
UnboundID® Identity Broker
Application Developer Guide

Version 5.0.0

UnboundID Corp

13809 Research Blvd., Suite 500

Austin, Texas 78750

Tel: +1 512.600.7700

Email: support@unboundid.com

Copyright

Copyright © 2015 UnboundID Corporation

All rights reserved.

This document constitutes an unpublished, copyrighted work and contains valuable trade
secrets and other confidential information belonging to UnboundID Corporation. None of the
material may be copied, duplicated, or disclosed to third parties without the express written
permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or
through such sites or resources. UnboundID will not be responsible or liable for any actual or
alleged damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such sites or
resources. “UnboundID” and "UnboundID OneIdentity Platform" are registered trademarks of
UnboundID Corporation. UNIX is a registered trademark in the United States and other
countries, licenses exclusively through The Open Group. All other registered and unregistered
trademarks in this document are the sole property of their respective owners.

Table of Contents
Copyright i

Preface v

About UnboundID v

Audience vi

Documentation vi

Chapter 1: Introduction 1

Identity Broker Features 2

Identity Broker Architecture 2

Identity Broker Endpoints for Client Applications 4

Chapter 2: Getting Started with Application Development 6

What is Needed from the Identity Broker 7

OpenID Connect Scopes 8

How Policy Affects the Data Returned to an Application 8

About Data Access Requests 10

About Policy Evaluation 10

Accessing Resources by Consent 11

Obtaining Usernames and User IDs 11

Character Length of Authorization Codes and Tokens 12

The Identity Broker as Relying Party 12

Creating an Account through Identity Provider Login 13

Linking Identity Broker and External Identity Provider Accounts 13

Example Call for Links Data 14

Working with the Sample Sign In Application 15

Deploying the Sample Application 16

Sign In Sample Application Pages 16

Working with the Profile Manager Application 19

Deploying the Sample Application 19

Profile Manager Application Pages 19

Chapter 3: Authentication 23

OpenID Connect Request 24

OpenID Connect Response 24

Chapter 4: Authorization Flows 26

About OAuth 2.0 27

- ii -

OAuth 2.0 Authorization Grant Types 27

Issuing Authorization Code Grant Requests 28

Example Redirection 28

Example Authorization Header Response 29

Example Request 29

Example Response 29

Example Request 30

Issuing Implicit Code Grant Requests 30

Example Redirection 30

Example Redirect Response 31

Example Request 31

Issuing Resource Owner Password Credentials Requests 31

Example Authorization Header Request 32

Example Authorization Response 32

Issuing Client Credentials Code Requests 32

Example Authorization Header Request 33

Example Access Token Response 33

The Identity Broker Token Endpoint 33

Request 33

Response 34

Token Validation by the Identity Broker 35

Token Revocation by the Identity Broker 36

Obtaining a Refresh Token 36

Chapter 5: Accessing Data 38

The Data View (SCIM) Endpoint 39

Data View Examples 40

GET (Data View Schemas) 40

GET 41

GET (by User ID) 42

POST 43

UPDATE 44

DELETE 45

UserInfo Access Example 46

Request 46

- iii -

Response 46

jQuery Example 47

The Identity Broker Logout Endpoint 47

Request 47

Response 47

User Metadata 48

Managing Access History Records 48

Managing Consents 49

Adding an Identity Provider Link to an Account 53

Policy Authorization Scenarios 55

Policy Decision Point (PDP) Endpoint 56

Policies and Request Processing Per Endpoint 56

OAuth 2.0 Endpoint Policy Evaluation 57

UserInfo Endpoint Policy Evaluation 59

SCIM Endpoint Policy Evaluation 59

Self-Registration Policy Evaluation 62

Metadata API Policy Evaluation 63

Chapter 6: Reference Information 64

Documentation 65

Reference Information 65

Index 66

- iv -

Preface

The UnboundID Identity Broker Application Developer Guide provides information for client
applications to interface with the UnboundID Identity Broker Server. We appreciate any
feedback and requests for specific topics to cover in future revisions of this guide. Please send
feedback to support@unboundid.com.

About UnboundID
UnboundID Corp is a leading identity infrastructure domain solutions provider with proven
experience in large-scale identity data solutions. The Identity Broker is part of the UnboundID
OneIdentity Platform. The OneIdentity Platform is the consumer-grade identity access and
management platform—built specifically to handle the massive scale and real-time demands of
hundreds of millions of customers. It delivers a consistent, seamless, personalized brand
experience that makes each customer feel valued. The OneIdentity Platform provides a unified
view of customer data across all applications, channels, partners, and lines of business.

The UnboundID OneIdentity Platform provides the following:

l Secure End-to-End Customer Data Privacy Solution – A comprehensive identity
platform with authorization and access controls to enforce privacy policies, control user
consent, and manage resource flows. The system protects data in all phases of its life
cycle (create, read, update, delete as well as static/unchanging and expiring).

l Purpose-Built OneIdentity Platform – Solutions to consolidate, secure, and deliver
customer consent-given identity data. The system provides unmatched security meas-
ures to protect sensitive identity data and maintain its visibility. The broad range of ser-
vices include, policy management, cloud provisioning, federated authentication, data
aggregation, and directory services.

l Unmatched Performance across Scale and Breadth – Support for the three pillars
of performance-at-scale: users, response time, and throughput. The system manages
real-time data at large-scale consumer facing service providers.

- v -

mailto:support@unboundid.com?subject=Feedback on Product Documentation

Preface

l Support for External APIs – Standards-based solutions that can interface with various
external APIs to access a broad range of services. APIs include XACML 3.0, SCIM, LDAP,
OAuth 2.0, and OpenID Connect.

Audience
This guide is intended for software developers interested in developing applications that
communicate with the Identity Broker API endpoints and request access to resources.

It is assumed that an installation of the Identity Broker Server exists and is accessible.
Configuration must be performed and information must be gathered by the Identity Broker
administrator to enable a client application to access the server. See What is Needed From the
Identity Broker for more information.

To use this guide effectively, readers should be familiar with the following topics:

l RESTful web services and principles.

l OAuth2 and OAuth2 Bearer Token specifications.

l OpenID Connect (OIDC).

l System for Cross-domain Identity Management (SCIM) protocol.

l Policy and attribute-based access control.

Documentation
The Identity Broker includes the following documents, available in the docs folder of the
server.

l UnboundID Identity Broker Installation Guide (PDF)

l UnboundID Identity Broker Administration Guide (PDF)

l UnboundID Identity Broker Application Developer Guide (PDF)

l UnboundID Identity Broker REST API Reference (HTML)

l UnboundID Identity Broker Configuration Reference Guide (HTML)

l UnboundID Identity Broker Command Line Reference (HTML)

- vi -

Chapter 1: Introduction

The UnboundID Identity Broker is an authorization and policy enforcement engine that
securely exchanges customer data between applications and services. For companies
managing large amounts of customer data, the Identity Broker serves as a gatekeeper of data
access and automates the flow of customer data.

The Identity Broker Server powers OAuth 2.0, OpenID Connect, administration and policy
services, each capable of handling millions of operations per day. The Identity Broker
supports multiple REST API endpoints to enable client applications to access identity
attributes.

This section explains Identity Broker features and components and includes the following:

Identity Broker Features

Identity Broker Architecture

Identity Broker Endpoints for Client Applications

- 1 -

Chapter 1: Introduction

Identity Broker Features
The Identity Broker provides the following features for client applications to securely access
identity resources:

l Support for multiple backend data stores. The Identity Broker supports multiple
data stores, with native support for the UnboundID Data Store and extension points for
other data stores, such as relational databases. Applications can be written one time for
access to the Identity Broker and receive data from any type of infrastructure backend.

l Authorization based on Policy and Consent. The Identity Broker ensures that data
is provided to only authorized applications. Authorization can be based on industry rules,
corporate policy, or consent granted by customers.

l Unified Data Views. The Identity Broker provides a way to aggregate attributes from
multiple data stores into single views, such as a customer profile view, a subscriber
view, or a device view. Data Views specify attribute mapping and renaming across mul-
tiple data stores. Applications can provide their end users a unified view of their inform-
ation based on the Data Views configured.

l Support for social login. The Identity Broker can act as a relying party, enabling users
to log into client applications and update or create Identity Broker accounts with external
identity provider accounts such as Facebook or Google.

l Standards-based authorization. The Identity Broker Server provides OAuth 2.0-com-
pliant functionality for token generation, expiration, validation, and revocation. This
provides application developers with flexible, secure authorization flows that can be
tailored to multiple application types.

l User interface samples and templates. The Identity Broker installs a Profile Man-
ager and Sample Sign-In application, if the option is chosen during installation. These
applications can be used to demonstrate how a client application makes requests of the
Identity Broker for user data, how an end user can grant consent for the application to
access that data, and how the Identity Broker returns that data. Identity Broker Server
templates can be used for implementing custom user authentication and consent flows.

Identity Broker Architecture
The Identity Broker can act as both the authorization server and resource server for client
applications requesting access to user data. Client applications are granted authorization
through an OAuth 2.0 flow and receive access through OpenID Connect and SCIM endpoints.

The Identity Broker can either be an identity provider, or it can be the relying party to an
external identity provider, or both. As a relying party, the Identity Broker can offload the
authentication responsibilities to a configured identity provider, and use the authenticated

- 2 -

Identity Broker Architecture

principal and any attributes to link end user profiles, or create a new profile in a backend data
store.

Identity Broker Architecture

Planning an Identity Broker deployment should start with determining the applications that will
request access to data, how they will access the Identity Broker server, and what data can be
accessed and updated.

The Policy Engine is key in determining which applications can access resources and for what
purpose. Make sure that application development is done with consideration for how policies
process requests. See Policies and Request Processing Per Endpoint.

The Identity Broker also tracks the consent that end users grant for access to their data.
Consent and access history can be managed by a requesting application or separate
application. See Working with the Profile Manager Sample Application for information about
managing end user consents.

- 3 -

Chapter 1: Introduction

Identity Broker Endpoints for Client Applications
The Identity Broker provides multiple REST endpoints for client access. The following list
presents a summary of the endpoints that may be called by a client application requesting user
profile data. All Identity Broker endpoints are available at <server-
root>/docs/restapi/index.html.

Note
TheMetadata APIs require a user ID. SeeObtaining Usernames and UserIDs. If accessing
records for the current authorized user, the parameter self can be used as the <userID>.

Endpoint Description

/scim

/scim/<name> This is the SCIM protocol endpoint used to retrieve a specified data
view, where <name> is the resource being accessed. This endpoint
supports all SCIM operations and implements its access control
through the Identity Broker's policies.

/oauth

/oauth/authorize The OAuth 2.0 standard authorization endpoint. This is the endpoint
that an application will use to get an authorization grant from the user.

/oauth/token The OAuth 2.0 token endpoint. This is the endpoint that an application
will use to request an access token from the Identity Broker Server to
access identity information.

/oauth/revoke The Identity Broker endpoint used to revoke a token.

/oauth/validate The Identity Broker endpoint used to validate a token.

/userinfo

/userinfo The OpenID Connect endpoint. Use this endpoint for applications that
require read-only access to user profile data. Access to this endpoint
requires an OAuth 2.0 access token with the openid scope. The cli-
ent application will receive the attributes granted by the scopes in the
access token. Either GET or POST actions can be used.

/metadata/v1/<userID>/accessHistory

/<userID>/accessHistory The Identity Broker endpoint used to retrieve a page of access history
records that satisfy the provided query, page and sort parameters for
the specified SCIM user ID. A request to this endpoint requires the
urn:unboundid:scope:read_access_history scope.

/metadata/v1/<userID>/consentHistory

/<userID>/consentHistory The Identity Broker endpoint used to retrieve a page of consent history
records that satisfy the provided query, page and sort parameters for
the specified SCIM user ID. A request to this endpoint requires the
urn:unboundid:scope:read_consents scope.

/metadata/v1//<userID>/consents

Identity Broker Endpoints for Client Applications

- 4 -

Identity Broker Endpoints for Client Applications

Endpoint Description

/<userID>/consents The Identity Broker endpoint used to add, retrieve, or delete the con-
sent granted by the specified SCIM user ID for application access to
data. Either GET, POST, or DELETE actions can be used. A request to
this endpoint requires either the urn:unboundid:scope:read_
consents scope or the urn:unboundid:scope:manage_con-
sents scope.

/<userID>/consents/applications The Identity Broker endpoint used to retrieve the applications that
have been granted consent by the specified SCIM user ID. A request
to this endpoint requires the urn:unboundid:scope:read_con-
sents scope.

/<userID>/consents/resources The Identity Broker endpoint used to retrieve the resources to which
the specified SCIM user ID has granted access. A request to this end-
point requires the urn:unboundid:scope:read_consents
scope.

/metadata/v1/<userID>/links

/<userID>/links The Identity Broker endpoint used to add, retrieve, or delete the links
to external identity provider accounts for the specified SCIM user ID.
Either GET, POST, or DELETE actions can be used. A request to this
endpoint requires either the urn:unboundid:scope:read_
links scope or the urn:unboundid:scope:manage_links
scope.

/<userID>/links/interactive The Identity Broker endpoint used to initiate an interactive linking flow
with an external identity provider. A request to this endpoint requires
the urn:unboundid:scope:manage_links scope.

- 5 -

Chapter 2: Getting Started with
Application Development

The Identity Broker Server provides two access endpoints for client applications to request
end user resources:

UserInfo – The UserInfo endpoint (/userinfo) enables client applications to communicate
with the Identity Broker to request access to claims (attributes) about the authenticated end
user. The endpoint is read-only and cannot be used to update user data.

SCIM – The SCIM endpoint (/scim/<name>) enables client applications to connect with the
Identity Broker to request access to end-user resources. Actions can be performed against the
attributes if the Identity Broker policies allow.

Before designing an application to interact with the Identity Broker, determine the endpoint
that the application will use for access and the settings that are in place (such as scopes and
policies) that will affect the application's ability to access data.

This section describes what is required from the Identity Broker and includes the following:

What is Needed From the Identity Broker

OpenID Connect Scopes

About Data Access Requests

How Policy Affects the Data Returned to an Application

Policies and Request Processing Per Endpoint

Accessing Resources by Consent

Obtaining Usernames and User IDs

Character Length of Authorization Codes and Tokens

The Identity Broker as Relying Party

Working with the Sign-In Sample Application

Working with the Profile Manager Sample Application

- 6 -

Chapter 2: Getting Started with Application Development

What is Needed from the Identity Broker
Identity Broker configuration details will affect the client application's implementation and
access to identity resources. The Identity Broker fully supports the role of Resource Server as
defined within an OAuth2 context. Identity Broker configuration is performed through the
Identity Broker Console interface or through the broker-admin command line tool. See the
UnboundID Identity Broker Administration Guide for information about the console and Identity
Broker configuration.

The Identity Broker administrator may have all of the configuration in place to enable access to
a client application or may need specifics from the application developer. To develop client
applications that can access the Identity Broker system, the following are required on the
Identity Broker Server:

l Register the application – Registering an application with the Identity Broker defines
the URL, the OAuth 2.0 grant types, token requirements, and the scopes that the applic-
ation can use. A client ID and client secret are generated by the Identity Broker and are
needed by the client application to interface with the /oauth endpoints. The Identity
Broker administrator will need a redirect URL during the registration process so that the
Identity Broker can redirect an end user back to the client application when authorizing
access to resources. Self registration of an application can only be done through the
Broker Admin APIs.

l Define External Identity Providers – If client applications are designed to enable
user login through an external identity provider (Facebook, Google, or OpenID Connect),
these providers must be configured for use through the Identity Broker. The Identity
Broker must also be registered with the providers. See About the Identity Broker as Rely-
ing Party for details about the login and consent flow when external identity providers
are enabled.

l Define UserInfo Claims – If using the UserInfo endpoint to access the Identity Broker,
the client application will request the claims (identity resources) that the Identity Broker
administrator has configured. Standard and custom claims are supported by the Identity
Broker.

l Define Scopes – Scopes define the OpenID Connect scope and name that is displayed to
end users of the client application, the claims that can be accessed, and the actions that
can be performed. Scopes must be defined in the Identity Broker Server before a client
application can include them in requests. Scopes are also used to capture consent for the
requested resources. If custom scopes are needed by the client application, the Identity
Broker administrator will need to create them.

l Cross-origin Resource Sharing (CORS) – Applications can make JavaScript calls to
Identity Broker services that have CORS enabled. Trusted origins required by an

- 7 -

OpenID Connect Scopes

application can be specified when it is registered with the Identity Broker. HTTP Servlet
Cross Origin Policies are defined for the servlets that will accept applications' JavaScript
requests. See the UnboundID Identity Broker Installation Guide for details about HTTP
Servlet Cross Origin Policies.

l Customize Identity Broker Login and Consent pages – The Identity Broker login
and consent pages can be configured to display attributes of the client application. The
pages are generated from Velocity templates located on the Identity Broker Server.
Information about how to customize these templates is in the UnboundID Identity Broker
Administration Guide.

OpenID Connect Scopes
OpenID Connect defines a set of standard scopes to determine which of the OpenID Connect
claim values can be requested from the /userinfo endpoint. A set of standard scopes is
installed with the Identity Broker. Additional or custom scopes can be created by the Identity
Broker administrator.

In the Identity Broker, scopes are defined in terms of resources. Resource are generated from
attributes defined in the SCIM Data View Schemas configured for the back-end data store. The
OpenID Connect standard scopes are all predefined within the Identity Broker and reference
the user attributes represented in the default User schema. For example, the resource
urn:scim:schemas:core:1.0:email is defined by the OpenID Connect email scope.

OpenID Connect scopes and claims are documented in the specification
(www.openid.net/specs). The only required scope is openid, which informs the Identity Broker
that the client is making an OpenID Connect request. If the openid scope value is present, the
Identity Broker will return an ID Token with an access token. The claims returned are
governed by both Identity Broker policies and the scopes represented by the access token sent
by the Identity Broker.

The scopes and claims available in the Identity Broker can be viewed in the Identity Broker
Console or with the broker-admin command line tool. See the UnboundID Identity Broker
Administration Guide for details.

How Policy Affects the Data Returned to an
Application
The policies defined by the Identity Broker administrator will determine the resources that are
returned to the client application. For example, if the client application requests the OpenID
Connect scope profile, the policies defined for the Identity Broker may restrict access to
sensitive attributes such as birthDate and userName, but return other attributes within that
scope.

- 8 -

Chapter 2: Getting Started with Application Development

This Attribute-Based Access Control (ABAC) model delivers partial results instead of denying
access to all attributes in the scope. If an application request to the Identity Broker is
delivering partial results, it may be due to policy settings.

See the UnboundID Identity Broker Administration Guide for more information about policies.

- 9 -

How Policy Affects the Data Returned to an Application

About Data Access Requests
The Identity Broker's policy engine governs the conditions by which an application can access
resources. Creating policies requires understanding the structure of a data access request. If
default policies were installed, the Consent Policy grants access to data requests based on
consent from the resource owner (usually an end user).

A request consists of the following parameters:

Subject – Identifies the application requesting access to specified resources.

Action – Identifies the operation that the application would like to perform on the specified
resources, such as "read."

Consent Owner – Identifies the owner who has the authority to grant permission to the
subject for action on the specified resources.

Purpose – Identifies the reason for the subject's request to access the specified resources.
This parameter is optional.

Resource – Identifies one or more sets of URNs (Uniform Resource Names) that identify the
data being requested. Each URN can represent a resource attribute or a resource group. The
representation of these is hierarchical. This hierarchy is important for policy evaluation. A top-
level resource collection is considered the ancestor, and any lower level resources or
attributes are considered descendants. For example,

l urn:scim:schemas:core:1.0:name, represents the components of a user's name.

l urn:scim:schemas:core:1.0:name.familyName, represents a resource as a sub-attrib-
ute of the complex name attribute.

Resource Groups, like resources, are also identified with a URN. A resource group represents a
set of resources that are not in a hierarchy. The advantage of creating resource groups is that
a request can specify the group and not need to specify all of the attributes in a resource
hierarchy.

About Policy Evaluation
For a policy to be evaluated against an authorization request, the request needs to match the
values specified in the policy <Target> element first. If the target for the request matches the
target for the policy, the rules in the policy are evaluated. This occurs for each Identity Broker
policy.

Just as there is a target for the policy, there is a target for each rule. For the rule <Target>
element to be evaluated, a value in the request must match, as defined in the <Match>
element. If the request matches a value, the rest of the conditions of the rule are evaluated.

Note
If no target is specified for a policy or a rule, the policy or rule is always evaluated.

If the conditions of a rule are satisfied, the result can be either "permit" or "deny" for that
single rule. If there are multiple rules in a policy, the rule combining algorithm for the policy
determines how the rule evaluation results are combined into a single policy decision.

- 10 -

Chapter 2: Getting Started with Application Development

If there are multiple policies that apply to the request, a policy-combining algorithm
determines how the decisions rendered by multiple applicable policies are to be combined to
form an ultimate decision by the Identity Broker. By default, the combining algorithm for
Identity Broker policies is deny-overrides. This can be changed with the dsconfig tool. See
the UnboundID Identity Broker Installation Guide for details.

Accessing Resources by Consent
A requested resource can be either a resource or a resource group. Access is granted to a
resource if one of the following is true:

l A consent object contains an exact match on the resource ID.

l A consent object contains an ancestor of the resource ID.

l A consent object contains a resource group, of which the resource is a member.

l A consent object contains a resource group, of which an ancestor of the resource is a
member.

l Consent has been granted to all descendant resources of the resource.

Consent is granted to a resource group if one of the following is true:

l A consent object contains an exact match on the resource group ID.

l Consent has been granted to all members of the resource group.

Obtaining Usernames and User IDs
The Identity Broker default authentication scheme requires username and password
credentials. To support additional authentication schemes, many of the Identity Broker REST
APIs, such as the /consents API endpoint, require that end users be identified using a unique
identifier rather than a username. This unique identifier is equivalent to a user's SCIM ID and
can be obtained in the following ways:

l In the user_id field of an OAuth 2 token response.

l In the user_id field of an OAuth 2 token validation response.

l In the sub claim of a parsed OpenID Connect ID token.

l In the sub claim of an OpenID Connect UserInfo response.

l In the urn:scim:schemas:core:1.0:id value of a user's SCIM representation.

The Identity Broker REST API will accept self as a user ID to retrieve information for the
owner of the OAuth 2.0 access token.

- 11 -

Character Length of Authorization Codes and Tokens

Character Length of Authorization Codes and Tokens
The authorization codes, access tokens, and refresh tokens issued by the Identity Broker are
about 150 characters in length. This may be important for client applications persisting data.

Client IDs are standard universally unique identifiers (UUIDs) and are 36 characters.

The Identity Broker as Relying Party
The Identity Broker, as relying party, acts as a client of an external identity provider service.
Users can log into the Identity Broker with external identity provider accounts. The Identity
Broker provides authentication claims, account linking, and profile retrieval services to the
client application.

Data Flow with an External Identity Provider

The Identity Broker must be registered as an application with the identity provider to enable
this flow. External identity providers are configured through the Identity Broker Console or
through the broker-admin command-line tool.

A social login link (and icon) is displayed on the Identity Broker’s default login page for
applications configured to use an external identity provider. The login template reads this
information through the LoginPageContextProvider. See the UnboundID Identity Broker
Administration Guide for more information.

When an end user clicks an external identity provider link, a POST request is sent to the
/idpLogin.do endpoint with the following two form parameters:

idp=<external identity provider name>
client_id=<requesting application client id>

The /idpLogin.do endpoint redirects the browser to the external provider's authorization
endpoint with an OpenID Connect code request:

response_type=code
client_id=<relying party application client id>
redirect_uri=https://<rp_host>/metadata/v1/providers/<external identity provider name>/ca
llback
state=<state value generated by the /idpLogin.do endpoint>
scope=<all scopes registered with the relying party application, including ‘openid’>

- 12 -

Chapter 2: Getting Started with Application Development

After the end user authenticates to the external identity provider and authorizes the OpenID
Connect request, the external provider redirects the browser to the Identity Broker's
/idpLogin.do endpoint, as provided in the redirect_uri value. If a matching account is
found at the Identity Broker, then the end user will need to log in to link the Identity Broker
account and the account at the external provider. Otherwise, a new Identity Broker account
can be created.

Note
The redirect_uri value used in this flow should be registered as a redirect URI with the
application used by the Identity Broker at the external identity provider. It should have the form
https://<identity broker>/idpLogin.do?idp=<idp name>.

Creating an Account through Identity Provider Login
If an end user does not have an Identity Broker account, one can be created by the Identity
Broker with the information obtained from the external identity provider.

The Identity Broker applies the Data View mappings for the identity provider (configured in the
Identity Broker Console, or with the broker-admin tool) to the retrieved profile data. If any
attribute value required by the Data View is missing, a registration form is displayed to prompt
the end user for missing data. The user supplies the information, which is submitted to the
SCIM /registration.do endpoint with the following parameters. If no additional information
is needed, a new Identity Broker account is created.

client_id=<requesting application client id>
dataview=<dataview name>
resource=<dynamically generated SCIM representation of the account to be created>
idp_token=<a token that contains state information about the authentication/registration
request>

The user is redirected to the authorization URI specified by the requesting client application,
and the flow continues to the consent page for the scopes requested by the application. If the
user consents, the application receives an access token issued by the Identity Broker.

Linking Identity Broker and External Identity Provider Accounts
The Identity Broker provides information linking a local account to an external identity
provider account through the Metadata REST API at the /metadata/v1/<userId>/links
endpoint. Client applications can use this API to retrieve or remove an existing link, or to add a
new link.

Access to this endpoint is granted to an application by consent to use one of the following links
scopes:

Scope name Function

read_links Read the links attribute, excluding external IDP credentials.

read_links_authorizations Read external IDP credentials.

manage_links Create, update or delete links.

Scopes for Linked Accounts

- 13 -

The Identity Broker as Relying Party

Data provided by the /metadata/v1/<userId>/links endpoint includes:

l accessToken

l expireTime

l refreshToken

l providerUserId

l provider
o name

o type

o description

o iconUri

o userInfoEndpoint (for OpenID Connect identity providers)

For information about using the /links endpoint, see the Identity Broker REST API Reference
online documentation. See Adding an Identity Provider Link to an Account for examples using
the /links endpoint to link accounts.

If any external identity provider attributes are mapped to the user's data view, values for
these attributes are copied to the user's local profile when logging in through an external
identity provider. Applications can also retrieve data from an external identity provider
account using data from the /metadata/v1/<userId>/links endpoint.

Note
Access to external identity provider data requires consent from the end user.

Example Call for Links Data
If an application has an end user's unique SCIM ID and a bearer token for the read_links and
read_link_authorizations scopes, it can obtain a list of the end user's linked identity
provider accounts, including the account IDs and access tokens needed for limited read access
to those accounts.

GET /metadata/v1/9f8a23-a7171c48-fde2-3224-9087-81167f65df2f/links HTTP/1.1
Accept: application/json
Authorization: Bearer VGltZSBwcmVzZW50IGFuZCB0aW1lIHBhc3QgLyBBcmUgYm90aCBwZXJoYXBzIHByZXN
lbnQgaW4gdGltZSBmdXR1cmU=

HTTP/1.1 200 OK
Content-Type: application/json

{
 "count": 1,
 "data": [

{
 "accessToken": "SWYgYWxsIHRpbWUgaXMgZXRlcm5hbGx5IHByZXNlbnQgLyBBbGwgdGltZSBp
cyB1bnJlZGVlbWFibGUu",
 "expireTime": 1414178475000,
 "provider": {
 "appId": null,

- 14 -

Chapter 2: Getting Started with Application Development

 "clientSecret": null,
 "deletable": true,
 "description": null,
 "editable": true,
 "iconUri": "https://<example.com>/icons/facebook_32.png",
 "id": "DATTA",
 "modifyTimestamp": null,
 "name": "Facebook Relying Party App",
 "permissions": null,
 "type": "facebook"
 },
 "providerUserId": "26091888",
 "refreshToken": null
 }
],
 "startIndex": 0,
 "totalResults": 1
}

Based on the accessToken, providerUserId, and provider.type values in the above
response, the application can formulate a profile request for the external identity provider. For
example, the following is a Facebook Graph API 2.0 request:

GET /v2.0/26091888 HTTP/1.1
Accept: application/json
Authorization: Bearer SWYgYWxsIHRpbWUgaXMgZXRlcm5hbGx5IHByZXNlbnQgLyBBbGwgdGltZSBpcyB1bnJ
lZGVlbWFibGUu
Host: graph.facebook.com

HTTP/1.1 200 OK
Content-Type: application/json

{
 "email": "tom.eliot@example.com",
 "first_name": "Tom",
 "gender": "male",
 "id": "26091888",
 "last_name": "Eliot",
 "link": "https://www.facebook.com/app_scoped_user_id/26091888/",
 "locale": "en_US",
 "name": "Tom Eliot",
 "timezone": 0,
 "updated_time": "2014-06-10T20:38:29+0000",
 "verified": true
}

Note
External identity provider APIs are subject to change. See the external identity provider's
documentation for information.

Working with the Sample Sign In Application
A sample client application is installed with the Identity Broker Server. It can be used as a
model for a client application using the OpenID Connect /userinfo endpoint. The application

- 15 -

Working with the Sample Sign In Application

provides the OAuth 2.0 implicit grant flow of an end user signing into the Identity Broker, the
Identity Broker prompting the end user for consent to access resources, and the application
retrieving the information that is configured in the UserInfo Claims Map on the Identity Broker
Server.

The following are provided with the sample sign in application in <server-root>/UnboundID-
Broker/samples/sign-in.zip:

l README.txt – describes how to configure and deploy the application either on the Iden-
tity Broker Server or on an external server.

l sign-in.war – the packaged web application that can be deployed on an external
server. Included in this package are:

n ubid-broker-client.js – a reusable script for the popup and redirect log in flows
to the Identity Broker Server, and the UserInfo claims retrieval. This script uses
OpenID Connect and the OAuth2 Implicit Grant authorization flow.

l setup.sh, setup.bat – the script to install the sample application on the Identity Broker
Server.

Deploying the Sample Application
If the sample applications were not installed with the Identity Broker initial configuration, or if
they need to be installed on a server other than the Identity Broker, perform the following
steps to deploy the sample application:

1. In the <server-root>/UnboundID-Broker/samples directory, unzip the sign-in.zip

file.

2. Review the README.txt file for instructions on deploying the application within the Iden-
tity Broker Server or on an external server.

3. Launch the sample application in a browser with an address such as https://<host:-
port>/samples/sign-in.

Sign In Sample Application Pages
The following are the Sign In Sample application's pages. Launch the application to view and
reuse the template and login flows.

Landing Page
When the application is launched, the landing page displays.

- 16 -

Chapter 2: Getting Started with Application Development

An end user can log in through a popup window, to maintain the client side state, or through a
redirect, if a popup must be avoided. Both are provided in the sample.

Sign In Page
This is the Identity Broker login page, which can be configured from the Identity Broker
Server. The end user enters account credentials into the fields. The account must exist in a
data store that is configured to communicate with the Identity Broker Server. If the client
application is configured to use an external identity provider to log in, an icon for that provider
is displayed on the page. See About the Identity Broker as Relying Party for information about
the login and account creation flows.

The application sends its client ID and a request to the Identity Broker for the attributes in the
requested scopes. If no scope is provided, the Identity Broker will return the default values
configured for the application.

Linked Accounts
If the application was configured to use an external identity provider as a login option, such as
Google or Facebook, the identity provider and Identity Broker accounts can be linked. This
requires the configuration of specific scopes. See the UnboundID Identity Broker
Administration Guide for information.

Confirm Consent Page
This is the Identity Broker consent page, which can be configured from the Identity Broker
Server. The application returns a request for end user consent.

- 17 -

Working with the Sample Sign In Application

The end user can view the data requested from the profile by clicking the links on the page.

Approval Page
If the end user clicks Allow, the approval page is displayed. The information that was
retrieved from the UserInfo Claims Map is listed under User Information.

- 18 -

Chapter 2: Getting Started with Application Development

Sign Out
When an end user clicks Sign Out, the access token is invalidated but the user's consent
remains intact for this application.

Working with the Profile Manager Application
The Profile Manager application displays how an end-users can view and manage the consents
given to a client application that requested access to information. The consent and access
history APIs used by this application are discussed in User Consent and Application Access
Records.

The following are provided with the application in <server-root>/UnboundID-
Broker/samples/profile-manager.zip:

l README.txt – describes how to configure and deploy the application either on the Iden-
tity Broker Server or on an external server.

l profile-manager.war – the packaged web application that can be deployed on an
external server.

l setup.sh, setup.bat – the script to install the sample application on the Identity Broker
Server, if it was not installed during the Identity Broker installation.

Deploying the Sample Application
If the sample applications were not installed with the Identity Broker initial configuration, or if
they need to be installed on a server other than the Identity Broker, perform the following
steps:

1. In the <server-root>/UnboundID-Broker/samples directory, unzip the profile-man-

ager.zip file.

2. Review the README.txt file for instructions on deploying the application on an external
server.

3. Launch the sample application in a browser with an address such as https://<host:-
port>/samples/profile-manager.

Profile Manager Application Pages
The following are the Profile Manager application's pages. Launch the application to view and
reuse the template and login flows.

Landing Page
When the application is launched, the landing page displays.

- 19 -

Working with the Profile Manager Application

An end user can log into the Identity Broker. The account must exist in a data store that is
configured to communicate with the Identity Broker Server. If the client application is
configured to use an external identity provider to log in, an icon for that provider is displayed
on the page. See About the Identity Broker as Relying Party for information about the login and
account creation flows.

User Search Page
If logging into the application as the Identity Broker administrator, this page is displayed. End
users will not see this page.

Enter a name, email address, or phone number to retrieve information for an end user. A new
user account can also be created.

An existing user must reside in the backend user store that is configured for the Identity
Broker, and that user store must be mapped to a Data View in the Identity Broker. If the
Identity Broker was installed with sample data (an installation option), or if the load-sample-
data tool was used post-install, two user accounts can be accessed: sampleuser1 and
sampleuser2.

New User Registration
If registering a new user account, the following is displayed:

- 20 -

Chapter 2: Getting Started with Application Development

Enter the required information. The new account is added to the default User schema and the
Users data view.

Profile Results Page
The information that was retrieved or added for a user is displayed.

From this page, end users can perform the following:

l View and edit profile data.

l View consents granted to applications that request access to data.

- 21 -

Working with the Profile Manager Application

l View and remove the applications that can access data.

l View and edit the types of information (Interests) that the user would like to see from an
application.

Linked Accounts
If the application was configured to use an external identity provider as a login option, such as
Google or Facebook, the identity provider and user accounts can be linked. This requires the
configuration of specific scopes. See the UnboundID Identity Broker Administration Guide for
information.

- 22 -

Chapter 3: Authentication

The Identity Broker supports the OpenID Connect Standard 1.0, which enables a client
application to use the Identity Broker as its Identity Provider. OpenID Connect enables the
application to offload its user authentication function to the Identity Broker, which will prompt
the end user for a login name and password and issue an ID Token that the client application
can use to validate the user's identity.

This chapter provides general information for applications to take the role of an OpenID
Connect Relying Party while the Identity Broker acts as the OpenID Provider.

Obtaining an access tokens, refresh tokens, and token validation are fully documented in the
OpenID Connect 1.0 specification.

This section describes the OpenID Connect request and response flow through the Identity
Broker and includes the following:

OpenID Connect Request

OpenID Connect Response

- 23 -

Chapter 3: Authentication

OpenID Connect Request
To authenticate an end user, a client application must have the following information from the
Identity Broker Server administrator:

client identifier - An unique identifier issued to the client by the Identity Broker Server to
identify itself.

client secret - A shared secret established between the Identity Broker Server and the client
application that is used for signing the ID token when it is returned to the client application.

authorization, token, validate, endpoint URLs - The Identity Broker’s HTTP endpoint
addresses for authenticating the end user, obtaining authorization, and issuing and validating
access tokens. These are obtained from the Identity Broker administrator.

userinfo endpoint - The address of the resource that, when presented with a token by the
client, returns attributes about the end user.

The client application uses this information to create an OAuth 2.0 request to obtain an access
token.

The following example request uses the implicit grant flow:

GET /authorize?response_type=token%20id_token&client_id6c7283d2-92d6-4767-9ceb-ada61e5e7e
0d&state=4848573984983&scope=openid%20profile&

redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

An OAuth 2.0 request becomes an OpenID Connect request with the inclusion of the openid
scope. With the openid scope and the response_type=id_token, the client is requesting an
identifier for the user as well as the ID token. The Identity Broker Policies will determine the
attributes that the client application can access within any scopes that are defined.

OpenID Connect Response
If the end user logged in properly and authorized the client application request, the response
from the Identity Broker Server includes an access token. If the request is an OpenID Connect
request (contains the openid scope and response_type=id_token) the OAuth 2.0 access
token response will include the access_token and id_token parameters. The following is
encoded as a JSON Web Token in the id_token:

aud (audience) – The client for which this token is intended.

exp (expiration) – The time after which this token is no longer valid.

iat (integer). The time at which the token was issued.

sub (subject) – A locally unique identifier for the end user. This value is never reassigned.

iss (issuer) – An HTTPS URI that is the fully qualified host name of the issuer, which is paired
with the user identifier to create a globally unique identifier.

- 24 -

OpenID Connect Response

nonce – The nonce value sent in the request to ensure that the response is original and cannot
be reused.

The id_token parameter ensures that the data received by the client application has not been
modified. The Identity Broker can only issue assertions about registered applications and user
identifiers within its domain. The token is validated by the Identity Broker /oauth/validate
endpoint. The client application must do the following:

l Verify that the aud matches its client ID and iss matches the domain of the server that
issued the client ID.

l Store the user identifier and iss together.

The following is an example of a base64url decoded ID Token:

{
"iss": "https://server.example.com",
"sub": "24400320",
"aud": "s6BhdRkqt3",
"nonce": "n-0S6_WzA2Mj",
"exp": 1311281970,
"iat": 1311280970,
"auth_time": 1311280969,

}

- 25 -

Chapter 4: Authorization Flows

The Identity Broker provides an OAuth 2.0, token-based authorization service that supports all
OAuth 2.0 grant types outlined in RFC 6749. This service also provides additional functions to
validate and revoke access tokens.

This section describes the different OAuth 2.0 authorization flows through the Identity Broker
and includes the following:

About OAuth 2.0

The OAuth 2.0 Authorization Grant Types

Issuing Authorization Code Grant Requests

Issuing Implicit Code Grant Requests

Issuing Resource Owner Password Credentials Grant Requests

Issuing Client Credential Code Requests

The Identity Broker Token Endpoint

- 26 -

Chapter 4: Authorization Flows

About OAuth 2.0
The OAuth 2.0 authorization framework enables client applications to obtain access to
protected resources by using tokens. The security and privacy of user information relies on the
access requirements and consent flows configured for the client application. Consider the
following when configuring an application to connect with the Identity Broker:

l Assign only the grant types needed by the application. For example, it should be rare
that an application needs to use both the code and the implicit grant types.

l The application should request only needed scopes. Requesting only necessary inform-
ation ensures that a user's privacy is respected and maintained.

l When a client receives an access token, it should not assume that all requested scopes
were granted. The token response will often contain the list of granted scopes. In the
case of the implicit grant type, the list of granted scopes will only be provided if they dif-
fer from the requested scopes. The validation endpoint can always be used to get the list
of granted scopes.

l Access tokens granted using the implicit grant type should be configured to be short-
lived.

l Access tokens should be validated to confirm that they are intended for the client applic-
ation.

l Any state information that must be preserved between requests should be stored using
the state parameter. The redirect_uri value should not be used to store state.

OAuth 2.0 Authorization Grant Types
The OAuth 2.0 specification states that a client application must receive authorization from a
resource owner through an access token, to retrieve the owner's protected resources. The
Identity Broker supports all OAuth 2.0 authorization grant types:

l Authorization Code Grant – This is a server-side redirection-based flow. The client
application redirects the end user (user agent) to the authorization endpoint (Identity
Broker) to grant or deny access to a resource. If access is granted, the Identity Broker
returns a redirection URI with an authorization code and then redirects the end user back
to the client application. The client application uses the authorization code to request an
access token from the Identity Broker Server. The Identity Broker validates the author-
ization code and returns an access or refresh token to the client. The client application
can now use the access token to request resources. The access token serves as both
authentication of the client, and authorization to access the resources.

l Implicit Code Grant – This is another redirection-flow, designed for web applications,
such as mobile applications or JavaScript applications running in browsers. The flow is

- 27 -

OAuth 2.0 Authorization Grant Types

similar to the authorization grant flow, except that the Identity Broker redirects the cli-
ent application with an embedded access token in the URI, rather than an authorization
code requiring a separate token request. The client secret is not used because it would
be stored (and be vulnerable) in the client. No refresh token is sent as this grant type is
designed for short-lived access to a resource.

l Resource Owner Password Credentials Grant – This flow enables a user to log in
with a username and password to receive an access token. The client application can
then keep the access token for access to resources. The client is expected to discard the
username and password and keep the access token. This flow should only be used for
trusted client applications.

l Client Credentials Grant – This flow enables a client's application server to exchange
the client ID and the client secret for an access token. This enables applications to dir-
ectly access resources that are specific to the application and are not tied to an identity.

Issuing Authorization Code Grant Requests
The Authorization Code Grant Flow follows these basic steps:

1. Redirect the user agent (end user) to the Identity Broker's authorization endpoint.

2. Resource owner authenticates and grants authorization.

3. Identity Broker redirects the user to a web application with an authorization code.

4. The authorization code is exchanged for an access token.

5. A request to access resources is sent to the Identity Broker using the access token.

Step 1. Redirect the User Agent to the Identity Broker's Authorization Endpoint
The client application requires access to a protected resource and needs an access token that
represents the required permissions. The client application redirects the end user to the
Identity Broker's authorization endpoint (/oath/authorize). The HTTP request URL includes
the response_type=code, the client_id, and optional values for the redirect_uri
specifying the redirect URL to redirect.

Example Redirection

GET /oauth/authorize?response_type=code&client_id=0d5e5af7-420c-4241-8cff-0cfd9d806e59&sc
ope=profile%20email&state=48389488&redirect_uri=https%3A%2F%2Fwww.example.com%3A8443%2Fre
direct&prompt=login HTTP/1.1
Host: <server.example.com>

Step 2. Resource Owner Authenticates and Grants Authorization
The authorization request is run through the Identity Broker Policies. If a policy rule results in
a denial, an error is generated. If the authorization request passes the policy rules, the
resource owner is sent an Identity Broker web page to provide credentials and consent if not
previously provided.

- 28 -

Chapter 4: Authorization Flows

Step 3. Identity Broker Redirects User Agent to Web Application with Author-
ization Code
If the resource owner has granted access to the client application, the Identity Broker redirects
the user back to the client web application and includes an authorization code that can be
exchanged for an access token.

Example Authorization Header Response

HTTP/1.1 302 Found
Location: https://<server2.example.com>?code=MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-vzK
YVltlykXrZE2AG0F3J3mQjUYOSP3dCOaIeYEUWSKm4QVx6mCTmT9gztIn45K9KKJ22p8IiJHiLXGEg2oUV&state=
48389488

Step 4. Exchange Authorization Code for an Access Token
The client application posts a request to the token endpoint (Identity Broker Server) to acquire
an access token. This step is not performed by the browser.The client request must supply the
client_ID and client_secret using HTTP Basic authentication.

Example Request

POST /oauth/token HTTP/1.1
Host: <server.example.com>
Authorization: Basic czQER9k3dD94aIdplr957Udk8
Content-Type: application/w-www-form-urlencoded

grant_type=authorization_code&code=MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-vzKYVltlykXrZ
E2AG0F3J3mQjUYOSP3dCOaIeYEUWSKnav_aXvvyuxT3ogtZT-dgNZEnk6X0XaoPf6BVlVRibA
&redirect_uri=https%3A%2F%2Fserver2%2Eexample%2Ecom

The Identity Broker Server validates the authorization code and verifies that the redirect_uri
is the same as in Step 1. The response may include a refresh token and/or an ID token,
depending on the request. If successful, the server issues the following response:

Example Response

HTTP/1.1 200 OK
Cache-Control: no-store
Pragma: no-cache
Content-Type: applicaton/json;charset=UTF-8
Transfer-Encoding: chunked
Server: Jetty(8.1.12.v20130726)

{
"access_token":"MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-vzKYVltlykXrZE2AG0F3J3mQjUYOSP

3dCOaIeYEUWSKMYeiJy-24paR9YLEZpKDc-mwlE4ML8LRqAyhPMtAoBA",
"token_type":"bearer",
"expires_in":41558,
"scope":"email profile"

}

- 29 -

OAuth 2.0 Authorization Grant Types

Step 5: Request Access to the Resources Using the Access Token
The client application can now query the Identity Broker server (acting as the resource server)
for a restricted resource by passing along the access token in the authorization header of the
request.

Example Request

GET /scim/resource HTTP/1.1
Host: server.example.com
Authorization: Bearer MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-vzKYVltlykXrZE2AG0F3J3mQjU
YOSP3dCOaIeYEUWSKMYeiJy-24paR9YLEZpKDc-mwlE4ML8LRqAyhPMtAoBA

The resource server returns the requested information.

Issuing Implicit Code Grant Requests
The Implicit Code Grant Flow follows these basic steps:

1. Redirect the user agent (end user) to the Identity Broker's authorization endpoint.

2. Resource owner (end user) authenticates and grants authorization.

3. Redirect user agent to a web application with a URI fragment containing the access
token.

4. Client-side web application responds with an HTML page with a script that retrieves the
access token from the URI fragment.

5. Request access to resources using access token.

Step 1. Redirect the User Agent to the Identity Broker's Authorization endpoint
The client application, redirects the end user to the Identity Broker's authorization endpoint.
The HTTP request URL includes the response_type=token, the client_id, which was
determined at application registration, the redirect_uri, and scope.

Example Redirection

GET /oauth/authorize?response_type=token&client_id=6c7283d2-92d6-4767-9ceb-ada61e5e7e0d&s
tate=4848573984983&redirect_uri=https%3A%2F%2Fserver2%2Eexample%2Ecom&scope=profile%20ema
il HTTP/1.1
Host: <server2.example.com>

Step 2. Resource Owner Authenticates and Grants Authorization
The authorization request is run through the Identity Broker Policies. If a policy rule results in
a denial, an error is generated. If the authorization request passes the policy rules, the
resource owner is sent an Identity Broker web page to provide credentials and consent if not
previously provided.

- 30 -

Chapter 4: Authorization Flows

Step 3. Redirect User Agent to Web Application with Access Token URI Fragment
Once the resource owner has granted access rights to the client application, the Identity Broker
sends a redirect response, sending the user back to the client (web application). The redirect
URI includes an access code in the #hash fragment of the URI.

Example Redirect Response

HTTP/1.1 302 Found
Location: https://<server2.example.com>/callback#access_token=1MF2AAQGBBlpxSGUtUYJQo2oB1p
1kw3CNcM5QRmok-vzKYVltlykXrZE2AG0F3J3mQjUYOSP3dCOaIeYEUWSKMYeiJy-24paR9YLEZpKDc-mwlE4ML8L
RqAyhPMtAoBA&token_type=bearer&state=4848573984983&expires_in=43062

Step 4. Client-Side Web Application Responds with an HTML Page
The user agent (browser) is redirected to the URL and the client application responds by
serving an HTML page containing scripts to parse the access token from the URI. If a state
value is present, the script should evaluate the parameter.

Step 5: Request Access to the Resources Using the Access Token
The client can now query the Identity Broker Server (as the resource server) for resources by
passing along the access token in the authorization header of the request.

Example Request

GET /scim/resource HTTP/1.1
Host: <server.example.com>
Authorization: Bearer MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-vzKYVltlykXrZE2AG0F3J3mQjU
YOSP3dCOaIeYEUWSKMYeiJy-24paR9YLEZpKDc-mwlE4ML8LRqAyhPMtAoBA

The resource server returns the requested information.

Issuing Resource Owner Password Credentials Requests
The Resource Owner Password Credentials Grant Flow follows these basic steps:

1. Client asks for the resource owner's (end user's) credentials.

2. Client makes an authorization request to the Identity Broker's token endpoint (/oau-
th/token).

3. Client receives the access token.

4. Request access to resources using the access token.

Step 1. Client Asks for Resource Owner's Credentials
The client application prompts for the resource owner's username and password when the
application requires access to resources that are protected by the Identity Broker, but has not
yet acquired an access token. This flow should only be used for trusted client applications.

- 31 -

OAuth 2.0 Authorization Grant Types

Step 2. Client Makes an Authorization Request at Token Endpoint
The client makes an authorization request to the Identity Broker's token endpoint by passing in
the client_id and client_secret and the resource owner's username and password. The
client_id and client_secret can be passed on in two ways: as a basic authentication
request header or as part of the parameters passed in the body of the request.

Example Authorization Header Request

The following HTTP request uses basic authentication with the client_id and client_secret,
concatenated, encoded, and separated by a colon. The format is:

Authorization: Basic <Base64-encoded client_id:client_secret>

POST /oauth/token
Host: <server.example.com>
Authorization: Basic czQER9k3dD94aIdplr957Udk8
Content-Type: application/w-www-form-urlencoded

grant_type=password&username=johndoe&password=A3ddj3w

If the request is valid, the Identity Broker returns an access token (and possibly a refresh
and/or ID token) to the client application. Once the client receives the response, it should
discard the resource owner's username and password.

Example Authorization Response

HTTP/1.1 200 OK
Cache-Control: no-store
Pragma: no-cache
Content-Type: applicaton/json;charset=UTF-8
Transfer-Encoding: chunked
Server: Jetty(8.1.12v20130726)

{
"access_token":"MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-vzKYVltlykXrZE2AG0F3J3mQjUYOSP

3dCOaIeYEUWSKFEDrIpaEn5N9MfAm1BjZ5OYLHu0L823L2JsMn7i2wug",
"token_type":"bearer",
"expires_in":42203,
"scope":"profile",

}

Issuing Client Credentials Code Requests
The client credentials grant flow follows these basic steps:

1. Client makes an authorization request to the Identity Broker's token endpoint.

2. Client receives the access token.

Step 1. Client Makes an Authorization Request at Token Endpoint
The client makes an authorization request to the Identity Broker's Token endpoint by passing
the client_id and client_secret . The client_id and client_secret can be passed on in

- 32 -

Chapter 4: Authorization Flows

two ways: as a basic authentication request header or as part of the parameters passed in the
body of the request.

The following HTTP request uses basic authentication with the client_id and client_secret,
concatenated, encoded, and separated by a colon. The format is:

Authorization: Basic <Base64-encoded client_id:client_secret>

Example Authorization Header Request

POST /oauth/token?grant_type=client_credentials
Host: server.example.com
Authorization: Basic czQER9k3dD94aIdplr957Udk8
Content-Type: application/w-www-form-urlencoded

Step 2. Client Receives the Access Token
If the request is valid, the Identity Broker returns an access token. If the access token expires,
the client credentials grant can be rerun to obtain a new access token.

Example Access Token Response

HTTP/1.1 200 OK
Cache-Control: no-store
Pragma: no-cache
Content-Type: applicaton/json;charset=UTF-8
Transfer-Encoding: chunked
Server: Jetty(8.1.12v20130726)

{
"access_token":"MF2AAQGBBlpxSGUtUYJQo2oB1p1kw3CNcM5QRmok-vzKYVltlykXrZE2AG0F3J3mQjUYOSP

3dCOaIeYEUWSKFEDrIpaEn5N9MfAm1BjZ5OYLHu0L823L2JsMn7i2wug",
"token_type":"bearer",
"expires_in":42203,
"scope":"profile",

}

The Identity Broker Token Endpoint
The client application uses the token endpoint (/oauth/token) to obtain an access token by
presenting its authorization grant. The endpoint can also issue a refresh token if the original
access token has become invalid or expires. The authorization header of the client request will
contain the Base64 encoded client_ID and client_secret credentials.

Request
The following example makes a token request to the endpoint:

POST /oauth/token HTTP/1.1
Host: <example.com>
Authorization: Basic aXQncyBkYW5nZXJvdXMgdG8gZ28gYWxvbmU6dGFrZSB0aGlz
Content-Type: application/x-www-form-urlencoded

- 33 -

The Identity Broker Token Endpoint

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA&redirect_uri=https%3A%2F%2Fclie
nt%2Eexample%2Ecom%2Fcb

Response
If the token request is authorized, the Identity Broker server returns:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "access_token": "2YotnFZFEjr1zCsicMWpAA",
 "token_type": "bearer",
 "expires_in": 3600,
 "scope": "openid email profile",
 "scope_info": {
 "email": {
 "action": "Read",
 "purpose": "Any",
 "resources": [
 "urn:scim:schemas:core:1.0:emails.preferred",
 "urn:unboundid:oidc:1.0:emailVerified"
]
 },
 "openid": {
 "action": "Any",
 "purpose": "Any",
 "resources": [
 "urn:unboundid:resources:broker:IDToken"
]
 },
 "profile": {
 "action": "Read",
 "purpose": "Any",
 "resources": [
 "urn:scim:schemas:core:1.0:name.formatted",
 "urn:scim:schemas:core:1.0:name.familyName",
 "urn:scim:schemas:core:1.0:name.givenName",
 "urn:scim:schemas:core:1.0:name.middleName",
 "urn:scim:schemas:core:1.0:nickName",
 "urn:scim:schemas:core:1.0:userName",
 "urn:scim:schemas:core:1.0:profileUrl",
 "urn:scim:schemas:core:1.0:photos.preferred",
 "urn:unboundid:oidc:1.0:birthDate",
 "urn:scim:schemas:core:1.0:timezone",
 "urn:scim:schemas:core:1.0:locale",
 "urn:scim:schemas:core:1.0:meta.lastModified"
]
 }
 },
 "user_id": "9f8a23-cccc76ee-d07b-3b8c-922c-ddd809c4c173",
 "id_token": "eyJhbGciOiJIUzI1NiJ9.eyJhdXRoX3RpbWUiOjE0MjE4ODExMDMsImV4
 cCI6MTQyMTg4MjAwOSwic3ViIjoiOWY4YTIzLWNjY2M3NmVlLWQwN2ItM2I
 4Yy05MjJjLWRkZDgwOWM0YzE3MyIsImF1ZCI6WyJhY21lIl0sImlzcyI6Im

- 34 -

Chapter 4: Authorization Flows

 h0dHBzOlwvXC94MjI1MC0wMS5leGFtcGxlLmNvbSIsImlhdCI6MTQyMTg4M
 TEwOX0.CZYpxocXZ-_DEPttmHqSiQ1FU8Pplb8I-7oK3PMp4-Y"
}

Token Validation by the Identity Broker
The Identity Broker token validation endpoint (/oauth/validate) uses pre-shared client
credentials to validate access tokens. To validate an access token, a POST is sent to the
Identity Broker's /oauth/validate endpoint, which returns a response with additional
information about the resource owner and scopes.

Parameters can be provided as query parameters appended to the token validation endpoint
URL. The access_token parameter is required. The id_token parameter is optional. If both
are provided, the validation endpoint verifies that the ID token was issued with the access
token.

An application can validate an ID token itself, if designed to do so. Refer to the OpenID Connect
Core 1.0 specification for information. If a nonce value was provided during an implicit
OpenID request flow, an ID token validation response should include the same nonce value.
The client application should make sure that the values match.

If a client_id value is provided, it must belong to the same application that was used to
request the access_token.

Request
The following is a request to validate a token:

POST /oauth/validate?token=<access token>&id_token=<id token>
Host: example.com
Accept: application/json

Response
If the operation is successful, the Identity Broker responds with a JSON object with the
following parameters:

response:
{
"user_ID":"scim_userID",

 "scope_info": {
 "profile": {
 resource: [<resource_urns>],
 action: <action>,
 purpose: <purpose>
},
"nonce":"165297",
"user_id":"d9b48c-31c06853-13e3-4aea-841f-bdc0b18b300d",
"client_id":"@sample-sign-in@",
"issued_at":"20140514153805Z",
"expires_in":43200,
"auth_time":"20140514153804Z",
"id_token_issued_at":"20140514153805Z"
}

- 35 -

The Identity Broker Token Endpoint

If validation fails for any reason, an HTTP 400 status code is returned.

Token Revocation by the Identity Broker
The token revocation endpoint (/oauth/revoke) enables clients to send a POST request to the
Identity Broker to revoke access or refresh tokens. This may be used when the client logs out
of or uninstalls the application. Revoking a token does not remove any associated consents.

During the revocation process, the Identity Broker validates the client credentials, and verifies
that the client making the request originally issued the token. If the validation fails, the
request is refused and an error response is sent. If validation is successful, the Identity Broker
revokes or invalidates the token.

For example, he following revokes a token:

Authorization: Basic MC2AAQGBBlpxSGUtUYIgQI8F1rTZdspnJxDamsIKKxei8Wdj_E3DUXscVpiw6u8
POST /oauth/revoke HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Token=MC2AAQGBBlpxSGUtUYIgQI8F1rTZdspnJxDamsIKKxei8Wdj_E3DUXscVpiw6u8

If the operation is successful, the Identity Broker responds with the HTTP status code 200.

The revocation endpoint requires HTTP Basic authentication using the client_id and client_
secret, just like the /oauth/token endpoint.

Obtaining a Refresh Token
To request an OAuth 2.0 refresh token, either the offline_access or
urn:unboundid:scope:refresh_token scope should be requested in the client application's
authorization request. The client application's use and consent requirements will dictate the
choice of scope:

l The offline_access scope is provided for compliance with the OpenID Connect spe-
cification. To successfully obtain a refresh token, a client using this scope must also spe-
cify the prompt authorization request parameter with a value of consent. End users
must provide explicit consent to grant a refresh token every time one is requested.

l The urn:unboundid:scope:refresh_token does not require the use of the prompt
authorization parameter.

Refresh tokens can only be requested with an authorization code grant request or a resource
owner password credentials grant request. For example:

GET /oauth/authorize?
response_type=code& client_id=<0d5e5af7-420c-4241-8cff-0cfd9d806e59& scope=profile%20emai
l%20offline_access&
prompt=consent&
state=48389488& redirect_uri=https%3A%2F%2Fwww.example.com%3A8443%2Fredirect

The refresh token will be provided in the refresh_token field of the token response. The client
may use a refresh token to extend the duration of an authorization without end user interaction
by making a refresh request to the token endpoint to obtain a new access token. The following
POST parameters are used:

- 36 -

Chapter 4: Authorization Flows

l grant_type – Required. Value must be set to refresh_token.

l refresh_token – Required. The refresh token issued to the client.

l scope – Optional. The scope of the access request. The requested scope cannot include
any scope not originally granted by the resource owner.

The response will look like the following:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "access_token":"VGhlIGFwcGFyaXRpb24gb2YgdGhlc2UgZmFjZXMgaW4gdGhlIGNyb3dkOw==",
 "refresh_token": "UGV0YWxzIG9uIGEgd2V0LCBibGFjayBib3VnaC4=",
 "token_type":"bearer",
 "expires_in":3600,
 "scope": "profile email"
}

- 37 -

Chapter 5: Accessing Data

The Identity Broker server supports two user profile endpoints:

l The Data View SCIM endpoint provides full operations on user profile data through the
SCIM protocol. The endpoint's URL context path is /scim/{name}. Each Data View
resource type, specified in the Data View Schema, is exposed as an endpoint. For
example, the URL path /scim/Users would be used to access the Users Data View
resource type.

l The OpenID Connect UserInfo endpoint enables the Identity Broker to function as a
resource server. The endpoint's URL context path is /userinfo. The UserInfo endpoint
is read-only and uses GET actions to retrieve user profile data.

Access to resources is determined by the policies that are configured on the Identity Broker
Server. If an application request to the Identity Broker is delivering partial results, it may be
due to policy settings. See How Policy Affects the Data Returned to an Application.

This section describes data access from the Identity Broker and includes the following:

The Data View Endpoint

Data View Examples

UserInfo Access Example

The Identity Broker Logout Endpoint

User Metadata

Policy Authorization Scenarios

- 38 -

Chapter 5: Accessing Data

The Data View (SCIM) Endpoint
The Identity Broker Data View endpoint enables applications to perform actions on an end
user's resources, if Identity Broker Policies permit. The following are important to consider
when using the Data View SCIM endpoint:

No Support for HTTP PUT. The SCIM endpoint does not support the HTTP PUT operation,
because PUT assumes that the client has access to all the attributes. The client application may
not have access to some attributes based on policies or consents.

No Sorting. The Data View endpoint does not support sorting search results.

Self Resource. The Identity Broker supports a special resource type, Self, to retrieve
attributes of the currently authenticated user without knowing the SCIM ID. Retrieve attributes
with the SCIM ID Self with the following:

/scim/Self/Self

Or retrieve the profile using the list/query method, which always returns one resource:

/scim/Self

Authentication. The SCIM endpoints are protected by bearer token authentication, obtained
from the Identity Broker. See Authentication for details.

The following table describes SCIM features and whether they are supported by the Identity
Broker.

SCIM Feature Description

JSON Yes

XML* Yes

Authentication/Authorization Yes

Service Provider Configuration Yes

Schema endpoint Yes

Resource retrieval via GET Yes

List/query resources Yes

Query filtering* Yes

Query result sorting* No

Query result pagination* Yes

Resource updates via PUT No

Partial resource updates via PATCH* Yes

Resource deletes via DELETE Yes

Resource versioning* No

Bulk* Yes

HTTP method overloading Yes

- 39 -

Data View Examples

* Denotes an optional feature of the SCIM Protocol.

Data View Examples
A client application accesses the /scim/{name} endpoint by passing an HTTP GET , POST,
PATCH, or DELETE request with an access token parameter to the Identity Broker Server. The
response is a JSON object.

GET (Data View Schemas)
The following is an example call to the Identity Broker /scim/Schemas/{name} endpoint to get
the Identity Broker schema User. If a {name} is not specified, all Identity Broker schemas are
returned.

Request
GET /scim/Schemas/User
Host: example.com
Accept: application/json
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI

Response
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: …
{
 "name":"User",
 "description":"…",
 "schema":"urn:unboundid:schemas:broker:1.0",
 "endpoint":"/Users",
 "id":"urn:unboundid:schemas:broker:1.0:User",
 "meta":{ "location":"https://<example.com>:8445/scim/v1/Schemas/urn:unboundid:schemas:b
roker:1.0:User"
 },
 "attributes":[

{
 "name":"displayName",
 "type":"string",
 "multiValued":false,
 "description":"The name of the User, suitable for display to end-users.",
 "schema":"urn:scim:schemas:core:1.0",
 "readOnly":false,
 "required":false,
 "caseExact":false
 },
 ... // other attributes
]
}

- 40 -

Chapter 5: Accessing Data

jQuery Example
$.ajax({
type: "GET",
url: "https://example.com/scim/Schemas/User",
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function(schemas) {
 }
});

GET
The following is an example call to the Identity Broker /scim/{name} endpoint to get entries
with the filter of user name starting with sam.

Request
GET /scim/Users?startIndex=1&count=10&filter=userName+sw+%22sam%22
Host: example.com
Accept: application/json
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI

Response
The data returned is dependent on the Identity Broker configuration and the Policies in place.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: …
{
 "totalResults":1,
 "itemsPerPage":1,
 "startIndex":1,
 "schemas":[
 "urn:unboundid:oidc:1.0",
 "urn:scim:schemas:core:1.0",
 "urn:unboundid:profile:1.0"
],
 "Resources":[

{
 "name":{
 "givenName":"Sample",
 "familyName":"User1",
 "formatted":"Sample User1"
 },
 ...// other user properties
 },
 ...// other users
]
}

- 41 -

Data View Examples

jQuery Example
$.ajax({
type: "GET",
url: "https://example.com/scim/Users",
data: { startIndex: 1, count: 10, filter: 'userName sw "sam"'},
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function(usersPage) {
// application can do something with returned data...
 }
});

GET (by User ID)
The following is an example call to the Identity Broker /scim/{name} endpoint to get a single
user entry with the ID of 9f8a23-47c7be45-0ce5-3105-8ea8-fc3c39c47f91.

Request
GET /scim/Users/9f8a23-47c7be45-0ce5-3105-8ea8-fc3c39c47f91
Host: example.com
Accept: application/json
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI

Response
The data returned is dependent on the Identity Broker configuration and the Policies in place.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: …
{
 "schemas":[
 "urn:unboundid:oidc:1.0",
 "urn:scim:schemas:core:1.0",
 "urn:unboundid:profile:1.0"
],
 "name":{
 "givenName":"Sample",
 "familyName":"User1",
 "formatted":"Sample User1"
 },
... // other user properties

}

- 42 -

Chapter 5: Accessing Data

jQuery
$.ajax({
type: "GET",
url: "https://example.com/scim/Users/",+userId,
data: { startIndex: 1, count: 10, filter: 'userName sw "sam"'},
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function(user) {
// application can do something with returned data...
}
});

POST
The following is an example call to the Identity Broker /scim/{name} endpoint that creates a
user entry for Another Sample User III.

Request
POST /scim/Users
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI
Content-Length: ...
{
"schemas": ["urn:unboundid:oidc:1.0", "urn:scim:schemas:core:1.0"],
"name": {
"formatted": "Another Sample User III",
"familyName":"User",
"givenName":"Another",
"middleName":"Sample"
},
"userName":"sampleuser3"
}

Response
The data returned is dependent on the Identity Broker configuration and the Policies in place.

HTTP/1.1 201
Created Content-Type: application/json
Content-Length: …
{
 "schemas":[
 "urn:unboundid:oidc:1.0",
 "urn:scim:schemas:core:1.0",
 "urn:unboundid:profile:1.0"
],
 "name":{
 "givenName":"Another",
 "familyName":"User",

- 43 -

Data View Examples

 "formatted":"Another Sample User III"
 },
 "id":"9f8a23-3562ddf5-50d0-4aac-a761-7ecb9bcb7633",
 "userName":"sampleuser3",
 "meta":{
 "created":"2014-09-04T19:06:22.547Z",
 "lastModified":"2014-09-04T19:06:22.547Z",
 "location":"https://example.com/scim/v1/Users/9f8a23-3562ddf5-50d0-4aac-a761-7ecb9bcb
7633"
 }
}

jQuery Example
$.ajax({
type: "POST",
url: "https://example.com/scim/Users",
data: JSON.stringify({
"schemas": ["urn:unboundid:oidc:1.0", "urn:scim:schemas:core:1.0"],
"name": {
"formatted": "Another Sample User III",
"familyName":"User",
"givenName":"Another",
"middleName":"Sample"

},
"userName":"sampleuser3"
}),
headers: { "Authorization": "Bearer " + accessToken },
contentType: "application/json"
dataType: "json",
success: function(user) {
// returned data sample...
}
});

Note
Creating a user through SCIM is governed by Identity Broker Policy. The Identity Broker
administrator will need to provide specifics about what this Policy will allow.

UPDATE
The following is an example call to the Identity Broker /scim/{name} endpoint that updates a
user entry for ID 9f8a23-31c5b68d-2c8d-4dd2-987b-09627cb1ff2d.

Request
PATCH /scim/Users/9f8a23-31c5b68d-2c8d-4dd2-987b-09627cb1ff2d
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI
Content-Length: ...

- 44 -

Chapter 5: Accessing Data

{
"schemas": ["urn:unboundid:oidc:1.0", "urn:scim:schemas:core:1.0"],
"name": {
"formatted": "My Sample Tester III",
"familyName":"Tester",
"givenName":"My",
"middleName":"Sample"
}
}

Response
HTTP/1.1 204 No Content

jQuery Example
$.ajax({
type: "PATCH",
url: "https://example.com/scim/Users/"+userId,
data: JSON.stringify({
"schemas": ["urn:unboundid:oidc:1.0", "urn:scim:schemas:core:1.0"],
"name": {
"formatted": "My Sample Tester III",
"familyName":"Tester",
"givenName":"My",
"middleName":"Sample"
}
}),
headers: { "Authorization": "Bearer " + accessToken },
contentType: "application/json",
success: function(){
// no data returned...
}
});

DELETE
The following is an example call to the Identity Broker /scim/{name} endpoint that deletes a
user entry for ID 9f8a23-47c7be45-0ce5-3105-8ea8-fc3c39c47f91.

Request
DELETE /scim/Users/9f8a23-47c7be45-0ce5-3105-8ea8-fc3c39c47f91
Host: example.com
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI
/9f8a23-47c7be45-0ce5-3105-8ea8-fc3c39c47f91==the user's ID

Response
HTTP/1.1 200 OK
Content-Length: 0

- 45 -

UserInfo Access Example

jQuery Example
$.ajax({
type: "DELETE",
url: "https://example.com/scim/Users/"+userId,
headers: { "Authorization": "Bearer " + accessToken },
success: function(){

// no data returned...

}
});

UserInfo Access Example
A client application accesses the /userinfo endpoint by passing an HTTP GET request with an
access token parameter to the Identity Broker Server. The response is a JSON object.

Request
The following is a Java Script example call to the Identity Broker /userinfo end point:

GET /userinfo
Host: <example.com>
Accept: application/json
Authorization: Bearer MF2AAQGBBlY1UzNKUYJQgOqihaEJvCvPok4pYLR0a-9XOHkWCQqJ9wCHB66kwESoaO-
LHJGSkZwAd3dYWPVERzIAy-VczegSxSR2c51uoiFgSyQFfC_y0kLy15L4iTI

Response
The data returned is dependent on the Identity Broker configuration and the Policies in place.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: ...
{
 "sub":"9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b",
 "phone_number":"+1 410 030 3103",
 "updated_at":1409857981,
 "address":{
 "region":"WV",
 "formatted":"Sample User1$30650 Cherry Street$Pensacola, WV 06057",
 "postal_code":"06057",
 "locality":"Pensacola",
 "street_address":"30650 Cherry Street"
 },
 "name":"Sample User1",
 "family_name":"User1",
 "preferred_username":"sampleuser1",
 "given_name":"Sample"
}

- 46 -

Chapter 5: Accessing Data

jQuery Example
$.ajax({
type: "GET",
url: "https://example.com/userinfo",
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function(userinfo) {
// sample returned data...
}
});

The Identity Broker Logout Endpoint
A POST to the logout.do endpoint will invalidate a user’s session with the Identity Broker and
revoke the user's access tokens with either a single application or all applications registered
with the Identity Broker. The client_id and redirect_uri query parameters are both
optional.

If a client_id is not provided, all of that user’s access tokens will be revoked. If a client_id
is provided, then only the access tokens for that application are revoked.

If a redirect_uri is not provided, the browser will be redirected to the configured default-
logout-success-url for the Spring Security HTTP Servlet Extension (which defaults to
/view/login). If a redirect_uri is provided, then client_id must also be provided. The
redirect_uri value must match one of the redirect URIs configured for the application (which
is retrieved by the client_id). The browser will be redirected to the provided redirect_uri
after logout.

Request
The following is an example POST to the Identity Broker logout.do endpoint:

POST /logout.do?client_id=385b45d0-88bd-4973-a9bc-06484ad27e42&redirect_uri=https://examp
le-app.com/
Host: example.com
Content-Length: 0
Cookie: JSESSIONID=xpdpr7z6fxh31rjdpygcmce0c

Response
The following is an example response:

HTTP/1.1 302 Found
Location: https://example-app.com/
Content-Length: 0

- 47 -

User Metadata

User Metadata
An application can provide consent management to end users through a series of Metadata
APIs. These are all illustrated by the Profile Manager sample application. These APIs rely on
scopes and resources, and must pass through the Identity Broker policy engine to access data.

Note
The scopes that are listed in this section are those that were installed with the Identity Broker.
They can be changed or new scopes can be added to tailor access to data. Review the defined
scopes and policy requirements with the Identity Broker administrator.

For each endpoint, a value of self can be used for the <userID>variable. This will retrieve
data for the currently authenticated owner of the access token.

Managing Access History Records
Data access history can be retrieved for an end user by calling the
/metadata/v1/<userID>/accessHistory endpoint. The Identity Broker installs the following
scope to retrieve access history records:

read_access_history – Enables reading the access history records for the specified user ID,
and includes the following resource:

urn:unboundid:resources:broker_metadata:accessHistory

Read Access History Examples
Request:

GET /metadata/v1/9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b/accessHistory?application=My
App&decision=PERMIT&sortBy=timestamp&sortOrder=descending&startIndex=0&count=1
Host: <example.com>
Accept: application/json
Authorization: Bearer Aes-6SPszrDDpFxKuCdDqDxoZSdqAAAAAAAAAAB-sedGtKSBOaJdg3opJsRtLyqqF_k
uE92iiVFvi0LIqXYcjrqQK-6HVhqGUyWiDP84kpmZaMm9pestt4O2PVyVlWrd__6wa4rU_NLVelrleA

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Transfer-Encoding: chunked
{
 "startIndex":0,
 "count":10,
 "totalResults":45,
 "data":[

{
 "action": {
 "name":"Read",
 ... // other action properties
 },
 "application": {
 "name":"MyApp",
 ... // other application properties
 },

- 48 -

Chapter 5: Accessing Data

 "appliedPolicies": [
 "urn:unboundid:policy:TrustLevelPolicy",
 "urn:unboundid:policy:GovernanceTagPolicy",
 "urn:unboundid:policy:Basic Consent"
],
 "decision":"PERMIT",
 "owner":"9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b",
 "purpose": {
 "name":"Any",
 ... // other purpose properties
 },
 "resources": [

{
 "urn":"urn:scim:schemas:core:1.0:name.formatted",
 ... // other resource properties
 },
 ... // other resources
],
 "timestamp":1409779918000
 },
 ... // other data entries
]
}

jQuery Example:

$.ajax({
 type: "GET",
 url: "https://<example.com>/metadata/v1/" + userId + "/accessHistory?application=MyApp&
decision=PERMIT&sortBy=timestamp&sortOrder=descending&startIndex=0&count=10",
 headers: { "Authorization": "Bearer " + accessToken },
 dataType: "json",
 success: function(data) {
 // do something interesting with the returned history records
 }
});

Managing Consents
A client application can enable its end users to view and manage the consents that they grant
for data access by making calls to the following endpoints:

l /metadata/v1/<userID>/consentHistory – Retrieves consent history for the specified
user ID.

l /metadata/v1/<userID>/consents – Retrieves, adds, or deletes a consent for a given
application, action, purpose, and resource(s).

l /metadata/v1/<userID>/consents/applications – Retrieves a list of all applications
to which the specified user ID has given consented.

l /metadata/v1/<userID>/consents/resources – Retrieves a list of all resources to
which the specified user ID has given consented.

The Identity Broker installs the following scopes to access consent data:

- 49 -

User Metadata

read_consents – Enables reading the consents or consent history records for the specified
user ID, and includes the following resources:

urn:unboundid:resources:broker_metadata:consents
urn:unboundid:resources:broker_metadata:consentHistory

manage_consents – Enables adding, updating, or deleting the consents for the specified user
ID, and includes the following resources:

urn:unboundid:resources:broker_metadata:consents

Read Consent Examples
Request:

GET /metadata/v1/9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b/consents?application=MyApp
Host: <example.com>
Accept: application/json
Authorization: Bearer Aes-6SPszrDDpFxKuCdDqDxoZSdqAAAAAAAAAAB-sedGtKSBOaJdg3opJsRtLyqqF_k
uE92iiVFvi0LIqXYcjrqQK-6HVhqGUyWiDP84kpmZaMm9pestt4O2PVyVlWrd__6wa4rU_NLVelrleA
Content-Type: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: …
{
 "startIndex":0,
 "count":1,
 "totalResults":1,
 "data": [

{
 "action": {
 "name":"Read",
 ... // other action properties
 },
 "actorCompositeKey": "9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b",
 "application": {
 "name":"MyApp",
 ... // other application properties
 },
 "ownerCompositeKey": "9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b",
 "purpose": {
 "name":"Any",
 "description":"Wild card that matches any purpose.",
 ... // other purpose properties
 },
 "resourceMap":{
 "2014-09-03T14:32:41.000+0000": [

{
 "urn":"urn:example:resource:customer-profile",
 "name":"Customer Profile",
 ... // other resource properties
 },
 ... // other resources
],
 ... // other map entries

- 50 -

Chapter 5: Accessing Data

 }
 },
 ... // other consent entries
]
}

jQuery Example:

$.ajax({
type: "GET",
url: "https://<example.com>/metadata/v1/" + userId + "/consents?application=MyApp",
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function(data) {
// do something interesting with the returned consent records
 }
});

Read Consented Applications Examples
Request:

GET /metadata/v1/9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b/consents/applications
Host: <example.com>
Accept: application/json
Authorization: Bearer Aes-6SPszrDDpFxKuCdDqDxoZSdqAAAAAAAAAAB-sedGtKSBOaJdg3opJsRtLyqqF_k
uE92iiVFvi0LIqXYcjrqQK-6HVhqGUyWiDP8UUtLWN5YDssa4tV15fmSCpYZ7QNXycne0ODjJCUUJOQ

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Transfer-Encoding: chunked
{
 "startIndex":0,
 "count":4,
 "totalResults":4,
 "data": [

{
 "name":"MyApp",
 ... // other application properties
 },
 ... // other applications
]
}

jQuery Example:

$.ajax({
type: "GET",
url: "https://<example.com>/metadata/v1/" + userId + "/consents/applications",
headers: { "Authorization": "Bearer " + accessToken },
dataType: "json",
success: function(data) {
 // do something interesting with the returned applications
 }
});

- 51 -

User Metadata

Add Consent Examples
Request:

POST /metadata/v1/9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b/consents?application=MyApp&
purpose=Marketing&resource=urn%3Ascim%3Aschemas%3Acore%3A1.0%3Aemails.preferred
Host: <example.com>
Authorization: Bearer Aes-6SPszrDDpFxKuCdDqDxoZSdqAAAAAAAAAAB-sedGtKSBOaJdg3opJsRtLyqqF_k
uE92iiVFvi0LIqXYcjrqQK-6HVhqGUyWiDP8UUtLWN5YDssa4tV15fmSCpYZ7QNXycne0ODjJCUUJOQ
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: ...
{
 "action":{
 "name":"Read",
 ... // other action properties
},
"actorCompositeKey":null,
"application":{
 "name":"MyApp",
... // other application properties
},
"ownerCompositeKey":"9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b",
"purpose":{
 "name":"Marketing",
...// other purpose properties
},
"resourceMap":{
 "2014-09-04T16:14:10.985+0000":[

{
 "urn":"urn:scim:schemas:core:1.0:emails.preferred",
 ... // other resource properties
 },
 ... // other resources
],
 ...// other map entries
 }
}

jQuery Example:

$.ajax({
 type: "POST",
 url: "https://<example.com>/metadata/v1/" + userId + "/consents?application=MyApp&purpo
se=Marketing&resource=urn%3Ascim%3Aschemas%3Acore%3A1.0%3Aemails.preferred",
 headers: { "Authorization": "Bearer " + accessToken }, contentType: "application/json"
 dataType: "json",
 success: function(consent) {
 // do something interesting with the returned consent record
 }
});

- 52 -

Chapter 5: Accessing Data

Revoke Consent Examples
Request:

DELETE /metadata/v1/9f8a23-78d5a9b2-2b46-40ed-9d0a-57963ef50d1b/consents?application=MyAp
p&purpose=Marketing&resource=urn%3Ascim%3Aschemas%3Acore%3A1.0%3Aemails.preferred
Host: example.com
Authorization: Bearer Aes-6SPszrDDpFxKuCdDqDxoZSdqAAAAAAAAAAB-sedGtKSBOaJdg3opJsRtLyqqF_k
uE92iiVFvi0LIqXYcjrqQK-6HVhqGUyWiDP8UUtLWN5YDssa4tV15fmSCpYZ7QNXycne0ODjJCUUJOQ

Response:

HTTP/1.1 204 No Content

jQuery Example:

$.ajax({
 type: "DELETE",
 url: "https://<example.com>/metadata/v1/" + userId + "/consents?application=MyApp&purpo
se=Marketing&resource=urn%3Ascim%3Aschemas%3Acore%3A1.0%3Aemails.preferred",
 headers: { "Authorization": "Bearer " + accessToken },
 success: function(){
 // no data returned...
 }
});

Adding an Identity Provider Link to an Account
An application can provide the means to link a local Identity Broker account with an account at
an external identity provider. There are two ways to do this, as outlined in the following
sample flows. The choice of flow depends on the client application. In both cases, the end user
should already be authenticated, and the application should possess a bearer token for the
manage_links scope.

Note
The redirect_uri value should be registered as a redirect URI with the application used by
the Identity Broker at the external identity provider. It should have the form
https://<identity broker>/metadata/v1/providers/<provider_name>/callback.

For Server-Side Applications
This flow is designed for server-side web applications where the access token should not be
exposed to the client.

The server-side application initiates the linking flow by sending a server-to-server GET request
to the Identity Broker's Metadata API at the end user's links/interactive resource.

Request:

GET /metadata/v1/{userID}/links/interactive?provider=<idp_name>&flow=server&redirectUri=<
application_redirect_URI>
Authorization: Bearer <bearer token>
Accept: application/json

The Identity Broker responds with a URI containing a one-time IDP link code.

Response:

- 53 -

User Metadata

HTTP/1.1 302 FOUND
Location: https://<identity_broker>/metadata/v1/providers/link?code=<one-time_link_code>

The application should then redirect the web browser to the Identity Broker URI containing the
link code from the previous response.

Request:

GET /metadata/v1/providers/link?code=<one-time_link_code>

If the code is valid, the Identity Broker responds by redirecting the web browser to the
external identity provider. The Location value will vary depending upon the external identity
provider type and its configuration with the Identity Broker.

Response:

302 FOUND
Location: https://<identity_provider>/oauth/authorize?response_type=code&client_id=<ident
ity_broker_client_id>&scope=openid+profile+email&state=XXX&redirect_uri=https://<identity_
broker>/metadata/v1/providers/<idp_name>/callback

At the external identity provider, the end user may be prompted to log in and to authorize the
request. Once the OAuth 2.0 flow is complete at the external identity provider, the external
identity provider will redirect the browser back to the IDP callback URI.

Request:

GET https://<identity_broker>/metadata/v1/providers/<idp_name>/callback

The Identity Broker will complete the linking process by saving identity provider linking data to
the end user's profile, and then redirect the web browser to the application's redirect URI.

Response:

302 FOUND
Location: https://{application host}/<redirect_path>?statusCode=200&provider=<idp_name>&p
roviderUserId=<idp_userID>

Query parameters identifying the linking flow status, identity provider name, and the end
user's unique ID at the identity provider are appended to the redirect URI as query
parameters.

For Client-Side Applications
The second flow is designed for client-side or native applications, where the access token must
be stored in a potentially untrusted client-side environment. This flow skips the initial REST call
that initiates the linking process by generating a one-time code.

The client-side application initiates the flow by sending a GET request to the Identity Broker's
Metadata API at the end user's links/interactive resource:.

Request:

GET /metadata/v1/{userID}/links/interactive?provider=<idp_name>&flow=client&redirectUri=<
application_redirect_URI>
Authorization: Bearer <bearer token>
Accept: application/json

- 54 -

Chapter 5: Accessing Data

The Identity Broker responds with a JSON document containing a single redirectUrl field.
This response is provided rather than a 302 redirect response to avoid potential cross-origin
request difficulties for JavaScript applications. The redirectUrl value depends upon the
external identity provider type and its configuration with the Identity Broker.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
{
 "redirectUrl": "https://<external identity provider>/oauth/authorize?response_type=code
&client_id=<identity_broker_client_id>&scope=openid+profile+email&state=XXX&redirect_uri=
https://<identity_broker>/metadata/v1/providers/<idp_name>/callback"
}

The client-side application then redirects the browser using a GET to the redirectUrl value.
This redirects the end user to the external identity provider.

At the external identity provider, the end user may be prompted to log in and authorize the
request. Once the OAuth 2.0 flow is complete at the external identity provider, the external
identity provider will redirect the browser back to the provider's callback URI.

Request:

GET https://{identity_broker}/metadata/v1/providers/<idp_name>/callback

The Identity Broker completes the linking process by saving the identity provider linking data
to the end user's profile, and then redirects the web browser to the application's redirect URI.

Response:

302 FOUND
Location: https://<application_host>/<redirect_path>?statusCode=200&provider=<idp_name>&p
roviderUserId=<idp_userID>

Query parameters identifying the linking flow status, identity provider name, and the end
user's unique ID at the identity provider are appended to the redirect URI as query
parameters.

Policy Authorization Scenarios
Policies are evaluated by the Identity Broker in response to the following requests made by
client applications:

l An authorization/token request to the OAuth 2.0 endpoint.

l A request to the UserInfo endpoint.

l All SCIM requests:
o Search request

o Get request

o Update request

- 55 -

Policy Authorization Scenarios

o Create request

o Delete request

l Self registration request.

l All requests to the Metadata API.

l A XACML request to the PDP endpoint.

To create a body of policies and policy sets that will work as expected, or to create applications
that can access data correctly, review the parameters and attributes that will be included in the
XACML requests for each of the scenarios provided.

Policy Decision Point (PDP) Endpoint
The PDP endpoint enables an external Policy Enforcement Point (PEP) to generate XACML
requests and send them directly to the Identity Broker for evaluation. The request is passed
directly to the policy engine. The request can contain any standard XACML attributes, Identity
Broker custom attributes, or other attributes that may be required by custom policies.

Policies and Request Processing Per Endpoint
Requests from a client application are evaluated by the policy rules configured for the Identity
Broker. Access to data is granted either at the scope level or at the resource level based on the
endpoint through which the request is made.

Note
The Any purpose, if added to a scope, will match any purpose value. If a scope is created
without an explicit purpose, Anywill be assigned to it. This is important for OAuth 2.0 and
UserInfo endpoint processing.

Requests Through the OAuth 2.0 Endpoint
Requests coming through the OAuth 2.0 endpoint are given an access token if the scopes
specified are allowed by configured policies. Only the scope is granted or denied, not the
resources contained within the scope. The token returned may not be valid for all the scopes
that were included in the original request. The client application will receive a list of approved
scopes with the access token. If all scopes are denied, then no access token is issued.

Once a token is granted, it can be passed to either the SCIM or UserInfo endpoints to retrieve
user data. Policies are again evaluated, but at the resource level.

Requests Through the UserInfo Endpoint
A request to the UserInfo endpoint has no arguments other than the access token itself. A
UserInfo request is authorized with a single XACML request. The data returned is limited to the
resources included in the scopes that were granted in the token.

- 56 -

Chapter 5: Accessing Data

Requests Through the SCIM Endpoint
A request to the SCIM endpoint includes the token and arguments that describe which
attributes the requestor would like to retrieve. The request can contain attributes that are not
granted by the token. Policies are checked again to make sure nothing is returned that is not
allowed.

The following actions are submitted in the generated XACML request depending on the SCIM
operation being performed.

SCIM Operation Type Action in XACML request

POST Create

GET Read

PATCH or PUT Update

DELETE Delete

Action Performed Based on XACML Request

Example Request Flow
For example, if an application requested access to Scope A and Scope B, the following would
be considered:

l Scope A contains resources 1, 2, and 3.

l Scope B contains resources 4 and 5.

l Policy evaluation determines that access to resources 1, 2, 4, and 5 can be granted.
Resource 3 is denied.

l Because one of the resources in Scope A is denied, the scope is not included in the access
token sent back to the client application. The token contains a grant for Scope B.

l If the client application sends a request with the access token to the UserInfo endpoint,
only the resources in Scope B are returned.

l If the client application sends a request for resources 1, 2, 3, 4, and 5 (with the access
token) to the SCIM endpoint, Policy is reevaluated, and only resources 1, 2, 4, and 5 are
returned.

OAuth 2.0 Endpoint Policy Evaluation
The OAuth 2.0 endpoint relies on the policy engine to determine whether an access token or
authorization code should be granted to a requesting client. An independent XACML request is
evaluated for each scope requested by the client. The token that is issued to the client may be
valid for only a subset of the scopes originally requested.

The attributes included in the XACML request will vary depending upon the OAuth 2.0 grant type
being requested. See the UnboundID Identity Broker Application Developer Guide for details
about OAuth 2.0 grant types.

- 57 -

Policy Authorization Scenarios

Authorization Code and Implicit Grant Types
Because of the interactive nature of these two OAuth 2.0 flows, the OAuth 2.0 endpoint splits
policy checking into two phases. The first phase checks whether the token request would be
allowed by all installed policies except for consent policy. If the result of this first phase is
DENY then the second phase is not executed.

The second phase checks whether the end user’s consent is required before the requested
scope can be granted. If so the flow proceeds to prompt the user for consent. If the second
phase indicates that the user’s consent is not required (either by rule or because they have
already consented), then the OAuth 2.0 endpoint issues the requested token or authorization
code.

The phase one XACML request contains the attributes below. It is executed once for each scope
in the token request. Note that resource owner is not included in the request, which results in
the consent policy (which is based upon resource ownership) to not be applied.

XACML Attribute Attribute Value

actor-id SCIM Id of the currently authenticated user.

subject-id Application name, obtained from the OAuth request’s client ID parameter.

action-id Action name obtained from the scope definition.

purpose-id Purpose name obtained from the scope definition.

resource-id Bag of resource URNs, obtained from the scope definition.

The phase two XACML request is sent to the OAuth Consent Evaluation policy sandbox (see the
UnboundID Identity Broker Administration Guide) rather than to the global policy engine. This
results in only consent policy being applied to the request. This request contains the attributes
specified in the table below.

XACML Attribute Attribute Value

owner-id SCIM ID of the currently authenticated user (for OAuth requests, owner ID is always
the same as the actor ID).

actor-id SCIM ID of the currently authenticated user.

subject-id Application name, obtained from the OAuth request’s client ID parameter.

action-id Action name obtained from the scope definition.

purpose-id Purpose name obtained from the scope definition.

resource-id Bag of resource URNs, obtained from the scope definition.

The OAuth Consent Evaluation sandbox isolates consent checking from other policies. The
contents of the sandbox may be modified in order to customize consent policy, however the
sandbox itself cannot be deleted.

Client Credentials Grant Type
A client credentials OAuth request is a request by an application for access to its own
resources. It does not require that a user currently be authenticated to the Identity Broker.

- 58 -

Chapter 5: Accessing Data

Like all OAuth interactions, one policy evaluation is made for each scope requested. The
attributes of the XACML request generated for this grant type are specified in the table below.

XACML Attribute Attribute Value

subject-id Application name.

action-id Action name obtained from the scope definition.

purpose-id Purpose name obtained from the scope definition.

resource-id Bag of resource URNs, obtained from the scope definition.

Resource Owner Grant Type
The Resource Owner grant type does not require consent. In general, only trusted applications
should be allowed to use this grant type. It evaluates policy independently for each scope
contained in the request. Each XACML request is identical to that specified in phase one of the
Authorization Code and Implicit Grant Types.

UserInfo Endpoint Policy Evaluation
A request to the UserInfo endpoint does not require any parameters other than an OAuth2.0
access token. The scopes represented by the token indicate what resources and attributes are
being requested by the client application, and the token’s owner identifies the resource owner.
(Since a client credentials token has no owner, it cannot be used with the UserInfo endpoint.)

UserInfo is a read-only interface. Any scopes whose associated action is not read are
discarded. The UserInfo endpoint also consults the Claims Map for the user’s Data View and
will only do policy checks on resources that are mapped through the Claims Map.

A single request to the UserInfo endpoint will result in several XACML policy evaluations since
the access token can represent multiple scopes, and each scope can represent many
resources. Each resource is evaluated independently by policy, and only those resources that
are permitted by policy are returned as claims to the client application.

Each XACML request generated by UserInfo contains the following attributes:

XACML Attribute Attribute Value

owner-id SCIM ID of the access token owner.

subject-id Name of the application associated with the access token.

action-id Always set to “Read.”

purpose-id Purpose name obtained from a scope associated with the access token.

resource-id A single resource URN obtained from the same scope.

SCIM Endpoint Policy Evaluation
Each request to the SCIM endpoint explicitly specifies what action is being requested and on
what resources. As a REST interface, SCIM uses the HTTP method, query parameters, method
body, and URI path to specify request parameters. Policy evaluations generated by the SCIM

- 59 -

Policy Authorization Scenarios

endpoint depend on these REST parameters, as well as the supplied OAuth 2.0 bearer token,
which is used mainly for authentication.

All SCIM requests target a specific Data View. For all request types, the SCIM endpoint first
consults the appropriate Data View mapping and will pare out any unmapped request attributes
before it generates policy requests.

For example, a search targeted to /scim/Users is executed against the Users Data View. An
update targeted to /scim/ConsumerUsers/9f8a23-5f7ec932-55c4-347e-b757-ce74258ea9e6
is executed against a user with ID 9f8a23-5f7ec932-55c4-347e-b757-ce74258ea9e6 in the
ConsumerUsers Data View.

SCIM Search Request
A SCIM search request consists of a search filter and an optional specification of which
attributes to return from each record that satisfies the filter definition. The Data View against
which the search is to be conducted is derived from the URI path, such as /scim/Users.

After the SCIM endpoint executes the search against the Data View, it generates XACML
requests for each record returned in the search results in order to determine whether the
requesting client has permission to receive the record’s attributes. Each resource and attribute
of each record is evaluated independently through a separate policy request.

Note
The number of search results that can be returned is limited by the Data View’s
lookthroughLimit property, due to the potential cost of checking each response against
policy.

Each XACML request contains the following attributes:

XACML Attribute Attribute Value

owner-id SCIM ID of the returned result record.

actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included in
the request if the access token was obtained through a Client Credentials grant.

subject-id Application name of the requesting application, retrieved from the OAuth access
token.

action-id Always “Read,” since this is a search request.

purpose-id Always “Any,” since the SCIM standard does not include a purpose specification.

resource-id A single Resource URN from the returned result record.

Any resources or individual resource attributes that are denied by policy are omitted from the
search response.

SCIM Get Request
A SCIM request to obtain a single record is handled similarly to the search request, except that
there is only a single result record. The previous table applies.

- 60 -

Chapter 5: Accessing Data

SCIM Update Request
A SCIM update request (HTTP PATCH) contains in the message body the attributes to be
updated and/or deleted. Deleting an attribute from a record is considered an update action by
the SCIM endpoint. The response to an update request contains the updated record. Using
query attributes the SCIM client can request that only a subset of the updated record be
returned in the response.

The SCIM endpoint issues two sets of policy evaluations in response to an update request. The
first set determines which attributes the client is permitted to update. These XACML requests
contain the following:

XACML Attribute Attribute Value

owner-id SCIM ID of the record to be updated.

actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included
in the request if the access token was obtained through a Client Credentials
grant.

subject-id Application name of the requesting application, retrieved from the OAuth 2.0
access token.

action-id Always “Update.”

purpose-id Always “Any,” since the SCIM standard does not include a purpose specification.

resource-id A single Resource URN obtained from the request’s message body.

Note
The policy engine has access to the resource URN, but not the proposed new value for the
corresponding attribute. Therefore, policy can checkwhether the application is allowed to
update the attribute, but cannot do data validation on the attribute value.

After the update is complete, a second set of policy requests is issued to determine which
attributes of the updated record the client can receive in the response. These requests are
formatted exactly as for a SCIM Get or Search request.

SCIM Create Request
Like an update request, a SCIM create request contains the attributes of the new record in the
message body. The response to the request is the contents of the new record, which optionally
can be pared by query parameters that specify which attributes the client wants to receive in
the response.

Policy checks for SCIM create requests (HTTP POST) are different in that there is no existing
resource owner. The owner is being created as a result of the request. Also, the entire set of
attributes is evaluated by a single XACML request. Either the entire request is accepted or
denied, there is never a partial success where some attributes are saved but not others. The
create policy request therefore contains attributes as follows:

XACML Attribute Attribute Value

actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included
in the request if the access token was obtained through a Client Credentials
grant.

- 61 -

Policy Authorization Scenarios

XACML Attribute Attribute Value

subject-id Application name of the requesting application, retrieved from the OAuth 2.0
access token.

action-id Always “Create.”

purpose-id Always “Any,” since the SCIM standard does not include a purpose specification.

resource-id A list of all resource URNs specified in the request’s message body.

Note
The policy engine has access to the resource URN, but not the proposed new value for the
corresponding attribute. Therefore, policy can checkwhether the application is allowed to
update the attribute, but cannot do data validation on the attribute value.

SCIM Delete Request
A SCIM delete request is a request to delete a record from the underlying Data View. To
determine whether the delete request should be permitted, the SCIM endpoint will invoke the
policy engine with a XACML request that includes the following attributes:

XACML Attribute Attribute Value

owner-id SCIM ID of the record to be deleted.

actor-id SCIM ID of the OAuth 2.0 access token owner. This attribute will not be included
in the request if the access token was obtained through a Client Credentials
grant.

subject-id Application name of the requesting application, retrieved from the OAuth 2.0
access token.

action-id Always “Delete.”

purpose-id Always “Any,” since the SCIM standard does not include a purpose specification.

resource-id A list of all top-level resource URNs defined by the Data View schema.

Self-Registration Policy Evaluation
Self-registration is an unauthenticated activity that allows a visitor to an application site to
create an account. A request to the Identity Broker’s registration endpoint is a HTTP POST
whose content must include the requesting application’s client ID, the name of the Data View in
which to register the new user, and the new user’s attribute values. The registration endpoint
constructs a XACML request from these arguments so that the policy engine can evaluate
whether the registration should be allowed. The XACML request is formatted with the following
attributes:

XACML Attribute Attribute Value

subject-id Name of the requesting application.

action-id Always “Create.”

purpose-id Always “Registration.”

resource-id A list of all resource URNs specified in the request’s message body.

- 62 -

Chapter 5: Accessing Data

Metadata API Policy Evaluation
The exact policy request generated by the Metadata endpoint will depend on which API is
invoked, but in general will contain the following attributes:

XACML Attribute Attribute Value

owner-id SCIM ID of the user whose metadata is being accessed.

actor-id SCIM ID of the OAuth 2.0 access token owner. This will always be present as a Client
Credentials token is not allowed by the Metadata API.

subject-id Application name of the requesting application, retrieved from the OAuth 2.0 access
token.

action-id Either “Read” or “Update,” depending on which Metadata API has been invoked.
Creation or deletion of consents and identity provider links are considered updates to
a user’s record, therefore the action will be “Update” for those methods.

purpose-id Always “Any.”

resource-id The resource URN(s) to which access is being requested. These resources are pre-
defined by the Identity Broker and will always begin with urn:un-
boundid:resources:broker_metadata:. For a complete list of metadata
resource URNs, see Accessing User Metadata.

- 63 -

Chapter 6: Reference Information

The functionality for authorization, authentication, and data access is well documented by the
OpenID Connect, OAuth2, and SCIM foundations.

This chapter provides references to that documentation and documentation for using the
Identity Broker API endpoints.

Documentation

Related Information

- 64 -

Chapter 6: Reference Information

Documentation
The Identity Broker includes the following documents, available in the docs folder of the
server.

l UnboundID Identity Broker Installation Guide (PDF)

l UnboundID Identity Broker Administration Guide (PDF)

l UnboundID Identity Broker Application Developer Guide (PDF)

l UnboundID Identity Broker REST API Reference (HTML)

l UnboundID Identity Broker Configuration Reference Guide (HTML)

l UnboundID Identity Broker Command Line Reference (HTML)

Reference Information
The following are useful references to information in this guide:

l JavaScript Object Notation (JSON) and JSON Web Token (JWT). JSON is a seri-
alized text-based data interchange format using name-value pairs and ordered or
unordered lists of values as its data structure. JSON Web Token (JWT) is a string rep-
resenting a set of claims (attributes) as a JSON object that is encoded in a JSON Web
Signature (JWS), enabling the claims to be digitally signed.

l OAuth2 Specification. The OAuth 2.0 Authorization Framework (RFC 6749) is an open
standard that enables client applications to obtain the authorization to access resources
on behalf of the resource owner.

l OAuth2 Bearer Token Specification. The OAuth2 Authorization Framework: Bearer
Token Usage specification (RFC 6750) describes how to use bearer tokens in
HTTP requests to gain access to resources.

l OpenID Connect Drafts. The Identity Broker provides the libraries and software pack-
ages to fully function as a standalone OpenID Provider or resource server.

l XACML 3.0 Specification. The Policy Service is XACML 3.0-compliant and requires a
working knowledge of its core concepts.

l Cross-Origin Resource Sharing (CORS). Applications that make JavaScript requests
to the Identity Broker should be registered with their trusted domains defined. The CORS
specification is a W3C recommendation.

l External Identity Provider Login. The Identity Broker Server supports login through
Google, Facebook, and OpenID Connect providers. Configuration information is included
in the UnboundID Identity Broker Administration Guide.

- 65 -

Index

A

access token

authorization code grant 29

client credentials code grant 33

implicit code grant 31

password credentials code grant 32

accessHistory API 4, 48

application

redirect URL 7

registering with Identity Broker 7

application access records 48

Attribute-Based Access Control 9

authorization code character length 12

authorization code grant request 28

B

broker-admin tool 8

C

client applications

REST API endpoints 4

client credentials code grant request 32

client identifier 24, 30, 32-33

client secret 24, 32-33

consent history API 4

consent records 48

consentHistory API 49

consents API 5, 49

CORS

Identity Broker configuration 7

reference 65

D

data access

using policies 10

data view schema 40

data views

REST API endpoints 4

dsconfig

changing policy-combining
algorithm 10

E

endpoint

logout.do 47

SCIM 39

SCIM examples 40

userinfo 38

endpoints

SCIM 38

token 33

token revocation 36

token validation 35

external identity provider

feature 2

reference information 65

external identity providers 7

I

ID token 24

parameters 24

Identity Broker

architecture 2

attribute filtering 2

authorization 2

described 1

features 2

- 66 -

Index: access token – Identity Broker

Index: implicit code grant request – SCIM endpoint

pluggable authentication 2

social login 2

implicit code grant request 30

J

JSON

object examples 40

reference 65

L

links attribute 13

M

metadata APIs 48

O

OAuth2

authorization code grant 27

OAuth2.0 26

client credentials 28

described 27

endpoints

REST APIs 4

implicit grant flow 27

policy processing 56

reference 65

resource owner password flow 28

OpenID Connect

about 23

ID token 24

reference 65

requests 24

responses 24

scopes 8

userinfo endpoint 4

P

password credentials code grant
request 31

PDP endpoint 56

policies

authorization scenarios 55

PDP endpoint 56

policy

request processing 56

privacy policy

data access requests 10

policy evaluation 10

Profile Manager application 2, 19

new user registration 20

user search 20

purposes

using the any purpose 56

R

redirect URI 13

relying party 2, 65

create an accout 13

link an account 13

process overview 12

REST API

endpoints 4

S

Sample Sign-In application 2, 15

SCIM

described 39

supported features 39

SCIM endpoint 38

policy processing 57

- 67 -

Index: scopes – UserInfo endpoint

scopes

defined 7

for linking accounts 13

using the any purpose 56

Self resource 39

social login 12

T

token character length 12

token endpoint 24

token validation 35-36

U

UnboundID

about v

URN

hierarchy in policy evaluation 10

UserInfo claims 7

UserInfo endpoint 24, 38

example 46

policy processing 56

- 68 -

- 69 -

	Copyright
	Preface
	About UnboundID
	Audience
	Documentation

	Chapter 1: Introduction
	Identity Broker Features
	Identity Broker Architecture
	Identity Broker Endpoints for Client Applications

	Chapter 2: Getting Started with Application Development
	What is Needed from the Identity Broker
	OpenID Connect Scopes
	How Policy Affects the Data Returned to an Application
	About Data Access Requests
	About Policy Evaluation
	Accessing Resources by Consent

	Obtaining Usernames and User IDs
	Character Length of Authorization Codes and Tokens
	The Identity Broker as Relying Party
	Creating an Account through Identity Provider Login
	Linking Identity Broker and External Identity Provider Accounts
	Example Call for Links Data

	Working with the Sample Sign In Application
	Deploying the Sample Application
	Sign In Sample Application Pages

	Working with the Profile Manager Application
	Deploying the Sample Application
	Profile Manager Application Pages

	Chapter 3: Authentication
	OpenID Connect Request
	OpenID Connect Response

	Chapter 4: Authorization Flows
	About OAuth 2.0
	OAuth 2.0 Authorization Grant Types
	Issuing Authorization Code Grant Requests
	Example Redirection
	Example Authorization Header Response
	Example Request
	Example Response
	Example Request

	Issuing Implicit Code Grant Requests
	Example Redirection
	Example Redirect Response
	Example Request

	Issuing Resource Owner Password Credentials Requests
	Example Authorization Header Request
	Example Authorization Response

	Issuing Client Credentials Code Requests
	Example Authorization Header Request
	Example Access Token Response

	The Identity Broker Token Endpoint
	Request
	Response
	Token Validation by the Identity Broker
	Token Revocation by the Identity Broker
	Obtaining a Refresh Token

	Chapter 5: Accessing Data
	The Data View (SCIM) Endpoint
	Data View Examples
	GET (Data View Schemas)
	GET
	GET (by User ID)
	POST
	UPDATE
	DELETE

	UserInfo Access Example
	Request
	Response
	jQuery Example

	The Identity Broker Logout Endpoint
	Request
	Response

	User Metadata
	Managing Access History Records
	Managing Consents
	Adding an Identity Provider Link to an Account

	Policy Authorization Scenarios
	Policy Decision Point (PDP) Endpoint
	Policies and Request Processing Per Endpoint
	OAuth 2.0 Endpoint Policy Evaluation
	UserInfo Endpoint Policy Evaluation
	SCIM Endpoint Policy Evaluation
	Self-Registration Policy Evaluation
	Metadata API Policy Evaluation

	Chapter 6: Reference Information
	Documentation
	Reference Information

	Index

