases, use the
ParameterID extension in an <AttributeValue> element to declare variable parameters. The
standard format for <AttributeValue> is:

<AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#string”>
SomeConstantValue</AttributeValue>

- 57 -



Chapter 5: Policies

DataType can be any XACML data type. The element value is a string representation of that
data type.

For policy templates only, the following extension attributes may be specified in an
<AttributeValue>:

<AttributeValue ParameterId=”ParameterName”
DataType=”http://www.w3.org/2001/XMLSchema#string”/
Description=”Helpful description goes here”
Validation=”Optional validation regex”/>

There is no element value. The <AttributeValue> references a parameter “ParameterName”
of type “string.” If <AttributeValue> is contained within a <Rule>, "ParameterName" can
be multi-valued. When a template becomes a policy, a set of one or more literal strings must
be supplied for the parameter. If two values alpha and beta are specified, a policy created
from the previous template <AttributeValue> would look like:

<AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#string”>
alpha</AttributeValue>

<AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#string”>
beta</AttributeValue>

Standard XACML Attribute Use
The following request attributes are specified by XACML 3.0. Unless otherwise specified, these
are always available in the Identity Broker’s XACML request context.

Per the XACML specification, any attribute retrieved from the request context with an
AttributeDescriptor element will be a 'bag' (XACML term) of attribute values. Where the
attribute has a single value, the value can be extracted from the bag using a type-one-and-
only XACML function (see section A.3.10 of the XACML specification, "Bag functions").

Attribute URN Attribute Category XACML
Data Type Description

urn:oasis:names:tc:xacml:1.0:
subject:subject-id

urn:oasis:names:tc:xacml:1.0:
subject-category:access-subject

string Contains the name of the
application that is submitting
a policy request, as specified
when the application is
registered with the Identity
Broker.

urn:oasis:names:tc:xacml:3.0:
subject:authnlocality:ip-address

urn:oasis:names:tc:xacml:1.0:
subject-category:access-subject

ipAddress Contains the originating IP
address of the client’s
authorization request. The
availability and accuracy of
this attribute is dependent
upon the deployed Identity
Broker’s network
environment. When
available, the value is
retrieved from the
XFORWARDED_FOR
header of the client’s HTTP

Standard XACML Attributes

- 58 -



Policy Writing Guidelines

Attribute URN Attribute Category XACML
Data Type Description

request. If that header is not
available, the IP address
returned may be that of the
last proxy to send the
request.

urn:oasis:names:tc:xacml:1.0
:resource:resource-id

urn:oasis:names:tc:xacml:3.0:
attribute-category:resource

anyURI Contains the URN of the
resource being requested.
May be several of these per
request.

urn:oasis:names:tc:xacml:1.0
:action:action-id

urn:oasis:names:tc:xacml:3.0:
attribute-category:action

string Contains the name of the
action being requested, as
specified by a corresponding
Action object in the Broker
Store. For requests
generated internally by the
Identity Broker, this will be
one of {“Read”, “Update”,
“Create”, or “Delete”}.

urn:oasis:names:tc:xacml:2.0:
action:purpose

urn:oasis:names:tc:xacml:3.0:
attribute-category:action

string Contains the purpose for
which the authorization
request is being made.
Purposes are identified by
the name given to Purpose
objects contained in the
Broker Store. This attribute is
optional and may not be
present for some
authorization requests.

urn:oasis:names:tc:xacml:1.0:
environment:current-time

urn:oasis:names:tc:xacml:3.0:
attribute-category:environment

time The time at which the Identity
Broker began processing the
current authorization
request.

urn:oasis:names:tc:xacml:1.0
:environment:current-date

urn:oasis:names:tc:xacml:3.0:
attribute-category:environment

date The date on which the
current authorization request
is being processed.

urn:oasis:names:tc:xacml:1.0
:environment:current-dateTime

urn:oasis:names:tc:xacml:3.0
:attribute-category:environment

dateTime The date and time at which
the Identity Broker began
processing the current
authorization request.

Custom XACML Attribute Use
The attributes in this section are defined by UnboundID for the Identity Broker. They will be
added to the request context by the Identity Broker when applicable. Per the XACML
specification, any attribute retrieved from the request context with an AttributeDescriptor
element will be a bag of attribute values. Where an attribute has a single value, the value can
be extracted from the bag using a type-one-and-only XACML function (see section A.3.10 of
the XACML specification, "Bag functions").

- 59 -



Chapter 5: Policies

Attribute URN Attribute Category
Xacml
Data
Type

Description

urn:unboundid:nam
es:1.0:
httpQueryParameter

urn:oasis:names:tc:xacml
:3.0:
attribute-
category:environment

string Prefix that can be used by policies to reference any
query parameter that was provided in the current HTTP
request. For example, to reference the value of a query
parameter named channel, the attribute URN is
urn:unboundid:names:1.0:httpQueryPara
meter:channel.

urn:unboundid:nam
es:1.0:
httpHeader

urn:oasis:names:tc:xacml
:3.0:
attribute-
category:environment

string Prefix that can be used by policies to reference the
value of a header value from the current HTTP request.
For example, to reference the value of the Authorization
header, the attribute URN is
urn:unboundid:names:1.0:httpHeader:Au
thorization.

urn:unboundid:nam
es:1.0:
update-operation

urn:oasis:names:tc:xacml
:3.0:
attribute-category:action

string This attribute is present in the request context only
when the value of action-id is Update. It is
populated by the SCIM endpoint to provide information
about the type of update being performed. Currently,
only delete is supported, which is set when a SCIM
patch request updates a record by deleting an attribute
or deleting a value from a multivalued attribute. If the
attribute is not present as part of an update request, a
policy may assume that the update is either replacing or
adding an attribute value.

urn:unboundid:nam
es:1.0:
owner:owner-id

urn:unboundid:names:1.
0:
attribute-
category:resource-owner

string Contains the unique SCIM ID of the owner of the
resources being requested. Multiple owner attributes
can be included in the request and each will be
evaluated separately. The policy engine will return a
decision for each combination of owner and resources.

urn:unboundid:nam
es:1.0:
owner:dataview-
name

urn:unboundid:names:1.
0:
attribute-
category:resource-owner

string If the request context contains an owner-id attribute,
this attribute will contain the name of the Data View in
which the owner’s attributes are stored.

urn:unboundid:nam
es:1.0:
consent:captured-
consent

urn:unboundid:names:1.
0:
attribute-
category:resource-owner

consent
(Unboun
dID data
type
extensio
n)

If the request context contains an owner-id attribute,
this attribute contains a XACML bag of consent records.

The format of this attribute is proprietary and is not
intended for use outside of the Identity Broker’s get_
consent_status function.

urn:unboundid:nam
es:1.0:
actor:actor-id

urn:unboundid:names:1.
0:
attribute-category:actor

string Contains the unique SCIM ID of the currently
authenticated user of the requesting application.

urn:unboundid:nam
es:1.0:
actor:dataview-
name

urn:unboundid:names:1.
0:
attribute-category:actor

string If the request context contains an actor-id attribute,
then this attribute will contain the name of the Data View
in which the actor’s attributes are stored. (This is not
available when applications are using the OAuth 2.0
client credentials flow.)

urn:unboundid:nam urn:oasis:names:tc:xacml string Contains a XACML bag of Tag names associated with

Custom XACML Attributes

- 60 -



Policy Writing Guidelines

Attribute URN Attribute Category
Xacml
Data
Type

Description

es:1.0:
subject:governance-
tags

:1.0:
attribute-
category:access-subject

the subject (application).

urn:unboundid:nam
es:1.0:
resource:governanc
e-tags

urn:oasis:names:tc:xacml
:3.0:
attribute-
category:resource

string Contains a XACML bag of Tag names associated with
the resource being requested. If multiple resources are
being requested, this attribute will contain the union of
all Tags associated with the specified resources.

urn:unboundid:nam
es:1.0:
subject:trust-level

urn:oasis:names:tc:xacml
:1.0:
attribute-
category:access-subject

integer Contains the Trust Level associated with the subject
(application).

urn:unboundid:nam
es:1.0:
resource:trust-level

urn:oasis:names:tc:xacml
:3.0:
attribute-
category:resource

integer Contains the Trust Level associated with the requested
resource. If multiple resources are requested, this
attribute will contain a bag of Trust Levels, one per
specified resource.

Identity Broker Custom XACML Function
There is a single custom function implemented by the Identity Broker. All other functions
supported by the policy engine are XACML standard functions.

urn:unboundid:names:1.0:function:get-consent-status. Returns a XACML boolean value
indicating whether a user has consented to the authorization request represented by the input
arguments, which are:

l Application name (string): name of application making the request.

l Action name (string): name of action being requested, such as read.

l Purpose name (string): purpose name for the request.

l Consents (list of consent): raw consent records of the resource owner, retrieved from
the Identity Broker’s metadata store.

l Resources (list of any URI): a list of resource URNs, one for each requested resource.

This function recognizes the hierarchical nature of consents as well as consents granted to
Resource Groups. See the rules for granting consent in Accessing Resources by Consent.

Unsupported XACML Features
The Identity Broker supports only those XACML 3.0 features that are necessary for optimized
policy decisions. When creating policies, consider that the following XACML 3.0 features are not
supported:

l No support for embedded XML content in a request. In typical XACML
deployments, embedded XML content is used to provide additional attributes to an
incoming XACML request, needed to make an access decision. For example, these

- 61 -



Chapter 5: Policies

additional attributes could be captured consent information needed to complete a
decision. In terms of security, the policy endpoint would have to add the embedded XML
content when formulating the request, rather than just arriving from the requesting
application. The Identity Broker solution retrieves these additional attributes directly
from the persistent store and does not convert it into XML, to be fully XACML-compliant.
As a result, the following XACML elements related to XML processing have not been
implemented:

l <PolicyDefaults> and <PolicySetDefaults>

l <XPathVersion>

l <AttributeSelector>

l <Content>

l XPath functions xpath-node-count, xpath-node-equal, and xpath-node-match.

l No support for Obligations or Advice. Obligations and Advice are additional actions,
specified by policy, which either must (in the case of Obligations) or may (in the case of
Advice) be taken by the policy endpoint whenever a particular policy decision is
rendered. An example might be to send an email to an individual every time permission
is granted to access some resource owned by that person. The following XACML elements
related to Obligations and Advice are not implemented:

l <Obligations>

l <Advice>

l <AttributeAssignment>

l <ObligationExpressions> and <ObligationExpression>

l <AdviceExpressions> and <AdviceExpression>

l <AttributeAssignmentExpression>

l No support for versioning of Policies. XACML incorporates the idea of maintaining
multiple versions of a policy, such as policy "X" version 1.0 and policy "X" version 2.0. A
policy set then can specify (by reference) which version of policy 'X' is to be applied
when evaluating a request. The Identity Broker only allows for a single instance of policy
X to be stored. It does not support referencing a particular version of that policy. The
following XACML elements related to versioning are not supported:

l <VersionMatchType> in PolicyIDReference or PolicySetIDReference elements

l Limited Support for Multi Requests. XACML specifies several ways that a request for
multiple decisions can be contained within a single request context, described in the
XACML Multiple Decision Profile document which can be found at http://docs.oasis-
open.org/xacml/3.0/. The Identity Broker only supports one version of a multiple-

- 62 -



Policy Writing Guidelines

decision request by using multiple <Attributes> of the same category in the request. In
addition, Identity Broker policies only support multiple instances of the Resources
category. As a result the following XACML elements are not supported:

l <MultiRequests>

l <RequestReference>

l <AttributesReference>

l CombinedDecision attribute of the <Request> element

l xml:id attribute of the <Attributes> element

l No support for Attribute Issuer or Policy Issuer. These features allow for the
writing of policies that determine which other policies should be used when evaluating a
request. For example, a request may be subject only to policies whose issuer (author)
are from some trusted source. This is a second-order feature and not relevant for
environments where all policies are equal as to their trustworthiness. The following
XACML elements related to issuers are not supported:

l <PolicyIssuer>

l Issuer attribute of the <Attribute> element

l No support for Policy and Rule Combiner Parameters. A policy-combining
algorithm is a rule for how the decisions rendered by multiple applicable policies are to
be combined in order to form an ultimate decision by a Policy Set or the policy decision
point as a whole. Similarly, a rule-combining algorithm is a rule for how the decisions
rendered by multiple rules within a single policy are to be combined. The Policy and Rule
Combiner Parameters are relevant only if custom rule-combining or policy-combining
algorithms are in effect. Since the Identity Broker does not currently support adding
custom rule-combining or policy-combining algorithms, XACML elements for the
associated Combiner Parameters are not supported:

l <CombinerParameters>

l <RuleCombinerParameters>

l <PolicyCombinerParameters>

l <PolicySetCombinerParameters>

Using Data View Attributes in Policy
Any attribute of the resource owner (specified by owner-id) or the current actor (specified by
actor-id) is available for policy evaluation through access to the Data View associated with
the owner or actor. These attributes are accessed by referencing the URN of the Resource
object that is generated when the corresponding Data View schema is imported into the

- 63 -



Chapter 5: Policies

Identity Broker. The XACML attribute category is used to indicate whether the attribute should
be retrieved from the owner’s record or the actor’s record.

For example, the following XACML fragment evaluates to TRUE if the resource owner resides in
the state of Texas:

<Apply FunctionId="urn:oasis:names:tc:xacml:3.0:string-equal-ignore-case">
  <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
    TEXAS
  </AttributeValue>
  <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
    <AttributeDesignator
      Category="urn:unboundid:names:1.0:attribute-category:resource-owner"
      AttributeId="urn:scim:schemas:core:1.0:addresses.preferred.region"
      DataType="http://www.w3.org/2001/XMLSchema#string" />
  </Apply>
</Apply>

The user’s home state is referenced by the SCIM attribute URN
urn:scim:schemas:core:1.0:addresses.preferred.region. Interest in the owner’s
address is indicated by the use of the attribute category
urn:unboundid:names:1.0:attribute-category:resource-owner.

To reference an attribute of the current actor, the attribute category
urn:unboundid:names:1.0:attribute-category:actor is used.

Policy Sections and Functions Described
The following is the Owned Resource policy, installed with the Identity Broker. Each section
and its function is described to show how a policy is constructed. Use this to determine how to
create new policies or modify existing ones.

The Owned Resource Policy
[1] <?xml version="1.0" encoding="UTF-8"?>
[2] <Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
[3] PolicyId="urn:unboundid:policy:Owned Resource Access"
[4] Version="1"
[5] RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:den
y-unless-permit">
[6] <Description>
[7] Policy to restrict access to 'owned' resources to the resource owner or an actor wi
th a privileged entitlement.
[8] The policy is only applicable to requests that include both an owner and actor attr
ibute.
[9] </Description>
[10] <Target>
[11] <AnyOf>
[12] <AllOf>
[13] <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">
[14] <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">.*</Attri
buteValue>
[15] <AttributeDesignator Category="urn:unboundid:names:1.0:attribute-category:re
source-owner"
[16] AttributeId="urn:unboundid:names:1.0:owner:owner-id"

- 64 -



Policy Writing Guidelines

[17] DataType="http://www.w3.org/2001/XMLSchema#string"
[18] MustBePresent="false"/>
[19] </Match>
[20] <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">
[21] <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">.*</Attri
buteValue>
[22] <AttributeDesignator Category="urn:unboundid:names:1.0:attribute-category:ac
tor"
[23] AttributeId="urn:unboundid:names:1.0:actor:actor-id"
[24] DataType="http://www.w3.org/2001/XMLSchema#string"
[25] MustBePresent="false"/>
[26] </Match>
[27] </AllOf>
[28] </AnyOf>
[29] </Target>
[30] <Rule RuleId="urn:unboundid:names:ruleid:isOwner" Effect="Permit">
[31] <Description>Permit access if the actor is also the owner of the resource.</Descri
ption>
[32] <Condition>
[33] <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
[34] <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
[35] <AttributeDesignator Category="urn:unboundid:names:1.0:attribute-category:re
source-owner"
[36] AttributeId="urn:unboundid:names:1.0:owner:owner-id"
[37] DataType="http://www.w3.org/2001/XMLSchema#string"
[38] MustBePresent="true"/>
[39] </Apply>
[40] <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
[41] <AttributeDesignator Category="urn:unboundid:names:1.0:attribute-category:ac
tor"
[42] AttributeId="urn:unboundid:names:1.0:actor:actor-id"
[43] DataType="http://www.w3.org/2001/XMLSchema#string"
[44] MustBePresent="true"/>
[45] </Apply>
[46] </Apply>
[47] </Condition>
[48] </Rule>
[49] <Rule RuleId="urn:unboundid:names:ruleid:isPrivilegedActor" Effect="Permit">
[50] <Description>Permit access if the actor holds a privileged entitlement, by default
'broker_admin'.</Description>
[51] <Condition>
[52] <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-at-least-one-mem
ber-of">
[53] <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
[54] <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
[55] broker_admin
[56] </AttributeValue>
[57] <!--
[58] To give this ability to entitlements other than 'broker_admin', add them he
re
[59] -->
[60] </Apply>
[61] <AttributeDesignator Category="urn:unboundid:names:1.0:attribute-category:acto
r"
[62] AttributeId="urn:scim:schemas:core:1.0:entitlements"
[63] DataType="http://www.w3.org/2001/XMLSchema#string"
[64] MustBePresent="false"/>

- 65 -



Chapter 5: Policies

[65] </Apply>
[66] </Condition>
[67] </Rule>
[68]</Policy>

Section Descriptions
Sections are described by line numbers.

l [3] The PolicyId specification, must be unique among all policies installed in the
Identity Broker.

l [5] The deny-unless-permit combining algorithm indicates that if no rule results in a
PERMIT, then the result of the policy will be DENY.

l [6-9] The description here will be displayed when this policy is viewed in the Identity
Broker Console.

l [10-29] The Target specification for the policy. This policy only is applied to requests
that contain both an actor-Id and an owner-Id, since the purpose of the policy is to
protect the owner’s data from actors that are not authorized to access it. If the incoming
request does not contain both attributes, the policy will return a result of NOT_
APPLICABLE.

l [13-26] Placing two Match elements inside a single AllOf element indicates that both
Matches must be true for the Target to be matched.

l [13-14] By using the regular expression of .*, which matches any string, the Match
function will be true for any non-empty value of owner-id, and false if owner-id is not
present.

l [30] This rule returns a value of PERMIT if the owner and actor are the same person.

l [34] Since AttributeDesignators always return a XACML bag, using the string-one-

and-only function returns the single value from the bag.

l [49] A rule that will return a value of PERMIT if the actor possesses a privileged
entitlement. This is intended to allow an administrator or customer support
representative to have access to any user’s data.

l [52] The function string-at-least-one-member-of acts on two bags, and return value
of TRUE if at least one value from the first bag is contained in the second bag. The
comparison is case-sensitive.

l [53] The first argument to string-at-least-one-member-of is a list of entitlements
that should grant privileged access. By default, it contains a single value broker_admin.

l [57-59] To customize this policy, additional AttributeValue elements can be added
here, each containing a privileged entitlement name.

- 66 -



Managing Policies

l [61] The second argument to string-at-least-one-member-of is the list of
entitlements possessed by the actor, obtained from the request context.

l [61-62] The Category specification urn:unboundid:names:1.0:attribute-
category:actor and the AttributeId specification
urn:scim:schemas:core:1.0:entitlements indicate that the policy is interested in the
value of the entitlements attribute of the user identified by the actor-id of the current
request context.

Managing Policies
The Identity Broker Console enables creating, editing, and managing policies and policy sets.
Policies can be generated from a Policy Template in the Identity Broker Console, or by
importing a XACML file. Policies that are imported must be syntactically correct and:

l Contain all required policy elements required by XACML 3.0.

l Not contain optional elements that are not supported by the Identity Broker.

l Pass XACML function checks for the correct number and type of parameters.

If any of these criteria are not met, the import fails.

If the installation option was chosen, the Identity Broker provides several policies that can be
customized.

Admin API Policy – Deny Identity Broker administrative access to unauthorized applications
or users. By default, access to administrative actions is allowed for a user with the broker_
admin entitlement and for resources that have the urn:unboundid:resources:broker_admin
prefix. This is required by the system and can be edited, but should not be deleted. See The
Identity Broker Administrative Resources for a list of actions that this policy allows and under
what conditions.

Consent Policy – Policy that will return a decision of Permit if the resource owner has
consented to allow access to all of the resources in a request. If the resource owner has failed
to grant consent for any resource in the request, the policy will return a Deny decision. If the
incoming request does not specify a resource owner, the policy decision will be Not Applicable.
This is required by the system.

Owned Resource Access Policy – Policy to deny access to resources unless the requester is
the owner of the resources or an actor that has a privileged entitlement. This policy is only
evaluated for requests that contain both an owner and actor attribute. This is required by the
system.

Tag Policy – Policy that will return a decision of Permit if the requesting application holds all
governance tags held by all requested resources.

Trust Level Policy – Policy that will return a decision of Permit if the maximum trust level of
all resources is less than or equal to the trust level of the requesting application.

User Create and Update Policy – Policy for creating and updating a user through the SCIM
endpoint. This is required by the system and should not be deleted.

- 67 -



Chapter 5: Policies

To Create a New Policy
1. Click Privacy Policies and select Policies.

2. On the Policies page, click New Policy.

3. Enter a name for the new policy.

4. Select the Enable in Production box to run this policy, or select it after the policy has
been tested.

5. If this policy will be created from a policy template, click in the Policy Template field
and select an available template.

6. Perform one of the following to select a XACML policy:
o If creating the policy from a template, the template parameters are loaded in the
Template Parameters tab. Enter values for each parameter.

o Click Browse to locate and import a XACML file.

o Create a new policy in the XACML field. Each line is numbered. Text can be copied
to and from the field. When saved, the policy XACML structure is validated.

7. Click Save.

To Edit a Policy
1. Click Privacy Policies and select Policies.

2. On the Policies page, click the Edit button for the item to modify.

3. Change the name for the policy.

4. Change the Enable in Production option.

5. Perform one of the following to select a XACML policy:
o If the policy was created from a template, change values for each parameter.

o Click Browse to locate and import a XACML file.

o Edit the policy in the XACML field. Each line is numbered. Text can be copied to
and from the field. When saved, the policy XACML structure is validated.

6. Click Save.

To Export a XACML Policy
1. Click Privacy Policies and select Policies.

2. On the Policies page, click the drop-down arrow next to the Edit button in a policy row.

3. Select Export XACML.

4. Open or save the file.

- 68 -



Managing Policy Sets

To Enable or Disable a Policy in Production
1. Click Privacy Policies, and select Policies.

2. On the Policies page, click the drop-down arrow next to the Edit button in a policy row.

3. Change the production setting.

4. Confirm the action.

To Delete a Policy
1. Click Privacy Policies and select Policies.

2. On the Policies page, click the drop-down arrow next to the Edit button in a policy row.

3. Select Delete.

4. Confirm the action.

Managing Policy Sets
A policy set is an ordered collection of policies that work together to perform a policy task. It is
a XACML-defined entity. The Identity Broker evaluates policy sets the same way it evaluates
policies.

To Create a Policy Set
1. Click Privacy Policies and select Policy Sets.

2. On the Policies Sets page, click New Policy Set.

3. Enter a name for the new policy set.

4. Select the Enable in Production box to run this policy, or select it after the policy has
been tested.

5. Click Browse to locate and select the policy set (in XACML) to use.

6. Click Save.

To Edit a Policy Set
1. Click Privacy Policies and select click Policy Sets.

2. On the Policies page, click the Edit button for the item to modify.

3. On the Edit Privacy Policy dialog, change the name for the policy.

4. Review the Policy Sets for which the policy is a member.

5. Click Browse to locate and import a XACML file that represents the set.

6. Click Save.

- 69 -



Chapter 5: Policies

To Export a Policy Set
1. Click Privacy Policies and select Policy Sets.

2. On the Policy Sets page, click the drop-down arrow next to the Edit button in a row.

3. Select Export XACML.

4. Open or save the file to a new location.

To Disable a Policy Set
1. Click Privacy Policies and select Policy Sets.

2. On the Policy Sets page, click the drop-down arrow next to the Edit button in a row.

3. Change the production option.

4. Confirm the action.

To Delete a Policy Set
1. Click Privacy Policies and select Policy Sets.

2. On the Policies Sets page, click the drop-down arrow next to the Edit button in a row.

3. Select Delete and confirm the action.

Managing Policy Sandboxes
A policy sandbox is an isolated policy engine (non-production) that is useful for testing new or
modified policies or policy sets.

The Identity Broker provides an OAuth Consent Evaluation sandbox that is used by the OAuth
2.0 authorization endpoint to determine whether to prompt a user for consent of requested
scopes, in isolation from other policies. To customize consent policy, modify or replace the
policy in this sandbox.

To Create a New Policy Sandbox
1. Click Privacy Policies and select Policy Sandboxes.

2. On the Policies Sandboxes page, click New Policy Sandbox.

3. On the General tab, enter a name for the new policy sandbox and optional description.

4. In the Policies and Policy Sets drop-down list, select one of the following options:
o Include Only Specified Policies and Policy Sets. The sandbox will provide a
decision based only on the policies that are added to this sandbox.

o Include All Policies and Policy Sets Enabled in Production. When selected,
this option enables adding new policies to the sandbox or removing existing

- 70 -



Managing Policy Sandboxes

policies from the sandbox. New policies are tested in combination with the existing
policies.

5. In the Policy Combining Algorithm list, select the combining algorithm for this sandbox.

6. Click either the Policies tab or the Policy Sets tab.

7. Search for and select policies to add to the sandbox.

8. Click Save.

To Edit a Policy Sandbox
1. Click Privacy Policies and select Policy Sandboxes.

2. On the Policies Sandboxes page, click the Edit button for the item to modify.

3. On the General tab, change the name and optional description.

4. In the Policies and Policy Sets drop-down list, select one of the following options:
o Include Only Specified Policies and Policy Sets.

o Include All Policies and Policy Sets Enabled in Production. If this option is
selected, additional tabs display that enable including or excluding policies from all
that are enabled in production.

5. In the Policy Combining Algorithm list, select the combining algorithm for this sandbox.

6. Click the Policies tab.

7. Search for and select policies to add to the sandbox.

8. Click the Policy Sets tab.

9. Search for and select policy sets to add to the sandbox.

10. Click Save.

To Run a Policy Test
1. Click Privacy Policies and select Policy Sandboxes.

2. On the Policy Sandboxes page, click the drop-down arrow next to the Edit button in a
row.

3. Select Run Test. (Policy tests must already be created.)

4. Select the test to run in this sandbox and click Run Test. The test results are shown in
the Decision box. To view a trace of the Policies or Policy Sets test, click Show Details.

- 71 -



Chapter 5: Policies

To Delete a Policy Sandbox
1. Click Privacy Policies and select Policy Sandboxes.

2. On the Policy Sandboxes page, click the drop-down arrow next to the Edit button in a
row.

3. Select Delete.

4. Confirm the action.

Managing Policy Templates
A policy template is a parameterized XACML policy that is used to create new policies. A single
template can be used to create multiple policies. A template becomes a policy instance when it
is used to create a policy and attribute values are specified. Attribute values are based on data
types defined in OASIS Committee Specification 01, eXtensible access control markup
language 193 (XACML) Version 3.0, and a string that represents the value of the data type,
such as:

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string>
    string_value
</AttributeValue>

Policies generated from a template are linked to that template to easily determine how and
from what source a policy was generated. The link between the template and the policies is
simply for reference. Once a template is used to create policies, importing a new XACML
definition or changing any of the parameter IDs will break the link between the template and
the policies.

To Import a New Policy Template
A sample template (IPAddressTemplate.xml) is available in the resources directory of the
Identity Broker distribution. It can be modified and imported.

1. Click Privacy Policies and select Policy Templates.

2. Click New Policy Template. The Create Policy Template dialog opens.

3. In the Name box, enter a name for the new policy template.

4. In the XACML file box, browse for the template to import.

5. Click Save to store it.

To Edit a Policy Template
1. Click Privacy Policies and select Policy Templates.

2. On the Policy Templates page, click the Edit button for the item to modify.

- 72 -



Managing Policy Tests

3. On the General tab, change the name for the policy.

4. To import a XACML definition, click Browse to locate and import the XACML file.

Importing a new XACML file breaks the link between this template and any policies that
were generated from it. Template parameters cannot be edited for policies that do not
have a template link.

5. On the Parameters tab, review the parameters for the policy.
6. Click Save.

To Export a XACML Policy Template
1. Click Privacy Policies and select Policy Templates.

2. On the Policy Templates page, click the drop-down arrow next to the Edit button in a
row.

3. Select Export XACML.

4. Open or save the file to a new location.

To Delete a Policy Template
Deleting a template does not impact the policies that were created from it, but the policies will
no longer have the template reference.

1. Click Privacy Policies and select Policy Templates.

2. On the Policies Templates page, click the drop-down arrow next to the Edit button in a
row.

3. Select Delete.

4. Confirm the action.

Managing Policy Tests
Policy Tests run policy scenarios to ensure that they work as designed before deploying in
production. The Policy Tests create an authorization request and specifies the client application
that will request access to a user's resources, the resources to access, and additional
information from the user's entry to assist in processing the request. See About Data Access
Requests for an overview of the request components.

To Create a New Policy Test
1. Click Privacy Policies and select Policy Tests.

2. Click New Policy Test. The Create New Policy Test dialog opens.

3. In the Name box, enter a name for the new policy test.

- 73 -



Chapter 5: Policies

4. Enter an optional description in the Description box.

5. Click the Requester tab.

6. Enter or select the application making the request in the Subject box. This should be an
application registered with the Identity Broker server.

7. Select the type of action that the requestor will be conducting from the Action list.
Options are Create, Delete, Read, or Update.

8. Select the purpose of the data access from the Purpose list.

9. Enter an optional resource owner. This is the unique SCIM ID as stored in the backend
user store.

10. Enter an optional actor. This must also be a unique SCIM ID as stored in the backend
user store.

11. Click the Resources tab or Resources Group tab.

12. Select the resources or the group of resources that will be accessed by the requestor
application.

13. Click the Additional Arguments tab and add any optional arguments for this test.

14. Click the Run Test tab, and select the Policy Sandbox to run the test against.

15. Click Run Test. The Identity Broker Console arrives at a decision and lists the total
processing time. To view a trace of the decisions, click Show Details.

16. Click Save.

To Edit a Policy Test
1. Click Privacy Policies and select Policy Tests.

2. Click Edit for the policy test to edit.

3. In the Name box, change the policy test name.

4. Enter or change an optional description in the Description box.

5. Click the Requester tab.

6. Change the subject (application) making the request in the Subject box.

7. Change the type of action that the requestor will be conducting from the Action list.
Options are Create, Delete, Read, or Update.

8. Select or change the purpose of the data access from the Purpose list.

9. Enter an optional resource owner. This is the unique SCIM ID as stored in the backend
user store.

10. Enter an optional actor. This must also be a unique SCIM ID as stored in the backend
user store.

- 74 -



Managing Policy Tests

11. Click the Resources tab or Resources Group tab.

12. Select the resources or the group of resources that will be accessed by the requestor
application.

13. Click the Additional Arguments tab and add or change any optional arguments for this
test.

14. Click the Run Test tab and select or change the Policy Sandbox to run the test against.

15. Click Run Test. The Identity Broker Console arrives at a decision and lists the total
processing time. To view a trace of the policy decisions, click Show Details.

16. Click Save.

To Delete a Policy Test
1. Click Privacy Policies and select Policy Test.

2. On the Policy Test page, click the drop-down arrow next to the Edit button in a row.

3. Select Delete.

4. Confirm the action.

- 75 -



Chapter 6: Monitoring the Identity
Broker

The Identity Broker's server performance, consent traffic, client application access, and policy
activities can be monitored and displayed on the Metrics page. The Metrics section of the
Identity Broker Console displays data from a configured Metrics Engine instance, providing a
real-time picture of identity data.

See the UnboundID Identity Broker Installation Guide and the UnboundID Identity Broker
Administration Guide for details about configuring the Identity Broker to display Metrics
Engine data.

This section explains how to monitor the Identity Broker. In this section, the following tasks
are performed:

Viewing Dashboards

Changing Metrics Data

- 76 -



Chapter 6: Monitoring the Identity Broker

Dashboards and Metrics
Dashboards are configured during the Metrics Engine installation and display data gathered by
the Metrics Engine. Data includes:

l Authorizations granted and denied to client applications.

l Consents granted, denied, and abandoned by customers.

l Most requested data.

l Most requesting client applications.

See the UnboundID Metrics Engine Administration Guide and the UnboundID Identity Broker
Installation Guide for steps to configure dashboards.

About System and Consent Metrics
The Metrics page contains several charts to measure and monitor Identity Broker system and
user consent activity. The following categories can be made available on the Metrics page:

Authorization Requests – Displays the number of blocked and permitted token requests
from client applications.

Request Volume – Displays authorization activity according to grant or deny.

Grant Types – Displays the number of authorization grants by type.

Consent/Deny by Application – Displays authorization activity based on client application.

Consent/Deny by Data Type – Displays authorization activity based on data type.

Most Requested Data – Displays most requested data.

Most Active Applications – Displays most active client applications.

Most Active Policies – Displays most active policies.

The data that displays in the Identity Broker Console is dependent on the data configured for
the Metrics Engine. Dashboards are configured from the Metrics Engine server.

To Change Metrics Data
No data is displayed until it is generated by the Metrics Engine. Both the Metrics Engine and the
Identity Broker server must be configured to display data. See the UnboundID Metrics Engine
Administration Guide and the UnboundID Identity Broker Installation Guide for steps to
configure dashboards.

1. Click Metrics. The dashboards configured for the system are displayed. Mouse over data
in any chart to see additional details.

2. To change the data displayed, click the Metrics tool button.

3. In the Instance drop-down menu, choose the Identity Broker instance from which data
is displayed.

- 77 -



About System and Consent Metrics

4. In the Number of Points drop-down menu, choose the number of data points to display
on each chart.

5. Select either the Time Range or Start Time option.
l For Time Range option, select a range from the drop-down menu and the Time
Offset. Time offset is the time at which the range should start. For example, if an
8-week range and a 5-day offset are both selected, the data will display for 8
weeks starting 5 days prior to the current date.

l For the Start Time option, select a start and end time from the drop-down menus.

6. Click Apply. Data displays based on the options selected.

- 78 -



Chapter 7: Testing

After all Identity Broker components are configured, test them to make sure that policies and
consent actions work as expected.

This section explains how to test Identity Broker components prior to production. In this
section, the following tasks are performed:

Testing Sample Policies

Testing the OAuth 2.0 Authorization Flows

Troubleshooting Policies with Traces

Configuring the Policy Debug Logger

Configuring the File-Based Authorization Logger

- 79 -



Chapter 7: Testing

Testing the Sample Policies
If sample data was installed during the setup process, four sample Policy Tests are available:

l External App Request for Billing History

l External App Request for Customer Profile

l Internal App Request for Billing History

l Internal App Request for Consumer Data

To Test the Sample Policies
1. Log into the Identity Broker Console.

2. Click Privacy Policies, and select Policy Tests.

3. On the Policy Tests page, click the arrow next to the Edit button for the External App
request for Billing History, and then select Run Test. In this example, the
ExternalAppTwo is requesting to see the Billing History resource for the sampleuser1,
who has given consent to let the application view his billing history.

4. On the Policy Test dialog, click Run Test.

5. Run the other Policy Tests to view the decision.

Testing the OAuth2 Authorization Flows
The Identity Broker provides a command-line tool to test OAuth 2.0 authorization flows.

To Test the OAuth2 Client Credentials Grant Type
The oauth2-request tool can also be used to retrieve an access token using the OAuth 2.0
client credentials grant type. This grant type is used when the requesting application would like
to access its own resources, so a separate set of owner credentials is not needed.

Note
Refresh tokens cannot be requested using the client credentials grant type.

1. Obtain the token from client credentials.

$ broker1/bin/oauth2-request token-from-client-credentials \

--clientID a07bfe59-124a-4747-9037-e3e099b68203 \

--clientSecret 1RMGfNz38e --displayToken

Parameter Value(s)

-----------------------------------------------------------------------------

- 80 -



Troubleshooting Policies with Traces

Access Token MC2AAQGBBmg2OEVvUYIg-XlYUSaBC4BxLoeOEwbl-CcC66tRPYvtWHo9-TxhyxM

Token Type bearer

Scope urn:com.example.scope.test_resource

Expires In 11 hours, 59 minutes, 58 seconds

Expiration 20130419093824Z

2. Validate the token.

$ broker1/bin/oauth2-request validate-token \

--clientID a07bfe59-124a-4747-9037-e3e099b68203 \

--clientSecret 1RMGfNz38e \

--token MC2AAQGBBmg2OEVvUYIg-XlYUSaBC4BxLoeOEwbl-CcC66tRPYvtWHo9-TxhyxM

Parameter Value(s)

------------------------------------------------

Client ID a07bfe59-124a-4747-9037-e3e099b68203

Scope urn:com.example.scope.test_resource

Issued At 20130418213824Z

Expires In 11 hours, 59 minutes, 8 seconds

To Test the OAuth2 Auth Code and Implicit Grant Types
The authorization code and implicit grant types are intended to be used interactively with a
web browser. The oauth2-request command line tool does not support those grant types. The
the Sample Sign-In application, included with the Identity Broker, provides a way to test these
grant types. See the UnboundID Identity Broker Application Developer Guide for information
about this application.

Troubleshooting Policies with Traces
Policy decisions are frequently the result of a complex series of logical steps. Identifying the
reason why a particular request is getting an unexpected results can be difficult. To aid in the
debugging process, the Identity Broker supports the ability to generate a trace of any policy
decision. Tracing is automatically enabled when using the Policy Test feature, with the trace
output displayed in the Identity Broker Console. It can also be enabled for all policy decisions
by Configuring the Policy Debug Authorization Logger.

A policy trace is an XML document that is formatted like the XACML policies. It demonstrates
the sequence of steps taken by the policy engine to come to a decision for a specific request.
The elements of the trace parallel the policies, policy targets, and policy rules that are
evaluated.

When using the Policy Debug Authorization Logger, by default policy traces are written to the
log file <server-root>/logs/policy-decision-trace. The following is an excerpt from a
trace entry:

- 81 -



Chapter 7: Testing

[22/Sep/2014:12:59:09.968 -0500] POLICY TRACE threadID=14244
application="UnboundID Profile Manager Sample"
owner="9f8a23-659acbff-f234-305e-8776-2dc725d4899f"
actor="9f8a23-659acbff-f234-305e-8776-2dc725d4899f"
action="Read" purpose="ANY"
resources="urn:scim:schemas:core:1.0:emails.preferred.value"
trace=<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<DecisionTrace xmlns:ns2="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17">
<PolicySet id="urn:unboundid:policyset:PDP-global" combiningAlgId="deny_overrides" result
="DENY">

The following are included:

l The first line of the log entry identifies the message type as POLICY TRACE.

l The parameters of the XACML request being traced are listed, including the application,
resource owner, actor, action, purpose, and resources.

l Following this is the trace itself, which is included in the <DecisionTrace> XACML
element.

l Following the <DecisionTrace> element is a list of policy sets and policies that were
consulted in order to come to a decision. The first policy set is the PDP-global set, which
is an internally-generated set that consists of all top-level policies and policy sets that
are enabled in the Identity Broker.

l The combiningAlgId attribute corresponds to the global combining algorithm that was
chosen for the Policy Service. (See the UnboundID Identity Broker Installation Guide for
information about configuring the Policy Service.)

l The result XML attribute specifies the final result of the policy engine’s evaluation of
the request, which in this example is DENY.

The trace then includes entries for each policy, rule, and target evaluated during the decision
process. For example, the next element might include the following:

<Policy id="urn:unboundid:policy:UserCreateAndUpdate"
combiningAlgId="deny_unless_permit" result="NOT_APPLICABLE">
  <Target result="NoMatch">
    <Match function="string_equal" result="NoMatch">
      <Argument type="AttributeValue" value="Create"/>
      <Argument type="AttributeDesignator" value="Read"/>
    </Match>
    <Match function="string_equal" result="NoMatch">
      <Argument type="AttributeValue" value="Update"/>
      <Argument type="AttributeDesignator" value="Read"/>
    </Match>
  </Target>
</Policy>

This trace element shows that the first policy evaluated was the User Create And Update
policy, and that it returned a result of NOT_APPLICABLE. The sub-elements of this policy
element show that the result of the policy’s Target specification was NoMatch.

- 82 -



Troubleshooting Policies with Traces

The NoMatch result is due to both child Match elements also resulting in NoMatch. The request
attribute being compared (action-id) was not equal to either “Update” or “Create.”

Each AttributeValue and AttributeDesignator that was evaluated is shown with the value
that was received by the policy engine when the policy was evaluated. Since the trace does not
include the name of the attribute that is referenced by an AttributeDesignator, it may be
helpful to reference a copy of the policy itself while analyzing the trace output.

The next step in the analysis might be to look for the trace element of the policy that caused
the request to be denied. Consider the following snippet which could be from the same trace
entry:

<Policy id="urn:unboundid:policy:GovernanceTagPolicy" combiningAlgId="first_applicable" r
esult="DENY">
  <Target result="Match"/>
  <Rule id="urn:unboundid:names:1.0:ruleid:missing-request-governance-tags" effect="DENY"
result="DENY">
    <Condition result="TRUE">
      <Apply function="and" result="true">
        <Argument type="Apply" value="true">
          <Apply function="integer_equal" result="true">
            <Argument type="VariableReference" value="0" variableId="requestTagsSize">
              <Apply function="string_bag_size" result="0">
                <Argument type="AttributeDesignator" value="[]" variableId="urn:unboundid
:names:1.0:subject:governance-tags"/>
              </Apply>
            </Argument>
          <Argument type="AttributeValue" value="0"/>
        </Apply>
      </Argument>
      <Argument type="Apply" value="true">
        <Apply function="integer_greater_than" result="true">
          <Argument type="VariableReference" value="1" variableId="resourceTagsSize">
            <Apply function="string_bag_size" result="1">
              <Argument type="AttributeDesignator" value="[EmailTag]" variableId="urn:unb
oundid:names:1.0:resource:governance-tags"/>

</Apply>
</Argument>
<Argument type="AttributeValue" value="0"/>

          </Apply>
         </Argument>
       </Apply>
     </Condition>
   </Rule>
</Policy>

The first line shows that GovernanceTagPolicy returned a result of DENY. It also shows that
only a single rule of the policy was evaluated, urn:unboundid:names:1.0:ruleid:missing-
request-governance-tags,and that this rule’s result was DENY.

This result caused policy evaluation to be terminated since the policy’s combining algorithm is
first_applicable, which is defined by XACML to terminate once a rule returns a result other
than NOT_APPLICABLE. This particular rule checks if the requested Resource is associated with
Tags that are not associated with the requesting application. It does so by checking whether

- 83 -



Chapter 7: Testing

the Resource has a greater number of Tags than the application does. This is done by applying
the XACML function integer_greater_than to two arguments which are:

l the string_bag_size of resource Tags.

l the string_bag_size of subject Tags.

In the trace above, the count of Resource Tags is 1 while the count of Subject tags is 0. It also
shows that the Tag associated with the resource is named EmailTag. This is the reason that the
authorization request was denied.

Configuring the Policy Debug Authorization Logger
The Policy Debug Authorization Logger is used to analyze or troubleshoot policy decisions in a
production environment. Policy Tests automatically trace all policy decisions and the trace is
returned as part of the result. The logger is disabled by default. Enabling the logger causes all
policy decisions to be traced and stored in the /logs directory.

The logger should be used for a limited amount of time and then disabled, especially in a
production environment. A large amount of data can be generated and stored if the Identity
Broker is busy.

A trace filter can be used to restrict the decision traces that are logged. A trace filter is a
standalone XACML "Target" specification and can be created to filter the logging to only
requests that apply to the trace filters. A trace filter can be created with the broker-admin
create-trace-filter tool. See Identity Broker Tools for more information about the broker-
admin command.

To configure the logger:

1. Run the following command on the Identity Broker server:

$ bin/dsconfig set-log-publisher-prop --publisher-name "Policy Debug

Authorization Logger" --set enabled:true

2. Enter the Identity Broker hostname or IP address and press Enter.

3. Specify the option to connect to the Identity Broker and press Enter.

4. Enter the connection port, or press Enter to confirm the default.

5. Enter the administrator user bind DN, or press Enter to confirm the default
(cn=Directory Manager).

6. Enter the password for this account and press Enter.

7. Choose to update all servers or only the current server. The Configuration Menu is
displayed:

>>>> Configure the properties of the File Based Authorization Log Publisher

Property Value(s)

-----------------------------------------------------------------------------------

- 84 -



Configuring the Authorization Logger

1) description "When this logger is enabled, detailed debugging

information about policy decisions will be written

to the specified log file. The output can be verbose,

so be careful using this on a server in production

or under high load."

2) enabled true

3) logged-message-type decision-trace

4) timestamp-precision milliseconds

5) log-file logs/policy-decision-trace

6) log-file-permissions 640

7) append true

8) rotation-policy Size Limit Rotation Policy

9) retention-policy File Count Retention Policy, Free Disk Space

Retention Policy

10) sign-log false

8. Make any necessary changes.

9. Disable the logger. It should not stay enabled for a long period.

10. Review the policy decisions.

Configuring the Authorization Logger
The File-Based Authorization Logger records all policy, authorization, and consent decisions
made by the Identity Broker, including:

l OAuth 2.0 events, such as access token grants and revocations.

l User consent grants and revocations.

l Policy decisions and request parameters.

l External identity provider events, such as tokens granted, linking events, and attributes
retrieved.

The File-Based Authorization Logger is enabled by default, and is configured with the dsconfig
tool. Logs are stored in logs/authorization by default. For additional information about
UnboundID log publishers, see the UnboundID Identity Data Store Administration Guide.

Note Custom policy request parameters can be added to this or the Policy Debug Authorization
Logger through the Custom Logged Authorization Request Attribute parameter, which is an
advanced dsconfig option.

- 85 -



Chapter 8: System Administration

The Identity Broker provides command-line tools to perform system administrative tasks.

This section explains the Identity Broker Console commands and tools, and other
administration options. In this section, the following tasks are performed:

The Identity Broker Command-Line Tools

The Identity Broker Tools

Tools Authentication Arguments

Administrative Access

Managing the Web Applications

About Velocity Templates

Addressing a Compromised Encryption Key

Managing the Log History Service

- 86 -



Chapter 8: System Administration

Identity Broker Configuration Tools
The command-line tools are located in the <server-root>/bin directory. The broker-admin
tool provides most of the same functionality as the Identity Broker Console. Each command-
line tool provides help options with examples. List all commands using the --help argument,
all sub-commands using the --help-subcommands argument, and a detailed help for a single
subcommand using the --help argument with the subcommand name.

$ bin/broker-admin --help
$ bin/broker-admin --help-subcommands
$ bin/broker-admin update-policy-template --help

The following tools manage the various Identity Broker administrative tasks. A full list of tools
is available in Identity Broker Tools.

l broker-admin – Runs administrative operations. Use this tool to create and configure
applications, policies, resources, tags, and trust levels. All of these actions can also be
done in the Identity Broker Console.

l consent-admin – Runs consent management operations. Use this tool to add consents,
list consent history, list applications and resources for which consent was granted, and
revoke consent.

l evaluate-policy –Requests a policy decision from the Identity Broker. Use this tool to
view policy decisions including a decision trace in XACML format.

l oauth2-request – Tests token functions of the Identity Broker. Use this tool to manage
OAuth2 tokens on behalf of a registered application.

l dsconfig – Provides additional configuration options for the Identity Broker
environment. This tool provides an interactive, menu-driven mode to facilitate tasks
such as adding additional user stores.

l prepare-external-store – Prepares the external data stores for the Identity Broker.
This is run as part of the create-initial-broker-config tool during installation, but
can be used to update the Broker Store or an external user store.

l collect-support-data – Collects system information useful in troubleshooting
problems. The information is packaged as a zip archive.

All Identity Broker Tools
Available Identity Broker tools are:

Tool Description

backup Run full or incremental backups on one or more Identity Brokers. This utility also
supports the use of a properties file to pass predefined command-line arguments.

Identity Broker Tools

- 87 -



All Identity Broker Tools

Tool Description

base64 Encode raw data using the base64 algorithm or decode base64-encoded data back
to its raw representation.

broker-admin Invoke administrative operations over the Identity Broker REST API.

collect-support-data Collect and package system information useful in troubleshooting problems. The
information is packaged as a ZIP archive that can be sent to a technical support
representative.

consent-admin Manage a resource owner consent over the Identity Broker REST API. Consent is
authorized by a resource owner to allow access to resources by an application.

config-diff Generate a summary of the configuration changes in a local or remote server
instance. The tool can be used to compare configuration settings when
troubleshooting issues, or when verifying configuration settings on new servers.

create-initial-broker-config Create an initial Identity Broker configuration.

create-rc-script Create a Run Control (RC) script that can be used to start, stop, and restart the
Identity Broker on Unix-based systems.

dsconfig View and edit the Identity Broker configuration.

dsframework Manage administrative server groups or the global administrative user accounts that
are used to configure servers within server groups.

dsjavaproperties Configure the JVM arguments used to run the Identity Broker and its associated
tools. Before launching the command, edit the properties file located in
config/java.properties to specify the desired JVM arguments and the
JAVA_HOME environment variable.

encryption-settings Manage the server encryption settings database.

evaluate-policy Request a policy decision from the Identity Broker.

ldapmodify Perform LDAP modify, add, delete, and modify DN operations in the Identity Broker.

ldappasswordmodify Perform LDAP password modify operations in the Identity Broker.

ldapsearch Perform LDAP search operations in the Identity Broker.

ldif-diff Compare the contents of two LDIF files, the output being an LDIF file needed to bring
the source file in sync with the target.

ldifmodify Apply a set of modify, add, and delete operations against data in an LDIF file.

list-backends List the backends and base DNs configured in the Identity Broker.

manage-extension Install or update extension bundles. An extension bundle is a package of extension
(s) that utilize the Server SDK to extend the functionality of the Identity Broker. Any
added extensions require a server re-start.

oauth2-request Performs OAuth 2.0 requests on the Identity Broker. This tool can be used to test
OAuth 2.0 functions of the Identity Broker, and to manage OAuth 2.0 tokens on behalf
of registered applications.

prepare-external-store Prepares the external data stores for the Identity Broker. This is run as part of the
create-initial-broker-config tool during installation. This tool creates
the broker user account, sets the correct password, and configures the account with
required privileges. It will also install the necessary schema required by the Identity
Broker. This tool can also be used to update (with the --update option) an
external Broker Store or a data store schema.

remove-defunct-server Removes a permanently unavailable Identity Broker after it has been removed from

- 88 -



Chapter 8: System Administration

Tool Description

its topology by the uninstall tool.

restore Restore a backup of the Identity Broker.

review-license Review and/or accept the product license.

sample-data-loader Install or remove sample data for Identity Broker testing and demonstration.

server-state View information about the current state of the Identity Broker processes.

start-broker Start the Identity Broker.

status Display basic server information.

stop-broker Stop or restart the Identity Broker.

sum-file-sizes Calculate the sum of the sizes for a set of files.

About the Tools Authentication Arguments
The Identity Broker's tools require various authentication IDs that are different from
arguments used with the Identity Data Store. The following table illustrates the differences:

Arguments Purpose Used by

--authClientID
--authClientSecret

The client ID and secret of the internal @BrokerCLI@
application, needed by the command-line tools to
obtain a bearer token to read Broker Store
configuration information from the Identity Broker
REST API. Typically, these arguments do not need to
be provided, as the tool will read the required values
from the oauth-admin-client-id and oauth-
admin-client-secret properties of the OAuth
Service configuration.

broker-admin, consent-
admin, and evaluate-
policy

--authID
--authPassword

Credentials for the user or administrator running the
tool, also needed by the tool itself to obtain a bearer
token to read Broker Store configuration information
from the Identity Broker REST API. This user must exist
in the Identity Broker's user store or Broker Store.

broker-admin, consent-
admin, and evaluate-
policy

--application
--clientID
--clientSecret

The credentials of the client application requesting
access to a resource.

oauth2-request

--ownerID
--ownerPassword

The resource owner's credentials. oauth2-request

Authentication Arguments for the Identity Broker's Tools

Administrative Access
Access to the Identity Broker Console, command-line tools, and Broker Admin API are
governed by policy. The default administrative policy, Admin API, defines the account
entitlement required for access, the applications that can be used, and the resources that are

- 89 -



Administrative Access

available to a user with the required entitlement. This policy can be used as a template to
create a set of more granular policies.

Admin API Flow

A call to the Broker Admin API requires the correct scopes or resources needed to perform an
administrative task. All of the required resources and scopes needed to manage the Identity
Broker are listed in the Identity Broker Console. Administrative resources and administrative
scopes cannot be edited or deleted. However, new scopes can be created for a set of actions
and then defined in a policy for an administrator or set of administrators to access.

Adding Additional Administrative Accounts
Administrative access is governed by policy and requires the broker_admin entitlement, which
by default enables access to all Identity Broker tasks. The default Admin API policy allows
access to any account with the broker_admin entitlement and for any requested resource with
the urn:unboundid:resources:broker_admin prefix. See Identity Broker Administrative
Resources for a full listing.

If this environment needs multiple administrators with finer-grained access to Identity Broker
tasks, administrative accounts can be added with custom entitlements such as manage_
applications. The Admin API Policy can then be updated (or a new policy created) to accept a
user ID with that entitlement for a specific set of Identity Broker administrative scopes or
resources. See Sample for Adding an Administrator.

By default, an initial administrative account is created by the create-initial-broker-config
tool and stored in the Broker Store as an LDAP entry in the ou=Admins,ou=Identity
Broker,<base DN> branch. A user's entitlements are stored in the native data store attribute
that is mapped to the Data View attribute
urn:scim:schemas:core:1.0:entitlements.value. An administrative account can be
exposed through any Data View.

- 90 -



Chapter 8: System Administration

Adding an Account to an LDAP Data Store
From the Identity Data Store that acts as the Broker Store, use ldapmodify to add a user
entry, including a value for the ds-broker-admin-privilege attribute:

$ bin/ldapmodify

dn: uid=admin-2,ou=Admins,ou=Identity Broker,dc=example,dc=com
changeType: add
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetorgperson
description: This is the administrative user #2 for the UnboundID Identity Broker
uid: admin
cn: Broker
sn: Admin
userPassword: password
ds-broker-admin-privilege: broker_admin

# Processing ADD request for uid=admin-2,ou=Admins,ou=Identity Broker,dc=example,dc=com
# ADD operation successful for DN uid=admin-2,ou=Admins,ou=Identity Broker,dc=example,dc=
com

Adding an Account through a SCIM Front End
In this example HTTP request/response pair, the client is using a bearer token that was
granted to an application that is explicitly allowed to create users through a Data View by the
User Create and Update policy. The LDAP store adapters that back this Data View have been
explicitly configured to allow user creation requests. This is not allowed by default.

POST /scim/Users HTTP/1.1
Accept: application/json
Accept-Encoding: gzip, deflate, compress
Authorization: Bearer MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-vzKYVltlykXrZE2AG0F3J3mQjU
YOSP3dCOaIeYEUWSK-OgWfYpuFNpqfGQv91vcvarYUJa44n1srvcYC7yDIoo
Content-Length: 383
Content-Type: application/json; charset=utf-8
Host: example.com:443
User-Agent: HTTPie/0.7.2

{
"emails": [ 

{
"type": "preferred",
"value": "bill.lumbergh@example.com"

}
],
"entitlements": [

{
"value": "broker_admin"

}
],
"name": {

- 91 -



Administrative Access

"familyName": "Lumbergh",
"formatted": "Bill Lumbergh",
"givenName": "Bill"

},
"schemas": [

"urn:scim:schemas:core:1.0"
],
"userName": "bill.lumbergh"

}

HTTP/1.1 201 Created
Content-Length: 507
Content-Type: application/json
Location: https://example.com/scim/v1/Users/9f8a23-a762e2cf-0c61-4994-9a62-bd22a7c4cc77
Server: Jetty(8.1.12.v20130726)

{
"emails": [ 

{
"type": "preferred",
"value": "bill.lumbergh@example.com"

}
],
"id": "9f8a23-a762e2cf-0c61-4994-9a62-bd22a7c4cc77",
"meta": {

"created": "2013-11-14T00:35:12.658Z",
"lastModified": "2013-11-14T00:35:12.658Z",
"location": "https://x2250-01:1443/scim/v1/Users/9f8a23-a762e2cf-0c61-4994-9a62-bd22

a7c4cc77"
},
"name": {

"familyName": "Lumbergh",
"formatted": "Bill Lumbergh",
"givenName": "Bill"

},
"schemas": [

"urn:unboundid:oidc:1.0",
"urn:scim:schemas:core:1.0"

],
"userName": "bill.lumbergh"

}

Sample for Adding an Administrator
The Identity Broker is installed with a single administrative account that has unlimited access
to Identity Broker functions. Additional administrators can be added to manage sub-sets of
Identity Broker tasks, such as managing policies or applications.

The following example outlines the process for adding an administrator, with a special
entitlement, to the Admin API policy with access to just the Data Requestor tasks (applications,
application groups, actions, and purposes). The policy is configured to deny-unless-permit.
Adding this new rule with a specified entitlement will permit an administrator with that
entitlement access to the specified resources, while denying access to the other administrative
resources.

- 92 -



Chapter 8: System Administration

1. Create an account with a new entitlement called manage_data_requestors. See Adding
Additional Administrative Accounts.

2. From the Identity Broker Console, export the Admin API policy AdminAccess.xml and
save it.

3. Create a new rule for the policy and specify that a user with manage_data_requestors
entitlement can have access to the administrative resources for applications, actions,
and purposes in the Identity Broker Console and command-line interfaces:

urn:unboundid:resources:broker_admin:applications

urn:unboundid:resources:broker_admin:actions

urn:unboundid:resources:broker_admin:purposes

The rule will contain the following, with the resources, applications, and entitlement
specifications in bold:
<Rule RuleId="urn:unboundid:names:1.0:dataRequestorAccess" Effect="Permit">
  <Description>
   Allow administration of Applications, Actions, and Purposes to
   applications explicitly listed by this rule and users with the
   manage_data_requestors entitlement.
  </Description>
  <Condition>
    <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
      <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:all-of-any">
        <Function FunctionId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal"/>
        <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:
                               attribute-category:resource"
                             AttributeId="urn:oasis:names:tc:xacml:1.0:
                               resource:resource-id"
                             DataType="http://www.w3.org/2001/XMLSchema#anyURI"
                             MustBePresent="false" />
        <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:anyURI-bag">
          <AttributeValue
              DataType="http://www.w3.org/2001/XMLSchema#anyURI">
urn:unboundid:resources:broker_admin:applications
          </AttributeValue>
          <AttributeValue
              DataType="http://www.w3.org/2001/XMLSchema#anyURI">
urn:unboundid:resources:broker_admin:actions
          </AttributeValue>
          <AttributeValue
              DataType="http://www.w3.org/2001/XMLSchema#anyURI">
urn:unboundid:resources:broker_admin:purposes
          </AttributeValue>
        </Apply>
      </Apply>
      <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">
        <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-
only">
          <AttributeDesignator Category="urn:oasis:names:tc:xacml:1.0:
                                  subject-category:access-subject"
                               AttributeId="urn:oasis:names:tc:xacml:1.0:
                                  subject:subject-id"
                               DataType="http://www.w3.org/2001/XMLSchema#string"

- 93 -



Administrative Access

                               MustBePresent="false"/>
        </Apply>
        <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
          <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
UnboundID Broker Admin Console
          </AttributeValue>
          <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
UnboundID Broker CLI Tools
          </AttributeValue>
         </Apply>
       </Apply>
       <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:
          string-at-least-one-member-of">
         <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
           <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
manage_data_resources
           </AttributeValue>
         </Apply>
         <AttributeDesignator Category="urn:unboundid:names:1.0:attribute-
category:actor"

AttributeId="urn:scim:schemas:core:1.0:entitlements"
                              DataType="http://www.w3.org/2001/XMLSchema#string"
                              MustBePresent="false"/>
        </Apply>
     </Apply>
  </Condition>
</Rule>

4. Import the policy in the Identity Broker Console.

5. Create a scope that includes just the Data Requestor resources in the Identity Broker
Console. The scope cannot contain any additional resources that are not present in the
rule, or all resources will be denied.

6. Add that scope to the Identity Broker Console application and the Identity Broker CLI
Tools with the broker-admin command:

$ broker-admin set-application-prop \
  --name "UnboundID Broker Admin Console" \
  --add scopeIds:name=<Data-Requester-Scope>

$ broker-admin set-application-prop \
  --name "UnboundID Broker CLI Tools" \
  --add scopeIds:name=<Data-Requester-Scope>

Application Access to the Identity Broker Admin API
For a client application to be granted access to the Identity Broker Admin API and resources
managed by it, the following must be true:

l The application must use a bearer token with one of the administrative scopes defined
for the Identity Broker. See Administrative Scopes and Resources.

l The application must be listed in the Admin API policy.

- 94 -



Chapter 8: System Administration

Access to the Admin API is determined by the application that is requesting access, and who is
currently logged into that application. By default, a user must have the broker_admin
entitlement to access administrative resources, and the application through which the user is
requesting access must be listed in the Admin API policy. If the application is listed, access is
further limited by the authorities/privileges that are possessed by the user logged into the
application.

Third-Party Applications
Third-party applications can be used to manage data in the Broker Store. To develop an
application that can access the Broker Admin API, the application must be registered with the
Identity Broker through the Console or the broker-admin tool.

The application must also be present in the list of approved API applications in the Admin
Access policy (stored in resource/AdminAccess.xml). Add the application by name by
appending a new AttributeValue element to the applicationsAllowedAdminAccess rule:

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
   My REST API application
</AttributeValue>

Like the Identity Broker applications, third-party applications must request access to an
administrative scope when authorizing users to access to the REST API. See Identity Broker
Scopes for a list of administrative scopes.

Managing the Broker Web Applications
By default, Identity Broker applications are deployed through an embedded Jetty servlet
container. The applications are designed with the Velocity Template Language and can be
customized.

Note
Because the Identity Broker Console and sample applications both use the Identity Broker
server for authentication, logging into both applications from the same browser (using different
tabs) can cause authorization errors. If logging intomultiple applications at the same time, use
different browsers to keep the sessions and cookies separate. If bookmarking the application
pages, bookmark the Identity Broker Console and sample application landing pages, not the
login page. Bookmarking the login page causes the same authentication errors.

The Profile Manager Application
The Identity Broker can be installed with a sample application called the Profile Manager. The
interface operates as a customer portal to enable:

l Viewing consent for third-party access to the end-user's resources (typically from a web
site).

l Revoking consent from client applications.

- 95 -



Managing the Broker Web Applications

The Sign-In Sample Application
A sample client application is installed with the Identity Broker Server. It can be used as a
model for a client application using the OpenID Connect /userinfo endpoint. The application
provides the OAuth 2.0 implicit grant flow of an end user signing into the Identity Broker, the
Identity Broker prompting the end user for consent to access resources, and the application
retrieving the information that is configured in the UserInfo Claims Map on the Identity Broker
Server.

Configuring the Broker Login and Consent Pages
The Identity Broker exposes Velocity pages through an HTTP Servlet Extension. Templates are
located in:

/<Broker_home>/config/velocity/templates

Account registration and password recovery require server configuration. See User Account
Registration and Recovery.

login.vm – Defines the Identity Broker log in page and includes icons for external identity
provider login. A registration form is also provided for users to create an account through the
external identity provider login.

approve.vm – Defines the OAuth approval page presented to end users who need to approve
access to resources. This file resides in the /templates/oauth directory.

error.vm – Defines the presentation of error messages displayed to end users if there is a
problem with the login or consent. This file resides in the /templates/oauth directory.

recover-password.vm – Defines the prompt for information to search for a user account so
the password can be changed. This file resides in the /templates/account directory.

recover-password-verify.vm – Defines the prompt for the password change code sent by
the Identity Broker and the new password. This file resides in the account directory of the
/templates directory.

recover-password-success.vm – Defines the password change success notification. This
file resides in the /templates/account directory.

recover-username.vm – Defines the prompt for information to search for an account
username. This file resides in the /templates/account directory.

recover-username-verify.vm – Defines the prompt for the username recover code sent by
the Identity Broker. This file resides in the /templates/account directory.

recover-username-success.vm – Displays the account username. This file resides in the
/templates/account directory.

register.vm – Provides a form for creating a new user account. This file resides in the
/templates/account directory.

register-success.vm – Defines the notification that the user account was successfully
created. This file resides in the /templates/account directory.

- 96 -



Chapter 8: System Administration

If more than one template modification is needed, additional data can be added by adjusting or
adding to the context objects that are present. See About Velocity Templates for general
information about adding context. Use the following two consent objects when customizing
these pages:

$principal

$requestContext

The $principal Object
The OAuth consent page header displays the currently logged in user's name as
$principal.username. This is the placeholder variable used in the Velocity template.The
Velocity template can be changed to display other attributes of the $principal object.

All of the SCIM principal attributes can be referenced by OAuth templates using SCIM's
standard attribute notation. The following are examples for a SCIM object exposed as
principal in the Velocity context.

Retrieving a simple attribute value:

$principal.userName
$principal.urn:scim:schemas:extension:enterprise:1.0:employeeNumber

Retrieving a complex attribute value:

$principal.name.givenName
$principal.urn:scim:schemas:extension:enterprise:1.0:manager.managerId

Retrieving multi-valued attribute values:

#foreach ( $email in $principal.emails )
$email.type: $email.value
#end

The $requestContext Object
This is the context placeholder for request-specific state, such as the current web application
context, the current locale, or the current theme. The following are examples of
requestContext in the Velocity context.

Retrieving the locale of the request:

$requestContext.locale

Retrieving a Spring model object called 'token':

$requestContext.getModelObject('token')

User Account Registration and Recovery
The Identity Broker can register a new user, retrieve a username, or change a password for an
account.

- 97 -



Managing the Broker Web Applications

This requires the configuration of an UnboundID Identity Data Store as the primary User Store.
The templates for the login page and these functions are configured with Velocity templates.
See Configuring the Broker Login and Consent Pages.

Note
If an account is not found, no error is displayed to the user. This is to prevent phishing or any
other type of exploitation that can be used by discovering which users are registered with this
application. Text can be added to the server templates to help a user navigate to the next step.
If the end user does not receive a verification code, it may be a problemwith the account
information provided or the OTP DeliveryMechanismmay be referencing an email or phone
number that is not valid.

Options for account recovery and new account registration are enabled by configuring the
OAuth HTTP Servlet Extension with the dsconfig tool on the Identity Broker server.

>>>> Configure the properties of the Oauth HTTP Servlet Extension
Property     Value(s)
---------------------------------------------------------------------------------------
1) description -
2) cross-origin-policy No cross-origin policy is defined and
                                         no CORS headers are recognized or returned.
3) java-class com.unboundid.directory.broker.http.OAuth
                                         HTTPServletExtension
4) response-header -
5) register-enabled true
6) register-dataview-name User
7) recover-username-enabled false
8) recover-username-scim-query emails eq "$0" or phoneNumbers eq "$0"
9) recover-username-validity-duration 5 m
10) recover-username-full-text Username Recovery Code: $0
11) recover-username-compact-text Username Recovery Code: $0
12) recover-username-subject Username Recovery Code
13) recover-password-enabled false
14) recover-password-scim-query userName eq "$0" or emails eq "$0" or phoneNumbe
rs eq "$0"
15) recover-password-full-text Password Change Code: $0
16) recover-password-compact-text Password Change Code: $0
17) recover-password-subject Password Change Code
18) recaptcha-key reCAPTCHA will not be used
19) recaptcha-secret reCAPTCHA will not be used

- 98 -



Chapter 8: System Administration

Note
Options for username recovery and password change are defined by the Identity Data Store
password configuration. See the UnboundID Identity Broker Installation Guide for
configuration details.

The option specific to user registration:

register-enabled – Specifies whether or not the register self-service account flow should be
enabled. When disabled, the link will not be rendered on the login view and any attempts to
access the register endpoint will result in a 403 Forbidden HTTP status code.

Options for user registration and username and password recovery:

register-dataview-name – Specifies the Data View in which the register self-service account
flow creates new users, and the recover self-service account flows search for users.

recaptcha-key – Specifies the Google reCAPTCHA API key the register and recover self-
service account flows should use. If a key is not specified, reCAPTCHA is not used.

recaptcha-secret – Specifies the Google reCAPTCHA API secret the register and recover self-
service account flows should use. If a secret is not specified, reCAPTCHA will not be used by
those flows.

Options specific to username and password recovery include:

recover-username-enabled – Specifies whether or not the username recover self-service
account flow should be enabled. When disabled, the link will not be rendered on the login view
and any attempts to access the username recovery endpoint will result in a 403 Forbidden
HTTP status code.

If enabled, the Data Store should be configured with an OTP (one time password) Delivery
Mechanism and a single-use-token Extended Operation Handler. See the UnboundID Identity
Broker Installation Guide for more information.

recover-username-scim-query – Specifies the SCIM query used when the username
recover self-service account flow searches for the account to recover.

recover-username-validity-duration – Specifies the duration the username recover code is
valid before expiring.

recover-username-full-text – Specifies the full text sent with the username recover code, if
the one time password mechanism supports long text.

recover-username-compact-text – Specifies the compact text sent with the username
recover code, if the one time password mechanism does not support long text.

recover-username-subject – Specifies the subject sent with the username recover code
when the one time password mechanism supports subjects.

recover-password-enabled – Specifies whether or not the password recover self-service
account flow should be enabled. When disabled, the link does not display on the login page and
any attempts to access the password recovery endpoint will result in a 403 Forbidden HTTP
status code.

If enabled, the Data Store should be configured with an OTP Delivery Mechanism and a deliver-
password-reset-token Extended Operation Handler. See the UnboundID Identity Broker
Installation Guide for more information.

- 99 -



Managing the Broker Web Applications

recover-password-scim-query – Specifies the SCIM query used when the password
recovery self-service account flow searches for the account to recover.

recover-password-full-text – Specifies the full text sent with the password reset code, if
the one time password mechanism supports long text.

recover-password-compact-text – Specifies the compact text sent with the password reset
code, if the one time password mechanism does not support long text.

recover-password-subject – Specifies the subject sent with the password reset code when
the one time password mechanism supports subjects.

Customizing the Identity Broker Application Logo
The Identity Broker's web application, can be changed or re-branded with a company logo. The
application uses a cascading style sheet to determine appearance. The default style sheet file
can be over written by creating a new style sheet for the Broker Console with the following
naming convention:

$HOME/.broker-console/branding-override.css

If this file is present, the Identity Broker uses it to overwrite the existing style sheet.

The following is an example of the style sheet used to display the default logo in the title bar:

.product-logo {
width: 18px;
height: 24px;
background-image: url("../img/unboundid-u30.png");
background-size: 100% 100%;
}

Style changes take affect after the application is restarted.

To Customize the Logo
By default, the web applications look for the following branding override CSS file:

~/.broker-console/branding-override.css

where "~" is replaced for the home directory of the account the web server/application is
running under. It is also possible to override this file name and location by setting the
"branding.override.file" System Property. If this file is found, it is included after all of the
other CSS files, so that it can override any of the application's styles.

The following is an example of the CSS used to display the default logo in the title bar:

.product-logo {
width: 18px;
height: 24px;
background-image: url("../img/unboundid-u30.png");
background-size: 100% 100%;

}

A branding-override.css file at ~/.broker-console with the following contents will display
a new logo after (restart the application after creating the file):

- 100 -



Chapter 8: System Administration

.product-logo {
width: 550px;
height: 190px;
background-image: url(https://www.google.com/images/srpr/logo4w.png);
background-size: 100% 100%;

}

Configuring Web Applications for Localization
To localize the Identity Broker web pages, create a set of resource bundles, for each language.
Locale-specific data must be tailored according to the conventions of the language and region,
and isolated into locale-specific objects in a Java ResourceBundle. The standard naming
convention is basename_<language1>_<country1>_<variant1>. For example:

messages_en_US.properties

messages_fr_FR.properties

messages_de.properties

Each should have the same set of keys (for example login_prompt, unknown_user) and
values, which are raw text in the appropriate language. Resource Bundles and
internationalization for Java are described in
http://docs.oracle.com/javase/tutorial/i18n/resbundle/index.html.

The resource bundles are loaded from the classpath as jar files in the /lib or
/lib/extensions directories, or can be loaded as properties files in the server's /classes
directory.

A Velocity Context Provider is then created to provide access to the resource bundles. Velocity
Tools provide one that selects the appropriate bundle based on the locale determined from the
incoming HTTP request and provides the messages from that bundle to the Velocity template.
This tool class can be found at:

https://velocity.apache.org/tools/devel/javadoc/org/apache/velocity/tools/generic/Resourc
eTool.html

Configure an instance of this tool and specify the name of the resource bundle family
("messages" in this example). Create another properties file to configure the Velocity Tools
classes:

/config/velocity/ResourceToolConfig.properties

Add the following lines:

bundles=Messages

#locale=en_US This can be used to enforce a specific locale.

Run the following dsconfig command to create and configure the Velocity Context Provider:

$ bin/dsconfig create-velocity-context-provider \
  --extension-name Velocity \
   --provider-name ResourceBundleProvider \
   --type velocity-tools \
   --set object-scope:session \
   --set included-view:/path/to/template \
   --set request

- 101 -



About Velocity Templates

tool:org.apache.velocity.tools.generic.ResourceTool;config/velocity/ResourceTool.properti
es

The included-view is only necessary to make the localized messages available to only a
certain set of templates.

About Velocity Templates
The Identity Broker exposes several Velocity pages through an HTTP Servlet Extension. The
pages are for login, for OAuth consent, and an error page that can be surfaced for end users
and are located in:

<server-root>/config/velocity/templates

See Configuring the Broker Login and Consent Pages for information about these files.

To enable Velocity support, add the Velocity HTTP Servlet Extension to an enabled HTTP or
HTTPS connection handler:

$ bin/dsconfig set-connection-handler-prop \
  --handler-name "HTTPS Connection Handler" \
--add http-servlet-extension:Velocity

Velocity template files contain presentation content and variables that are replaced when the
content is requested. Variables are expressed using a $ followed by an identifier that refers to
an object put into a context (VelocityContext) by the server.

Velocity extensions can be configured to expose a number of objects in the context using the
expose-* properties:

l expose-request-attributes – Indicates whether HTTP request attributes are accessible
to templates using the $ubid_request variable. In general, request attributes are added
by server components processing the HTTP request. Also the HTTP request parameters
map is available as $ubid_request.parameters. Request parameters are supplied by
the requester, usually in the request URL query string or in the body of the request itself.

l expose-session-attributes – Indicates whether HTTP session attributes are accessible
to templates using the $ubid_session variable. Like request attributes, session
attributes are also added by server components processing the HTTP request. The
lifetime of these attributes persists until the user’s session has ended.

l expose-server-context – Indicates whether a Server SDK server context is accessible
to templates using the $ubid_server variable. The server context provides access to
properties and additional information about the server. See the Unbound ID Identity
Broker Server SDK documentation for more details.

The following are other properties of the Velocity HTTP Servlet Extension:

- 102 -



Chapter 8: System Administration

l base-context-path – URL base context for the Velocity Servlet.

l static-content-directory – In addition to templates, the Velocity Servlet will serve
miscellaneous static content related to the templates. This property defines the directory
where these resources are found.

l static-context-path – URL path beneath the base context where static content can be
accessed.

l mime-types-file – Specifies a file that is used to map file extensions of static content to
a Content Type to be returned with requests.

l default-mime-type – The default Content Type for HTTP responses. Additional content
types are supported by defining on or more additional Velocity Template Loaders.

l template-directory – The directory where templates are stored. This directory also
serves as a default for Template Loaders that do not have a template directory specified
explicitly.

The VelocityContext object can be further customized by configuring additional Velocity context
providers. The dot notation used for context references can be extended arbitrarily to access
properties and methods of objects in context using Java Bean semantics. For example, if the
HTTP request URL includes a name query string parameter like:

http://example.com:8080/view/hello?name=Karl&name=Vladimir+Ilyich&name=Steve

An HTML template like the following could be used to generate a page containing a friendly
greeting to the end user:

<html>
  <body>
    Hello, $ubid_request.parameters.name[0],  $ubid_request.parameters.name[1], and
           $ubid_request.parameters.name[2]!
  </body>
</html>

Note
For security, all template substitutions are HTML escaped by default. To substitute unescaped
content, a variable name ending with "WithHtml" must be used. For example,
$addressWithHtml, would substitute the contents of the $addressWithHtml variable into the
page generated from the HTML template without escaping it.

By default, the Velocity Servlet Extension expects to access content in subdirectories of the
server’s config/velocity directory:

l templates – This directory contains Velocity template files that are used to generate
pages in response to client requests.

l statics – This directory contains static content such as CSS, HTML, and JavaScript files
as well as images and third-party libraries.

- 103 -



About Velocity Templates

Supporting Multiple Content Types
By default, the Velocity Servlet Extension is configured to respond to HTTP requests with a
content type text/html. Change this request type by setting the default MIME type using
dsconfig. For example, the following can be used to set the default type to XML:

$ bin/dsconfig set-http-servlet-extension-prop \
--extension-name Velocity \
--set default-mime-type:application/xml

HTML requests can be supported as well as clients that seek content in other formats. Create
one or more Velocity Template Loaders to load templates for other content types like XML or
JSON.

The ability to serve multiple formats of a document to clients at the same URL is typically
called content negotiation. HTTP clients indicate the type of content desired using the Accept
header. A client may use a header like the following to indicate that they prefer content in XML
but will fallback to HTML if necessary:

Accept: application/xml,text/html;q=0.9

The following can be used to create a Velocity Template Loader for XML content:

$ bin/dsconfig create-velocity-template-loader \
--extension-name Velocity \
--loader-name XML \
-–set evaluation-order-index:502 \
--set mime-type-matcher:application/xml \
–-set mime-type:application/xml \
-–set template-suffix:.vm.xml

Upon receiving a request, the Velocity Servlet first creates an ordered list of requested media
types from most desired to least based on the value of the Accept header. Starting from the
most desired type, it will then iterate over the defined Template Loaders according to the
evaluation-order-index property from lowest value to highest.

A Template Loader may indicate that it can handle content for requested media type by
comparing the requested type to its mime-type-matcher property. A loader may be configured
to load templates from a specific directory or load template files having a particular suffix. In
this case, where XML templates are expected to be named using a .vm.xml suffix. If a loader
indicates it handles the requested content type and a template exists for the requested view,
the template is loaded and used to generate a response to the client. If no loaders are found
for the requested media type, the next most preferred media type (if any) is tried. If no
loaders indicated that they could satisfy the requested view, the client is sent an HTTP 404
(not found) error. If no loaders could provide acceptable media but the requested view exists
in some other format, the client is sent an HTTP 406 (not acceptable) error.

In this example, a template file called hello.vm.xml can be used to generate a response in
XML:

<hello name=”$_request.parameters.name”/>

In this case, the response will contain an HTTP Content-Type header with the value of the
mime-type property of the Velocity Template Loader.

- 104 -



Chapter 8: System Administration

Velocity Context Providers
The previous examples make use of value supplied as an HTTP request query string parameter
to form a response. The templates contain a variable $_request.parameters.name that was
replaced at runtime with a value from the Velocity Context.

The Velocity Extension can be configured to make some information available in the Velocity
Context such as the HTTP request, session, and Server SDK Server Context. Velocity Context
Providers provide more flexibility in populating the Velocity Context for template use.

Here are some of the properties of a Velocity Context Provider:

l enabled – Indicates whether the provider will contribute content for any requests.

l object-scope – Indicates to the provider how often objects contributed to the Velocity
Context should be re-initialized. Possible values are: request, session, or
application.

l included-view/excluded-view – These properties can be used to restrict the views
for which a provider contributes content. A view name is the request URL’s path to the
resource without the Velocity Servlet’s context or a leading forward slash. If one or more
views are included, the provider will service requests for just the specified views. If one
or more views are excluded, the provider will service requests for all but the excluded
views.

Note
If the scope of the Velocity Tools context provider is constrained by setting the included-view
property, the OAuth 2.0 consent flow may be affected. The included-view property should
not be changed, unless all system default templates are included when setting the property.

Configuring HTTP Header Fields
By default, the Velocity Extension returns a set of standard HTTP header fields in every request
served by the extension, including those for directing cache policies of user agents and frame-
hosting options. These header fields can be configured in the following ways:

l The Velocity Servlet Extension's response-header configuration property can be specified
to add a request header to every template request. The static-response-header
property can be specified to add a header field to requests for static content like images
and script files.

l Header fields for individual pages can be configured by using the response-header
property of the Velocity Context Provider objects, which will add the header fields to just
those pages served by the provider. Headers specified here will overwrite those
specified by the Velocity Extension.

l Header fields can be manipulated directly by third-party Velocity Context Providers in
code, adding or removing existing headers by manipulating the HTTP servlet response
directly.

- 105 -



About Velocity Templates

Handling Specific HTTP Methods in Third-Party Providers
In addition to contributing content to the Velocity Context, Velocity Context Providers can
perform actions in response to particular HTTP methods. For example, a template can be used
to POST a form of user data to a provider, which in turn would create a user in the User Store.
In addition to handling HTTP GET and POST operations, a provider can handle any number of
the standard HTTP methods (PUT, PATCH, DELETE, HEAD). Handling these methods is a two
step process.

1. When creating a third-party Velocity Context Provider, configure the HTTP methods the
provider will handle using the http-method property. For example, the following
command might be used to configure a provider to handle GET and POST requests:

$ dsconfig create-velocity-context-provider \
  --extension-name Velocity \
  --provider-name "My Provider" \
  --type third-party \
  --set http-method:GET \
  --set http-method:POST \
  --set extension-class:com.example.MyProvider

Or update an existing provider:

$ dsconfig set-velocity-context-provider-prop \
  --extension-name Velocity \
  --provider-name "My Provider" \
  --add http-method:POST

2. When implementing the Java class, override the handlePost() method adding code for
handling POST operations. For example, use the internal ServerContext object to
establish a connection to the server and create a new user using form data from a POST
operation. Logic related to updating the context for the response may be implemented
directly in the handle<XXX>() method or in the updateContext() method, which is
called immediately after the relevant handle<XXX>() method.

Velocity Tools Context Provider
Apache’s Velocity Tools project is focused on providing utility classes useful in template
development. The Velocity Context can be configured by specifying Velocity Tool classes to be
automatically added to the Velocity Context for template development. For more information
about the Velocity Tools project, see http://velocity.apache.org/tools/releases/2.0/.

The following command can be used to list the set of Velocity Tools that are included in the
Velocity Context for general use by templates:

$ bin/dsconfig get-velocity-context-provider-prop \
  --extension-name Velocity \
  --provider-name "Velocity Tools" \
  --property request-tool \
  --property session-tool \
  --property application-tool

- 106 -



Chapter 8: System Administration

Preserving Customized Files
Any files that are customized should be copied from the config/velocity subdirectories to
the same subdirectory of the velocity directory under the server root (<server-
root>/velocity). The files in config/velocity should not be modified. They are updated
when the product is updated.

By default, any file of the same name under <server-root>/velocity will be loaded in place
of <server-root>/config/velocity. This enables the preservation of customized files after a
product upgrade.

After a product upgrade, review the files in config/velocity to determine if any changes
should be incorporated into customized templates.

Addressing a Compromised Encryption Key
If an encryption settings definition becomes compromised, perform the following to create a
new definition and update the Identity Broker servers. See the command line help for the
encryption-settings tool for arguments.

Note
If the Identity Broker's encryption key is compromised, and the Broker has been collecting
access tokens for external identity providers through the relying party feature, make sure those
tokens are revoked.

1. Back up the encryption settings backend.

2. Back up the user store.

3. From the Identity Broker Console, revoke all authorizations for each application. See To
Revoke All Authorizations.

4. Stop the HTTPS Connection Handler that is used for the Identity Broker's REST APIs.

$ dsconfig set-connection-handler-prop \
  --handler-name "HTTPS Connection Handler" \
  --set enabled:false

5. Create a new encryption settings definition and set it as preferred. The following will
encrypt data using a 128-bit AES cipher:

$ encryption-settings create \
  --cipher-algorithm AES \
  --key-length-bits 128
  --set-preferred

6. Restart the HTTPS Connection Handler.

$ dsconfig set-connection-handler-prop \
  --handler-name "HTTPS Connection Handler" \
  --set enabled:true

- 107 -



Managing the Log History Service

If the deployment includes multiple Identity Brokers, all servers should be taken offline, and
the encryption settings database must be updated on every server.

Note
Do not delete the compromised encryption definition. It will still be used to decrypt tokens,
authorization codes, and links that were encrypted with the previous key.

Managing the Log History Service
The Identity Broker provides an Authorization Log History Service that collects and indexes
policy decision logs to support queries through the access history endpoint. The Broker uses an
embedded implementation of Apache Lucene, an open-source Java-based indexing and search
technology, to query through policy decision history.

About Multi-Broker Authorization Log Collection and Indexing
The default Identity Broker configuration enables the local indexing of policy decision records.
The Authorization Log History Service is enabled on each Identity Broker when it is installed.
For Identity Broker deployments that consist of a single Identity Broker server, the
Authorization Log History Service can be used without modification.

Note
The Authorization Log History Service uses the Indexed Authorization Logger, which logs to
logs/.index-logs/authorization by default, is intended for the Log History Service's
exclusive use and should not bemodified.

If an installation uses multiple Identity Brokers, the Log History Service should be configured
to be hosted on one or more servers and to act as the data collectors. All other servers should
have this service disabled, so that they can act as data sources.

The Authorization Log History service requires knowledge of all Identity Broker servers in an
environment. Each indexing Identity Broker must poll all Identity Brokers in the set. An index
with only part of the data is not supported. In a multi-copy configuration, each indexing
Identity Broker maintains a complete copy of the index.

As the authorization log file is rotated on an Identity Broker, the Authorization Log History
Service will poll for newly rotated files, collect them locally, and index them. Although the
different copies may have different records at a single point in time (due to different polling
cycles), they will ultimately be consistent by virtue of the required configuration.

Authorization log indexing requires very little CPU, but it does require a lot of disk space. When
a set of Identity Brokers are working in a load balancing arrangement it may make sense to
have more than one Identity Broker provide the indexing service. The primary reasons for a
multi-copy configuration is to ensure high availability of the historical index and to protect
against data loss due to disk failures.

- 108 -



Chapter 8: System Administration

About Index Latency
There is a latency between the time a record is added to an authorization log and the time the
record shows up in the index. Log files are only indexed after they are rotated, and when the
indexing Identity Broker is polling for new log files. The polling Identity Broker remembers the
name of the last log file it indexed, and only accepts log files newer than the last indexed file.
Newness is determined by the name of the rotated log file, so the indexing service is
dependent on the rotated log file names to sort by the age of the file. The Authorization Log
History Service has a configurable polling interval with a default of 5 minutes. The files are
rotated every 30 minutes or after the file reaches 100 MB, whichever comes first. The latency
is the larger of the Authorization Log History Service poll-interval and the average rotation
period of the authorization log file.

Configuring Log Collection and Indexing
In a multi-Identity Broker configuration, on the server or servers that host the Authorization
Log History Service, an Identity Broker External Server object must be created for each of the
other servers in the deployment. A reference to each of these Identity Broker external servers
must then be added to the host's Authorization Log History Service configuration.

Note
The Authorization Log History Service uses the Indexed Authorization Logger. When
configuring properties, the properties for the Indexed Authorization Logger should be changed
with caution. The log-file and logged-message-type properties should not be changed.

To Configure Log Collection and Indexing
The following is a sample configuration, where Server A and Server B host the Authorization
Log History service, while Server C will be indexed by both Server A and Server B.

1. Create external servers on Server A that represent Server B and Server C.

$  dsconfig create-external-server --server-name ServerB \
  --type identity-broker \
  --set server-host-name:ServerB \
  --set "bind-dn:cn=directory manager" \
  --set password:****** \
  --set server-http-port:8443 \
  --set use-ssl:true

$ dsconfig create-external-server \
  --server-name ServerC \
  --type identity-broker \
  --set server-host-name:ServerC \
  --set "bind-dn:cn=directory manager" \

--set password:****** \
  --set server-http-port:8443 \
  --set use-ssl:true

2. Configure Server A's authorization log history service to poll server B and server C.

- 109 -



Managing the Log History Service

$ dsconfig set-log-history-service-prop \
  --service-name Authorization \
  --set log-history-server:ServerB \
  --set log-history-server:ServerC

3. Create external servers on Server B that represent Server A and Server C.

$ dsconfig create-external-server \
  --server-name ServerA \
  --type identity-broker \
  --set server-host-name:ServerA \
  --set "bind-dn:cn=directory manager" \
  --set password:****** \
  --set server-http-port:8443 \
  --set use-ssl:true

$ dsconfig create-external-server \
  --server-name ServerC \
  --type identity-broker \
  --set server-host-name:ServerC \
  --set "bind-dn:cn=directory manager" \
  --set password:****** \
  --set server-http-port:8443 \
  --set use-ssl:true

4. Configure Server B's authorization log history service to poll server A and server C.

$ dsconfig set-log-history-service-prop \
  --service-name Authorization \
  --set log-history-server:ServerA \
  --set log-history-server:ServerC

5. Disable authorization log history service on Server C.

$ dsconfig set-log-history-service-prop \
  --service-name Authorization \
  --set enabled:false

At this point Server A and Server B will both be collecting log files from all three servers and
indexing them, while Server C will not be indexing any log files.

About the Log History Service REST API Redirection
In a multi-Identity Broker configuration where one server is providing the Authorization Log
History Service, all Identity Broker servers must implement the REST API that provides the
information. This is handled automatically by the REST API. If an Identity Broker is not
providing local indexing, the REST API returns an error indicating that it does not provide this
service. After the indexing Identity Broker polls the other servers for an authorization log file,
the non-indexing servers retain the indexing Identity Broker's information and redirect the
REST API to that Identity Broker for all other transactions. If there is more than one indexing
Identity Broker, the non-indexing broker will redirect to any one of indexing Identity Brokers.

- 110 -



Chapter 8: System Administration

The non-indexing Identity Broker caches the redirection target for five minutes and then
updates the target during the next poll for a log file.

- 111 -



Index

A

account registration template 96

actions

creating 13

defining for scopes 29

deleting 14

editing 13

managing 13

Admin API policy 94

create a similar policy 93

administrative account

access to administrative resources 90

adding accounts 90

roles 21

sample for adding an account 92

administrative entitlement 21, 95

adding an administrator 93

application

creating 9

define trust levels 42

define trusted origins 10-11

deleting 12

editing 10

managing 9

redirect URI 10

registering with Identity Broker 9

resetting a client secret 11

revoking authorizations 12

viewing metrics 77

application group

creating 12

deleting 13

editing 13

managing 12

Attribute-Based Access Control 46

attribute mappings

authoritative attribute 33

complex attributes 38

described 19

indexing 33

mapping in data views 33

SCIM multivalued attributes 31

userinfo claims 38

authorization

approval page text 29

log publisher 85

viewing consent metrics 77

B

backup tool 87

base64 tool 88

broker-admin tool 87, 89

described 88

roles 21

Broker Admin API

access by third-party application 94

Broker Console

described 3

C

categories

described 40

Claims Map

described 18

- 112 -

Index: account registration template – Claims Map



Index: client secret – Identity Broker

client secret 11-12

collect-support-data tool 87-88

command-line tools 87

config-diff tool 88

consent-admin tool 87-88

create-initial-broker-config tool 88

create-rc-script tool 88

Cross-Origin Resource Sharing (CORS) 10

D

dashboards

described 77

data access

using policies 47

data classification

described 16

data requestors

described 7

data stores

described 19

relationship diagram 18

data view schema

described 17

exporting 33

managing 30

data views

creating 31

deleting 33

described 17

generated resource groups 17

managing 30

mapping userinfo claims 39

schema 18

store adapter mapping 33

using attributes in policy 63

ds-broker-admin-privilege 21

dsconfig

changing policy-combining
algorithm 47

tool described 87-88

dsframework tool 88

dsjavaproperties tool 88

E

encryption-settings tool 88

encryption key 107

endpoint

described 18

error message template 96

evaluate-policy tool 87-88

external identity provider

feature 3

external identity providers

add to application 10-11

F

File-Based Authorization Logger 85

G

Governance Tag Policy 40-41

I

Identity Broker

architecture 4

attribute filtering 2

authorization 3

described 1

features 2

pluggable authentication 2

sample workflow 5

social login 3

- 113 -



Index: Indexed Authorization Logger – policy

tools 87

Indexed Authorization Logger 108

J

JSON 30

exporting data view schema 33

L

ldapmodify tool 88

ldappasswordmodify tool 88

ldapsearch tool 88

ldif-diff tool 88

ldifmodify tool 88

links attribute 24

list-backends tool 88

localization for web applications 101

log collection

configuring 109

indexing 109

log history service

configuring 109

described 108

index latency 109

multi-copy authorization 108

REST API redirection 110

M

manage-extension tool 88

metrics

changing data 77

viewing 77

Metrics Engine 77

monitoring

dashboards 77

described 76

O

OAuth HTTP Servlet Extension 98

oauth2-request tool 87-89

OAuth2.0

authorization grant types 10

client credentials 11-12

policy processing 49

testing authorization 80

userinfo claims mapping 38

P

password recovery 97

PDP endpoint 49

policy

authorization scenarios 48

creating a new policy 68

data access requests 47

debug logger 84

decision trace 71, 81

deleting 69

described 45, 56

disabling 69

editing 68

exporting XACML 68

format 56

managing 67

PDP endpoint 49

policy evaluation 47

policy templates described 57

request processing 49

testing sample policies 80

using Data View attributes 63

viewing policy metrics 77

- 114 -



Index: policy sandbox – resources

policy sandbox

creating 70

deleting 72

editing 71

managing 70

OAuth Consent Evaluation 70

policy set

creating 69

deleting 70

disabling 70

editing 69

exporting 70

managing 69

policy template

creating 72

deleting 73

editing 72

exporting 73

managing 72

policy test

creating 73-74

deleting 75

managing 73

running 71

prepare-external-store tool 87-88

Profile Manager application 3

overview 95

purposes

creating 14

deleting 14

editing 14

managing 14

using the any purpose 49

R

reCAPTCHA API 99

recover account username and
password 97

recover password template 96

recover username template 96

redirect URI 23

register new account 97

relying party 4

add identity provider 35

add to application 10-11

create an accout 23

delete identity provider 38

edit identity provider 36

Facebook settings 34-35

Google settings 34-35

link an account 24

login template 96

OpenID Connect settings 34, 36

overview 34

process overview 22

remove-defunct-server tool 88

resource groups

access by consent 27

creating 28

deleting 28

editing 28

managing 27

resources

creating 26

define permitted actions 13

deleting 27

described 17

editing 27

- 115 -



Index: restore tool – UserInfo endpoint

managing 26

restore tool 89

review-licence tool 89

S

sample-data-loader tool 89

Sample Sign-In application 3, 81, 96

SCIM endpoint 18

policy processing 49

search request 53

update operations 54

scopes

administrative 19

creating 29

deleting 30

editing 29

for application use 20

for linking accounts 24

managing 28

updating with REST API 29

using the any purpose 49

server-state tool 89

social login 23

start-broker tool 89

status tool 89

stop-broker tool 89

store adapter

described 18

sum-file-sizes tool 89

T

tags

creating 41

deleting 42

editing 41

governance tags 41

managing 41

templates

creating policies 57

testing

policy decisions 84

token endpoint

token validation 35

trace policy decisions 81

Trust Level Policy 40, 42

trust levels

creating 42

deleting 44

editing 43

managing 42

setting greater value 43

setting lesser value 43

Trust Level Policy 42

trusted origins 10-11

TSL server validation 35

U

UnboundID

about viii

URN

defining resources 26-27

hierarchy in policy evaluation 47

UserInfo claims

creating maps 39

deleting a map 39

editing maps 39

managing 38

UserInfo endpoint 18

described 18

- 116 -



Index: username recovery – XACML

policy processing 49

username recovery 97

V

Velocity templates 98

configuring pages 96, 102

HTTP header fields 105

HTTP methods in third-party
providers 106

X

XACML

importing a policy file 68

importing a policy template 72

policy format 57

request attributes 53

unsupported features 61

- 117 -


	Copyright
	Preface
	About UnboundID
	Audience
	Documentation

	Chapter 1: Introduction
	Identity Broker Overview
	Identity Broker Features
	Identity Broker Console Overview
	Identity Broker Architecture
	Sample Identity Broker Configuration
	Identity Broker as both a Resource and Authorization Server
	Identity Broker as an Authorization Server Only


	Chapter 2: Data Requestors
	Data Requestors and Data Classification Components
	Managing Applications
	To Register a New Application
	To Edit an Application
	To Reset a Client Secret
	To Revoke All Authorizations
	To Delete an Application
	To Assign Client Credentials to Resource Servers

	Managing Application Groups
	To Create a New Application Group
	To Edit an Application Group
	To Delete an Application Group

	Managing Actions
	To Create a New Action
	To Edit an Action
	To Delete an Action

	Managing Purposes
	To Create a New Purpose
	To Edit a Purpose
	To Delete a Purpose


	Chapter 3: Data Classification
	Data Classification Components
	Data Stores and Data View Components
	Identity Broker Scopes
	Administrative Scopes
	Application Scopes

	Identity Broker Administrative Resources
	The Identity Broker as Relying Party
	Creating an Account through Identity Provider Login
	Linking Identity Broker and External Identity Provider Accounts
	Example Call for Links Data

	Managing Resources
	To Create a New Resource
	To Edit a Resource
	To Delete a Resource

	Managing Resource Groups
	To Create a Resource Group
	To Edit a Resource Group
	To Delete a Resource Group

	Managing Scopes
	To Create a New Scope
	To Edit a Scope
	To Delete a Scope

	Managing Data Views
	Simple Multivalued Attribute Mapping
	Complex Attribute Mapping
	To Create a New Data View
	To Edit a Data View
	To Edit Store Adapter Mappings
	To Export a Data View Schema
	To Delete a Data View

	Managing External Identity Providers
	To Create a New Identity Provider
	To Edit an Identity Provider
	To Edit Identity Provider Mappings
	To Delete an Identity Provider

	Managing UserInfo Mappings
	UserInfo Claims and Scopes
	Complex Attribute Mapping
	To Create a New UserInfo Mapping
	To Edit a UserInfo Map
	To Delete a UserInfo Map


	Chapter 4: Categories
	Managing Tags
	To Create a New Tag
	To Edit a Tag
	To Delete a Tag

	Managing Trust Levels
	To Create a New Trust Level
	To Edit a Trust Level
	To Create a New Trust Level more than the Selected Trust Level
	To Create a New Trust Level less than Selected Trust Level
	To Delete a Trust Level


	Chapter 5: Policies
	Policy Engine Request Context
	How Policy Affects the Data Returned to an Application
	About Data Access Requests
	About Policy Evaluation
	Accessing Resources by Consent

	Policy Authorization Scenarios
	Policy Decision Point (PDP) Endpoint
	Policies and Request Processing Per Endpoint
	OAuth 2.0 Endpoint Policy Evaluation
	UserInfo Endpoint Policy Evaluation
	SCIM Endpoint Policy Evaluation
	Self-Registration Policy Evaluation
	Metadata API Policy Evaluation

	Policy Writing Guidelines
	About Policy Templates
	Standard XACML Attribute Use
	Custom XACML Attribute Use
	Identity Broker Custom XACML Function
	Unsupported XACML Features
	Using Data View Attributes in Policy
	Policy Sections and Functions Described

	Managing Policies
	To Create a New Policy
	To Edit a Policy
	To Export a XACML Policy
	To Enable or Disable a Policy in Production
	To Delete a Policy

	Managing Policy Sets
	To Create a Policy Set
	To Edit a Policy Set
	To Export a Policy Set
	To Disable a Policy Set
	To Delete a Policy Set

	Managing Policy Sandboxes
	To Create a New Policy Sandbox
	To Edit a Policy Sandbox
	To Run a Policy Test
	To Delete a Policy Sandbox

	Managing Policy Templates
	To Import a New Policy Template
	To Edit a Policy Template
	To Export a XACML Policy Template
	To Delete a Policy Template

	Managing Policy Tests
	To Create a New Policy Test
	To Edit a Policy Test
	To Delete a Policy Test


	Chapter 6:  Monitoring the Identity Broker
	Dashboards and Metrics
	About System and Consent Metrics
	To Change Metrics Data


	Chapter 7: Testing
	Testing the Sample Policies
	To Test the Sample Policies

	Testing the OAuth2 Authorization Flows
	To Test the OAuth2 Client Credentials Grant Type
	To Test the OAuth2 Auth Code and Implicit Grant Types

	Troubleshooting Policies with Traces
	Configuring the Policy Debug Authorization Logger
	Configuring the Authorization Logger

	Chapter 8:  System Administration
	Identity Broker Configuration Tools
	All Identity Broker Tools
	About the Tools Authentication Arguments
	Administrative Access
	Adding Additional Administrative Accounts
	Sample for Adding an Administrator
	Application Access to the Identity Broker Admin API

	Managing the Broker Web Applications
	The Profile Manager Application
	The Sign-In Sample Application
	Configuring the Broker Login and Consent Pages
	User Account Registration and Recovery
	Customizing the Identity Broker Application Logo
	Configuring Web Applications for Localization

	About Velocity Templates
	Supporting Multiple Content Types
	Velocity Context Providers
	Configuring HTTP Header Fields
	Handling Specific HTTP Methods in Third-Party Providers
	Velocity Tools Context Provider
	Preserving Customized Files

	Addressing a Compromised Encryption Key
	Managing the Log History Service
	About Multi-Broker Authorization Log Collection and Indexing
	About Index Latency
	Configuring Log Collection and Indexing
	About the Log History Service REST API Redirection


	Index

