UnboundID® Identity Broker

Installation Guide
Version 4.6.0

UnboundID Corp

13809 Research Blvd., Suite 500
Austin, Texas 78750

Tel: +1 512.600.7700

Email: support@unboundid.com

WnboundID

Copyright

Copyright © 2014 UnboundID Corporation
All rights reserved

This document constitutes an unpublished, copyrighted work and contains valuable trade
secrets and other confidential information belonging to UnboundID Corporation. None of the
material may be copied, duplicated, or disclosed to third parties without the express written
permission of UnboundID Corporation.

This distribution may include materials developed by third parties. Third-party URLs are also
referenced in this document. UnboundID is not responsible for the availability of third-party
web sites mentioned in this document. UnboundID does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on or
through such sites or resources. UnboundID will not be responsible or liable for any actual or
alleged damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such sites or
resources. “UnboundID” is a registered trademark of UnboundID Corporation. UNIX is a
registered trademark in the United States and other countries, licenses exclusively through
The Open Group. All other registered and unregistered trademarks in this document are the
sole property of their respective owners.

Table of Contents

CoPY Gt . i
PrefaCe iv
About Unboundl D .l iv
About This GUIAe ... v
AU BN L. v
DOCUMENEAtION .. \Y
Chapter 1: Introduction ... il 1
Identity Broker OVerVieW ... 2
Identity BroKer FEatUIres 2
Identity Broker ArchiteCtUre 3
Installation Considerations .. 4
Chapter 2: System Requirements . . . 5
Installation Prerequisites 6
Supported Platforms 6
Supported Storage OptioNS 8
Configuring File Descriptor Limits . .. L 8
To Set the File Descriptor Limit ... L 8
Setting the Maximum User ProCesses L 9
Installing the dstat Utility on SUSE LinUX ... 9
Chapter 3: Installation . .. 10
Installing the DK 11
About the Broker Store and User Store 11
Installing the Identity Data Store 11
To Install the Identity Data Store 12
Identity Broker Installation Tools L 14
Installation Process and Files Installed 15
Installing the Identity BroKer 16
Configuring the Identity BroKer 19
Installing a Clone Identity BroKer ... L 24
Planning a Scripted Install . 25
Scripted Installation ProCess L. 26

To Install the Identity Broker with an Existing Truststore 27
Chapter 4: Configuration 29

Chapter 3

Identity Broker Command-Line ToOls L 30
The dsconfig to0l .. . L 30
To Run the dsconfig Tool ... 31
Server SDK EXteNSIONS . 32
AbDOUL StOre Adapters .o o 32
About User Metadata 33
About the LDAP Store Adapler ..o 34
Configuring Store Adapters .. o . 34
About the Example Store Adapter ... 35
Creating a IDBC Store Adapter 35
ADOUL Data VieWS L 37
To Configure Data VieWs L 38
Configuring a Separate Metadata Store 39
Preparing to Configure a Metadata Store L 39
About the Correlation Attribute .. . 40
Example: Configuring an LDAP Metadata Store 40
Preparing the LDAP Data Store 41
Configuring the Store Adapter L 42
Configuring the Data VieW .. L 43
About the OAUth Service il 44
About The PoliCy SerViCe 45
To Configure the POliCY SerViCe o L 45
About Cross-Origin Resource Sharing Support 46
CORS Implementation ... L 46
HT TP Servilet ServiCes ... 46
HTTP Servlet Cross Origin Policies 47
Assigning a CORS Policy to an HTTP Servlet Extension 48
About Dashboards and Metricsl 49
To Configure the Metrics Engine and Identity Broker to show Metrics Data_. 49
The sample-data-loader Tool 50
To Add Sample Users and Run the sample-data-loader Tool 51
Sample Requests and Policy Tests 51
Customizing the Identity Broker Web Applications 52
Customizing the Identity Broker Console Login Pages 52

Customizing a Web Application Logo 54

Running the Broker Applications on Tomcat 54
To Configure the Identity Broker Web Applications on Tomcat ._............................. 54
VeloCity TemMDIateS L 56
Supporting Multiple Content TYPeS 58
Velocity Context Providers 59
Velocity Tools Context Provider .. L 60
Chapter 5: Management il 61
Running the Identity BroKer .. 62
To Run the Identity BroKer L 62

To Run the Identity Broker in the Foreground 62
Stopping the Identity BroKer .. 62
To Stop the Identity Broker .. L 62

To Schedule a Server Shutdown 62

To Runan In-Core Restart 62
Uninstalling the Identity Broker 63
To Uninstall the Identity Broker 63
Updating the Identity Broker and the Broker Store 63
Chapter 6: Ref@reNCe ... 65
Identity Broker Files and Folders 66
The Identity BroKer TOOIS 67
IO X 69

Preface

The UnboundID Identity Broker Installation Guide provides procedures to install and configure
an identity infrastructure.

About UnboundID

UnboundID Corp is a leading identity infrastructure domain solutions provider with proven
experience in large-scale identity data solutions. The UnboundID solution set provides the
following:

« Secure End-to-End Customer Data Privacy Solution - A comprehensive identity
data platform with authorization and access controls to enforce privacy policies, control
user consent, and manage resource flows. The system protects data in all phases of its
life cycle (create, read, update, delete as well as static/unchanging and expiring).

« Purpose-Built Identity Data Platform - Solutions to consolidate, secure, and deliver
customer consent-given identity data. The system provides unmatched security meas-
ures to protect sensitive identity data and maintain its visibility. The broad range of plat-
form services include, policy management, cloud provisioning, federated authentication,
data aggregation, and directory services.

« Unmatched Performance across Scale and Breadth - Support for the three pillars
of performance-at-scale: users, response time, and throughput. The system manages
real-time data at large-scale consumer facing service providers.

« Support for External APIs - Standards-based solutions that can interface with various
external APIs to access a broad range of services. APIs include XACML 3.0, SCIM, LDAP,
OAuth2, and OpenID Connect.

iv

Preface

About This Guide

This guide provides procedures to install and configure your Identity Infrastructure, powered
by the UnboundID product suite. The guide references the multiple products in the UnboundID
product family including:

e UnboundID Privacy Suite

e UnboundID Identity Broker

e UnboundID Identity Data Store

e UnboundID Identity Proxy

o UnboundID Identity Data Sync Server
o Identity Broker API

Additional documentation for each product is available.

Audience

This guide is intended for identity architects and administrators who are designing and
implementing an identity infrastructure solution. Familiarity with system-, user-, and network-
level security principles is assumed. Knowledge of directory services principles is
recommended.

To use this guide effectively, readers should be familiar with the following subjects:

e« REST web services and principles
e JSON or XML serialization formats
e XACML 3.0

o OAuth2 specification

o OAuth2 Bearer Token specification
e SCIM Schema 1.0

e OpenID Connect 1.0

« Apache Velocity Project and templates

Documentation

The Identity Broker includes the following documents, available in the docs folder of the
server.

e UnboundID Identity Broker Installation Guide (PDF)
o UnboundID Identity Broker Administration Guide (PDF)
o UnboundID Identity Broker Application Developer Guide (PDF)

Preface

e UnboundID Identity Broker REST API Reference (HTML)
e UnboundID Identity Broker Configuration Reference Guide (HTML)
e UnboundID Identity Broker Command Line Reference (HTML)

-Vi-

Chapter 1: Introduction

Companies need to be able to monetize this valuable user data, while balancing data privacy
regulations. The Identity Broker server provides solutions to manage and monitor the
authorization and authentication of user data access.

This section includes:

Identity Broker Overview

Identity Broker Features

Identity Broker Architecture

Installation Considerations

Chapter 1: Introduction

Identity Broker Overview

Most organizations today are working toward creating a unified customer profile. An essential
part of creating that common identity profile is to centralize multiple, overlapping registries
and to define the logic for determining which applications should access data in a profile, and
for what purpose. The Identity Broker enables managing large amounts of customer data while
ensuring end-user privacy.

The Identity Broker can act as an authorization server, or both an authorization and resource
server. As an authorization server, the Identity Broker provides authorization decisions for
client applications, provisioning systems, API gateways and analytical tools in architectures
involving personal, account, or sensitive identity data. As a resource server, it provides
restricted access to end users' information.

The Identity Broker is designed to make authorization decisions based on dynamic consumer
profile and consent data. It is both the policy decision point and the OAuth2 provider for
externalized authorization. Because the Identity Broker centralizes the policy and consent
functions, regulatory and security rules are applied consistently across all applications. In
addition, the Identity Broker can be used to create a common identity and single view of the
customer through the use of attribute mapping from multiple backend data stores.

Identity Broker Features

The Identity Broker provides the following features for client applications to securely access
identity resources:

« Support for multiple backend data stores. The Identity Broker supports multiple
data stores, with native support for the UnboundID Data Store and extension points for
other data stores, such as relational databases. Applications can be written one time for
access to the Identity Broker and receive data from any type of infrastructure backend.

« Authorization based on Policy and Consent. The Identity Broker ensures that data
is provided to only authorized applications. Authorization can be based on industry rules,
corporate policy, or consent granted by customers.

« Unified Data Views . The Identity Broker provides a way to aggregate attributes from
multiple data stores into single views, such as a customer profile view, a subscriber
view, or a device view. Data Views specify attribute mapping and renaming across mul-
tiple data stores. Applications can provide their end users a unified view of their inform-
ation based on the Data Views configured.

« Support for social login. The Identity Broker can act as a relying party, enabling users
to log into client applications and update or create Identity Broker accounts with external
identity provider accounts.

Identity Broker Architecture

« Standards-based authorization. The Identity Broker Server provides OAuth2-com-
pliant functionality for token generation, expiration, validation, and revocation. This
provides application developers with flexible, secure authorization flows that can be
tailored to multiple application types.

« User interface templates. The Identity Broker provides a sample sign in application
and other templates for implementing user authentication and consent flows. Server tem-
plates are available for further customization.

Identity Broker Architecture

The Identity Broker can act as both the authorization server and resource server for client
applications requesting access to user data. Client applications are granted authorization
through an OAuth2.0 flow and receive access through OpenID Connect and SCIM endpoints.

The Identity Broker can also act as a relying party for identity providers such as Facebook and
Google. It can either be the identity provider, or it can be the relying party to an external
identity provider, or both. As a relying party, the Identity Broker can offload the authentication
responsibilities to a configured identity provider, and use the authenticated principal and any
attributes to link end user profiles, or create a new profile in a backend data store.

User Agent
(web browser)

invoke
consent
dialog

OAuth2
Authorization

prompt &
record
consent

login l T

oibc
Authentication

Built-In Policies
,,,,,,,,,,,, R

Check
credentials
against the
User Store

Custom
! Authenticator |

and/or
usea

get access
token

Client get/put user profile and other data

Br

Application

read / write

Privacy and PDP API

/dataview

read only

Juserinfo

Consent API for SCIM for OIDC
policy
decisions
Juserinfo
Claims Map
Data View
. . Data View Data View
Policy Engine Schema Mapping
Fetchdata
needed for.
policy
evaluation
:—6[1;155{60'"8; 0 Data Store | Custom Data |
! Info Point | Adapter | Store Adapter |

e S —
| Policy Info

i
. ,sfa_nf . User Store

Contains
Consent Records
Access Tokens

Contains
Consent History,
Access History
Policy Eval Results

Identity Broker Architecture

Optionally, user or other data

i
i Other Data |
1 Store

Contains
User or other data

Command Line
Tools

oker Admin
Console

Admin API

Broker
Store
Contains

Data View defintions,

schemas, policies, system
configuration efc.

Chapter 1: Introduction

Installation Considerations

Consider the following deployment-related issues prior to installing:

« Determine the Identity Broker Store Topology. The deployment determines where
the Identity Broker stores its policies, Data View Schemas, and OAuth2 tokens for each
user.

« Determine the Identity Broker and Broker Store load balancing and rep-
lication scenarios. Multiple Identity Brokers can be installed for load balancing. Install
one Identity Broker and use the clone feature to install additional Identity Brokers, or
plan a scripted installation. Multiple Identity Brokers can use a single Broker Store. Make
sure that the Broker Store has a backup or replication mechanism in place.

« Code required for Application and Resource Server. The Identity Broker provides
REST API endpoints for web, mobile, social and partner applications as well as resource
server access to the OAuth2 and policy services and the administrative tools. See the
UnboundID Identity Broker Client Developer Guide for more information.

Chapter 2: System Requirements

The UnboundID Identity Broker requires few technical prerequisites and can be deployed in
multiple configurations. The Identity Broker can be deployed on virtualized and/or commodity
hardware, and monitored using the platform's built-in tools or through external tools
connected with the API.

This section includes:

Installation Prerequisites

Supported Platforms

Supported Storage Options

Configuring File Descriptor Limits

Setting the Maximum User Processes
Installing the dstat Utility

Chapter 2: System Requirements

Installation Prerequisites
The following are required before installing the Identity Broker:
e Java 6 orJava 7

e Minimum of 2 GB RAM
e UnboundID Identity Data Store 4.5 or later

There may be other required software for your system, please review the Supported Platform

chart.

Note
If using the log history service, the amount of disk space required will depend on the chosen
configuration. See the "Managing the Log History Service" section of the UnboundID Identity
Broker Administration Guide for information about the service and configuration details.

Supported Platforms

The following chart lists the supported Identity Broker platforms and software versions.
UnboundID does not require specific hardware.

« Reference - tested and confirmed that the system works as documented.
e Yes - the supported platform is included in UnboundID support agreements.

o Eval Use Only - the platform can be used to evaluate UnboundID software but should
not be used for production deployments.

« Experimental - undergoing tests on the platform and may or may not be supported in

the future.
Supported Platforms & Software

Operating Systems Supported? Comments
RedHat Linux 6.4 Yes

RedHat Linux 6.5 Reference

Solaris 10 x86 update 10 Yes

Solaris 11.1 x86 Yes

Solaris 11 SPARC Yes

AIX7.1 Yes

CentOS 6.4 Yes

Cent0S 6.5 Reference

SUSE Enterprise 11 SP2 Yes

Supported Platforms

Operating Systems Supported? Comments
Windows Eval Use Only
MacOS Eval Use Only
Java JDKs
JDKs Supported? Comments
IBM JDK 6.x 64-bit Reference
IBM JDK 7.x 64-bit Yes
Oracle JDX 6.x 64-bit Reference
Oracle JDX 7.x 64-bit Reference

Virtual Hosts/Platforms

Virtual Hosts/Platforms Supported? Comments
VMWare vSphere & ESX 5.1 Yes
IBM AIX Virtualization (LPAR, PR/SM) Yes

App Servers/Servlet Containers

App Servers/Serviet Containers Supported? Comments
Apache Tomcat 7.x Yes
JBoss 7.x Yes

Identity Data Platform

Identity Data Platform Supported? Comments
UnboundID Identity Data Store, 4.5,0or Yes Required for the Broker Store
later
UnboundID Identity Data Proxy, 4.5 Yes Optional
UnboundID Metrics Engine, 4.5 Yes Optional
Browser Software

Auxiliary Software

Internet Explorer 7.0 or later

Chrome 5.0 or later

Firefox 3.0 or later

Safari 5.0 or later

Chapter 2: System Requirements

Supported Storage Options

The Identity Broker can be deployed in a variety of topologies depending on the existing
infrastructure. The following table lists the Identity Broker components that must reside on an
Identity Data Store, or can reside on a third-party data store.

Summary of Storage Options

Store Identity Data Store Third-Party Directory or Database
Consumer (end user) Yes Yes

Accounts

Broker Store Yes No

Administrator Accounts Yes Yes

Configuring File Descriptor Limits

Identity Broker allows for an unlimited number of connections by default, but is restricted by
the file descriptor limit on the operating system. Many Linux distributions have a default file
descriptor limit of 1024 per process, which may be too low to handle a large number of
concurrent connections.

Set the maximum file descriptor limit per process to 65,535 on Linux systems.

To Set the File Descriptor Limit

1. Display the current hard limit of your system. The hard limit is the maximum server limit
that can be set without tuning the kernel parameters in the proc filesystem.
ulimit -aH

2. Editthe /etc/sysctl.conf file. If the fs.file-max property is defined in the file, make
sure its value is set to at least 65535. If the line does not exist, add the following to the
end of the file:

fs.file-max = 65535

3. Editthe /etc/security/limits.conf file. If the file has lines that set the soft and hard
limits for the number of file descriptors, make sure the values are set to 65535. If the
lines are not present, add the following lines to the end of the file (before “#End of file”).
Insert a tab, rather than spaces, between the columns.

* soft nofile 65535
* hard nofile 65535

4. Reboot the system, and then use the ulimit command to verify that the file descriptor
limit is set to 65535.

ulimit -n

Setting the Maximum User Processes

Setting the Maximum User Processes

Redhat Enterprise Linux Server/CentOS 6.x sets the default maximum number of user
processes to 1024, which is lower than the setting on older distributions. This may cause JVM
memory errors when running multiple servers on a machine because each Linux thread is
counted as a user process. This is not an issue on Solaris and AIX platforms as individual
threads are not counted as user processes.

At startup, Identity Broker attempts to raise this limit to 16,383 if the value reported by
ulimit is less. If the value cannot be set, an error message is displayed. Explicitly set the limit
in /etc/security/ limit.conf. For example:

* soft nproc 100000
* hard nproc 100000

The 16,383 value can also be set in the NUM_USER PROCESSES environment variable, or by
setting the same variable in config/num-user-processes.

Installing the dstat Utility on SuSE Linux

The dstat utility is used by the collect-support-data tool to gather support data. It can be
obtained from the OpenSuSE project website. The following steps install the dstat utility on
SuSE Enterprise Linux 11 SP2:

1. Log into the server as root.
2. Add the appropriate repository using the zypper tool:

$ zypper addrepo
http://download.opensuse.org/repositories/server:/monitoring/SLE 11 SP2
Monitoring

3. Install the dstat utility:

$ zypper install dstat

Chapter 3: Installation

Identity Broker provides installation tools to quickly configure the server.
This section includes:
Installing the JDK

About the Broker Store and User Stores

Installing the Identity Data Store

Identity Broker Installation Tools

Installation Process and Files Installed

Installing the Identity Broker

Configuring the Identity Broker

Installing a Clone Identity Broker

Planning a Scripted Installation

-10 -

Chapter 3: Installation

Installing the JDK

The Identity Broker requires the Java 64-bit JDK. Even if Java is already installed, create a
separate Java installation for use by Identity Broker to ensure that updates to the system-
wide Java installation do not inadvertently impact the Identity Broker.

Solaris systems require both the 32-bit (installed first) and 64-bit versions. The 64-bit version
of Java on Solaris relies on a number of files provided by the 32-bit installation.

About the Broker Store and User Store

During the Identity Broker configuration, one or more UnboundID Identity Data Store or Proxy
instances are identified to store policy definitions, application registry, and identity service
configuration, and may also serve as a user store. The user store is generally used to store
metadata for authorization and consent history. Some installations may have existing user
stores that require the installation of a separate metadata store, due to corporate policy or
access restrictions. If an existing user store is not allowed to write Identity Broker metadata
for user access, see Configuring a Separate Metadata Store for details.

The Broker Store can be configured to be shared by other Identity Broker instances. For each
Broker Store server identified, an account for Identity Broker access is created, schema is
updated to allow the storage of Identity Broker operational data, and an initial administrative
account is defined for managing the Broker Store. The Identity Broker configuration will also
update the schema for each LDAP user store server identified to support additional information
for each user entry.

Note
If there are multiple Identity Data Stores hosting the Broker Store, all instances should be
configured to replicate the data beneath the Broker Store base DN. See the UnboundID
Identity Data Store Administration Guide for replication information.

Installing the Identity Data Store

The Identity Broker requires that at least one installed Identity Data Store server. This
provides the backend repository for the Broker Store, which contains the policy data,
resources, actions, applications, and Data View Schemas (to enable mapping of attributes
between the Identity Broker and one or more User Stores). A user store is also required by the
Identity Broker, which can be an instance of the Data Store or an external user store. The
Broker Store can reside with the User Store on a single Identity Data Store server, or multiple
data stores can be installed.

Note
All sensitive data in the user store are encrypted. When using the UnboundID Data Store as
the user store, server-level encryption can be enabled as described in the "Encrypting
Sensitive Data" section in the Unbound|D Identity Data Store Administration Guide.

-11 -

Installing the Identity Data Store

To Install the Identity Data Store

Follow this procedure to install a single Identity Data Store server. All configuration settings
can be later modified through the dsconfig tool. The following information is needed during
the installation:

Server hostname
LDAPS port

Root DN and password
Base DN

Location of user entries

Perform the following steps to install the Identity Data Store:

1.

Download the Identity Data Store zip distribution labelled, UnboundID-DS-<ver-
sion>.zip, where <version> is the latest build.

Unzip the file in any location.

$ unzip UnboundID-DS-<version>.zip

Change to the top level UnboundID-DS folder.

$ cd UnboundID-DS

Run the setup command.
$./setup

Enter yes to agree to the license terms.

Enter the Directory Manager DN for the Data Store, or accept the default, (cn=Directory
Manager). This account has full access privileges.

Enter a password for the root user DN, and confirm it.

Select how to enable access through HTTP. This procedure assumes option 3 is chosen.

Would you like to enable access through HTTP?

Do not configure HTTP access at this time
HTTP

HTTP with SSL

Sw NN

Both HTTP and HTTP with SSL

Enter choice [1]:3

Enter the port to accept connections from HTTPS clients or press Enter to accept the
default. The default may be different depending on the account privileges of the user

-12 -

Chapter 3: Installation

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

installing. This port defines the URL port (such as https://<hostname>:8443/) required
when installing Identity Broker.

Enter the port to accept connections from LDAP clients, or press Enter to accept the
default.

Type yes to enable LDAPS, or press Enter to accept the default (no). When configuring
the Identity Broker, the create-initial-broker-config tool assumes that this is
enabled.

If enabling LDAPS, enter the port to accept connections, or press Enter to accept the
default LDAPS port.

Type yes to enable StartTLS for encrypted communication, or press Enter to accept the
default (no).

Select the certificate option for the server and provide the certificate location.

Certificate server options:

1) Generate self-signed certificate (recommended for testing
purposes only

2) Use an existing certificate located on a Java Key Store (JKS)

3) Use an existing certificate located on a PKCS12 key store

4) Use an existing certificate on a PKCS1l token

The server listens on all available network interfaces. To specify particular IP addresses
that accept client connections, enter yes and then enter the IP addresses. To keep all
interfaces available for connections, press Enter to accept the default (no).

Specify the base DN for the Identity Data Store repository, for example dc=co-

ompany, dc=com.

Select an option to populate the database. If this data store will serve as a user store for
the Identity Broker, it should be populated with users. If the Leave the database
empty option is selected, an LDIF file with a base entry must be manually created at a
later time. Use 1dapmodify to add the entry to the Identity Data Store.

If this machine is dedicated to the Data Store, tune the JVM memory allocation to use the
maximum amount of memory the Aggressive option). This ensures that communication
with the Data Store is given the maximum amount of memory. Choose the best memory
option for the system and press Enter.

Enter yes to automatically prime the database, or press Enter to accept the default
(no).

To start the server after the configuration, press Enter for (yes).

-13 -

Identity Broker Installation Tools

21. Review the Setup Summary, and enter an option to accept the configuration, redo it, or
cancel.

Setup Summary

SCIM Web Services (SSL): https://<hostname>:443
Root User DN: cn=Directory Manager
LDAP Listener Port: 1389
HTTP Listener Port: disabled
Secure Access: Enable SSL on LDAP Port 636
Enable SSL on HTTP Port 443
Create a new Self-Signed Certificate
Directory Data: Create New Base DN dc=company, dc=com

Base DN Data: Import Automatically-Generated Data (2000 Entries)

The Identity Data Store will be started after configuration

What would you like to do?

1) Set up the server with the parameters above
2) Provide the setup parameters again

3) Cancel the setup

22. Choose the LDAP option to connect to the Data Store on the host.

>>>>> Specify LDAP connection parameters

1) LDAP
2) LDAP with SSL

23. Enter the Administrator user bind DN (directory manager), or press Enter to accept the
default (cn=Directory Manager).

24. Enter and confirm a password for this account.

The Data Store configuration is displayed and the installation is complete.

Identity Broker Installation Tools

The Identity Broker provides a number of tools to install and configure the system.

e The setup tool performs the initial tasks needed to start the Identity Broker server,
including configuring JVM runtime settings and assigning listener ports for the Broker's
REST services and web applications.

-14 -

Chapter 3: Installation

e The create-initial-broker-config tool continues after setup and enables initial sys-
tem configuration. During the process, the prepare-external-store tool loads the
Broker Store with an initial data set, including an administrative account, data needed
for OpenlID Connect support, and required XACML policies. If specified, the configuration
process calls the sample-data-loader tool, loads sample applications, OAuth 2 scopes,
resources, user consent records, and authorization requests. Configuration can be writ-
ten to a file to use for additional installations.

« The Broker Console interface or the broker-admin tool are used to define policies, attrib-
utes, and data resources for the system. The Broker Console interface enables all con-
figuration that the broker-admin tool provides.

« Once the configuration is done, the dsconfig tool enables more granular configuration.

Installation Process and Files Installed

During the installation and configuration of the Identity Broker, there are opportunities to
install sample data and prepare the system for immediate use after the installation is
complete. For very advanced administrators, these steps can be scripted, or done manually
with the dsconfig and broker-admin tools. For a simplified and interactive installation, use
the integrated setup and create-initial-config tools.

One of the Identity Broker's key features is the ability to create Data Views, which rely on a
SCIM schema to map attributes in a back-end data store to SCIM attributes or OpenID Connect
resources. When specifying a Broker Store during the create-initial-broker-config
process, the broker-admin script install-data-view-mappings.broker-admin is run. Data
View mappings for a SCIM schema are created for the default User Store Adapter and User
Data View. This enables an Identity Broker administrator to quickly map attributes from the
selected user store to SCIM attributes or OpenID Connect resources in the Identity Broker
Console. Additional user stores, Store Adapters, Data View Schemas, and Data Views can be
created and configured at any time.

One of the final steps to configuring the Identity Broker is to write the configuration to the
server and to a file. This activates all of the configuration settings entered and saves the
configuration to a dsconfig batch file. The dsconfig tool can be used to further configure the
server or configure additional Identity Brokers. The file resource/install-oidc-
objects.broker-admin is parameterized and run. This file will:

o Create a User Data View.
e Create OpenlID Connect scopes (profile, email, address, phone).

o Create claims maps

The final steps of configuring the Identity Broker enable default policies and install sample
data. This enables an Identity Broker administrator to use the Broker immediately. The default
policies can be used as is, modified, or used as templates for additional policies. The XML files
are imported into the Broker Store, which will reside on an Identity Data Store.

-15 -

Installing the Identity Broker

Three policies are disabled unless specifically enabled during the configuration process. The
enabled policies are required for Identity Broker functions and should not be disabled.

ConsentPolicy.xml (disabled) — Returns a decision of Permit if the resource owner has
consented to allow access to all of the resources in a request.

GovernanceTagPolicy.xml (disabled) - Returns a decision of Permit if the requesting
application holds all governance tags held by all requested resources.

TrustLevelPolicy.xml (disabled) - Returns a decision of Permit if the maximum trust
level of all resources is less than or equal to the trust level of the requesting application.

AdminAccess.xml (enabled) - Governs access to the Admin API. It ensures that only
authorized applications are allowed to perform administrative actions within the Identity
Broker. By default the set of authorized applications are the Broker Console, the Broker
CLI, and the Privacy Preferences application.

DataViewFullAccess.xml (enabled) — Determines what applications are allowed to use
the "super-user" privilege from the SCIM endpoint. Super-user in this case means that
requests can bypass normal policy checking. These applications are UnboundID-provided
applications.

If sample data is installed, the following are performed:

For each specified user store, two users are created over LDAP (uid=sampleuserl and
sampleuser2).

The sample-data-loader tool is run with the install subcommand. The newly created
users serve as XACML resource owners.

The sample-data-loader tool will create:
o Tags, resources, trust levels, and scopes using the broker-admin tool.

o The consent-admin tool is run with a batch file that adds READ access consents to
the Customer Profiles for the newly installed applications.

See About the sample-data-loader Tool for details.

Installing the Identity Broker

To expedite the setup process, be prepared to enter the following information:

An administrative account for the Identity Broker.

An available port for the Identity Broker to accept HTTPS connections from REST API cli-
ents. This port will be used by the Identity Broker's HTTPS Connection Handler.

The web applications to install with this Identity Broker instance. One instance of the
Identity Broker Console application is requried. The Privacy Preferences application is
optional.

- 16 -

Chapter 3: Installation

An available port for the web applications' communication.
An available port to accept LDAP client connections.

Information related to the server's connection security, including the location of a key-
store containing the server certificate, the nickname of that server certificate, and the
location of a truststore.

The network interfaces to be assigned to client communication. If specific interfaces are
not assigned, all available interfaces are used.

Perform the following steps for an interactive installation of the Identity Broker:

1.
2.

10.

11.

Download the latest zip distribution of the UnboundID Identity Broker software.

Unzip the file in any location.

$ unzip UnboundID-Broker-<version>.zip

Change to the top level UnboundID-Broker folder.

Run the setup command.
$./setup

Type yes to accept the terms of this license agreement.

The setup tool enables cloning a configuration by adding to an existing Identity Broker
topology. For an initial installation, press Enter to accept the default (no).

Enter the fully qualified host name or IP address of the machine that hosts the Identity
Broker, or press Enter to accept the default (local hostname).

Enter the Directory Manager account DN for the Identity Broker. This account has full
access privileges. To accept the default (cn=Directory Manager), press Enter.

Enter and confirm a password for this account.

Enter the port for the Identity Broker REST APIs to accept HTTPS client connections.This
port is used by the Identity Broker to respond data requests or OAuth 2 requests. Press
Enter to accept the default.

Choose the web applications to install with this instance of the Identity Broker. If this is
the only instance of the Identity Broker, the Identity Broker Console must be installed. If
multiple instances of the Identity Broker are installed, at least one See Web References
Interfaces for a description of the Privacy Preferences / Customer Support Portal applic-
ation.

Identity Broker Console
Privacy Preferences / Customer Support Portal

All of the applications

IOV T

)
)
)
)

None of the applications

-17 -

12.

13.

14.

15.

16.

17.

18.

19.
20.

Installing the Identity Broker

b) Dback

dg) quit

Enter an HTTPS port to be used for the Identity Broker Console and web applications, or
press Enter to accept the default.

Enter the port to accept LDAP client connections, or press Enter to accept the default.

To enable LDAPS connections type yes and enter a port, or press Enter to accept the
default (no). If defined, the Identity Broker uses this port to access the backend user
store or Broker Store.

To enable StartTLS connections over regular LDAP connection type yes, or press Enter
to accept the default (no).

For secure connections (SSL or LDAPS), enter the certificate option for this server.

By default, all network interfaces on this server are used to listen for client connections.
Type yes to designate specific addresses on which the Identity Broker listens for client
connections, or press Enter to accept the default (no).

If this machine is dedicated to the Identity Broker, tune the JVM memory to use the max-
imum amount of memory (the Aggressive option). If this system supports other applic-
ations, choose an appropriate option.

Press Enter (yes) to start the server when the configuration is applied.

Review the configuration options and press Enter to accept the default (set up the
server).

Setup Summary

Broker Web Apps Port: 1445

Root User DN: cn=Directory Manager

LDAP Listener Port: 1389

Secure Access: Enable SSL on LDAP Port 1443

Create a new Self-Signed Certificate

Generate default trust store

The Identity Broker will be started after configuration

What would you like to do?

1) Set up the server with the parameters above

2) Provide the setup parameters again

3) Cancel the setup

-18 -

Chapter 3: Installation

The installation will continue with the create-initial-broker-config tool.

Configuring the Identity Broker

The next set of steps in the setup process rely on the create-initial-broker-config tool.
The setup tool will continue with the create-initial-broker-config tool to configure the
Identity Broker. Having the following in place will expedite the configuration:

At least one Identity Broker Data Store is installed to host the Broker Store, which will
contain policy and configuration information. The Identity Broker Data Store can also be
used as a user store, which will contain user data and consent information. Have the host
name and communication port available.

Any additional Identity Data Stores or Proxy Servers that act as user stores. Only
UnboundID Data Stores can be configured with this tool. Other user stores must be con-
figured outside of this process. Have the host names and communication ports available.

Locations for this and any other Identity Brokers for failover.

The LDAP search filter to locate user entries in each user store, such as (objectClass-

s=person).

After the initial setup and configuration, run the dsconfig tool later to make configuration
adjustments.

Note

All of the configuration information in this procedure can be written to the broker-
cfg.dsconfigfile and used to install additional servers, or additional servers can be
configured with the identical configuration. This file contains sensitive information and should
be secured. The OAuth service's active-encryption-key value is stored in this file and should be
changed before exposing the Identity Broker Server to external client applications. See About
the OAuth Service for configuration information.

Press Enter (yes) to continue with create-initial-broker-config.

Define the physical location of the Identity Broker server. Locations, typically, refer to
the city where the data center resides. This location will be used to define where the
Broker Store is located. The Identity Broker and the Broker Store should be in the same
location for best performance.

Create a location name for this Identity Broker: austin

To define failover locations for other Identity Broker servers, enter yes. Failover loc-
ations can be defined later when additional Identity Broker servers are installed or
cloned. Locations entered here are used to select the location of the Broker Store later in
this configuration. Press Enter to accept the default (no) until other Identity Brokers are
defined.

-19 -

Configuring the Identity Broker

Define the account and password used by the Identity Broker to communicate with any
external store, or press Enter to accept the default (cn=Broker User, cn=Root DNs,cn-
n=config). An external store can hold user store data and/or be the location of the
Broker Store.

Specify the credentials that the Identity Broker will

use when communicating with Broker Store and LDAP user

store instances. This tool assumes that the

credentials will be the same across all external store instances,
though you can adjust this later for each individual server using
the dsconfig tool. This entry will be created on each external

store instance when the servers are prepared in a later step.

1) Use cn=Broker User,cn=Root DNs,cn=config

2) Use a different account

b) back

q) quit

Specify the type of security that the Identity Broker uses when communicating with all
external store instances, or press Enter to accept the default (SSL).

Enter the host :port configured for the first Identity Data Store. The connection is veri-
fied.

Select the location name for the Broker Store, or enter another location if not listed in
the menu.

Specify the base DN where the Broker Store data will be located on the Identity Data
Store server. Press Enter to accept the default (ou=Identity Broker-
, dc=example, dc=com) or select the second option to enter another base DN.

Specify the base DN where the policy data should be stored

1) Use ou=Identity Broker,dc=example, dc=com

2) Use a different base DN

Enter an administrative account to be used by Identity Broker Console and broker-
admin tool users, or press Enter to accept the default (admin). Enter and confirm a pass-
word for this account.

An account entry will be created under ou=Admins,ou=Identity Broker,
dc=example,dc=com for managing the broker store by users of tools
such as the Identity Broker Console and broker-admin tool. Enter the

name (uid) of the entry to be created [admin]:

-20 -

Chapter 3: Installation

10.

11.
12.

13.

Confirm that the identified host should be prepared. This is required if installing sample
data later in the install process. If additional servers will be added as backups to the
Broker Store, select the Yes, and all subsequent servers option. This enables the
identification of another server later in the configuration. The prepare-external-store
tool can also be used to perform these tasked at a later time.

Would you like to prepare host:636 for access by the Identity Broker?

1) Yes
2) No
3) Yes, and all subsequent servers

4) No, and all subsequent servers

b) back

g) quit

Enter choice [3]:

A certificate is presented. Review the certificate and enter y to accept it.

Create the Identity Broker root user cn=Broker User,cn=Root DNs, cn=config account
on the Identity Data Store server, which enables server to server access. Administrators
or users do not use this account. Press Enter to accept the default (yes).

Would you like to create or modify root user 'cn=Broker User,
cn=Root DNs,cn=config' so that it is available for this

Identity Broker? (yes / no) [yes]:

Enter the DN and password credentials needed to create the root user cn=Broker User-
,cn=Root DNs, cn=config account on the Identity Data Store. This is the root account
created in the initial setup, such as default (cn=Directory Manager. The Identity Broker
sets up the DN and tests that it can access the account. The Broker Schema and Policy
Structure are also imported and verified.

Enter the DN of an account on localhost:636 with which to create or
manage the 'cn=Broker User,cn=Root DNs,cn=config' account and
configuration [cn=Directory Manager] :

Enter the password for 'cn=Directory Manager':

Created 'cn=Broker User,cn=Root DNs,cn=config'

Testing 'cn=Broker User,cn=Root DNs,cn=config' access Done

-21 -

14,

15.

16.
17.

18.

19.

20.

21.

22,
23.
24,

Configuring the Identity Broker

Testing 'cn=Broker User,cn=Root DNs,cn=config' privileges Done
Checking Broker Schema Done

Initializing Broker Store Done

Importing Broker Store Structure Done

Verifying backend 'ou=Identity Broker,dc=company,dc=com' Done
Enabling Short Unique ID Virtual Attribute Done

Creating Broker Store Admin Done

If there are additional servers that will host the Broker Store data, enter their host :port
for LDAP communication. If the option to prepare multiple servers was selected, the addi-
tional servers will be prepared with the same configuration that was just defined. If

there are no additional servers to add, press Enter to continue.

If user data stores are ready to be configured (Identity Data Stores or Identity Proxy
servers), press Enter for (yes). The user store will be configured with a default Store
Adapter and Data View, which will enable mapping of resources in the user store to the
Identity Broker.

Enter the host:port for the first Identity Data Store or Identity Proxy Server.

Enter the host :port for LDAP communication with this server. The connection is val-
idated.

Select an option to prepare the user store for access by the Identity Broker and press
Enter.

If there are additional user data store locations, enter their host:port. If there are no
additional servers to add, press Enter to continue.

Enter the host :port for LDAP communication for the additional server, or press Enter to
continue.

Specify the base DN for locating user entries, such as ou=people, dc=example, dc=com
and press Enter.

Create an LDAP search filter for this DN and press Enter.
The filter is validated against the DN. Press Enter (yes) to use these settings.

Review the configuration summary, and then press Enter to accept the default (w) to
write the configuration to a dsconfig batch file. The configuration is written to <server-
root>/broker-cfg.dsconfig . Certificate files are written to external-server-

certs.zip.

>>>> Configuration Summary

Admin Service URL: https://<hostname>:1443/auth/api/vl
OAuth2 Service URL: https://<hostname>:1443/ocauth

-22 -

Chapter 3: Installation

Policy Service URL: https://<hostname>:1443/pdp/vl

Privacy Service URL: https://<hostname>:1443/privacy/vl

OpenlID Connect Service URL: https://<hostname>:1443/userinfo

SCIM Service URL: https://<hostname>:1443/dataview/Users
Identity Broker Console: https://<hostname>:1445/broker-console
Privacy Preferences: https://<hostname>:1445/privacy-preferences

Identity Broker Location: austin

Broker Store
Base DN: ou=Identity Broker,dc=example,dc=com
Broker User DN: cn=Broker User,cn=Root DNs,cn=config
Connection Security: SSL

Servers: <hostname>:636

User Store
Base DN: ou=people,dc=example, dc=com
Search Filter: (objectClass=inetOrgPerson)
Broker User DN: cn=Broker User,cn=Root DNs,cn=config
Connection Security: SSL

Servers: <hostname>:636

What would you like to do?

b) back
g) quit

w) write configuration file
25. Press Enter (w) to confirm that the configuration should be applied to this Identity
Broker and written to the broker-cfg.dsconfig file.
26. Press Enter to confirm the configuration.

27. Install general-purpose policies that are ready for use or can be used as a starting point
in configuring additional policies. Press Enter to accept the default (yes).

Do you want to enable the default policies?

1) Yes

2) No

-23 -

Installing a Clone Identity Broker

28. Select the option (1) to load sample data so that the Identity Broker can be used imme-
diately after setup and press Enter. If not, data can be added at a later time using the
sample-data-loader tool.

29. This completes the initial configuration for the Identity Broker. Run the bin/status
tool to see that the Identity Broker server is up and running.

The UnboundID Identity Broker and its web applications are installed. Start the Identity Broker
Console, https:<hostname>:<8445>/broker-console to verify the connection.

The OAuth service's active-encryption-key value should be changed before exposing the
Identity Broker Server to external client applications. This is because the initial encryption key
value will be found in the broker-cfg.dsconfig file generated by create-initial-broker-
config.

Installing a Clone Identity Broker

An Identity Broker instance can be cloned to serve as an additional server. Cloning a server
copies the original Identity Broker's local configuration and links the two configurations.
Making a configuration change with dsconfig or through the Identity Broker Console will
prompt as to whether the change should apply to the local server only or all related servers.
Both Identity Brokers will share the same Broker Store and user stores.

For the installation process, the first Identity Broker is called the peer server. The new server
is called the cloned server. Review To Install the Identity Broker for details about each option.
Once the configuration is complete, the two servers are peers.

Note: When setting up a new Identity Broker from an existing peer, the existing HTTP(S)
connection handlers are not cloned. These connection handlers are created from scratch using
default values of the new server and any specified port values.

1. Unpack the zip distribution in a folder different from the peer Identity Broker.

2. Runthe ./setup command in the <server-root> directory of the cloned server.
3. Accept the licensing agreement.

4. Enter yes to add this server to an existing Identity Broker topology.

5

Enter the host name of the peer Identity Broker server from which the configuration will
be copied.

o

Enter the port of the peer Identity Broker.
7. Choose the security communication to use to connect to the peer Identity Broker.

8. Enter the manager account DN and password for the peer Identity Broker, or press
Enter to accept the default (cn=Directory Manager). The connection is verified.

9. Enter the fully-qualified host name or IP address of the local host (the cloned server).

10. Enter the HTTPS client connection port for the Identity Broker, or press Enter to accept
the default.

- 24 -

Chapter 3: Installation

11.

12.

13.

14,
15.
16.
17.

18.

19.
20.

21.
22,

Select the applications to install on this Identity Broker clone. The Identity Broker Con-
sole is required at a minimum.

Enter the HTTPS connection port for the Identity Broker applications, or press Enter to
accept the default.

Enter the port on which the clone Identity Broker will accept connections from LDAP cli-
ents, or press Enter to accept the default.

To enable LDAPS, enter yes.
To enable StartTLS, enter yes.
Select the server certificate option for this instance and press Enter.

To specify particular addresses on which the server will listen to client connections enter
yes.

Enter yes to tune the JVM memory for performance. If yes, enter the amount of memory
to allocate to the JVM.

Enter yes if you want to start the server after the server has been configured.

Review the information for the configuration, and press Enter to set up the server with
these parameters.

To write this configuration to a file, press Enter to accept the default (yes).

The clone is installed and configured based on the configuration settings of the peer.

Planning a Scripted Install

The setup and create-initial-broker-config tools provide an interactive installation of
the Identity Broker. If an interactive installation cannot be performed, a scripted installation
can be done. To simplify the process, the setup and create-initial-broker-config tools
can be run and the configuration written to the broker-cfg.dsconfig batch file. The batch file
can then be used for scripted installs.

A successful scripted Identity Broker installation relies on the following:

e Credentials for the Broker CLI client must be generated and set in the broker-cfg.d-

sconfig batch file. Configuring the Identity Broker non-interactively requires initial con-
figuration of the Broker Store with the broker-admin tool. The broker-admin tool
requires the generated client credentials for the built-in Broker CLI application. The
broker-admin tool needs to have these credentials in the server configuration as well,
under the OAuth Service's cauth-admin-client-id and cauth-admin-client-secret
properties.

The default OpenID Connect scopes must be loaded. These are defined in <server-
root>/resource/install oidc objects.broker-admin. The following line must be
modified appropriately:

-25-

Planning a Scripted Install

create-dataview-schema --set "name:Default User Schema" --set
"description:Default User Schema for OpenID Connect and SCIM" --
setFromFile "schemaJdson:S$SSERVER ROOT/resource/defaultUserSchema.json"

e The generated client credentials for the Identity Broker Console and Privacy Preferences
web applications should also be written to the server configuration.

Scripted Installation Process

If a scripted installation is done without the use of the create-initial-broker-config tool,
the process may look like this:

1. Set up and configure one or more Identity Data Stores. See To Install the Identity Data
Store.

2. Run the Identity Broker setup tool on the server that will host the Identity Broker.

3. Runprepare-external-store for the stores. This creates an admin account and client
credentials for built-in applications.

4. The client ID and secrets for the Broker Console, Privacy Preferences and command-line
tools are stored in <server-root>/tmp/create-initial-broker-config.props. The
following is an example of the file contents:

client-secret=[command-line tools client secret]
client-id=[command-line tools client ID]
admin-console-client-secret=[Broker Console client secret]
admin-console-client-id=[Broker Console client ID]
privacy-prefs-client-secret=[Privacy Preferences app client secret

5. Copy the command line tools, Console application, and Privacy Preferences application
credentials from the create-initial-broker-config.props file and place them into an
existing broker-cfg.dsconfig batch file or create the file. The following is an example
of these entries:

dsconfig set-oauth-service-prop \
--set active-encryption-key: [Encryption Key] \
—-set oauth-admin-client-id: [command-line tools client ID] \
--set id-token-issuer-name:broker.example.com \
--set ocoauth-admin-client-secret:[command-line tools client secret]

dsconfig set-web-application-extension-prop
--extension-name Broker-Admin-Console \
--set oauth-admin-client-id: [Broker Console client ID] \
—-—-set ocauth-admin-client-secret: [Broker Console client secret]

dsconfig set-web-application-extension-prop \
-—extension-name Privacy-Preferences-App \
--set ocauth-admin-client-id: [Privacy Preferences app client ID] \
—--set oauth-admin-client-secret: [Privacy Preferences app secret]

- 26 -

Chapter 3: Installation

6. Runthe dsconfig command and list the broker-cfg.dsconfig as a batch file to con-
figure the following:

« Configure the web applications and include at least one Identity Broker Console
application for the environment.

o Create locations for this Identity Broker and any additional Identity Broker serv-
ers.

« Create the external server client access to the Identity Data Store.
o Create Data Views.

7. Substitute the Identity Broker server root path into the <server-root>/re-
source/install oidc objects.broker-admin file.
8. Load <server-root>/resource/install oidc_objects.broker-admin using the

broker-admin tool.

9. Import policies with the broker-admin import-policy tool. See About the Installation
Process and Files Installed for a list of mandatory policies.

10. After installing the policies, run broker-admin in batch mode with the

resource/install-data-view-mappings.broker-admin file as input.

11. Use the broker-admin tool to load any other Broker Store data, such as sample data.
See About the Command Line Tools.

12. Validate that the Broker Console and Privacy Preferences applications are configured
properly by logging in as the admin user.

When finished, delete the <server-root>/tmp/create-initial-broker-config.props
file.

To Install the Identity Broker with an Existing Truststore

By default, the setup command configures your certificates and installs the keystore and
truststore in the config directory (i.e., config/keystore and config/truststore). If you
want to use an existing keystore and truststore in a different path, you can run the setup tool,
then run the create-initial-broker-config separately. The following procedures run setup
from the command-line in non-interactive mode. You can also run it interactively, but do not
run the create-initial-broker-config tool during the same session.

1. On the Identity Broker, run setup non-interactively from the command line. In this
example, we assume the keystore and truststore passwords are the same . If the files
are not already present in their paths, the command will fail.

./setup --cli —--no-prompt --acceptLicense \

--ldapPort 2389 --ldapsPort 2636 —--httpsPort 8443 --rootUserPassword password \

-27 -

Planning a Scripted Install

--useJavaTrustStore ~/tmp/keystores/truststore.jks \
--useJavaKeystore ~/tmp/keystores/brokerlkeystore.jks \
--trustStorePasswordFile ~/tmp/keystores/password.txt \
--keystorePasswordFile ~/tmp/keystores/password.txt \

—-—-certNickname server-cert

Run the create-initial-broker-config tool non-interactively from the command line.
Provide the paths to both the --brokerTrustStorePath and the --trustStorePath with
their respective password.

./bin/create-initial-broker-config \
--brokerTrustStorePath ~/tmp/keystores/truststore.jks \

--brokerTrustStorePasswordFile ~/tmp/keystores/password.txt \

- 28 -

Chapter 4: Configuration

During the setup process, the Identity Broker's setup tool invokes the create-initial-
broker-config script, configuring the communication between the Identity Broker and its
repositories. Additional tools are available to manage and configure Identity Broker
components.

This chapter provides additional, optional Identity Broker tools and configuration and includes
the following:

Identity Broker Command-Line Tools

The dsconfig Tool

Server SDK Extensions
About Store Adapters

Configuring Store Adapters
About Data Views

Configuring a Separate Metadata Store
About the OAuth Service

About Cross Origin Resource Sharing

About the Policy Service
About Dashboards and Metrics

The sample-data-loader Tool

Customizing the Identity Broker Web Applications

Velocity Templates

- 29 -

Chapter 4: Configuration

Identity Broker Command-Line Tools

The command-line tools are located in the /bin directory and provide most of the same
functionality as the Identity Broker Console. Each command-line tool provides help options
with examples. List all commands using the --help argument, all sub-commands using the --
help-subcommands argument, and a detailed help for a single subcommand using the --help
argument with the subcommand name.

S bin/broker—-admin —--help
$ bin/broker-admin —--help-subcommands
$ bin/broker-admin update-policy-template —--help

The following tools manage the various Identity Broker administrative tasks:

« broker-admin - Runs administrative operations. Use this tool to create and configure
applications, policies, resources, tags, and trust levels. All of these actions can also be
done in the Identity Broker Console.

« consent-admin - Runs consent management operations. Use this tool to add consents,
list consent history, list applications and resources for which consent was granted, and
revoke consent.

« evaluate-policy —-Requests a policy decision from the Identity Broker. Use this tool to
view policy decisions including a decision trace in XACML format.

« oauth2-request - Tests token functions of the Identity Broker. Use this tool to manage
OAuth2 tokens on behalf of a registered application.

« dsconfig - Provides additional configuration options for the Identity Broker envir-
onment. This tool provides an interactive, menu-driven mode to facilitate tasks such as
adding Data Views and additional user stores.

« prepare-external-store - Prepares the external data stores for the Identity Broker.
This is run as part of the create-initial-broker-config tool during installation, but
can be used to update the Broker Store or an external user store.

« collect-support-data - Collects system information useful in troubleshooting prob-
lems. The information is packaged as a zip archive.

The dsconfig tool

The dsconfig tool is used to view or edit the Identity Broker configuration. This utility can be
run in interactive mode, non-interactive mode, and batch mode. Interactive mode provides an
intuitive, menu-driven interface for accessing and configuring the server. The following can
only be done with the dsconfig tool after an initial Identity Broker configuration:

o Adding Data Views to the Identity Broker. Data Views use SCIM schemas to enable attrib-
ute mapping from one or more Identity Data Stores to the data collected through the

-30 -

The dsconfig tool

Identity Broker. Once added, Data Views can be edited in the Identity Broker Console.
o Adding additional Data Stores to the Identity Broker environment.
To start dsconfig ininteractive mode, enter the following command:
$ bin/dsconfig

The dsconfig tool provides a batching mechanism that reads multiple dsconfig invocations
from a file and executes them sequentially. The batch file advantage is that it minimizes LDAP
connections and JVM invocations required with scripting each call. To use batch mode to read
and execute a series of commands in a batch file, enter the following command:

dsconfig —--bindDN uid=admin,dc=company,dc=com —--bindPassword password \
-—-no-prompt --batch-file </path/to/config-batch.txt>

The 1logs/config-audit.log file can be used to review the configuration changes made to the
UnboundID Identity Broker and use them in the batch file.

To Run the dsconfig Tool

Initial configuration for the Identity Broker was defined during setup. Use this tool to refine or
change the initial configuration. The tool requires the Identity Broker server connection
information.

1. Tostartdsconfig ininteractive mode, enter the following command:
$ bin/dsconfig

Enter the Identity Broker hostname or IP address and press Enter.
Specify the option to connect to the Identity Broker and press Enter.

Enter the connection port, or press Enter to confirm the default (1389).

i & WN

Enter the administrator user bind DN, or press Enter to confirm the default (cn=Di-

irectory Manager).

6. Enter the password for this account and press Enter. The Identity Broker configuration
main menu is displayed.

>>>> UnboundID Identity Broker configuration console main menu
What do you want to configure?

1) Alert Handler 13) Location

2) Broker Store 14) Log History Service

3) Connection Handler 15) Log Publisher

4) Data View 16) Log Retention Policy

5) External Server 17) Log Rotation Policy

6) HTTP Authentication Scheme 18) Oauth Service

7) HTTP Servlet Cross Origin Policy 19) Policy Service

8) HTTP Servlet Extension 20) Server Affinity Provider
9) HTTP Session Manager 21) Store Adapter

10) HTTP User Authenticator 22) Velocity Context Provider
11) LDAP Health Check 23) Velocity Template Loader
12) Load Balancing Algorithm 24) Web Application Extension

-31-

Chapter 4: Configuration

o) 'Standard' objects are shown - change this
a) quit

7. Choose the configuration option and press Enter.

Server SDK Extensions

Custom server extensions can be created with the UnboundID® Server SDK. Extension bundles
are installed from a .zip archive or a file system directory. Use the manage-extension tool to
install or update any extension that is packaged using the extension bundle format. It opens
and loads the extension bundle, confirms the correct extension to install, stops the server if
necessary, copies the bundle to the server install root, and then restarts the server.

Note
The manage-extension tool must be used with Java extensions packaged using the
extension bundle format. For more information, see the "Building and Deploying Java-Based
Extensions" section of the Server SDK documentation.

The UnboundID Server SDK enables creating extensions for the Identity Data Store, Identity
Proxy, Metrics Engine, Identity Broker, and Identity Data Sync servers. Cross-product
extensions include:

e Access Loggers

e Alert Handlers

e Error Loggers

« Key Manager Providers

e Monitor Providers

e Trust Manager Providers

o OAuth Token Handlers

« Manage Extension Plugins
Extensions for the Identity Broker include:

o Policy Information Provider

o Store Adapter

About Store Adapters

Store adapters interface with backend data stores. Store adapters have the same API as the
Data View, except that store adapters have the option to support authentication and/or user
metadata attributes. There must be at /east one store adapter that supports user metadata and
authentication for each Data View.

-32-

About Store Adapters

Store adapters expose data in the native SCIM objects. A JDBC store adapter might return
SCIM objects where attribute names are JDBC-specific database names, such as employee id,
first name, and last name. The LDAP store adapter returns SCIM objects with LDAP-specific
attribute names, such as givenName, sn, and cn. The Identity Broker Console is used to map
these adapter SCIM objects to the Data View schema.

About User Metadata

The Identity Broker stores OAuth tokens, auth codes, and consents in an operational attribute
called userMetaData that is added to a user's entry within a User Store. The userMetaData
attribute is configured per store adapter and can be stored in any format. At least one store
adapter must support storing the user metadata attribute in an Identity Broker environment.

Metadata is divided into small and large attributes. Small metadata houses tokens, auth codes
and consents. Large metadata stores a user's consent history. This separation enables the
Identity Broker to access only those elements needed. Metadata can be stored in multiple store
adapters, for redundancy purposes. User stores should be configured to support load balancing
and failover.

A Data View stores the metadata in all store adapters that support it. For those store adapters
that do not need to store metadata, the user-metadata-attribute and user-large-
metadata-attribute properties can be disabled using the dsconfig tool.

In the case of an LDAP Store Adapter, both the small and large metadata attributes are multi-
valued, binary attributes. The LDAPStoreAdapter configuration object has the following
defaults:

user-metadata-attribute: id-broker-user-metadata
user-large-metadata-attribute: id-broker-user-large-metadata

An example user entry with user-metadata-attribute and user-large-metadata-
attribute attributes might look like this:

dn: uid=jsmith, ou=people, dc=example, dc=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetorgperson

uid: jsmith

cn: John Smith

givenName: John

sn: Smith

userPassword: {SSHA}rcYNUGsSFQXdM27VS+s/Uat/ydb5wruBmR2avwg==
id-broker-user-metadata: dGVzdGluZzEyMyROZXNOaW5nNDU2
id-broker-user-metadata: dGVzdGluZzAxMiROZXNOaW5nMjEw
id-broker-user-metadata: JHR1c3Rpbmc30Dk=
id-broker-user-large-metadata: YXNkZ2YgYXNkIGFzZGYgYXNkZ2Fkc2ZaGFk
ZmhhZHNmaGFkc2ZoYWRzZmhhc2RmZ2FzZGYgYXNkZ2FzZGdoYXNkZmhhc2RnYXNkZ2
hhc2ZkaGFzZGZnYXNkZ2ggcORGSEFTREZIQVNERkhZzZGAdzRECgQVNEIEJBUORHIEFE
UOZIIEFTUKhBUORGQVNEIDIgQVNERkcgQVNEIFRRV1IRHUOJBUORH

-33-

Chapter 4: Configuration

About the LDAP Store Adapter

The LDAP Store Adapter is a generic implementation of the store adapter, enabling it to
interface with any vendor's LDAP server, such as the Identity Data Store or Proxy Server,
Oracle DSEE, or Microsoft Active Directory.

The LDAP store adapter uses the SCIM SDK to provide options such as virtual list view,
pagination, and functionality like Identity Proxy load-balancing algorithms. Configure an LDAP
Store Adapter using the dsconfig tool.

The LDAP Store Adapter involves the following configuration parameters:

« ObjectClass. Determines the native schema to expose. For example, the Inetor-
gPerson schema provides LDAP attributes and UserObjectClass provides Active Dir-
ectory Attributes. The schema will not include operational attributes, but they can be
explicitly included using the include-operational-attribute setting on the LDAP
Store Adapter.

« Base DN. Determines the scope of the data within a subtree.

+ Search Filter. Determines if a search filter is used match specific items in the tree.
« Create-DN Pattern. Determines if create should be supported.

e SCIM ID Attribute. Determines which attribute to use as the SCIM ID.

« Operational Attributes. Determines if operational attributes should be included.

« Load-Balancing Algorithm. Specifies the load balancing algorithm.

o User MetaData Attributes. Determines the attributes to use for metadata. At least
one store adapter MUST be able to store the user metadata attributes.

Configuring Store Adapters

The Identity Broker comes with an LDAP store adapter that can be used to interface with
backend data stores. Third-party adapters can be created for other data stores with the Server
SDK available in the unboundid-server-sdk-<version>.zip package.

Configuring a custom store adapter includes the following steps:
1. Create a store adapter.
2. Storeitinthe /extensions directory of the Identity Broker.
3. Create a Data View schema.
4

Configure Store Adapter(s) and Data View using the Identity Broker Console or the dscon-
fig command.

-34 -

Configuring Store Adapters

About the Example Store Adapter

The Server SDK provides an example implementation of a third-party store adapter. View the
example and associated Javadocs in the Server SDK docs/example-
html/ExampleStoreAdapter.java.html directory.

ExampleStoreAdapter.java iS an implementation of a flat-file JSON store adapter, which
stores the SCIM user data in JSON. At startup, all resources are loaded from the json-file-
path parameter (resource/user-database.json). The example uses an in-memory hash
map of SCIM resources mapped to their SCIM ID.

The example provides full operations plus filterable search support for add, update, and
deletes. The example will perform a full-file rewrite on every change, because the file format
is a serialized list of Resources<BaseResource>. The code example does not support sorting
or resource versioning.

Creating a JDBC Store Adapter

The Server SDK provides an example implementation of a JDBC store adapter. The example
provides full operations plus search support for add, update, and deletes and persists it to the
SCIM RESOURCES table. View the example and associated Javadocs in the docs/example-
html/ExampleJDBCStoreAdapter.java.html directory.

ExampleJDBCStoreAdapter.java shows how to implement a single-table JDBC store adapter
with generic SQL support. The adapter stores users in Java jdbc format, which enables
mirroring attributes on an RDBMS server. The example code depends on an Apache Derby
10.10.1.1 jdbc driver jar that must be copied into the server's 1ib directory. The default input
parameters are:

e jdbc-driver-class = org.apache.derby.jdbc.EmbeddedDriver

e jdbc-url = jdbc:derby:storeadapter
At startup, the code auto-initializes by looking for a sentinel file in the init-sql-schema-path
property, which has a default value of resource/example-jdbc-store-adapter/.example-
jdbc-schema-created. If the file does not exist, the database will create a table with a

;create=true URL and populate it with the core user schema from the create-scim-
table.sql table as follows:

CREATE TABLE SCIM RESOURCES {

ID VARCHAR (44) NOT NULL PRIMARY KEY,
EXTERNALID VARCHAR (64) ,
META LONG VARCHAR,
USERNAME VARCHAR (32) ,
NAME VARCHAR (32),
FAMILYNAME VARCHAR (32) ,
GIVENNAME VARCHAR (32) ,
MIDDLENAME VARCHAR (32) ,
HONORIFICPREFIX VARCHAR (16) ,
HONORIFICSUFFIX VARCHAR (16) ,
DISPLAYNAME VARCHAR (32) ,
NICKNAME VARCHAR (32) ,

-35-

Chapter 4: Configuration

PROFILEURL VARCHAR (255) ,

TITLE VARCHAR (32) ,
PREFERREDLANGUAGE VARCHAR (8),

LOCALE VARCHAR (8) ,

TIMEZONE VARCHAR (32),

ACTIVE BOOLEAN,

PASSWORD VARCHAR (128),

EMAILS LONG VARCHAR,
ADDRESSES LONG VARCHAR,

PHOTOS LONG VARCHAR,

GROUPS LONG VARCHAR,
ENTITLEMENTS VARCHAR (255) ,

ROLES VARCHAR (255) ,
x509CERTIFICATES VARCHAR (4096) FOR BIT DATA,
WEBSITE VARCHAR (255) ,
EMAILVERIFIED BOOLEAN,

GENDER VARCHAR (16) ,
BIRTHDATE DATE,
PHONENUMBERVERIFIED BOOLEAN,

JSON LONG VARCHAR NOT NULL

}
Extend or modify the schema by editing the create-scim-table.sql file.

Multi-valued attributes require a persistence mechanism, such as Spring Hibernate, so the full
JSON serialized object is stored in a JSON attribute.

The SQL statements are inline but could be placed in a properties file for customization without
recompilation.

If necessary, the storeadapter sub-directory in the resource/example-jdbc-store-
adapterdirectory can be deleted and recreated.

Building the Extension

Build the JDBC store adapter by following the instructions in the Server SDK package for
building an extension:

1. Onthe server where the adapter is configured, run the following command to create a dir-
ectory where the adapter can be built:

mkdir -p src/com/unboundid/directory/sdk/examples
2. Copy the example store adapter to the new directory:

cp docs/example-src/ExampleJDBCStoreAdapter. java
src/com/unboundid/directory/sdk/examples

3. Editthe extension.properties file to set values for the properties used to specify the
name, version, and vendor information for the extension bundle.

4. Run the build.sh shell script (or build.bat batch file on Windows systems) to build and
package the extension.

- 36 -

About Data Views

Installing the Extension
After the extension is built, perform the following to install it on the Identity Broker server:
1. On the Identity Broker server, run the following command:

./bin/manage-extension \
—--install unboundid-server-sdk-
<version>/build/com.example.ExampleJDBC-1.0.zip

2. Downloaded the latest Derby driver derby-10.10.2.0.jar and copy it to the Identity
Broker /1ib directory.

3. Run the following command:

./bin/dsconfig create-store-adapter \

--adapter—-name ExampleJDBC \

--type third-party \

--set extension-
class:com.unboundid.directory.sdk.examples.ExampleJDBCStoreAdapter

About Data Views

Data Views provide a unified profile, enabling the Identity Broker server to present user
attributes from disparate sources as a single identity. Data Views rely on a single, SCIM-based
schema that can map one or more user stores to the resource defined in the Data View. For
example, a Data View can be created for attribute displayName that maps that attribute to
three existing user stores. By editing the Data View in the Identity Broker Console, this
attribute can be mapped to the attributes that are surfaced for each user store.

The following are required to enable Data Views:

User Stores - The Identity Broker requires at least one existing user store, which can be an
Identity Data Store, an existing LDAP directory, or other third-party directory. When a user
store is defined through the create-initial-broker-config tool, a Store Adapter and Store
Attribute Map are created. These enable mapping of the native schema attributes (attributes
native to the user store) to attributes that will be defined by a Data View Schema and surfaced
in a Data View.

Data View Schema - A SCIM schema must be created in JSON format and imported into the
Identity Broker Console. The schema will contain a number of SCIM attributes that should be
mapped to attributes in Identity Data Stores or third-party user stores. The schema can
represent a single SCIM resource, such as User or Group, which can contain one or more
attributes. The schema name and the Data View created for it must match exactly.

Data View - A Data View is created using the dsconfig tool and is associated with a Data
View Schema of the same name. Once the Data View is created, it can be edited in the Identity
Broker Console. Attributes from the associated Data View schema are mapped to the attributes
from the associated user store or stores.

-37-

Chapter 4: Configuration

To Configure Data Views

Configuring Data Views is a multi-step process. This step in the process relies on the existence
of a Data View Schema in the Broker Store, on which this new Data View will rely. Data View
Schemas are SCIM schemas created in JSON format. They are imported into the Broker Store
from the Identity Broker Console. See the UnboundID Identity Broker Administration Guide for
details.

1. Startthe dsconfig tool with the following command:

$ bin/dsconfig

2. Enter the required connection information to the Identity Broker server. See To Run the
dsconfig Tool for details.

3. When the Identity Broker configuration main menu displays, type the Data View option
(3) and press Enter.

4. Select an option from the Data View management menu.

>>>> Data View management menu
What would you like to do?

1) List existing Data Views
2) Create a new Data View
3) View and edit an existing Data View

4) Delete an existing Data View
b) Dback
q) quit

Enter option [b]:
5. Choose Create a new Data View (2), and press Enter.

6. If user stores were configured with the create-initial-broker-config tool, a default
Data View was created with that store. Press Enter to choose the default (n) use an exist-
ing Data View as a template.

7. Choose the Data View to use as a template and press Enter.

8. Specify a name for the Data View Schema that will be associated with the new Data view
and press Enter. The name must exactly match the "name" attribute for a Data View
Schema that exists in the Broker Store. Typically the name describes the resource type,
such as "User" or "Subscriber." The tool will later verify that this schema is presentin
the Broker Store.

9. Configure the properties of the Data View.

>>>> Configure the properties of the Data View
>>>> via creating '<new-name>' Data View

Property Value (s)

1) description -

- 38 -

Configuring a Separate Metadata Store

2) enabled true

3) dataview-schema-name <new-name>

4) store-adapter UserStoreAdapter

?) help

f) finish - create the new Data View

a) show advanced properties of the Data View

d) display the equivalent dsconfig arguments to create this object
b) back

q) quit

Enter option [b]:

10. Define or adjust any of the properties. When finished, select the create new Data View
option and press Enter.

11. If the Identity Broker was defined to keep its configuration synchronized with other serv-
ers, a prompt displays to update the current server or all servers. Choose an update
option and press Enter.

12. Open the Identity Broker Console Data Classification section to map attributes from
the Data View Schema to the related user stores in the new Data View.

Configuring a Separate Metadata Store

The Identity Broker stores metadata, such as tokens, authorization codes, consents, and
access history, on a per-user basis. By default, all user profile attributes and user metadata
are stored in the user store. If necessary, the user metadata and consent history can be stored
in a metadata store, separate from the user profile attributes.

This can be useful if installing the Identity Broker with an existing user store that is read-only,
or restricted. In this scenario, the Identity Broker will read attributes from the exiting user
store and store information about consent history and transactions in the metadata store. A
Data View and correlation attribute is used to map the store adapters for the user store and the
metadata store. See Configuring Custom Store Adapters for more information.

Preparing to Configure a Metadata Store

Before configuring the Identity Broker to use a metadata store, gather the following
information:

« Configuration details for the Data View that will use the metadata store. For example,
the name of the Data View and the store adapters used by the Data View.

e The correlation attribute to be used by all store adapters belonging to the Data View.

e The connection information to the data stores that will be used by the metadata store.

-39 -

Chapter 4: Configuration

About the Correlation Attribute

When a Data View is linked to multiple store adapters, a correlation attribute must be defined
for each store adapter to identify user entries within each backend data store. The correlation
attribute must refer to an attribute from the store adapter's native schema. It can be a
different attribute for each store adapter associated with a Data View. However, the value of
the attribute must be the same across all adapters for a particular user. The value should be a
primary key, such as the username, which corresponds to the
urn:scim:schemas:core:1.0:userName attribute in the default User schema and

urn:unboundid:schemas:scim:1ldap:1.0:uid in an LDAP store adapter's native schema.
Another possible choice is the unique ID, which corresponds to the
urn:scim:schemas:core:1.0:id attribute in the default User schema.

Example: Configuring an LDAP Metadata Store

In this example, an UnboundID Data Store is used as a metadata store, and it will be added to
an existing User Data View that uses another UnboundID Data Store as its User Store. See

Installing the Data Store for details.

For this example, user entries are assumed to already reside in the

ou=people, dc=example, dc=com base DN of the user store. The existing user entries are
managed by the UserStoreAdapter. Each user entry in the user store will have a
corresponding entry in the metadata store, but they will be created as they are needed. The
metadata store is managed by the MetadataStoreAdapter.

This example uses the user's unique ID as a correlation attribute.

The following table provides an overview of the configuration values that will be used

throughout this example.

Data View

User

User Store Adapter

UserStoreAdapter

User Store LBA

User Store LBA

User Store Base DN

ou=people,dc=example, dc=com

User Store Credentials

cn=Broker User,cn=Root DNs,cn=config

User Store Correlation Attribute

urn:scim:schemas:core:1.0:1id

Metadata Store Adapter

MetadataStoreAdapter

Metadata Store LBA

Metadata Store LBA

Metadata Store Base DN

ou=people,dc=example, dc=com

Metadata Store Credentials

cn=Broker User,cn=Root DNs,cn=config

Metadata LDAP Object Class

exampleIdentityBrokerUserMetadata

Metadata Entry Filter

(objectClass=exampleIdentityBrokerUserMetadata)

Metadata Store Correlation Attribute

example-broker-metadata-id

Metadata Store User Metadata Attribute

ds-broker-user-metadata

Metadata Store User Large Metadata Attribute

ds-broker-user-large-metadata

-40 -

Configuring a Separate Metadata Store

Metadata Store Create DN Pattern example-broker-metadata-id={example-broker-
metadata-id}, ou=people, dc=example, dc=com

The example scenario will change if a third-party Data Store and custom store adapter are
used, but the general principles will apply.

Preparing the LDAP Data Store

The UnboundID Data Store as the metadata store is updated so that the schema defines an
object class for storing user metadata, and the attribute used for correlating user entries from
the user store to metadata entries on the metadata store is indexed.

1. Create a custom schema file:

dn: cn=schema
objectclass: top
objectclass: ldapSubentry
objectclass: subschema
cn: schema
attributeTypes: (example-broker-metadata-id-oid NAME 'example-broker-
metadata-id'
SYNTAX 1.3.6.1.1.16.1
EQUALITY uuidMatch ORDERING uuidOrderingMatch
SINGLE-VALUE X-ORIGIN 'user defined')
objectClasses: (example-broker-user-metadata-oid NAME
'exampleIdentityBrokerUserMetadata'
DESC 'Container for example Identity Broker user metadata'
SUP top STRUCTURAL MUST (example-broker-metadata-id)
X-ORIGIN 'user defined')

This schema file defines the custom object class
"exampleIdentityBrokerUserMetadata," which requires the LDAP attribute "example-
broker-metadata-id." The example-broker-metadata-id attribute uses the UUID
attribute syntax, with objectID "1.3.6.1.1.16.1." This syntax is chosen because these
attributes will contain SCIM ID values, which the Broker represents as UUIDs. The
attribute syntax depends on the correlation attribute chosen.

The actual metadata is stored as operational attributes of the metadata entries, which
are added to the server with the prepare-external-store tool in step 5.

2. Copy the schema file to <server-root>/config/schema/ as 99-broker-metadata-
store.ldif.

Restart the Data Store to activate the new schema.

4, Create the cu=People, dc=example, dc=com base DN in the metadata store, if it does not
already exist.

5. Runthe prepare-external-store command against the metadata store with the --
isUserStore option. Though this data store will not be used as a user store, this will cre-
ate a cn=Broker User login account needed for use by the Identity Broker. For example:

-41 -

Chapter 4: Configuration

prepare-external-store
—-—hostname <hostname>
—-—port <port> \
—--bindDN "cn=Directory Manager" \
--bindPassword <root DN password> \
--isUserStore \
--userStoreBaseDN ou=people,dc=example,dc=com

6. Create an equality index for the example-broker-metadata-id attribute.

dsconfig create-local-db-index \
--index-name example-broker-metadata-id \
--backend-name userRoot \
--set index-type:equality

7. Stop the Data Store and rebuild the index.

rebuild-index \
--baseDN "ou=people,dc=example,dc=com" \
--index example-broker-metadata-id

8. Restart the Data Store. The data store is now ready to be used by the Identity Broker.

Configuring the Store Adapter

An LDAP store adapter is created to reference the LDAP Data Store that was previously
configured. This store adapter is added to the configuration for the User data view, and the
existing user store adapter's configuration is updated.

1. Create an external server entry on the Identity Broker to represent the metadata store
Data Store.

dsconfig create-external-server
--server—-name MetadataStoreDS1 \
-—-type unboundid-ds \
--set server-host-name:<hostname> \
-—-set server-port <port> \
--set location:<location> \
--set bind-dn "cn=Broker User,cn=Root DNs,cn=config" \
--set password:<password> \
--set authorization-method:none

2. Create a load-balancing algorithm for the metadata store.

dsconfig create-load-balancing-algorithm \
--algorithm-name "Metadata Store LBA"™ \
--type failover --set enabled:true \
--set backend-server:MetadataStoreDS1

3. Create a store adapter for the metadata store.

dsconfig create-store-adapter
--adapter-name MetadataStoreAdapter \
-—type ldap \

-42 -

Configuring a Separate Metadata Store

--set correlation-attribute-
urn:urn:unboundid:schemas:scim:1ldap:1.0:example-broker-metadata-id \

--set modifies-as-creates:true \

--set include-ldap-objectclass:ExampleldentityBrokerUserMetadata \

--set include-base-dn:ou=People,dc=example,dc=com \

--set user-metadata-attribute:ds-broker-user-metadata \

--set user-large-metadata-attribute:ds-broker-user-large-metadata \

--set "load-balancing-algorithm:Metadata Store LBA" \

—--set create-dn-pattern:example-broker-metadata-id={example-broker-
metadata-id}, ou=people, dc=example, dc=com

The correlation attribute referenced by this value is used to store the user's SCIM ID.

When modifies-as-creates is set to true, the store adapter will create an entry
instead of failing if the data view receives a modification request for an entry that does
not already exist. This enables metadata entries corresponding to entries on the user
store to be created on the fly in the metadata store. The create-dn-pattern property
defines a template that the store adapter uses to name new entries in the metadata
store.

4. Add the metadata store adapter to the User data view.

dsconfig set-data-view-prop
--view-name User \
--add store-adapter:MetadataStoreAdapter

5. Update the existing UserStoreAdapter. This store adapter is configured by default to
store user metadata, so that configuration will be removed.

dsconfig set-store-adapter-prop
--adapter—name UserStoreAdapter \
--set correlation-attribute-urn:urn:scim:schemas:core:1.0:id \
--remove user-metadata-attribute:ds-broker-user-metadata \
--remove user-large-metadata-attribute:ds-broker-user-large-metadata

The User data view needs to be re-initialized before the changes can take effect. Either
restart the Identity Broker server, or disable then enable the User data view.

Configuring the Data View

Modify the User Data View attribute mappings so that the correlation attribute has a mapping
for the metadata store adapter. In the Data View, the id attribute of the common schema is
mapped to the example-broker-metadata-id attribute of the metadata store adapter. This
establishes the correlation between the metadata entry and the corresponding user entry.

broker-admin set-dataview-mapping
--dataview User \
--adapter MetadataStoreAdapter \
——commonURN urn:scim:schemas:core:1.0:1id \
--nativeURN urn:unboundid:schemas:scim:1ldap:1.0:example-broker-metadata-id \
--readable --writable --indexed

- 43 -

Chapter 4: Configuration

The metadata store is now ready. Test the configuration by performing an authorization with
the Sign-In Sample application, included with the Identity Broker. See the UnboundID
Application Developer Guide for information about the Sign-In Sample application.

About the OAuth Service

OpenID Connect built on the OAuth 2.0 standard is an identity layer that enables applications to
authenticate end users without performing the authentication themselves. It also enables end-
user identity data to be shared between interested parties with the end-users’ consent. It
provides two primary mechanisms for doing this:

o ID tokens. ID tokens are compact objects which provide information about authen-
tication events.

e The UserInfo endpoint. This is a bearer token-protected REST endpoint which provides
attributes (“claims”) about a specific identity.

The OAuth2 implementation uses the Spring Security OAuth Framework, providing the
necessary interfaces to develop an OAuth2 client application. After the Identity Broker is
installed, the OAuth service can be configured with the dsconfig tool. The following are
configuration options:

>>>> Configure the properties of the OAuth Service

Property Value (s)

1) active-encryption-key B

2) alternate-decryption-key The active-encryption-key will be the only key
used for decryption

3) authorization-code-validity-duration 1 m

4) access-token-validity-duration 12 h

5) refresh-token-validity-duration 4 w2 d

6) reuse-refresh-tokens true

7) user-approval-page-url /view/oauth/approve

8) error-page-url /view/oauth/error

9) id-token-validity-duration 15 m

10) id-token-issuer-name vm-medium-73.unboundid. lab
11) signing-algorithm hs256

?) help

f) finish - apply any changes to the OAuth Service

a) show advanced properties of the OAuth Service

d) display the equivalent dsconfig arguments to apply pending changes
b) back

a) quit

Enter option [b]:
Notes:

e The encryption and decryption keys are used to protect Broker Store tokens so that val-
ues cannot be determined if the Broker Store is compromised. All Identity Broker

-44 -

About The Policy Service

Servers that share a Broker Store must use the same encryption key.

o If an encryption key changes, use the alternate-decryption-key setting to specify the

previous key. This ensures that any client applications using the authorization code and
token values encrypted with the previous key can still be decrypted.

About The Policy Service

Identity Broker policies are managed by the Policy Service. The default conditions of the Policy
Service can be viewed and changed with the dsconfig tool. For example:

« The broker-store option enables choosing a new location for the Broker Store.

o The combining-algorithm determines how decisions are made if multiple policies are

applied to a request for resources. The default for the Policy Service is deny-overrides,
which specifies that a "deny" decision from a policy should take priority over a "permit"
decision. The Identity Broker also supports permit-overrides, deny-unless-permit,
and permit-unless-deny. See the OASIS Committee Specification 01, eXtensible access
control markup language (XACML) Version 3.0. August 2010 (http://docs.oasis-open.org)
for details about each combining algorithm.

o The consent-validity-duration determines how long a consent to access data is valid

once sent. Applications can specify a different validity duration for consents, which will
overwrite this property.

To Configure the Policy Service

1.
2.

Run the dsconfig tool. See To Run the dsconfig Tool.

Select the Policy Service option from the UnboundID Identity Broker configuration con-
sole main menu. The following is displayed.

>>>> Policy Service management menu
What would you like to do?
1) View and edit the Policy Service

b) Dback
g) quit

Choose option 1. The settings for the Policy Service are displayed.

>>>> Configure the properties of the Policy Service

Property Value (s)
1) Dbroker-store Default
2) combining-algorithm deny-overrides

3) consent-validity-duration 52 w 1 d

- 45 -

Chapter 4: Configuration

?) help

f) finish - apply any changes to the Policy Service

a) show advanced properties of the Policy Service

d) display the equivalent dsconfig arguments to apply pending changes
b) back

q) quit

4. Enter an option to change.

About Cross-Origin Resource Sharing Support

Cross-0Origin Resource Sharing (CORS) enables client applications to make JavaScript requests
to the Identity Broker Server (or Identity Data Store) by specifying the domain from which the
request is made.These cross-domain requests are generally not allowed by web browsers
without CORS support. CORS defines a way in which the browser and the server can interact to
determine whether a request is coming from a trusted domain.

CORS Implementation

CORS is implemented per HTTP servlet extension. Access is governed by HTTP Servlet Cross
Origin Policies defined through the dsconfig tool. Trusted domains can be added to these
policies or defined with registered applications in the Identity Broker Console or through the
broker-admin tool.

Note
By default, HTTP servlet extensions do not have CORS defined. Without a CORS policy
defined, the configuration of the browser will determine application access.

The following are configuration options in dsconfig:
>>>> HTTP Servlet Cross Origin Policy management menu
What would you like to do?

1) List existing HTTP Servlet Cross Origin Policies
2) Create a new HTTP Servlet Cross Origin Policy

3) View and edit an existing HTTP Servlet Cross Origin Policy
4) Delete an existing HTTP Servlet Cross Origin Policy

b) back
q) quit

Enter option [b]:

HTTP Servlet Services

Enabling CORS for a particular servlet can impact another service provided by the same
servlet. It is important to know which services will be affected when enabling CORS for an
Identity Broker servlet. The following are available servilets and their functions.

-46 -

About Cross-Origin Resource Sharing Support

Servlet Functions

Identity Broker REST APl Administration of Broker Store objects, such as applications, scopes, and resources.
Servlet

OAuth Servlet OAuth authorization, token, revocation, and validation endpoints.

Policy Decision Point Ser- XACML PDP endpoint.

vlet

Privacy Servlet Consent management and consent history APls.

SCIM Profile access by data view using SCIM.

Spring Security Authentication and authorization layer for the rest of the servlets. Identity Broker login
and registration endpoints.

Userlinfo Servlet Profile access using OpenID Connect.

Velocity Velocity templates, including the Identity Broker's login, registration, and consent
interfaces.

Note

Any servlet accepting Javascript calls from client applications, such as the Velocity servlet,
must have CORS enabled.

HTTP Servlet Cross Origin Policies

Two sample policies are available after installation. They can be associated with a servlet
extension, or used as templates for additional policies.

Per-Application Origins - This policy trusts origins that are listed as trusted by applications
registered with the Identity Broker.

Restrictive - This policy rejects all cross-origin requests unless explicitly defined with the
cors-allowed-origins property. Requests from application origins that are not specified are
rejected with a 403 Forbidden return code.

Each policy accepts values for the following properties.

Property Description

cors-enabled Specifies if the CORS protocol is allowed by the servlet. The default
valueis false.

cors—allowed-methods Specifies the list of HTTP methods allowed for access to resources. The
default value is GET.

cors-enable-per-application-ori- Specifies thata per-application list of allowed origins (stored in the
gins Broker Store) is consulted. The default value is false in the Restrictive

policy and true in the Per-Application Origins policy.

cors-allowed-origins Specifies a global list of allowed origins. Ifthe cors-enable-per-
application-origins propertyis setto true, and there are ori-

gins listed here, this listis consulted in addition to the per-application
list. A value of "*" specifies that all origins are allowed. The defaultis an

empty list.

cors-exposed-headers Specifies a list of HTTP headers that browsers are allowed to access.
Simple response headers, as defined in the Cross-Origin Resource

-47 -

Chapter 4: Configuration

Property Description

Sharing Specification, are allowed. The defaultis an empty list.

cors-allowed-headers Specifies the list of header field names that are supported for a
resource and can be specified in a cross-origin request. The default val-
uesare Origin, Accept, X-Requested-With, Content-Type,
Access-Control-Request-Method, and Access-Control-
Request-Headers.

cors-preflight-max-age Specifies the maximum number of seconds that a preflight request can
be cached by the client. The default value is 1800 (30 minutes).

cors-allow-credentials Specifies whether requests thatinclude credentials are allowed. This
value should be false forservlets that use OAuth2 authorization. The

defaultvalue is false.

Assigning a CORS Policy to an HTTP Servlet Extension

CORS policies are assigned to HTTP servlet extensions through dsconfig.
The following are configuration options for the SCIM servlet extension:

>>>> Configure the properties of the Data View SCIM HTTP Servlet Extension
Property Value (s)

1) description =

2) cross-origin-policy No cross-origin policy is defined and no CORS headers are recogn
ized or returned.

3) base-context-path /dataview

?) help

f) finish - apply any changes to the Data View SCIM HTTP Servlet Extension

a) show advanced properties of the Data View SCIM HTTP Servlet Extension

d) display the equivalent dsconfig command lines to either re-create this object or only
to apply pending changes

b) Dback

g) quit

Enter option [b]: 2

Choose the cross-origin-policy option. Defined policies are listed.

>>>> Configuring the 'cross-origin-policy' property
The cross-origin request policy to use for the HTTP Servlet Extension.

A cross-origin policy is a group of attributes defining the level of cross-origin request
supported by the HTTP Servlet Extension.

Do you want to modify the 'cross-origin-policy' property?

1) Keep the default behavior: No cross-origin policy is defined and no CORS headers are
recognized or returned.

2) Change it to the HTTP Servlet Cross Origin Policy: Per-Application Origins

3) Change it to the HTTP Servlet Cross Origin Policy: Restrictive

4) Create a new HTTP Servlet Cross Origin Policy

- 48 -

About Dashboards and Metrics

?) help
) quit

Choose the CORS policy to assign to this servlet extension.

About Dashboards and Metrics

Dashboards are configured from the Metrics Engine and display data on the Metrics page of the
Identity Broker Console. Configuration is required on the Metrics Engine and the Identity
Broker server to surface data in the Identity Broker Console Metrics page. Data includes:

o Performance data for the Identity Broker.

o Authorizations granted and denied to client applications.
« Consents granted, denied, and abandoned by customers.
e Most requested data.

e Most requesting client applications.

See the UnboundID Metrics Engine Administration Guide for steps to install the Metrics Engine.
See the UnboundID Identity Broker Administration Guide for details about the Identity Broker
Console application and the Metrics page.

To Configure the Metrics Engine and Identity Broker to show Metrics
Data

This procedure assumes that an UnboundID Metrics Engine is already installed. See the
UnboundID Metrics Engine Administration Guide for details. Make sure that the following are
available:

e Make sure that the Metrics Engine was configured to use HTTPS or both HTTP and HTTPS.

« Make sure the Identity Broker is installed and configured with the create-initial-
broker-config tool, and that the Identity Broker Console web application was installed.
See To Configure the Identity Broker.

o Verify access to the Identity Broker Console at https://<host:port>/broker-console
and log in as the administrative user.

e Click the Metrics link in the Identity Broker Console. A page with empty charts will dis-
play until the Metrics Engine is configured and data is generated.
Perform the following steps to configure the Metrics Engine:

1. From the Metrics Engine, use the monitored-servers tool to connect the Metrics Engine
to the Identity Broker. For example:
./UnboundID-Metrics-Engine/bin/monitored-servers -w <ME password> add-servers \

--remoteServerHostname <Broker host name> \
—-—-remoteServerPort <Broker LDAP port> \

- 49 -

Chapter 4: Configuration

--remoteServerBindPassword <Broker Host Password> \
—--monitoringUserBindPassword password -p <ME LDAP port>

2. Inabrowser, access the Metrics dashboard page https://<ME-host:https-
port>/view/broker-dashboard. Charts display (after a short period of time) with no
data, as the Metrics Engine has not taken samples from the Identity Broker yet.

3. From the Identity Broker server, use the dsconfig tool to configure the Broker-Admin-
Console web application extension for the dashboard URL:
./dsconfig set-web-application-extension-prop \

——extension-name Broker-Admin-Console \
--set dashboard-url:https://[ME-host:ME-https-port]/view/broker-dashboard

4. For the configuration setting to take effect, disable and then re-enable the Broker Apps
Connection Handler with the dsconfig tool:

./dsconfig set-connection-handler-prop \
--handler-name "Broker Apps Connection Handler" \
--set enabled:false

./dsconfig set-connection-handler-prop \
--handler-name "Broker Apps Connection Handler" \
--set enabled:true

5. Ina browser, access the Identity Broker Console Metrics page. The dashboard will be
embedded in the page.

The sample-data-loader Tool

During the setup process, the create-initial-broker-config tool prompts to install default
policies for the Identity Broker. See About the Installation Process and Files Installed for
details about these policies.

If this is not done during the configuration process, the sample-data-loader tool can be used
to install sample data at a later time. The sample-data-loader tool provides an install
subcommand to set up the sample data and a remove subcommand to delete the sample data if
needed.

Note: The create-initial-broker-config session installs two internal users, sampleuserl
and sampleuser2, which are used in the sample policies. The users sampleuserl and
sampleuser2 corresponds to "John Public" and "Mary Private," and are installed in the backend
user store repository. The user sampleuserl has consented to the applications,
InternalAppOne and ExternalAppTwo, accessing his Customer Profile and Billing History. The
user sampleuser2 has not consented to either application.

If adding the sample data after running the create-initial-broker-config tool, these users
must be manually added to the user store prior to running sample-data-loader. The following
example procedure shows how to do so.

- 50 -

The sample-data-loader Tool

To Add Sample Users and Run the sample-data-loader Tool

1. On the backend user store, add two internal entries, sampleuserl and sampleuser2, to
be used with the sample-data-loader tool. Or, use two existing user accounts with the
sample-data-loader. The following shows a sample LDIF file that can be created using
any text editor, and added to the Data Store using the 1dapmodify tool.

dn: uid=sampleuserl, ou=People,dc=example, dc=com

objectClass: top objectClass: person

objectClass: organizationalPerson

objectClass: inetorgperson

description: This is a test user to exercise sample data within the
UnboundID Identity Broker

uid: sampleuserl

cn: Sample

sn: Userl

userPassword: password

dn: uid=sampleuser?2, ou=People,dc=example,dc=com
objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetorgperson

description: This is a test user to exercise sample data within the
UnboundID Identity Broker

uid: sampleuser?2

cn: Sample

sn: User?2

userPassword: password

bin/ldapmodify -p 1389 -D "uid=admin,dc=example,dc=com" -w passord -a -f
sample-data.ldif
2. On the Identity Broker, run the sample-data-loader tool to install the sample data.

sample-data-loader install \
-—-trustAll --authID admin --authPassword password \
—--ownerl sampleuserl --owner2 sampleuser?2 —--no-prompt

3. If sample data is no longer needed, run the sample-data-loader tool to remove the
sample data.

sample-data-loader remove \
-—-trustAll --authID admin --authPassword password \
—--ownerl sampleuserl --owner2 sampleuser2 —--no-prompt

Sample Requests and Policy Tests

After sample data is loaded, sample client requests can be used to test the Broker
configuration. The Broker Console web application contains four Policy tests, based on the data

-51 -

Chapter 4: Configuration

that was loaded. See the UnboundID Identity Broker Administration Guide for details about
running Policy Tests.

Customizing the Identity Broker Web Applications

The Identity Broker can be installed with the Identity Broker Console and Privacy Preferences
web application for end-users to view the set of applications and resources to which they have
given consent with the added option to revoke that consent if required. Depending on the user's
privileges, the Privacy Preferences application can also be used by customer support staff to
assist end-users with their consent management. By default, applications are deployed through
an embedded Jetty servlet container.

Note
If bookmarking the application pages, bookmark the Identity Broker Console and Privacy
Preferences landing pages, not the login page. Bookmarking the login page causes
authentication errors.

Customizing the Identity Broker Console Login Pages

The Identity Broker supports HTTP-accessible web page hosting using the Velocity Template
Language (VLT). Velocity is an open-source project of the Apache Software Foundation, which
uses VTL code statements to reference dynamic content within a web page. See Velocity
Templates for details.

The Identity Broker web pages can be customized to serve template-generated content, static
content (images, CSS, and Javascript files), or runtime information about the server, its data,
schema, or any other information. Velocity templates are obtained from the filesystem through
a loader instance which is selected for each request based on the request's Accept header, and
whether the loader has access to a resource that can fulfill the requested page. For more
information about Velocity and the Velocity Template Language, see
http://velocity.apache.org.

The Identity Broker hosts three pages through which end users can log into the system,
manage consent, and see errors. These pages can be rebranded to better represent a company
or department.

The pages are implemented as Velocity templates in the Identity Broker server's directory
<server-root>/config/velocity/templates, whose variable values are provided by the
server when the page is accessed. The three templates are:

« login.vm. The OAuth login page that end users are directed to if they are not currently
logged in. This is the page that a client application will serve to enable login.

-52 -

Customizing the Identity Broker Web Applications

bnboundID | Identity Broker

Welcome to UnboundID Identity Broker

Username admin

Password

%)

« oauth/approve.vm. The page where end user's can see information about a request to

Sign In Sample is requesting permission to

« View your profile data. Hide Requested Information
¢ um'scim'schemas-core:1.0-name formatted
o um:scim:schemas:core:1.0:name.familyName
o um'scim schemas-core 1.0-name givenName
o um:scim:schemas:core:1.0:name.middleName
o um'scim'schemas-core:1.0°nickName
¢ um'scim'schemas-core:1.0-userName
o um:scim:schemas:core:1.0:profileUr
o um'scim schemas-core 1.0 photos preferred
o um:unboundid:oide:1.0:website
o um-unboundid-oidc-1.0-gender
© um-unboundid-oidc:1 0-birthDate
o um:scim:schemas:core:1.0:timezone
¢ um'scim'schemas-core:1.0'locale
o um:scim:schemas:core:1.0:meta.lastModified

Deny

+ Manage your OpenlD Connect data. View Requested Information

access their resources and either allow or deny access. This page can be customized for
client applications.

WnboundD = Identity Broker

Confirm Access Request

« oauth/error.vm. An error page is available that should rarely be seen by end-users.

The directory <server-root>/config/velocity/statics can also be used by the pages to
store images, CSS files or anything else that is not within the Velocity Context.

The server exposes the various objects to the templates that contain useful information at
request time. The templates can access bean properties and methods of each of these. For
example, the template can access the application's name using the variable
$Sapplication.name. The following objects are exposed by the server:

principal - Information about the currently logged in user. Will be null the user is not
currently logged in.

authorizationRequest - The authorization request being made by an application.
application - The application making the request for resources.

scopes - One or more scopes being requested. Each scope defines a set of resources,
purpose, and actions.

- 53 -

Chapter 4: Configuration

« isOfflineAccess - Boolean where true indicates that the application is requesting per-
mission to the approved scopes when the user is not online.

« isForceConsent - Boolean where true indicates the resource server will prompt the
end-user for permission each time information is returned to the application making the
request.

In addition, the following Velocity Tools are available for general use:
o display
e escape

e convert

See Velocity Tools Context Provider for more information.

Customizing a Web Application Logo

The Identity Broker's web applications, the Broker Console and Privacy Preferences, can be
changed or re-branded with a company logo. The applications use a cascading style sheet to
determine appearance. The default style sheet file can be over written by creating new style
sheets for the Broker Console and the Privacy Preferences applications with the following
naming convention:

SHOME/ .broker-console/branding-override.css

SHOME/ .privacy-preferences/branding-override.css

If these files are present, the Identity Broker uses these to overwrite existing style sheets.
The following is an example of the style sheet used to display the default logo in the title bar:

.product-logo {

width: 18px;

height: 24px;

background-image: url ("../img/unboundid-u30.png") ;
background-size: 100% 100%;

}

Style changes take affect after an application is restarted.

Running the Broker Applications on Tomcat

The Identity Broker runs its web applications on an embedded Jetty servlet container by
default. To deploy the web applications on Apache Tomcat, use the following procedure.

To Configure the Identity Broker Web Applications on Tomcat

Configuring the Identity Broker web applications to use Tomcat may overwrite some of the
default properties as defined in:

webapp/WEB-INF/classes/application.default.properties

-54 -

Running the Broker Applications on Tomcat

Review this file before creating an application.properties file for the web applications. This
file can also be used as a template for creating the application.properties file.

1.

Install Tomcat and put the WAR files for the Identity Broker Console and Privacy Prefer-
ences apps from the Identity Broker Server's /webapps directory in Tomcat's /webapps
directory.

Optional. Modify SCATALINA HOME/conf/server.xml to set the ports. By default, they
are set to 8080 and 8443, which is used by the Identity Data Store.

<Connector port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"

redirectPort="8443" />

Run broker-admin get-application-prop on the Broker Store to find the client ID for
the Identity Broker Console application. The same command can be used for the Privacy
Preferences application.

$ broker-admin get-application-prop \
--id @BrokerConsole@ \
—-—property clientId \
—--script-friendly | cut -f 2

edd75465-a4la-422c-b4d5-2d69aflde50d

Run the following command to determine the client secret for the Identity Broker Con-
sole. The client secret must be base64 encoded in application.properties, and should
be removed from the file system once used.

$ broker-admin get-application-prop \

--id @BrokerConsole@ \

—--property clientSecret

-—-script-friendly | cut -f 2 > /tmp/secret
$ base64 encode -f /tmp/secret

S1hZMENhUndjUwo=

S rm /tmp/secret

Run the same command for the Privacy Preferences application. The client secret must
be base64 encoded in application.properties, and should be removed from the file
system once used.

$ broker-admin get-application-prop --id @PrivacyPrefs@ --property clientSecret --sc
ript-friendly | cut -f 2 > /tmp/secret

S base64 encode -f /tmp/secret

- 55 -

Chapter 4: Configuration

S1hZMFNhUndjUwo=

$ rm /tmp/secret

6. Before starting Tomcat, create an application.properties file. This is the file that
applications read to determine the Broker location. Use previously recovered client
ID and secret. Save the properties file in the directory SHOME/ .broker-console for the
Identity Broker Console . The properties file resembles the following for the Identity
Broker Console:

serviceUrl=https://<hostname>:1443
trustStoreFile=/ds/<user>/tomcat/UnboundID-Broker/config/truststore
oauthAdminClientId=30c1605d-4eb3-4403-92c4-453029e96881

oauthAdminClientSecret=eUpmUzF6SGViWQ==

7. Repeat the previous step for the Privacy Preferences application and save the file to the
directory SHOME/ .privacy-preferences. The properties file resembles the following for
the Privacy Preferences application:

serviceUrl=https://<hostname>:1443
trustStoreFile=/Users/<user>/test/broker/UnboundID-Broker/config/keystore
scimDisplayNamePath=urn:scim:schemas:core:1.0:name.formatted
scimResourceName=user

scimUserNamePath=urn:scim:schemas:core:1l.0:userName
scimQueryContainsEnabled=true
ocauthAdminClientId=bb1£8875-9c6c-44da-b033-0d324727abl3

oauthAdminClientSecret=V01XYnFOd2wzVQ==

8. Start Tomcat, and go to the Broker Console's URL, http://<localhost>:8080/broker-

admin-console

9. Do the same thing for the Privacy Preferences app:
http://<localhost>:8080/privacy-preferences

Velocity Templates

The Metrics Engine exposes Velocity pages through an HTTP Servlet Extension. If the HTTP
Connection Handler is enabled, the Velocity extension is enabled.

$ bin/dsconfig set-connection-handler-prop --handler-name "HTTPS Connection Handler" \
—--add http-servlet-extension:Velocity

Velocity template files contain presentation content and variables that are replaced when the
content is requested. Variables are expressed using a s followed by an identifier that refers to
an object put into a context (VelocityContext) by the server.

- 56 -

Velocity Templates

Velocity extensions can be configured to expose a humber of objects in the context using the
expose-* properties:

expose-request-attributes - Indicates whether HTTP request attributes are accessible
to templates using the subid request variable. In general, request attributes are added
by server components processing the HTTP request. Also the HTTP request parameters
map is available as subid request.parameters. Request parameters are supplied by
the requester, usually in the request URL query string or in the body of the request itself.

expose-session-attributes - Indicates whether HTTP session attributes are accessible
to templates using the subid session variable. Like request attributes, session attrib-
utes are also added by server components processing the HTTP request. The lifetime of
these attributes persists until the user’s session has ended.

expose-server-context - Indicates whether a Server SDK server context is accessible
to templates using the subid server variable. The server context provides access to
properties and additional information about the server. See the Unbound ID Server SDK
documentation for more details.

The following are other properties of the Velocity HTTP Servlet Extension:

description - A description of the extension.
cross-origin-policy — Defines a cross origin policy for this extension.
base-context-path - URL base context for the Velocity Servlet.

static-content-directory - In addition to templates, the Velocity Servlet will serve mis-
cellaneous static content related to the templates. By default this is con-
fig/velocity/statics.

static-custom-directory - If static content is customized, it resides in velo-
city/statics by default.
template-directory - The template directory from which templates are read. By

default this is config/velocity/templates. This directory also serves as a default for
Template Loaders that do not have a template directory specified.

static-context-path - URL path beneath the base context where static content can be
accessed.

allow-context-override - Indicates whether context providers may override existing
context objects with new values.

mime-types-file - Specifies a file that is used to map file extensions of static content to
a Content Type to be returned with requests.

default-mime-type - The default Content Type for HTTP responses. Additional content
types are supported by defining on or more additional Velocity Template Loaders.

-57-

Chapter 4: Configuration

The VelocityContext object can be further customized by configuring additional Velocity context
providers. The dot notation used for context references can be extended arbitrarily to access
properties and methods of objects in context using Java Bean semantics. For example, if the
HTTP request URL includes a name query string parameter like:

http://example.com:8080/view/hello?name=Joe

An HTML template like the following could be used to generate a page containing a friendly
greeting to the requestor:
<html>
<body>
Hello Subid request.parameters.name

</body>
</html>

A pop-up window displays a table on the page that lists all variables that are in the Velocity
Context. References like subid request can appear in the template file and be replaced when
the template is rendered. This information can be used to check which variables are permitted
to be in the template along with the variable values.

A debug option can be used in any Velocity template for verifying available information in the
Velocity Context:

parse (" debug.vm")
debug ()

If a variable is added to a template for something that does not exist, the rendered page will
contain a literal string of the unfulfilled variable (for example $undefined variable).

By default, the Velocity Servlet Extension expects to access content in subdirectories of the
server’s config/velocity directory:
« templates - This directory contains Velocity template files that are used to generate
pages in response to client requests.

o statics - This directory contains static content such as cascading style sheets, HTML,
and Javascript files as well as images and third-party libraries.

Supporting Multiple Content Types

By default, the Velocity Servlet Extension is configured to respond to HTTP requests with a
content type text/html. Change this request type by setting the default MIME type using
dsconfig. For example, the following can be used to set the default type to XML:

$ bin/dsconfig set-http-servlet-extension-prop \
-—extension-name Velocity \
--set default-mime-type:application/xml

HTML requests can be supported as well as clients that seek content in other formats. Create
one or more Velocity Template Loaders to load templates for other content types like XML or
JSON.

The ability to serve multiple formats of a document to clients at the same URL is typically
called content negotiation. HTTP clients indicate the type of content desired using the Accept

- 58 -

Velocity Context Providers

header. A client may use a header like the following to indicate that they prefer content in XML
but will fallback to HTML if necessary:

Accept: application/xml,text/html;g=0.9

The following can be used to create a Velocity Template Loader for XML content:

$ bin/dsconfig create-velocity-template-loader \
-—extension-name Velocity \
--loader-name XML \
--set evaluation-order-index:502 \
--set mime-type-matcher:application/xml \
—-set mime-type:application/xml \
-—set template-suffix:.vm.xml

Upon receiving a request, the Velocity Servlet first creates an ordered list of requested media
types from most desired to least based on the value of the Accept header. Starting from the
most desired type, it will then iterate over the defined Template Loaders according to the
evaluation-order-index property from lowest value to highest.

A Template Loader can indicate that it can handle content for requested media type by
comparing the requested type to its mime-type-matcher property. A loader can be configured
to load templates from a specific directory or load template files having a particular suffix. In
this case, where XML templates are expected to be named using a .vm.xml suffix. If a loader
indicates it handles the requested content type and a template exists for the requested view,
the template is loaded and used to generate a response to the client. If no loaders are found
for the requested media type, the next most preferred media type (if any) is tried. If no
loaders indicated that they could satisfy the requested view, the client is sent an HTTP 404

(not found) error. If no loaders could provide acceptable media but the requested view exists
in some other format, the client is sent an HTTP 406 (not acceptable) error.

In this example, a template file called hello.vm.xml can be used to generate a response in
XML:

<hello name="$ubid request.parameters.name”/>

In this case, the response will contain an HTTP Content-Type header with the value of the
mime-type property of the Velocity Template Loader.

Velocity Context Providers

The previous examples use a value supplied as an HTTP request query string parameter to
form a response. The templates contain a variable subid request.parameters.name that was
replaced at runtime with a value from the Velocity Context.

The Velocity Extension can be configured to make some information available in the Velocity
Context such as the HTTP request, session, and Server SDK Server Context. Velocity Context
Providers provide more flexibility in populating the Velocity Context for template use.

Here are some of the properties of a Velocity Context Provider:

- 590 -

Chapter 4: Configuration

« enabled - Indicates whether the provider will contribute content for any requests.

« object-scope - Indicates to the provider how often objects contributed to the Velocity
Context should be re-initialized. Possible values are: request, session, or

application.

¢ included-view/excluded-view - These properties can be used to restrict the views
for which a provider contributes content. A view name is the request URL's path to the
resource without the Velocity Servlet’s context or a leading forward slash. If one or more
views are included, the provider will service requests for just the specified views. If one
or more views are excluded, the provider will service requests for all but the excluded
views.

Velocity Tools Context Provider

Apache’s Velocity Tools project is focused on providing utility classes useful in template
development. The Velocity Context can be configured by specifying Velocity Tool classes to be
automatically added to the Velocity Context for template development. For more information
about the Velocity Tools project, see http://velocity.apache.org/tools.

The following command can be used to list the set of Velocity Tools that are included in the
Velocity Context for general use by templates:

$ bin/dsconfig get-velocity-context-provider-prop \
-—extension-name Velocity \
--provider-name "Velocity Tools" \
—-—property request-tool \
-—property session-tool \
-—property application-tool \

-60 -

Chapter 5: Management

The Identity Broker provides server management tools needed to run basic functions, such as
stop, start, uninstall, and others. The tools are located in the server root directory or in the
bin directory of the server.

This section includes the following:

Running the Identity Broker

Stopping the Identity Broker

Uninstalling the Identity Broker

Updating the Identity Broker and Broker Store

-61 -

Chapter 5: Management

Running the Identity Broker

To start the Identity Broker, run the bin/start-broker tool on UNIX/Linux systems (the same
command is in the bat folder on Windows systems).

To Run the Identity Broker

On the command line, run the following command.

$ bin/start-broker

To Run the Identity Broker in the Foreground

1. Enter the bin/start-broker with the --nodetach option to launch the Identity Broker
as a foreground process.

S bin/start-broker --nodetach

2. Stop the Identity Broker by pressing CNTRL-C in the terminal window where the server is
running or run the bin/stop-broker command from another window.

Stopping the Identity Broker

The Identity Broker provides a shutdown script, bin/stop-broker, to stop the server.

To Stop the Identity Broker

Use the bin/stop-broker tool to shut down the server.

$ bin/stop-broker

To Schedule a Server Shutdown

The Identity Broker provides the capability to schedule a shutdown and send a notification to
the server.out log file. The following example sets up a shutdown task that is schedule to be
processed on April 3rd, 2013 at 11:00pm CDT. The server uses the UTC time format if the
provided timestamp includes a trailing "Z", for example, 201304032300Z. The example also
uses a --stopReason option that writes the reason for the shutdown to the logs.

$ bin/stop-broker --task --hostname serverl.example.com \

——bindDN uid=admin,dc=example,dc=com --bindPassword password \
—-stopReason "Scheduled offline maintenance" --start 201304032300Z

To Run an In-Core Restart

Re-start the Identity Broker using the bin/stop-broker command with the --restart or -rR
option. Running the command is equivalent to shutting down the server, exiting the JVvM
session, and then starting up again. Shutting down and restarting the JVM requires a re-

-62 -

Uninstalling the Identity Broker

priming of the JVM cache. To avoid destroying and re-creating the JVM, use an in-core restart,
which can be issued over LDAP. The in-core restart will keep the same Java process and avoid
any changes to the JVM options.

Sbin/stop-broker --task —--restart —--hostname 127.0.0.1 \
—-bindDN uid=admin,dc=example,dc=com —--bindPassword password

Uninstalling the Identity Broker

The Identity Broker provides an uninstall tool provides an interactive method to remove the
components from the system.

To Uninstall the Identity Broker

1. From the server root directory, run the uninstall command.

$./uninstall
2. Select the option to remove all components or select the components to be removed.

Do you want to remove all components or select the components to remove?

1) Remove all components

2) Select the components to be removed
g) quit
Enter choice [1]: 2

3. To selected components, enter yes when prompted.

Remove Server Libraries and Administrative Tools? (yes / no) [yes]: yes
Remove Log Files? (yes / no) [yes]: no

Remove Configuration and Schema Files? (yes / no) [yes]: yes

Remove Backup Files Contained in bak Directory? (yes / no) [yes]: no

Remove LDIF Export Files Contained in 1dif Directory? (yes / no) [yes]: no

The files will be permanently deleted, are you sure you want to continue? (yes / no)

[yes]:

4. Manually delete any remaining files or directories.

Updating the Identity Broker and the Broker Store

When updating the Identity Broker product, the Broker Store data is expected to be at least as
current as the Identity Broker version. Upgrading the Broker Store may add new schema

-63 -

Chapter 5: Management

elements and default configuration elements essential in keeping the Broker service running.
Since the Identity Broker will not start if the Broker Store is a version older than the Identity
Broker itself, update the Broker Store then update instances of the Identity Broker.

Note

Upgrade is supported for post 4.6.0 releases.

Perform the following steps to update the Broker Store:

1.
2.

Before updating the Broker Store, use the backup tool to backup the Broker Store data.

Gather information about the Broker Store including the base DN and connection inform-
ation to the Data Store.

Obtain a new Identity Broker installation package and unzip the file in a temporary dir-
ectory on the same host as the Identity Broker instance to be updated.

Update the Broker Store by using the --update option with the prepare-external-
store tool. If there are multiple Data Stores replicating the Broker Store data, run the
command on one of the servers:
prepare-external-store --update --isBrokerStore --brokerStoreBaseD
<baseDN> \
--hostname <host> --port <port> <--useSSL> --bindDN

<directory-manager-bind-DN> \
--bindPassword <directory-manager-bind-password>

The Broker Store is now current with the new Identity Broker package.
Use the update tool to update the local Identity Broker instance.

Test the new Identity Broker installation. There may be other manual, post-update steps
necessary such as re-importing policy files. See the Identity Broker release notes for
information specific to this release.

Update any other Identity Broker instances.

-64 -

Chapter 6: Reference

This chapter provides general reference about various files and components of the Identity
Broker.

This section includes:

Identity Broker Files and Folders

Identity Broker Tools

- 65 -

Chapter 6: Reference

Identity Broker Files and Folders

Once you have unzipped the Identity Broker distribution file, the following folders and
command-line utilities are available.

Layout of the Identity Broker Folders

Directories/Files/Tools Description

LICENSE.txt Licensing agreement for the Identity Broker.

README README file that describes the steps to set up and start the Identity Broker.
bak Stores the physical backup files used with the backup command-line tool.
bat Stores Windows-based command-line tools for the Identity Data Store.

broker-cfg.txt

Stores the configuration history for the Identity Broker. Appears after you have con-
figured the Identity Broker.

classes Stores any external classes for server extensions.

collector Stores collector files.

config Stores the configuration files and the directories for messages, schema, tools, and
updates.

docs Provides the release notes, Configuration Reference file and a basic Getting Started
Guide (HTML).

import-tmp Stores temporary imported items.

Idif Stores any LDIF files that you may have created or imported.

legal-notices Stores any legal notices for dependent software used with the Identity Broker.

lib Stores any scripts, jar, and library files needed for the server and its extensions.

locks Stores any lock files in the backends.

logs Stores log files for the Identity Broker.

metrics Stores files for the UnboundID Metrics Engine.

resource Stores the MIB files for SNMP.

revert-update

The revert-update tool for UNIX/Linux systems.

revert-update.bat

The revert-update tool for Windows systems.

setup The setup tool for UNIX/Linux systems.
setup.bat The setup tool for Windows systems.
tmp Temp directory.

unboundid_logo.png

UnboundID logo

uninstall The uninstall tool for UNIX/Linux systems.
uninstall.bat The uninstall tool for Windows systems.
update The update tool for UNIX/Linux systems.
update.bat The update tool for Windows systems.

- 66 -

The Identity Broker Tools

Directories/Files/Tools Description

webapps

Stores the war files for reference implementations (privacy preferences and the admin
console)

The Identity Broker Tools

Available Identity Broker tools are:

Identity Broker Tools
Tool Description
backup Run full or incremental backups on one or more Identity Brokers. This utility also sup-
ports the use of a properties file to pass predefined command-line arguments.
base64 Encode raw data using the base64 algorithm or decode base64-encoded data back

to its raw representation.

broker-admin

Invoke administrative operations over the Identity Broker REST API.

collect-support-data

Collect and package system information useful in troubleshooting problems. The
information is packaged as a ZIP archive that can be sent to a technical support rep-
resentative.

consent-admin

Manage a resource owner consent over the Identity Broker REST API. Consentis
authorized by a resource owner to allow access to resources by an application.

create-initial-broker-config

Create an initial Identity Broker configuration.

create-rc-script

Create a Run Control (RC) script that can be used to start, stop, and restart the Iden-
tity Broker on Unix-based systems.

dsconfig View and edit the Identity Broker configuration.

dsframework Manage administrative server groups or the global administrative user accounts that
are used to configure servers within server groups.

dsjavaproperties Configure the JVM arguments used to run the Identity Broker and its associated

tools. Before launching the command, edit the properties file located in con-
fig/java.properties to specify the desired JVM arguments and the JAVA
HOME environment variable.

evaluate-policy

Request a policy decision from the Identity Broker.

Idapmodify

Perform LDAP modify, add, delete, and modify DN operations in the Identity Broker.

Idappasswordmodify

Perform LDAP password modify operations in the Identity Broker.

Idapsearch Perform LDAP search operations in the Identity Broker.

Idif-diff Compare the contents of two LDIF files, the output being an LDIF file needed to bring
the source file in sync with the target.

Idifmodify Apply a set of modify, add, and delete operations against data in an LDIF file.

list-backends

List the backends and base DNs configured in the Identity Broker.

manage-extension

Install or update extension bundles. An extension bundle is a package of extension
(s) that utilize the Server SDK to extend the functionality of the Identity Broker. Any
added extensions require a server re-start.

-67 -

Chapter 6: Reference

Tool

Description

oauth2-request

Performs OAuth2.0 requests on the Identity Broker. This tool can be used to test
OAuth2.0 functions of the Identity Broker, and to manage OAuth2.0 tokens on behalf
of registered applications.

prepare-external-store

Prepares the external data stores for the Identity Broker. This is run as part of the
create-initial-broker-config tool during installation. This tool creates
the broker user account, sets the correct password, and configures the account with
required privileges. It will also install the necessary schema required by the Identity
Broker. This tool can also be used to update (with the --update option)an
external Broker Store or a data store schema.

remove-defunct-server

Removes a permanently unavailable Identity Broker after it has been removed from
its topology by the uninstall tool.

restore

Restore a backup of the Identity Broker.

review-license

Review and/or accept the product license.

sample-data-loader

Install or remove sample data for Identity Broker testing and demonstration.

server-state

View information about the current state of the Identity Broker processes.

start-broker

Start the Identity Broker.

status

Display basic server information.

stop-broker

Stop or restart the Identity Broker.

sum-file-sizes

Calculate the sum of the sizes for a set of files.

summarize-config

Generate a configuration summary of either a remote or local Identity Broker
instance. By default, only basic components and properties will be included. To
include advanced component, use the --advanced argument.

- 68 -

Index: access token - ID token

create-initial-broker-config 19

Index create-initial-broker-config tool 67

create-rc-script tool 67

D
A data stores
access token 44 installing 11
administrative account data view schema
Identity Broker 20 described 37
B SCIM schema 37
backup tool 67 data views
base DN creating 38
configure Broker Store 20 described 15, 37
configure data store 13 dsconfig
configure user entries 22 CORS configuration 46
base64 tool 67 described 30
broker-admin tool 30 options 31
described 67 tool described 30, 67
broker-cfg.dsconfig dsframework tool 67
scripted install 25 dsjavaproperties tool 67
write file 23 dstat
Broker Console installing on SUSE Linux 9
get client ID 55 E
URL 24

encryption keys 44

broker store evaluate-policy tool 30, 67

configure backup location 22 external identity provider
described 11

feature 2
c F
client ID for Idnetity Broker 55 file descriptor limits 8
clone Identity Broker 24 H

collect-support-data tool 30, 67 o]
HTTP Servlet Cross Origin Policy 47

command-line tools 30

HTTP servlet extension 48
consent-admin tool 30, 67
CORS

configuration 46

I
ID token 44

- 69 -

Index: Identity Broker - sample-data-loader

Identity Broker Idapsearch tool 67
architecture 3 Idif-diff tool 67
attribute filtering 2 Idifmodify tool 67
authorization 3 list-backends tool 67
console URL 24 M
described 1 manage-extension tool 67
features 2 metrics
folders 66

configuring 49

installing 17 described 49
files installed 15 o

installing with existing truststore 27
OAuth2
pluggable authentication 2)
encryption keys 44
server certificate 21
service configuration 44
social login 2
oauth2-request tool 30, 68

supported platforms 6
OpenID Connect 15

tools 67

. . P
installing

prerequisites 6 prepare-external-store 21

scripted install 25 prepare-external-store tool 30, 68

privacy policy
installed by default 15

J

Java

privacy preferences
installing the JDK 11

customizing the logo 54
supported versions 6

JDBC Store Adapter 35

installing 17

R
JVM memory allocation

data store 13 relying party 3
Identity Broker 18 remove-defunct-server tool 68
REST API

connection port 17

L

Idapmodify tool 67

restore tool 68
Idappasswordmodify tool 67
LDAPS

configure data store 13

review-licence tool 68
S
sample-data-loader 16

configure Identity Broker 18
example of 51

-70 -

Index: sample-data-loader tool — Velocity templates

sample-data-loader tool 68 \"/
SCIM schema 15 Velocity templates
server-state tool 68 multiple content types 58
start-broker overview 56

example of 62 tools context provider 60

running in the foreground 62
start-broker tool 68
status tool 68
stop-broker

example of 62

in-core restart 62
stop-broker tool 68
storage

options 8
store adapters

described 32

JDBC 35

third-party 35
sum-file-sizes tool 68
summarize-config tool 68

supported platforms 6

T

Third-Party Store Adapter 35
U

UnboundID

about iv
uninstall tool 63
user processes

configuring on Redhat/CentOS 9
user store 11
UserInfo endpoint 44
UserMetaData

described 33

-71-

	Copyright
	Preface
	About UnboundID
	About This Guide
	Audience
	Documentation

	Chapter 1: Introduction
	Identity Broker Overview
	Identity Broker Features
	Identity Broker Architecture
	Installation Considerations

	Chapter 2: System Requirements
	Installation Prerequisites
	Supported Platforms
	Supported Storage Options
	Configuring File Descriptor Limits
	To Set the File Descriptor Limit

	Setting the Maximum User Processes
	Installing the dstat Utility on SuSE Linux

	Chapter 3: Installation
	Installing the JDK
	About the Broker Store and User Store
	Installing the Identity Data Store
	To Install the Identity Data Store

	Identity Broker Installation Tools
	Installation Process and Files Installed
	Installing the Identity Broker
	Configuring the Identity Broker
	Installing a Clone Identity Broker
	Planning a Scripted Install
	Scripted Installation Process
	To Install the Identity Broker with an Existing Truststore

	Chapter 4: Configuration
	Identity Broker Command-Line Tools
	The dsconfig tool
	To Run the dsconfig Tool

	Server SDK Extensions
	About Store Adapters
	About User Metadata
	About the LDAP Store Adapter

	Configuring Store Adapters
	About the Example Store Adapter
	Creating a JDBC Store Adapter

	About Data Views
	To Configure Data Views

	Configuring a Separate Metadata Store
	Preparing to Configure a Metadata Store
	About the Correlation Attribute
	Example: Configuring an LDAP Metadata Store
	Preparing the LDAP Data Store
	Configuring the Store Adapter
	Configuring the Data View

	About the OAuth Service
	About The Policy Service
	To Configure the Policy Service

	About Cross-Origin Resource Sharing Support
	CORS Implementation
	HTTP Servlet Services
	HTTP Servlet Cross Origin Policies
	Assigning a CORS Policy to an HTTP Servlet Extension

	About Dashboards and Metrics
	To Configure the Metrics Engine and Identity Broker to show Metrics Data

	The sample-data-loader Tool
	To Add Sample Users and Run the sample-data-loader Tool
	Sample Requests and Policy Tests

	Customizing the Identity Broker Web Applications
	Customizing the Identity Broker Console Login Pages
	Customizing a Web Application Logo

	Running the Broker Applications on Tomcat
	To Configure the Identity Broker Web Applications on Tomcat

	Velocity Templates
	Supporting Multiple Content Types
	Velocity Context Providers
	Velocity Tools Context Provider

	Chapter 5: Management
	Running the Identity Broker
	To Run the Identity Broker
	To Run the Identity Broker in the Foreground

	Stopping the Identity Broker
	To Stop the Identity Broker
	To Schedule a Server Shutdown
	To Run an In-Core Restart

	Uninstalling the Identity Broker
	To Uninstall the Identity Broker

	Updating the Identity Broker and the Broker Store

	Chapter 6: Reference
	Identity Broker Files and Folders
	The Identity Broker Tools

	Index

